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0Abstract

The Distribution System Operator (DSO) Alliander has the ambition to explore possibilities of

improving its predictive demand modelling applications. This research aims to contribute to

one of these, the Advanced Net DEcision Support (ANDES) model, which provides detailed

predictions for long-term capacity planning. This thesis pursues two main objectives: Firstly,

the creation of a probabilistic power demand model which re�ects the volatile nature of

real customer demand in an adequate manner. Secondly, the development and evaluation of

methods to estimate certain model output quantities of interest in a computationally e�cient

manner.

To this end, variance reduction techniques have been investigated. Self-tuning Importance

Sampling (IS) methods giving di�erent weight to time steps and/or customer load pro�les

have been developed. In order to make the optimisation stage super�uous, additionally an

approach to �nd a generalised asset distribution has been investigated.

The essential �nding from evaluating all considered methods was that their performance

in terms of e�ciency and accuracy depends mainly on two variables – the order of magnitude

of the estimated quantity and the number of customer connected to an asset in question. For

small assets and an estimated overload probability of the order 10
−5

or smaller, all pro�le IS

methods and especially the generalised bin probability IS showed the strongest performance

with average speed-ups of 5-30 times with respect to the reference method of sampling full

annual traces. For assets with more than 80 customers and small overload probabilities, the

pro�le IS methods were found to frequently produce estimates of a signi�cantly too small order

of magnitude. Conventional Monte Carlo (MC) sampling and time step IS, in turn, produced

reliable estimates regardless of the number of customers. For assets of all sizes with an

estimated overload probability of the order 10
−4

and larger, conventional MC sampling showed

the best performance with speed-ups above 5 times. Overall, conventional MC sampling

performed robustly in all circumstances, while IS demonstrated its potential to signi�cantly

increase the estimation e�ciency of rare event probabilities in certain cases.

To determine which magnitudes demand maxima and minima can potentially reach,

Extreme Value Theory (EVT) has been applied. The computationally more e�cient methods

and extreme value inference were considered not compatible, sampling full annual traces

appears to be required for a reliable estimation of maximum and minimum demand return

levels.

Based on the �ndings of this thesis, a �exible algorithm could be investigated in future

research which employs IS for rare event probabilities and conventional MC sampling other-

wise. For an integrated evaluation of all risk metrics, the algorithm could initially sample 200

entire annual traces to be used for extreme value inference.
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1 Introduction

With the increasing uptake of distributed energy resources in the course of the energy trans-

ition, the structure of the energy system is becoming increasingly decentralised. Departing

from the traditional centralised structure entails that the roles and activities of the principle

actors in the energy system change. Within this context, the International Renewable Energy

Agency (IRENA) sees growing responsibilities for Distribution System Operators (DSOs): Dis-

tributed generation leads already presently to bi-directional and less predictable power �ows

on the lowest grid levels. This requires DSOs to step in and actively operate their grid in order

to prevent congestion. Furthermore, an expanded DSO role could involve the direct operation

of distributed �exibility assets or at least facilitation of a market where �exibility can be traded

[49]. Next to these rather short-term operational and economic aspects, also the long-term grid

planning approaches of DSOs are strongly a�ected by the characteristics of distributed energy

resources. The IRENA suggests here that DSOs may use customer consumption, production

and other types of data to create better demand forecasts [49].

The Dutch DSO Alliander is already putting the latter idea into practice: The Advanced

Net DEcision Support (ANDES) model which Alliander develops is a novel long-term capacity

planning tool which incorporates large volumes of various types of customer data. This thesis

aims to contribute to the further development of the model by investigating the use of Monte

Carlo sampling techniques tailored for the context of long-term capacity planning. Why

this focus is relevant and which aspects of the ANDES model it concerns, is motivated more

closely in the following section 1.1. On the basis of this initial assessment of the challenge, the

principal objectives of this thesis are described in section 1.2. A set of research questions is

subsequently derived from the thesis objectives in section 1.3. The notation and the overall

structure of the present thesis report is explained in section 1.4 and section 1.5, respectively.

1.1 Motivation
An important objective of capacity planning from a DSO perspective is to ensure su�cient

power distribution capacity is available in the short, medium and long-term, in order to

minimise interruptions in the power supply to grid customers as far as possible. However, since

capacity expansion is very expensive, it is also an important concern of capacity planning to

identify economically viable grid investment paths and to prevent unnecessary overinvestment.

This classic dilemma of capacity planning between the security of supply and the costs has

increasingly become a trilemma in recent decades, due to the urgency of reducing greenhouse

gas emissions of the energy sector – thus, ideally the energy supply should be secure, cheap

and environmentally sustainable. Even though the latter dimension is not under the direct

control of DSOs, the energy transition requires fundamental changes in the way capacity

planning is approached.

To respond to the need for new capacity planning approaches, the ANDES model [81] is

1



Chapter 1 Introduction

being developed within Alliander. Traditional methods often use rather simple linear models

combined with empirical observation to forecast peak loads in a top-down manner. The ANDES

model, in contrast, relies on a bottom-up approach to obtain time-resolved asset load pro�les

by aggregating load pro�les of individual customers. For di�erent di�usion scenarios of key

low-carbon technologies, the approach allows to predict which assets might be overloaded in

the future. The model covers the entire Alliander grid, has a time horizon of up to 40 years

with quarter-hourly resolution and currently comprises �ve future scenarios which entails a

considerable computational e�ort and large volumes of output data.

Even though the ANDES model represents a major improvement with respect to traditional

capacity planning methods, it is still under active development and not all of the underlying

assumptions and modelling choices are ideal currently. Among the most problematic aspects is

the usage of averaged category load pro�les to approximate the electricity demand of several

categories of unmonitored customer. Average pro�les are typically smoother and show less

stochastic features which are characteristic of real customer demand. On aggregate, this may

lead to the underestimation of peaks and troughs. Furthermore, currently the predictions

of ANDES are deterministic and their uncertainty is not quanti�ed. In previous thesis work

for Alliander by Valckx et al., a Monte Carlo simulation approach based on the random

assignment of measured smart meter pro�les to unmonitored customer has been investigated

[92]. The approach is shown to improve the prediction of peak loads, however this comes at

a signi�cantly increased computational cost. Therefore, it would be desirable to develop a

method which evaluates a probabilistic electricity demand model with improved prediction

accuracy within a reasonable time.

1.2 Thesis Objectives
The general motivation to conduct this research, described in the previous section, can now

be translated to speci�c thesis objectives. The two overarching objectives are to, �rstly, set

up a probabilistic electricity demand model and, secondly, develop a method to e�ciently

estimate certain model output quantities of interest. The demand model should be similar to

the ANDES model in many respects, except for the usage of average category pro�les, which

are undesirably smooth as compared to real demand pro�les. In other words, the demand

model should ideally re�ect the stochastic and volatile nature of actual customer demand as

much as possible. The model output quantities of interest will be called risk metrics in the

following, as they capture the risk for grid assets to exceed operational constraints which are

derived from actual physical limits.

The risk metrics are chosen based on the input information requirements of capacity

planning. Among these, overload forecasts are an indispensable type of analysis feeding

into the capacity planning process which has to �nd a reasonable compromise in light of the

trilemma characterised above. Speci�cally, it is desirable for DSOs to predict in detail which

grid assets are likely to be overloaded in the future and what the likely magnitude of the

overloads is. In accordance with standard criteria used by Alliander, this can be broken down

into three questions, each of which is addressed by a risk metric:

• Question addressed by risk metric 1: For a given grid asset, what is the probability per
time step to exceed a critical power level above the rated capacity? This critical power level

2



Research �estions Section 1.4

lies above the rated power capacity, it is for example 110% for substations which transform

High Voltage (HV) to Medium Voltage (MV).

• Question addressed by risk metric 2: For a given grid asset, what is the expected total
duration of exceeding the rated power capacity per year? For HV/MV substations, for example,

the threshold which should not be exceeded are 87.5 hours.

• Question addressed by risk metric 3: How high can the maximum demand (and how low
can the minimum demand) on a given asset become? There are no standardised asset level

criteria for this question as for the previous two questions, because this question serves

to �nd out how much additional capacity is necessary to prevent or limit overloads to a

desired frequency.

There are, of course, other operational constraints relating to voltage stability, current

ratings and power quality in terms of frequency and harmonics content. The focus on power

ratings and load extremes in terms of power here is due to the fact that the ANDES model has

the same focus. This focus is sensible, since power is the most relevant quantity for long-term

capacity planning. To sum up, the principle objectives of this thesis are to, �rstly, create a

probabilistic demand model and to, secondly, investigate methods which allow to e�ciently

estimate the three detailed model output quantities or risk metrics of interest.

1.3 Research �estions
The following research questions are addressed in this thesis:

1. Which approaches exist to model distribution network power demand on the basis of

limited customer monitoring data?

2. Which methods are able to improve the computational e�ciency of estimating model

output quantities of interest?

3. What assumptions underlie the current ANDES model? Which of them are reasonable

in light of research question (1) and which requirements for the implementation of the

demand model can be derived from the discussion?

4. How do the most promising methods from research question (2) perform in the given

context?

5. How compatible are the Monte Carlo (MC) sampling-based methods developed for the

�rst two model output quantities of interest and extreme value inference for the third

quantity in the given context?

1.4 Notation
As this thesis is tailored for speci�c applications within Alliander, for greater ease of under-

standing the Dutch abbreviations of some speci�c terms are used throughout this report. This

3



Chapter 1 Introduction

primarily concerns the names of assets of di�erent levels in the grid hierarchy. Furthermore,

all non-abbreviated Dutch terms are set in italics. Table 1.1 gives an overview of the terms

with English de�nitions, additionally the terms can be found in the list of acronyms.

Table 1.1: Overview of the Dutch terms and abbreviations used.

Dutch term and abbreviation English de�nition

Onderstation (OS) High-voltage/medium-voltage substation

Middenspanningsruimte (MSR) Medium-voltage/low-voltage substation

Middenspannings-Hoofdleiding (MS-HLD) Medium-voltage cable

Laagspannings-Hoofdleiding (LS-HLD) Low-voltage cable

Standaard Jaarverbruik (SJV) Standard yearly consumption

Alliander is an umbrella company with several divisions. Liander is the division of Alliander

which carries out the actual network operation and management - and is, thus, responsible for

the core DSO activities. The data-science division in turn, within which the ANDES model is

being developed, is directly part of Alliander. Throughout this thesis, for the sake of better

readability, the internal organisational structure is not further di�erentiated and reference is

always made to the umbrella company Alliander.

In terms of mathematical notation, the convention is followed to denote random variables

in capital letters, e.g. - , and speci�c realisation of these random variables in small letters, e.g.

G . Estimators and estimated quantities are denoted with a hat ’ˆ’. Furthermore, vectors are set

in bold, for example { for a speci�c vector and \ for a random vector.

1.5 Thesis Structure
This thesis is structured such that reviewing and re�ecting on the work of others (chapters 2-4)

is separated as much as possible from contributions of this work (chapters 5-8).

The review of previous research and the presentation of methodological foundations in

chapters 2-4 establish the general context in which the speci�c research of this thesis is

embedded. The literature review in chapter 2 serves hereby as the basis for the following two

chapters. Against the backdrop of the demand modelling approaches reviewed in section 2.2,

the assumptions underlying the ANDES model are examined and the demand modelling

approach adopted for this thesis is motivated in chapter 3. In a similar way, the literature

review in section 2.3 sets the stage for chapter 4 by identifying suitable methods to obtain the

risk metrics of interest introduced above. In chapter 4, the general methodological foundations

of the selected methods are then presented.

The chapters 5-8 describe and discuss the speci�c contributions of this thesis. In chapter 5,

the demand model used in this thesis is speci�ed and the implementation process is detailed.

Chapter 6 focuses on the methods developed to evaluate the demand model such that the risk

metrics can be obtained in a computationally e�cient way. In chapter 7, the results of tuning

certain parameters of the methods and regarding their computational e�ciency are presented.

Furthermore, also the risk metric values obtained for various sets of test assets are shown and

4



Thesis Structure Section 1.5

analysed. Finally, in chapter 8, conclusions are drawn and possibilities for further research are

discussed.

5



2 Literature Review

This chapter lays the foundation for the following two chapters by reviewing relevant previous

research. In section 2.1, an overview of power system capacity planning and reliability

evaluation is given, as this is the general context in which the Advanced Net DEcision Support

(ANDES) model and this research fall. Subsequently, some of the literature of more speci�c

relevance is reviewed in order to address the �rst two research questions: Concerning research

question (1), the distribution network demand modelling approaches of other studies are

considered in section 2.2. Concerning research question (2), suitable methods to obtain the

risk metrics of interest in a computationally e�cient way and power system studies in which

these methods have found application are reviewed in section 2.3. As several areas of research

with a large body of literature are studied in this chapter, the following review cannot be

comprehensive. It is rather of exemplary nature and geared towards the most relevant aspects

for this thesis.

2.1 General Overview of Power System Capacity
Planning and Reliability Evaluation

Power system planning is characterised by the frequently con�icting objectives of reliability,

a�ordability and sustainability of the power supply – giving rise to the fundamental trilemma

touched upon already in section 1.1. The trilemma is not only faced by the power sector, but

rather by the overall energy sector. Its importance shows, for example, in the fact that the

World Energy Council publishes an index which ranks countries based on how well they are

able to balance the con�icting dimensions [23].

An intuitive approach to the trilemma from a power system planning perspective is to

formulate it as an optimisation problem whose solution indicates where the optimal trade-o�

between the con�icting objectives might lie. To that end, Aghaei et al. propose a multi-

period multi-objective optimisation method of a generation expansion planning model which

minimises cost and environmental impact while maximising reliability. As a result, the optimal

size, installation time and technology type of new generating units are obtained [2]. Tekiner

et al. formulate a similar generation expansion planning problem also as a multi-period multi-

objective optimisation. In their study Monte Carlo simulation is used to generate component

availability and demand scenarios over which the optimisation using mixed integer linear

programming is carried out. The authors highlight that expansion decisions di�er depending

on the weighting of cost relative to greenhouse gas emission minimisation [89]. The multi-

objective optimisation in [4] also relies on mixed integer linear programming and explicitly

takes demand side management as an option in the planning process into account.

When it comes to power distribution grid planning in the traditional sense, the trade-o�

between reliability and a�ordability is the relevant one, since the environmental impact of

generation is outside the scope of distribution grid planners. Finding a trade-o� in this context

6



General Overview of Power System Capacity Planning and Reliability Evaluation Section 2.1

is the goal of various optimisation approaches concerned with optimal distribution system

capacity and topology reviewed by Khator and Leung in [55]. Next to optimisation approaches,

Khator and Leung also identify heuristic based and arti�cial intelligence approaches which

have a reduced computational burden and attempt to �nd at least near-optimal solutions.

In [56] such a heuristic is used, while the paper also goes beyond the traditional grid planning

scope of the review in [55]. The latter is due to a focus on optimal investment in distributed

generation technologies by distribution companies, adding the generation aspect to the picture

(however, the environmental impact of the distributed generation is not part of the optimisation

heuristic here).

Optimisation studies and other approaches which are concerned with balancing the con-

�icting objectives of overall power system planning rely on assessments of the reliability,

a�ordability and sustainability dimensions. Out of these, the evaluation of power system

reliability is especially challenging and forms a �eld of study on which a large body of literature

has emerged. This literature will be given a closer look in the remainder of this section, as

this thesis aims to contribute to distribution grid reliability assessment methods. It is useful to

begin with some general considerations which provide a structure to the subsequent review.

The classic work of Billinton and Allen [9] serves as the basis for these considerations and

other parts of the generic material in this section.

Power system reliability can be evaluated employing deterministic or probabilistic methods

and criteria. Billinton and Allen draw attention to the fact that while deterministic criteria

may be easier to understand, they fail to re�ect the stochastic nature of component and system

behaviour as well as customer demand. Deterministic approaches can be used to analyse

the impact of certain worst case scenarios, however their potentially very low probability of

occurrence is not accounted for which could lead to an overly conservative system design.

Another fundamental distinction to recognise, highlighted in [9], is that between system

security and system adequacy which are the major subdivisions of system reliability. System

security refers to the system’s ability to cope with disturbances which endanger its functioning.

System adequacy in turn means the system’s ability to meet customer demand within its

operational constraints. The term, therefore, encompasses generation, transmission and

distribution capabilities. System security is concerned with dynamic and transient phenomena,

while system adequacy is centred around static properties [9]. The main focus here lies on

adequacy considerations.

For a quantitative assessment of adequacy, it is common to use various indices (the speci�c

indices used in later chapters of this thesis are called risk metrics) which condense model

outputs or empirical observations into single �gures. Furthermore, following Billinton and

Allen, it is useful to consider three hierarchical levels for which adequacy indices can be

obtained [9]. These hierarchical levels are visualised in �gure 2.1. Even though the strict

unidirectional and centralised hierarchical organisation of power systems is a relic of the past

due to distributed energy resources, the three hierarchical levels are nevertheless useful for a

rough classi�cation of power system models and scopes at which adequacy can be studied.

Some exemplary studies concerned with each of the levels are reviewed in the following

for a general overview of the reliability evaluation literature. The evaluation methods are

of course mentioned hereby, however a review speci�cally focusing on methods and their

usefulness for this thesis can be found in section 2.3. Two main groups of methods are used

in reliability evaluation, which are introduced already at this point: Analytical methods to
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Figure 2.1: Hierarchical levels based on which power system models can be roughly classi�ed.

Source: Billinton and Allen [9].

directly calculate the desired indices and Monte Carlo methods which evaluate a large number

of random experiments to obtain the same indices.

In Hierarchical Level I (HLI) studies, the total system generation is modelled and its

adequacy to satisfy the total system load is assessed [9]. Therefore, the transmission and

distribution networks are disregarded and usually single bus models are considered on this

level. In an early study from 1970, adequacy indices are determined with an analytical approach

considering outage probabilities and load uncertainties for the purpose of generation reserve

planning [36]. More of the early work in probabilistic reliability evaluation is referenced in

[3]. Dragoon and Dvortsov point out that the traditionally used planning reserve margin

will typically result in di�erent levels of reliability in di�erent systems, whereas probabilistic

methods are often computationally expansive. The authors instead propose the ’Z-Method’

which is a simple analytical approach allowing to quickly calculate the e�ect of additional

loads and generating units on system adequacy [31].

Assessing the adequacy of generating systems which include wind energy is a subject of

more recent research. This is due to the energy transition and the system level impact that

large volumes of wind energy can have. For example, an analytical approach using a frequency

and duration analysis based on a Markov model of wind farms is developed in [29]. The

approach allows modelling a wind farm like a multi-state conventional unit which facilitates

the integration with common practices and existing models. In [10], an analytical method and

a state-sampling Monte Carlo approach are compared for a multi-state wind energy conversion

system model. It is shown that both approaches allow a reasonably good generation adequacy

assessment.

Hierarchical Level II (HLII) approaches consider bulk transmission from generators

to loads in composite systems. Thus, transmission network topology is taken into account

here in a simpli�ed manner. Two complementary types of indices can be calculated for HLII

systems, bus or load-point indices and overall system indices [9]. This is, for example, done

8
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in [11] where the e�ect of long-term load forecast uncertainty on both types of reliability

indices is examined. In the study, both types of indices are found to increase with rising

load forecast uncertainty. The authors furthermore highlight the usefulness of bus indices, as

system wide indices can mask certain local phenomena [11]. The e�ects of including wind

power in addition to load forecast uncertainty on composite system adequacy are investigated

in [47]. To this end, the well-being analysis framework is employed which distinguishes the

system states ’healthy’, ’marginal’ and ’at risk’ and attempts to �nd a middle-ground between

probabilistic and deterministic approaches.

For larger composite systems and when studying high outage levels with several failed

components, enormous numbers of outage states have to be evaluated leading to high compu-

tation times. The adequacy equivalent method can circumvent this di�culty if the adequacy of

speci�c parts of the network is of primary interest [58, 98]. Due to the complexity of transient

phenomena, many reliability studies focus on assessing static system adequacy alone. Da Silva

et al. in turn propose a framework for the integrated evaluation of system adequacy and

security in composite systems. The framework distinguishes static and dynamic problems

resulting from a disturbance which eventually allows to obtain composite reliability indices

covering system adequacy and security [25].

The Hierarchical Level III (HLIII) comprises the entire power system with generation

resources, as well as the transmission and distribution grids. Evidently, studying all major

elements of a power system at once can result in very large and complex problems. Therefore,

in practice HLIII studies often analyse the distribution grid only, but may use HLII load point

indices as input [9]. HLIII load point indices re�ect the adequacy of individual customers and

thus the quality of service which end customers experience. In [7], an analytical approach to

assess HLIII customer indices using HLII indices as input to important nodes of the distribution

network is shown. The approach also allows to distinguish the relative contributions of the

composite system (bulk generation and transmission) and the distribution grid to HLIII overall

system indices. It is found that failures in the distribution grid contribute with 90-94% the

dominant share to the system average frequency and duration of service interruption [7].

The impact of distributed energy resources on adequacy is among the topics investigated in

more recent HLIII studies. A Monte Carlo approach to evaluate the adequacy of a distribution

grid with customer-controlled distributed generation units is proposed in [44]. The study �nds

that distributed generation can improve the distribution system adequacy and thus be a viable

alternative to substation expansion. In [19], a reliability model for distributed generators is

developed using an analytical scenario reduction technique. Furthermore, Chen et al. address

new issues in adequacy assessment relating to protection strategies, supply restoration and

islanding operation which arise due to the integration of distributed generators [19]. Electric

Vehicles (EVs) are another distributed energy resource with a potentially signi�cant impact on

distribution system adequacy. This impact is studied in [88] for plug-in hybrid EVs speci�cally.

The authors present a Monte Carlo simulation approach with a load-dependant transformer

ageing model to obtain a time-varying transformer failure rate. Furthermore, a business model

is proposed which incentivises customers to charge their vehicles such that distribution system

adequacy is improved [88].

At the end of the general overview of power system capacity planning and reliability

evaluation in this section, it is possible to determine where the ANDES model is situated in

this context: ANDES does not deal with the overall trade-o�s faced in capacity planning, e.g.

9
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through an optimisation procedure as in the studies discussed at the beginning of this section.

Rather, it falls within the domain of reliability evaluation and its results are valuable inputs

to the process of balancing the con�icting objectives of capacity planning. More speci�cally,

the ANDES model is an HLIII adequacy assessment model. However, the distribution grid

is modelled as a separate entity without considering the processes on the HLII to assess

transmission and generation adequacy. This focus is of course sensible, since as a Distribution

System Operator (DSO) Alliander is concerned with the adequacy of its distribution capacity.

ANDES can thus be characterised as a distribution network demand model.
1

For this reason,

the next section focuses speci�cally on literature relating to distribution network demand

modelling.

2.2 Distribution Network Demand Forecasting and
Modelling Approaches

Historically, peak load demand forecasts for distribution grid assets were often the primary

ingredient of adequacy analyses and the subsequent capacity planning processes of DSOs.

Thus, the general distribution network demand modelling problem was reduced to modelling

peak demand only. According to McQueen et al., the maximum yearly load demand of a group

of customers is often approximated using linear models and empirical observation [65]. The

study remarks that, especially for residential customers, it is common practice to use the

After Diversity Maximum Demand (ADMD) approach which takes into account the diversity

behaviour of customer groups. The term diversity refers here to the phenomenon that the

maximum demand of a group of customers is likely to be lower than the sum of the maximum

demands of all individual customers because the latter are unlikely to all occur at the same

time. A diversity factor is used to model that for smaller groups of customers the degree

of coincidence is higher than for larger groups [65]. The ADMD approach, as described by

McQueen et al., relies on measurements of the maximum yearly demand on assets and an

empirically calibrated constant used in calculating the diversity factor.

Within Alliander, peak load demand forecasts also constitute the starting point of the

traditional grid capacity planning process. As described by Sande et al., the forecasts are

based on three types of inputs: The peak load of the previous year, expected additional

demand of future spatial developments and a constant percentage of overall demand growth

[81]. These peak load forecasts are, however, only made for Onderstations (OSs) which are

at the top level in the asset hierarchy. For the underlying grid with lower voltage levels,

comprising of Middenspannings-Hoofdleidingen (MS-HLDen), Middenspanningsruimtes (MSRs)

and Laagspannings-Hoofdleidingen (LS-HLDen), only the present situation is assessed. The

study details further that based on the peak load forecasts and present-day assessments,

bottlenecks are identi�ed and capacity expansion investments are decided on in a risk-based

asset management scheme. The risk metric is obtained as the product of the occurrence

probability and the impact of a bottleneck [81].

