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Abstract

Currently there are three methods of calculating the Dynamic Positioning capability of a vessel namely:
static calculations, real-time time domain simulations and fast-time time domain simulations, although
the outcome of the last two should be identical. In each of these methods a set of input variables
is required to perform the calculations. These inputs are not always exactly known and are therefore
sometimes estimated or taken from databases. It is not always clear how big the uncertainty in these
estimated inputs is, and on top of that: how big the effect on the predicted DP capability is. To be able
to quantify how certain a DP capability calculation is and which input data contribute most to the output
uncertainty, in this thesis the input uncertainties for both static and fast-time dynamic calculations are
investigated. Each method is subdivided in three different design stages which are: conceptual design,
preliminary design and as built design. For the static calculations all three design stages are evaluated
but for the fast-time dynamic simulations only the as built stage is considered.

The static calculation part of the analysis consists of determining the input uncertainties, the input
sensitivities to the output and finally calculating the output uncertainty. The method used for this
calculation assumes that either the relation between input and output is linear or can be linearised at the
point of interest. The input uncertainties are calculated using historical data of the Bibby Wavemaster 1
which is the vessel used as case study throughout this thesis and is specifically designed for the purpose
of servicing offshore wind farms. It is observed that the input uncertainties of the main dimensions of
the vessel are clearly reducing when moving through the design stages. Furthermore it is concluded
that the environmental coefficients of wind, waves and current are the most uncertain, even in the
conceptual design stage where input parameters of the main dimensions of the vessel vary the most.
When considering the sensitivity in the three design stages no big changes were observed, meaning
that in all design stages the main dimensions of the vessel are most sensitive to the output. Finally the
uncertainty in the output was evaluated were it was observed that for the as built stage still a standard
deviation of 4% uncertainty of the output is present, resulting in a calculated 99.7% confidence interval
of either 12% too high or too low.

In the dynamic calculation part only the as built stage is considered. Again the uncertain parameters
are defined but due to the PID controller in the dynamic model some new input parameters are now
present. The gains of this PID controller are assumed to be uncertain and are therefore taken into
account during the dynamic uncertainty analysis. Due to a limitation in the aNySIM licence bought by
Damen it is impossible to change the wave coefficients which causes their uncertainty not to be taken
into account. Since the dynamic simulations are considered to have strong non linearities and possibly
even discontinuities due to thruster saturation, the calculation method used for the static part is not
applicable anymore. Therefore it is decided to use Monte Carlo simulations to quantify the uncertainty
in dynamic DP calculations. Due to the large computational time required to perform large amounts
of Monte Carlo simulations with aNySIM, a machine learning method is used to capture the dynamic
behaviour of the vessel. A small number of simulations performed by aNySIM is required to train the
model which are selected using the Sobol design of experiments technique. This technique optimises
the choice of the simulation points to make sure the complete space of possible inputs is covered. By
using the machine learning model to obtain an output of a dynamic simulation only a fraction of a
second is required instead of 17 minutes when using aNySIM. By running the Monte Carlo simulation
on the created machine learning model it was observed that the 97.7% confidence interval for offset
can either be calculated up to 8.7% too low or too high whereas the prediction for heading up to 23.1%
too low or too high when compared to the base case. It is concluded that using DP for the purpose of
people transferring by means of a ”Walk To Work” bridge, uncertainties should be taken into account
to reduce both safety and contractual requirements risks.
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1
Introduction

This chapter starts with some background information on why Dynamic Positioning (DP) is a relevant
topic today as well in the future. Thereafter a brief introduction is given on the different Dynamic
Positioning capability methods, a more detailed elaboration on Dynamic Positioning is given in section
2.1. Finally the research questions and objectives are described

1.1. Background
Nowadays a tremendous amount of offshore activities can be found all across the globe. One of the
biggest offshore markets is oil and gas for which numerous platforms were built offshore to extract raw
materials from earth that provided us with energy for decades. However, people become more aware
of the fact that these sources don’t last forever and an alternative is required to provide a planet for
future generations. The growing global awareness together with the fact that the oil price is down quite
a bit [1] results in a rapidly increasing offshore wind industry [2]. All those platforms and windmills
need to be installed, maintained and eventually decommissioned.

In the early days the installation of platforms, windmills and the drilling of wells was done by vessels
that were moored or anchored to the sea bottom or by using jack-up platforms. Jack-up platforms are
barges that are towed or can sail to the location of interest where they extent their legs until they
stand solid on the sea bottom. As technology evolved people were looking into ways to keep vessels
in place by just using their thrusters which is known as Dynamic Positioning vessels. These vessels
measure or estimate environmental forces and act up on them to stay in their desired position. DP
vessels are now being used for multiple purposes including but not limited to: installation, maintaining
and decommissioning platforms and windmills.

One can imagine that these vessels are a big investment for a company and therefore a detailed
specification of the DP capability is desired so that an assessment can be made whether a ship is
capable of performing certain operations. In general three motions of the vessel are compensated
by the DP system namely: surge, sway and yaw as illustrated by the orange arrows in figure 1.1.
These motions are induced due to the environmental forces that act on the vessel, illustrated by the
red arrows, which are wind, waves and current. To maintain position the thrusters generate a force,
illustrated by the green arrows, which counteracts the environmental forces. When determining these
capabilities different methods can be used and are briefly discussed in section 1.2.

1
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Figure 1.1: Dynamic Positioning - Vessel Motions, Environmental Forces and Thruster Forces [3]

1.2. DP capability methods
When designing DP vessels, several methods and tools can be used throughout the designing process
of the vessel [4] as is depicted in table: 1.1. Roughly two different methods can be distinguished which
are: static and dynamic capability methods, both of them are shortly evaluated below.

Table 1.1: Various design stages DP system with accuracy [4]

1.2.1. Static capability methods
The most basic method to asses the capability of a DP vessel is by means of a static calculation and
therefore neglecting the dynamic influences that are present. A simple condition must be met which
states that the resultant of the thrust generated by the thrusters must equal the resultant of the external
mean forces acting on the vessel. The results of these static DP calculations are visualised in so called
DP capability plots of which an example is shown in figure 1.2. The DP capability plot shows for a
given amount of thrust up to what environmental conditions, expressed in wind speed, a vessel can
still maintain its position. This is done for different angles of attack from which the environmental loads
can approach the vessel, but is at least calculated once every 15° according to the International Marine
Contractors Association (IMCA) guidelines [5]. Important to state is that most of these calculations
are performed with the assumption that all the environmental forces are collinear, meaning that wind
current and waves are assumed to have the same direction.
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Figure 1.2: Kongsberg DP capability plot [6]

Quasi static capability method
Despite the fact that the above calculation method is performed in a static manner, time varying envi-
ronmental forces can be accounted for in static DP capability calculations by means of several methods.
The method mostly used throughout the maritime and offshore industry is the use of a Dynamic Margin.
This Dynamic Margin is taken on the thrusters of the vessel and states that the maximum thruster us-
age, in the static DP calculations, must not exceed 80% to account for the time varying environmental
forces [7].

Another method to account for time varying environmental forces in static capability calculations is
by means of a DP factor. The DP factor is a multiplier on the mean environmental loads and roughly
varies between 1 and 2 [8] [9]. However this factor depends very strong on the experience of the
company, the environmental conditions and the type of vessel.

1.2.2. Dynamic capability methods
A more extensive way of determining the capability of a DP vessel is by means of dynamic methods.
Here a distinction is made between mathematical calculation methods, such as time domain and real
time simulations, and model testing which is also a dynamic method but strictly speaking no calculations
are performed.

Time domain simulations
Several software packages are commercially available to perform time domain simulations. One of the
big differences compared to static calculation methods is that it is possible to determine the position of
the vessel at any point in time and in 6 Degrees Of Freedom (DOF). The dynamic calculations include
first and second order wave forces whereas for the static calculation method only the mean second
order wave drift forces are considered. Another difference is that with time domain simulations the DP
control system is included in the calculations. It is known that the settings of the control systems can
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influence the capability of the vessel [10] so including it in the calculations will result in a more realistic
capability prediction.

Real time simulations
Another way of dynamically determining the capability of a vessel is by means of a real time simulator.
A real time simulator visualises the vessels motions real time in 3D and offers the possibility to connect
other systems to the hydrodynamic model of the vessel. This results in the possibility to connect an
actual DP control system to the model and determine the vessels capability. Another system that can
be included in the simulation is the usage of a ”walk to work” bridge of which the Ampelman is one of
the best known examples. This bridge makes it possible for crew to be safely transported from a ship
to a platform, windmill or another vessel.

At Damen Shipyards a DOLPHIN real time simulator was bought at Maritime Research Institute
Netherlands (MARIN) that contains the hydrodynamic model of the ASV9020 Walk to Work vessel, also
known as the Bibby Wavemaster 1. Connected to the simulator is the Kongsberg DP control system
as used on the actual vessel. In addition a model of the ”walk to work” bridge is connected to the
simulator, the UPTIME Gangway large, which is also installed on vessel. Combining both the Kongsberg
DP system and the UPTIME Gangway bridge in one model it is possible to determine the capability of
the vessel and the bridge combined.

Model tests
In the final stages of designing a DP vessel, model tests can be performed to determine its capability.
The aim of model testing is to be as close to reality as possible. One of the places where these model
tests can be performed is at MARIN. When performing the model tests, MARIN uses their in house
designed Proportional Integral Derivative (PID) controller but also offers the possibility include a DP
control system from another brand to determine the vessels capability. This way the DP control system
installed on board of the actual vessel can already be implemented and tested beforehand.

1.3. Problem definition
Damen Shipyards just finished building its first dedicated offshore wind farm servicing vessel, the
ASV9020 Walk to Work vessel, also known as the Bibby Wave Master 1. This is the first ship that was
sold under the terms that it should be able to transfer people from the vessel to the windmills for a
certain minimum sea state resulting in a specific operational window. Similar contractual requirements
are expected in the future. The possibility to transfer people is a combination of station keeping
capability of the ship itself and the capabilities of the gangway. The disturbances that act on the ship
are wind, waves and current and are stochastic by nature. Given this stochastic nature the question
arises how, and in what way, the transferring capability of a specific ship can be quantified or even
guaranteed up to a certain weather condition.

Current industry standard to predict station keeping capability is to make static DP capability plots
[5]. However, with the upcoming wind turbine installation and servicing industry, customers do not
only ask for class specifications anymore but also make demands about the operability of the vessels
DP system. As stated before, this is called the DP station keeping. A possibility to say something about
DP station keeping is to make dynamic simulations, taking into account both the static and dynamic
characteristics of the ship and environment. The amount of required ship information drastically in-
creases. This approach can be carried out in fast-time or in real-time, although this should not matter
for the end result. Another approach could be to carry out model scale tests, also in that case there
are many relevant system parameters that should be taken into account.

After analysing the DP design process at Damen it became clear that a lot of input parameters
in the static DP capability calculation are uncertain. Furthermore the sensitivity of the output to the
(uncertain) parameters is not always clear. This means that there could potentially be a significant
uncertainty in the output of the DP calculations. It could be that the only reason that this has not led
to contractual problems is that the DP capability is not easily verified on full scale. The thought about
uncertainty can be extended to the dynamic DP predictions. In the case that operations are carried
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out close to fixed structures the relevance of knowing and understanding the limitations of the system
becomes even greater.

To determine these uncertainties an uncertainty analysis should be performed. It is important to
realise that there are 2 different inputs namely: given inputs and adjustable inputs. An example of
a given input is for instance the wind speed, this will not change in case the design of the vessel
changes. However when looking at an adjustable input, like for instance the length of the vessel, this
can change when the vessels design is adjusted. Important to note is that an input which given does
not necessarily has zero uncertainty. For a schematic overview see figure: 1.3.

Figure 1.3: Input-output flowchart

To define the given and adjustable inputs in a better and more structured way three different vessel
design stages are considered as summarised in table 1.2

Table 1.2: Design stages

Design Explanation

Conceptual Design stage with very big geometrical changes, typically a complete new product
Preliminary Small changes in geometrical dimensions and to on board systems will still occur
As built Complete geometrical dimensions and on board systems of the vessel are known

1.3.1. Research question
Combining the information presented above a logical research question and sub questions that are
answered during this thesis are formulated as follow:

• How should parametric and data uncertainties be managed in the DP calculation process

– Which parametric and data inputs are considered to have uncertainties?
– What are the magnitudes of the uncertainties of the parametric and data inputs?
– What are the sensitivities of the parametric and data inputs to the model outputs?
– Which parametric or data inputs have the most significant contribution to the uncertainty of
the Dynamic Positioning station keeping output?

1.3.2. Objectives
During this thesis research a distinction is made between static and dynamic DP calculations since it is
expected that the uncertainty will differ for both methods and it is important to asses which method
is most suitable for specific calculation purposes The distinction is also visible in the objectives set for
this thesis research:

• Acquire knowledge about the effect of the input uncertainties on static DP calculation output

• Acquire knowledge about the sensitivities in static DP calculation methods

• Acquire knowledge about the effect of the input uncertainties on dynamic DP calculation output

• Acquire knowledge about the sensitivities in dynamic DP calculation methods
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This chapter starts with explaining the basic components present in a DP system and elaborating on
the applications of DP vessels. Also the environmental forces acting on a vessel and how these forces
should be calculated is evaluated after which a more in depth analysis is performed concerning the
wave forces. The difference between time domain and frequency domain analysis is elaborated on and
evaluation of some former research on DP calculations is presented. Calculation tools to perform DP
analysis are discussed and the DP design process Wavemaster 1 is reviewed. Finally different types of
uncertainty and sensitivity are described.

2.1. Dynamic positioning

2.1.1. Dynamic positioning and dynamic tracking
Dynamic Positioning is a term widely used in the offshore and maritime industry but is sometimes used
for two different phenomena. The first is Dynamic Positioning (DP) and the second is Dynamic Tracking
(DT). Although it may seem that both have the same meaning a small but significant difference makes
them different from each other. The definitions used throughout this report are [4]:

• Dynamic Positioning is a method to automatically maintain a vessel on its predefined position
and/or heading by use of its thrusters and/or rudders.

• Dynamic Tracking is a method to automatically maintains a vessel’s predefined track and/or
heading by using its thrusters and/or rudders.

A vessel that has Dynamic Tracking capability can also perform Dynamic Positioning operations but
the conversely is not necessarily true.

2.1.2. DP applications, strengths and weaknesses
There are several reasons why one could choose to use a DP system. Deep water is one of them since
it could be to expensive or maybe even impossible to use an anchor-leg mooring system. When con-
ducting short-term moorings it could also be less expensive and way more flexible than a conventional
anchor-leg mooring system. Another scenario is when the vessel operates in situations where it should
be able to sail away quickly in case of an emergency or extreme weather. DP systems are used more
and more often for a variety of applications which include but are not limited to [4]:

• Drill rigs

• Diving / Remotely Operated Vehicle (ROV)

• Pipe laying

• Rock dumping

• Dredging

• (Tandem) Offloading

• Floating storage and production

• Military

7
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• Yachts

• Heavy lift operations

• Decommissioning operations

• People transferring

As the operation where DP is used differs also the required offset differs in each case. Where a
decommissioning operation requires maybe a maximum of 0.5𝑚 deviation, a deep water drilling vessel
may be able to deviate up to 2% of the water depth which means sometimes a deviation up to a
hundred meter is still acceptable. The usage of a DP system, as every system, has it strengths and
weaknesses and are summarised below [4]:

Strengths:

• Applicable in shallow and deep water

• Cost & performance independent of water depth

• Quick mooring and disconnecting

• No tugs required for operation

• Rapid response to weather and operational changes

• No seabed or subsea infrastructure impairment

Weaknesses:

• High Capital Expenditures (CAPEX)

• (High) Fuel consumption

• Risk of loosing position due to equipment failure

• Thruster can be hazardous for divers and a ROV

• Higher maintenance

• Not always usable in high sea states

2.1.3. DP system blocks
Although almost every DP system is different, as different suppliers have different design philosophies
and each system is tuned and optimised to its application, still a general layout of components is always
found in every DP system which are essential to make the system work as a whole. These components
can be subdivided in four blocks namely:

• Power System

• Thruster System

• Control System

• Position Reference System

The complete DP system, when activated, is a continuous loop that is constantly exchanging in-
formation between the four different blocks to keep the vessel in its required position. The relation
between the separate components and blocks is visualised in figure 2.1. Here the wind feed forward
option is also shown which is used in the more modern DP systems. This feed forward measures the
wind speed and therefore makes it possible to predict the vessels movement due to, for instance, wind
gusts. Therefore the DP system can already start reacting to these forces resulting in a smaller offset
of the vessel.

2.1.4. Power system
The power system delivers the required power to keep position or track. To better understand the
interaction between the components it is important to have a basic knowledge about the components
that are part of it. According to [12], [13] and [14] the following components are part of the power
system:
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Figure 2.1: DP system block diagram [11]

• Prime movers with auxiliary systems and piping

• Generators

• Switchboards

• Distribution system (cabling and cable routing)

• Uninterruptible power supplies and batteries

• Power management system

2.1.5. Thruster system
A wide variety of propulsion systems was invented over the years in the maritime and offshore industry.
In this thesis however only the propulsion present on the DAMEN ASV 9020 Walk to Work, also known
as the Bibby Wavemaster 1, is evaluated. According to [14] the following components are part of the
thruster system:

• Thruster with prime movers, auxiliary systems
and piping

• Main propellers and rudders (if under control of
DP system)

• Thruster control electronics

• Manual thruster controls

• Associated cabling and cable routing

The thrusters present on the Bibby Wavemaster 1 are at the aft of the ship: 2 azimuth thrusters
and at the bow of the ship: 1 retractable azimuth thruster and 2 tunnel thrusters. These 3 different
thrusters are briefly discussed below.

Azimuth thruster
The azimuth thruster is a thruster that can rotate 360° without having to rotate back at any point.
The rotation is performed in the XY plane and gives the vessel the opportunity to apply thrust with
maximum efficiency in the direction that is required. Instead of changing the direction of the propeller
the azimuth thruster can rotate 180° to apply backward thrust. Although modern azimuth thrusters
can rotate relatively fast still some delay is present due to the rotation. In figure 2.2 an illustration is
given of two azimuth thrusters.

Retractable azimuth thruster
A retractable azimuth thruster is basically the same as a normal azimuth thruster, the difference is
however that the retractable thruster is only used for DP operations. When a DP operation is started
this thruster is lowered from the ship into the water and afterwards is retracted again in order to
minimise the drag on the vessel during transit. This is not only helpful for DP operations but also
convenient for servicing since the thruster can be accessed from within the ship and no dry-docking is
necessary.
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Tunnel thruster
The tunnel thruster, also known as bow thruster, generates thrust transversely to the vessel. The main
difference with the azimuth thruster is that the tunnel thruster is fixed (transversely) in the vessels hull.
These thrusters are mostly found in the bow of the vessel but sometimes also in the stern. Since these
thrusters are placed far away from the Center Of Gravity (COG) they can induce big moment of forces
so that heading and sway can be compensated for very effectively. An example of a tunnel thruster is
given in figure 2.3.

Figure 2.2: Azimuth Thrusters [15] Figure 2.3: Tunnel Thrusters [16]

2.1.6. Position reference system
According to [17] the position reference system includes: all hardware, software and sensors that
supply information necessary to give position references. It should also be designed such that it is in
line with the redundancy requirements of the DP classification which are discussed in section 2.1.8.
Several reference systems are briefly explained in this section.

Satellite positioning systems
The Global Positioning System (GPS) is the most well known satellite positioning system in the world.
Originally it was developed for the U.S. Department of Defence but nowadays it is widely implemented
in all day equipment like navigation systems and mobile phones. The accuracy one can achieve on a
mobile phone is typically around 4.9m [18].

The Differential Global Positioning System (DGPS) is a GPS enhanced with fixed ground based refer-
ence stations. These ground based stations know their exact position and by continuously comparing
the position of the satellite and GPS receiver they can correct for the error present at that time. This
boosts the accuracy of the GPS system to a couple of centimetres [18].

Hydroacoustic positioning reference
This system makes use of sound waves passing through the water. A transducer is placed on the
ships hull and several transponders are placed on the seabed. The transducer sends an acoustic sound
which is picked up by the transponders and is then reflected back to the transducer. Unfortunately
these signals can be disrupted by ambient noise. The system is used in water depths between shallow
and medium depth water and has great accuracy. However the accuracy decreases with increasing
water depth.

Three different Hydroacoustic Positioning Reference systems (HPR) can be distinguished which are:
long baseline, short baseline and ultra short baseline. These systems differ in the amount of transducers
and transponders required and how they are configured. Different HPR systems can also be combined
to improve robustness, redundancy and accuracy [4].

Relative position reference
Several methods are used for Relative Position Reference, one of those is to use some kind of a laser
beam or microwaves to measure the relative distance from the source to the target position. The time
that it takes for the signal to travel from the source to the target can be deducted and therefore the
distance can be calculated.
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A second method is the use of a Differential, Absolute and Relative Positioning System (DARPS).
This system is often used in tandem offloading operations and combines a (D)GPS (absolute) with an
relative system on both vessels. By doing so maximum accuracy and reliability is assured during the
offloading operation.

Inertial position reference
When using an inertial position reference system the position is determined relative to a starting point.
In general gyroscopes and accelerometers are used for generating this data. The downside of these
measurements is that they develop a measurement error which becomes larger due to disturbances
over time. Therefore inertial systems are not used as autonomous systems but are often combined
with other reference systems. By doing so the inertial system can continuously be re-calibrated so that
the accuracy of the combined system becomes very high.

2.1.7. Control system
The DP control system can be seen as the brain of the DP system. It is the most intelligent part where
all the data is continuously gathered, evaluated and acted upon. The two main parts of the control
system are briefly discussed below.

PID-controller
The Proportional, Integral, Derivative (PID) controller is a general control loop feedback mechanism
which is commonly used in industrial control systems. In the case of the DP system the PID controller
tries to minimise the difference between the required and actual position of the vessel, also referred to
as the offset. The PID controller has 3 gains that can be set to optimise the response of the controller
to wit:

• Proportional (P-gain), this gain influences the instantaneous offset of the vessel

• Integral (I-gain), this gain influences the permanent, or steady-state error, offset of the vessel

• Derivative (D-gain), this gain influences the rate of change in offset of the vessel

One could also state that the Proportional gain acts on the present offset, the Integral gain acts on the
past offset and the Derivative gain acts on the future offset.

Kalman filter
The Kalman filter was designed to minimise the disadvantages of the standard PID-controller, which
suffered from relatively slow integration action and has a substantial amount of phase lag. The concept
of the Kalman filter is based on the predictor corrector estimator model [19]. The main objective for
the Kalman filter is to estimate the state of the vessel.

The Kalman filter will predict the state of the vessel by using the vessels model and will correct
this prediction using the measurements from the position reference systems. This is done by assigning
weights to the measurements and the vessel’s model data to evaluate which of the two should be taken
into account more than the other. How much weight is given is determined by the Kalman gain, the
lower the Kalman gain the more weight is given to the model. The Kalman filter is an optimal filter as
it calculates the best possible estimate, or minimum variance, for the state of the system. [19]

2.1.8. DP classification
There are numerous classification bureaus worldwide which have specified guidelines for DP-systems,
a short overview of the most commonly known and used classifications is given in the following section.

DP redundancy classification
Every classification bureau has its own DP redundancy classes, however all of them are based on the
International Maritime Organisation (IMO) equipment class guidelines [13] which are:

• Class-0 Manual position control and automatic heading control under specified maximum envi-
ronmental conditions (actually means that no DP-system is present).
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• Class-1 Automatic and manual position and heading control under specified maximum environ-
mental conditions.

• Class-2 Automatic and manual position and heading control under specified maximum environ-
mental conditions, during and following any single fault excluding loss of a compartment. (Two
independent computer systems).

• Class-3 Automatic and manual position and heading control under specified maximum environ-
mental conditions, during and following any single fault including loss of a compartment due
to fire or flood. (At least two independent computer systems with a separate back-up system
separated by A60 class division).

An overview of the different classification bureaus and their redundancy classifications of DP-systems
can be found in figure 2.4.

Figure 2.4: DP classes overview [20]

DP position keeping classification
Det Norske Veritas (DNV) has an additional classification next to the redundancy classes which is called
the Environmental Regularity Number (ERN). The ERN is built up as follows: ERN(a,b,c,d) where a,b,c,d
are integer numbers between 0 and 99 reflecting probable regularity for keeping position in a defined
area [21] where:

• a: The first number shall represent optimal use of all thrusters (Transverse thrust generated by
the combined use of main propellers and rudders shall not be taken into consideration.)

• b: The second number shall represent minimum effect of single-thruster failure

• c: The third number shall represent the maximum effect single-thruster failure

• d: The fourth number shall represent the effect of the worst case single failure(s)

2.2. Environmental forces
In this section the environmental forces acting on a vessel at sea are discussed which are wind, waves
and current.

2.2.1. Wind
Like all environmental phenomena, wind forces are highly dependent on time and location and therefore
are of stochastic nature [22]. The fluctuations of wind forces can be quite significant due to large
velocity and directional changes. In practice the wind velocity is often given in terms of an average
over a certain time. Generally used time-spans range from 1 to 60 minutes but sometimes even longer
time averages are used.