The ADMD method, the growth extrapolation approach of Alliander as well as similar

1 To be precise: Solar Photovoltaic (PV) generation of individual customers is modelled through negative values in

the employed load pro�les, distribution network net-demand model might be the more accurate term therefore.

Nevertheless, the purpose remains distribution capacity adequacy assessment only.
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traditional peak demand forecasting methods su�er from a common issue: They were conceived

at a time of more constant developments and may not produce su�ciently accurate forecasts

anymore, as fundamental changes in the energy landscape are underway [38]. The rapid uptake

of sustainable energy technologies as part of the energy transition leads to new dynamics

which the traditional methods, based on extrapolating present-day measurements with linear

models, can fail to capture. Speci�cally, the decentralised nature of many sustainable energy

technologies, impacting the lowest grid levels, poses di�culties for Alliander’s traditional grid

planning process which is centred on changes at the OS level [81]. Thus, there is a clear need

for new forecasting approaches which allow a more reliable look into the near to longer-term

future and go beyond forecasting peak demand alone.

When responding to this need by building an advanced distribution network demand model,

it is important to consider that Low Voltage (LV) customers often exhibit higher volatility and

random patterns which deviate more from the typical behaviour of aggregated demand on

higher voltage levels [38]. Naturally, measured load pro�les of individual customers already

contain these desirable features and are, therefore, very well suited as model inputs or for

model evaluation. Hoogsteen et al., for example, use the outcomes of a real world stress test

on a network of 83 households, whose power consumption is measured every second, to

benchmark simulation results [46]. However, as the authors in [38] point out, DSOs typically

have access to half-hourly load measurements of larger, commercial customers, while for small

customers measurements with high time resolution are still limited and expensive, despite the

ongoing roll-out of smart meters. Alliander is no exception here, the share of unmeasured

customers in the total energy consumed at the MSR level lies at approximately 80% [92]. These

data limitations clearly show the necessity of suitable modelling techniques to simulate LV

customer demand.

Several approaches which address this challenge can be found in the literature. As larger,

commercial customers are often measured and tend to have less volatile load patterns, for the

remainder of this section the focus lies mainly on modelling the more complex residential

customer demand. Also does this narrower focus not limit the generality of the review

substantially, as some of the modelling approaches for residential customers can be transferred

to larger, commercial customers (as is done in the ANDES model, see the ’characteristic

household demand pro�les’ approach below and section 3.1).

Whereas Swan and Ugursal provide a general review of residential energy consumption

modelling [87], Giasemidis et al. review more speci�cally residential electricity demand mod-

elling techniques [38]. Three major groups of modelling techniques, highlighted in bold below,

can be identi�ed whose core principles overlap considerably in both publications and are

particularly relevant within the context of this thesis.
2

In the general review in [87], these three

groups of techniques are classi�ed as engineering methods which explicitly model energy

consumption of end-uses on the basis of power ratings, appliance usage and physical laws.

However, the scope of general residential energy consumption modelling is too wide for the

given context. Therefore, in the following the modelling principles pertaining to the three

groups will be considered in residential electricity demand modelling approaches employing

limited smart meter measurements as in [38].

2 The other groups of the proposed classi�cation in [87] are not as relevant in this context, since they either take

estimates of the total energy consumption of the residential sector as input (top-down models) or attribute measured

total building energy consumption to particular end-uses through regression techniques (bottom-up models with

statistical methods).
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At one extreme top-down models aim to �nd relations between energy consumption

and characteristics of the housing sector as a whole, at the other extreme bottom-up models

calculate the sectoral energy consumption by aggregating the energy consumption of individual

appliances or buildings [87]. The smallest sensible unit from which a bottom-up model can

be constructed is the individual appliance – by aggregating appliance demand pro�les,
household demand and eventually residential sector electricity demand can be obtained.

3
An

example of such a model can be found in [78], where switch-on events of appliances result from

a stochastic simulation based on active occupancy patterns and daily activity pro�les which

represent the likelihood of occupants to engage in certain activities using certain appliances

at di�erent times. The active occupancy modelling and the daily activity pro�les rely on

time use survey data. From switch-on events and power use characteristics of appliances,

the overall building power consumption is obtained. A di�erent approach to modelling the

activity patterns of occupants can be found in [67], where a heterogeneous Markov chain with

transition probabilities calibrated with time use survey data is employed. Furthermore, it is

notable that in the study heating, ventilation and cooling appliances are modelled based on

physical relations, making the model also a good example of an engineering method approach.

A similar Markov chain based approach has been developed by Nijhuis et al. for research in

cooperation with Alliander, respectively employing a Markov chain to model occupancy and

appliance switching [71]. A focus of the work is the modelling of scenarios to enable future

household load analysis. Overall, appliance demand pro�le models allow for a high degree of

�exibility and detail, which however comes at the cost of model complexity and high input

data requirements [38, 67].

The next higher level above the individual appliance, which can be used as the basic unit

of a bottom-up model, is the household or single customer level. The general residential

energy consumption review in [87] suggests it could be useful here to identify, model and

scale up ’archetypes’ of households to obtain an overall representation of the residential sector.

In the more speci�c context of electricity demand modelling using limited monitoring data,

this translates to the common approach of identifying characteristic household demand
pro�les and assigning them to unmeasured customers based on socio-economic or other

household attributes. Various techniques which allow to uncover structure and cluster smart

meter data lend itself to the �rst part of the task. Using principal component analysis, it

was found in [1] that within individual household pro�les the combination of weather and

day speci�c baselines, and patterns of habitual behaviour can explain approximately 80% of

electricity use. Also, Fourier transforms and Gaussian processes have proven to be suitable for

the characterisation of residential demand pro�les [64]. Using self organising maps [62] and

self organising maps in combination with k-means and hierarchical clustering [77], groups

of households with characteristic patterns in the respective demand pro�les were identi�ed.

Thus, several studies show the principle feasibility of creating household groups with similar

energy use behaviour and corresponding characteristic demand pro�les.

The second part of the task, assigning the created characteristic pro�les of household

clusters to unmeasured customers, has also been investigated. Correlations between elec-

tricity consumption and socio-economic variables are found in [63]. Particularly building

type, the number of bedrooms and household composition signi�cantly in�uence electricity

consumption within the scope of the study. However, the parameters to characterise electri-

3 In the classi�cation of [87], this type of model falls most closely in the ’distributions’ group.
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city consumption (total electricity consumption, maximum demand, load factor and time of

maximum demand) are six-month aggregates or averages and, as such, do not necessarily

indicate how the studied socio-economic variables correlate with time-resolved load patterns.

Furthermore, studies have shown that the variability in residential energy demand cannot be

fully explained by infrastructural di�erences (see [66] and its references). Or, in other words,

"families living in identically-designed homes use strikingly di�erent amounts of energy" [66].

Another study �nds that a typical socio-demographic classi�cation used by energy companies

matches only poorly with the energy behavioural clusters identi�ed in the same study [41].

Overall, while the studies reviewed here may be too few to draw de�nite conclusions, they do

suggest that assigning load pro�les to unmeasured customers is a complex task and that it

is worthwhile to verify the validity of the assignment. In addition to this challenging aspect,

another important concern is that using averaged characteristic pro�les for household groups

reduces volatility and smoothes load extremes as well as other desired stochastic features of

actual household demand pro�les [38]. Since smoother individual pro�les are likely to also

reduce peaks and troughs on aggregate, this may lead to an underestimation of the extent to

which a network is overloaded and, thus, limit the signi�cance of results.

Remaining at the household level as the basic unit of a bottom-up model, Monte Carlo
simulation approaches aim to address the two described drawbacks of approaches which rely

on averaged, characteristic pro�les. Termed ’sample’ approaches in the more general review

of [87], the core idea of the technique is to repeatedly and randomly sample model inputs

from an actual or modelled distribution. This allows to re�ect the uncertainty in model inputs,

e.g. due to the variability in household attributes or unknown future developments, and to

estimate the possible range of model outputs. For example in [68], low carbon technologies

are randomly allocated to households in a LV network before running a power �ow analysis

to assess the possible range of impacts on energy losses, voltages and thermal loading.

In the more speci�c context relevant here, a Monte Carlo approach can consist in many

repetitions of randomly assigning measured electricity consumption or generation pro�les from

a large pool to unmeasured customers. Through randomly sampling residential consumption

pro�les in combination with either PV pro�les [69] or EV charging pro�les [70], the range

of potential impacts of these technologies on LV distribution networks has been assessed.

Altogether, such Monte Carlo based approaches preserve the natural volatility of residential

customer demand, since directly measured pro�les are used. Also, when assigning consumption

pro�les randomly from an overall pool without any grouping, the di�culties to link energy

behaviour to other household characteristics can be circumvented. However, the randomness

of the assignments may also lead to an overestimation of volatility and network impacts, since

the speci�cs of real households – which bound the stochasticity to some extent – are not

considered [38]. Furthermore, the large number of repetitions necessary for meaningful results

leads to an increased computational load.

Beyond the outlined three major approaches to the challenge of modelling residential

electricity demand using limited smart meter data, naturally also approaches exist which

investigate di�erent techniques. Giasemidis et al. include, next to the household demand

pro�les, also the higher level of substation pro�les in the set of building blocks of their model.

In the framework of the study, ’buddy’ pro�les (measured smart meter pro�les) are assigned to

unmeasured customers in an optimisation procedure constrained by the mean daily demands

of customers and measured aggregate demand on the substation. A genetic algorithm is used
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for the optimisation procedure which imitates the principles of natural selection [38]. The

authors conclude that their method performs better than comparable Monte Carlo approaches,

however it requires substation monitoring data (preferably also from the MSR level and not

only the OS level) which may not be available for entire distribution networks.

2.3 Review of Methods to Compute the Risk Metrics of
Interest

The purpose of this section is to review potentially suitable methods for the e�cient com-

putation of the three risk metrics introduced in chapter 1. After the more narrow focus on

distribution system demand modelling in the previous section, the focus in identifying appro-

priate methods to achieve the objectives of this thesis is widened here to not only consider

studies concerned with distribution systems. The reason for this is that, despite the di�erences

in the hierarchical levels described in section 2.1, the fundamental structure of adequacy

assessment problems remains similar regardless of the level. In fact, the methods touched

upon are even more generally applicable and have been used in a range of disciplines from

engineering, natural science, economics and other �elds. However, to remain close to the

matter of interest in this thesis, the studies reviewed here are mostly concerned with power

system applications.

2.3.1 Methods for Risk Metrics 1 and 2

The �rst two risk metrics assess the adequacy of currently installed distribution grid capacity.

As such, they indicate which assets are at risk of being congested – in the present or the future,

depending on whether the current baseload or future scenarios are considered. To reiterate,

the questions addressed by the �rst two risk metrics are: (1) For a given grid asset, what is
the probability per time step to exceed a critical power level above the rated capacity? (2) For a
given grid asset, what is the expected duration of exceeding the rated power capacity per year?
The risk metrics derived from the two questions are very similar, as discussed in detail in

subsection 5.3.2. For the present-day baseload on assets modelled in this thesis, but also for

the forecasted load of future years, exceeding the rated capacity or an even higher critical

power level does not occur frequently. This suggests that methods to compute rare event

probabilities could be well suited to compute the �rst two risk metrics. For this reason, the

focus lies on these methods in this subsection.

The distinction between analytical methods and Monte Carlo methods in reliability eval-

uation has already been introduced in the general review of section 2.1. In analytical ap-
proaches, the system of interest is represented by a mathematical model whose equations are

transformed or solved such that the desired reliability indices can be calculated [8]. Common

analytical techniques used in reliability evaluation of engineering systems – therefore also

beyond the speci�c context of power system reliability – are described by Billinton and Allan

in [8] and comprise among others: the use of combinatorics; modelling the system as a net-

work of components which can be connected in series, in parallel or in more complex ways;

modelling the system with probability distributions; the use of Markov chains and processes;

and frequency and duration techniques. Also the �rst and second order reliability methods
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reviewed in [75], which are used in structural reliability to compute the failure probability

of a structure, fall in this category. Essentially, the latter methods consist in Taylor series

approximations of so called limit state functions, which divide safe from failure regions in the

state space [76].

Billinton and Allan highlight the advantages and disadvantages of analytical approaches

with respect to Monte Carlo techniques. An advantage of analytical approaches is the fre-

quently much smaller computation time required to solve a model. One disadvantage is that

analytical methods usually output expected values only (and no error quanti�cation, or even

entire probability densities). A second disadvantage consists in the simpli�cations that ana-

lytical models often rely on and which may limit the transferability of conclusions drawn

from the model to the modelled real system [8]. The latter drawback considerably hampers

the application of an analytical solution method to either of the three demand modelling

approaches from section 2.2 based on aggregating simulated or measured customer demand

pro�les. It is not evident what form an analytical model could take that adequately captures

the stochastic features of time-resolved simulated or measured demand pro�les. If the demand

distributions or other statistical properties of the demand pro�les were used in an analytical

model, the time information would be lost and it is likely that an over-simpli�cation would

result. Therefore, analytical approaches are ruled out at this point and the remainder of the

subsection focuses on Monte Carlo approaches.

While analytical approaches to reliability evaluation strive for direct mathematical solu-

tions of a model, in Monte Carlo approaches reliability indices are estimated by repeatedly

simulating the random behaviour of a system. For each simulated random experiment, it is

checked whether a failure event occurs. Then, essentially by counting the number of occur-

rences of an event, the various reliability indices can be estimated [8]. Formally speaking, this

is commonly achieved by estimating the expectation of a simulation output variable [79]. More

generally, Monte Carlo methods are a technique to compute integrals and rely on randomly

sampling from a speci�c distribution to estimate quantities of interest [13].

The abovementioned disadvantage of Monte Carlo methods of a high computational e�ort

becomes especially challenging when rare events are to be estimated using simple random

sampling, also called Crude Monte Carlo (CMC). The reason for this is that a very large

number of samples is needed to produce the rare events and an even larger number to obtain a

desired level of accuracy for the estimates [13]. A common way to obtain rare event estimates

more e�ciently is through variance reduction techniques. As presented in greater detail

in ??, the accuracy of Monte Carlo estimates directly depends on the variance of the output

quantities calculated for each random experiment. The general idea of variance reduction

techniques is then, as the name says, to reduce this variance by exploiting knowledge of the

model and its structure to reach the desired accuracy of estimates faster [79]. In the following

some of the common variance reduction techniques are reviewed in rather general terms and

illustrated with various power system studies in which they �nd application. Many of the

general descriptions of the methods are based on Rubinstein and Kroese [79].

A positive or negative correlation between two random variables is used to obtain a

variance reduction in the common and antithetic variables and the control variables
methods.

4
A positive covariance between the two random variables is needed in the common

4 In some publications the same techniques are called the common and antithetic variates and control variates
methods. Here the terminology of Rubinstein and Kroese [79] is followed.
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variables method to achieve variance reduction, while the antithetic variables method relies on

a negative covariance. For the control variables technique a control variable is employed which

is correlated with the main variable of interest and for which the expectation is known [79].

Antithetic variables are used in [21] to achieve a variance reduction in a study of composite

power system reliability with sequential Monte Carlo simulation. The core principle here is

to use pairs of complementary random variables to obtain a negative correlation between

two simulated experiments. In [12], composite system adequacy is studied with a sequential

Monte Carlo simulation approach as well, while in addition to antithetic variables also control

variables are investigated. In the study, HLI indices with a known expectation are used as

control variables to achieve a variance reduction in obtaining the same indices for HLII.

Conditional Monte Carlo and strati�ed sampling are two closely related methods.

The conditional Monte Carlo method is applicable if it is possible to analytically compute

the expectation of the sample output quantity of interest conditional on another random

variable. By sampling this other random variable and using it to compute the conditional

expectation of the actual output quantity of interest, the variance in the latter is reduced.

In strati�ed sampling, the sample space is partitioned into disjoint subregions called strata

and a prescribed number of samples is taken from each stratum [79]. The variance reduction

principle underlying strati�ed sampling is to prevent the ’clumping’ of samples in the sample

space. This is sensible because samples which are close to each other do not add much new

information in the estimation process [52].

Latin hypercube sampling is a particular strati�ed sampling technique applicable to

multidimensional distributions. The approach consists in dividing the sample space such that

strata of equal marginal probability are obtained for each input variable. One sample is taken

from each stratum which assures that all portions of the distributions of input variables are

well represented [61]. Furthermore, by random shu�ing it is assured that the input variables

are uncorrelated [22]. Latin hypercube sampling is applied in [83] on the two random input

variables renewable generation and system load to sample system states for which reliability

indices are calculated. The method is found to be as accurate as CMC, while achieving the

desired variance reduction resulting in less computation time. Composite system reliability

is investigated with a sequential simulation approach in [84]. Latin hypercube sampling is

hereby employed to obtain the time duration of each system state resulting in output time

sequences which are more representative of the system’s sample space compared to sequences

obtained with CMC.

The multilevel Monte Carlo method is suitable for problems that can be approached

with models of di�erent hierarchical levels, which allow estimating model output quantities of

interest with rising precision. By means of a telescopic sum, the quantity of interest can be de-

composed into a rough estimate to which re�nements with increasing precision are added [90].

Computational e�ort can be saved compared to CMC because the models producing coarser

estimates require less computation time, while the number of samples necessary decreases

with increasing level. Therefore, most of the samples are taken on the lower, computationally

cheaper levels, whereas on the higher, computationally expansive levels only few samples are

needed [48]. Huda and Živanović demonstrate the e�ectiveness of the approach in computing

distribution grid reliability indices, where failure and repair processes are modelled through

stochastic di�erential equations. The hierarchical levels consist in approximations of these

stochastic di�erential equations on increasingly �ner discretisation grids [48]. Tindemans
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and Strbac apply the multilevel Monte Carlo methods to two exemplary adequacy assessment

problems: Firstly, a composite HLII system with generation and transmission facilities, which

is simpli�ed to a single bus HLI system considering generation only to obtain a coarse lower

level. Secondly, a system with storage units where the levels consist in storage dispatch models

of increasing computational complexity [90].

The idea of Importance Sampling (IS) is to choose a sampling or biasing distribution

which favours important regions in the state space [79]. Thus, the probabilities of drawing

samples are changed such that more samples come from these regions of interest. In the

context of rare event estimation, this results in producing the rare events more frequently

as compared to random sampling. Through importance weights, also called likelihood ratio,

each sample’s contribution is weighted such that the overall estimate remains unbiased [13].

The increased frequency of rare events in combination with the down-weighting of their

contribution reduces the variance among individual samples, resulting in the desired increase

in estimation e�ciency.

An early study in which IS �nds application is [24], where the reliability of the Brazilian

hydro-dominated composite system is assessed. System states in terms of outages, load levels

and state of the hydrological reservoirs are sampled therein. The results of a subsequent power

�ow analysis and load shedding minimisation are used to calculate reliability indices. IS is

applied by biasing the sampling towards those states which lead to load shedding with higher

probability. Composite system reliability is also assessed in [72], where system failure rates in

terms of customer disconnection are estimated using IS. The sampling scheme is distorted to

favour extreme conditions where the loss of supply becomes more likely by introducing bias

factors to increase line and generator failure rates.

For IS to be e�ective, choosing an appropriate importance sampling distribution for a

given problem is crucial. Biondini highlights that choosing a bad sampling distribution can

aggravate the problem and increase the variance of the IS estimator with respect to the CMC

estimator [13]. Exploiting the knowledge regarding the structure of a speci�c problem can

help in identifying a suitable importance sampling distribution. However, sometimes such

knowledge is not available or it is desirable to use a more formalised and self-tuning approach.

The Cross-Entropy (CE) method is such an approach and has gained increasing popularity

in recent years. The general idea of the method is to minimise the Kullback–Leibler divergence

between the (unknown) optimal importance sampling distribution and the actually employed

sampling distribution, while using sampling to estimate a solution to the minimisation problem

[79].

Da Silva et al. study generation capacity reliability evaluation in a single node HLI model

using the CE method. The unavailability of generating stations with independent units is

modelled using a binomial distribution. The CE method is then used to automatically tune

the unit unavailabilities, leading to a distortion of state space probabilities that makes genera-

tion inadequacy more frequent [26]. CE-based IS is applied to study composite HLII system

reliability in [91]. As in [26], the unavailabilities of generators are modelled using a binomial

distribution and are automatically tuned. The same principle is applied to transmission lines. In

addition, IS sampling is also performed for load states employing a truncated Gaussian density

whose parameters are CE-optimised. An extension of the CE method is proposed in [15],

which can take the correlation between random variables into account and uses a multinomial

distribution to model multi-state conventional units and wind turbines. The approach allows
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to counteract the e�ciency loss of conventional CE-optimised IS that occurs when random

variables are correlated. The e�ectiveness of the approach is demonstrated for a composite

system with wind generation where wind speeds and loads are highly correlated [15].

For the sake of completeness, it should be mentioned that there are other variance re-

duction techniques and related methods with a more general purpose, which are however

applicable to di�erent kinds of problems than the problem in the focus here. Among these

are sequential Monte Carlo as well as Markov chain Monte Carlo methods. Sequential

Monte Carlo methods (to be distinguished from time-sequential Monte Carlo simulation),

which also comprise the sequential variant of IS, are useful in Bayesian statistics for sequen-

tially updating posterior distributions, as soon as new information arrives [30]. Markov chain

Monte Carlo techniques allow approximate sampling from arbitrary distributions which do not

have to be normalised. This is particularly useful for random variables with possibly nonlinear

interdependencies [79]. As both classes of methods are not of direct relevance for this thesis,

they are not reviewed more closely here.

After the overview of potentially suitable methods for the computation of metrics 1 and 2

in this subsection, it is now possible to compare and select those which appear most promising

for further investigation. Analytical approaches were ruled out already above as not applicable

to the type of model in consideration, Monte Carlo methods are thus the logical choice.

Furthermore, due to the rare event character of the �rst two metrics, it seems sensible to make

use of a variance reduction technique. Rubinstein and Kroese highlight the greater variance

reduction potential of IS as compared to the other variance reduction techniques reviewed

above (excluding sequential Monte Carlo and Markov chain Monte Carlo): IS can lead to

"dramatic" variance reduction, sometimes in the order of millions, especially when estimating

rare event probabilities. With the other techniques typically an up to 10-fold variance reduction

can be achieved [79]. Multilevel Monte Carlo may be an exception here, as Tindemans and

Strbac �nd a more than 2000-fold speedup in one case using the technique [90].

For the three distribution network demand modelling approaches based on customer

demand pro�les identi�ed in section 2.2, it is not evident how a hierarchy of models with one

or several computationally cheaper coarse models could be constructed. This suggests that

multilevel Monte Carlo is not a natural choice here. IS, in turn, appears very promising for the

problem at hand, due to its suitability for the estimation of rare event probabilities and its big

variance reduction potential. Furthermore, considering the heterogeneity of distribution grid

assets, the possibility of automating the search for a suitable importance sampling distribution

with the CE method seems very relevant. For these reasons, IS and the CE method are selected

for further investigation in this thesis.

2.3.2 Methods for Risk Metric 3

While the �rst two risk metrics indicate which assets are at risk of being a�ected by congestion

problems in the present or the future, the purpose of the third risk metric is to determine how

much asset capacity would be necessary to resolve potential congestion problems. To this

end, the question addressed by the third risk metric is: How high can the maximum demand
(and how low can the minimum demand) on a given asset become? The nature of this question

is rather di�erent than that of the questions relating to other risk metrics. It does not lend

itself to be formulated as a typical Monte Carlo problem of estimating the expectation of a
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simulation output. This is due to the focus on the very extremes of the demand distribution. A

suitable method which has the relevant focus, devised to examine distribution extremes, is

reviewed in this section.

Peak load demand forecasts are an important type of analysis feeding into the capacity

planning processes of DSOs. As described at the beginning of section 2.2, often linear models

calibrated with empirical observation were or are still used for this purpose, e.g. the ADMD

method or the peak demand growth extrapolation approach traditionally used within Alliander.

While these methods may work su�ciently well in practice under certain conditions (or at

least they did in the more predictable pre-energy transition world of the past), the more

mathematically sound and general approach of dealing with distribution maxima and minima

is Extreme Value Theory (EVT). Jacob et al. underline the analogous character of EVT and

classical central limit theory: While the latter is concerned with the behaviour of ’normal’

events in the asymptotic limit of large sample sizes, EVT is concerned with the behaviour of

’extreme’ events in the asymptotic limit. Being an asymptotic theory, the objective of EVT is

to extrapolate beyond the observations in a sample to make predictions about extreme events

which may not have been observed before [51]. There are two main methods of inferring

extreme characteristics of the overall population from a given sample – the Block Maxima (BM)

and the Peak Over Threshold (POT) method. The BM approach uses the maxima or minima

of large, equally long blocks of observations for inference. The POT technique performs

inference based on all observations which exceed a high threshold. Depending on the method,

the parameters of two di�erent families of distributions are estimated, the Generalised Extreme

Value (GEV) distribution for the BM method and the Generalised Pareto Distribution (GPD) for

the POT method [51]. Being a general method, EVT has found application in many domains,

including the analysis of power systems. In the following, some studies which fall in the latter

domain are reviewed.

Belzer and Kellogg use EVT for an analysis of uncertainty in peak load forecasts. To this

end, a daily peak load model is empirically calibrated and historical seasonal peak loads are

simulated. These seasonal peak loads are then used to estimate the parameters of the GEV

distribution, from which the peak load magnitudes corresponding to various probabilities

of exceedance are obtained [6]. Wilson and Zachary demonstrate in [97] how the POT

method can be used to estimate the demand-net-of wind distribution, which is subsequently

employed in a HLI capacity adequacy assessment to obtain reliability indices. The motivation

to model the demand-net-of wind distribution is that there may be a correlation between

demand and wind which should be accounted for. EVT is advantageous in this context, as

observations of demand and wind can be used directly without any further assumptions

regarding their interdependence. The EVT-based approach is found to perform better than

two alternative approaches, based on either the empirical demand-net-of-wind distribution or

on the assumption of independence between wind and demand [97].

Usually, the assumption is made that the process generating the observations to be analysed

with EVT is stationary [51]. However, it is also possible to consider the non-stationary case

and allow the parameters of the extreme value distributions to change. In [20], power loss

during blackouts is modelled with a non-stationary GEV approach. The authors argue that

the approach is sensible because stationarity should not be assumed when considering the

long-term evolution of power grids. To introduce the non-stationarity, the GEV parameters

are allowed to vary linearly with time. For the case study China, it is found that the scale
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parameter of the GEV distribution of the yearly maximum power loss changes signi�cantly in

the period 1981-2011 [20]. Substation annual maximum demand is forecasted in [59], similarly

employing a non-stationary GEV. More speci�cally, the in�uence of customer count, average

demand and installed PV capacity is accounted for through a Poisson point process model

which is linked to the non-stationary GEV. The advantage of the approach is that energy

consumption trends are integrated into the maximum demand forecasts, while usually both

quantities are forecasted separately by utilities which can lead to inconsistent results [59].

To sum up, in contrast to metrics 1 and 2 where in principle various methods could be

applied, for metric 3 the options are fewer and EVT, being a well developed and mathematically

sound theory, is the method of choice. However, within the framework of EVT, the question

remains whether the BM or the POT approach is more suitable in the context of this thesis.

This question is addressed in chapter 4, after the relative merits of each approach have been

considered in more detail.

2.4 Conclusion
In section 2.1 of this chapter, a general overview of the power system reliability literature was

given. Exemplary studies were reviewed for each of the three hierarchical levels at which

power system reliability can be evaluated. The general overview allowed classifying ANDES as

an HLIII adequacy assessment model and, more speci�cally, as a distribution network demand

model, since the distribution grid is modelled as a separate entity without considering HLII

generation or transmission. Evidently, this is a sensible modelling scope for a DSO.

Due to this scope of ANDES, the distribution network demand forecasting and modelling

literature was given a closer look in section 2.2. Hereby, three major groups of demand model-

ling approaches relying on limited smart meter measurement data as input were identi�ed:

appliance demand pro�les, characteristic household demand pro�les and Monte Carlo simula-

tion approaches. The thread of distribution network demand modelling is picked up again in

the following chapter 3, where the ANDES model is discussed in detail. On the basis of the

reviewed groups of demand modelling approaches, an appropriate approach for this thesis is

then identi�ed.

Finally, section 2.3 focused on potentially suitable methods to obtain the risk metrics in the

focus of this work. Exemplary studies from power system reliability and related �elds were

reviewed to illustrate how the discussed methods were applied previously in that context. IS,

potentially in combination with the CE method, was found most promising for the e�cient

computation of metrics 1 and 2. For metric 3, EVT is the relevant approach from the toolbox

of statistics. These methods will be presented and speci�ed in more detail in chapter 4.
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3 The ANDES Model and
Demand Model Requirements

The purpose of this chapter is to describe and discuss the Advanced Net DEcision Support

(ANDES) model in detail, in order to then specify requirements for the demand modelling

approach to be adopted in this thesis. The description of ANDES in section 3.1 is broken

down into a description of the input data used (subsection 3.1.1) and the model’s work�ow

(subsection 3.1.2), based on which the assumptions underlying the model are uncovered (sub-

section 3.1.3). In section 3.2, these modelling assumptions are �rstly discussed (subsection 3.2.1).

Subsequently, requirements for the demand modelling approach are speci�ed (subsection 3.2.2).

The threads of this chapter are picked up in chapter 5, where the requirements speci�ed here

form the basis of developing and implementing the demand model.

3.1 The ANDES Model
The ANDES model is a detailed and complex application in continuous development, covering

the entire Alliander grid with approximately 3 million customers and having a forecasting

horizon of 40 years. In a nutshell, the working principle of the model is to assign load pro�les

to all customers and to sum them up in order to obtain yearly load forecasts for each grid asset.

Possible futures are modelled in �ve technology di�usion scenarios and taking into account

current spatial planning information. To assess the impact of these possible futures on the

Alliander grid, technology and spatial planning load pro�les are added to baseload pro�les

which model the present.

Providing a comprehensive description of all aspects of the ANDES model would not serve

the purpose of this research. The aim of the following description is therefore rather to give a

condensed overview of the model’s input data and work�ow which will subsequently allow

to consider the key modelling assumptions.
5

The ANDES version which the description and

the demand model developed for this thesis in chapter 5 refer to, is ANDES release 1.8 from

January 2020 (before the year transition to 2019 data).

3.1.1 Input Data

Before looking at the model work�ow, it is useful to consider the various types of input data

employed. These are network topology data, spatial planning (planologie) data and strategic

analysis scenarios as well as various sets of electrical load pro�les. The load pro�les contain

quarter-hourly average power consumption values for one year, which corresponds to time

series with 35,040 points. The main distinction to make here is between load pro�les used to

construct the baseload of the present and load pro�les used to forecast the future. Note that

baseload refers here to the entire load of the present to which technology load pro�les are

5 Large parts of the description rely on internal Alliander documents which cannot be cited. Where available,

publications are used.
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added for modelling the future. Therefore, within the ANDES model documentation and this

thesis the term is used in a slightly di�erent sense than the usual sense of a constant load level

which normally is not undercut. In the following, the employed inputs are described more

closely:

• Network topology data specifying which customers are connected to which assets of

di�erent levels in the asset hierarchy and thus allowing to recreate the topology of the

Alliander grid. A major part of the network has a radial topology, while a smaller part

of the network is meshed. In the latter case, the load of customers connected to multiple

assets of the same level is distributed evenly between them.

• Present – Load pro�les to create the baseload of the present:

1. Telemetry data: For many large consumers, telemetry data is available which records

quarter-hourly averaged power measurements. Whenever a telemetry pro�le with

direct measurements of a large customer’s power consumption is available, the customer

is assigned that pro�le.

2. Pro�les based on KvK segment membership: Dutch businesses can be classi�ed

according to the Standard Industrial Classi�cation (Standaard Bedrijfsindeling) of the

Netherlands Chamber of Commerce, Kamer van Koophandel (KvK) [18]. On a rather

high level of aggregation 20 KvK segments can be identi�ed representing major in-

dustrial divisions. For each KvK segment, the available telemetry data of the segment

is averaged and normalised to obtain KvK segment pro�les. If no telemetry data is

available for a large consumer, it is checked whether the consumer can be assigned

to a KvK segment. If that is possible, the normalised KvK pro�les are scaled with

the consumer’s known Standaard Jaarverbruik (SJV), to approximate the consumer’s

unknown load pro�le.

3. Smart meter data: For a fraction of small customers, smart meter data is available

which, similarly to the telemetry data, records quarter-hourly averaged power meas-

urements. Whenever smart meter data is available, it is directly used for the baseload

forecast of the respective small customer.

4. Pro�les based on smart meter data clustering: For the majority of small custom-

ers, smart meter measurements are not available. To cope with the lack of data, the

available smart meter data is clustered with an unsupervised learning algorithm and for

each cluster normalised average pro�les are calculated. A number of socio-economic

characteristics of the customers in each cluster is then employed to train a supervised

classi�cation algorithm. Using this algorithm, the clusters small customers without a

smart meter most likely belong to are predicted. These customers are then respectively

assigned the normalised pro�le of their predicted cluster which is multiplied by the

known SJV to approximate the unknown load pro�les of these customers.

5. NEDU pro�les: The association Nederlandse Energiedatauitwisseling (NEDU)

provides each year a set of average load pro�les for di�erent connection categories [93].

Due to the averaging, the NEDU pro�les are less useful for the lowest grid asset level

which is why the smart meter data clustering method has been developed. However,

for large customers which cannot be assigned a KvK segment, the NEDU pro�les of

the respective connection categories are used. Also, for a negligible number of small
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customers (less than 10 cases) NEDU pro�les are used. Furthermore, tra�c and street

lights, which are small connections but not small private customers, fall within the

connection category E4A and are assigned the corresponding NEDU pro�le. Again, the

known SJV of the customers in question is used to scale the normalised NEDU pro�les.

• Future – Spatial planning data and load pro�les which can optionally be used for the

future load forecasts. Enabling this options means that available data on spatial planning

developments, entailing the connection of new customers or the strengthening of existing

connections at some point in the future, is used. Di�erent types of developments are

distinguished and linked to corresponding spatial planning load pro�les. These load

pro�les are scaled with the magnitude of the expected developments and are added to

the baseload forecast of the assets which are projected to be a�ected. To account for the

possibility that a spatial planning project is not realised, an average success rate of 70% is

assumed and modelled through an additional scaling factor of 0.7. The main categories

of spatial planning developments distinguished are urban developments and prospective

large customer developments. Within these categories, several subcategories exist which

can also di�er in terms of the method used to scale the respective spatial planning pro�les

with the magnitude of the development:

1. Urban developments (gebiedsontwikkelingen): The subcategories here are devel-

opments concerning real estate, o�ces, public facilities, greenhouses, industry and

logistic. Within these a further di�erentiation may exist which determines the spatial

planning load pro�le assigned to a particular urban development. For example, in

the case of a real estate developments, the projected heating technology determines

which load pro�le is assigned. Furthermore, the method to scale the load pro�les to

the magnitude of an urban development di�ers for the subcategories. The scaling is

either done based on the number of houses to be build (for real estate), the number

of square meters in new buildings (for o�ces and public facilities) or the number of

hectares covered (for greenhouses, industry and logistic).

2. Prospective large customer developments (klantontwikkelingen): While the

urban developments always a�ect multiple connections, large customer developments

only concern one connection. The following subcategories are formed to determine

load pro�le assignment, depending on the business area a large customers engages

in: agriculture, data centres, greenhouses, industry, o�ces, public facilities, charging

stations, logistics, thermal power plants, hydroelectric power plants, wind parks, solar

farms and other. For all subcategories the peaks of the assigned load pro�les are scaled

to match the capacity requested by the prospective customers.

• Future – Strategic analysis scenarios and technology load pro�les are employed to

predict the future impact of sustainable technologies on the Alliander grid which di�use in

the course of the energy transition and lead to an increasing electri�cation. Speci�cally,

Alliander expects Solar Photovoltaic (PV), Electric Vehicles (EVs) and Heat Pumps (HPs) to

have the largest impact on the electricity network load [81], therefore these technologies

are modelled. The technology di�usion model results in predictions per customer of the

installed amounts of the three technologies for each strategic analysis scenario. As with

the spatial planning pro�les, the technology load pro�les are scaled and added to the

baseload pro�le of a customer. While the strategic analysis scenarios and the technology
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di�usion model are described more closely in the next subsection 3.1.2, below the origin

and subcategories of the technology load pro�les are outlined:

1. Solar Photovoltaic: The PV pro�le is based on 80 measured load curves of installations

in the region around Utrecht retrieved from [73]. The proximity of the installations

was chosen in order to preserve potential spatial correlations. The measured load

curves are averaged to obtain the PV technology pro�le. The pro�le is scaled to match

the predicted peak capacity of a future PV installation. The values of the pro�le are

negative, since feed-in can be seen as a negative load. This allows summing the PV

pro�le with other pro�les, as usually.

2. Electric Vehicles: Four pro�les are used to model the charging behaviour of EVs in

four characteristic locations: at home, at work, as a guest (e.g. of a shop) and at fast

charging stations. The pro�les re�ect time characteristics, such as a charging peak

in the morning at work and in the evening at home during week days. Based on the

�ndings of a Centraal Bureau voor de Statistiek (CBS) mobility study from 2015 [17], the

yearly amount of kilometres per car is assumed to be 15,200 km. The energy required

for this distance is redistributed among the charging locations according to a �xed

ratio, based again on the results of [17] and on further assumptions. Therefore, the four

charging pro�les are scaled relatively to each other according to the mentioned �xed

ratio and such that the overall energy consumed corresponds to the energy needed for

the yearly amount of kilometres. For the future scenarios, the pro�les are multiplied

with the number of EVs predicted in the technology di�usion model for a given asset.

3. Heat Pumps: The HP pro�le is generated using a model developed by the Energieon-
derzoek Centrum Nederland (ECN) for the Flexnet project [34], which has been adapted

such that it can generate HP pro�les for di�erent situations. Speci�cally, an average

household has been assumed in terms of the input variables energy label, renovation

year, living area, HP capacity and presence of a cooling functionality to generate the

pro�le used in ANDES. For the future scenarios, the pro�le is scaled with the predicted

number of HPs for an asset in question.

3.1.2 Model Workflow

In this subsection, the overall work�ow of the ANDES model is given a closer look and it is

described how the model inputs detailed in the previous subsection are used to produce the

model outputs. Sande et al. distinguish in [81] seven main steps in the ANDES model work�ow

which are shown in �gure 3.1. The following description is based on [81] and oriented around

the seven steps. However, since the article was published in 2017, it is not up-to-date in

all aspects – the few major changes to the model since 2017 are included based on internal

Alliander documents.

In the �rst step, strategic analysis scenarios are devised regarding the future adoption

of PV, EVs and HPs which are the technologies Alliander expects to have the largest impact

on its grid. The strategic analysis takes into account the vision of the Dutch government for

the energy transition, the regulatory framework and the economic side of the three technolo-

gies. The outcomes of the strategic analysis for various scenarios are used to determine the

parameters of S-curves which model the di�usion dynamics of each technology on aggregate

following the Fisher-Pry model. Thereby, technology di�usion is assumed to occur �rst slowly,
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accelerate and then reach a turning point after which the di�usion speed decreases again.

Originally, four scenarios of the most relevant combinations of low, middle and high di�usion

pathways for each technology were created. Currently, �ve combination scenarios are used

which feature a more detailed technology breakdown than the original four scenarios with

subcategories within the three major technologies (e.g. various types of PV installations).

Figure 3.1: Schematic of the main steps of the ANDES model calculations. Source: Sande et al. [81].

Secondly, a technology dispersion step follows during which the yearly aggregate in-

stalled capacities from the �rst step are used to predict whether individual customers will

install a technology under a given scenario. To accomplish this prediction, statistical models

are trained with current socio-economic data which is linked to data on the currently installed

capacities of the technologies. The statistical models allow determining probabilities for each

customer to posses an EV, a PV system or a HP in a given year of the forecasting period.

In a Monte Carlo simulation, the aggregate installed capacities of the technologies are then

dispersed among individual customers according to the respective adoption probabilities. To

arrive at single predictions for each year and future scenario, the capacity values per customer

and technology resulting from 100 Monte Carlo simulation runs are averaged.

In the third step, technology load pro�les are generated based on measured data for PV

and EVs, and based on model outputs in the case of HPs. The details of how the average pro�les

for each technology are obtained can be found in the previous subsection 3.1.1. Subsequently,

the technology load pro�les are assigned to customers to which a technology was allocated in

the technology dispersion step. PV pro�les are scaled to match the predicted peak capacity

of the installation in question, while EV and HP pro�les are multiplied with the predicted

numbers of EVs and HPs, respectively.

The fourth step consists in generating the present-day baseload for each customer. For

a fraction of large and small customers, measured load pro�les are available from telemetry or

smart meter measurements. In these cases, the measured load curves are directly used as the

baseload of the respective customer. Otherwise, three types of categorised average pro�les are

used to model the present-day load curves of the large proportion of unmeasured customers.

In all cases, the average pro�les are scaled to match the known SJV of the customers to be

modelled. The methods of obtaining the average pro�les, their categorisation as well as the

methods to assign the average pro�les to customers were given a closer look in the previous

subsection 3.1.1.

In the �fth step, the future load pro�le of each customer is obtained by adding the load

pro�les of the technologies whose implementation is predicted to the customer’s baseload

pro�le. In step six, the future load pro�les of all customers connected to an asset are summed up

to obtain future asset load pro�les. The Alliander network is thus recreated using a bottom-up
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approach. This step relies on the network topology data specifying which customers are

connected to which assets of di�erent levels in the asset hierarchy. Additionally, the expected

load from future urban and prospective large customer developments can be taken into account

at the Onderstation (OS) level. This is achieved through spatial planning load pro�les which

are added to the obtained future asset load pro�les. Details on the categorisation and further

speci�cs of the spatial planning load pro�les can be found in the previous subsection 3.1.1.

Finally, in step seven, the resulting load pro�le forecasts for all assets in the Alliander

grid can be employed for capacity planning purposes. A key result of the current ANDES

model are the forecasted load peaks and troughs and how they are composed (e.g. in terms of

the shares of baseload, future technology and spatial planning pro�les). For each asset, the

load extremes can be compared to the asset’s rated power capacity in order to identify where

congestion problems are likely to arise and where grid extension may be needed.

3.1.3 Modelling Assumptions

After the relatively detailed look at the input data and the work�ow of the ANDES model

in the previous two subsections, it is now possible to take a step back and consider the

key assumptions underlying the model. Naturally, more assumptions regarding the sources

and pre-processing of input data, the clustering and creation of average pro�les, the policy

scenarios, the technology dispersion submodel etc. have been made (some of which are

mentioned above or can be inferred from the model description). However, it is not the purpose

of this section to unearth all assumptions in detail, but rather to focus on key assumptions

and overall modelling choices. These are listed in the following:

1. Simpli�ed physics: The physics of the Alliander network are modelled in a simpli�ed

way through the addition of power consumption pro�les (which can have negative values

for customers with a PV system) to approximate the load pro�le of grid assets on various

levels. Grid losses, voltages and currents are therefore not explicitly modelled or taken

into account.

2. Monitored customers: Whenever direct measurements of past load pro�les for small

or large customers are available, these are used to model the baseload demand of the

respective customers. Thus, it is implicitly assumed that past behaviour of these customers

is most suitable to forecast their future baseload behaviour.

3. Unmonitored customers: The baseload demand of unmonitored small and large cus-

tomers is modelled through average pro�les which are assigned based on classi�cation

memberships. Firstly, it is hereby assumed that separable categories or clusters of char-

acteristic energy demand behaviour exist which can be modelled through average load

pro�les. Secondly, it is assumed that the average pro�les can be reasonably well assigned

based on socio-economic attributes (for small customers), industrial classi�cation proper-

ties (for large customers) or electrical connection categories (if no other classi�cation is

available).

4. Scaling of demand pro�les: To make the baseload model of unmonitored customers

more realistic, the assigned average pro�les are scaled such that the total yearly energy

consumption of the pro�le matches the known SJV of these customers.
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5. Constant baseload6: The baseload demand of customers remains constant during the

entire 40-year forecasting period of ANDES, changes in the future demand are due the

adoption of the three modelled technologies.

6. Three modelled technologies: Future energy transition scenarios are only modelled

for the low-carbon technologies PV, EVs and HPs. Other promising technologies and

approaches which could play an important role in the future, such as storage, demand-side

management and energy e�ciency improvements, are not taken into account.

7. Deterministic high-level technology di�usion scenarios: The future development

of the total installed capacities of the three considered low-carbon technologies is modelled

through deterministic scenarios which consider policy, regulatory and economic aspects.

8. Deterministic technology dispersion: The assignment of the technologies to individual

customers is based on a probabilistic Monte Carlo step. However, to arrive at single

predictions, the capacity values obtained from 100 Monte Carlo runs are averaged. This

means that the future development of installed capacities at the customer level is also

modelled in a deterministic way. Another implication here is that fractional capacity

values are used, e.g. customers are assumed to install a fraction of a PV panel.

9. No year-on-year variability: Year-on-year variability due to weather �uctuations, eco-

nomic cycles and other drivers is not taken into account, as only one set of future techno-

logy pro�les is used.

10. Constant network topology: The network topology remains in the current state during

the entire 40-year forecasting period of ANDES and is therefore assumed to be constant.

3.2 Requirements for the Demand Modelling Approach
The purpose of this section is to formulate requirements which the demand modelling approach

should ful�l. To do so, the assumptions underlying the ANDES model detailed in the previous

subsection 3.1.3 are now examined. This allows to identify which changes to the model could

lead to more realistic assumptions and model results. On that basis, requirements are speci�ed

such that the demand model aims to replicate many aspects of ANDES, while proposing

changes to others.

3.2.1 Discussion of the ANDES Modelling Assumptions

Due to the capacity planning and long-term focus as well as the model size of ANDES, assump-

tion 1 (simpli�ed physics) is quite reasonable. Carrying out detailed power �ow calculations

for all grid assets over 40 years and for various scenarios would be very computationally

expensive and is not necessary for the assessment of network capacity bottlenecks. Also as-

sumption 7 (deterministic high-level technology di�usion scenarios) is sensible in this

6 Note that baseload refers here to the entire load of the present to which technology load pro�les are added for

modelling the future. Therefore, within the ANDES model documentation and this thesis the term is used in a

slightly di�erent sense than the usual sense of a constant load level which normally is not undercut.
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context. Long-term technology adoption speed and future policy cannot reliably be described

by probability distributions [45], therefore a scenario analysis based on currently implemented

and likely future policy pathways, the economic context as well as other societal factors is a

suitable approach here.

Assumptions 6 (three modelled technologies) and 10 (constant network topology) in

turn are unlikely to hold in reality, which is also highlighted by Sande et al. who are part of the

ANDES development team [81]. It is probable that also other technologies apart from PV, EVs

and HPs will play a role in the Dutch energy transition and similarly the grid topology is likely

to experience some changes. However, it is also probable that the three chosen low-carbon

technologies will have the highest grid impact and the grid topology is unlikely to change

dramatically. Thus, the current assumptions are still justi�able, especially when taken into

account in the interpretation of the results.

Assumptions 5 (constant baseload) and 9 (no year-on-year variability) are related and

will almost surely not hold. Changing weather conditions, for example, have the potential

to drive changes in baseload consumption and PV production which are not captured by

constant baseload and technology pro�les. Also, it is possible that there are long-term trends

in household energy consumption [81], e.g. due to gradual energy e�ciency improvements.