Local wind is often expressed as an average velocity with an average direction at a standard height
of 10m above ground or still water level. To determine the wind velocity at other elevations numerous
relations can be used, both theoretical and empirical. Two commonly used relations are: the power
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law wind profile as defined in equation 2.1 and the logarithmic wind profile as defined in equation 2.2.
It is stated by [23] that the logarithmic wind profile is most suitable between 10−20𝑚 height and the
power law wind profile is most suitable for heights above 100𝑚, in between they both work fairly well.
It is furthermore suggested to use the the logarithmic wind profile for wind speeds up to 60m height
and the power law wind profile for wind speeds from 60m height.

𝑉 (ℎ) = 𝑉 (ℎ ) ⋅ ( ℎ
ℎ ) (2.1)

𝑉 (ℎ) = 𝑉 (ℎ ) ⋅
𝑙𝑛( )
𝑙𝑛( )

(2.2)

Where:

• 𝑉 (ℎ) = Wind speed at the desired height [ ]
• 𝑉 (ℎ ) = Wind speed at the reference height of 10m [ ]
• ℎ = Desired height [𝑚]
• ℎ = Reference height of 10𝑚 [𝑚]
• 𝑧 = Surface roughness length ≈ 0.0002 at sea [𝑚]
• 𝛼 = Empirically derived coefficient ≈ 0.11 over open water (sea) [-]

There are also models that take the varying part of the wind better into account than the two earlier
named wind profiles. Those models are: the Davenport spectrum, the Harris spectrum, the Norwegian
Petroleum Directorate (NPD) spectrum and the American Petroleum Institute (API) spectrum. They
give spectra related to frequency to be able to account for the changing amplitude and direction of the
wind [24].

If the variation of the wind forces are considered to be much smaller than the other variations of
environmental forces, the wind force can sometimes be considered as constant. This can be the case
when the variations of the second order wave drift forces are much bigger than the variations of the
wind forces, see figure 2.7. When a constant wind speed is assumed the forces due to wind can be
calculated as follow:

𝐹 (𝛼 ) = 1
2 ⋅ 𝜌 ⋅ 𝑉 ⋅ 𝐶 , (𝛼 ) ⋅ 𝐴 (2.3)

𝐹 (𝛼 ) = 1
2 ⋅ 𝜌 ⋅ 𝑉 ⋅ 𝐶 , (𝛼 ) ⋅ 𝐴 (2.4)

𝑀 (𝛼 ) = 1
2 ⋅ 𝜌 ⋅ 𝑉 ⋅ 𝐶 , (𝛼 ) ⋅ 𝐴 ⋅ 𝐿 (2.5)

Where:

• 𝐹 = Force in longitudinal direction (function of wind direction) [𝑁]
• 𝐹 = Force in transverse (lateral) direction (function of wind direction) [𝑁]
• 𝑀 = Moment of force around vertical axis at COG (function of wind direction) [𝑁𝑚]
• 𝜌 = Density of air [ ]

• 𝑉 = Wind velocity [ ]
• 𝐶 , ,𝐶 , ,𝐶 , = Dimensionless wind force coefficients (function of wind direction) [−]

• 𝐴 = Transverse projected wind area [𝑚 ]
• 𝐴 = Lateral projected wind area [𝑚 ]
• (𝛼 ) = Wind direction [−], from astern is zero

• 𝐿 = Length between the perpendiculars of the ship [𝑚]
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2.2.2. Waves
One of the most extensively modelled environmental contributions are waves. Waves can be quite
significant considering the forces exercised on a vessel and are induced by several events [22].

• Waves generated by a ship or another floating structure. These waves can be induced by a
constant forward speed or by carrying out an oscillatory motion.

• Waves generated by interaction between wind and the sea surface.

• Waves generated by astronomical forces such as tides.

• Waves generated by earthquakes or submarine landslides such as tsunamis.

The waves considered throughout this research are: waves generated by interaction between wind
and the sea surface, also referred to as wind generated waves. These wind generated waves can be
divided into two categories namely: sea and swell which are described below.

Sea waves
A sea wave is a wave train that is driven by a local wind field. These waves are short-crested and these
crests have 2 − 3 times the length of the wave length. Sea waves are also very irregular which means
that high waves can be followed unpredictably by low waves and the other way around. The wave
crests are relatively sharp and sometimes small waves can be observed on top of a crest. The wave
crests seem to propagate in different directions with a significant deviation, typically tens of degrees,
from the mean.

Swell waves
Swell waves are waves that have propagated out of the area where they were initially induced by
local wind. Therefore they don’t depend on wind anymore and can propagate hundreds of kilometres
further if they travel through area’s where the wind is relatively calm. Swell waves are more regular
than sea waves and their crests are also more rounded compared to sea waves. The length of the
crest is around 6 − 7 times the wavelength and the wave height is more predictable. When high swell
waves are observed around 5 − 6 waves of equal height can occur. However when swell waves are
fairly low, propagation of equal height waves can be observed for up to more than a minute.

Wave elevation
The modelling of waves is done by means of the superposition principle where many simple regular
harmonic waves are summarised as shown in figure: 2.5. Each of these waves has its own length,
amplitude, period or frequency and direction of propagation. By doing so a very complex and irregular
sea state can be composed with simple theory of regular waves. The representation of the surface
elevation of a unidirectional random sea-state, or irregular sea, can be done by means of the relation
defined in equation 2.6. The underscores indicate that these variables are now random variables [25].

𝜂(𝑡) =∑𝑎 cos(2𝜋𝑓 + 𝛼 ) (2.6)

Where:

• 𝜂(𝑡) = Wave elevation as function of time [𝑚]

• 𝑎 = Amplitude of the wave [𝑚]

• 𝑓 = Frequency of the wave [𝐻𝑧]

• 𝛼 = Phase of the wave [𝑟𝑎𝑑]

• 𝑡 = Time at which the wave elevation is evaluated [𝑠]

• 𝑁 = a large number of frequencies [−]
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Figure 2.5: Superposition of Waves [22]

Alternatively equation 2.6 may also be written in the form of a Fourier series as illustrated in equation
2.7. Again the underscores indicate that these variables are random variables [26].

𝜂(𝑡) = ∑𝑎 cos(𝜔 𝑡) + 𝑏 sin(𝜔 𝑡) (2.7)

Where:

• 𝜂(𝑡) = Wave elevation as function of time [𝑚]

• 𝑎 = Fourier coefficient [𝑚]

• 𝑏 = Fourier coefficient [𝑚]

• 𝜔 = [𝑟𝑎𝑑/𝑠]

• 𝑇 = Time interval over which the surface elevation is represented [𝑠]

• 𝑡 = Time at which the wave elevation is evaluated [𝑠]

• 𝑁 = a large number of frequencies [−]

Wave spectra
The Joint North Sea Wave Project (JONSWAP) spectra defines the distribution of energy according
to the frequency of the ocean. It is actually composed by the Pierson-Moskowitz spectrum and is
supplemented with a peak enhancement function and is one of the most widely used spectra [25].

𝐸 (𝑓) = 𝐸 (𝑓) ⋅ 𝛾
[ ( / ) ]

(2.8)

𝐸 (𝑓) = 𝛼𝑔 (2𝜋) 𝑓 exp [−54 ⋅ (
𝑓
𝑓 ) ] (2.9)

with:

• 𝐸 (𝑓) = JONSWAP spectrum energy as function of frequency [𝑚 /𝐻𝑧]
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• 𝐸 (𝑓) = Pierson Moskowitz spectrum energy as function of frequency [𝑚 /𝐻𝑧]

• 𝛾 = Peak-enhancement factor [−]

• 𝑓 = Frequency scale parameter [−]

• 𝜎 = Peak-width parameter [−]

• 𝛼 = Energy scale parameter [−]

• 𝑔 = Gravitational acceleration [𝑚/𝑠 ]

• 𝑓 = Frequency [𝐻𝑧]

2.2.3. Current
According to [22] there are several independent phenomena that are responsible for the presence of
current which are:

• The ocean circulation system resulting in steady current

• The cyclical change in lunar and solar gravity causing tidal currents

• The presence of wind that results in a current

• Difference in seawater density’s caused by differences in temperature results in currents

The governing current loads on the vessel are expected to come from surface currents, however a
current velocity distribution as a function of depth can occur in shallow water. During this thesis it is
assumed that the current velocity is constant and does not change with water depth, which is essentially
a deep water assumption, the mean current loads can be calculated as follows:

𝐹 (𝛼 ) = 1
2 ⋅ 𝜌 ⋅ 𝑉 ⋅ 𝐶 , (𝛼 ) ⋅ 𝐴 (2.10)

𝐹 (𝛼 ) = 1
2 ⋅ 𝜌 ⋅ 𝑉 ⋅ 𝐶 , (𝛼 ) ⋅ 𝐴 (2.11)

𝑀 (𝛼 ) = 1
2 ⋅ 𝜌 ⋅ 𝑉 ⋅ 𝐶 , (𝛼 ) ⋅ 𝐴 ⋅ 𝐿 (2.12)

Where:

• 𝐹 = Force in longitudinal direction as function of current direction [𝑁]

• 𝐹 = Force in transverse direction as function of current direction [𝑁]

• 𝑀 = Moment of force around vertical axis at COG as function of current direction [𝑁𝑚]

• 𝜌 = Density of water [ ]

• 𝑉 = Current velocity [ ]

• 𝐶 , ,𝐶 , ,𝐶 , = Dimensionless current force coefficients as function of current direction [-]

• 𝐴 ≈ 𝐵 ⋅ 𝑇 = Submerged transverse projected area [𝑚 ]

• 𝐴 ≈ 𝐿 ⋅ 𝑇 = Submerged lateral projected area [𝑚 ]

• 𝐵 = Beam of the ship [𝑚]

• 𝐿 = Length between the perpendiculars of the ship [𝑚]

• 𝑇 = Draught of the ship [𝑚]
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2.3. Hydrodynamics
As stated before vessels at sea are subjected to several forces which results into the motion of the
vessel. In this section the forces due to waves are further elaborated on as the understanding of the
ship movements due to these forces are of great importance while a ship is in DP mode. The sources
[22], [27], [28] are used throughout the section. In general wave forces can be subdivided into the
following two types:

• First order wave forces

• Second order wave forces

– Difference of frequencies: Low Frequency Wave Drift Forces (LF WDF)

– Mean Wave Drift Forces (M WDF)

– Sum of frequencies: High Frequency Wave Drift Forces (HF WDF)

Where the second order wave force has three different contributions which are: mean wave drift,
difference frequencies and sum frequencies. The HF WDF do not contribute significantly to the vessels
motion and therefore also not on the DP station keeping of a vessel. Before the second order wave
drift forces are treated, the first order wave forces are considered since they do have a big influence
on the actual position of the vessel.

2.3.1. 1st order wave forces
First order motions have a zero mean and are not reacted upon by the vessels DP control system. This
is due to the fact that these motions are of such a high frequency that either the thrusters are not fast
enough to respond to these motions and if they would try it would cause too much wear and tear of
the thrusters. The first order forces will however result in a significant motion which can be described
by so called force Response Amplitude Operator (RAO).

𝐹( )(𝑡) =∑𝑅𝐴𝑂 ⋅ 𝑎 sin(𝜔 𝑡 + (𝜖 + 𝜖 )) (2.13)

2.3.2. 2nd order wave forces
The total expression for the second order wave forces is:

�⃗� ( ) = −12𝜌𝑔∮ (𝜁( )) ⋅ �⃗� ⋅ 𝑑𝑙

+ 12𝜌∬ (∇⃗Φ( )) ⋅ �⃗� ⋅ 𝑑𝑆

+ 𝜌∬ �⃗� ( ) ⋅ ∇⃗𝜕Φ
( )

𝜕𝑡 ⋅ �⃗� ⋅ 𝑑𝑆

+ 𝑚 ⋅ 𝑅( ) ⋅ ⃗̈𝑋
( )

+ 𝜌∬ ∇⃗𝜕Φ
( )

𝜕𝑡 ⋅ �⃗� ⋅ 𝑑𝑆

(2.14)

Where the following contributions can be distinguished:
I: Relative wave height contribution:

− 12𝜌𝑔∮ (𝜁( )) ⋅ �⃗� ⋅ 𝑑𝑙 (2.15)

II: Pressure drop due to velocity squared (Dynamic (Bernoulli) pressure integral):

+ 12𝜌∬ (∇⃗Φ( )) ⋅ �⃗� ⋅ 𝑑𝑆 (2.16)
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III: Pressure due to product of gradient of first order pressure and first order motion (moving
body in oscillating pressure field):

+ 𝜌∬ �⃗� ( ) ⋅ ∇⃗𝜕Φ
( )

𝜕𝑡 ⋅ �⃗� ⋅ 𝑑𝑆 (2.17)

IV: Contribution due to product of pitch motion and heave inertia force (Rotation of inertia
forces):

+𝑚 ⋅ 𝑅( ) ⋅ ⃗̈𝑋
( )

(2.18)

V: Contribution due to the second order potential, which is zero in regular waves and in deep
water (pressure integral of second order wave potential (set-down)):

+ 𝜌∬ ∇⃗𝜕Φ
( )

𝜕𝑡 ⋅ �⃗�⋅ (2.19)

Quadratic transfer function
The surface elevation due to first order incoming undisturbed waves of an irregular sea state can be
described as a summation of harmonic components as follows:

𝜁( )(𝑡) =∑𝜁( ) ⋅ cos(𝜔 𝑡 + 𝜖 ) (2.20)

The first order relative wave height at a point 𝑙 on the waterline of the body can be written as:

𝜁( )(𝑡, 𝑙) =∑𝜁( ) ⋅ 𝜁( ) (𝑙) ⋅ cos(𝜔 𝑡 + 𝜖 + 𝜖 (𝑙)) (2.21)

When equation 2.21 is now substituted in equation 2.15 using two different waves the following is
obtained:

𝐹( )(𝑡) =∑∑𝜁( )𝜁( )𝑃 ⋅ cos {(𝜔 − 𝜔 ) 𝑡 + (𝜖 − 𝜖 )}

+∑∑𝜁( )𝜁( )𝑄 ⋅ sin {(𝜔 − 𝜔 ) 𝑡 + (𝜖 − 𝜖 )}

(2.22)

Equation 2.22 is called the Quadratic Transfer Function (QTF), where P is real valued and Q is the
imaginary part of the QTF. The P matrix represents the contribution of the wave drift force which is in
phase with the wave group while the Q matrix is the contribution to the wave drift force which is out
of phase with the wave group. When the most elementary sea state is considered which consists of
two regular waves with amplitude, frequency and a random phase of 𝜁 , 𝜔 , 𝜖 and 𝜁 , 𝜔 , 𝜖 with
𝜔 > 𝜔 the surface elevation can be evaluated by:

𝜁(𝑡) = 𝜁 ⋅ cos(𝜔 𝑡 + 𝜖 ) + 𝜁 ⋅ cos(𝜔 𝑡 + 𝜖 ) (2.23)

The second order wave drift force in this case can be calculated with the following QTF:

𝐹( )(𝑡) = 𝜁 ⋅ 𝑃 + 𝜁 ⋅ 𝑃
+ 𝜁 𝜁 (𝑃 + 𝑃 ) ⋅ cos {(𝜔 − 𝜔 ) 𝑡 + (𝜖 − 𝜖 )}
+ 𝜁 𝜁 (𝑄 + 𝑄 ) ⋅ sin {(𝜔 − 𝜔 ) 𝑡 + (𝜖 − 𝜖 )}

(2.24)
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Phasor representation of the QTF
Another way of evaluating the QTF is by means of phasor calculations [29]. When taking the amplitude
of the wave equal to one, it is possible to represent the relative wave height of two waves as follow:

(𝜁( )(𝑡, 𝑙)) = (𝜁 ⋅ 𝑒 + 𝜁 ⋅ 𝑒 ) (2.25)

Expanding equation 2.25 gives:

(𝜁( )(𝑡, 𝑙)) = 𝜁 ⋅ (𝑒 ) + 2 ⋅ 𝜁 𝜁 ⋅ 𝑒 𝑒 + 𝜁 ⋅ (𝑒 ) (2.26)

Using the mathematical rule for phasor multiplication:

𝐴 ⋅ 𝐵 = 1
2 (𝐴 ⋅ 𝐵 + 𝐴 ⋅ 𝐵) (2.27)

With 𝐵 is the complex conjugate of B, when using this expression the following is obtained:

(𝜁( )(𝑡, 𝑙)) = 𝜁 + 𝜁 ⋅ 𝑒 ⋅

+ 𝜁 𝜁 ⋅ 𝑒 ( ) + 𝜁 𝜁 ⋅ 𝑒 ( )

+ 𝜁 + 𝜁 ⋅ 𝑒 ⋅

(2.28)

With 𝜁 being the complex conjugate of 𝜁 . When equation 2.28 is now substituted in equation
2.15 the QTF in phasor representation can be obtained.

2.4. Time domain model
In this section the basic equations required to model a vessel in the time domain are discussed. Through
this section the following sources are used: [30], [22] and [31]. To model a motion of a body in the
time domain the analogy of an mass damper spring system can be used. The most simplistic form of
such a system is described as follows:

𝐹(𝑡) = 𝑚�̈� + 𝑏�̇� + 𝑐𝑥 (2.29)

where:

• 𝑚 = the mass of the system [𝑘𝑔]

• 𝑏 = the damping of the system [ ]

• 𝑐 = the spring stiffness of the system [ ]

When evaluating vessels in the time domain there are two extra components to account for which
are: frequency dependent added mass and frequency dependent damping. When taking these com-
ponents into account the Equation Of Motion (EOM) for the vessel will look as follows:

𝐹(𝜔, 𝑡) = (𝑚 + 𝑎(𝜔)) �̈� + 𝑏(𝜔)�̇� + 𝑐𝑥 (2.30)

Added mass is the additional force necessary to accelerate the fluid particles surrounding the vessel
when comparing the oscillation in air. The potential damping is the damping due to generation of
waves by oscillation of the vessel, these oscillations withdraw energy from the motions of the vessel.
Since equation 2.30 is frequency dependent it is not suitable for time domain simulations. Cummings
[30] describes a way to make this EOM frequency independent making it suitable for time domain
simulation. The EOM for all six modes of the vessel can be written as follows:

∑(𝑀 + 𝐴 ) ⋅ �̈�(𝑡) + ∫ 𝐵(𝜏) ⋅ �̇�(𝑡 − 𝜏) ⋅ 𝑑𝜏 + 𝐶 ⋅ 𝑥(𝑡) = 𝐹(𝑡) (2.31)
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with:

𝐵(𝜏) = 2
𝜋 ⋅ ∫ 𝑏(𝜔) ⋅ cos(𝜔𝜏) ⋅ 𝑑𝜔 (2.32)

𝐴 = 𝑎(𝜔) + 1
𝜔 ⋅ ∫ 𝐵(𝜏) ⋅ sin(𝜔𝜏) ⋅ 𝑑𝜏 (2.33)

Where 𝑎(𝜔) is valid for any value of 𝜔, and thus also for 𝜔 = ∞. Meaning that 𝐴 = 𝑎(𝜔) = 𝑎(∞).
It can now be seen that both 𝐴 and 𝐵(𝜏) are frequency independent and therefore the EOM equation
2.31 is frequency independent.

2.5. Frequency domain model
The reason why DP simulations should be done in the time domain instead of the frequency domain
is because frequency domain analysis is considered to be unreliable since the DP control systems
behaviour is highly non linear. This non linear behaviour is mainly due to the limitations of the thrusters,
also referred to as thruster saturation. It is possible that when the thrusters already deliver 100% thrust
the DP algorithm requires even more thrust to counteract the environmental forces. An analytical
transfer function that includes saturation has not yet been found [9]. Figure 2.6 shows a comparison
of a second order motion spectrum, calculated using a frequency domain transfer function, and two
time domain simulations. One of the numerical time domain simulations includes thruster saturation
and the other one excludes thruster saturation. From this graph it can be concluded that a wide range
of frequencies are not represented well by the theoretical frequency domain calculation method.

Figure 2.6: Second order motion spectrum comparison [9]

2.6. Static DP capability calculation
In this section some former research on static and quasi static DP calculation methods are discussed.

2.6.1. Wave drift multiplier
The research of Riaan van ’t Veer [8] made a first step in accounting for the dynamic effects in static
calculation methods by means of different factors for different dynamic contributions. In this research it
was suggested that every environmental force should have its own DP factor and the magnitude of this
factor was investigated for the 2nd order wave drift forces. This because the time varying component
of the 2nd order wave drift forces relative to the mean was shown to be the biggest compared to
wind and current, see figure 2.7. It was shown that this so called ”wave drift multiplier” is sea-state
dependent and for the investigated deep water drilling vessel, particular headings and sea state had
a magnitude of 2. It was also concluded that the heading of the vessel can be maintained very well
even in large sea states, therefor drift-off will occur before heading capability is lost. The wave drift
multiplier was derived by means of time domain simulations.
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Figure 2.7: Time variable second order wave drift and wind forces [8]

2.6.2. Force multiplication factor
A followup research was performed by Wouter Antheunisse [9] where the possibility to include an offset
requirement in static calculation methods was investigated. This was done by means of introducing a
Force Multiplication Factor (FMF) for the second order wave drift forces. These FMF’s were determined
using time domain simulations and it was shown that these FMF’s are dependent on vessel type,
heading, sea state and maximum allowable offset. Also a relation was found between the impulse
peak extreme, which is the maximum integral of the wave drift force and time-trace graph above the
mean wave drift force, and the FMF’s. This research was only executed for a deep sea drilling ship
and therefore relatively large offsets between 20 − 100𝑚. The sensitivity of the FMF’s to the main
dimensions of the vessel was not investigated making it difficult to conclude if these FMF’s can also be
used for other types of vessels.

2.7. Time domain DP capability simulation
In this section some former research on time domain calculations are discussed where also some quasi
static comparisons are performed to increase the accuracy of static calculations.

2.7.1. The dynamic margin
Extensive research was done by Joost van der Weiden [32] to understand which dynamic effects are
taken into account by the dynamic margin and how these effects influence the magnitude of the
dynamic margin. Calculations were done using AnySim and the parameters that were varied between:
-10%, -5%, +5%, +10% are:

• Mean wind speed

• Significant wave height

• Mean wave peak period

• Mean current velocity

• PID gains of the DP controller

• The mechanical response time

The biggest influence found was the change of the mean current velocity, by increasing the mean
current velocity with 10% the DP capability reduced the most when evaluating the critical Wind, Wave
and Current (WWC) direction. Another analysis was executed were the effect on the dynamic margin
by switching parameters on and off was investigated. The following phenomena were switched on and
off:

• Wind feed-forward

• Thruster-thruster interaction

• Thruster-hull interaction

• Thruster-current interaction

• Wind speed spectrum (NPD, Harris and Daven-
port)

• Wind speed directions spectrum (Gaussian)
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It was found that by switching the thruster-current interaction on the biggest influence was obtained,
the dynamic margin decreased with 6% for the most critical Wave, Wind and Current direction. It was
also observed that superposition of single contributions that were tested in the research of van der
Weiden do not give a correct dynamic margin. Therefore the superposition principle does not hold for
all of the single contributions of the tested dynamic parameters.

Another parameter investigated proved to have a major influence on the dynamic margin. This
parameter is the offset in surge and sway direction as is depicted in figure 2.8, the offset for yaw was
not investigated. In this research it was stated that the influence on the dynamic margin by the offset
requirement was relatively constant for all WWC-directions unlike the behaviour of the other tested
parameters. It was also shown that with different offset criteria the influence on the dynamic margin
by the mechanical response time also differed. The influence of other parameters when changing the
offset requirement was not investigated.

Figure 2.8: Dynamic margin for different offsets [32]

2.7.2. DP capability for different operational activities
The research of Cedric Brun et al [33] was focused on DP capability in different operational activities
where different influences are present, the three influences that were investigated are:

• Hulls vicinity influence

• Shallow water influence

• Pipe-laying loads influence

Hull vicinity influence
Here an Floating Production Storage and Offloading (FPSO) vessel next to a DP assisted floatel is
considered as illustrated in figure 2.9. The DP assisted floatel is connected to the FPSO through a
gangway to transfer people from and to the FPSO. During this research the FPSO was assumed to
have very low heading with respect to wind and current, this means that the shielding effect is not
considered. Hydrodynamic calculations have been carried out to asses the interaction between the
two hulls due to the proximity. It was shown that the interaction changes the low-frequency loads
which have to be compensated by the DP system. The comparison of wave drift loads between the
DP assisted floatel alone (single body), the DP assisted floatel side by side with the FPSO (multi-body)
and the specifications from the DP manufacturer is illustrated in figure 2.10 for head and beam seas.
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Needless to say is that the difference in wave drift loads results in a different DP capability of the vessel,
which is shown in figure 2.11

Figure 2.9: Hull vicinity influence layout [33] Figure 2.10: Hull vicinity drift loads influence for head and
beam seas [33]

Figure 2.11: DP capability hull vicinity influence [33]
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Shallow water influence
The second operation that was considered is when the same DP assisted floatel is operating in shallow
water on its own, this because shallow water affects the low-frequency loads. In figure 2.12 a com-
parison of the loads specified by the DP manufacturer, loads including the water-depth influence (w/
WD) and the loads excluding the water-depth influence (w/o WD) have been made. It can be seen
that these loads differ and therefore the DP capability of the vessel will also be different as seen in
figure 2.13.