Similarly, assumption 8 (deterministic technology dispersion) is questionable because

much uncertainty is connected with the precise future locations and capacities of the considered

technologies. Furthermore, using fractional, average capacity values is unrealistic and may

lead to an underestimation of grid impacts, since an installed technology will have the full

capacity of one unit. Many of these concerns could be addressed by making the ANDES model

more probabilistic, since then the uncertainties relating to baseload consumption, year-on-year

variability and technology dispersion could be explicitly quanti�ed.
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Figure 3.2: Comparison of a measured customer pro�le with the average pro�le of the category the

customer is assigned to. Both pro�les are normalised.
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Assumption 3 (the modelling of unmonitored customers) appears to be the most

problematic assumption. When looking at the description of the ANDES model in section 3.1

through the lens of the literature review in section 2.2, the ANDES model can be placed

quite clearly in the second group of major modelling techniques employing ’characteristic

household demand pro�les’. This means that also the particular issues of the second group

of techniques, identi�ed in the literature review in section 2.2, are of concern: Firstly, the

reservations regarding the validity of assigning energy-behavioural average category pro�les

to unmonitored customers based on socio-demographic customer attributes. Secondly, the

likely underestimation of load peaks and troughs due to the usage of average pro�les with

smoother extreme features. The �rst issue is not in the focus of this thesis, as already much

previous research and e�ort within Alliander have gone into the development of a method

to assign average category pro�les to unmeasured customers. The second issue remains a

concern, especially on the Medium Voltage (MV) and Low Voltage (LV) asset levels where the

variability and extreme features of individual customers weigh more in aggregates of typically

much fewer customers, as compared to the OS level. Figure 3.2 illustrates the problem by

contrasting a measured demand pro�le of an individual customer with the averaged category

pro�le of the category the customer belongs to. Both pro�les are normalised in the �gure.

It can be seen that in this case indeed the measured pro�le is much more spiky than the

corresponding category pro�le.

In light of these issues regarding assumption 3, the remaining assumptions 2 (the mod-
elling of monitored customers) and 4 (scaling of demand pro�les) can be well justi�ed.

Using direct measurements for customers where they are available means circumventing the

pro�le assignment and peak underestimation issues. Of course, there is no guarantee that past

behaviour of a customer re�ects its future behaviour. But using direct measurements, which

contain the natural volatility and stochasticity of demand, is likely to be much more accurate

than an averaged category pro�le. The scaling of averaged category pro�les for unmeasured

customers is also reasonable, since it assures that at least the present total yearly consumption,

SJV, of unmonitored customers is modelled accurately.

3.2.2 Specification of the Demand Model Requirements

On the basis of the discussion of the modelling assumptions of ANDES in the previous

subsection and considering how the scope of this thesis is de�ned, it is now possible to specify

requirements for the demand model. The overarching requirement is to stay close to the

current ANDES model where it is sensible and to only change the modelling of those aspects

where underlying assumptions are most problematic. This requirement is directly related to

the objective of this research to provide useful input for the further development of ANDES.

In accordance with these considerations, the requirements are:

1. The core modelling principle of ANDES – summation of power consumption pro�les of

customers to obtain asset load pro�les – should remain the same. Apart from ful�lling

the overarching requirement in this central aspect, this also makes much sense because

the way in which power system physics are simpli�ed (assumption 1) is reasonable for

long-term capacity planning purposes.

2. As mentioned above, the formation of energy-behavioural categories and the assignment
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of customers to these categories has already been researched intensively at Alliander

and picking up these threads is not in the scope of this project. Therefore, the demand

model should remain within the already existing framework of customer categories used

in ANDES.

3. Certain aspects of how the future is modelled were found to be justi�ed (assumption 6:

three modelled technologies, assumption 7: deterministic high-level technology di�usion

scenarios, assumption 10: constant network topology), while other aspects appear to be

more problematic (assumption 5: constant baseload, assumption 8: deterministic tech-

nology dispersion, assumption 9: no year-on-year variability). However, how the future

development of technologies and network topology are modelled is not within the scope

of this thesis and may be a topic of future research. Thus, the demand model is required to

focus on how the baseload is modelled (which has implications for modelling the present

and the future).

4. The principle requirement regarding the baseload demand modelling is to capture the

stochastic and volatile nature of real customer demand as accurately as possible. Hereby,

it is important to strike a reasonable balance between introducing too little and too much

variability in the resulting asset demand, to avoid under- or overestimating network

impacts.

3.3 Conclusion
In section 3.1, a close look was taken at the input data and the work�ow of the ANDES

model in order to uncover key modelling choices and assumptions. In the discussion of

these in subsection 3.2.1, it became clear that while many assumptions can be well justi�ed,

especially modelling the demand of unmonitored customers through smoother average pro�les

diminishes the desirable stochastic variability of real customer demand. In subsection 3.2.2,

requirements for the demand model were then formulated, taking into account the discussion

of the ANDES modelling assumptions and the scope of this thesis. To improve the modelling of

unmonitored customers, an important requirement for the demand model is to introduce more

stochasticity and variability in the baseload demand. Based on the requirements formulated

here, the demand model is developed and speci�ed in chapter 5.
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4 Methodology for the Statistical
Analysis of the Demand Model

In this chapter, the sampling and inference methods for the statistical analysis of the demand

model outputs selected in the literature review of section 2.3 are given a closer look. The

general descriptions provided in the review will now be speci�ed in mathematical terms for

the methods identi�ed as most promising to evaluate the risk metrics of interest: Importance

Sampling (IS), potentially in combination with the Cross-Entropy (CE) method, and Extreme

Value Theory (EVT). IS and the CE method fall in the broad class of Monte Carlo methods.

Therefore, in section 4.1 �rstly the conventional Monte Carlo approach is described, before

turning to the mentioned more speci�c methods of particular interest here. In section 4.2,

initially a comparison of the two most common approaches in EVT is given. The comparison

serves to select the most suitable approach for the context of this work which is subsequently

described in more detail. How each of the methods described in this chapter is applied to the

speci�c problems in the focus of this thesis is the subject of chapter 6.

4.1 Monte Carlo Methods
The generic methodological background of the Monte Carlo methods identi�ed as promising

to address the risk metrics 1 and 2 is described in this subsection. The material presented

in subsection 4.1.1 and subsection 4.1.2 is based on Rubinstein and Kroese [79], unless other

references are cited. Subsection 4.1.3 relies on various references which are cited individually.

Before beginning the main body of this section, the following pre-considerations illustrate

how the notation used here relates to the demand model.

Several requirements for the demand model were formulated in subsection 3.2.2. From

the requirement to introduce more stochasticity and variability in the modelling of baseload

customer demand, it is clear that a probabilistic demand model needs to be set up. This is the

�rst piece of information needed to proceed in this chapter. However, since the demand model

has not been speci�ed mathematically yet, for the time being the generic random vector ^ is

used to denote all uncertain input variables of the model. The input variables determine the

state the modelled system assumes, whereas the sample space S is the set of all possible states

the system can assume. A speci�c set of inputs is written as x , since it is a concrete realisation

of the random input vector ^ , drawn from the sample space S .

The second important piece of information to proceed here is that in the de�nition of the

risk metrics impact functions are used. These quantify the contribution or impact of each

sampled system state to a risk metric. Since the risk metrics have also not been speci�ed yet, a

generic impact function " (x) is used throughout this chapter. Formally, " (x) is a function

de�ned on the sample spaceS of the model. This function" (x) : S → ℝ assigns a numerical

outcome to every speci�c system state x ∈ S . For a random system state ^ , also the resulting

impact " (^ ), denoted for brevity as " , is a random variable. The probabilistic behaviour of

the model then arises by assigning probabilities to all possible states [90].
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Risk metrics 1 and 2, represented by the generic risk metric A , are both of the form

A = E[" (^ )]. Theoretically, A can be calculated by evaluating

A = E[" (^ )] =
∑
x∈S

" (x) · 5 (x) , (4.1)

where 5 (x) is a Probability Mass Function (PMF), assigning a probability to each speci�c state

x .
7

However, this option quickly becomes computationally infeasible for systems of practical

relevance with big sample spaces. As will become clear in subsection 5.1.4, this is also the

case for the demand model considered here whose sample state contains a large number of

states. The Monte Carlo methods presented in this section allow estimating A with a reasonable

computational e�ort.

4.1.1 The Conventional Monte Carlo Estimator and Confidence
Intervals

As introduced in section 2.3 of the literature review, Monte Carlo approaches rely on repeatedly

simulating the random behaviour of a system and evaluating the quantities of interest ob-

tained in each random simulation experiment. In the conventional Monte Carlo approach

simple random sampling is used. Emphasising the high computational cost which simple

random sampling requires in many cases, the approach is also termed Crude Monte Carlo

(CMC). For simplicity however, in the following Monte Carlo (MC) refers to the conventional

approach based on simple random sampling. Supposing that in repeated runs of the simulation

experiment = independent and identically distributed (i.i.d.) system states ^1,^2, . . . ,^= are

sampled, for which the impact function " (x) is evaluated resulting in the i.i.d. random vari-

ables " (^1), " (^2), . . . , " (^=). The MC estimator to approximate the risk metric of interest

A is then

'̂"� =
1

=

=∑
8=1

" (^8 ) . (4.2)

This means that instead of evaluating the sum over the entire sample space in equation (4.1),

only the mean of a sample drawn from the random variable " (^ ) has to be calculated. The

estimator is unbiased because its expectation is equal to the quantity of interest, A = E['̂"� ].
Furthermore, the law of large numbers guarantees that '̂"� converges to A as the sample size

goes to in�nity. Following the notation in [90], estimators '̂ are capitalised to underline that

they are random variables. An estimate, in turn, obtained in a particular batch of simulation

experiments, is a simple number and therefore denoted as Â . An estimate Â can, therefore, also

be pictured as a random draw from an estimator '̂. The MC estimator describes the procedure

to obtain an estimate, thus

Â"� =
1

=

=∑
8=1

" (x8 ) , (4.3)

where the small letter x8 denotes a particular state sampled to evaluate " (x) in a speci�c

batch of = simulation experiments.

7 Throughout this section the relations for the discrete case are shown, the relations for the continuous case can be

obtained by replacing the sums with integrals whenever expectations are calculated analytically.
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The MC estimator describes a procedure to obtain a point estimate. However, due to being

an estimate, it is important to also quantify its accuracy. This is usually accomplished through

con�dence intervals which are reported next to point estimates. The reasoning behind the

computation of con�dence intervals starts with the central limit theorem, as a result of which

for = →∞ and a �nite variance f2

"
of the random variable " = " (^ ), the MC estimator

'̂"�
3−→ N

(
A, f2

"/=
)
, (4.4)

where

3−→ denotes convergence in distribution and N(`, f2) the normal distribution with

expectation ` and variance f2
[28]. The variance f2

"
is usually not known and can be estimated

through the sample variance

(2

" =
1

= − 1

=∑
8=1

(
" (^8 ) − '̂"�

)
2

, (4.5)

Thus, for large =, '̂"� as well as the estimation error '̂"� − A are approximately normally

distributed, which means that approximate con�dence intervals of the following form can be

constructed (
'̂"� ± I1−U/2

("√
=

)
, (4.6)

where I1−U/2 denotes the 1 − U/2 quantile of the standard normal distribution N(0, 1) and U

the con�dence level.
8

Two further useful measures for quantifying the accuracy of an estimate are the standard

error (� and the coe�cient of variation or relative error '�. The standard error of the estimator

'̂"� is the standard deviation of its sampling distribution. As a result of the central limit

theorem, this sampling distribution is approximately normal for large = and the standard error

can be estimated using the sample standard deviation (" as follows:

(�'̂"� =

√
Var['̂"� ] ≈

("√
=
. (4.7)

The relative error measures the variability of an estimator in relation to its magnitude. It is

de�ned as the ratio of the standard error and the expectation of the estimator, which can be

estimated as shown:

'�'̂"� =

√
Var['̂"� ]

E['̂"� ]
≈ ("√

= · '̂"�
. (4.8)

All three ways of quantifying the accuracy of '̂"� show the typical convergence rate of con-

ventional MC of the order =−1/2
. This convergence rate entails that each additional signi�cant

digit requires increasing = by a factor of 100, thus computing 100 times more simulation

experiments [5]. This shows why estimating rare event probabilities – which require large

8 As the variance is estimated through the sample variance, it would be most correct to use Student’s t-distribution

instead of the normal distribution [28]. However, as the t-distribution converges to a normal distribution for = > 30

and = is usually much larger in MC simulations, this di�erence is not of practical relevance and it is safe to use the

quantiles of the normal distribution to construct con�dence intervals.
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sample sizes already for estimates with low accuracy – can become very computationally

expansive with conventional MC.

4.1.2 Importance Sampling

In the literature review of section 2.3, IS was identi�ed as an especially e�ective variance

reduction technique for problems involving the estimation of rare event probabilities. The

intuition behind variance reduction becomes clear when considering equations (4.6)–(4.8): If a

technique is able to reduce f2

"
and consequently also (2

"
, the standard error and the relative

error will be lower for the same sample size = compared to the case without variance reduction.

This allows computing estimates of higher accuracy for a given sample size, or equivalently

estimates of comparable accuracy with a smaller sample size.

The idea of IS is to achieve variance reduction by choosing an alternative sampling dis-

tribution which favours important regions in the sample space. In the context of rare event

estimation, a well chosen sampling distribution will result in producing the rare events of

interest with a higher frequency. This allows faster estimation of the quantity of interest.

However, the bias introduced in the sampling through the use of the alternative distribution

must be corrected adequately. How this can be accomplished is presented in this subsection.

As previously, the expectation of " (^ ) is the quantity of interest which can theoretically

be calculated by evaluating

A = E5 [" (^ )] =
∑
x∈S

" (x) · 5 (x) , (4.9)

where the PMF 5 is the original sampling distribution and the subscript 5 in E5 [·] highlights

that the expectation is taken with respect to the original sampling distribution. Now, an

alternative sampling distribution with PMF 6 is introduced, which may only become zero

when also 5 is zero. By multiplying equation (4.9) with 6(x)/6(x) = 1, one obtains

A =
∑
x∈S

" (x) 5 (x)
6(x) 6(x) = E6

[
" (^ ) 5 (^ )

6(^ )

]
, (4.10)

whereas E6 [·] highlights that now the expectation with respect to the alternative sampling

distribution with PMF 6 is computed. The alternative sampling distribution is also called

importance or biasing distribution, due to biasing the sampling with respect to the uniform

original distribution.

Estimating the expectation speci�ed in equation (4.10) can be done in analogous manner

to how the expectation of equation (4.9) is estimated with the conventional MC estimator

of equation (4.2). Let " (^1), " (^2), . . . , " (^=) be a random sample taken from 6 whose

elements are i.i.d. random variables with distribution 6. Then, the IS estimator takes the form

'̂�( =
1

=

=∑
8=1

" (^8 )
5 (^8 )
6(^8 )

. (4.11)

Sampling from 6 instead of 5 introduces a bias which ideally leads to a higher occurrence of
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the events of interest. The ratio of the distributions,

, (x) = 5 (x)
6(x) , (4.12)

ensures then that the estimator is unbiased by giving appropriate weights to each " (^8 ) in

equation (4.11). This explains the terms importance weight or likelihood ratio for, . If the

distribution 6 = 5 , the likelihood ratio, = 1 and the IS estimator becomes the conventional

MC estimator.

The central limit theorem applies in analogous manner to the IS estimator as it does to the

MC estimator. Therefore, using the estimated sample variance

(2
′

" =
1

= − 1

=∑
8=1

(
" (^8 ) ·, (^8 ) − '̂�(

)
2

, (4.13)

con�dence intervals, standard errors and relative errors can again be estimated based on

approximate normality for large sample sizes. If the distribution 6 is well chosen, then

(2
′

"
< (2

"
, where (2

"
is the conventional MC sample variance from equation (6.7). In analogy

to equations (4.6)–(4.8), approximate con�dence intervals for the con�dence level U take the

form (
'̂�( ± I1−U/2

(
′

"√
=

)
, (4.14)

standard errors

(�'̂�( =

√
Var['̂�( ] ≈

(
′

"√
=
, (4.15)

and relative errors

'�'̂�( =

√
Var['̂�( ]

E['̂�( ]
≈

(
′

"√
= · '̂�(

. (4.16)

4.1.3 The Cross-Entropy Method

As mentioned in the literature review of section 2.3, it is important to choose the right IS

distribution for an e�cient estimation of the desired output quantities. An inappropriate

choice for the IS distribution can even lead to a higher variance compared to conventional MC.

The theoretically optimal IS distribution takes the form [13]:

6∗ (x) = " (x) · 5 (x)∑
x∈S " (x) · 5 (x)

=
" (x) · 5 (x)

A
. (4.17)

As the above equation shows, obtaining the optimal IS distribution requires knowing the

quantity A , which is to be estimated, already in advance. Therefore, 6∗ is not of direct practical

use. However, indirectly it can be very useful for �nding a good IS distribution, as the IS

distribution can be required to be ’close’ to the optimal distribution. In the CE method,

the Kullback-Leibler divergence is used as a measure of how di�erent two PMFs or, for the
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continuous case, Probability Density Functions (PDFs) are.
9

The Kullback-Leibler divergence

is also called the cross-entropy between two probability distributions, which justi�es the name

of the CE method. The fundamental idea of the method is to minimise the Kullback-Leibler

divergence between the actually used IS distribution 6 and the optimal distribution 6∗ which

is not directly accessible [13]. For the discrete case, the Kullback-Leibler divergence between

these distributions is de�ned as [60]:

D ! (6∗, 6(·; {)) = E6∗

[
;=

(
6∗ (^ )
6(^ ; {)

)]
=

∑
x∈S

;=

(
6∗ (x)
6(x ; {)

)
· 6∗ (x) , (4.18)

where 6∗ is the optimal IS distribution and 6(·; {) a parametric distribution with parameter

vector {. The logarithm in equation (4.18) can be rewritten as

D ! (6∗, 6(·; {)) =
∑
x∈S

;=(6∗ (x)) · 6∗ (x) −
∑
x∈S

;=(6(x ; {)) · 6∗ (x) . (4.19)

From equation (4.19) it becomes apparent that only the second term on the right-hand side

is relevant for �nding the parameter vector { which minimises the Kullback-Leibler divergence

D ! (6∗, 6(·; {)). This is due to the fact that the �rst term does not contain 6 and is thus

invariant with respect to the parameter vector {. When substituting the expression for the

optimal IS density from equation (4.17) for 6∗ (x), the relevant optimisation problem is obtained

[37]:

0A6 <8={ D ! (6∗, 6(·; {)) = 0A6 <0G{
∑
x∈S

" (x) · ;=(6(x ; {)) · 5 (x)

= 0A6 <0G{ E5 [" (^ ) · ;=(6(^ ; {))] .
(4.20)

The IS density 6(·; {) resulting from this minimisation is called the near-optimal IS density.

The expectation E5 [·] suggests that it is possible to estimate the right-hand side for a given {
by randomly sampling from 5 . To make this estimation more e�cient, it is possible to use IS at

this point by introducing an alternative sampling distribution 6(·;|) from the same parametric

family as 6(·; {), but with a di�erent parameter vector|. The optimisation program is changed

accordingly and now takes the form [37]:

0A6 <8={ D ! (6∗, 6(·; {)) = 0A6 <0G{
∑
x∈S

" (x) · ;=(6(x ; {)) ·, (x ;|) · 6(x ;|)

= 0A6 <0G{ E| [" (^ ) · ;=(6(^ ; {)) ·, (^ ;|)] ,
(4.21)

where E| [·] denotes that the expectation is taken with respect to the alternative sampling

distribution 6(·;|) and the likelihood ratio

, (x ;|) = 5 (x)
6(x ;|) (4.22)

9 The Kullback-Leibler divergence is not an actual distance measure, because it is not symmetric in its arguments [13].

Therefore, ’close’ is not meant in the direct sense of a distance metric here.
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is the ratio of the original sampling distribution and the biasing distribution. IS can now be

applied to approximate E| [·] by taking an i.i.d. sample " (^1), " (^2), . . . , " (^=) from the

biasing distribution 6(·;|) and evaluating [37]:

0A6 <8={ D ! (6∗, 6(·; {)) ≈ 0A6 <0G{
1

=

=∑
8=1

" (^8 ) · ;=(6(^8 ; {)) ·, (^8 ;|) . (4.23)

As noted by Rubinstein and Kroese, the right hand side of equation (4.23) is convex and

di�erentiable for typical use cases of the CE method. Particularly, analytical solutions are

available if the distribution to be CE optimised belongs to an exponential family. In these cases,

analytical solutions to the optimisation problem can be obtained by solving the following

system of equations for { [79]:

1

=

=∑
8=1

" (^8 ) ·, (^8 ;|) · ∇{ ;=(6(^8 ; {)) = 0 , (4.24)

where ∇{ is the gradient with respect to {. As equation (4.24) is sampling-based, its solution

for { also results in a sampling-based updating formula. Thus, the CE method operates at

the intersection of optimisation and estimation – if an analytical solution to the optimisation

problem exists, it can be approximated with a sampling approach.

When estimating rare event probabilities, the optimal IS distribution is often very di�erent

from the original sampling distribution. This of course is related to the fact that the original

distribution has usually low values in the sample space region of interest. Therefore, as Biondini

underlines, determining the near-optimal biasing distribution is a rare event estimation problem

itself which requires a large sample size if no knowledge of a suitable biasing distribution

6(x;|) is available in advance and conventional MC has to be used. This di�culty can be

circumvented by using a sequence of intermediate target regions which cover a gradually

shrinking portion of the sample space. These intermediate regions allow estimating biasing

distributions which gradually approach the near-optimal biasing distribution [13]. The general

approach of accomplishing this is described together with the developed CE algorithms in

chapter 6, since it can then directly be illustrated with how it is applied in this work.

4.2 Extreme Value Theory
In the literature review of subsection 2.3.2, EVT was identi�ed as the most suitable approach to

obtain metric 3, as the metric is concerned with extreme load values. The two main methods

of inferring extreme characteristics of the overall population from a given sample – the Block

Maxima (BM) and the Peak Over Threshold (POT) method – have also been introduced already

in subsection 2.3.2. Next to a general overview of EVT, the relative merits of both approaches

are compared in subsection 4.2.1. The comparison allows to justify why the BM method

is chosen for the given context of this thesis. In subsection 4.2.2, the BM method is then

considered in more detail and mathematically speci�ed.
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4.2.1 General Overview and Comparison of the Block Maxima and
the Peak Over Threshold Methods

The analogous character of EVT and classical central limit theory was already emphasised

in the literature review of subsection 2.3.2: While the latter is concerned with the behaviour

of ’normal’ events and their cumulative e�ect in the asymptotic limit of large sample sizes,

EVT is concerned with the behaviour of ’extreme’ events in the asymptotic limit. In more

mathematical terms, the central limit theorem states what form the limiting distribution of

sums of random variables takes, allowing therefore the modelling of cumulative e�ects. EVT

also makes statements about limiting distributions, however here the limiting distributions of

extreme values of random variables are in the focus. Being an asymptotic theory, the objective

of EVT is to extrapolate beyond the observations in a sample. This allows to make predictions

about extreme events which may not have been observed before [51].

Figure 4.1: Visual comparison of how extreme values are identi�ed in the BM approach (left panel) and

in the POT approach (right panel). Source: Gilli and Këllezi [40].

Given a sample of empirical or simulated observations, the question arises which values

can be considered extreme and used for inferring the appropriate limiting extreme value

distribution. The two main de�nitions are visualised in �gure 4.1: The de�nition used in

the BM method is shown in the left panel of the �gure, here the observations are divided in

large blocks of equal lengths whose respective maximum (or minimum) values are regarded as

extreme. In the example given in the �gure, four periods with three observations respectively

are distinguished (the low number of observations per period just serves illustrative purposes,

in practice more than three observations per period should be used), thus observationsG2, G5, G7

and G11 are the block maxima.

The de�nition used in the POT method is shown in the right panel of �gure 4.1, where

all observations exceeding the pre-de�ned high threshold D are considered extreme. As the

example shows, this leads to an overlapping, but di�erent set of extremes as compared to

the set resulting from the BM de�nition, comprising observations G1, G2, G7, G8, G9 and G11.

Intuitively, considering these related but distinct de�nitions, it can be expected that each

de�nition will also be associated with distinct limiting distributions. This is indeed the case

and EVT derives the appropriate limiting distributions for both de�nitions: the Generalised

Extreme Value (GEV) distribution for the BM approach and the Generalised Pareto Distribution

(GPD) for the POT approach [40].
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Both methods have their respective advantages and drawbacks which are considered in

the following:

• The POT method considers all observations above the threshold, while the BM method

may miss some relevant observations if two or more high observations occur within the

same block. Therefore, the POT method appears to make better use of the available,

potentially scarce, observations. Particularly, the POT method has been found to be more

e�cient in many cases if the number of exceedances is larger than the number of blocks

on average [35].

• However, for the POT method it is necessary to determine a suitable high threshold. The

trade-o� here is that the theory requires a su�ciently high threshold, but increasing the

threshold reduces the number of observations left for estimating the limiting distribution.