Figure 2.12: Shallow water influence on drift loads [33]

Figure 2.13: Shallow water influence on DP capability [33]

Pipe-laying loads influence
The third operation that was considered is pipe-laying using a DP assisted vessel. Here the effect of the
pipe hanging down at the aft of the ship on the DP capability of the vessel was investigated. The load of
the pipe is considered to be a constant restoring force, acting astern in surge direction. The influence
of this restoring force is illustrated in figure 2.14. It can be seen that the vessel has a lower capability
during pipe-laying operation from environmental loading coming from head direction. However the DP
capability is improved for astern environmental loads.
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Figure 2.14: DP capability pipe-laying influence [33]

2.8. Comparison different DP capability methods
When performing DP calculations multiple methods can be used as stated before. In this section
literature that compares static and dynamic calculation methods are discussed and are also compared
with model tests.

2.8.1. Hyun-Joe Kim
Hyun-Joe Kim et al. did a comparison study between static calculations, time domain simulations and
model testing. This research was done for a shuttle tanker in full load and ballasted condition and the
DOF that was observed was only the heading (yaw angle) of the vessel [34]. For the static calculations
two scenario’s were distinguished, one with a maximum of 80% thruster usage and one with 100%
thruster usage to illustrate the dynamic margin widely used throughout the industry. From the results
depicted in figure 2.15 it can be seen that the model tests were shown to be the most conservative.
The resulting heading window is the window where the vessel can still maintain heading. If the heading
angle becomes larger or smaller than the given limits the vessel will not be able to return to the required
heading.
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Figure 2.15: Heading window comparison results [34]

2.8.2. Liping Sun
Liping Sun et al. performed a similar research as Hyun-Joe Kim where static and dynamic calculation
methods were compared for a deep water pipe-lay crane vessel [35]. The focus of this research
was however on the total thrust utilisation. It was shown that the thruster utilisation in time domain
simulation is higher than when performing a static calculation as is illustrated in figure 2.16.
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Figure 2.16: Thruster utilisation comparison [35]

2.9. DP calculation tools
In this section the tools used for calculating DP capabilities are discussed. Although there are multiple
commercially available packages to perform DP calculation only two are briefly discussed in this section.

2.9.1. DPlab
Damen Shipyards developed their own DP capability calculation tool called DPlab. At first this tool
was programmed in excel but from the beginning of 2014 the tool was improved and programmed in
MATLAB where a Graphical User Interface (GUI) was included to simplify the visualisation of the results.
The tool is capable of producing DP-capability plots for a particular vessel and environmental condition.
The WWC forces are calculated using a static calculation method after which the required thrust for
the vessel to remain position is calculated. The required thrust is distributed over the thrusters using
a mathematical solver to minimise the total required thrust. The input parameters required when
performing a calculation in DPlab are listed in appendix D.

Coordinate system definition
The coordinate system used in DPlab is illustrated in figure 2.17. In DPlab wind, waves and current
directions are specified as ”coming from”. When an environmental angle of 180 degrees is elaborated
on it is meant that the environmental forces are coming from 180 degrees.

2.9.2. aNySIM
aNySIM is a time domain simulation program developed by MARIN for the analysis of multibody dynam-
ics in offshore operations. The fast-time simulations are able to capture the response of the bodies due
to the mechanic and hydromechanic forces that are calculated by the program. aNySIM is suitable for
the analysis of terminal availability, operability of lifting operations, dynamic positioning performance,
mooring fatigue and other applications. More info on the program aNySIM can be found in appendix
E.4.
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Coordinate systems

The Coordinate System used in aNySIM is the ENU-system sign convention(East-North-Up) and is
shown in figure 2.18. The Wind, Wave and Current directions in aNySIM are specified as ”going
to”. It is immediately clear that this differs from DPlab which is not very convenient when using both
methods in the same report. The conventions used in this thesis for the aNySIM results are as follows.
The coordinate system of aNySIM will remain unchanged making it immediately visible if the results
are generated by DPlab or aNySIM. The Wind, Wave and Current directions are shown as ”coming
from” just as with DPlab. A table is constructed to convert angles from the different axis systems and
conventions which can be seen in table E.5.

Figure 2.17: Coordinate System DPlab Figure 2.18: Coordinate System aNySIM

2.10. DP design process

Figure 2.19: Schematic thruster layout Bibby
Wavemaster 1

In this section the design cycle of the Bibby Wavemaster 1
is briefly elaborated on. Since this vessel was under devel-
opment for multiple years the tools used for DP calculation
changed over time. In figure 2.19 a schematic thruster lay-
out of the Bibby Wavemaster 1 is shown.

2.10.1. Excel sheet
The first DP capability calculation done for the Bibby Wave-
master 1 was performed using an excel sheet. In this sheet
the hydrodynamic database of the PSV3300, once provided
by MARIN for another project, is made dimensionless so
it can be used for the Bibby. Using this dimensionless
database and the JONSWAP wave-spectrum, with specified
𝑇 𝐻 𝑎𝑛𝑑 𝛾, the mean wave drift forces for each heading are calculated. The current forces acting
on the vessel are calculated using the current coefficients of the PSV3300 and by using the formulas
as explained in section 2.2.3. The wind forces acting on the vessel are calculated with dimensionless
coefficients taken from brix figure I.13. The next step is to define the thrusters, it should be stated
where they are positioned and how much thrust they can generate. After this a static equilibrium can
be calculated to determine if the thrusters can withstand the environmental loads.
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2.10.2. DPLab
The excel sheet DP capability tool was expanded and turned into a MATLAB executable tool. Here
still the hydrodynamic database of the PSV3300 was used to calculate the mean wave drift forces as
well as the current coefficients of the PSV3300. For the most recent DP capability calculation the wind
coefficients are still taken from brix but a different relations were used throughout the process of which
the latest is figure I.6. In DPLab a solver is implemented that calculates the minimum total thrust
required to obtain a static equilibrium, by doing so the most optimal thruster utilisation is obtained.

2.10.3. aNySIM
Since not only the capability of the vessel is required but also the station keeping during people transfer
operations aNySIM simulations were performed during October 2014 and again in January of 2015. The
main purpose of these calculations is to check whether the vessel can stay within a certain offset and
heading. These output parameters cannot be obtained by means of a static calculation.

2.10.4. DOLPHIN real-time simulator
The operational profile of the Bibby Wavemaster is a combination of the station keeping of the vessel
and the walk to work bridge. Since the walk to work bridge cannot be included in the aNySIM simu-
lations another simulation tool was used for specifically this purpose. In the DOLPHIN simulator the
model of the vessel and the bridge are combined together with the DP control system of Kongsberg
as installed on the vessel. This enables Damen to test the complete system on-board of the vessel
already in the office.

2.10.5. Model tests
After performing multiple simulation with aNySIM and the DOLPHIN real time simulator also model
tests were done to check the transit time between two windmills in DP mode. This is done to avoid
the half hour filling of the Kalman filter when servicing multiple windmills in a row. During the model
tests the Kongsberg DP system as installed on board of the actual vessel was used to obtain results as
reliable as possible.

2.11. Types of uncertainty
Uncertainty is often referred to as the absence of exact knowledge however, it can also be stated that
it is a situation of inadequate information, Refsgaard [36], Funtowicz and Ravetz [37]. Another thing
to realise is that uncertainty can also prevail in situations where there is already a lot of information
available. That said increasing the amount of new information can decrease but also increase the level
of uncertainty. This can be explained by the fact that new information may reveal the presence of
uncertainties which were previously understated or unknown, Walker et al [38]. This shows that more
information may reveal the understanding of the system is less than thought or the system is more
complex than it was thought of beforehand.

When considering mathematical models, several uncertainty-sources can be distinguished which all
contribute to the uncertainty of the model output. Schulten and Stapersma [39] composed a list of
possible uncertainty sources that should be kept in mind:

• Theory uncertainty

• Model uncertainty

– Model structure
– Model detail
– Extrapolation
– Model resolution

• Parametric/data uncertainty

– Input variable uncertainty

– Model parameter uncertainty

– Physical parameter uncertainty

• Measurement uncertainty

2.11.1. Theory uncertainty
With theory uncertainty the physical principles of the mathematical model are meant. Well known
physical principles are for instance Newton’s law, the ideal gas law and the conservation of mass, energy
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and momentum. When modelling on meso scale these principles can be considered to be certain.
However, when modelling more on a micro scale such as quantum mechanics, theory uncertainties can
play a role of significance. One of the things often used in engineering are empirical laws. Whether
these are uncertain depends on the application and allowed range of the specific law but also the used
parameters. These are however already considered in the parameter uncertainty.

2.11.2. Model uncertainty
Models are by definition a simplified representation of the reality, this therefore results in an additional
source of uncertainty. The causes of model uncertainty can be dived into four categories:

1. Model structure
With the model structure is meant the assumptions and physical principles that were used when creating
the model. When other models are also available uncertainty can arise when these other models give
different results. When combined with data the model assumptions can be assessed and compared
which might result to the discarding the worst performing model.

2. Model detail
As stated before models are by definition a simplified representation of the reality. This is mostly done
to decrease the amount of simulation time. The uncertainty can be found when comparing a simplified
model with a less simplified model which describe the same process. An example is calculating the
resistance of a ship which can be done by only the drag coefficient of the ship or by also taking into
account viscous and wake effects.

3. Extrapolation
When a model is designed such that it performs well for a certain operational window it does not
necessarily mean that it performs with the same uncertainty when the model is used outside these
boundaries. When it is looked at for instance static DP capability calculation methods, the amount
of thrust used is always calculated in limiting environmental conditions. It could be that the same
assumptions in the model are no longer true when looking at non limiting environmental conditions.

4. Model resolution
The model resolution usually dictates the trade-off between accuracy and computation time. The
higher the resolution, the lower the uncertainty will be. An example for instance a Finite Element
Method (FEM) analysis of a vessel hull, the chosen grid determines the uncertainty in the output of for
example stresses and deformation.

The estimation of model uncertainty is not really easy to achieve. The model detail, resolution and
extrapolation uncertainty can be somehow easily estimated when the model outputs are compared for
more detail, higher resolution and a wider operating range. However, determining the model structure
uncertainty might prove to be very difficult. To obtain a satisfying result all the physical en technical
assumptions of the model should be recognised, thereafter all possible alternative assumptions should
be implemented and compared. This proves to be virtually impossible and therefore the model structure
is normally accepted or rejected in the validation phase.

2.11.3. Parameter and variable uncertainty
For parameter and variable uncertainty three different categories are distinguished which are: Input
variable uncertainty, physical parameter uncertainty and model parameter uncertainty.

1. Input variable uncertainty
Consider the fictional model shown in figure 2.20. Both sub-models share the input variables 𝑥 with
associated uncertainties. The models also have a number of inputs that are unique to a certain sub-
model namely 𝑥 and 𝑥 , which also have their own uncertainty. The last variables that need to be
considered are the output variables from one sub-model that serve as input to another sub-model
namely 𝑦 and 𝑦 . What can be seen from this is that if only 𝑥 has a uncertainty, this uncertainty can
travel through the model by means of 𝑦 and therefore both outputs 𝑟 and 𝑟 will be uncertain.
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2. Physical parameter uncertainty
These parameters are associated with for instance physical dimensions, material properties etc. Most
of the time they can be measured and remain constant during a simulation.

3. Model parameter uncertainty
Model parameters are a result of the assumed physical model. The main difference between model
parameters and physical parameters is that physical parameters always exist since they are associated
with physical objects and therefore always exist. However model parameters only exist because of the
model, also they cannot be directly measured but one has to deduce them using measurements.

Figure 2.20: Relation between two sub-models [39]

2.11.4. Measurement uncertainty
To be able to validate the designed model and its outputs, extensive measurements need to be done
which introduces another source of uncertainty. When enough measurements are performed and
available the uncertainty can be determined using statistical methods. If no data or measurements are
available the opinion and experience of experts can be used to determine a certain input. This could
however lead to an error which is bigger when performing a measurement.

2.12. Uncertainty calculation methods
In this thesis only input parameter uncertainty is considered, therefore two methods able to calculate
those are treated below. The main difference between the two is that one method is relatively quick
and only needs a few calculations but is limited to linear models or models that can be linearised on
the specific point up for consideration. The other one is more comprehensive and can deal with non
linear models. However for this method a lot more calculations are required.

2.12.1. Linear uncertainty calculation
The input uncertainty is based on two different parameters namely: the mean and the standard devi-
ation. The normalised input uncertainty is defined as:

𝜎∗ = 𝜎
𝜇 (2.34)

With:

• 𝜎∗ = normalised input uncertainty

• 𝜎 = input standard deviation

• 𝜇 = mean input value
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Now the normalised output uncertainty can be defined as:

(𝜎∗) =∑(𝜕𝑧
∗

𝜕𝑥 ) ⋅ (𝜎∗ ) (2.35)

Where:
𝜕𝑧∗
𝜕𝑥 = 𝜕𝑧

𝜕𝑥 ⋅
𝑥
𝑧 (2.36)

With:

• 𝜎∗ = normalised output uncertainty

•
∗ = normalised sensitivity

• 𝑥 = nominal input value

• 𝑧 = nominal output value

Equation 2.36 is referred to as the normalised output sensitivity, it states how much the output of
interest changes when a certain input is changed. When using the normalised form a more intuitive
interpretation can be made since then it can be seen how much percent the output changes if the input
changes with a certain percentage.

2.12.2. Combined uncertainty calculation
Sometimes it is required that a uncertainty is calculated for a parameter that consist out of more than
one variable, each with their own mean and standard deviation. This means that the calculation of
the mean and standard deviations requires some extra attention. The calculation of these combined
means and standard deviations is explained below.

Combined mean calculation
Let’s consider the dimensionless parameter which consist out of 2 variables namely 𝐿 and 𝐵, which
have mean values of: 𝜇 and 𝜇 . In general when multiplying, adding or dividing these variables the
same can be done for their means [40]. Here the mean of denoted with 𝜇 is calculated as follow

𝜇 = .

Combined standard deviation calculation
Again let’s consider the the dimensionless parameter which consist out of 2 variables namely 𝐿 and
𝐵, which have standard deviations of: 𝜎 and 𝜎 . Since the standard deviation of the dimensionless
parameter , denoted by 𝜎 , cannot be calculated in the same way as the mean a variable called the
relative uncertainty is defined as [40]:

𝜎∗ = 𝜎
𝜇 (2.37)

with 𝜇 the mean of parameter of interest. When multiplying or dividing relative uncertainty the
following equation can be used [40].

𝑓 = 𝑥 ⋅ 𝑦 𝑜𝑟 𝑓 = 𝑥
𝑦 𝜎∗ = √𝜎∗ + 𝜎∗ (2.38)

It is now possible to calculate 𝜎 by rewriting equation 2.37 and substitute . In the same way the

standard deviation of and 𝐶 can be calculated.

𝜎 = 𝜎∗ ⋅ 𝜇 (2.39)
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2.12.3. Non linear uncertainty calculation
For non linear uncertainty calculation more comprehensive methods are required like for instance sam-
pling. One of the most well known sampling methods is the Monte Carlo Simulation (MCS). With MCS
the inputs of a model are not quantified as a single value but instead a probability distribution is used.
Every input that has an uncertainty can have its own probability density distribution. For each calcula-
tion a sample is drawn from all the different input variable distributions and these values are used to
calculate the model with. This is repeated multiple times depending upon the number of uncertainties,
but also the ranges that are specified for them. A MCS could involve thousands or sometimes even tens
of thousands of recalculations before it is complete but when finished it has produced a distribution of
possible outcomes.

2.13. Sensitivity
Mathematical models are mostly designed to approximate various complex phenomena of which ex-
amples are: engineering, economic, physical, social and environmental. The development of these
models is divided in several steps where one of these steps should always be determining the parame-
ters which are most influential on the output of the model. This analysis is called a sensitivity analysis
and is a way to validate the model but can also serve as a guide for future research. A sensitivity
analysis can be conducted for several reasons [41] including:

• Identify which parameters require additional research to increase the knowledge base and thereby
reducing the output uncertainty.

• Identify which parameters are insignificant and as a result might even be removed from the model

• Identify which inputs have the biggest contribution to the output variability

• Identify which inputs are mostly correlated with the output

• Identify what the resulting model consequences are when changing a given input parameter

Conducting a sensitivity analysis can be done in many different ways however, various analysing
methods may produce different results if little care is taken when choosing a suited method for a
specific situation [42]. A selection of different practical sensitivity methods are briefly explained, where
practical means the calculational ease and usefulness of the results is taken into account.

2.13.1. Differential sensitivity analysis
Differential Sensitivity Analysis (DSA), also known as the direct method, is elaborated on first since
this method proves to be the backbone of most other sensitivity analysis techniques. This method can
be used to solve simple partial derivatives but also spatial and temporal analysis can be performed.
Sensitivity in its most general form is basically the ratio of the change in output to the change in input
while all other parameters remain constant [41]. This is always done with respect to a base case where
all model parameters are set to their mean. DSA is most applicable for calculating small input deviations
around this base case, often plus or minus one percent. The definition of the DSA is as follow:

𝜕𝑧∗
𝜕𝑥 = 𝜕𝑧

𝜕𝑥 ⋅
𝑥
𝑧 (2.40)

Advantages
DSA is relatively easy to apply and is especially useful when a high degree of certainty is desired around
the base case scenario.

Disadvantages
DSA does not take into account the whole possible range of input values. Therefore no relations
regarding global sensitivity can be constructed. When DSA is performed on non linear models the fault
margin increases making it less reliable.
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2.13.2. Nominal range sensitivity analysis
The Nominal Range Sensitivity Analysis (NRSA) is used for local sensitivity analysis [43] and can also
be referred to as the sensitivity index (SI) [41]. Two choices are available for determining the effect of
varying the model inputs namely: varying inputs over their entire range or using plausible values only.
This method is used to determine the effect of changing one input parameter at a time only and can
be repeated for any number of input parameters. The NRSA results are most valid when using a linear
model and when applied with this condition it is possible to rank the input parameters to the order of
relative importance. The definition of the NRSA is as follow:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑂𝑢𝑡𝑝𝑢𝑡 − 𝑂𝑢𝑡𝑝𝑢𝑡

𝑂𝑢𝑡𝑝𝑢𝑡 (2.41)

Advantages
NRSA is a relatively simple method that is easily applied. It works well when the model is linear and if
a good idea of a plausible range for each input is known beforehand.

Disadvantages
NRSA does not address the whole space of potential input values since interactions between inputs are
difficult to capture using this method. Combined effects due to simultaneous changes in multiple input
parameters are not shown by the NRSA if the model is non linear. Therefore rank ordering for other
than linear models using the NRSA will be unreliable.

2.13.3. Pearson Correlation Analysis
The Pearson product-moment Correlation Analysis (PCA) is part of the correlation analysis methods. A
correlation analysis is able to measure the strength of a relationship between an input and its output.
The PCA specifically can be used to determine the strength of a linear relationship between an input
and the output [44]. The correlation coefficient can range from -1 to 1 where a correlation coefficient
of 0 states that there is a lack of correlation. The types of data that can be used in the PCA are: interval
or ratio scale [45]. For more information about data types see Appendix B.

Advantages
Relatively easy to compute and widely available in commercial software packages.

Disadvantages
The PCA is only useful for linear models. Furthermore a correlation does not necessarily implies cau-
sation. Direct interaction between the inputs can not be dealt with.

2.13.4. Spearman’s correlation analysis
The Spearman’s rank-order Correlation Analysis (SCA) is closely related to the Pearson Correlation Anal-
ysis. Both these methods determine correlation meaning they measure the strength of a relationship
between an input and its output [44]. The SCA measures the strength of a monotonic relationship be-
tween two variables, this enables the SCA to also account for non linear monotonic relations between
input and output. More information on monotonic relations is found in Appendix B. The data types that
can be used for SCA are: ordinal, interval or ratio.

Advantages
Relatively easy to compute and widely available in commercial software packages. SCA can deal with
non linear relationships as long as the input-output relation is monotonic.

Disadvantages
A correlation does not necessarily implies causation. Direct interaction between the inputs can not be
dealt with.



3
Methodology

This chapter starts with the general plan of approach used to execute the research. A division is made
in a static and a dynamic part including the different design stages the vessel can be in. Next the
dimensional analysis performed during the static part to calculate the output uncertainty is discussed.
For the dynamic part of the analysis first the model used is briefly discussed after which a small
introduction to machine learning is made. The method used to create a model for the purpose of
determining the output uncertainty is discussed and the justification methods used to determine why
this model is accurate enough to determine uncertainty

3.1. General plan of approach
To be able to perform this research several steps are to be taken by the author, first of all basic
knowledge of DP systems was gained mainly by acquiring literature. DP applications were described
and the main components present in a DP vessel were investigated. The environmental forces acting
on the vessel during DP were elaborated on and the distinction between first and second order waves
forces was touched up on. Former research on DP was studied to set the boundaries of this research
and determine where value could still be added.

The difference between sensitivity and uncertainty was extensively explained and different methods
to asses sensitivity and uncertainty were discussed. After selecting the preferred methods know how
of the static simulation program DPlab and the dynamic simulation program aNySIM was gained. Test
cases were developed and analysed to fully understand the operation of the different programs. An
overview of inputs and outputs was constructed for both simulation programs to generate insight in
the data that could be obtained.

Multiple scripts were written including but not limited to: a script for running batch simulations in
DPlab which is normally operated using a GUI. Scripts to determine sensitivity, make tornado plots and
generate windrose plots for several purposes. Also an input file generator for aNySIM was programmed
and a script to run multiple aNySIM simulations in parallel, something that was not built in the software
functionality itself. Furthermore scripts to extract the required output from the aNySIM time series
were programmed and a script to determine the required time step for the simulations.

As stated before, two different simulation methods are distinguished which are: static and dy-
namic. For both these simulation methods the sensitivity, input and output uncertainty are the points
of interest. When evaluating static and dynamic simulations the considered outputs will differ and
are described in appendix D and E. The input uncertainty is acquired by gathering historical data on
the Bibby Wavemaster 1 that was used throughout its design period. When designing a vessel, three
different design stages are defined and listed in table 3.1, the input uncertainty will adjust accordingly.

35



36 3. Methodology

Table 3.1: Design stages

Design Explanation

Conceptual Design stage with very big geometrical changes, typically a complete new product
Preliminary Small changes in geometrical dimensions and to on board systems will still occur
As built Complete geometrical dimensions and on board systems of the vessel are known

The aim is to determine the output uncertainty of both simulation methods so it can be assessed
whether incorporating these uncertainties should be done in the future. This analysis will serve as a
guide that shows which input data needs to be more certain, during a specific design stage and for
a specific heading, to reduce the uncertainty in the output of DP calculations. Using this it will also
quickly enable naval architects to improve Dynamic Position performance for the heading that is most
desirable.

3.2. Static DP analysis
For the static part of the uncertainty analysis the method from chapter 2.12.1 is used. The benefit of
this method is that it is relatively easy and fast to apply and gives an indication of which parameter
has the most influence on the output uncertainty of the vessel. For this method the input uncertainty
of the data needs to be determined and the sensitivity of the model should be calculated after which
the output uncertainty can finally be assessed. The output of interest in the static DP analysis is the
capability of the vessel expressed in of wind speed. The corresponding wave height can be found
in table: D.7 and the current velocity is always kept constant at 0.75 .

3.2.1. Sensitivity analysis parameter variation
The sensitivity method required for the chosen uncertainty method is the Differential Sensitivity Analysis
(DSA) as described in chapter 2.13.1. When performing the sensitivity calculations one can not just
vary every parameter one by one. It is important to see that only the independent variables should be
varied to obtain a practical realistic sensitivity analysis.

To derive the independent variables the Buckingham Pi theorem is used. The complete derivation
of the independent dimensionless groups can be found in appendix C from which it can be seen that
the sensitivity of the following parameters should be considered:

Π = 𝐿
𝐵 = 𝜆

Π = 𝐵
𝑇 = 𝛽

Π = ∇
𝐿 𝐵𝑇 =

𝑚
𝜌 ⋅ 𝐿 𝐵𝑇 = 𝐶

Π = 𝐴𝑓
𝑇𝐵

Π = 𝐴𝑙
𝑇𝐿

Π = 𝜌
𝜌

Π = 𝐴𝑧𝑖 𝑃𝑜𝑠
𝐿

Π =
𝐴𝑧𝑖 𝑃𝑜𝑠

𝐵
Π = 𝑅𝑒𝑡𝑟 𝑃𝑜𝑠

𝐿

Π =
𝑅𝑒𝑡𝑟 𝑃𝑜𝑠

𝐵

Π = 𝐵𝑜𝑤 𝑃𝑜𝑠
𝐿

Π =
𝐵𝑜𝑤 𝑃𝑜𝑠

𝐵
Π = 𝐴𝑧𝑖

𝑚 ⋅ 𝑔

Π = 𝑅𝑒𝑡𝑟
𝑚 ⋅ 𝑔

Π = 𝐵𝑜𝑤
𝑚 ⋅ 𝑔

Π = 𝐶 (𝑤𝑖𝑛𝑑)
Π = 𝐶 (𝑤𝑖𝑛𝑑)
Π = 𝐶 (𝑤𝑖𝑛𝑑)
Π = 𝐶 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
Π = 𝐶 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
Π = 𝐶 (𝑐𝑢𝑟𝑟𝑒𝑛𝑡)
Π = 𝐶 (𝑤𝑎𝑣𝑒𝑠)
Π = 𝐶 (𝑤𝑎𝑣𝑒𝑠)
Π = 𝐶 (𝑤𝑎𝑣𝑒𝑠)
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These parameters are varied one at a time while keeping all the other parameters constant. The
variations made for the environmental coefficients are done for all angles at the same time but sep-
arately for 𝐶 , 𝐶 and 𝐶 . For the specific case of the wave coefficients the variation is done for all
angles and all frequencies at the same time but again separately for 𝐶 , 𝐶 and 𝐶 .

3.2.2. Input uncertainty
The uncertainty in the input variables can be quantified and determined in multiple ways. If data is
available this can be used extracted the input uncertainty from. When no data is available experts can
be consulted to estimate the uncertainty for a certain parameter, and when both data and experts are
not available an educated guess could also be made based on logic reasoning. When quantifying the
input uncertainty mostly a Gaussian (normal) distribution is assumed since a lot of phenomena can be
described with this probability distribution. The Gaussian distribution can be defined by a mean value
𝜇 and a standard deviation 𝜎. With these definitions a confidence interval can be defined such as 95%
or 99.7% which are often used.

Historic data on the Bibby Wavemaster 1 Walk to Work vessel was collected. The data was extracted
out of 44 memo’s on different dates that were used for calculating power-speed relations, execute
Computational Fluid Dynamics (CFD) analysis or determine DP capability. After the data was categorised
to match one of the design stages, as stated in table 3.1, the minimum and maximal values of each
parameter were taken where after the average of this minimum and maximum was taken as the mean
value for each design stage.

Furthermore the maximum deviation from the mean was taken to be three times the standard
deviation for all parameters except for the environmental coefficients. With this a normal distribution
can be defined which can be used for uncertainty calculation purposes. The main reason for this
approach is to avoid unrealistic extreme values and means for the main dimensions of the vessel that
would not occur in reality. For the environmental coefficients the maximum deviation from the mean
was taken to be two times the standard deviation instead of three times because it is uncertain that
the whole range of possibilities is already covered with the coefficients used for calculation. Therefore
the chance of values laying outside the maximum deviation is still present.

For thrust it is assumed that even in case only one value is used for calculation in the historic
data, still a uncertainty is present due to the specific thrust which is not always exactly as the supplier
states. This results in a uncertainty in the thrust that a thruster will generate during its DP operation.
A complete overview of the design stages with their corresponding means and standard deviations can
be found in appendix D.

From section 3.2.1 it can be seen that the dimensionless independent parameters all consist out of
more than one variable, each with their own mean and standard deviation. The calculation of these
combined means and standard deviations is explained in section 2.12.2.

3.3. Dynamic DP analysis
For the dynamic part of the uncertainty analysis the method used for the static part will not be applicable
anymore since non linear effects due to for instance the introduction of the PID controller are to be
expected. This will result in using more advanced methods for calculating the output uncertainty and
the corresponding sensitivity for each input variable. One of the obvious methods to use is sampling
of which the Monte Carlo Simulation is a very well known example as explained in section 2.12.3. The
downside of the Monte Carlo Simulation method is that the amount of simulations required to perform
a statistical sensible simulation is relatively high, therefore the number of simulations is reduced by
using a response surface method which is explained in section 3.3.5. Using this method a fixed number
of simulations is done in the time domain after which a function can be fitted through the data. With
this function the Monte Carlo simulations can be done in a very fast manner.
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3.3.1. Model description
The model parameters used to perform the dynamic simulations are shown in table E.1 for the as built
design stage. The environmental coefficients are shown in tables D.3 and D.4. A JONSWAP spectrum
is taken for the waves and a NPD spectrum is taken for wind, the current is assumed to be constant
meaning that no spectrum is present. The simulation is performed in non limiting conditions of which
the environmental details are listed in table 3.2.

Table 3.2: Environmental Variables

Variable Magnitude or Type Unit

Wave Spectrum JONSWAP [−]
Wave height 2.6 [𝑚]
Peak Period 7.8 [𝑠]
Wind Spectrum NPD [−]
Wind Speed 10.01 [𝑚/𝑠]
Current Speed 0.5 [𝑚/𝑠]

3.3.2. Simulation time
For the purpose of time planning it is necessary to estimate the time required for dynamic simulations
since in general time domain simulations are quite expensive in terms of time and data storage. During
this research the dynamic simulations performed with aNySIM are done on a twelve core desktop com-
puter at Damen Shipyards Gorinchem. Of these twelve cores ten are used for time domain simulations
while the other two are kept for other operating processes. After each simulation a .res file is generated
by aNySIM which is essentially a text file with the complete time trace of the vessel and its outputs.
Since the data is being processed with MATLAB afterwards this file is immediately converted to a .mat
file to reduce both the loading time when analysing the data and the storage required for the data.

Statistical significance
To guarantee that enough waves have passed during one simulation to statistically say something
sensible about the behaviour of the vessel a minimum duration of the simulation should be determined.
In [25] it is explained that in order to obtain a 99% confidence interval, of all wave heights present in
a wave train for a chosen significant wave height, around a 1000 wave encounters should be simulated
which comes down to approximately three hours of simulation. This three hours of simulation is a
seen as an industry standard and can also found throughout other literature [9] [32]. To make sure no
start up phenomena of the controller are seen in the dynamic analysis an extra half hour is simulated
resulting in a total simulation time of three and a half hours. When the simulation is finished the first
half hour is discarded to prevent the start up phenomena of the controller to be analysed.

Total simulation time
A comparison between using the response surface method (RSM), created by a machine learning model,
and a full time domain Monte Carlo Simulations (MCS) is made in table 3.3. Here the minimum amount
of simulations required to create the response map is determined using the theory in section 3.3.7 and
proved to be 136 when fitting a 2 order polynomial with different inputs. Another case is evaluated
where 600 points are used to create the response map which is a bit more than the bare minimum and
is therefore expected to give more accurate results. For the Monte Carlo Simulations the amount of
data points required for calculation is set at 10,000 per angle which is commonly used for other MCS
purposes. Looking at the comparison it becomes clear immediately that a full Monte Carlo Simulation
using only time domain simulations is not viable since the time required to simulate is almost half a
year.
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Table 3.3: Comparison of simulation time between Response Surface Method and Monte Carlo Simulation

RSM RSM MCS Unit

Amount of variables 15 15 15 [−]
Amount of environmental angles 13 13 13 [−]
Time per simulation 17 17 17 [𝑚𝑖𝑛]
Data file size when .res 60 60 60 [𝑀𝐵]
Data file size when .mat 23 23 23 [𝑀𝐵]
Amount of simulations per angle 136 600 10000 [−]
Total number of simulations 1768 7800 130000 [−]
Total amount of data when .res file 106 468 7800 [𝐺𝐵]
Total amount of data when .mat file 41 179 2990 [𝐺𝐵]
Total simulation time with 10 cores 2.09 9.21 153.72 [days]

3.3.3. aNySIM outputs
The complete list of outputs produced by aNySIM during the time domain simulations can be consulted
in appendix E. From these obtained outputs several self defined outputs can be derived which are
evaluated and listed below. The most interesting outputs are the position and heading station keeping
and the maximum obtained position and heading since with these outputs an operational profile can
be constructed.

• Position

– Position station keeping, 95% of the time within a certain offset

– Maximum obtained position

– Amount of offset breakouts

– Average duration out of position

– Maximum duration out of position

• Heading

– Heading station keeping, 95% of the time within a certain offset

– Maximum obtained heading

– Amount of heading breakouts

– Average duration out of heading

– Maximum duration out of heading

In static calculations only the forces due to the mean second order wave forces can be taken into
account, therefore during the dynamic calculations also only second order wave forces are considered.
This results in the cancellation of the first order forces and therefore also no first order movements
of the vessel are calculated. This is merely done since a well set DP controller will only react to the
second order forces. The reaction of the DP controller to the input parameters is the output of interest.
In aNySIM however not only the mean second order wave forces are taken into account but also the
low varying second order wave forces which occur due to the difference frequencies.

3.3.4. Input uncertainty
The input uncertainty used for the dynamic analysis will not differ from the static part. Meaning that
still the three different design stages are present as listed in table 3.1. However the input data variables
will differ and for some input variables no data might be present. If this is the case the uncertainty of
this data is generated by assuming a certain value based on logic reasoning. A complete overview is
given in table/appendix E.1
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3.3.5. Response surface methods
Response Surface Methods (RSM) are used to approximate both experimental and numerical phenom-
ena which results in reducing the computational effort required compared to a situation when no RSM
method is used. In figure 3.1 an example of a response surface map of 2 input variables and 1 output
variable is shown. Here the simulations are plotted as spheres and are called expensive since they take
relatively a lot of time to calculate. When a reasonable number of simulations is performed a response
plane can be fitted through the points which can be used to calculate all the input parameters that were
not simulated. Since these response maps are often low order polynomial functions the computational
effort drastically reduces and is therefore considered a cheap way of calculating. The knowledge of
RSM can also be extended to more than 2 input variables but then strictly speaking the expression
surface does not apply anymore since the response is found in a N dimensional space.

Figure 3.1: Response Surface Map

3.3.6. Machine learning
For creating the response surface the simulations executed are analysed with a machine learning al-
gorithm. In general there are four different machine learning styles [46] as shown in figure 3.2 which
are briefly discussed below.

Supervised learning
Let’s consider a set of data containing multiple input variables 𝑋 and an output variable 𝑌. It is now
possible to use an algorithm to construct the mapping function from the input 𝑋 to the output 𝑌. This
is called supervised learning because the algorithm is learning from a training data set. It is possible to
look at this training data set as a teacher who supervises the learning process, the algorithm iteratively
tries to make predictions and is corrected by the teacher who knows the correct answers. When the
algorithm performance reached an acceptable level of performance the learning will stop. Supervised
learning can be subdivided into continuous and classification problems. Continuous problems have a
continuous scale like speed, length or weight. Classification problems are problems where the output
variable is a category like ”success” and ”no success” or ”healthy” and ”unhealthy” or ”red” and ”green”.

Unsupervised learning
With unsupervised learning there is only input data 𝑋 and no corresponding output variables 𝑌, the
main purpose for unsupervised learning is to access the underlying structure of the data to learn more
about it and find hidden patterns. The reason why this is called unsupervised learning is because there
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are no correct answers and no teacher that corrects the algorithm. It is all up to the algorithm itself
to find and present the interesting structures and patterns in the data. Unsupervised learning can be
subdivided into clustering and association problems. Clustering is used when it is desired to discover
groupings in the data, an example of this is when customers are grouped by purchasing behaviour.
Association is used when rules that describe large parts of the data should be discovered. An example
of this could be: people that buy a bike, also buy a lock for it.

Semi-Supervised learning
Semi-Supervised Learning is a combination of supervised and unsupervised learning meaning that a
large amount of input data 𝑋 is available and for only a small fraction of the data also the output 𝑌 is
known or labelled. An example of this could be for instance a photo archive where only some of the
images are labelled, (e.g. car, bike, motorbike) but still the majority of the images are unlabelled. Real
world problems often fall into this area since it is relatively easy to acquire unlabelled data but very
expensive or time consuming to label it. It is possible now to use unsupervised learning techniques to
discover and find hidden patterns in the input variables. Supervised learning techniques could however
also be used to make estimates about the unlabelled data which on its turn can be used as training
data to make the algorithm even more robust.

Reinforcement learning
Reinforcement learning is a way of learning what to do and how to act in specific situations. The aim
of reinforcement learning is to maximise a specific target which is called the reward. The learning
algorithm is not told which action to take but must discover itself which action will yield the maximum
reward. Reinforcement learning is very commonly used in real life, lets consider a dog that should
learn to stand still before crossing the street. In this case it is impossible to tell the dog what to do,
instead a reward is given if the dog decides to take the right action. For this the dog can observe the
environment and will see that his owner stops before crossing the street, the dog has however the
possibility to make its own decision. If he chooses to walk along the owner can pull the leash which
is considered a negative reward. If the dog decides to stand still, just like the owner, the dog is given
a cookie which is considered to be a positive reward. Over time the dog will teach itself to stand still
before crossing the street since this maximises the amount of cookies it will get from his owner.

Figure 3.2: Machine Learning Styles [47]

From the above it is clear that in this research the supervised learning method should be used
because the data is generated to specification and therefore both input and output are known. Fur-
thermore the goal of this research is to predict an output given inputs that are not present in the data
set. Since the output of the data is continuous the specific type of supervised learning that should be
used is the continuous method as explained earlier. When using machine learning it is never exactly
clear beforehand which method will give the most satisfying results, mostly trail and error is used to
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obtain the best method for each problem. A number of often used algorithms in supervised continuous
learning methods are [48]:

• Linear Regression

• Polynomial Regression

• Random Forest Decision Tree

• Neural Network

• Gradient Boosting Regression Tree

In chapter 4 it is seen that the behaviour of the inputs can be most likely very well modelled using
a second order polynomial. Therefore the polynomial regression method is used first to see if desirable
results can be obtained.

3.3.7. Design of experiments
Before fitting a polynomial first data needs to be generated. For the generation of this data a set of
input parameters is required. This is also known as a Design Of Experiments (DOE). When performing
a DOE the objective function, or output, is called ”the response variable” and the set of experiments
to be performed, or input, is called ”the sample space”. The question arises how does one define a
sample space that gives a good response variable while minimising the computational time. Multiple
DOE techniques to acquire this are available of which three are explained below.

The minimum amount of experiments required to make a reliable fit through the data points is
calculated using the binomial coefficient ( ). The binomial coefficient calculates the amount of terms
that are required to describe a polynomial when the amount of inputs and the order of the polynomial
are known [49]. The resulting relation used for the calculation of the amount of simulations is shown
in equation 3.1.

(
𝑁 + 𝐷
𝐷 ) (3.1)

where:

• 𝑁 = the amount of input variables

• 𝐷 = the degree of the fitted polynomial

Random DOE
One of the best space filling techniques, in terms of capturing the complete behaviour of the output
to the input, is random sampling. In this particular technique the designed sample space is filled by
uniformly distributed randomly created samples. Because of the purely random nature of this method
it proves not to be particularly efficient. This because the randomness of the method could result in
the clustering of of samples near to each other which is obviously not desirable in the aim of uniformly
filling the design space. The random method space filling is illustrated for 2 variables in figure 3.3.
Here the clustering of points is clearly visible. Although for the purpose of illustration two variables are
used the usage can be extended to N number of variables.

Full factorial DOE
The full factorial space filling technique is one of the most common and probably the most intuitive
strategy of DOE. For the purpose of illustrating a DOE with a sample space containing 2 variables is
used but the usage can be extended to N number of variables. When performing a full factorial DOE the
sample space is designed such that all the input variables are evenly distributed over the sample space
and with constant distances between the different points. This is illustrated in figure 3.4. Although this
method provides a good sample space for the purpose of fitting a response variable it requires quite
some simulations and a potential loss of capturing information could occur due to the non randomness
selection of the input points.
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Sobol DOE
The Sobol DOE is a pseudo-random space filling technique. Pseudo-random number generators create
series of numbers which are able to pass the randomness tests [50]. The main difference with a
normal random technique is that with Sobol some optimisation is performed. Lets consider the two
dimensional sample space in figure 3.5, here the sample space is divided in sixteen blocks by the grid
lines. Now the Sobol DOE is used to randomly draw a value within each box while trying to maximise
the minimum distance between the different points. The result is a relatively uniformly filled design
space which uses less data points than full factorial and gives comparable performance [50]. Although
for purpose of illustration two variables are used the usage can be extended to N number of variables.

Figure 3.3: Random DOE Figure 3.4: Full Factorial DOE Figure 3.5: Sobol DOE

3.3.8. Goodness of fit
After the simulations are executed with aNySIM and a model is fitted with the machine learning algo-
rithm it is important to assess whether the created model describes the aNySIM calculations accurate
enough so that it can be used for the purpose of uncertainty calculations. One can imagine that if the
error made by using the model is close to or bigger than the uncertainty of a calculation by aNySIM
it cannot be used for the purpose of uncertainty calculations. To evaluate this several parameters are
considered which are:

• R squared

• Residual

• Mean Absolute Error (MAE)

• Standard Deviation of the Mean Absolute Error (MAESTD)

• Leave One Out Cross Validation

– R squared (LOOCV R squared)

– Mean Absolute Error (LOOCV MAE)

– Standard Deviation of the Mean Absolute Error (LOOCV MAESTD)

R squared
The R squared is a goodness of fit measure for regression models meaning that it can be applied to
models that are used for the purpose of prediction. In general, when the observed values and the
model predicted values are unbiased and small one could state that the model fits the data well. The
R squared is sometimes also explained as: how close the data is to the fitted regression line or as: the
variance explained by the model divided by the total variance. The magnitude of R squared is normally
between 0 − 1 or when stated as percentages between 0 − 100% where 0% means that the model
does not explain any of the variation and 100% means the model explains all the variation. If the R
squared is found to be negative it means that the model does not fit the trend of the data and is a
worse fit than a horizontal straight line. In practice it is very unlikely to find a regression model with
an R squared of 100% since it would mean that all the observations fall exactly on the regression line.
A visual representation of a relatively low and high R squared is found in figures: 3.6 and 3.7. The
mathematical representation of R squared is found in equation 3.2.
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𝑅 = 1 − 𝑆𝑆𝑆𝑆 (3.2)

𝑆𝑆 =∑(𝑦 − �̂� ) (3.3)

𝑆𝑆 =∑(𝑦 − �̄�) (3.4)

with

• 𝑅 = R squared

• 𝑆𝑆 = The sum of squares of the residuals

• 𝑆𝑆 = The total sum of squares

• 𝑛 = amount of observations

• 𝑦 = observation

• �̂� = prediction

• �̄� = mean of the observed data

Figure 3.6: Low R Squared [51] Figure 3.7: High R Squared [51]

Residual
The R squared is unable to determine whether the model estimations and predictions are biased, this is
where the residuals should be used for. The distance between the data point used for fitting the model
and the regression line is called the residual. These residuals can be used to determine if a model
is under or over predicted systematically meaning that the model is biased and therefore indicates
a bad fit. In figure 3.8 an example is shown of a regression made on the relationship between a
semiconductor electron mobility and the natural log of the density for real experimental data [52]. The
R squared in this specific example is calculated to be 98.5% which is considered to be really good. This
is also visible as the regression line seems to be a good representation of the data points. However
when looking at the residuals plot in figure 3.9 it is clearly visible that the model systematically under
and over predicts the values rather than showing randomness. Therefore this model indicates a bad
fit and shows the importance of considering the residuals.
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Figure 3.8: Regression with R squared = 98.5% [52] Figure 3.9: Biased Residuals [52]

Mean absolute error
The Mean Absolute Error (MAE) is one of the most common ways to measure accuracy for continuous
variables [53]. The MAE measures the average magnitude of the differences between the prediction
and the actual observation where all individual differences have equal weight and without considering
their direction. In short the MAE expresses the average model prediction error in units of the variable
of interest. In this thesis however the MAE is normalised meaning that it represents a percentage of
error. The mathematical representation of the MAE is shown in equation 3.5.

𝑀𝐴𝐸 = 1
𝑛 ∑|𝑦 − �̂� | (3.5)

with:

• 𝑛 = amount of observations

• 𝑦 = observation

• �̂� = prediction

Standard deviation of the mean average error
After checking if the MAE is small enough the Standard Deviation of the MAE should be considered.
Needless to say is that it’s important since the MAE can be fairly small but when the standard deviation
is large still the chance of big errors in the prediction can be relatively high.

Leave one out cross validation
When a predictive accuracy of a model is required and independent validation data is absent re-sampling
the original data to create a different independent test set is very commonly done and is called cross
validation [54]. Leave One Out Cross Validation (LOOCV) is a particular case of the k-fold Cross Val-
idation with 𝑘 = 1 meaning that every observation is chosen once to be the test set and the rest of
the observations are used as training set. Using this, a model can be fitted n times on the training set
and afterwards be validated every time on a single test point. After this is performed the results can
be averaged and all the parameters listed above can be evaluated once again. This way it is checked
how the model will generalise to an independent unknown data set. The LOOCV is especially helpful
when the data set is relatively small and when regression analysis is performed. For other methods it
can become very computational expensive.

3.3.9. Sensitivity analysis
The differential sensitivity analysis as used in the static DP analysis will not perform optimally when
used in the dynamic DP analysis since it does not work very well for non linear cases. Therefore the
SCA method as explained in chapter 2.13.4 is used if the outputs are observed to be monotonic.
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3.3.10. Parameter variations
The variation of parameters in the dynamic DP analysis is slightly different compared to the static DP
analysis. First of all only the design stage ”as built” is considered since in the conceptual design stage
dynamic DP simulations are normally not done since a lot of required information for simulation is not
available yet. A full list of varied parameters and their boundary values can be found in table E.1.

Wave coefficients
It should be noted that the wave coefficients can not be varied since the licence of aNySIM that was
bought by Damen does not allow so. Therefore the influence and the uncertainty from the wave coef-
ficients is unfortunately not taken into account. The wave coefficients are however derived especially
for the Walk to Work vessel and therefore it is assumed that the uncertainty is relatively small especially
when looking at the wind and current coefficients which are still taken from brix tables and databases
respectively.

PID gains
When looking at the PID controller gains it is seen that all integrator terms are set to 0. This means
that the vessel does not correct for the steady state error meaning that it will never be exactly in its
set point position. This is done to simplify the settings of the PID controller so that the focus can be on
the actual behaviour of the vessel. This simplification can simply be corrected since it is assumed that
the behaviour of the vessel stays the same but concentrates around another point than its set point
position. Therefore the mean of the x, y positions and the heading is subtracted so that the behaviour
is again around the set point. The assumption that the behaviour of the vessel is not largely effected
is justified by the fact that when the vessel is already moving on average around the set point the
integrator term only has a very small contribution. It was also shown by van der Weiden [32] that
the integrator term has virtually no influence on the behaviour of the vessel other than reducing the
steady state error. A more detailed explanation on how the initial PID gains are calculated and how
they affect the behaviour of the vessel can be found in appendix E.2.

3.3.11. Time step
Before simulations can be done it is of utmost importance to choose the right settings regarding the
solver used in aNySIM. One of the most important setting for dynamic simulation is the time step taken
for each calculation. If the time step is relatively large, less computational time and storage space is
required, when the time step is chosen too big it is possible that some data will be lost and certain
phenomena can not be captured anymore.

To check whether all relevant information is included in the simulation, ten different simulations
were done using time steps between 1 and 0.1 seconds with a step size of 0.1 second. Additionally
three more simulations were done with time steps of 0.05, 0.025 and 0.01 seconds. The output data
as listed in chapter 3.3 is compared and an example of this can be seen in figure 3.10 for offset and
in figure 3.11 for heading, both examples are for an environmental of 90 degrees. On the left y axis
in these figures the magnitudes of the output values are listed, the right axis states the percentage
of change when the time step is reduced to the next step. For example when looking at figure 3.10
to the maximum offset at time step 0.2 seconds, the change of the maximum offset is approximately
1.7% when the time step is reduced to the next step, which in this case is 0.1 seconds.

What stands out is that for none of the parameters real convergence takes place. When looking at
the graphs it can be seen that for each time step decrease the output parameters will still change. For
an elaboration on this MARIN was consulted but were not able to give a satisfying answer yet. However
for the purpose of this research it will not have an influence on the results since not the absolute values
of the outputs are most important but the uncertainty is. When Damen is thinking of using aNySIM
for commercial purposes it would be advisable to discuss again with MARIN why this behaviour occurs.
This because if a certain output does not fulfil the specification that was set simply decreasing the
time step could be used to meet the requirements. In this thesis a time step of 0.25𝑠 was chosen in
consultation with MARIN.
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Figure 3.10: Time step offset 90 degrees

Figure 3.11: Time step heading 90 degrees





4
Results

In this chapter the results obtained by performing the analysis and calculations as described in chapter
3 are discussed. The static analysis is elaborated on first where the sensitivity, the input uncertainty
and finally the output uncertainty are discussed. Using these results the capability confidence intervals
of each design stage are determined. For the dynamic analysis it is first checked if the model created
by the machine learning algorithm is accurate enough for the purpose of uncertainty calculation. After
the check is performed the uncertainty for offset and heading are discussed.