Graphical diagnostics are available which can be used for manually �nding a good balance,

however automatic threshold selection was an unresolved issue in 2006 when [40] was

published. In [86], a more recent study from 2017, a promising automatic threshold

estimation procedure using the goodness of �t p-value has been proposed. Nevertheless, it

appears that automated threshold selection for the POT method is still a matter of ongoing

research on which no overall consensus has been reached yet.

• The BM method can be preferable if observations do not entirely ful�l the i.i.d. assumption

which the theory underlying both methods requires. Typical examples where the i.i.d.

assumption is violated are observations with seasonal periodicity or short range dependence.

This is due to the fact that in such cases observations within a year or close in time cannot

be considered independent anymore. However, if it is possible to choose blocks such that

there is only dependence within blocks but not between blocks, independence of the block

maxima can be assumed [35].

• In practice, block maxima may be the only available observations and in many applications

the block periods appear naturally. The POT method, in turn, o�ers greater �exibility if

changes in block size are necessary but di�cult to realise [35].

• Overall, both methods seem to have a comparable performance for large sample size [35].

Caires �nds that for more than 200 years of data, the estimation accuracies of both methods

are comparable and rather good [16].

Against the backdrop of the merits and limitations of the BM and POT methods, it is

now possible to select the more suitable method for the context of this thesis. For Alliander,

theoretically it is desirable to analyse the distribution of demand extremes for each of its grid

assets. This means that a large number of extreme value distributions has to be estimated

and due to that a method which can be robustly automated is preferred. This is a strong

argument against the POT method for which it is challenging to automatically �nd appropriate

thresholds.

Furthermore, as described in chapter 3, the Advanced Net DEcision Support (ANDES)

model produces yearly asset load curves as an output. Firstly, this means that annual blocks

appear very naturally whose extreme values can be used directly. Secondly, asset load curves

typically show some seasonality and short range dependence. The seasonality is due to the
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yearly weather cycle which leads to seasonally varying consumption patterns and renewable

energy production. Short range dependence arises because, despite the possibility of spikes and

relatively sudden changes, aggregated load curves often have similar magnitudes in adjacent

time steps. Thus, independence within yearly load curves cannot be assumed, whereas it is

reasonable to assume independence for yearly peak load values. Finally, when using the Monte

Carlo methods described earlier in this chapter, it is very likely that simulating more than

200 realisations of each scenario year is required for a su�cient accuracy of the estimates.

Therefore, the data use e�ciency advantage of the POT method for small sample sizes is not

very relevant here. To sum up, for the given use case the above arguments clearly suggest

that applying the BM method is more straightforward and intuitive. Therefore, only the BM

method is described in greater detail in the following subsection.

4.2.2 The Block Maxima Method

In this subsection, the BM method is described based on Gilli and Këllezi [40] and Jacob et al. [51].

The notation used in this subsection relates to the demand model in the following way: In the

given context of this thesis, using realisations of yearly asset load demand obtained from the

demand model as blocks is the most intuitive choice. Therefore, the random variable .8 used

below represents the magnitude of random load demand on an asset of a particular yearly

realisation 8 . Furthermore, I is the annual maximum or minimum demand magnitude of a

particular yearly realisation and / the counterpart of a random realisation.

As mentioned above, one of the fundamental objectives of EVT is to derive limiting

distributions of extreme values of random variables. The limiting distributions for block

maxima are given by the Fisher–Tippett–Gnedenko theorem, also known as extreme value

theorem, which is a central theorem in EVT:

I Theorem 4.1 (Fisher–Tippett–Gnedenko). Let .1, .2, ..., .= be a sequence of i.i.d. random
variables and "= = <0G{.1, .2, ..., .=} the sequence of the maximum values of these random
variables. If constants 0= > 0 and 1= ∈ ℝ and a non-degenerate distribution function � exist
such that

"= − 1=
0=

3−→ � , (4.25)

where
3−→ denotes convergence in distribution, then � must belong to one of the three families of

extreme value distributions:

Fréchet: QU (I) =
{

0 , I ≤ 0

4−I
−U
, I > 0

U > 0 , (4.26)

Gumbel: LU (I) = 4−4
−I
, I ∈ ℝ (4.27)

Weibull: RU (I) =
{
4−(−I)

U

, I ≤ 0

1 , I > 0

U > 0 . (4.28)

J

The above theorem equally applies to minima, due to the relation <8={.1, .2, ..., .=} =
−<0G{−.1,−.2, ...,−.=}. The distribution functions for minima can be obtained through the
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transformation �<8= (I) = 1 −�<0G (−I) and by adjusting the above piece-wise de�nitions

appropriately. For the case of block maxima, the probability density functions of the Fréchet,

Gumbel and the Weibull distributions are visualised in �gure 4.2.
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Figure 4.2: Probability densities of the Fréchet, Gumbel and Weibull distributions. For the Fréchet and

the Weibull distribution the appearance for the parameter value U = 1.5 is shown.

The Fréchet distribution has a heavy tail, which means that it decays more slowly than the

exponential distribution. Therefore, it is suitable to model phenomena whose maxima have a

tendency for extreme outliers. The Gumbel distribution has an exponentially decaying tail

and can therefore be used to model phenomena whose maxima have thin tailed distributions.

Lastly, the Weibull distribution is capable of modelling phenomena whose maxima have a

�nite upper bound.

It is possible to nest all three distribution families in one family, which is known as the

von Mises-Jenkinson parameterisation or the GEV distribution. Its cumulative distribution

function takes the form:

�b (I) =
{
4G? (−(1 + bI)−1/b ) b ≠ 0, 1 + bI > 0

4G? (−4−I) b = 0

(4.29)

where b is called the shape parameter. As the name suggests, the shape parameter allows

transitioning between the three distribution families. The parameter is obtained by setting

b = U−1
for the Fréchet distribution, b = 0 for the Gumbel distribution and b = −U−1

for the

Weibull distribution. Therefore, the Gumbel distribution can be seen as the limit case between

the Fréchet and the Weibull distributions.

The GEV is of great practical use, since generally it is not known beforehand which

type of limiting distribution a series of block maxima has. Using maximum likelihood or

other estimators, the shape parameter can be estimated allowing to determine the most likely

distribution type given a speci�c series of maxima. In practice, also the normalising constants

0= and 1= from equation (4.25) are unknown and therefore the three parameter representation

�b,f,` (I) = �b
(I − `
f

)
, where


I > ` − f

b
b > 0

I ∈ ℝ b = 0

I < ` − f
b

b < 0

(4.30)
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is used. The scale parameter f and the location parameter ` replace hereby the unknown

normalising constants 0= and 1= and can be estimated together with the shape parameter b .

Eventually, not the GEV distribution parameters themselves, but rather the distribution

quantiles allow drawing conclusions for a given set of observations. The GEV distribution

can be inverted which allows obtaining an explicit formula for its quantile function & (?).
The quantile function returns the block maximum magnitude I such that %A (/ ≤ I) = ? .

Therefore, it allows obtaining the block maximum magnitude which will not be exceeded with

probability ? . The quantile function of the GEV has the form

&b,f,` (?) = �−1

b,f,`
(?) =

{
` − f

b

(
1 − (−;=(?))−b

)
b ≠ 0

` − f · ;=(−;=(?)) b = 0 .
(4.31)

Based on the quantile function and estimates
ˆb, f̂, ˆ̀ of the GEV parameters b, f, `, an estimate

for the commonly used return levels

'̂!
:
= & ˆb,f̂, ˆ̀

(? = 1 − 1

:
) (4.32)

can be obtained, where : denotes the return period in blocks. The return level '̂!
:

is the

magnitude which the block maxima will exceed once on average during any period of length

: . In the context of this thesis with a block length of one year, a return level '̂!
100

= 550 kW

would for example mean that a peak load value of 550 kW is only exceeded once every 100

years on average. The corresponding probability ? = 1 − 1

100
= 0.99, meaning that in 99% of

the years 550 kW are not exceeded – which is equivalent to the information the return level

provides. However, return levels may be seen as a somewhat more tangible representation to

answer the question how high a maximum value (or how low a minimum value) can become.
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5 Specification of the Demand
Model and the Risk Metrics

In this chapter, the demand modelling approach adopted within this thesis is presented in

detail and the risk metrics, which are the quantities of interest to be obtained from the demand

model, are speci�ed. Firstly, the methodological core of the demand model is motivated and

mathematically described in section 5.1. Secondly, section 5.2 deals with all implementation

related aspects, especially those concerning the pre-processing of the input data used for the

model. Lastly, in section 5.3 the choice of risk metrics is discussed and the risk metrics are

speci�ed in mathematical terms.

5.1 Description of the Demand Model
Before specifying the adopted demand modelling approach, the relevant previous work by

Valckx et al. [92] is brie�y described in subsection 5.1.1. This allows to characterise in subsec-

tion 5.1.2 in which aspects the demand modelling approach of this research is in continuity with

the previous work and where it di�ers from it. Besides the speci�cation of the demand model

in subsection 5.1.3, also the demand model’s sample space is given a look in subsection 5.1.4.

5.1.1 Previous Work

The usage of average category load pro�les, which are often smoother and show less stochastic

features than individual customer pro�les, can lead to the underestimation of demand peaks

and troughs. This issue has already been identi�ed in the literature review of section 2.2 and

discussed in the context of the Advanced Net DEcision Support (ANDES) model in subsec-

tion 3.2.1. Furthermore, it was also investigated in previous thesis work on the ANDES model

by Valckx et al. [92]. The simulation approach of [92] and the results obtained with it are

roughly outlined in this subsection, due the relevance of both for the demand model of this

thesis.

For each category of small and large customers used in ANDES, a pool of 100 normalised

pro�les is formed (obtained from smart meter measurements for small customers and from

telemetry measurements for large customers). The category membership of an unmonitored

customer to be modelled determines then which pool a pro�le for that customer is drawn

from. The normalised pro�les are scaled to match the known yearly consumption, Standaard
Jaarverbruik (SJV), of each unmonitored customer – analogous to the scaling done in ANDES.

The random assignment and scaling process is repeated 100 times for all customers connected

to an asset in question, such that 100 yearly asset load curves are obtained which allow

a quanti�cation of baseload demand uncertainty. This makes the method a Monte Carlo

simulation approach which can be placed in the third major group of techniques in the

grouping of the literature review in section 2.2.

The Monte Carlo (MC) simulation approach was benchmarked in two ways against the
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ANDES approach which relies on assigning scaled average category pro�les to unmonitored

customers [92]: Firstly, by using measured Middenspanningsruimte (MSR) load curves and,

secondly, by simulating load curves of ’virtual’ MSRs. The idea of the latter benchmarking is

to aggregate smart meter pro�les of measured customers to create reference load curves of

’virtual’ MSRs with similar customer structures as real MSRs. Supposing then that only the

customer categories and the SJVs of the virtual MSR customers are known (as would be the

case with unmonitored customers), the ANDES method and the MC simulation method were

applied. Then it was evaluated how much they respectively deviated from the reference load

curve of the virtual MSRs.

The principle �nding from both comparisons was that while ANDES signi�cantly underes-

timates peak loads, the MC simulation approach overestimates them to some extent. Therefore,

the MC simulation approach constitutes an improvement with respect to the ANDES approach,

however it su�ers from the slight overestimation issue. It is conjectured in [92], that the

overestimation in the MC simulation may be caused by pro�les with an overall low yearly

consumption which have some extreme peaks. If these are assigned to unmonitored customers

with a regular to high yearly consumption, the scaling leads to an extreme ampli�cation of

these peaks which drive up the overall asset peak demand.

5.1.2 Motivation for the Adopted Demand Modelling Approach

On the basis of the requirements for the demand model formulated in subsection 3.2.2 and the

results from the previous thesis work of Valckx et al. [92], the demand modelling approach

adopted in this thesis can now be motivated. Firstly, for better readability, the demand model

requirements are recapitulated in brief form:

1. The core modelling principle of ANDES – summation of power consumption pro�les of

customers to obtain asset load pro�les – should also be used in the demand model.

2. Due to how the scope of this thesis is de�ned, the demand model should remain within

the already existing framework of customer categories used in ANDES.

3. Again, due to how the scope of this thesis is de�ned, the demand model is required to

focus on how the baseload is modelled (which has implications for modelling the present

and the future).

4. The principle requirement regarding the baseload demand modelling is to capture the

stochastic and volatile nature of real customer demand as accurately as possible. Hereby,

it is important to strike a reasonable balance between introducing too little and too much

variability in the resulting asset demand, to avoid under- or overestimating network

impacts.

MC simulation approaches based on repeatedly and randomly assigning measured customer

demand pro�les from a pro�le pool to unmeasured customers, preserve the natural volatility

and stochastic features of real customer demand (see the literature review of section 2.2).

Therefore, they are well suited to address the fourth requirement. Taken together with the

other requirements, this means that an approach similar to the one in [92] is appropriate.

Evidently, this also makes sense due to the results of Valckx et al. that peak load demands

44



Description of the Demand Model Section 5.1

are estimated with greater accuracy compared to the average category pro�le approach of

ANDES.

However, as described in the previous subsection, the approach in [92] su�ers from

overestimating peak loads to some extent. This may be seen as related to the last part of the

fourth requirement, to strike a balance between over- and underestimating demand variability.

In light of these considerations, the adopted demand modelling approach of this thesis extends

the previous approach and di�ers from it in certain aspects:

• While in the previous work no di�erentiation regarding the yearly consumption of custom-

ers within categories is made, a more �ne-grained modelling of this aspect is introduced

here. This is accomplished through an additional binning of small customers within each

category based on the SJV leading to sub-categories. As a result, unmonitored small cus-
tomers are only modelled through the pro�les of monitored small customers with a similar

SJV. Two arguments speak in favour of the binning scheme: Firstly, energy consumption

behaviour within a category is likely to be more comparable for customers with a similar

yearly consumption. Secondly, pro�les with a low SJV are scaled up to a lesser extent to

model customers with a higher SJV. As explained in the previous subsection, over-scaling

of spiky, low SJV pro�les was conjectured in [92] to lead to the overestimation tendency

of the previous MC simulation approach. Thus, the binning may allow to limit demand

volatility to a more reasonable level.

• For large customers, the classi�cation in ANDES is based on the economic activities carried

out by these (according to the Netherlands Chamber of Commerce, Kamer van Koophandel
(KvK) segmentation) and not on energy-behavioural clusters as with the small customers.

Thus, it is likely that the demand characteristics of unmonitored large customers within

the same KvK segment vary considerably, which punctual inspections seem to con�rm.

Therefore, using averaged segment pro�les to model unmonitored large customers
seems better than the alternative of randomly picking a telemetry pro�le of a customer

from the same KvK segment, as done in [92]. This means that for large unmeasured

customers, a small underestimation of demand variability is preferred over a likely large

overestimation.

• The actual measurements of monitored small and large customers are directly used to

model their demand – similarly based on the argument that a small underestimation of

demand variability is preferred over a larger overestimation. The additional bene�t here is

that all particular characteristics of these customers are preserved by directly using their

measured pro�les.

5.1.3 Specification of the Demand Model

After the adopted demand modelling approach has been motivated in the previous subsection,

it can now be speci�ed in mathematical terms. A simpli�ed grouping, in which each group

comprises several customer categories, is adopted here in order not to obstruct the view with

detail unnecessary for the core principle of the demand model. The grouping is based on the

type of pro�le used to model the customers from the various categories which is the essential
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Table 5.1: Major groups of customers which are distinguished in the description of the demand model.

Each group contains several customer categories. The grouping is based on the type of pro�le which is

assigned to the subsumed customer categories.

Group Description Type of pro�le assigned
and symbols used

Pro�le
unit

1

Small customers, energy-behavioural

classi�cation and SJV binning

Random smart meter pro�le

s1,N ∈ S1 , drawn from bin 1

-

(norm.)

2

Mostly larger, commercial

customers with telemetry

Measured pro�le

l 9 ∈ L of customer 9
kW

3

Other customers, not part of group 1

and unmonitored

Average category pro�le

a2 ∈ A of category 2

-

(norm.)

here. An overview of the grouping is given in table 5.1, while a detailed break-down of all

customer categories considered can be found in subsection 5.2.2.

Given is a set of smart meter pro�les S of monitored customers of the Alliander grid. The

smart meter pro�les are anonymised, but the energy-behavioural category 2 which each pro�le

belongs to is known. The energy-behavioural categories are those of the smart meter data

clustering approach outlined in subsection 3.1.1 which is used as part of the ANDES model. A

binning is carried out based on the SJV W of all pro�les within a category. The set of pro�les

within a bin 1 is denoted by S1 , thus S1 ⊂ S. Group 1 comprises 13 energy-behavioural

categories which are split in 2-4 bins, leading to a total of 48 bins, therefore 1 ∈ {1, . . . , 48}. A

random smart meter pro�le drawn from bin 1 is denoted by s1,N , where the uniform discrete

random variable N has the sample spaceSN = {1, . . . , =1} with =1 being the number of smart

meter pro�les in the given bin.

Group 2 comprises several thousand individual larger, commercial customers whose power

consumption is measured telemetrically. The set of telemetry pro�les is denoted by L and

individual customers within the set have the index 9 . Group 3 combines di�erent types of

pro�le categories totalling to 30 categories (see subsection 5.2.2 for further details). Together

with the 13 energy-behavioural categories from group 1, a total of 43 customer categories is

distinguished, leading to an overall category index 2 ∈ {1, . . . , 43}. The set of average pro�les

for the 30 categories of group 3 is denoted by A.

The smart meter pro�les s ∈ S, telemetry pro�les l ∈ L and the average category pro�les

a ∈ A are time series vectors and therefore set in bold, unless a speci�c time step is referred

to:

s = {BC } = {B1, B2, . . . , B35040}
l = {;C } = {;1, ;2, . . . , ;35040}
a = {0C } = {01, 02, . . . , 035040} .

(5.1)

Each time step of the meter pro�les s ∈ S and the average category pro�les a ∈ A is

normalised with respect to the yearly total demand summed over all 35,040 quarter-hourly
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time steps. Therefore,

35,040∑
C=1

BC =

35,040∑
C=1

0C = 1 . (5.2)

The SJV W is an energy quantity with the unit kWh, while the load pro�les are time series of

quarter-hourly average power values with the unit kW. Since one hour has four quarters, a

factor of 1/4 or 4 arises when converting between energy and power in this case. Therefore,

in order to obtain pro�les in terms of power from the normalised pro�les s ∈ S and a ∈ A,

which are scaled to match a given yearly energy consumption W , the scaling factors

s
′
?>|4A = 4 · W · s
a
′
?>|4A = 4 · W · a

(5.3)

are necessary. In the following s and a always refer to the normalised pro�les.

The telemetry pro�les l ∈ L in turn are left unnormalised, as they do not need to be

rescaled and can be used directly. Therefore, when properly scaled with the factor 1/4, all

telemetry pro�les sum to the yearly energy consumption W of the customer the pro�le belongs

to:

35,040∑
C=1

1

4

· ;C = W . (5.4)

It is now possible to specify the core principle of the adopted demand modelling approach.

The stochastic power demand on a given network asset for all quarter-hourly time steps of a

year is modelled by summing over all customers from the 3 groups summarised in table 5.1

connected to the asset:

J (� ) =
=B∑
8=1

4 · W8 · s18 ,N8 +
=;∑
9=1

l 9 +
=0∑
:=1

4 · W: · a2: , (5.5)

where

• J (� ) is a resulting random annual asset demand trace or time series

J (� ) = {�C (� )} = {�1 (� ), �2 (� ), . . . , �35040 (� )} ,
• � is a random vector denoting a random selection of smart meter pro�les,

• s18 ,N8 is a smart meter pro�le randomly drawn from bin 18 of customer 8 ,

• l 9 is the telemetry pro�le of customer 9 ,

• a2: is the average category pro�le of category 2: of customer : ,

• W8 and W: are the yearly consumption SJV of customers 8 and : , respectively and

• =B , =; and =0 denote the total number of customers in groups 1-3 of the modelled asset,

respectively.

The random pro�le selection vector

� = (N1, N2, . . . , N8 , . . . , N=B ) (5.6)
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has the length =B and indexes the smart meter pro�les s18 ,N8 , randomly drawn from bin 18 of

each small unmonitored customer 8 connected to the asset. The elements of � are the uniform

discrete random variables N8 which have the sample space SN8 = {1, . . . , =18 }, with =18 being

the number of smart meter pro�les in bin 18 which customer 8 belongs to.

To sum up, while the customers from groups 2 and 3 are always assigned the same pro�les,

the random assignment of pro�les � to the customers of group 1 is the source of randomness

in the asset demand model. Each evaluation of the model will therefore result (with very high

probability) in a di�erent annual realisation of asset demand. A small percentage of assets of

the Alliander grid only have customers from groups 2 and 3. In these exceptional cases, the

demand model looses its stochastic features and always produces the same asset demand trace.

5.1.4 Sample Space of the Demand Model

The explicit mathematical description of the demand model’s sample space and the related

considerations made in this subsection may be seen as a matter of general theoretical interest.

However, more importantly for the objectives of this research, they provide a useful background

for developing the Importance Sampling (IS) based methods in the next chapter 6.

The demand model allows obtaining the load demand on individual grid assets which

means that each grid asset has its own sample space. The sample spaces of all assets can be seen

as subspaces of the overall sample space of the demand model. LetK = {\1, . . . , \: , . . . , \=\ }
be the set of all assets of the Alliander grid, where \: denotes asset : and =\ the total number

of assets. Formally, the overall sample space of the demand model SJ can be de�ned as the

union of the sample spaces of all assets:

SJ =
⋃
\: ∈K

S\: , (5.7)

where S\: is the sample space of asset : andK the set of all assets. In the following, however,

only the sample space of a given individual asset is relevant. For greater ease of notation, the

asset subscript is therefore omitted from now on and S refers to the sample space of an asset,

which is a subspace of the demand model’s sample space SJ .

For examining the sample space of an individual asset more closely, it is useful to start

with the de�nition of the sample space concept: In general terms, a sample space is the set

containing all possible outcomes of an experiment [28]. In this context, the experiment consists

in evaluating the demand model J (� ) for a given asset and a random assignment of smart

meter pro�les � to small unmonitored customers. Formally, the demand model can be seen as

a function J : SJ → J (0) de�ned on its sample space SJ which deterministically assigns

an annual asset demand trace to each speci�c selection of smart meter pro�les 0 ∈ S ⊂ SJ .

Therefore, evaluating J (0) will always lead to the same result. Since, for a given asset, the

outcome of the simulation experiment is entirely determined by the input pro�le selection, the

sample space and the parameter space of the demand model are identical. Thus, the sample

space can be de�ned in terms of the model inputs.

On the top level, a selection of smart meter pro�les 0 results in the time series vector

J (0) which contains the asset demand for each quarter-hour of a year. The quarter-hourly

time steps of a year can be seen as a derived subspace SC = {C1, C2, . . . , C35040}, nested inside

the top level pro�le selection space S0 . If the demand model is evaluated for a speci�c pro�le
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selection and at a speci�c time step C , a single value �C (0) will result – whereas � is not set in

bold face anymore as the model returns a scalar now. Just like with SJ , repeatedly evaluating

�C (0) will always yield the same result.

To arrive at a de�nition of the overall asset sample space S , a Cartesian product ’×’ can be

used. Given two sets, the Cartesian product yields all possible ways to combine each element of

the �rst set with each element of the second set. In the context relevant here, all combinations

of the pro�le selection space S0 and the time step space SC will result from their Cartesian

product. These are the individual elements of the asset sample space S because are associated

with a particular outcome of the random experiment in question here – evaluating the demand

model. The asset sample space can thus be de�ned as:

S = S0 ×SC = {01, 02, . . . , 0 9 , . . . , 0=c } × {C1, C2, . . . , C35040} , (5.8)

where

• 9 ∈ {1, . . . , =c } indexes the =c possible ways of assigning smart meter pro�les to small

unmonitored customers of an asset,

• 0 9 = (c 9,1, c 9,2, . . . , c 9,8 , . . . , c 9,=B ) is a vector characterising a speci�c pro�le selection,

• 8 ∈ {1, . . . , =B } indexes the =B small unmonitored customers of the asset (group 3 from the

previous section), therefore 0 9 contains one element for each of these customers, and

• c 9,8 ∈ {1, . . . , =18 } are the elements of 0 9 which specify the selected smart meter pro�le

from bin 18 of customer 8 , whereas =18 is the total amount of pro�les in that bin.