4.1. DPlab capability sensitivity
For the ease of understanding the sensitivity is plotted in a polar plot, by doing this the directional
dependence of the input parameters on the output can be clearly seen at a glance. The sensitivity
plotted is the normalised sensitivity as seen in equation 2.36, meaning that if the input changes with
1% the plot shows the percentage of change of the output. In the polar plots the absolute value of
the normalised sensitivity is shown, meaning that all the values are positive which is done to make
the plots more clear. The resulting consequence is that it can not be seen immediately if a certain
parameter increases or decreases the output up for consideration. If the above would be desirable
tornado plots can provide this information, however the directional dependency is less obviously visible
in this specific representation.

The output capability is expressed in wind speed, it states until what environmental condition
the vessel is still able to maintain position. The environment consists out of wind, waves and current.
During all calculations wind, waves and current are simulated collinear, meaning that they all act from
the same direction. The wind wave relation used is found in table: D.7 and the used current speed is
taken constant with magnitude: 0.75 . DPlab starts with the first entry of the wind wave relation table,
adds the current and calculates if the vessel can maintain position. If so, it increases the magnitude
of wind and waves. During this calculation wind speed and wave height are not restricted making it a
case where limiting conditions are present, therefore saturation of at least one thruster will occur.

The main dimensions used for each design stage are listed in table D.2. Furthermore the influence
of each parameter on the forces in x, y and the moment in z direction are summarised in table D.1.

4.1.1. Conceptual design stage
From figures 4.1 and 4.2 it can be clearly seen that the basic dimensions of the vessel are the most
sensitive parameters when a static DP calculation is performed. These parameters are 𝐿/𝐵, 𝐶 ,
𝐿𝑎𝑡𝑒𝑟𝑎𝑙 𝑊𝑖𝑛𝑑 𝐴𝑟𝑒𝑎 / 𝑇𝐿 and 𝐵/𝑇 and have an influence for almost all environmental angles. Two
other parameters that have a relatively high sensitivity are 𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑡ℎ𝑟𝑢𝑠𝑡 / 𝑚𝑔 and the parameter
𝑏𝑜𝑤 𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟 𝑡ℎ𝑟𝑢𝑠𝑡 / 𝑚𝑔 which was to be expected since these are directly counteracting the envi-
ronmental forces. The difference between the azimuth and bow thruster sensitivity is not particularly in
the magnitude but more in the environmental angles for which they are sensitive. The azimuth thruster
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has a high sensitivity for angles between 80-280 degrees and between 170-190 degrees where the bow
thruster has a high sensitivity for angles between 110-160 degrees and 200-250 degrees.

Two parameters that perhaps were not expected to be as sensitive are 𝑊𝑖𝑛𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶 and
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑤𝑎𝑡𝑒𝑟 / 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑎𝑖𝑟 which also have an influence for almost all angles. Furthermore the
sensitivity of 𝑊𝑖𝑛𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶 is also quite significant but its influence is limited to 170-190 and
350-10 degrees.

In figure 4.2 and 4.3 it can be seen that the 𝐴𝑧𝑖𝑚𝑢𝑡ℎ 𝑋 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 / 𝐿 and the 𝑇𝑢𝑛𝑛𝑒𝑙 𝑋 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 / 𝐿
also have a moderate sensitivity, mostly for angles between 30-150 and 210-330 degrees. From figure
4.4 and 4.5 it becomes clear that the sensitivity of wave and current coefficients is very low in static
DP calculations. It is also important to realise that non of the parameters concerning the retractable
thruster has a sensitivity since it is not present in this design stage yet.

Figure 4.1: Capability Output Sensitivity +1% axis 0.8
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Figure 4.2: Capability Output Sensitivity +1% axis 0.6

Figure 4.3: Capability Output Sensitivity +1% axis 0.5
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Figure 4.4: Capability Output Sensitivity +1% axis 0.2

Figure 4.5: Capability Output Sensitivity +1% axis 0.14
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4.1.2. Preliminary design stage
Overall one could state that the trends and magnitudes for the sensitivity of the preliminary design
stage are comparable with those of the conceptual design stage as described in section 4.1.1. Minor
changes are however observed when looking at for instance the 𝑎𝑧𝑖𝑚𝑢𝑡ℎ 𝑡ℎ𝑟𝑢𝑠𝑡 / 𝑚𝑔 in figure 4.6.
It is clearly visible that the sensitivity of this parameter is reduced to a smaller range of angles namely
320-40 and 170-190 degrees. However when looking at 𝑏𝑜𝑤𝑡ℎ𝑟𝑢𝑠𝑒𝑟 𝑡ℎ𝑟𝑢𝑠𝑡 / 𝑚𝑔 in figure 4.7 the
behaviour is opposite since here the influence of the sensitivity by this parameter is expanded to 60-
170 and 190-300 degrees. This behaviour can be explained by the fact that now also the retractable
azimuth thruster is present resulting in a different allocation of the thrusters. This is also visible when
looking at figure 4.10 since now the 𝐴𝑧𝑖𝑚𝑢𝑡ℎ 𝑌 𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛 / 𝐵 has a bigger sensitivity compared to the
conceptual design stage.

The effect of the retractable thruster is also visible in figures 4.8 and 4.10 when looking at the
parameters 𝑅𝑒𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑙𝑒 𝑇ℎ𝑟𝑢𝑠𝑡 / 𝑚𝑔 and 𝑅𝑒𝑡𝑟𝑎𝑐𝑡𝑎𝑏𝑙𝑒 𝑋 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 / 𝐿. These parameters show
some sensitivity although their magnitude is relatively small.

Figure 4.6: Capability Output Sensitivity +1% axis 0.6
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Figure 4.7: Capability Output Sensitivity +1% axis 0.6

Figure 4.8: Capability Output Sensitivity +1% axis 0.5
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Figure 4.9: Capability Output Sensitivity +1% axis 0.2

Figure 4.10: Capability Output Sensitivity +1% axis 0.1
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4.1.3. As built design stage
The sensitivities in the as built design stage are almost identical to the preliminary design stage which
is to be expected since the mean of the input variables only differs slightly as seen in table D.2. The
basic dimensions of the vessel are again the most sensitive parameters when a static DP calculation is
performed. Current and wave coefficients proved to be relatively non sensitive.

Figure 4.11: Capability Output Sensitivity +1% axis 0.6
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Figure 4.12: Capability Output Sensitivity +1% axis 0.6

Figure 4.13: Capability Output Sensitivity +1% axis 0.5
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Figure 4.14: Capability Output Sensitivity +1% axis 0.21

Figure 4.15: Capability Output Sensitivity +1% axis 0.1
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4.2. DPlab capability input uncertainty
When considering the input uncertainty again the three different design stages are distinguished as
described in table 1.2. How the input uncertainty is defined, collected and calculated is described in
section 2.12, section 3.2.2 and appendix D.

4.2.1. Conceptual design stage
Although of all design stages the conceptual design stage is the one with the biggest basic dimensions
input uncertainty, these do not have the biggest magnitude overall. When considering figures 4.16
and 4.17 it can be seen that the 𝑊𝑖𝑛𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶 , 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶 𝑎𝑛𝑑 𝐶 , and the
𝑊𝑎𝑣𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶 , 𝐶 , 𝑎𝑛𝑑 𝐶 have by far the biggest input uncertainty. What can also be
concluded is that these uncertainties are not constant for all angles but differ quite significant. The
wave coefficients are an exception to this since their input uncertainty was estimated based on the
trends of wind and current coefficients resulting in a relatively smooth uncertainty plot.

In figures 4.18 and 4.19 it is seen that the basic dimensions of the vessel and the placement of
the thruster are the next most uncertain parameters. When looking at these figures it is seen that
some parameters, like for instance 𝑊𝑖𝑛𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶 in figure 4.18, the plotted line is interrupted
around 0 and 180 degrees. This does not mean that there is no uncertainty but is explained by the
fact that the uncertainty at that point is to big to be plotted on the current scale. For the specific case
of the 𝑊𝑖𝑛𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶 this is due to the fact that the value of this coefficient is almost zero at
these points resulting in a fraction, see equation 2.34, that becomes relatively big. This behaviour also
occurs for the parameters 𝑊𝑖𝑛𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶 , 𝑊𝑖𝑛𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶 .

Figure 4.16: Capability input uncertainty axis 2.0
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Figure 4.17: Capability input uncertainty axis 0.5

Figure 4.18: Capability input uncertainty axis 0.12
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Figure 4.19: Capability input uncertainty axis 0.12

4.2.2. Preliminary design stage
Similar as in the conceptual design stage the same parameters have the biggest input uncertainty which
are: 𝑊𝑖𝑛𝑑 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶 , 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶 𝑎𝑛𝑑 𝐶 , and 𝑊𝑎𝑣𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶 , 𝐶 , 𝑎𝑛𝑑 𝐶
which is illustrated in figures 4.20 and 4.21. This can be explained by the fact that there is no clear
indication which of the different sets of coefficients should be used for calculation and could therefore
in theory be all used for each design stage. This means that the input uncertainty of those coefficients
will not change over the different design stages.

What is observed from figures 4.22 and 4.23 is that the uncertainty of the basic dimensions of the
vessel are decreased which can be explained by the fact that a much clearer view of the shape of the
vessel is obtained. The uncertainty in bow and azimuth thrust is increased most likely due to the fact
that in the preliminary design stage more attention is paid to the to demands and regulations of the
vessel which results in different requirements for the thrusters whereas in the conceptual design stage
more the dimensions of the vessel are considered.
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Figure 4.20: Capability input uncertainty axis 2.0

Figure 4.21: Capability input uncertainty axis 0.5
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Figure 4.22: Capability input uncertainty axis 0.12

Figure 4.23: Capability input uncertainty axis 0.08
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4.2.3. As built design stage
In the as built stage no uncertainties are present in the basic dimensions of the vessel anymore which
leaves only the environmental coefficients, the thrust and the density of air and water uncertain as can
be seen in the figures below. The uncertainty of the thrust is still present here as explained in 3.2.2.

Figure 4.24: Capability input uncertainty axis 2.0
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Figure 4.25: Capability input uncertainty axis 0.2

Figure 4.26: Capability input uncertainty axis 0.12
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Figure 4.27: Capability input uncertainty axis 0.04

Figure 4.28: Capability input uncertainty axis 0.04
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4.3. DPlab capability output uncertainty

In this section the capability output uncertainty is evaluated. When looking back at equation: 2.35 it
is seen that the capability output uncertainty is taken as the square root of the sum of the individual
multiplications of sensitivity and input uncertainty. This gives a good indication of the total output
uncertainty but in order to have an idea which parameter contributes most to total output uncertainty,
the square root of the individual multiplications of sensitivity and input uncertainty are shown first. The
mathematical representation of this is shown in equation 4.1.

𝑆𝑒𝑝𝑎𝑟𝑎𝑡𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 𝑢𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 = √(𝜕𝑧
∗

𝜕𝑥 ) ⋅ (𝜎∗ ) (4.1)

It is important to note that the total output uncertainty is not just the summation of these separate
terms since first the summation should be done after which the square root can be taken. This is
illustrated in equation 4.2.

√∑(𝜕𝑧
∗

𝜕𝑥 ) ⋅ (𝜎∗ ) ≠∑√(𝜕𝑧
∗

𝜕𝑥 ) ⋅ (𝜎∗ ) (4.2)

4.3.1. Conceptual design stage

The first thing to notice in figure 4.29 is that the variables contributing mostly to the output uncertainty
for the conceptual design stage are the basic dimensions of the vessel. The first non basic dimension
that contributes significantly to the output uncertainty is the 𝑊𝑖𝑛𝑑 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶𝑥 which only has an
influence around the angles 0 and 180 degrees as would be expected. In figure 4.30 the remaining basic
dimensions are found together with the 𝐴𝑧𝑖𝑚𝑢𝑡ℎ 𝑇ℎ𝑟𝑢𝑠𝑡 / 𝑚𝑔 and 𝑊𝑎𝑣𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝐶𝑥 𝑎𝑛𝑑 𝐶𝑦.

The𝑊𝑎𝑣𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶𝑦 decreases for 90 and 270 degrees and this trend is also seen somewhat
for 𝑊𝑖𝑛𝑑 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶𝑦 and 𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶𝑦. This is explained by the fact that the uncer-
tainty of these coefficients is the smallest at these specific angles making the contribution to the output
smaller. However when looking to the 𝑊𝑎𝑣𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶𝑦 a bit closer it is seen that this trend is
more extreme compared to wind and current. This is most likely due to the fact that the uncertainty of
the wave coefficients is guessed based on trends of the other environmental coefficients. Therefore it
could be that for instance the input uncertainty might be estimated a bit on the low side for the angles
90 and 270 degrees which results in a lower output uncertainty.

In figure 4.32 the current coefficients are found and showing almost no significant contribution to
the output uncertainty.
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Figure 4.29: Capability output uncertainty axis 0.08

Figure 4.30: Capability output uncertainty axis 0.04
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Figure 4.31: Capability output uncertainty axis 0.03

Figure 4.32: Capability output uncertainty axis 0.012
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4.3.2. Preliminary design stage
In the preliminary design stage it is visible that the contribution of the basic dimensions of the vessel on
the output uncertainty is decreased when comparing to the conceptual design stage. This is explained
by the fact that the sensitivity of the basic dimensions do not significantly change throughout the design
stages but the input uncertainty reduces resulting in a lower contribution on the output uncertainty.
The contribution to the output uncertainty of the environmental coefficients stays almost the same
compared to the conceptual design stage since the sensitivity of these coefficients does not change
significantly throughout the design stages and the input uncertainty stays constant.

Figure 4.33: Capability output uncertainty axis 0.05
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Figure 4.34: Capability output uncertainty axis 0.03

Figure 4.35: Capability output uncertainty axis 0.014
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Figure 4.36: Capability output uncertainty axis 0.01

Figure 4.37: Capability output uncertainty axis 0.005



4.3. DPlab capability output uncertainty 73

4.3.3. As built design stage
When considering the as built design stage output uncertainty, it is seen that all the basic parameters
of the vessel have no contribution to the output uncertainty anymore. This is to be expected since
these parameters have no input uncertainty in this stage. The five parameters that contribute the
most to the output uncertainty are𝑊𝑖𝑛𝑑 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝐶 𝑎𝑛𝑑 𝐶 ,𝑊𝑎𝑣𝑒 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 𝐶 𝑎𝑛𝑑 𝐶 and
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑊𝑎𝑡𝑒𝑟 / 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝐴𝑖𝑟. What stands out is that the wave coefficients seem to have a significant
contribution to the output uncertainty. However since the sensitivity of these wave coefficients is not
extremely high it suggests that mainly the input uncertainty of the wave coefficients contribute to this
behaviour. Recalling that the input uncertainty was estimated one could argue if the magnitude was
chosen a bit too high. However since only one data set is available for the wave coefficients which
is not specifically calculated for the vessel the uncertainty can potentially quite large. Recalling that
the same trends and magnitudes for the wave coefficients are chosen as for the other environmental
coefficients it is therefore decided to remain the input uncertainty as chosen.

Another thing to note is that contribution to the output uncertainty due to the thrust of the thrusters
is smaller than the contribution due to the ratio of water and air density. This shows that it can really
pay off to investigate further in what conditions the vessel will operate instead of changing something
on the thruster side of the vessel.

Figure 4.38: Capability output uncertainty axis 0.05
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Figure 4.39: Capability output uncertainty axis 0.04

Figure 4.40: Capability output uncertainty axis 0.016
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Figure 4.41: Capability output uncertainty axis 0.004

4.3.4. Total capability output uncertainty
After evaluating the individual contribution of the parameters to the output uncertainty the total output
uncertainty can be calculated and is illustrated in figure 4.42. As expected the total output uncertainty
reduces when going through the design stages. Interesting to see is that for each angle the total
uncertainty difference between the design stages is almost constant except for the conceptual design
stage around 0 degrees. This is likely due to the fact that the azimuth thruster uncertainty is relatively
small for the conceptual design stage and increases when moving to the preliminary design stage.
This results in a relatively smaller decrease in total output uncertainty for angles which are around 0
degrees.
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Figure 4.42: Total capability output uncertainty

4.4. DPlab capability confidence interval
In section 4.3.4 the total capability output uncertainty is calculated and can be used to calculate the
confidence intervals for the capability of the vessel. First the base case capability is plotted after which
the upper and lower bound of the confidence interval can be determined. The total output uncertainty,
as calculated in section 4.3.4, multiplied with the base case capability represents one times the standard
deviation of the output capability. Now the 95% and the 99.7% confidence intervals, which are two and
three times the standard deviation from the base case, can be plotted for each of the design stages.
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4.4.1. Conceptual design stage

Figure 4.43: Capability 95% confidence interval conceptual design stage

Figure 4.44: Capability 99% confidence interval conceptual design stage
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4.4.2. Preliminary design stage

Figure 4.45: Capability 95% confidence interval preliminary design stage

Figure 4.46: Capability 99% confidence interval preliminary design stage
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4.4.3. As built design stage

Figure 4.47: Capability 95% confidence interval as build design stage

Figure 4.48: Capability 99% confidence interval as build design stage
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Figure 4.49: Capability 95% confidence interval as build design stage close up

Figure 4.50: Capability 99% confidence interval as build design stage close up



4.5. aNySIM goodness of model fit 81

4.5. aNySIM goodness of model fit
Before any of the results can be used it is necessary to check whether they are reliable. As explained
in section 3.3.8 several parameters are checked to see if the model fitted is accurate enough for
the purpose of uncertainty calculation. In this section a couple of examples are elaborated and the
complete analysis can be found in appendix F.2. The requirements are defined as 𝑅 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 > 0.98
and 𝑀𝐴𝐸 < 0.005, this is considered really accurate to make sure the model can be used for the
purpose of uncertainty calculation

First a series of calculations is done with 136 data points for all angles between 0 − 90 de-
grees with a step size of 5 degrees. On these data sets a 2nd order polynomial is fitted. After
evaluating the parameters mentioned in section 3.3.8 a second run of simulations is done with 270
data points for the angles 0, 30 and 45 degrees and again a 2nd order fit is performed. The final
run used for the purpose of uncertainty calculation is executed with 600 data points for the angles
5, 10, 15, 20, 35, 40, 45, 50, 55, 60, 65, 70 and 90 degrees.

In the tables following below several abbreviations are used which are already known to the reader
but for the purpose of convenience are again briefly explained below. Also colours are visible in the
figures, in the yellow part of the figure the order of fit is displayed. The blue part shows how many
data points are used to make the fit and the red part shows for which environmental angle the fit is
performed. Furthermore the green boxes indicate whether 𝑅 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 > 0.98 and 𝑀𝐴𝐸 < 0.005.

Table 4.1: Explanation terms used in goodness of fit tables

Name in table Explanation

RSquare R Squared
MAE Mean Absolute Error
MAESTD Mean Absolute Error Standard Deviation
CVRSquare Leave One Out Cross Validation (LOOCV) R Squared
CVMAE Leave One Out Cross Validation Mean Absolute Error
CVMAESD Leave One Out Cross Validation Mean Absolute Error Standard Deviation
head Maximum obtained heading
head 95% of the time within this heading
head When outside head the average time before returning to head
head When outside head the maximum time before returning to head
head Amount of times outside of head
offset Maximum obtained offset
offset 95% of the time within this offset
offset When outside offset the average time before returning to offset
offset When outside offset the maximum time before returning to offset
offset Amount of times outside of offset

4.5.1. R squared and LOOCV R squared
The first thing to check is whether the model can explain the variation present in the data points, as
explained in section 3.3.8 this is done by using the R squared. In figures 4.2 and 4.3 the results of
the 2nd order fit on 0 degrees environmental angle for 136 and 270 data points can be compared.
It is immediately visible that for heading the model does not fulfil the 𝑅 > 0.98 not even when the
amount of data points is enlarged since the performance of the R squared drops significantly. Not
surprisingly this also means that the LOOCV R squared does not meet the requirements. For offset
however the model performs really well. When the number of data points is increased the R squared
slightly decreases which could indicate that 136 points is not enough to make a good fit. This is also
visible when looking at the LOOCV R squared since their performance increases when increasing the
amount of data points meaning that the model changes less when new data is used for fitting.

For 15 degrees of environmental angle the R squared performs already very well for both heading
and offset as can be seen in figures 4.4 and 4.5. Again their performance drops slightly when using
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more points which indicates that the amount of points used in the fit with 136 points was slightly too
low. This is again seen in the LOOCV R squared since their performance increases with the increase of
the amount of data points.

The last example shown is for 45 degrees of environmental angles in figures 4.6, 4.7 and 4.8. With
136 data points the R squared of the head is the only one that does not meet the requirements. Even
when increasing the amount of data points it does not comply although the shortcoming is minimal.
Similar trends are observed where the R squared slightly decreases with the increase of data points
and the LOOCV R squared increases with the increase of data points.

Table 4.2: 0 degrees 2nd order fit on 136 points Table 4.3: 0 degrees 2nd order fit on 270 points

Table 4.4: 15 degrees 2nd order fit on 136 points Table 4.5: 15 degrees 2nd order fit on 600 points

Table 4.6: 45 degrees 2nd order fit on 136 points Table 4.7: 45 degrees 2nd order fit on 270 points

Table 4.8: 45 degrees 2nd order fit on 600 points
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4.5.2. Mean absolute error and LOOCV mean absolute error

For 0 degrees of environmental angle as seen in figures 4.2 and 4.3 both MAE and LOOCV MAE for
heading have very low performance. This is to be expected since also the R squared is very low. When
increasing the amount of data points the MAE and LOOCV MAE are not always performing worse as is
seen with the R squared. This can be explained by the fact that the model is still predicting very poor
but becomes less sensitive to new data points resulting in a lower LOOCV MAE when more data points
are used.

When considering 15 degrees of environmental angle which displayed in figures 4.4 and 4.5 the
MAE and LOOCV MAE are already performing really well with 136 data points. Only the head does
not meet the requirements yet but with 600 data points it does. Also when comparing the 136 and
600 data points the MAE increases when increasing the amount of data points and the LOOCV MAE
is decreasing when increasing the data points. This seems logical since the R squared performance
decreases slightly when the amount of points are increased and therefore the MAE increases. The
LOOCV MAE is expected to decrease with increasing amount of points since the model will be less
sensitive to new data.

In the case of 45 degrees environmental angle the trends are similar to the two cases described
above, MAE increases with an increase of the data points and LOOCV decreases with an increase of
data points. One thing that stands out is that the LOOCV MAE does not comply just as seen with the
R squared and LOOCV R squared. However the shortcoming is only 0.037%.

4.5.3. Mean absolute error standard deviation and LOOCV mean absolute
error standard deviation

For all angles the same trends are visible, when the amount of points increases the MAESTD increases
and the LOOCVSD decreases. The increase of the MAESTD can be explained by the fact that for less
points not all extreme situations are already present and therefore the spread is less. The decrease of
the LOOCVSTD can be explained by the fact that the model become less sensitive to new data when
more data points are used for fitting.

4.5.4. Residual

After the performance of the fit is within the specifications required, the residuals have to be checked
to see if the model does not systematically under or over predicts the outputs. Four examples are
illustrated below which are: maximum offset, offset interval, maximum heading and heading interval.
All of these examples are taken at 15 degrees environmental angle. The complete residual analysis
can be found in appendix F.1.

As seen in figures 4.51 - 4.54 the residuals show very nice random behaviour meaning that the model
does not systematically under or over predicts the behaviour of the vessel. What is seen in some of
the residual graphs is that on the boundaries of the model it seems like the model is sometimes under
or over predicting just slightly but since the amount of points sampled in that region is relatively low
it is more likely that there are just not enough points to statistically say that this is actually true. If
it would be the case that in these regions the model would slightly under or over predict it would not
be a big problem since it is looked at confidence intervals meaning that the most extreme values are
not taken into account. Also the magnitude of the residual is relatively small and only occurs in a very
small region making a potential over fitting of less importance.
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Figure 4.51: Maximum Offset Residual for 15 degrees of environmental angle with 600 data points

Figure 4.52: Offset Interval Residual for 15 degrees of environmental angle with 600 data points

Figure 4.53: Maximum Heading Residual for 15 degrees of environmental angle with 600 data points

Figure 4.54: Heading Interval Residual for 15 degrees of environmental angle with 600 data points
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4.6. aNySIM offset analysis

In section 4.5 it is concluded that the model is accurate enough for the purpose of uncertainty calcu-
lation. Therefore a Monte Carlo simulation with 𝑁 = 10.000 is executed for each environmental angle
and output. The first outputs up for consideration are the maximum offset and the 95% offset interval
as defined in section 3.3.3. For both these outputs the 99.7% confidence interval is evaluated below.
As stated before the uncertainty in the wave coefficients is not taken into account in the dynamic DP
calculation.

4.6.1. Maximum offset analysis

The maximum offset that the vessel will obtain is now not described as one fixed value but as a
confidence interval where in between the maximum offset can be found. The confidence interval
of 99.7% is illustrated in figure 4.55 where the upper and lower bound are the result of the input
uncertainty. The angles represent the direction where the environment is coming from with the direction
of wind waves and current collinear.

The tables throughout this section all have the same format where first the environmental angles
are listed and then the upper and lower bound of the Monte Carlo simulation is shown. Thereafter the
absolute difference between the upper and lower bound is calculated and finally the relative difference
between the mean, of the upper and lower bound, and half of the absolute difference is shown. The
mathematical formula for this is shown in equation 4.3.

𝐷𝑖𝑓𝑓. 𝑓𝑟𝑜𝑚 𝑚𝑒𝑎𝑛 = 𝐷𝑖𝑓𝑓./2
(𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 + 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑) /2 ⋅ 100 (4.3)

In figure 4.55 and table 4.9 it is seen that the maximum offset is the smallest at 0 degrees of
environmental angle and increases when moving towards 90 degrees. Also the difference between
the lower and upper boundary increases when the angles increase. This is explained by the fact that
surface on which the environment acts is getting bigger when the angle increases resulting in a higher
average and peak forces. Another thing that stands out is a sharp edge with a straight line when
looking between angles 70 and 90 degrees. This is not the real behaviour of the vessel but is due to
the fact that only the angles 70 and 90 degrees are simulated resulting in a linear interpolation between
these points.

If uncertainties should be taken into account depends in large extend on the type of operation
performed with a DP vessel. In the specific case of the Bibby Wavemaster 1, DP is used to transfer
people from the vessel to a wind turbine by means of a ”Walk To Work” bridge. This bridge has a
telescoping length of 8𝑚 meaning that when in operation, the telescope will be extended 4𝑚 such that
it can extend or retract 4𝑚. When now considering table 4.9 it is seen that the maximum difference
between the upper and lower bound of the offset is 0.47𝑚 which is 11.75% of the 4𝑚 that the bridge
can correct for. This could result into two things namely: the bridge is not able to extend any further,
causing the operational window to be smaller than expected. Or the bridge is not able to retract
more than the 4𝑚, causing it to crash into the wind turbine resulting is serious safety and financial
consequences. It is therefore fair to say that uncertainties are important to take into account, when a
operation of people transferring by means of a ”Walk To Work” bridge is performed, so that the risks
involved with these uncertainties are known and can be mitigated.
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Figure 4.55: Maximum offset boundaries - 99.7% confidence interval

Table 4.9: Maximum Offset lower bound, upper bound and differences

Angles [°] Maximum Offset

Lower Bound [m] Upper Bound [m] Diff. [m] Diff. from mean [%]

5 1.58 1.88 0.30 8.70
10 1.70 2.00 0.30 8.15
15 1.82 2.10 0.29 7.29
20 1.88 2.15 0.27 6.70
35 2.31 2.57 0.26 5.27
40 2.42 2.71 0.29 5.61
45 2.59 2.90 0.31 5.72
50 2.79 3.17 0.38 6.43
55 3.07 3.50 0.44 6.63
60 3.36 3.84 0.47 6.55
65 3.67 4.14 0.46 5.95
70 3.94 4.41 0.47 5.62
90 4.06 4.50 0.44 5.09

Sensitivity
To check if the Spearman’s Correlation Analysis (SCA), as described in section 2.13.4, can be used for
the purpose of ranking the importance of the input parameters the output should be monotonic. In
figures 4.56 and 4.57 two examples are presented from which it can be seen that this is not the case
for the maximum offset. When considering all the different inputs it was seen that for every angle
at least one input does not result in a monotonic behaviour of the maximum offset output making it
impossible to use the SCA method for the purpose of sensitivity analysis.

Another way to see which inputs are more important than others is by performing two separate
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MC simulations. In the first MC simulation only the environmental parameters, the densities of air and
water and the mass of the vessel are sampled meaning that the gains of the PID controller are kept
constant. The lower and upper bound of the maximum offset resulting from this analysis are illustrated
in figure 4.58 and table 4.10. In the second MC simulation only the PID gains are sampled and the
result of this can be seen in figure 4.59 and table 4.11. It can now be concluded that the influence of
the gains on the maximum offset is by far the biggest when compared to the environmental influences.
It is seen that both the lower and upper bound are shifted to lower and higher values respectively
resulting in a bigger difference in the maximum offset output.

Figure 4.56: Maximum offset vs Yaw Kd for 5 degrees Figure 4.57: Maximum offset vs Sway Kp for 70 degrees

Figure 4.58: Maximum offset boundaries environmental influence - 99.7% confidence interval
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Figure 4.59: Maximum offset boundaries gain influence - 99.7% confidence interval

Table 4.10: Maximum Offset environmental influence

Angles [°] Maximum Offset Environmental Influence

Lower Bound [m] Upper Bound [m] Diff. [m] Diff. from mean [%]

5 1.70 1.73 0.04 1.17
10 1.81 1.86 0.04 1.09
15 1.92 1.97 0.05 1.29
20 1.98 2.03 0.06 1.50
35 2.39 2.48 0.09 1.85
40 2.50 2.61 0.11 2.15
45 2.67 2.81 0.13 2.37
50 2.88 3.04 0.16 2.70
55 3.18 3.36 0.19 2.91
60 3.48 3.68 0.20 2.79
65 3.80 3.98 0.19 2.44
70 4.08 4.26 0.19 2.28
90 4.20 4.34 0.14 1.64
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Table 4.11: Maximum Offset Gain influence

Angles [°] Maximum Offset Gain Influence

Lower Bound [m] Upper Bound [m] Diff. [m] Diff. from mean [%]

5 1.58 1.88 0.30 8.67
10 1.70 2.00 0.30 8.11
15 1.82 2.10 0.28 7.14
20 1.89 2.15 0.26 6.44
35 2.32 2.55 0.24 4.93
40 2.44 2.69 0.25 4.87
45 2.61 2.89 0.28 5.09
50 2.81 3.15 0.34 5.70
55 3.09 3.47 0.38 5.79
60 3.40 3.82 0.42 5.82
65 3.70 4.11 0.42 5.38
70 3.97 4.38 0.41 4.91
90 4.08 4.48 0.40 4.67

4.6.2. Offset interval analysis
The offset interval illustrated in figure 4.60 and table 4.12 shows similar trends as the maximum offset
analysis. The offset interval is the smallest at 0 degrees of environmental angle and increases when
moving towards 90 degrees. Also the difference between the lower and upper boundary increases
when the angles increases. This is explained by the fact that surface on which the environment acts is
getting bigger when the angle increases resulting in a higher average and peak forces. Another thing
that stands out is a sharp edge with a straight line when looking between angles 70 and 90 degrees.
This is not the real behaviour of the vessel but is due to the fact that only the angles 70 and 90 degrees
are simulated resulting in a linear interpolation between these points.

Figure 4.60: Offset interval boundaries - 99.7% confidence interval
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Table 4.12: Offset Interval lower bound, upper bound and differences

Angles [°] Offset Interval

Lower Bound [m] Upper Bound [m] Diff. [m] Diff. from mean [%]

5 0.71 0.86 0.16 10.06
10 0.76 0.93 0.16 9.67
15 0.82 0.99 0.16 9.07
20 0.91 1.08 0.17 8.58
35 1.23 1.46 0.23 8.68
40 1.29 1.52 0.23 8.28
45 1.32 1.57 0.25 8.59
50 1.40 1.66 0.26 8.46
55 1.50 1.77 0.27 8.32
60 1.60 1.89 0.30 8.45
65 1.71 2.03 0.32 8.49
70 1.81 2.14 0.33 8.42
90 1.84 2.17 0.33 8.13

Sensitivity

For the offset interval it is also checked if the Spearman’s Correlation Analysis (SCA) can be used for the
purpose of ranking the importance of the input parameters. In figures 4.61 and 4.62 two examples are
presented from which it can be seen that this is not the case for the offset interval. When considering
all the different inputs it was seen that for every angle at least one input does not result in a monotonic
behaviour of the offset interval output making it impossible to use the SCA method for the purpose of
sensitivity analysis.

Just as with the maximum offset two separate MC simulations are performed to see which param-
eters have more influence on the offset interval. In the first MC simulation only the environmental
parameters, the densities of air and water and the mass of the vessel are sampled meaning that the
gains of the PID controller are kept constant. The lower and upper bound of the offset interval resulting
from this analysis is illustrated in figure 4.63 and table 4.13. In the second MC simulation only the PID
gains are sampled and the result of this can be seen in 4.64 and table 4.14. Similar as with the maxi-
mum offset the PID gains prove to have the biggest influence on the offset interval. For the PID gains
MC simulation the lower and upper bound are again shifted to lower and higher values respectively
resulting in a bigger difference in the offset interval output.

Figure 4.61: Offset Interval vs Yaw Kd for 10 degrees Figure 4.62: Offset Interval vs Surge Kp for 65 degrees
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Figure 4.63: Offset interval boundaries environmental influence - 99.7% confidence interval

Figure 4.64: Offset interval boundaries gain influence - 99.7% confidence interval
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Table 4.13: Offset Interval environmental influence

Angles [°] Offset Interval Environmental Influence

Lower Bound [m] Upper Bound [m] Diff. [m] Diff. from mean [%]

5 0.76 0.79 0.03 1.94
10 0.82 0.86 0.04 2.38
15 0.88 0.92 0.05 2.78
20 0.96 1.01 0.06 3.05
35 1.29 1.37 0.07 2.63
40 1.35 1.42 0.07 2.53
45 1.39 1.48 0.09 3.14
50 1.48 1.56 0.09 2.96
55 1.58 1.66 0.08 2.47
60 1.70 1.77 0.07 2.02
65 1.82 1.89 0.06 1.62
70 1.94 1.99 0.06 1.53
90 1.98 2.01 0.04 1.00

Table 4.14: Offset Interval Gain influence

Angles [°] Offset Interval Gain Influence

Lower Bound [m] Upper Bound [m] Diff. [m] Diff. from mean [%]

5 0.71 0.86 0.15 9.55
10 0.77 0.92 0.16 9.47
15 0.83 0.99 0.15 8.24
20 0.91 1.07 0.16 8.08
35 1.23 1.45 0.22 8.21
40 1.29 1.51 0.22 7.86
45 1.33 1.56 0.23 7.96
50 1.41 1.65 0.24 7.84
55 1.50 1.76 0.26 7.98
60 1.60 1.89 0.29 8.31
65 1.71 2.02 0.31 8.31
70 1.81 2.14 0.33 8.35
90 1.84 2.17 0.32 7.98

4.7. aNySIM heading analysis
For heading it was shown in section 4.5 that the model was also found to be accurate enough for the
purpose of uncertainty calculation. Again a Monte Carlo simulation with 𝑁 = 10.000 is done for each
environmental angle and output.

The tables throughout this section all have the same format where first the environmental angles
are listed and then the upper and lower bound of the Monte Carlo simulation is shown. Thereafter the
absolute difference between the upper and lower bound is calculated and finally the relative difference
between the mean, of the upper and lower bound, and half of the absolute difference is shown. The
mathematical formula for this is shown in equation 4.4.

𝐷𝑖𝑓𝑓. 𝑓𝑟𝑜𝑚 𝑚𝑒𝑎𝑛 = 𝐷𝑖𝑓𝑓./2
(𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 + 𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑) /2 ⋅ 100 (4.4)

4.7.1. Maximum heading
The maximum heading that the vessel will obtain is now not described as one fixed value but as a
confidence interval where in between the maximum heading can be found. The confidence interval
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of 99.7% is illustrated in figure 4.65 where the upper and lower bound are the result of the input
uncertainty. The angles represent the direction where the environment is coming from with the direction
of wind waves and current collinear.

In figure 4.65 and table 4.15 it is seen that the maximum obtained headings are the smallest for 0
and 90 degrees environmental angle. This can be explained due to the symmetry of the vessel because
it is or almost is symmetric over lateral and longitudinal plane. This symmetry results in a low moment
of force meaning that less thrust is required to keep the desired heading of the vessel. The highest
maximum headings are obtained between 15 and 45 degrees environmental angle. Interesting to see
is that these angles partly coincide with the angles of 30 to 60 degrees where the capability of the
vessel is limited for the static calculations. The biggest difference between the lower and upper bound
is found to be at 20 degrees.

Just as with the offset part of the analysis, if uncertainties should be taken into account depends
in large extend on the type of operation performed with a DP vessel. In the specific case of the Bibby
Wavemaster 1, DP is used to transfer people from the vessel to a wind turbine by means of a ”Walk
To Work” bridge. This bridge can compensate a maximum of 40 degrees yaw to each side. When now
considering table 4.15 it is seen that the maximum difference between the upper and lower bound of
the maximum heading is 2.54 degrees which is 6.35% of the 40 degrees that the bridge can correct for.
It is seen that this percentage is lower than for the maximum offset. When the bridge is not able to
correct for heading only the operational window will decrease but no collision is expected making the
incorporation of uncertainties of slightly less importance than for maximum offset, although penalties
can be involved when the operational window is not met.

Figure 4.65: Maximum heading boundaries - 99.7% confidence interval
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Table 4.15: Maximum Heading lower bound, upper bound and differences

Angles [°] Maximum Heading

Lower Bound [°] Upper Bound [°] Diff. [°] Diff. from mean [%]

5 1.44 2.30 0.86 23.10
10 2.88 4.60 1.72 22.98
15 4.07 6.33 2.26 21.71
20 4.88 7.42 2.54 20.64
35 6.18 7.16 0.98 7.33
40 5.58 6.11 0.53 4.54
45 4.80 5.28 0.48 4.78
50 4.32 4.93 0.60 6.51
55 4.16 4.79 0.63 7.03
60 4.04 4.96 0.92 10.22
65 4.15 5.15 1.01 10.84
70 4.25 5.18 0.93 9.90
90 2.32 2.88 0.56 10.82

Sensitivity
To check if the Spearman’s Correlation Analysis (SCA), as described in section 2.13.4, can be used for
the purpose of ranking the importance of the input parameters the output should be monotonic. In
figures 4.66 and 4.67 two examples are presented from which it can be seen that this is not the case
for the maximum heading. When considering all the different inputs it was seen that for every angle
at least one input does not result in a monotonic behaviour of the maximum heading output making it
impossible to use the SCA method for the purpose of sensitivity analysis.

Another way to see which inputs are more important than other is by performing two separate MC
simulations. In the first MC simulation only the environmental parameters, the densities of air and
water and the mass of the vessel are sampled meaning that the gains of the PID controller are kept
constant. The lower and upper bound of the maximum heading resulting from this analysis is illustrated
in figure 4.68 and table 4.16. In the second MC simulation only the PID gains are sampled and the
result of this can be seen in 4.69 and table 4.17. It can now be concluded that the influence of the
gains on the maximum heading is by far the biggest when compared to the environmental influences.
It is seen that both the lower and upper bound are shifted to lower and higher values respectively
resulting in a bigger difference in the maximum heading output.

The only angle for which the above statements do not apply is 90 degrees, here it is seen that the
lower bound due to the influence of the environmental angles is smaller than the lower bound due to
the gain influence and also the upper bound due to the influence of the environmental angles is higher
than the upper bound due to the gain influence.
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Figure 4.66: Maximum Heading vs Surge Kd for 70 degrees Figure 4.67: Maximum Heading vs Yaw Kp for 50 degrees

Figure 4.68: Maximum heading boundaries environmental influence - 99.7% confidence interval
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Figure 4.69: Maximum heading boundaries gain influence - 99.7% confidence interval

Table 4.16: Maximum Heading Environmental Influence

Angles [°] Maximum Heading Environmental Influence

Lower Bound [°] Upper Bound [°] Diff. [°] Diff. from mean [%]

5 1.73 1.84 0.11 3.08
10 3.45 3.70 0.25 3.50
15 4.80 5.13 0.33 3.32
20 5.60 6.01 0.41 3.53
35 6.54 6.75 0.21 1.58
40 5.68 5.99 0.31 2.66
45 4.90 5.13 0.24 2.39
50 4.48 4.66 0.18 1.97
55 4.31 4.57 0.25 2.82
60 4.21 4.70 0.49 5.50
65 4.32 4.88 0.56 6.09
70 4.45 4.95 0.50 5.32
90 2.38 2.80 0.41 7.92
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Table 4.17: Maximum Heading Gain Influence

Angles [°] Maximum Heading Gain Influence

Lower Bound [°] Upper Bound [°] Diff. [°] Diff. from mean [%]

5 1.44 2.28 0.85 22.85
10 2.87 4.55 1.68 22.64
15 4.06 6.27 2.21 21.39
20 4.88 7.35 2.47 20.20
35 6.19 7.14 0.95 7.13
40 5.62 6.04 0.42 3.60
45 4.82 5.23 0.41 4.08
50 4.36 4.90 0.54 5.83
55 4.20 4.75 0.55 6.15
60 4.12 4.87 0.75 8.34
65 4.24 5.04 0.80 8.62
70 4.34 5.09 0.75 7.95
90 2.42 2.79 0.36 6.91

4.7.2. Heading interval
The heading interval illustrated in figure 4.70 and table 4.18 shows a somewhat different trend than
the maximum heading analysis. Again the minimum heading is obtained with 0 and 90 degrees of
environmental angle. However the maximum heading interval is obtained between 35 and 55 degrees
which is slightly different from the maximum heading. Also this coincides more with the angles of 30
to 60 degrees where the capability of the vessel is limited for the static calculations.

Figure 4.70: Heading interval boundaries - 99.7% confidence interval
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Table 4.18: Heading Interval lower bound, upper bound and differences

Angles [°] Heading Interval

Lower Bound [°] Upper Bound [°] Diff. [°] Diff. from mean [%]

5 0.54 0.72 0.18 13.98
10 1.10 1.48 0.38 14.72
15 1.62 2.20 0.58 15.07
20 2.05 2.76 0.71 14.76
35 2.83 3.53 0.70 11.05
40 2.79 3.27 0.48 7.96
45 2.58 3.11 0.54 9.42
50 2.51 3.03 0.52 9.35
55 2.44 2.93 0.49 9.19
60 2.36 2.81 0.45 8.77
65 2.24 2.64 0.40 8.21
70 2.09 2.45 0.35 7.81
90 1.18 1.45 0.26 9.90

Sensitivity

For the heading interval it is also checked if the Spearman’s Correlation Analysis (SCA) can be used for
the purpose of ranking the importance of the input parameters. In figures 4.71 and 4.72 two examples
are presented from which it can be seen that this is not the case for the heading interval. When
considering all the different inputs it was seen that for every angle at least one input does not result
in a monotonic behaviour of the heading interval output making it impossible to use the SCA method
for the purpose of sensitivity analysis.

Just as with the maximum heading two separate MC simulations are performed to see which param-
eters have more influence on the heading interval. In the first MC simulation only the environmental
parameters, the densities of air and water and the mass of the vessel are sampled meaning that the
gains of the PID controller are kept constant. The lower and upper bound of the heading interval
resulting from this analysis are illustrated in figure 4.73 and table 4.19. In the second MC simulation
only the PID gains are sampled and the result of this can be seen in 4.74 and table 4.20. Similar as with
the maximum heading the PID gains prove to have the biggest influence on the heading interval. For
the PID gains MC simulation the lower and upper bound are again shifted to lower and higher values
respectively resulting in a bigger difference in the heading interval output.

Figure 4.71: Heading Interval vs Sway Kd for 20 degrees Figure 4.72: Heading Interval vs Surge Kd for 35 degrees
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Figure 4.73: Heading interval boundaries environmental influence - 99.7% confidence interval

Figure 4.74: Heading interval boundaries gain influence - 99.7% confidence interval
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Table 4.19: Heading Interval Environmental Influence

Angles [°] Heading Interval Environmental Influence

Lower Bound [°] Upper Bound [°] Diff. [°] Diff. from mean [%]

5 0.59 0.63 0.04 3.28
10 1.20 1.29 0.09 3.61
15 1.76 1.91 0.14 3.81
20 2.22 2.41 0.19 4.10
35 3.08 3.23 0.15 2.38
40 3.01 3.07 0.06 0.99
45 2.79 2.87 0.08 1.41
50 2.71 2.79 0.08 1.45
55 2.64 2.71 0.07 1.31
60 2.54 2.60 0.06 1.17
65 2.39 2.48 0.09 1.85
70 2.22 2.29 0.07 1.55
90 1.27 1.35 0.08 3.05

Table 4.20: Heading Interval Gain Influence

Angles [°] Heading Interval Gain Influence

Lower Bound [°] Upper Bound [°] Diff. [°] Diff. from mean [%]

5 0.54 0.71 0.17 13.60
10 1.10 1.47 0.37 14.40
15 1.62 2.18 0.56 14.74
20 2.06 2.75 0.69 14.35
35 2.82 3.52 0.69 10.88
40 2.80 3.27 0.48 7.91
45 2.57 3.11 0.53 9.33
50 2.51 3.03 0.51 9.21
55 2.44 2.93 0.49 9.12
60 2.36 2.80 0.45 8.72
65 2.24 2.63 0.38 7.80
70 2.09 2.43 0.33 7.30
90 1.19 1.43 0.24 9.16
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Conclusions and recommendations

5.1. Conclusions
In this research a clear distinction is made between the static and the dynamic part of calculating DP
capability. In both static and dynamic DP calculations three different design stages are distinguished
namely: conceptual design, preliminary design and as built design. Recalling the research question
and its sub questions as formulated in section 1.3.1, these questions are answered according to the
calculation method and design stage.

5.1.1. Static
In general it can be stated that for the static DP calculation method the total output uncertainty, which
is the capability of the vessel expressed in 𝑚/𝑠 wind speed, reduces when going through the design
stages. Despite this reduction, still a standard deviation of approximately 4% of the output is present
for the as built design stage. This results in the fact that, when considering the 99.7% confidence
interval, the capability of the vessel can either be calculated to be 12% higher or lower. It is therefore
concluded that input uncertainties should be taken into account, especially when the capability of the
vessel is calculated to be very close to the required specification. This is due to the fact that when the
capability calculated is exactly the capability that is required, there is almost a 50% chance that the
vessel is not able to maintain position and will drift off. Furthermore is it is concluded that the results
obtained in this thesis can be used for similar shaped vessels with a comparable thruster layout.

Sensitivity
Overall the sensitivity does not change significantly throughout the design stages, although the point
around which the sensitivity is calculated changes quite significantly for some parameters. Examples
of these parameters are for instance the length, azimuth thrust and draught. These big changes in the
input parameters are however only seen when changing from the conceptual to the preliminary design
stage. The output is the most sensitive to the main dimensions of the vessel, the thruster thrust and
the density ratio of water and air for all design stages. The current coefficients have shown to be the
least sensitive parameters for all of the design stages. The sensitivity of the bow thruster thrust is the
only parameter that reduces quite a bit when moving from the conceptual to the preliminary design
stage.

Summarising the above it is concluded that rules of thumb can be used, for similar shaped vessels
with a comparable thruster layout, when considering sensitivity since the sensitivity of the dimensionless
parameters as derived in section 3.2.1 do not change when the vessels parameters are adjusted.

Input uncertainty
In the static calculation analysis, all the parameters that are considered to have uncertainties are
determined depending on the design stage that is evaluated. It is seen that regardless of the design
stage the current coefficients in x and n direction, the wind coefficient in x direction and the wave
coefficients in x, y and n direction always have the biggest input uncertainty.
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When looking at the conceptual design stage the main dimensions of the vessel have the biggest
input uncertainty, after the most uncertain parameters as stated above. The density ratio between air
and water has the single lowest input uncertainty in this design stage.

In the preliminary design stage it is seen that after the most uncertain parameters, as mentioned
earlier, the thrust has the biggest input uncertainty and the ratio between air and water density becomes
relatively bigger compared to other parameters.

Finally in the as built design stage it can be concluded that after the most uncertain parameters, as
stated above, the wind coefficients in y and n direction and the current coefficient in y direction have
the biggest input uncertainty. Furthermore the density ratio between air and water has the lowest
input uncertainty in this design stage.

Output uncertainty
The output uncertainty is calculated for each parameter separately to study their contribution to the
total output uncertainty. For the conceptual design stage the main dimensions of the vessel have the
biggest contribution to the output uncertainty, of which the block coefficient is the most dominant.
Interestingly the wind coefficient in x direction also has a big part in the output uncertainty in this
design stage already, although it only concerns environmental angles around 0 and 180 degrees.

When considering the preliminary design stage the contribution to the output uncertainty by the
main dimensions of the vessel is clearly reduced, although some of them still have a big contribution
to the output uncertainty.

In the as built design stage the output uncertainty is mainly explained by the contribution of the
wind and wave coefficients in x and y direction and the density ratio of water and air. What stands out
is that, for all the design stages, the current coefficients do not contribute to the output uncertainty
although they were found to have a big input uncertainty.

Summarising the above it can be concluded that no effort should be taken to reduce the uncertainty
of the current coefficients since they do not contribute to the output uncertainty. A uncertainty reduction
in wind and wave coefficients is however recommend since in the as built stage they still contribute to
the output uncertainty.

5.1.2. Dynamic
In the dynamic DP calculation analysis only the as built stage is considered. It is concluded that machine
learning methods are able to describe the dynamic behaviour of the vessel, reducing the calculating
time from 17 minutes to a fraction of a second and making it possible to construct more general DP
calculation models. Practically this means that when some parameters of a vessel are changed, there
is no need to redo the dynamic simulations but instead the machine learning model can be used to
calculate the vessels new dynamic behaviour. It is shown that for the environmental angles of 5 to 20,
35 to 70 and 90 degrees a second order polynomial regression model, with 600 data points for each
heading, is able to represent the dynamic simulations accurate enough for the purpose of uncertainty
calculation.