The total number of elements |S | in the asset sample space can be obtained as a product

over all 48 bins:

|S | = |S0 | · |SC | =
(

48∏
1=1

(=1)=B,1
)
· 35040 , (5.9)

where1 indexes the current bin, =1 is the total number of smart meter pro�les in the bin and=B,1
is the number of small unmonitored customers of the given asset which are assigned pro�les

from bin 1. The important message to take away here is that, due to the power in equation (5.9),

the number of elements in the asset sample space can quickly become an astronomical number.

This makes the approach of summing over all sample space elements for the calculation of the

risk metrics (as in equation (4.1) from the previous chapter) computationally infeasible.

5.2 Implementation of the Demand Model
In this section the process and the details of implementing the demand model are described.

In the course of documenting the implementation, it will also become clear in which aspects

the model is limited by practical constraints of data availability. This will allow to critically

re�ect on the model results in later chapters.

The implementation of the demand model, the methods for evaluating the risk metrics

developed in chapter 6, as well as the analysis and visualisation of results in chapter 7 were

carried out using the statistical computing language R version 3.6.1 [74]. The code was

developed and run on a shared RStudio Server environment. A number of packages has been
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used for various purposes: The packages tidyverse [96], plyr [95] and reshape2 [94] for general

data processing; the package pracma [14] for certain basic mathematical operations; the

package Rcpp [32] to compile external C++ code used for speeding-up matrix multiplications;

the package Brobdingnag [43] for computations with very large numbers; the packages binr
[50] and dlookr [80] for binning data; the package extRemes [39] for extreme value analyses; and

�nally tidyverse [96], plotly [85] and ggpubr [53] for plotting and visualisation. Furthermore, a

function from the package ggtern [42] has been adapted for two-dimensional kernel density

estimation. The packages used for very speci�c purposes are cited again below when the

purpose in question is discussed.

5.2.1 Selection of Grid Assets to Be Modelled

Before proceeding with the description of the demand model implementation, the procedure

for selecting subsets of grid assets for benchmarking the methods developed in chapter 6

is described. The likely underestimation of peak loads in the ANDES model is suspected

to occur especially at the Medium Voltage (MV) and Low Voltage (LV) levels, where the

variability and extreme features of individual customers weigh more in aggregates. This makes

improving the modelling of these asset levels especially relevant. Therefore, the main focus lies

on MV/LV substations, Middenspanningsruimtes (MSRs) in Dutch, which are the substations

connecting the MV and the LV level. Additionally, it is also interesting to benchmark the

methods on HV/MV substations, Onderstations (OSs) in Dutch, which are the substations at

the top level of the Alliander grid connecting the MV level to the High Voltage (HV) level of

the transmission grid operated by TenneT.

The main concern when selecting sets of MSRs and OSs was to ensure that they are well

representative of the overall MSR and OS population of the Alliander grid. To accomplish this,

two asset properties were used: the number of customers connected to an asset and the sum

of their yearly consumption, Standaard Jaarverbruik (SJV). In �gure 5.1 a scatter plot of the

two variables is shown for the MSRs population. Therefore, each point in the plot corresponds

to one MSR.

Two sets of MSRs were selected which are visualised in �gure 5.1 – a set of MSRs with

average characteristics and a set of MSRs with extreme characteristics in terms of the number

of customers connected and/or the total yearly asset consumption. To arrive at this selection,

the following steps were taken:

• Firstly, the covariance matrix � of all data points shown in �gure 5.1 was computed. Using

the covariance matrix, a bivariate normal densityN(-, � ) was set up centred on the median

of each dimension.

• Secondly, a threshold was set at half the maximum value of the �tted density which

separates MSRs with average (blue) and extreme (red) characteristics. Even though the

MSRs with average characteristics only �ll a small area of the plot, they account for 81.7%

of all MSRs. Therefore, most MSRs have ‘average’ characteristics, whereas only about 20%

are extreme in terms of customer number or yearly asset consumption.

• Thirdly, the bivariate normal density was used to assign a sampling probability to each MSR

depending on its location in the space shown in �gure 5.1. For the average set, N(-, � )
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Figure 5.1: Characteristics of the overall MSR population and the MSRs selected for the average and

extreme set. A few extreme outliers from the light red group are not shown for better visibility of the

remaining data.

was used directly to sample 200 MSRs (dark blue) from the set of all MSRs with average

characteristics (light blue). For the extreme set, 1 −N(-, � )10
was used to assign sampling

probabilities to the MSRs with extreme characteristics (light red) and sample 100 MSRs

(dark red). This procedure allowed to create two distinct groups which represent either

MSRs with typical characteristics or MSRs with more extreme characteristics.

• Fourthly, the demand model was evaluated for each of the 300 pre-selected MSRs of both

sets and the sum of the yearly asset demand was computed. In the demand model as well

as in the ANDES model, all assigned pro�les are scaled to match the known SJV of each

customer (except for the telemetry pro�les which already have the correct magnitude).

Therefore, it is expected that the cumulative yearly consumption of the demand model

should match the value from the results of ANDES. For 98% of the 300 pre-selected MSRs

this expectation could be con�rmed. However, in a few cases a bigger deviation was

observed. In order to only keep MSRs where the magnitude of the results is in accordance

with the ANDES results, MSRs whose cumulative yearly consumption obtained with the

demand model was found to deviate more than 0.01% from the ANDES cumulative yearly

consumption were �ltered out. This was the case for 6 MSRs which corresponds to 2% of

the 300 pre-selected MSRs.

• Lastly, the �nal average set was formed by randomly sampling 100 MSRs from the remaining

pool of pre-selected average MSRs. The extreme set was formed analogously by randomly

sampling 50 MSRs from the remaining pool of pre-selected extreme MSRs.

For the selection of OSs, the same procedure was followed until the third step leading to

10 The density N(-,� ) was left unnormalised, 1 is therefore its maximum value and 1 − N(-,� ) inverts all

probabilities.
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Figure 5.2: Characteristics of the overall OS population and the OSs selected for the average and extreme

set in the window 15,000 – 25,000 connected customers.

a pre-selection of 282 OSs (the number 282 instead of 300 is due to the fact that only 82 OS

were found to have extreme characteristics after the thresholding step). The fourth step could

not carried out for OSs because in ANDES substation measurements are used to rescale the

obtained OS load curves. This precludes a direct comparison with the results of the demand

model. Due to the fact that OSs are not in the main focus of this research, as explained above,

a smaller �nal set was selected from the 282 pre-selected OSs in the �fth step. Hereby, two

considerations were made: On the one hand, it is desirable to select OSs with a large number

of customers. On the other hand, computation times of the demand model increase in an

approximately linear fashion with the number of customers connected to an asset. To arrive

at a good balance in this trade-o�, all of the pre-selected OSs who are connected to 15,000 –

25,000 customers were chosen for the two �nal average and extreme sets. The �nal selection

comprising 41 average and 16 extreme OSs is visualised in �gure 5.2.

5.2.2 Pre-processing of the Model Input Data and Implementation

In this subsection, the details of the demand model implementation and the choices made during

the process are described. The core modelling principle consists in the assignment of various

types of demand pro�les to customers and is speci�ed mathematically in subsection 5.1.3.

Hereby, three major groups of customers are distinguished – small unmonitored customers,

telemetry customer and miscellaneous unmonitored customers not part of the �rst group.

The three groups comprise several customer categories which are broken down in detail in

table 5.2. While the telemetry measurements used for group 2 customers and the average

pro�les used for group 3 customers were readily available, preparing the smart meter pro�le

set used for group 1 customers involved several �ltering and one binning step. Initially, a set

of 3,773 anonymised and unnormalised smart meter pro�les of Alliander customers was given.

The steps taken and the choices made in processing the data set are described in the following:
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Table 5.2: Detailed breakdown of the customer categories and bins distinguished within the three major

groups used for the demand model. Note that ’E1 Cluster 8’ and ’E2 Cluster 7’ are only subdivided

in two bins due to the smaller number of available smart meter pro�les in these categories. For the

energy-behavioural categories ’E1 Cluster 7’ and ’E2 Cluster 3’ no smart meter pro�les are available at all,

therefore they were moved to group 3 and are modelled using the respective average category pro�les

from ANDES. The Netherlands Chamber of Commerce, Kamer van Koophandel (KvK) segments are based

on the Dutch standard classi�cation of economic activities and the Nederlandse Energiedatauitwisseling
(NEDU) categories are based on a classi�cation of grid connection ratings.

Group Description Customer categories Bins

1

Small unmonitored cust-

omers, classi�ed on the

basis of energy-behavioural

categories and modelled

through smart meter

pro�les, binning based on

the yearly consumption

Standaard Jaarverbruik (SJV).

E1 Cluster 1

E1 Cluster 2

E1 Cluster 3

E1 Cluster 4

E1 Cluster 5

E1 Cluster 6

E1 Cluster 8

E2 Cluster 1

E2 Cluster 2

E2 Cluster 4

E2 Cluster 5

E2 Cluster 6

E2 Cluster 7

1-4

5-8

9-12

13-16

17-20

21-24

25-26

27-30

31-34

35-38

39-42

43-46

47-48

2

Customers with telemetry

measurements which are

used directly, comprises

mostly larger, commercial

customers.

- -

3

Unmonitored customers

which are not part

of group 1, modelled

through average category

pro�les.

KvK segments 1-20

NEDU categories 1-8

E1 Cluster 7

E2 Cluster 3

-
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Step 1 – Filtering out profiles with missing values

It was noted that a small percentage of pro�les contains a considerable number of missing

values. In order to improve the data quality of the overall set, all pro�les with missing values in

more than 10 time steps were �ltered out, leading to the removal of 142 pro�les (3,631 pro�les

are left in the set).

Step 2 – Filtering out profiles with consecutive zeros

A few pro�les contain a high number of consecutive zeros which are most likely faulty

measurements. All pro�les containing more than one week of consecutive zeroes (therefore

consecutive zeroes in more than 672 time steps) were �ltered out, leading to the removal of 41

pro�les (3,590 pro�les are left in the set).

Step 3 – Considerations regarding PV profiles

Potentially, there could be a correlation between smart meter data availability and the presence

of Solar Photovoltaic (PV) installations, in the sense that people who own a PV system may be

more likely to also own a smart meter. This could result in an over-representation of demand

pro�les with PV characteristics in the smart meter data set. Due to the frequently negative

power �ows around noon when PV generation is highest and the high simultaneity of the

e�ect, an over-representation of PV pro�les is likely to have a distorting impact on the baseload

modelling.
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Figure 5.3: Comparison for each energy-behavioural customer category of the share of home-owned PV

systems in the Dutch population with the fraction of PV pro�les in the smart meter data set (detected by

�ltering for pro�les with more than 350 negative values). Note that for ’E1 Cluster 7’ and ’E2 Cluster 3’

no smart meter pro�les are available in the given set, therefore the corresponding bars are missing in the

chart.

To investigate whether pro�les with PV characteristics are over-represented in the smart
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meter data set, using a simple decision rule �rstly it was determined which pro�les should

be considered PV pro�les: The decision rule consisted in regarding pro�les with negative

values in more than 350 time steps as PV pro�les. Additionally, the 20 pro�les with negative

values in less than 350 time steps were inspected manually and six out of these were found to

show PV pro�le characteristics (in terms of overall shape and timing of the troughs). These six

special cases were also included in the set of PV pro�les, the negative values in the remaining

14 pro�les appeared to rather be faulty measurements. Of course this simple decision rule is

somewhat problematic, as customers with a high consumption and in relation to that small

PV system may never exhibit negative demand.

As a means of comparison, the fraction of customers with PV pro�les in the Dutch pop-

ulation was used. The source of this population data used within Alliander is the website

Energieleveren [33] which facilitates the compulsory registration of home-owned PV systems.

In the data set used here, the customers registering their PV system on Energieleveren had

already been assigned to the customer categories of group 1 (see table 5.2) using the supervised

classi�cation algorithm developed for the ANDES model. In �gure 5.3, the fraction of customers

owning a PV system in the population (red) are compared to the original fraction of PV pro�les

(light blue) detected in the smart meter pro�le set using the decision rule described above. The

breakdown in categories shows that PV pro�les indeed appear to be over-represented in some

categories, especially in ’E1 Cluster 2’, ’E1 Cluster 6’ and ’E2 Cluster 7’.

However, it is questionable whether the two fractions – either obtained from population

data or the count of PV pro�les in the smart meter data set – rely on a similar enough de�nition

of PV customers. For this reason it is unclear whether the comparison could serve as the basis

for any potential correction of the PV over-representation issue. A further complicating aspect

is that in the grid topology data used for ANDES and likewise the demand model only positive
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Figure 5.4: Comparison of the total count and the count of PV pro�les before and after the removal of

negative-SJV pro�les per energy behavioural-customer category.
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SJVs are given for the customers. The yearly energy consumption of some smart meter pro�les

was however found to be negative. In the demand model all pro�les are scaled to match

the SJVs of the customers which are modelled. This entails that smart meter pro�les with a

negative yearly consumption cannot be used because any transformation to make the yearly

consumption positive would alter the original data signi�cantly. Therefore, all negative-SJV

pro�les were removed from the smart meter data set. The fraction of PV pro�les detected

in the smart meter data set using the simple decision rule after the removal of negative-SJV

pro�les are shown in �gure 5.3 in dark blue.

It can be observed in �gure 5.3 that the over-representation of PV pro�les is either re-

solved or diminished after the removal of the negative-SJV pro�les. For this reason and more

importantly due to the more principle concerns regarding the validity of a correction based

on the comparison with the population fractions, the decision was taken to proceed with

the set of smart meter pro�les obtained after the removal of negative-SJV pro�les. In some

categories quite a large number of pro�les were removed which can be observed in �gure 5.4,

most extremely in ’E1 Cluster 8’ but also in ’E2 Cluster 7’ and ’E1 Cluster 2’. Due to the lack

of data for ’E1 Cluster 7’ and ’E2 Cluster 3’, customers from these categories are modelled

through the average pro�les used in ANDES (therefore the two categories are part of group 3

in table 5.2). Overall 453 negative–SJV pro�les were removed, resulting in the �nal set of 3,137

smart meter pro�les used for the demand model, obtained after the three described �ltering

steps.

Step 4 – Binning of the smart meter and asset customer data

As described in subsection 5.1.3, the customers from the energy-behavioural categories of

group 1 in table 5.2 are randomly assigned smart meter pro�les from the bin they are part of.

The formation of the bins was carried out as the �nal pre-processing step of the model input

data. Hereby, it was necessary to bin the small unmonitored customers to be modelled as well

as the smart meter pro�le set used to model the former. For both, the binning variable was the

annual consumption SJV.

Being a robust approach for data with a potentially large spread, quantile binning was

deemed appropriate for the given application. The binning of SJV quantiles was performed

using the binr [50] package. The critical decision to make hereby was the number of bins. In

the trade-o� between too much and too little variability, a target number of 50-100 pro�les per

bin was chosen. As �gure 5.4 shows, 11 customer categories contain more than 200 pro�les in

total, in these cases 4 bins were formed. The remaining 2 customer categories with less than

100 pro�les in total, ’E1 Cluster 8’ and ’E2 Cluster 7’, were subdivided in 2 bins. The number of

bins determined for the smart meter pro�le set was then also used to bin all customers of the

assets selected for modelling in subsection 5.2.1. The results of the binning for two exemplary

customer categories are visualised in �gure 5.5.

For the exemplary customer category shown in the top and bottom left panels of �gure 5.5,

the SJV range of the available smart meter data covers the SJV range of the customers to be

modelled fairly well. Clearly this is not the case for the exemplary customer category shown

on in the top and bottom right panels of the �gure. Visualisations of this kind were inspected

for all 13 customer categories subdivided in quantile bins. It was found that only for ’E1 Cluster

1’ shown on the left the modelled customer and smart meter SJV ranges were in relatively

good accordance. For all other customer categories the appearance was found to be similar to
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Figure 5.5: Results of the quantile binning according to the annual consumption of modelled customers

and the smart meter pro�les used to model them. Two exemplary customer categories are shown. Note

the di�erent y-axes on the top and the bottom, due to the fact that the number of customers to be

modelled is much larger than the number of smart meter pro�les available.

that of ’E1 Cluster 4’ shown on the right (to a more or less extreme extent depending on the

category). This implies that pro�les from bin 3 or 4 are still scaled up signi�cantly to match

the SJV of the customers to be modelled. The over-scaling of spiky pro�les was identi�ed

by Valckx et al. as a potential cause for the overestimation of peak loads which was found

to occur when applying their Monte Carlo simulation approach [92]. Therefore, while the

binning approach of this thesis may theoretically be able to alleviate this issue, the SJV range

of the available smart meter data is likely to limit its e�ectiveness in practice.

5.2.3 Validation of the Demand Model Implementation

After the pre-processing steps described in the previous subsection, the demand model was

implemented according to the principles speci�ed in subsection 5.1.3. The primary sanity

check of the demand model implementation was already mentioned in subsection 5.2.1: As the

assigned pro�les are scaled to match the known SJV of each customer in ANDES as well as in

the demand model, the expectation is that the cumulative yearly asset consumption should

be in accordance as well. For 98% of the 300 pre-selected MSRs a deviation of the demand

model’s yearly asset consumption of less than 0.01% from the ANDES result was found. In

the six cases where bigger deviations were observed, small di�erences in the topological data

used in the demand model and in ANDES are a possible cause. The same sanity check could

not be conducted for OS because in ANDES substation measurements are used to rescale the
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Figure 5.6: Comparison of the ANDES model result with the demand model result for an exemplary

MSR with 41 customers. The demand model was evaluated 500 times and the shown median as well as

the 5th-95th percentile range were calculated per time step.

Figure 5.7: Detail of the comparison shown in the previous �gure of the ANDES model result with the

demand model result for the same MSR with 41 customers.
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Figure 5.8: Comparison of the ANDES model result with the demand model result for an exemplary

OS with 7,505 customers. The demand model was evaluated 500 times and the median as well as the

5th-95th percentile range were calculated per time step.

Figure 5.9: Detail of the comparison shown in the previous �gure of the ANDES model result with the

demand model result for the same OS with 7,505 customers.
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obtained OS load curves. Overall, however, the very good accordance for the MSRs in 98% of

the cases was seen as su�cient evidence that the model was implemented correctly.

More interesting and telling than the basic sanity check is a visual comparison of the

demand model results with ANDES results for an example MSR and OS. The �rst comparison

for an MSR with 41 customers is shown for the entire year in �gure 5.6 and for a few exemplary

days in �gure 5.7. The �gures reveal that the demand model results in a range of possible

yearly realisations which show higher peaks in the winter and lower troughs in the summer.

At the same time, the median is still in a comparable range to the ANDES demand curve. This

suggests that the model ful�ls the requirement of introducing stochasticity into the modelling

of baseload demand and furthermore has desirable features in terms of demand peaks and

troughs.

The second comparison for an OS with 7,505 customers is shown for the entire year in

�gure 5.8 and for a few exemplary days in �gure 5.9. The median shows that peak demand

in winter and summer is much more pronounced than in the ANDES result, therefore peak

demand is very unlikely to be underestimated when evaluating the demand model in this

case and likewise for the example MSR (it might however be overestimated to some extent).

Furthermore, it is interesting to compare the magnitude of the variability for the MSR in

�gure 5.7 and the OS in �gure 5.9: The variability is much smaller in the latter case which

is in accordance with the expectation because for bigger assets the stochastic behaviour of

individual customers is averaged out to a greater extent.

5.3 Risk Metrics
This section is concerned with choosing relevant risk metrics to quantify the performance and

behaviour of grid assets which are modelled following the approach described in the previous

sections of this chapter. Firstly, the chosen risk metrics are motivated subsection 5.3.1. Hereby,

three alternative ways of specifying the risk metrics 1 and 2 are given a look to justify the

chosen alternative. Secondly, the three risk metrics are speci�ed in subsection 5.3.2.

For the de�nition of the risk metrics 1 and 2, impact functions are used which were

introduced already in generic form in section 4.1. Generally, impact functions quantify the

contribution or impact of each sampled system state to a risk metric. This de�nition can now

be illustrated for the speci�c case of the demand model. An impact function

" (0 , C) : S → ℝ (5.10)

de�ned on the sample space S of the demand model assigns a numerical outcome to every

speci�c state of the demand model (0 , C) ∈ S , where (0 , C) denotes a speci�c smart meter

pro�le selection 0 evaluated at time step C . The impact function may also assign the same

outcome to several system states, for example all time steps of a speci�c pro�le selection could

have the same impact. For a random state of the demand model (� ,) ), the outcome of the

impact function

" = " (� ,) ) (5.11)

becomes a random variable itself.
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5.3.1 Motivation and Alternatives in Specifying the Risk Metrics

To brie�y reiterate, the questions which the risk metrics are require to address are:

• Risk metric 1: For a given grid asset, what is the probability per time step to exceed a critical
power level above the rated capacity? This critical power level lies above the rated power

capacity, it is for example 110% for OSs.

• Risk metric 2: For a given grid asset, what is the expected total duration of exceeding the
rated power capacity per year? For OSs, for example, the threshold which should not be

exceeded are 87.5 hours.

• Risk metric 3: How high can the maximum demand (and how low can the minimum
demand) on a given asset become? There are no standardised asset level criteria for this

question as for the previous two questions, because this question serves to �nd out how

much additional capacity is necessary to prevent or limit overloads to a desired frequency.

Considering the background of Extreme Value Theory (EVT) exposed in section 4.2, the

third risk metric points rather clearly to the quantiles of the Generalised Extreme Value (GEV).

By indicated the load level which will not be exceeded with a prescribed probability, they

allow answering the third question how high peak demand can potentially become.

For the �rst two risk metrics in turn, three alternative formulations are possible which are

somewhat similar to each other but have di�erent implications. Here the critical power level

32A8C of risk metric 1 is used to illustrate the alternatives. The formulation is analogous for risk

metric 2 and can be obtained by replacing 32A8C with the rated power capacity of an asset 320? .

The alternatives are:

• Alternative 1: Randomly sampling individual states or ’snapshot’ values �) (� ) of the

demand model, leading to a de�nition of the risk metric A of the form

A = E[" (� ,) )] = E[1�) (� ) > 32A8C ] , (5.12)

where 1� is the indicator function which returns a value of 1 whenever event � occurs

and 0 otherwise. The indicator function has the useful property E[1�] = %A (�), therefore

its expectation is equal to the probability of event � occurring. Thus, the expectation in

equation (5.12) yields the average probability of exceeding the critical capacity 32A8C at any

given time step.

• Alternative 2: When randomly sampling full annual traces J (� ) of the demand model, a

risk metric of the form

A = E[" (� )] = E[15!� (J (� )) > 32A8C ] , (5.13)

could be de�ned, where 5!� denotes the function which returns the load duration curve of

a given random annual demand trace J (� ). In this case, the impact of a full annual trace

is " (� ) is computed and the time index is not needed. Whenever the critical capacity is

exceeded in a yearly trace, the impact metric will take on the value of 1. The expectation

in equation (5.13) yields therefore the average probability of exceeding the critical capacity

32A8C in any given year.
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• Alternative 3: When randomly sampling full annual traces, the expectation of the random

annual demand traces J (� ) could also directly be taken, to de�ne a risk metric of the form

A =

∑
35,040

C=1
1E[�C (� ) ] > 32A8C

35040

. (5.14)

The expectation E[J (� )] results in a single trace of expected demand per time step. This

is equivalent to using average annual demand pro�les which are the same for each model

evaluation. This means that the fraction of time steps which exceed the critical capacity

32A8C is a �xed number.

Alternative 3 relies on average pro�les and corresponds closely to what is currently done

in the ANDES model. It can therefore be ruled out, due to the issue of underestimating peak

loads discussed in chapter 3. To decide between alternatives 1 and 2, it is useful to consider

the relative merits and drawbacks: The major disadvantage of alternative 1 is that it does

not convey any information on what happens in a given year. For example, if an average

probability of exceeding the critical capacity corresponding to 5 hours per year is obtained, it

is not clear whether 5 hours of exceeding 32A8C take place every year or if 32A8C is exceeded for

50 hours every 10 years. Alternative 2, in turn, gives the probability of exceeding 32A8C in a

given year and therefore the two cases would have di�erent probabilities. The major drawback

of alternative 2 is, however, that it is blind to what happens within the year. For example,

a year where 32A8C is exceeded in all time steps would weigh the same as a year where it is

exceeded only in one time step.

On the practical side, a major advantage of metric 1 is that it is usually computationally

much less expansive as compared to alternative 2. In conjunction with the drawback of

alternative 2 of not di�erentiating the magnitude of the exceedance within a year, this was the

decisive argument in favour of alternative 1. Therefore, alternative 1 – sampling individual

states or ’snapshot’ values – was chosen.

5.3.2 Specification of the Risk Metrics

For the remediation of congestion issues, it matters whether the congestion occurs because

the energy demanded by customers cannot be transported to them (risk of positive overload)

or the energy generated by customers with PV systems cannot be transported away from the

customers (risk of negative overload). Therefore, separate sub-metrics targeting high and

low demand values are introduced which mirror each other and are distinguished with the

subscripts ’+’ and ’−’. The risk metrics are speci�ed and explained in the following:

• Risk metric 1: The probability of the stochastic power demand �) (� ), for a random

pro�le selection � and at a random time step ) , to exceed a critical value 32A8C which is

de�ned as the power rating of an asset 320? plus a percentage margin. Within this thesis,

the percentage margin for OSs of 10% above which an overload becomes critical is used,

thus yielding 32A8C = 320? + 0.1 · 320? :

A1,+ = E["1,+ (� ,) )] = E[1�) (� ) > 32A8C ] , (5.15)

A1,− = E["1,− (� ,) )] = E[1�) (� ) < −32A8C ] . (5.16)
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• Risk metric 2: The probability of the stochastic power demand �) (� ) to exceed the

power rating of an asset 320? . Formulated as below, this probability can be converted

into the expected overload duration which may be a more tangible quantity. For OSs, the

threshold which should not be exceeded are 87.5 hours:

A2,+ = E["2,+ (� ,) )] = E[1�) (� ) > 320? ] , (5.17)

A2,− = E["2,− (� ,) )] = E[1�) (� ) < −320? ] . (5.18)

• Risk metric 3: The power value which will not be exceeded with 95% probability by

the annual maxima, and equivalently the power value which will not be undercut with

95% probability by the annual minima. These values are given by the quantiles of the

Generalised Extreme Value (GEV) distribution, denoted by &b,f,`,+ for the distribution of

the maxima and by&b,f,`,− for the distribution of the minima. The GEV distribution has the

shape parameter b , the scale parameter f and the location parameter `. From the quantile

function, also return levels '!: can be obtained through the relation

'̂!
:
= & ˆb,f̂, ˆ̀

(? = 1 − 1

:
) , (5.19)

where : denotes the return period in blocks. The return level '̂!
:

is the magnitude which

the block maxima will exceed once on average during any period of length : . The return

level corresponding to the 95th percentile is : = 20. The two sub-metrics of risk metric

three can thus be speci�ed as:

A3,+ = &b,f,`,+ (0.95) = &b,f,`,+ (1 − 1

20
) = '!20

+ (5.20)

A3,− = &b,f,`,− (0.95) = &b,f,`,− (1 − 1

20
) = '!20

− (5.21)

5.4 Conclusion
In section 5.1, the methodological core of the demand model was motivated and mathematically

described. Hereby, especially the binning of smart meter pro�les and modelled customers

according to their yearly consumption can be considered a novel aspect with respect to the

related previous thesis work for Alliander in [92]. Theoretically, the binning has the potential

to address the peak overestimation issue which was observed in the cited previous work. In

the course of describing the implementation related aspects in section 5.2, it however became

clear that the given set of smart meter pro�les used in this thesis – which has a much smaller

yearly consumption range compared to the customers which are to be modelled for most

categories – may limit the e�ectiveness of the binning approach in practice. Aside from

this challenging aspect, the demand model was found to ful�l the requirements speci�ed in

subsection 3.2.2 and to exhibit the desirable stochasticity in its peak demand characteristics. In

section 5.3, after explaining why the speci�cation of risk metrics 1 and 2 in terms of sampling

’snapshot’ demand values was chosen, the chapter was concluded with the speci�cation of the

risk metrics.
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6 Development of Evaluation Methods
for the Risk Metrics 1 and 2

After specifying the demand model and identifying the risk metrics of interest to be obtained

from its outputs in the previous chapter, the attention can now be focused on the development

of methods to obtain these. The focus of this chapter lies hereby on the development of Monte

Carlo methods for the e�cient evaluation of risk metrics 1 and 2. As detailed in subsection 5.1.4,

the sample space of the demand model comprises of two subspace: the time step space SC and

the space of all possible way to assign smart meter pro�les to small, unmonitored customers

S0 . A visualisation of these subspaces is shown in �gure 6.1. The idea of the Importance

Sampling (IS) methods developed in the section, is to give more weights to certain states of

the subspaces, either alone or in combination. This is done with the aim of increasing the

frequency of the overload events of interest, in order to achieve a variance reduction in the

estimation of risk metrics 1 and 2. An overview of all methods developed in this section and

the abbreviations used for them is given in table 6.1. The �rst position in the abbreviations

always refers to the method for assigning demand pro�les to small unmonitored customers,

while the second position refers to the selection of time steps (except in the case of IS-bw).

Figure 6.1: Visualisation of the sample space dimensions of the demand model over which importance

sampling can be performed.
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Table 6.1: Overview of the Monte Carlo methods developed in this section and the abbreviations used.

Method Abbreviation Description
MC-full Random sampling of pro�les to obtain entire annual traces.

MC-MC Random sampling of pro�les and time steps.

MC-IS

Random sampling of pro�les and importance sampling of

time steps.

IS-MC

Importance sampling of pro�les and random sampling of

time steps.

IS-IS

Importance sampling of pro�les and importance sampling

of time steps.

IS-bw

Importance sampling of pro�les based on bin weights (bw)

and random sampling of time steps. More consistent would

be the abbreviation IS-MC-bw, but for brevity IS-bw is used.

6.1 Reference Method – Sampling Full Annual Traces
The Advanced Net DEcision Support (ANDES) model works with yearly traces of 35,040 quarter-

hourly load demand values. Being the application within Alliander which this research is

geared to, the reference method here is the sampling of full annual traces of the same format to

allow comparisons of direct practical relevance. The risk metrics 1 and 2 from subsection 5.3.2

in the previous chapter are, however, speci�ed in the form of expectations over ‘snapshot’

random demand values �) (� ) from the demand model for a random selection of pro�les �
evaluated at a random time step ) . These risk metrics verify whether the snapshot demand

values exceed certain thresholds 3 . In some sense this is the opposite of sampling full annual

traces and therefore the question might arise how one relates to the other.

To reason about this matter, a generic risk metric

A = E[" (� ,) )] = E[1�) (� ) > 3 ] (6.1)

is used, which has the same structure as and is thus representative of risk metrics 1 and 2 (see

subsection 5.3.2). Based on the impact function " (0 , C) for snapshots, a new impact function

� (0) for entire or partial annual traces can be de�ned. For now, entire annual traces are

considered:

� (0) = 1

35, 040

35,040∑
C=1

" (0 , C) = 1

35, 040

35,040∑
C=1

1�C (0 ) > 3 . (6.2)

Both impact functions allow obtaining risk metric A by calculating the respective expectation,

A = E[" (� ,) )] = E[� (� )] , (6.3)

because when enumerating all states in the sample space it does not matter whether this is

done by means of random snapshots over both subspaces or by considering annual blocks

of states. As described in section 4.1, expectations of functions can be estimated with the

conventional Monte Carlo (MC) estimator. Therefore, if �1, . . . ,�= is an independent and

identically distributed (i.i.d.) sample of pro�le selections, the MC estimator based on sampling
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full annual traces takes the form

'̂"�−5 D;; =
1

=

=∑
9=1

� (� 9 ) =
1

=

=∑
9=1

1

35, 040

35,040∑
C=1

1�C (� 9 ) > 3 . (6.4)

If snapshot values were to be used directly, the estimator would be

'̂B=0?Bℎ>C =
1

=

=∑
9=1

" (� 9 ,)9 ) =
1

=

=∑
9=1

1�)9 (� 9 ) > 3 . (6.5)

The important di�erence between these two cases is that while each snapshot value can be

considered as an independent sample, this is not true for each time step of a trace. The reason

for this is the correlation structure of time steps within traces. For example, it is possible that

entire traces are especially low or high relative to other traces. In the �rst case, sampling

an exceptionally high value would make it more likely to sample another exceptionally high

value from the same trace compared to the case of sampling from a di�erent random trace.

Therefore, the coe�cient of variation or relative error of the MC-full estimator should be

estimated according to

'̂�'̂"�−5 D;; =
(�√

= · '̂"�−5 D;;
, (6.6)

where = denotes the number of traces sampled and (� is the sample standard deviation of the

impact values � (� 9 ), obtained by taking the square root of the sample variance

(2

� =
1

= − 1

=∑
9=1

(
� (� 9 ) − '̂"�−5 D;;

)
2

. (6.7)

The error estimation works analogously for all following methods and is therefore only shown

here.

6.2 Conventional Monte Carlo
Neither the computation of snapshot values, nor of full annual traces is particularly e�cient

computationally. On the one hand, sampling a selection of pro�les takes a constant com-

putational e�ort which has to be invested for each newly generated snapshot value. When

sampling more than one time step per trace, the computational cost of drawing pro�les and of

assembling the traces can be redistributed over the sampled time steps. On the other hand,

when using all time steps of a trace as in the MC-full method, all 35,040 time step values have to

be handled entailing a much higher computational cost than handling one time step only. The

idea of the conventional MC method of this subsection, is to �nd a reasonable middle-ground

between these two extremes by sampling partial annual traces.

To this end, a vector of the time steps sampled per trace ) is introduced as an additional vari-

able in the impact function � . The vector ) = {\1, . . . , \C , . . . , \<}, with \C ∈ {1, . . . , 35040},
contains a speci�c sample of time steps. The extended trace impact function can then be
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de�ned as follows:

� (0 , ) ) = 1

<

<∑
C=1

" (0 , ) ) = 1

<

<∑
C=1

1�\C (0 ) > 3 . (6.8)

Let�1, . . . ,�= be an i.i.d. sample of pro�le selections. In the conventional Monte Carlo method

a new random sample of time steps� = {K1, . . . , K<} is drawn per trace. Therefore, random

sampling over pro�le selections and traces is performed and the corresponding estimator takes

the form:

'̂"�−"� =
1

=

=∑
9=1

� (� 9 ,�) =
1

=

=∑
9=1

1

<

<∑
C=1

1�KC (� 9 ) > 3 . (6.9)

The MC-MC approach is likely to have a higher e�ciency in obtaining estimates than the

MC-full method in many cases, because only a trace and not a time step can be seen as an

independent sample and the MC-MC method is faster in computing additional traces. This

comes at the cost of missing some overload moments, however in contrast to the snapshot

estimator still much more information is obtained per trace.

6.3 Time Step Importance Sampling
The motivation for performing time step IS links directly to the considerations regarding the

MC-MC estimator at the end of the previous subsection: It is desirable to extract as much

information as possible per sampled time step in order to lower the number of time steps

sampled per trace. When sampling time steps randomly, it is possible that some overload

events will be missed when sampling too few time steps. Under the assumption that overload

moments occur with a higher chance at particular times during the year, a targeted sampling

scheme, which gives more importance to some time steps, could lead to a higher e�ciency of

estimating the trace impact metric � .

The fundamental idea of the time step IS approach developed in this section is visualised

in �gure 6.2. The one-dimensional space of time steps is �rstly transformed into the two-

dimensional space shown in the �gure. Inspiration for this transform came from [57], where

a similar transformation is used for a singular value decomposition analysis. The line of

reasoning for considering this two-dimensional space is that it allows aligning the times of the

day with each other for the di�erent seasons of the year. As it is likely that demand extremes

occur during similar times of the day and close to each other in the season of the year, the

two-dimensional space can be used to identify a suitable IS distribution.

For doing so, �rstly conventional Monte Carlo sampling is carried out to observe where

overload moments are located in the two-dimensional space (visualised as red dots in the

example of �gure 6.2). After a certain number of overload events has been collected and

located, a kernel density estimation is carried out to extrapolate around the observed events.

The kernel density estimation also has the desired e�ect, that regions where overload events

are more densely situated will lead to larger values of the resulting density. A function from

the R package ggtern [42] has been adapted for carrying out the two-dimensional kernel

density estimation. The bandwidth of the kernel density estimation was tuned manually until

a good interpolation between the overload events was observed. Two exemplary results of the
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Figure 6.2: Visualisation of the two-dimensional time step space which is employed to estimate the IS

distribution. The red dots are exemplary overload moments, while the black contour lines represent the

result of the kernel density estimation with a Gaussian kernel.

kernel density estimation procedure are shown in �gure 6.3. On the left, moments of positive

overload and the kernel density estimated for these are shown, while on the right moments

of negative overloads and the respective density are depicted. It is striking how di�erent the

patterns are. However, it corresponds well to the expectation that moments of high positive

demand occur on winter evenings, while demand minima happen during the summer earlier

in the day due to Solar Photovoltaic (PV) generation.

The resulting two-dimensional normalised density estimate is then transformed back to

obtain a density value 6̂(C) for each of the 35,040 time steps of the year. A �xed percentage

of the maximum value of the density in the range 1-5% is used as the �oor value 6̂5 ;>>A of

the density which cannot be undercut. Thus, whenever 6̂(C) < 6̂5 ;>>A , the original value 6̂(C)
will be replaced by 6̂5 ;>>A . This density 6̂ is now used as the IS distribution. As the original

sampling density 5 is uniform, it does not need a time dependence. For a time step C the

importance weights then take the form

, (C) = 5

6̂(C) =
1/35040

6̂(C) . (6.10)

The trace impact function � is adjusted to take the density 6̂ as a parameter. Let �1, . . . ,�=
be an i.i.d. sample of pro�le selections. To carry out time step IS a sample of time steps

� = {K1, . . . , K<} is drawn from density 6̂ for each trace. The estimator for random pro�le

selection in combination with time step importance sampling takes then the form:

'̂"�−�( =
1

=

=∑
9=1

� (� 9 ,� ; 6̂) = 1

=

=∑
9=1

1

<

<∑
C=1

(
1�KC (� 9 ) > 3

) 5

6̂(KC )
. (6.11)
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Figure 6.3: Two exemplary results of the kernel density estimation procedure in the employed two-

dimensional space for a MV/LV substation are shown. The spikes show the location and frequency

of overload moments, while the smooth surfaces visualise the resulting kernel density estimates (the

densities are scaled for the purpose of visualisation and have, therefore, arbitrary units). On the left,

moments of positive overloads can be observed, while on the right moments of negative overload are

shown.

6.3.1 Description of the Sequential Time Step Importance Sampling
Algorithm

A sequential algorithm has been develop which update the time step importance distribution

in an initial optimisation stage. The algorithm relies on importance weights of the form,

,: (KC ) =
5

6̂: (KC )
=

1/35040

6̂: (KC )
, (6.12)

where : denotes the k-th step in the optimisation stage and ,: (KC ) is the corresponding

weight. The steps of the algorithm are as follows:

1. Set 6̂0 = 5 to start with conventional MC sampling. Set the iteration counter k = 1. Set the

initial optimisation threshold 3>?C8< = 0.5 · 320? .

2. Generate a random sample of time steps�1, . . . , �=>?C8< which follows 6̂: (·) for each of

the =>?C8< traces of the optimisation iteration. Also generate a random sample of pro�le

selections �1, . . . ,�=>?C8< . Using the samples, evaluate whether J� 9 (� (^ 9 )) > 3>?C8< .

Whenever that occurs, store the corresponding demand value in the vector JA4B,>?C8< .

Store the location in the two-dimensional space of all overload events <4{4=C and the

corresponding IS weights,: .

3. If the number of overloads events<4{4=C < <:34 , repeat step 2. Otherwise carry out a

weighted kernel density estimation using the stored IS weights for each overload event,

respectively. Use the resulting estimated density 6̂:34 as the IS density: 6̂: = 6̂:34 .
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4. Set the threshold 3>?C8< = &JA4B,>?C8< (1 − _) of demand values where _ is a parameter

indicating the ‘ease’ of raising the threshold. Set counter k = k + 1. If 3>?C8< > 320? set k =

K (�nal iteration) and proceed with step 5, otherwise go back to step 2.

5. Generate a random sample of time steps �1, . . . , �=>?C8< which follows 6̂ (� 9 ) for =

production run traces. Also generate a random sample of pro�le selections �1, . . . ,�=>?C8< .

Obtain the estimate by evaluating

'̂"�−�( =
1

=

=∑
9=1

1

<

<∑
C=1

(
1�KC (� 9 ) > 320?

) 5

6̂ (KC )
. (6.13)

6. Verify the convergence in blocks of 50 traces, calculate therefore the relative error '�'̂"�−�(
of the estimate. If '�'̂"�−�( < 0.1, terminate the algorithm. Otherwise go back to step 5.

6.4 Profile Selection Importance Sampling
The reasoning of why performing importance sampling on the pro�le selection space may

lead to a variance reduction, relies on two key ideas: Firstly, it was observed in example cases

and is generally plausible that very spiky pro�les are crucially involved in causing overloads.

Therefore, sampling pro�les which deviate considerably from the average behaviour with

higher probability, is likely to lead to more overload events. Secondly, when studying an

example asset with 29 customers, it was observed that overloads occur frequently due to

spiky-pro�les being assigned to very few speci�c customers. In some cases, this may have to

do with the over-scaling of smart meter pro�les with a relatively small yearly consumption

which occurs due to the limited amount of available smart meter pro�le (see subsection 5.2.2).

Therefore, it is also more generally plausible that a small number of customers is mainly

responsible for overload events – at least when it comes to assets with an overall relatively

small number of customers. Whether this holds also for larger assets with a few hundred or

thousand of customers is not in itself apparent and subject of further investigation in the next

chapter.

The indications that only a limited number of customers may be mainly responsible for

overload events are good news, because assigning the most spiky pro�les to all customers is

problematic. The reason why the latter approach is problematic is that assigning certain pro�les

with a much higher frequency to all customers can easily lead to very extreme importance

sampling weights. For example, if the top 10% of the most spiky pro�les are assigned to

all 29 customers of the example asset with probability 0.8 instead of 0.1, a large number of

importance weights would be of the order 10
−27

. Such extreme importance weights are likely

to lead to estimates which are orders of magnitude to small initially and only converge to the

correct order for very large sample sizes. Thus, it is desirable to assign the most spiky pro�les

with higher probability only to those customers which are mainly responsible for causing

overload events, while randomly assigning all kinds of pro�les to the remaining customers.

The question then arises, how to identify which customers are crucial in causing overload

events, preferably in an automated way. More abstractly, the problem consists in automatically

�nding a suitable IS distribution for a given asset. For accomplishing this, the Cross-Entropy

70



Profile Selection Importance Sampling Section 6.4

(CE) method is an appropriate choice as it allows to obtain near-optimal IS distributions

in a self-tuning manner. In the general description of the Cross-Entropy (CE) method in

subsection 4.1.3, it became clear that the method optimises the parameters of an IS sampling

distribution from a given family of parametric distributions. Therefore, it is necessary to �rstly

parametrise the problem at hand such that a parametric distribution can be used as the IS

distribution.

6.4.1 Parametrising the Demand Model

The parametrisation chosen here is based on the idea to divide the smart meter pro�les in

each of the 48 bins used in the demand model in two sets – a set of very spiky pro�les and a

set of all other pro�les with more average characteristics. This requires identifying which of

the pro�les in a bin are most spiky. By visual inspection of several examples, it was found

that the following deviation metrics are well suited to accomplish the task: Let s1 = {B1,C } be a

smart meter pro�le from a given bin 1 and s̃1 = {B̃1,C } the median pro�le of that bin, obtained

by computing the median of all pro�les in the bin per time step. For greater ease of notation,

the bin indices 1 are dropped below. The metrics J+ and J− have been calculated for each

pro�le in each bin by evaluating

J+ (s) =
35,040∑
C=1

ℎ(C) , where ℎ(C) =
{
(BC − B̃C )2 BC > B̃C

0 otherwise ,
(6.14)

and

J− (s) =
35,040∑
C=1

ℎ(C) , where ℎ(C) =
{
(BC − B̃C )2 BC < B̃C

0 otherwise .
(6.15)

In order to obtain two categories on the basis of the median deviation metrics, their

quantiles were used. The corresponding parameter of the algorithm is termed @BD224BB , because

it determines where to draw the line between pro�les considered as spiky (success) and other

pro�les (failure). For each bin and separately for positive and negative overloads two sets were

formed: A pro�le s was assigned to the ‘success set’ of spiky pro�les for positive overloads

whenever J+ (s) ≥ &J+ (? = @BD224BB ), where &J+ (?) denotes the quantile function of the

median deviation metric which returns the estimated sample ?-quantile for the discrete set

of J+ values. For a given bin 1, the two sets formed in this way are denoted by S1,BD224BB and

S1,5 08;DA4 . Analogously, the decision rule for negative overloads was to assign a pro�le s to

the ‘success set’ whenever J− (s) ≥ &J− (? = @BD224BB ).
The Bernoulli distribution describes experiments with two possible outcomes, success or

failure, which occur with probability D and 1−D, respectively. Using the Bernoulli distribution,

the random assignment of pro�les from a bin to small, unmonitored customers in the demand

model can be parametrised in two steps: Taken the example of a single customer 8 , in the �rst

step a Bernoulli trial is carried out with the success probability D8 of the customer in question.

The outcome of the Bernoulli trail is either success or failure. In the case of a success, in the

second step a pro�le will be randomly chosen with uniform probability from the success set of

pro�les S18 ,BD224BB of the bin 18 which the customer belongs to. In case of a failure, a pro�le

from S18 ,5 08;DA4 will be randomly sampled with uniform probability.
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In the demand model, as described in subsection 5.1.3, the random assignment of pro�les

with uniform probability in one step is the usual procedure. The described two step procedure

will now lead to the same outcomes in terms of the resulting random pro�le selections � ,

under the condition that the success probability D8 of customer 8 corresponds exactly to the

ratio

D8 =
|S18 ,BD224BB |

|S18 ,BD224BB | + |S18 ,5 08;DA4 |
, (6.16)

where | · | denotes the number of elements in the sets, respectively. An example can illustrate

why this is the case: Assuming a bin which contains 100 pro�les, the probability of each pro�le

of being chosen would be 0.01. For a quantile threshold @BD224BB = 0.9, the success set would

contain 10 pro�les. The probability of a pro�le from the success set of being chosen in the two

step procedure is then 0.1 · 0.1 = 0.01, the probability of a pro�le from the failure set of being

chosen 0.9 · 1/90 = 0.01. Thus, for all pro�les in the bin, the probabilities of being chosen

remain unchanged.

The overall sampling distribution 5 of a modelled asset, from which random pro�le

selections � are drawn, can therefore be parametrised as a chain of =B Bernoulli trials

5 (x ; u) =
=B∏
8=1

(1 − D8 )G8 · (D8 )1−G8 , (6.17)

where =B is the number of unmonitored customer modelled with smart meter pro�les whose

success probabilities D8 are determined according to equation (6.16). The outcome of each

Bernoulli trail is collected in the vector x = (G1, . . . , G8 , . . . , G=B ) with G8 ∈ {0, 1}. Given

the vector of success probabilities u = (D1, . . . , D8 , . . . , D=B ) with D8 ∈ [0, 1], the value of the

sampling distribution 5 for a particular success-failure sequence can then be determined by

evaluating equation (6.17).

6.4.2 Application of Importance Sampling and the Cross-Entropy
Method

To evaluate the demand model in the described parametrised form, �rstly, a random success-

failure sequence ^ is sampled according to the success probabilities collected in vector u.

Secondly, per customer 8 a pro�le is sampled either from S18 ,BD224BB or form S18 ,5 08;DA4 , depend-

ing on whether -8 was determined to be a success or a failure in the �rst step. Framing the

demand model in this way allows to perform importance sampling by using a di�erent vector

of success probabilities {, where the probabilities of sampling spiky pro�les from the success

set can be changed with respect to the original probabilities u. For example, customer 8 will be

assigned one of the most spiky pro�les with higher probability if {8 > D8 .

To carry out the importance sampling, �rstly, again a random success-failure sequence^ is

sampled, now however according to the success probabilities collected in vector {. The second

step remains the same and pro�les are still uniformly sampled from the success or failures set.