Using the machine learning model, a Monte Carlo simulation is executed to determine the as built
output uncertainty of the vessel. Depending on the output and the environmental angle, and taking
the 97.7% confidence interval, it is seen that the offset can be calculated to be up to 8.7% too high or
too low and the heading up to 23.1% too high or too low whem compared to the mean. This could
result in the ”Walk To Work” bridge to crash into the wind turbine, causing serious safety risks, or in a
reduction of the operational window which could lead to contractual penalties. It is therefore concluded
that when DP is used, for the purpose of people transferring by means of a ”Walk To Work” bridge,
uncertainties should be taken into account to reduce both safety and contractual risks.

Sensitivity
Due to the non monotonic response of the input on the output in some of the dynamic calculations,
it is impossible to use Spearman’s Correlation Analysis to rank the input variables based on order of
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importance. To be able to say something about the importance of the parameters two different Monte
Carlo simulations are executed. One simulation in which only the uncertainty in the environmental
coefficients, the density of air and water and the mass of the vessel is sampled. In the second Monte
Carlo simulation only the gains of the PID controller are sampled. From this it is seen that the influence
of the PID gains is significantly bigger than the influence of the environmental parameters for all of the
outputs.

Input uncertainty
Due to the dynamic nature of the calculations a couple of new parameters are introduced which are
the PID controller gains which are also assumed to be uncertain. Furthermore the uncertainty of the
environmental coefficients, the density of air and water and the mass of the vessel is taken to be the
same as with the static calculation.

Output uncertainty
The output uncertainty due to the uncertain parameters shows to be quite significant. A maximum
offset difference of 0.47𝑚 is seen with a lower bound of 3.36𝑚 and an upper bound of 3.84𝑚. The
biggest relative maximum offset is calculated to be 8.70% too low or too high when compared to the
mean, with a lower bound and upper bound of 1.58𝑚 and 1.88𝑚 respectively.

For heading the differences are even bigger, a maximum heading difference of 2.54 degrees is
seen with a lower bound of 4.88 degrees and an upper bound of 7.42 degrees. The biggest relative
maximum heading is calculated to be 23.10% too low or too high when compared to the mean, with a
lower bound and upper bound of 1.44 degrees and 2.30 degrees respectively.

5.2. Recommendations
During this thesis it was seen that there are some points of interest that are worth looking into further
in future research projects. As throughout this whole thesis the recommendations made are split up in
a static and a dynamic part.

5.2.1. Static
Damen can use the outcome of this thesis to systematically identify vessel parameters that have a big
influence on the static DP capability. At this point in time, when a vessel is statically not able to fulfil
a certain capability, the only option left is to increase the thruster power which is expensive. Not only
a more powerful thruster should be bought but also the power of the generators might increase to
deliver the required power for the new thruster. When using the output uncertainty plots as illustrated
in section 4.3 other parameters can be used to achieve the desired capability. An example of this could
be to decide to run a CFD to obtain more certain wind coefficients, which could increase the capability
of the vessel with up to 6% in the as build stage as shown in figure 4.38.

For the static calculation analysis only saturated conditions are looked into, meaning that always
the maximum capability of the vessel is determined and therefore at least one of the thrusters always
operate in full thrust. Instead of considering the maximum capability of the vessel in m/s wind speed,
also the total amount of delivered thrust could be considered. Using this as an output and selecting a
fixed, non limiting environmental condition, the non saturating cases can also be evaluated. An attempt
to evaluate this method was made but it is concluded, that at this moment in time, DPlab is unable
to perform this analysis. This has to do with the solver of DPlab which is not always able to find all
possible solutions but starts at a specific point and tries to find the nearest solutions. When choosing a
non limiting case multiple solutions are possible for the vessel to stay in position and when a parameter
is varied the starting point of the solver will be different. This results in the fact that the most optimum
solution is not always found in terms of total used thrust which relates to the total used power.

During this research only the intact condition of the thrusters was considered. Since the intact
condition is never the limiting one when looking at the capability of the vessel it could be interesting
to evaluate failure cases as well, especially the most critical failure case. It could be that here the
sensitivities and therefore also the output uncertainty changes significantly.



104 5. Conclusions and recommendations

5.2.2. Dynamic
In the Dynamic part of the DP calculation analysis, only the as built design stage was evaluated. From
a design perspective it would however be interesting to also evaluate the preliminary design stage.
By doing so the main dimensions of the vessel and the thrust of the thrusters can be adjusted, if the
dynamic behaviour of the vessel is correctly captured by the machine learning model. If this proves to
be working, it is recommend to Damen to create this general DP model for different series of vessels
in their preliminary design stage. These models can be used to calculate position and heading offsets
without running the time expensive time domain simulations for each separate configuration, making
it possible to say something about the capability of the vessel in a very early design phase.

It is seen that the gains of the PID controller have a big influence on the capability of the vessel.
These gains are calculated with rules of thumb and afterwards tuned manually which takes a lot of
time. It is therefore recommend to use the machine learning model to find the optimal settings which
can be done in only a couple of seconds. This will drastically decrease the uncertainty in the PID
controller gains, reducing both safety and contractual risks

The model created during this thesis is successfully able to capture the outputs defined for the
dynamic simulations for a certain range of environmental angles. Since the model is not able to generate
output for all possible directions, it is recommended to investigate other supervised machine learning
methods to see whether different models are able to cover the full range of environmental angles.

The environmental forces considered in this thesis are always assumed to act collinear, meaning
that they all approach the vessel from the same direction. In reality this is almost never the case as
wind, waves and current are more likely to approach from different directions. It would therefore be
interesting to see if a model can be created that also incorporates the different angles of approach
for each environmental force. Furthermore only one specific environmental condition was chosen
to execute the simulations, it would however be desirable to include at least a range of different
environmental scenarios in the machine learning model if possible. This would require the model to
have inputs for current speed, wave height, wave period and wind speed.

A limiting factor of aNySIM at this moment is the fact that it is only possible to use one PID controller
for the purpose of DP calculations, which is the in-house designed PID controller of MARIN. They did
however mention that in the future the possibility of incorporating other controllers in aNySIM should
be possible. This way the controller that will be used on the actual vessel can also already be applied
in the simulations, making it very easy to compare different suppliers op DP control units.

At this point in time, aNySIM is not capable of taking power restrictions of the switchboards and
generators into account. Some post processing of the time series of aNySIM is already done by Damen
and it is seen that, at some moments in time, the amount of power used by the thrusters exceeded
the amount of power that was available from the generators. The influence on the DP capability of the
vessel by this phenomenon is not known and is therefore worthwhile to investigate. Damen already
initiated a conversation with MARIN to see if a coupling between Simulink and aNySIM is possible to
incorporate the power and inertia restrictions of the system.
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A
Project overview

Figure A.1: schematic overview
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B
Data types

The type of data that is available, put in or generated by a model determines which sensitivity analysis
can be used to uncover relationships between the input and output. Here a couple of often used data
types is elaborated on.

B.1. Nominal
Nominal variables are defined as variables that have two or more categories, which can not be ordered
or ranked meaning that they don’t have an intrinsic order [55]. For example, a car garage could classify
their types of vehicles into distinct categories such as sedan, station wagon, convertible and sport. Now
it can be stated that the ”type of car” is a nominal value with 4 different categories which are called
sedan, station wagon, convertible and sport.

B.2. Dichotomous
Dichotomous variables are defined as variables that have only two categories [55]. An example could
be when it was asked to someone if he or she owns a boat, here we can categorise boat ownership as
either ”yes” or ”no”. Another example could be when looking at gender, again two categories could be
defined namely ”male” and ”female”.

B.3. Ordinal
Ordinal variables are variables that have two or more categories just like nominal values have, the
difference is however that ordinal values can also be ordered or ranked. When you would asked
someone if they are cold they could answer with ”not at all”, ”a little” or ”Yes extremely”. These are
called ordinal variables since it is now possible to rank them from most positive (”not at all”) to a middle
response (”a little”) to the least positive (”Yes extremely”).

B.4. Interval
Interval variables are variables that can be measured on a continuous and numeric scale. An example
is temperature in degrees Celsius. Here the difference between 10∘C and 20∘C is the same as the
difference between 20∘C and 30∘C.

B.5. Ratio
Ratio variables are the same as interval variables but with the addition that when 0 is measured it
indicates that there is non of that variable. When looking at the example of temperature measured in
degrees Celsius, 0∘C does not mean there is no temperature and therefore does not qualify as a ratio
variable. Examples of ratio variables are mass, distance, volume and many more.
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B.6. Monotonic relationship
A relationship can be referred to as monotonic when one of the following conditions are met:

• If one value of a variable increases then the other variable should also increase

• If one value of a variable increases then the other variable should decrease

Examples of monotonic and non monotonic relationships are illustrated in figure B.1.

Figure B.1: Monotonic and Non Monotonic relationships



C
Dimensional analysis

Dimensional analysis is a method often used for reducing the complexity and the number of variables
which influence a physical phenomenon [56]. When a certain physical phenomenon depends upon n
dimensional variables the dimensional analysis method is able to reduce the problem to only (n - k)
dimensionless variable groups. Here k is the number of basic dimensions that play a role. The four
basic dimensions are usually taken to be mass M, length L, time T and temperature Θ. For example
regardless of whether a volume is expressed in units of cubic foot, cubic inches or in cubic meter, its
physical (basic) dimension remains the same. An overview of the quantities expressed in their basic
dimensions is given in table C.1.

Table C.1: Quantities and their basic dimensions

Quantity Physical dimensions SI

Mass 𝑀 𝑘𝑔
Length 𝐿 𝑚
Time 𝑇 𝑠
Temperature Θ 𝐾
Area 𝐿 𝑚
Volume 𝐿 𝑚
Angular velocity 𝑇 𝑟𝑎𝑑/𝑠
Angular acceleration 𝑇 𝑟𝑎𝑑/𝑠
Velocity 𝐿𝑇 𝑚/𝑠
Acceleration 𝐿𝑇 𝑚/𝑠
Mass flow 𝑀𝑇 𝑘𝑔/𝑠
Momentum 𝑀𝐿𝑇 𝑘𝑔𝑚/𝑠
Force, Weight 𝑀𝐿𝑇 𝑘𝑔𝑚/𝑠 (𝑁)
Moment, Energy or Work 𝑀𝐿 𝑇 𝑁𝑚 (𝐽)
Power 𝑀𝐿 𝑇 𝑁𝑚/𝑠 (𝑊)
Density 𝑀𝐿 𝑘𝑔/𝑚
Pressure 𝑀𝐿 𝑇 𝑁/𝑚 (𝑃 )
Viscosity 𝑀𝐿 𝑇 𝑁𝑠/𝑚
Heat value 𝐿 𝑇 𝐽/𝑘𝑔
Gas constant 𝐿 𝑇 Θ 𝐽/𝑘𝑔𝐾
Angle 𝑀 𝐿 𝑇 𝑟𝑎𝑑𝑖𝑎𝑛
Adiabatic index 𝑀 𝐿 𝑇 −
Relative humidity 𝑀 𝐿 𝑇 −

For the purpose of static dynamic positioning calculation the dimensional parameters influencing
the capability of the vessel were determined and listed in table C.2.
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Table C.2: Parameters static DP and their basic dimensions

Nr Parameter Short name SI unit Basic dimensions

1 Length Waterline 𝐿 [𝑚] 𝐿
2 Breadth 𝐵 [𝑚] 𝐿
3 Draught 𝑇 [𝑚] 𝐿
4 Volume ∇ [𝑚 ] 𝐿
5 Frontal wind area 𝐴𝑓 [𝑚 ] 𝐿
6 Lateral wind area 𝐴𝑙 [𝑚 ] 𝐿
7 Density water 𝜌 [𝑘𝑔/𝑚 ] 𝑀/𝐿
8 Density air 𝜌 [𝑘𝑔/𝑚 ] 𝑀/𝐿
9 Azimuth x position port side 𝐴𝑧𝑖 𝑝𝑜𝑠 [𝑚] 𝐿
10 Azimuth x position starboard 𝐴𝑧𝑖 𝑝𝑜𝑠 [𝑚] 𝐿
11 Azimuth y position port side 𝐴𝑧𝑖 𝑝𝑜𝑠 [𝑚] 𝐿
12 Azimuth y position starboard 𝐴𝑧𝑖 𝑝𝑜𝑠 [𝑚] 𝐿
13 Retractable x position 𝑅𝑒𝑡𝑟 𝑝𝑜𝑠 [𝑚] 𝐿
14 Retractable y position 𝑅𝑒𝑡𝑟 𝑝𝑜𝑠 [𝑚] 𝐿
15 Bow thruster x position fore 𝐵𝑜𝑤 𝑝𝑜𝑠 [𝑚] 𝐿
16 Bow thruster x position aft 𝐵𝑜𝑤 𝑝𝑜𝑠 [𝑚] 𝐿
17 Bow thruster y position fore 𝐵𝑜𝑤 𝑝𝑜𝑠 [𝑚] 𝐿
18 Bow thruster y position aft 𝐵𝑜𝑤 𝑝𝑜𝑠 [𝑚] 𝐿
19 Azimuth thrust 𝐴𝑧𝑖 [𝑁] 𝑀𝐿/𝑇
20 Retractable thrust 𝑅𝑒𝑡𝑟 [𝑁] 𝑀𝐿/𝑇
21 Bow thruster thrust 𝐵𝑜𝑤 [𝑁] 𝑀𝐿/𝑇
22 Mass of the vessel 𝑚 [𝑘𝑔] 𝑀
23 Gravitational acceleration 𝑔 [𝑚/𝑠 ] 𝐿/𝑇

Now that all parameters are found it can be seen that there are 𝑛 = 23 parameters and 𝑘 = 3
basic dimensions, namely 𝑀, 𝐿 and 𝑇. Then according to the Buckingham Π theorem [56] there are
𝑗 = 𝑛 − 𝑘 = 23 − 3 = 20 independent dimensionless variables to be found. To find these independent
dimensionless variables first a choice of fundamental variables should be made. These fundamental
variables are used to make other variables dimensionless by using their product. The choice of these
variables can be made arbitrarily however the variables should be chosen such that all the basic dimen-
sions are present [57]. Here the length on the waterline 𝐿𝑤𝑙, mass 𝑚 and gravitational acceleration 𝑔
are chosen as fundamental variables. Now the following is obtained:

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐵
Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝑇
Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ ∇
Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑓
Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑙
Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝜌
Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝜌

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑧𝑖 𝑝𝑜𝑠

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑧𝑖 𝑝𝑜𝑠
Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑧𝑖 𝑝𝑜𝑠

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑧𝑖 𝑝𝑜𝑠

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝑅𝑒𝑡𝑟 𝑝𝑜𝑠
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Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝑅𝑒𝑡𝑟 𝑝𝑜𝑠

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐵𝑜𝑤 𝑝𝑜𝑠

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐵𝑜𝑤 𝑝𝑜𝑠

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐵𝑜𝑤 𝑝𝑜𝑠

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐵𝑜𝑤 𝑝𝑜𝑠

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑧𝑖

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝑅𝑒𝑡𝑟

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐵𝑜𝑤
The next step to find the specific form of the dimensionless Π groups is to replace all parameters

with their known 𝑘 basic dimensions equivalent. In this case the basic dimensions present are 𝑀, 𝐿
and 𝑇. After the substitution the following is obtained.

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿)

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿)

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿 )

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿 )

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿 )

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝑀𝐿 )

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝑀𝐿 )

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿)

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿)

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿)

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿)

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿)

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿)

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿)

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿)

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿)

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝐿)

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝑀𝐿𝑇 )

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝑀𝐿𝑇 )

Π = (𝐿) ⋅ (𝑀) ⋅ (𝐿𝑇 ) ⋅ (𝑀𝐿𝑇 )
In order to make the Π groups dimensionless it is necessary that the summation of the powers of

𝐿, 𝑀 and 𝑇 are equal to zero.

So for Π :
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𝑎 + 𝑐 + 1 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −1
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐵 =

So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −1
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝑇 =

So for Π :

𝑎 + 𝑐 + 3 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −3
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ ∇ = ∇

So for Π :

𝑎 + 𝑐 + 2 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −2
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑓 =

So for Π :

𝑎 + 𝑐 + 2 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −2
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑙 =

So for Π :

𝑎 + 𝑐 − 3 = 0
𝑏 + 1 = 0
−2𝑐 = 0

} gives
𝑎 = 3
𝑏 = −1
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝑟ℎ𝑜 = ⋅

So for Π :

𝑎 + 𝑐 − 3 = 0
𝑏 + 1 = 0
−2𝑐 = 0

} gives
𝑎 = 3
𝑏 = −1
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝑟ℎ𝑜 = ⋅
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So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −1
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑧𝑖 𝑝𝑜𝑠 =

So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −1
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑧𝑖 𝑝𝑜𝑠 =

So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −1
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑧𝑖 𝑝𝑜𝑠 =

So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −1
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑧𝑖 𝑝𝑜𝑠 =

So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −1
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝑅𝑒𝑡𝑟 𝑝𝑜𝑠 =

So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −1
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝑅𝑒𝑡𝑟 𝑝𝑜𝑠 =

So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −1
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐵𝑜𝑤 𝑝𝑜𝑠 =
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So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −1
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐵𝑜𝑤 𝑝𝑜𝑠 =

So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −1
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐵𝑜𝑤 𝑝𝑜𝑠 =

So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 = 0

−2𝑐 = 0
} gives

𝑎 = −1
𝑏 = 0
𝑐 = 0

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐵𝑜𝑤 𝑝𝑜𝑠 =

So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 + 1 = 0

−2𝑐 − 2 = 0
} gives

𝑎 = 0
𝑏 = −1
𝑐 = −1

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐴𝑧𝑖 = ⋅

So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 + 1 = 0

−2𝑐 − 2 = 0
} gives

𝑎 = 0
𝑏 = −1
𝑐 = −1

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝑅𝑒𝑡𝑟 = ⋅

So for Π :

𝑎 + 𝑐 + 1 = 0
𝑏 + 1 = 0

−2𝑐 − 2 = 0
} gives

𝑎 = 0
𝑏 = −1
𝑐 = −1

Π = (𝐿 ) ⋅ (𝑚) ⋅ (𝑔) ⋅ 𝐵𝑜𝑤 = ⋅

To obtain physically sensible dimensionless groups the Π groups can be multiplied with each other
[57]. The following multiplications are executed where the groups used for multiplication will disappear
in the final set of equations and is replaced by their multiplication:

1 ⋅ Π = 𝐿
𝐵 = 𝜆

Π ⋅ Π = 𝐵
𝐿 ⋅ 𝐿𝑇 = 𝐵

𝑇 = 𝛽
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Π ⋅ Π ⋅ Π = ∇
𝐿 ⋅ 𝐿𝐵 ⋅ 𝐿𝑇 = ∇

𝐿 𝐵𝑇 = 𝐶

Π ⋅ Π ⋅ Π = 𝐴𝑓
𝐿 ⋅ 𝐿𝐵 ⋅ 𝐿𝑇 = 𝐴𝑓

𝑇𝐵

Π ⋅ Π = 𝐴𝑙
𝐿 ⋅ 𝐿 𝑙

𝑇 = 𝐴𝑙
𝑇𝐿

Π ⋅ Π = 𝜌 ⋅ 𝐿
𝑚 ⋅ 𝑚

𝜌 ⋅ 𝐿 = 𝜌
𝜌

Π ⋅ Π =
𝐴𝑧𝑖 𝑝𝑜𝑠
𝐿 ⋅ 𝐿𝐵 =

𝐴𝑧𝑖 𝑝𝑜𝑠
𝐵

Π ⋅ Π =
𝐴𝑧𝑖 𝑝𝑜𝑠
𝐿 ⋅ 𝐿𝐵 =

𝐴𝑧𝑖 𝑝𝑜𝑠
𝐵

Π ⋅ Π =
𝑅𝑒𝑡𝑟 𝑝𝑜𝑠

𝐿 ⋅ 𝐿𝐵 =
𝑅𝑒𝑡𝑟 𝑝𝑜𝑠

𝐵

Π ⋅ Π =
𝐵𝑜𝑤 𝑝𝑜𝑠

𝐿 ⋅ 𝐿𝐵 =
𝐵𝑜𝑤 𝑝𝑜𝑠

𝐵

Π ⋅ Π =
𝐵𝑜𝑤 𝑝𝑜𝑠

𝐿 ⋅ 𝐿𝐵 =
𝐵𝑜𝑤 𝑝𝑜𝑠

𝐵
Finally the resulting dimensionless Π groups can be formulated as follow:

Π ∗ = 𝐿
𝐵 = 𝜆

Π ∗ = 𝐵
𝑇 = 𝛽

Π ∗ = ∇
𝐿 𝐵𝑇 =

𝑚
𝜌 ⋅ 𝐿 𝐵𝑇 = 𝐶

Π ∗ = 𝐴𝑓
𝑇𝐵

Π ∗ = 𝐴𝑙
𝑇𝐿

Π ∗ = 𝜌
𝜌

Π ∗ =
𝐴𝑧𝑖 𝑃𝑜𝑠
𝐿

Π ∗ = 𝐴𝑧𝑖 𝑃𝑜𝑠
𝐿

Π ∗ =
𝐴𝑧𝑖 𝑃𝑜𝑠

𝐵

Π ∗ =
𝐴𝑧𝑖 𝑃𝑜𝑠

𝐵

Π ∗ = 𝑅𝑒𝑡𝑟 𝑃𝑜𝑠
𝐿

Π ∗ =
𝑅𝑒𝑡𝑟 𝑃𝑜𝑠

𝐵

Π ∗ =
𝐵𝑜𝑤 𝑃𝑜𝑠

𝐿



122 C. Dimensional analysis

Π ∗ = 𝐵𝑜𝑤 𝑃𝑜𝑠
𝐿

Π ∗ =
𝐵𝑜𝑤 𝑃𝑜𝑠

𝐵

Π ∗ =
𝐵𝑜𝑤 𝑃𝑜𝑠

𝐵

Π ∗ = 𝐴𝑧𝑖
𝑚 ⋅ 𝑔

Π ∗ = 𝑅𝑒𝑡𝑟
𝑚 ⋅ 𝑔

Π ∗ = 𝐵𝑜𝑤
𝑚 ⋅ 𝑔



D
DPlab

Figure D.1: Input Output overview DPlab
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Figure D.2: Input for environmental forces calculation DPlab
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D.1. Sensitivity
Table D.1: Effected forces by parameters

Parameter Effect on 𝐹 Effect on 𝐹 Effect on 𝑀
Waterline Length x x
Waterline Breadth x
Draught x x x
Frontal wind area x
Longitudinal wind area x x
Water density x x x
Air density x x x
X position Azimuthing thrusters x
Y position Azimuthing thrusters x
X position Retractable thruster x
X position Tunnel thrusters x
Power Azimuthing thruster x x x
Thrust Azimuthing thruster x x x
Power Retractable thruster x x x
Thrust Retractable thruster x x x
Power Tunnel thrusters x x
Thrust Tunnel thrusters x x
Wind coefficients Cx x x
Wind coefficients Cy x
Wind coefficients Cn x
Current coefficients Cx x
Current coefficients Cy x
Current coefficients Cn x
Wave coefficients Cx x
Wave coefficients Cy x
Wave coefficients Cn x



126 D. DPlab

D.2. Input uncertainty
In this appendix the input uncertainty for the different parameters used in DPlab are listed.

D.2.1. Main particulars

Table D.2: Mean and standard deviations for static DP

Parameters Stage 1 Stage 2 Stage 3

Mean Std Mean Std Mean Std

Length Waterline 74.65 5.18 91.05 1.18 87.70 0
Breadth Waterline 19.00 0.33 19.50 0.17 20.00 0
Draught 5.25 0.42 4.40 0.20 4.80 0
Displacement 5320 212 5453 275 5956 0
L/B (𝜆) 3.93 0.28 4.67 0.07 4.39 0
B/T (𝛽) 3.62 0.29 4.43 0.20 4.17 0
Block coefficient (𝐶 ) 0.71 0.08 0.70 0.05 0.71 0
Frontal wind area 360.00 13.33 407.50 7.50 392.00 0
Lateral wind area 978.00 47.33 1178.65 66.22 1366.00 0
Density water 1024.72 1.99 1024.72 1.99 1024.72 1.985
Density air 1.257 0.037 1.257 0.037 1.257 0.037
Azimuth x position port side -32.95 1.98 -40.50 0.03 -40.45 0
Azimuth x position starboard side -32.95 1.98 -40.50 0.03 -40.45 0
Azimuth y position port side 5.00 0.10 5.66 0.05 5.52 0
Azimuth y position starboard side -5.00 0.10 -5.66 0.05 -5.52 0
Retractable x position 33.90 1.17 30.40 0
Retractable y position 0 0 0 0
Fore tunnel x position 30.60 1.83 35.25 0.62 37.10 0
Fore tunnel y position 0 0 0 0 0 0
Aft tunnel x position 28.10 1.70 32.05 0.55 33.70 0
Aft tunnel y position 0 0 0 0 0 0
Azimuth power 723.00 32.00 1625.00 175.00 1600.00 0
Azimuth thrust 106.18 1.56 286.20 19.07 293.70 7.34
Azimuth specific thrust 16.50 0.00 18.41 0.94 18.71 0
Retractable power 755.00 35.00 860.00 0
Retractable thrust 123.40 5.20 136.10 3.40
Retractable specific thrust 16.23 0.51 16.13 0
Bowthruster power 1086.00 55.67 900.00 66.67 860.00 0
Bowthruster thrust 131.04 6.72 113.20 5.63 116.00 2.90
Bowthruster specific thrust 12.30 0.00 13.12 0.35 13.75 0
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D.2.2. Wind coefficients

Table D.3: Mean and standard deviations for wind coefficients

Wind coefficients Cx Cy Cn

Mean Std Mean Std Mean Std

0 degrees 0.476 0.057 0.002 0.001 0.002 0.001
10 degrees 0.556 0.085 0.150 0.017 -0.034 0.002
20 degrees 0.545 0.110 0.345 0.021 -0.065 0.005
30 degrees 0.436 0.129 0.558 0.021 -0.091 0.008
40 degrees 0.204 0.122 0.779 0.031 -0.114 0.010
50 degrees -0.055 0.071 0.885 0.023 -0.119 0.008
60 degrees -0.094 0.102 0.882 0.049 -0.092 0.006
70 degrees -0.131 0.111 0.869 0.047 -0.061 0.005
80 degrees -0.086 0.059 0.829 0.041 -0.032 0.001
90 degrees -0.012 0.013 0.813 0.043 0.000 0.001
100 degrees 0.025 0.035 0.833 0.041 0.031 0.003
110 degrees 0.035 0.067 0.866 0.045 0.060 0.006
120 degrees 0.048 0.084 0.903 0.059 0.098 0.010
130 degrees 0.002 0.039 0.906 0.036 0.114 0.005
140 degrees -0.164 0.048 0.813 0.009 0.113 0.006
150 degrees -0.364 0.042 0.581 0.012 0.088 0.005
160 degrees -0.497 0.068 0.364 0.017 0.063 0.003
170 degrees -0.532 0.082 0.163 0.013 0.035 0.002
180 degrees -0.496 0.052 0.002 0.003 -0.001 0.000
190 degrees -0.532 0.082 -0.163 0.013 -0.035 0.002
200 degrees -0.497 0.068 -0.364 0.017 -0.063 0.003
210 degrees -0.364 0.042 -0.581 0.012 -0.088 0.005
220 degrees -0.164 0.048 -0.813 0.009 -0.113 0.006
230 degrees 0.002 0.039 -0.906 0.036 -0.114 0.005
240 degrees 0.048 0.084 -0.903 0.059 -0.098 0.010
250 degrees 0.035 0.067 -0.866 0.045 -0.060 0.006
260 degrees 0.025 0.035 -0.833 0.041 -0.031 0.003
270 degrees -0.012 0.013 -0.813 0.043 0.000 0.001
280 degrees -0.086 0.059 -0.829 0.041 0.032 0.001
290 degrees -0.131 0.111 -0.869 0.047 0.061 0.005
300 degrees -0.094 0.102 -0.882 0.049 0.092 0.006
310 degrees -0.055 0.071 -0.885 0.023 0.119 0.008
320 degrees 0.204 0.122 -0.779 0.031 0.114 0.010
330 degrees 0.436 0.129 -0.558 0.021 0.091 0.008
340 degrees 0.545 0.110 -0.345 0.021 0.065 0.005
350 degrees 0.556 0.085 -0.150 0.017 0.034 0.002
360 degrees 0.476 0.057 -0.002 0.001 -0.002 0.001
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D.2.3. Current coefficients

Table D.4: Mean and standard deviations for current coefficients

Current coefficients Cx Cy Cn

Mean Std Mean Std Mean Std

0 degrees 0.143 0.047 -0.001 0.002 -0.003 0.002
10 degrees 0.135 0.045 0.111 0.005 -0.021 0.003
20 degrees 0.126 0.043 0.224 0.008 -0.040 0.007
30 degrees 0.117 0.041 0.338 0.011 -0.058 0.011
40 degrees 0.048 0.039 0.441 0.020 -0.071 0.012
50 degrees -0.027 0.041 0.559 0.021 -0.082 0.014
60 degrees -0.083 0.052 0.642 0.039 -0.091 0.016
70 degrees -0.042 0.029 0.674 0.032 -0.069 0.014
80 degrees -0.044 0.028 0.706 0.024 -0.045 0.012
90 degrees -0.029 0.050 0.725 0.023 -0.021 0.011
100 degrees -0.041 0.051 0.673 0.022 0.001 0.005
110 degrees -0.056 0.052 0.608 0.027 0.022 0.003
120 degrees -0.073 0.054 0.542 0.033 0.046 0.007
130 degrees -0.077 0.064 0.457 0.028 0.055 0.006
140 degrees -0.096 0.067 0.366 0.022 0.054 0.006
150 degrees -0.129 0.062 0.269 0.014 0.044 0.006
160 degrees -0.143 0.050 0.175 0.008 0.031 0.004
170 degrees -0.138 0.048 0.085 0.003 0.016 0.002
180 degrees -0.133 0.045 0.001 0.002 0.004 0.002
190 degrees -0.138 0.048 -0.085 0.003 -0.016 0.002
200 degrees -0.143 0.050 -0.175 0.008 -0.031 0.004
210 degrees -0.129 0.062 -0.269 0.014 -0.044 0.006
220 degrees -0.096 0.067 -0.366 0.022 -0.054 0.006
230 degrees -0.077 0.064 -0.457 0.028 -0.055 0.006
240 degrees -0.073 0.054 -0.542 0.033 -0.046 0.007
250 degrees -0.056 0.052 -0.608 0.027 -0.022 0.003
260 degrees -0.041 0.051 -0.672 0.022 -0.001 0.005
270 degrees -0.029 0.050 -0.724 0.023 0.021 0.011
280 degrees -0.044 0.028 -0.706 0.024 0.045 0.012
290 degrees -0.042 0.029 -0.674 0.032 0.069 0.014
300 degrees -0.083 0.052 -0.642 0.039 0.091 0.016
310 degrees -0.027 0.041 -0.559 0.021 0.082 0.014
320 degrees 0.048 0.039 -0.441 0.020 0.071 0.012
330 degrees 0.117 0.041 -0.338 0.011 0.058 0.011
340 degrees 0.126 0.043 -0.226 0.007 0.037 0.008
350 degrees 0.135 0.045 -0.114 0.003 0.017 0.005
360 degrees 0.143 0.047 -0.001 0.002 -0.003 0.002

D.2.4. Water density
The density of water is mainly dependent on three things which are pressure, temperature and the
salinity of the water. Since only atmospheric pressures are present at sea level this factor is neglected.
From http://www.ospo.noaa.gov/Products/ocean/sst/contour/ it is seen that the temperature of the sea
surface varies approximately from -2∘C to 30∘C. According to https://en.wikipedia.org/wiki/Seawater
the salinity varies between 31 [ ] and 38 [ ].

It is now possible to calculate the density of the seawater for the four different extremes using the
method of http://web.mit.edu/seawater/ . The result of these are listen in table D.5. The lowest and
highest values are taken to be the boundaries of the certainty intervals
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Table D.5: Density of water

Temperature / Salinity 31
g

kg
38

g

kg

−2∘C 1024.96 [𝑘𝑔/𝑚 ] 1030.67 [𝑘𝑔/𝑚 ]
30∘C 1018.76 [𝑘𝑔/𝑚 ] 1024.00 [𝑘𝑔/𝑚 ]

D.2.5. Air density
The density of air is mainly dependent on the temperature.

Table D.6: Density of water

Air temperature Air density

−15∘C 1.367 [𝑘𝑔/𝑚 ]
35∘C 1.146 [𝑘𝑔/𝑚 ]

D.3. Wind wave relation

Table D.7: Wind wave relation

Wind speed [ ] Wave height [𝑚] Zero crossing period [𝑠]
0 0 3
1.40 0.66 3
2.19 0.79 3
3.30 1.00 3
4.95 1.35 4.1
6.21 1.70 5.1
7.48 1.90 5.7
8.74 2.30 6.9
10.01 2.60 7.8
11.39 3.00 9
13.11 3.50 9
15.53 4.20 9
17.60 4.90 9
19.32 5.30 9
19.90 5.60 9
20.59 5.80 9
21.51 6.10 9
51.44 15.86 9
102.87 31.72 9
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Figure E.1: Output overview aNySIM

131



132 E. aNySIM

Figure E.2: Input overview aNySIM
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E.1. Parameter variation
During the dynamic simulations the parameters are varied within a certain range and are listen in table
E.1. The wind and current coefficients are also varied and are varied with plus and minus three times
the stadard deviation from their mean as seen in tables D.3 and D.4.

Table E.1: Varied parameters and their boundary values for sobol space

Parameter Lower boundary Upper Boundary Unit

Water density 1018.76 1030.67 [𝑘𝑔/𝑚 ]
Air density 1.146 1.1367 [𝑘𝑔/𝑚 ]
Surge gain Kp 26400 39600 [𝑁/𝑚]
Surge gain Kd 550020 679800 [𝑁𝑠/𝑚]
Sway gain Kp 33600 50400 [𝑁/𝑚]
Sway gain Kd 725350 896500 [𝑁𝑠/𝑚]
Yaw gain Kp 14160000 21240000 [𝑁𝑚/𝑟𝑎𝑑]
Yaw gain Kd 319510000 394900000 [𝑁𝑚𝑠/𝑟𝑎𝑑]

E.2. PID gains
The Proportional Integral Derivative (PID) controller is used in the DP system to make sure the vessel
stays in its desired position. It can be considered as a control loop feedback system which is used
throughout multiple industries. The control loop is normally expressed using a transfer function which
is shown in equation E.1.

𝐺(𝑠) = 𝐾 + 𝐾 ⋅ 1𝑠 ⋅ 𝐾 ⋅ 𝑠 (E.1)

When using a PID controller for the purpose of Dynamic Positioning the position and heading are the
variables of interest and depend on time. The transfer function can therefore be rewritten [58] to form
shown in equation E.2.

𝑢(𝑡) = 𝐾 ⋅ 𝑒(𝑡) + 𝐾 ∫ 𝑒(𝜏)𝑑𝜏 + 𝐾 ⋅ 𝑑𝑑𝑡𝑦(𝑡) (E.2)

where:

• 𝐾 = P gain of the controller [𝑁/𝑚] or [𝑁𝑚/𝑟𝑎𝑑]

• 𝐾 = I gain of the controller [𝑁/𝑚𝑠] or [𝑁𝑚/𝑟𝑎𝑑𝑠]

• 𝐾 = D gain of the controller [𝑁𝑠/𝑚] or [𝑁𝑚𝑠/𝑟𝑎𝑑]

• 𝑒 = Error as function of time [𝑚] or [𝑟𝑎𝑑]

• 𝑡 = discrete time signal [𝑠]

• 𝜏 = continuous time signal [𝑠]

The gains have to be set according to the vessels properties. The following equations provide a
good first estimate for calculating the PID gains after which they can be tuned further.

𝑃 =
∑ 𝑇

(50 − 70%) ⋅ 𝑅 (E.3)

where:

• 𝑃 = P gain of the controller [𝑁/𝑚] or [𝑁𝑚/𝑟𝑎𝑑]

• 𝑁 = Amount of thrusters [−]

• 𝑇 = Maximum thrust [𝑘𝑁] or [𝑘𝑁𝑚]

• 𝑅 = Maximum desired offset [𝑚]
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𝐷 = (50 − 70%) ⋅ 2 ⋅ √(𝑀 + 𝑎) ⋅ 𝑃) (E.4)

where:

• 𝐷 = D gain of the controller [𝑁𝑠/𝑚] or [𝑁𝑚𝑠/𝑟𝑎𝑑]

• 𝑀 = Mass or mass moment of inertia [𝑡] or [𝑡𝑚 ]

• 𝑎 = Added mass or added mass moment of inertia [𝑡] or [𝑡𝑚 ]

• 𝑃 = P gain of the controller [𝑁/𝑚] or [𝑁𝑚/𝑟𝑎𝑑]

The I gain rule of thumb calculation method is as follow:

𝑃
𝐼 ≈ 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 30 𝑎𝑛𝑑 60 (E.5)

The individual contributions of each gain to the system as a whole are listed below [58].

Table E.2: Effect on parameters when tuning P gain

Parameter Reaction to P-gain increase

rise time decrease
overshoot increase
settling time small increase
steady state error decrease
stability degrade

Table E.3: Effect on parameters when tuning I gain

Parameter Reaction to I-gain increase

rise time small decrease
overshoot increase
settling time increase
steady state error large decrease
stability degrade

Table E.4: Effect on parameters when tuning D gain

Parameter Reaction to D-gain increase

rise time small decrease
overshoot decrease
settling time decrease
steady state error minor change
stability improve
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E.3. Environmental angle converter

Table E.5: Converting angles

Environmental angles [°]
aNySIM axis ”going to” aNySIM axis ”coming from” DPlab axis ”coming from”

0 180 0
10 190 10
20 200 20
30 210 30
40 220 40
50 230 50
60 240 60
70 250 70
80 260 80
90 270 90
100 280 100
110 290 110
120 300 120
130 310 130
140 320 140
150 330 150
160 340 160
170 350 170
180 360 180
190 10 190
200 20 200
210 30 210
220 40 220
230 50 230
240 60 240
250 70 250
260 80 260
270 90 270
280 100 280
290 110 290
300 120 300
310 130 310
320 140 320
330 150 330
340 160 340
350 170 350
360 180 360

E.4. aNySIM info sheet
More info on the time domain simulation program aNySIM developed by MARIN can be found on the
following pages.
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Time Domain Analysis of Multi Body Dynamics for 
Offshore Operations 

aNySIM 
 

Multi-body time domain simulation tool 

MARIN has been developing, using and selling hydrodynamic simulation 
software for many years. Specialised tools were developed for specific 
areas: coupled mooring analysis, Dynamic Positioning, multiple-body 
lifting operations, riser dynamics, offloading operations, etc. 
Developments in the offshore industry in recent years showed the need 
for a more integrated and flexible tool. Therefore, MARIN decided to 
develop the new modular ‘aNySIM’ code. It brings together the 
capabilities of the different software packages and has become MARIN’s 
main in-house hydrodynamic toolbox. Various modules can be coupled 
to the central N-body time domain simulation module. As an example, 
this makes possible studying a DP heading controlled moored FPSO 
with a shuttle tanker behind it, including all the hydrodynamic and 
mechanical interactions.  
In 2006 MARIN started with the development of the new time domain 
program aNySIM. aNySIM can simulate the coupled motion behaviour of 
multiple floating bodies including effects such as mooring systems and 
hydrodynamic interactions. The program integrates the equation of 
motion taking into account the own inertia, added inertia, wave loads, 
damping loads and hydrostatic restoring forces: 
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where: 
xj = motion in j-th mode 
Fk(t) = arbitrarily in time varying external force in the k-th mode of 

motion 
M = inertia matrix 
m = added inertia matrix (frequency independent) 
R = matrix of retardation functions 
C = matrix of hydrostatic restoring forces 

The inertia matrix consists of the mass of the ship and the distribution 
of the masses with respect to the centre of gravity (radii of inertia).  
The right-hand side forcing function F includes the following forces: 
 Wind forces. 
 Current forces. 
 Wave forces (first order). 
 Mean wave drift forces. 
 Slowly varying wave drift forces. 
 Viscous damping forces. 
 Restoring forces of mooring system. 
 Restoring forces of lifting arrangement. 
 Thruster forces. 
 Rudder forces. 
 

Computational approach 

The mathematical model is based on a time-step solution of the system 
of coupled differential equations of motion in which the fluid reaction 
forces are described with convolution integrals according to the 
Cummins' formulation. The program uses linear diffraction data, wave 
forces, added mass and damping. In this way arbitrary hull forms can be 
accounted for.  
Frequency dependent added mass and damping coefficients are 
transformed into inertia coefficients, retardation functions and response 
functions, such as described in the formula on the left. The 
instantaneous first and second order wave forces can be taken into 
account. These are the wave forces for the actual position of the vessel. 
 
 



 

 

Modular approach 

aNySIM was developed by implementing the functionalities step by step 
making sure that every step is validated and benchmarked against 
model tests and previous time domain software. At present the 
following modules are available in aNySIM: 
 Time domain integration of equation of motion. 
 Wave forces (1st and 2nd order). 
 Current forces. 
 Wind forces. 
 Fenders. 
 Lines. 
 Anchor lines (quasi static and dynamic). 
 Thrusters and rudders. 
 Kalman filter. 
 DP controllers. 

 

User defined module 

aNySIM offers an interface through which external subroutines can be 
called. In this way the user can extend the functionality of aNySIM by 
developing additional modules in FORTRAN90. The interface is such that 
data from the other modules is available for the user to compute 
additional signals. For example the current loads on the truss of a spar 
can be computed by requesting the current velocities at various water 
depths along the truss and then multiplying them by the Cd values. 
 

Input 

Typical input parameters that are needed to run a simulation are: 
 Geometry, inertia and stability of floating bodies. 
 Loading conditions and draughts. 
 Water depth and diffraction data. 
 Wind, wave and current conditions. 
 Mooring arrangement. 
 Propulsion arrangement. 
 

Output 

The standard output option consists of time traces of the motions in the 
centers of gravity, crane tip motions, mooring loads, fender forces, 

relative motions etc. Additional output records may be defined by the 
user as functions of all available state variables in the user interface 
algorithm. This is a module where user defined forces can be 
programmed. 
aNySIM concludes with a concise statistical analysis yielding extreme 
and mean values and standard deviations of all selected output signals. 
aNySIM output (including the diffracted wave field) can be visualized 
using the in-house visualisation tool Neptune as shown below. 
 

 
 

Batch runs  
The aNySIM program is equipped with a batch functionality that allows 
running large batches on MARIN’s computer network. With this 
approach it becomes feasible to perform workability analyses for long 
term environmental data in limited simulation time. (Up to 10.000 runs 
is feasible in a few days) 
 

Project based version for clients: aNySIM-pro 

A project based version of aNySIM is now also available for clients. 
Further information about this software can be found on the aNySIM-
pro leaflet. A demo version of the program can be obtained through the 
contact details below.  

 
For more information please contact the Maritime Simulation & 
Software Group; 
T  +31 317 493 237 
E  msg@marin.nl 
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Model validation

F.1. Residuals

Figure F.1: Maximum Offset Residual for 5 degrees of environmental angle with 600 data points

Figure F.2: Maximum Offset Residual for 10 degrees of environmental angle with 600 data points
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Figure F.3: Maximum Offset Residual for 15 degrees of environmental angle with 600 data points

Figure F.4: Maximum Offset Residual for 20 degrees of environmental angle with 600 data points

Figure F.5: Maximum Offset Residual for 35 degrees of environmental angle with 600 data points

Figure F.6: Maximum Offset Residual for 40 degrees of environmental angle with 600 data points
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Figure F.7: Maximum Offset Residual for 45 degrees of environmental angle with 600 data points

Figure F.8: Maximum Offset Residual for 50 degrees of environmental angle with 600 data points

Figure F.9: Maximum Offset Residual for 55 degrees of environmental angle with 600 data points

Figure F.10: Maximum Offset Residual for 60 degrees of environmental angle with 600 data points
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Figure F.11: Maximum Offset Residual for 65 degrees of environmental angle with 600 data points

Figure F.12: Maximum Offset Residual for 70 degrees of environmental angle with 600 data points

Figure F.13: Maximum Offset Residual for 90 degrees of environmental angle with 600 data points

Figure F.14: Offset Interval Residual for 5 degrees of environmental angle with 600 data points
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Figure F.15: Offset Interval Residual for 10 degrees of environmental angle with 600 data points

Figure F.16: Offset Interval Residual for 15 degrees of environmental angle with 600 data points

Figure F.17: Offset Interval Residual for 20 degrees of environmental angle with 600 data points

Figure F.18: Offset Interval Residual for 35 degrees of environmental angle with 600 data points
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Figure F.19: Offset Interval Residual for 40 degrees of environmental angle with 600 data points

Figure F.20: Offset Interval Residual for 45 degrees of environmental angle with 600 data points

Figure F.21: Offset Interval Residual for 50 degrees of environmental angle with 600 data points

Figure F.22: Offset Interval Residual for 55 degrees of environmental angle with 600 data points
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Figure F.23: Offset Interval Residual for 60 degrees of environmental angle with 600 data points

Figure F.24: Offset Interval Residual for 65 degrees of environmental angle with 600 data points

Figure F.25: Offset Interval Residual for 70 degrees of environmental angle with 600 data points

Figure F.26: Offset Interval Residual for 90 degrees of environmental angle with 600 data points
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Figure F.27: Maximum Heading Residual for 5 degrees of environmental angle with 600 data points

Figure F.28: Maximum Heading Residual for 10 degrees of environmental angle with 600 data points

Figure F.29: Maximum Heading Residual for 15 degrees of environmental angle with 600 data points

Figure F.30: Maximum Heading Residual for 20 degrees of environmental angle with 600 data points
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Figure F.31: Maximum Heading Residual for 35 degrees of environmental angle with 600 data points

Figure F.32: Maximum Heading Residual for 40 degrees of environmental angle with 600 data points

Figure F.33: Maximum Heading Residual for 45 degrees of environmental angle with 600 data points

Figure F.34: Maximum Heading Residual for 50 degrees of environmental angle with 600 data points
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Figure F.35: Maximum Heading Residual for 55 degrees of environmental angle with 600 data points

Figure F.36: Maximum Heading Residual for 60 degrees of environmental angle with 600 data points

Figure F.37: Maximum Heading Residual for 65 degrees of environmental angle with 600 data points

Figure F.38: Maximum Heading Residual for 70 degrees of environmental angle with 600 data points
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Figure F.39: Maximum Heading Residual for 90 degrees of environmental angle with 600 data points

Figure F.40: Heading Interval Residual for 5 degrees of environmental angle with 600 data points

Figure F.41: Heading Interval Residual for 10 degrees of environmental angle with 600 data points

Figure F.42: Heading Interval Residual for 15 degrees of environmental angle with 600 data points
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Figure F.43: Heading Interval Residual for 20 degrees of environmental angle with 600 data points

Figure F.44: Heading Interval Residual for 35 degrees of environmental angle with 600 data points

Figure F.45: Heading Interval Residual for 40 degrees of environmental angle with 600 data points

Figure F.46: Heading Interval Residual for 45 degrees of environmental angle with 600 data points
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Figure F.47: Heading Interval Residual for 50 degrees of environmental angle with 600 data points

Figure F.48: Heading Interval Residual for 55 degrees of environmental angle with 600 data points

Figure F.49: Heading Interval Residual for 60 degrees of environmental angle with 600 data points

Figure F.50: Heading Interval Residual for 65 degrees of environmental angle with 600 data points
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Figure F.51: Heading Interval Residual for 70 degrees of environmental angle with 600 data points

Figure F.52: Heading Interval Residual for 90 degrees of environmental angle with 600 data points

F.2. (LOOCV) R squared, MAE and standard deviation

Table F.1: 0 degrees 2nd order fit on 136 points Table F.2: 0 degrees 2nd order fit on 270 points

Table F.3: 5 degrees 2nd order fit on 136 points Table F.4: 5 degrees 2nd order fit on 600 points
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Table F.5: 10 degrees 2nd order fit on 136 points Table F.6: 10 degrees 2nd order fit on 600 points

Table F.7: 15 degrees 2nd order fit on 136 points Table F.8: 15 degrees 2nd order fit on 600 points

Table F.9: 20 degrees 2nd order fit on 136 points Table F.10: 20 degrees 2nd order fit on 600 points

Table F.11: 25 degrees 2nd order fit on 136 points
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Table F.12: 30 degrees 2nd order fit on 136 points Table F.13: 30 degrees 2nd order fit on 270 points

Table F.14: 35 degrees 2nd order fit on 136 points Table F.15: 35 degrees 2nd order fit on 600 points

Table F.16: 40 degrees 2nd order fit on 136 points Table F.17: 40 degrees 2nd order fit on 600 points

Table F.18: 45 degrees 2nd order fit on 136 points Table F.19: 45 degrees 2nd order fit on 270 points
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Table F.20: 45 degrees 2nd order fit on 600 points

Table F.21: 50 degrees 2nd order fit on 136 points Table F.22: 50 degrees 2nd order fit on 600 points

Table F.23: 55 degrees 2nd order fit on 136 points Table F.24: 55 degrees 2nd order fit on 600 points

Table F.25: 60 degrees 2nd order fit on 136 points Table F.26: 60 degrees 2nd order fit on 600 points
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Table F.27: 65 degrees 2nd order fit on 136 points Table F.28: 65 degrees 2nd order fit on 600 points

Table F.29: 70 degrees 2nd order fit on 136 points Table F.30: 70 degrees 2nd order fit on 600 points

Table F.31: 75 degrees 2nd order fit on 136 points Table F.32: 80 degrees 2nd order fit on 136 points

Table F.33: 85 degrees 2nd order fit on 136 points
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Table F.34: 90 degrees 2nd order fit on 136 points Table F.35: 90 degrees 2nd order fit on 600 points
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