The di�erence to the evaluating the demand model without IS consists, therefore, in sampling

^ according to the changed probabilities { in the �rst step, such that for certain customers

more successes occur resulting in the pro�les from the success sets of various bins to appear

more frequently in the aggregate demand traces. To correct this purposefully introduced bias,
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importance weights of the following form are used:

, (x ; u, {) = 5 (x ; u)
6(x ; {) =

∏=B
8=1
(1 − D8 )G8 · (D8 )1−G8∏=B

8=1
(1 − {8 )G8 · ({8 )1−G8

, (6.18)

where 6(x; {) is the IS distribution. Let )1, . . . , ,)= be an i.i.d. sample of time steps and

-1, , . . . , -= and i.i.d. sample of success-failure sequences from 6. The IS estimator for this

speci�c case follows then directly from the general form in equation (4.11):

Let �1, . . . ,�= be an i.i.d. sample of pro�le selections. In the conventional Monte Carlo

method a new random sample of time steps � = {K1, . . . , K<} is drawn per trace. Use H

equation above.

'̂�(−"� =
1

=

=∑
9=1

� (� (^ 9 ),� 9 ) ·, (^ 9 ; u, {) , (6.19)

where = is the number of independent samples and � (� (^ 9 ),� 9 ) measures the impact of

the random pro�le selection � (^ 9 ) for a random sample of time stepsK 9 of the 9-th trace. A

subtle point to note here is that a speci�c success-failure sequence x is not deterministically
linked to the resulting speci�c pro�le selection, because of the second step in evaluating the

demand model which consists in uniformly sampling pro�les from the success or failure sets

based on the values of x . Therefore, � (x) is still a random vector. This point does not have

any further implications for the following, but is useful to be aware of for the sake of clarity.

It is not clear a priori, what a suitable choice for the parameter vector { of 6(x; {) for a

given asset could be. To automatically �nd a parameter vector { such that the ‘distance’
11

to the

theoretically optimal, unknown IS distribution6∗ is minimised, the CE method can be employed.

If the distribution whose parameters are being CE optimised belongs to an exponential family,

an analytical solution to the optimisation problem can be obtained [79]. This is the case here,

since the Bernoulli distribution belongs to an exponential family. Furthermore, as detailed in

the general description of the CE method in subsection 4.1.3, the solution to the optimisation

problem can be estimated using a sampling-based formula. The method combines therefore

optimisation and estimation.

Before deriving the sampling-based formula for the problem at hand, it is useful to re-

capitulate what was discussed at the end of subsection 4.1.3: When using the CE method

in the context of rare events, �nding the near-optimal IS distribution is often a rare event

estimation problem itself. This is due to the fact that the optimal IS distribution 6∗ is usually

very di�erent from the original sampling distribution in these cases. Using conventional

MC to estimate the solution of the parameter optimisation problem would then require large

sample sizes and defeat the purpose of why the CE method is being used in the �rst place.

This di�culty can be circumvented by using a sequence of intermediate target regions which

cover a gradually shrinking portion of the sample space. These intermediate regions allow

estimating IS distributions which gradually approach the near-optimal IS distribution.

In each iteration of this sequential procedure, the parameter vector { of the biasing dis-

tribution 6(x; {) is newly estimated. The formula used for this purpose can be obtained by

solving equation (4.24) which was derived in subsection 4.1.3. The equation is restated in the

11 To be precise, the Kullback-Leibler divergence is minimised which is not distance metric in the rigorous mathemat-

ical sense.
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following in the appropriate form for the problem at hand and such that it incorporates the

idea of sequential updating:

1

=

=∑
9=1

� (� (^ 9 ),� 9 ) ·, (^ 9 ; u, {̂:−1) · ∇{̂: ;=
(
6(^ 9 ; {̂: )

)
= 0 , (6.20)

where = is the number of i.i.d. samples, : is the current iteration of the sequential procedure,

{̂:−1 the estimated parameter vector of the previous iteration and ∇{̂: denotes the gradient with

respect to parameter vector {̂: of the current iteration to be estimated. By taking the gradient

∇{̂: and resolving the system of equations for {̂: , the sampling-based updating formula for

the success probability {̂:,8 of customer 8 can be obtained:

{̂:,8 =

∑=
9=1
� (� (^ 9 ),� 9 ) ·, (^ 9 ; u, {̂:−1) · - 9,8∑=
9=1
� (� (^ 9 ),� 9 ) ·, (^ 9 ; u, {̂:−1)

. (6.21)

6.4.3 Description of the Cross-Entropy Algorithm

Based on the idea of sequential updating of the parameters { of the biasing distribution 6(x ; {)
exposed above, the steps of the CE algorithm are as follows:

1. Set {̂0 = u to start with conventional MC sampling. Set the iteration counter k = 1. Set the

initial optimisation threshold 3>?C8< = 0.5 · 320? .

2. Generate a random sample �1, . . . ,�=>?C8< that follows 6(^ i ; {̂:−1). Also generate a

random sample of time steps �1, . . . , �=>?C8< for each of the =>?C8< traces of the CE

optimisation iteration. Obtain the maximum for each trace and store it in the vector

J<0G,>?C8< =<0G (J� 9 (� (^ 9 ))).

3. Set the optimisation capacity threshold 3B4@ = &J<0G,>?C8< (1 − d).

4. Evaluate equation (6.21) with 3>?C8< as the capacity threshold to obtain the new updated

success probability {̂ ′
:,8

for each customer 8 . Hereby, use smoothing parameter U ∈ [0, 1]
for the updating such that {̂:,8 = U · {̂ ′:,8 + (1 − U) {̂:−1,8 and bound all success probabilities

between 1 − @BD224BB and 0.9.

5. Set counter k = k + 1. If 3B4@ > 320? set k = K (�nal iteration) and proceed with step 6,

otherwise go back to step 2.

6. Generate a random sample �1, . . . ,�= that follows 6(^ i ; {̂ ). Also generate a random

sample of time steps�1, . . . , �= . Evaluate for all production traces = computed so far

'̂�(−"� =
1

=

=∑
9=1

� (� (^ 9 ),� 9 ) ·, (^ 9 ; u, {̂ ) . (6.22)

7. Verify the convergence in blocks of 50 traces, calculate therefore the relative error '�'̂�(−"�
of the estimate. If '�'̂�(−"� < 0.1, terminate the algorithm. Otherwise go back to step 6.
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6.5 Combining Time Step and Profile Selection
Importance Sampling

To combine time step and pro�le selection importance sampling, the optimisation stage of the

pro�le selection IS algorithm is used. During the CE optimisation stage, also overload moments

are stored, which allow to carry out a kernel density estimation after the CE optimisation stage

is terminated. In the production stage, IS of time steps and pro�les is carried out simultaneously

according to the relations given above, when the methods were discussed separately.

6.6 Generalisation of Profile Selection Customer Weights
to Bin Weights

In order to derive a general IS distribution for a wider range of assets from asset speci�c

distributions, the results of evaluating the pro�le selection IS algorithm IS-MC on 150 MV/LV

substations were used (see chapter 7 for further details). More speci�cally, the obtained

customer success probabilities were given a look mapped to the 48 bins of the demand model

which the customers are part of. Figure 6.4 allows to evaluate whether certain bins show

distinctly higher success probabilities. While much noise is visible in the �gure, it also appears

that in some bins high success probabilities occur more often than on average.
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Figure 6.4: Customer success probabilities obtained from testing pro�le importance sampling on 150

MV/LV substations.

Taking this promising initial �nding as a starting point, all assets with more than 80

customers were �ltered out. It was observed then that the tendency of certain bins showing
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Chapter 6 Development of Evaluation Methods for the Risk Metrics 1 and 2

higher probabilities became even clearer. Subsequently, the mean of all success probabilities

was computed to obtain bin success probabilities. Finally, a thresholding was performed

such that only bins with average success probabilities higher than 0.15 were assigned these

higher probabilities. The initial probabilities were assigned to the remaining bins. The bin

probabilities, which translate to bin weights when carrying out IS, obtained with the described

procedure are employed directly in the IS-bw method. Therefore, when initialising the method

for an asset, it is checked which bins the customers belong to. Then, they are assigned the

respective bin success probabilities and importance sampling is performed from the �rst trace

onwards.
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7 Sampling Performance and
Demand Model Evaluation Results

This chapter presents the results of evaluating the performance and suitability of the Monte

Carlo sampling and extreme value inference methods described in the previous chapter. These

methods were used to obtain the risk metrics of interest, which quantify certain properties

of the demand model described in chapter 5. The accuracy as well as the e�ciency of the

investigated Monte Carlo (MC) sampling methods in obtaining risk metrics 1 and 2 – which

are both probabilities of asset demand exceeding high thresholds – are assessed and discussed

in section 7.1. The results of applying Extreme Value Theory (EVT) to infer distributions of

annual maxima and minima from the model outputs and obtain risk metric 3 are presented in

section 7.2.

Two kinds of grid assets were used to evaluate the various methods: the MV/LV substations,

Middenspanningsruimtes (MSRs), and HV/MC substations, Onderstations (OSs), selected in

subsection 5.2.1. Hereby, the major focus lied on the former because the Advanced Net

DEcision Support (ANDES) model is presumed to underestimate peak demands especially

on the lower voltage levels were demand variability is larger. Some results were collected

on the full set of the 150 selected MSRs, comprising 100 MSRs with average and 50 MSRs

with extreme characteristics in terms of the number of customers connected and their total

yearly consumption. However, due to limited computational resources, other results were not

collected on the full set of MSRs and similarly for OSs only a small subset was considered. A

detailed breakdown of the number of assets and methods used to obtain the di�erent results

presented and discussed in this chapter is given in table 7.1.

7.1 Accuracy and E�iciency of the Investigated Monte
Carlo Sampling Methods – Risk Metrics 1 and 2

Before diving into the details of the parameter tuning as well as the accuracy and e�ciency

results of the investigated Monte Carlo methods in this section, two pre-considerations may

be helpful: Firstly, a brief recapitulation of the precise de�nitions of the �rst two risk metrics

and, secondly, an illustration of how their magnitude may be interpreted. Based on the latter

considerations, a relevant range of the risk metric values can be identi�ed which is a useful

reference frame for discussing the merits and drawbacks of the investigated methods in the

context of distribution capacity planning.

All risk metrics distinguish the risk of positive and negative overload in separate sub-

metrics. The de�nitions of �rst two risk are as follows: Risk metric 1 is the probability of

stochastic power demand �) (� ), for a random pro�le selection � and at a random time step

) , to exceed a critical value 32A8C which is de�ned as the power rating of an asset 320? plus a

percentage margin. For the positive sub-metric this can be formulated in mathematical terms

as the expectation

A1,+ = E[1�) (� ) > 32A8C ] , (7.1)
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Table 7.1: Overview of the investigated sets of assets and the methods used to obtain the results presented

in the various sections of this chapter. Note that in the table legend the abbreviations used for the Monte

Carlo methods are explained.

Section Content Assets
investigated

Methods
investigated

Subsection 7.1.1 Parameter tuning 10 MSRs

MC-full, MC-MC, MC-IS,

IS-MC, IS-IS

Subsection 7.1.2

Accuracy of the MC

sampling methods

150 MSRs

117 MSRs

MC-full, MC-MC, MC-IS,

IS-MC, IS-IS

IS-bw

Subsection 7.1.3

E�ciency of the MC

sampling methods

150 MSRs

117 MSRs

MC-full, MC-MC, MC-IS,

IS-MC, IS-IS

IS-bw

Subsection 7.1.4

Results of the MC sampling

methods for substations

4 OSs

MC-full, MC-MC, MC-IS,

IS-MC, IS-IS

Section 7.2

Inference of extreme

demand values

150 MSRs

Block maxima method

from extreme value theory

The abbreviations used throughout this chapter for the various investigated Monte Carlo methods are

explained below. The �rst position in the abbreviation always refers to the method for assigning demand

pro�les to small unmonitored customers, while the second position refers to the selection of time steps

(except in the case of IS-bw):

• MC-full: Random sampling of pro�les to obtain entire annual traces.

• MC-MC: Random sampling of pro�les and time steps.

• MC-IS: Random sampling of pro�les and importance sampling of time steps.

• IS-MC: Importance sampling of pro�les and random sampling of time steps.

• IS-IS: Importance sampling of pro�les and importance sampling of time steps.

• IS-bw: Importance sampling of pro�les based on bin weights (bw) and random sampling of time

steps. More consistent would be the abbreviation IS-MC-bw, but for brevity IS-bw is used.

while the negative sub-metric is de�ned analogously for the demand undercutting the critical

power value, �) (� ) < −32A8C . Risk metric 2 is the probability of the stochastic power

demand �) (� ) to exceed the power rating of an asset 320? . Therefore, its positive sub-metric

can be speci�ed as

A2,+ = E[1�) (� ) > 320? ] , (7.2)

and the negative sub-metric in analogous manner for the demand undercutting the power

rating,�) (� ) < −320? . Therefore, risk metric 2 is the more fundamental quantity as it directly

relates to the physical rating of an asset. At the same time, it is also the more conservative

measure which is exceeded more easily. For these reasons, the positive and negative variants

of metric 2 were respectively used as the target quantities in the algorithms which sequentially

optimise the Importance Sampling (IS) distribution (MC-IS, IS-MC, IS-IS). Due to the structural
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Figure 7.1: Visualisation of how per 15-minute overload probability magnitudes relate to the number

of years during which one time step is overloaded on average. Highlighting the average character of

metrics A1 and A2 is important, as they do not convey any information on how overloads are distributed

over di�erent years. The area shaded in blue is the range of probabilities not relevant for distribution

system planning.

similarity to metric 1 this does not mean any loss in generality. Metric 1 was evaluated

simultaneously to metric 2 and is often reported as well in this chapter.

Due to the speci�cation of the above risk metrics to detect ‘snapshot’ samples which

exceed a threshold, their output values are per 15-minute average overload probabilities. The

average character is emphasised here, because the metrics do not convey any information

on how regularly or irregularly the overloads occur (e.g. one overloaded time step per year

would result in the same average probability as ten overloaded time steps every ten years). To

make the per 15-minute probabilities more tangible, their magnitude is related to the number

of years during which on average one quarter-hourly time step is overloaded in �gure 7.1.

From the visualisation in the �gure, it becomes clear that probabilities of the order 10
−6

and

smaller are not very relevant for distribution capacity planning, as one overloaded time step

on average in 28.5 years (which is the rounded value corresponding to A2 = 10
−6

) or more is

tolerable on the distribution level. The range of years and probabilities which are considered

as not relevant following this reasoning are shaded in blue in the �gure. These considerations

provide the relevant contextual background for interpreting the results of the Monte Carlo

methods in this section.

7.1.1 Parameter Tuning

The fundamental idea of the time step and pro�le selection importance sampling algorithms

described in sections 6.3–6.5 of the previous chapter, is to automate the process of identifying

a suitable biasing distribution for any given asset. Despite this intention, certain parameters of

the algorithms still have to be set manually which were also introduced in the previous chapter.
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Table 7.2: Overview and description of all relevant parameters of the developed sampling algorithms

which rely on Importance Sampling (IS) and the Cross-Entropy (CE) method.

Parameter Description Default
value Tuned

Common

parameters

of all

methods

<
Number of time steps sampled

per trace

5000 yes

=?A>3

Number of traces in each block

for which convergence is

tracked in the production stage

50 no

=<0G
Maximum number of traces

which is computed

20,000 no

=<0G,I4A>

Number of traces after which

the simulation is stopped if

all estimates are zero

10,000 no

Parameters of

time step IS

=B4@

Number of traces used during

the sequential updatingof the

IS distribution stage

200 no

<:34

Minimum number of time

steps to be used for the

kernel density estimation

250 yes

_
’Ease’ of raising the threshold

in the sequential stage

0.1 yes

65 ;>>A

Percentage of the maximum

value of the IS distribution

which is set as the �oor value

0.03 yes

Parameters

of pro�le

selection IS

=>?C8<

Number of traces used

during the CE optimisation

of the IS distribution

500 yes

d
’Ease’ of raising the threshold

in the CE optimisation stage

0.05 yes

U
Amount of smoothing when

updating the IS distribution

0.6 yes

@BD224BB

Quantile to separate spiky

(’success’) pro�les from

less-spiky pro�les

0.9 yes
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As it is not clear beforehand which values are optimal, simulation experiments with varying

parameter values have been conducted to observe the e�ect of parameter changes. An overview

and a description of all relevant parameters of the developed sampling algorithms is provided in

table 7.2. Not all of the parameters listed in the table have been tuned: The common parameters

of all algorithms =?A>3 , =<0G and =<0G,I4A> are concerned with the amount of samples taken

and do not qualitatively in�uence the performance of the algorithms. Similarly, the parameter

=B4@ is not in�uential in terms of how well the time step IS algorithm performs, because in case

the minimum number of time steps above the current threshold<:34 is not reached, another

block of =B4@ traces is evaluated without discarding the time steps collected so far.

Tuning various parameters in combination can quickly become computationally very

expansive, because the number of combinations increases exponentially with the number of

parameters considered. To circumvent the issue, only the e�ects of varying one parameter

at a time, while keeping all other parameters constant, were studied. To this end, sensible

ranges for the parameters were identi�ed, either based on the experience gained in trial runs

or based on typical values suggested in the literature. The latter approach could be taken for

the parameters d and U of the Cross-Entropy (CE) method based on [26, 27]. The ranges were

subsequently discretised to obtain a small number of parameter values for parameter tuning

experiments. The discretisation was either done evenly, or using smaller step sizes in those

parts of the parameter ranges where the sensitivity was presumed to be higher compared to

other parts. The default values for each parameter shown in table 7.2 were then chosen such

that they respectively lie in the middle of the investigated parameter ranges.

Furthermore, in order to limit the computational cost, the parameter tuning experiments

were only carried out on a small number of assets, namely on a subset of ten MSRs out of the

total set of 150 MSRs with average or extreme characteristics. Evidently, when using such a

small subset it is desirable to make it as representative as possible. For accomplishing this, the

●

●

●

●

●

●

●

●

●

●

1e−07

1e−05

1e−03

1e−01

M
SR 1

M
SR 2

M
SR 3

M
SR 4

M
SR 5

M
SR 6

M
SR 7

M
SR 8

M
SR 9

M
SR 10

Asset

E
st

im
at

ed
 o

ve
rlo

ad
 p

ro
ba

bi
lit

y r 2

Set of parameter
tuning MSRs

●

●

●

●

●

●

●

●

●

●

MSR 1

MSR 2

MSR 3

MSR 4

MSR 5

MSR 6

MSR 7

MSR 8

MSR 9

MSR 10

Figure 7.2: Selection of ten MSRs for the parameter tuning experiments which cover the overload

probability range of all orders of magnitude. The �ve MSRs to the left are representative of the A2,+ range,

while the �ve MSRs to the right are representative of the A2,− range.
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principle consideration was that the e�ciency of Monte Carlo methods critically depends on

the order of magnitude of the estimated quantity. For this reason it is plausible that the e�ects

of parameter changes are similar for MSRs with similar overload probabilities A2 – and vice

versa. Therefore, choosing MSRs with overload probabilities of di�erent orders of magnitude is

likely to result in a more representative set than a randomly chosen subset. Furthermore, it was

suspected that there may be di�erences in the e�ects of parameter changes when estimating

positive versus negative overload probabilities (A2,+ versus A2,−).

Based on these considerations, the overload probability ranges of A2,+ and A2,− observed

in an initial trial run for the total set of 150 MSRs were respectively divided into 5 equally

spaced bins on a logarithmic scale. Additionally, assets requiring more than 100 s to reach a

relative error below 10% were �ltered out. Subsequently, one MSR was randomly drawn from

each bin resulting in �ve MSRs representative of the A2,+ range and �ve MSRs representative

of the A2,− range. The estimates with 95% con�dence intervals of the ten parameter tuning

MSRs are shown in �gure 7.2. It can be gathered from the �gure that the estimates span

various orders of magnitude and are approximately equally spaced on a logarithmic scale, as

desired. Furthermore, it is noteworthy that MSRs 1, 6 and 7 have overload probabilities below

the relevant range. The parameter tuning results for these MSRs are shown in the following,

however they are not taken into account when deciding on which parameter values are most

appropriate.

Three sets of parameter tuning experiments were run: Firstly, a set of experiments to

investigate the parameters<:34 , _ and 65 ;>>A of the time step IS algorithm. Secondly, a set of

experiments to investigate the parameters =>?C8< , d , U and @BD224BB of the pro�le IS algorithm.

It was not deemed necessary to investigate the parameters from the �rst and the second

set of experiments again for the algorithm combining time and pro�le IS. Thirdly, a set of

experiments was conducted to investigate the number of time steps< sampled per annual

trace for all methods. The parameter< was given this special attention because of its potential

to directly in�uence computation time.

Varying the parameters of the time step IS algorithm did not result in any noticeable

overall trends in the number of traces necessary until reaching a relative error ≤ 10%. Due

to the lack of trends and for brevity in this chapter, a detailed visualisation of the results is

shown in �gure A.1 of appendix A. These �ndings may be seen as an indication that the time

step IS algorithms are quite robust, at least for the investigated assets and parameter ranges.

Overall, therefore, no clear indication was found to change any of the parameters away from

the default values shown in table 7.2.

The results of varying the parameters of the pro�le selection IS algorithm are shown

in �gure 7.3. Again, the number of traces until reaching the target relative error of 10% are

considered. For interpreting the �ndings, it is important to note the general tendency that

assets with lower overload probability require more traces for convergence. For example, the

MSRs 1, 6 and 7 (in green, pink and purple in �gure 7.3) with overload probabilities below

the relevance threshold of 10
−6

stand out quite clearly. In contrast to the results of the time

step IS, here clearer trends are visible for two out of four parameters: For =>?C8< there seems

to be a trade-o� in the sense that for assets with A2 > 10
−6

lower values of =>?C8< lead to a

faster convergence, while for the assets with A2 < 10
−6

higher values are favourable. This is

sensible because a larger block of traces =>?C8< per optimisation step is likely to lead to a more

optimal IS distribution for rare event probabilities. Considering that the asset with A2 < 10
−6
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Figure 7.3: Parameter variation results for the pro�le selection IS algorithm. The number of traces

needed to reach a relative error ≤ 10% is shown for each tested parameter value and replicate (points). A

small amount of random noise has been added to the x-coordinate of the points to avoid overplotting.

The medians of each set of �ve replicates are connected to highlight potential trends (lines).
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are less relevant, the default value of =>?C8< = 500 is maintained since it constitutes a good

compromise in the described trade-o�. No clear trends are visible for the parameter d , apart

from not setting it too low, therefore the default value of d = 0.05 is maintained as well. For

the parameter U the situation is similar, except for the observation that values above 0.8 appear

to result in a large spread for MSRs 8 and 9 which may indicate a less robust behaviour for

high values. Thus, the default value of U = 0.6 appears to be a reasonable choice already. For

@BD224BB , a relatively clear downward trend is visible for almost all MSRs. This observation can

be well explained, because higher values of @BD224BB mean that the set of pro�les given more

weight in the IS shrinks and only the most spiky pro�les remain – which is likely to lead to a

better variance reduction. Therefore, a clear indication that it is reasonable to raise the value

of @BD224BB from 0.9 to 0.95 was found in this case.

The e�ect of varying the number of time steps m sampled per annual trace was invest-

igated for all methods (except for bin weight IS of pro�les, IS-bw). Here, the computation time

until reaching a relative error ≤ 10% was deemed to be the better measure than the number of

traces. The reason for not looking at the number of traces is that sampling more time steps per

trace is likely to result in less traces needed for reaching the target relative error. However, this

does not necessarily mean that also computation time is lower, because sampling more time

steps per trace is computationally more expensive – thus there could be a trade-o� between

decreasing the number of traces needed for convergence and limiting the computation time

per trace.

The results of the corresponding simulation experiments can be observed in �gure 7.4.

Large �uctuations are visible for MSRs 1, 6 and 7, especially when pro�le selection IS is

involved which make it hard to identify clear trends. However, as these MSRs have overload

probabilities below the relevant range, their behaviour does not necessarily need to be taken

into account when choosing a suitable value for<. For the MSRs with relatively large overload

probabilities and therefore rather small computation times, an increasing tendency in the

computation times with the number of time steps sampled per trace is visible, as expected.

On the other hand, MSR 2, with an overload probability at the lower end of 10
−5

, indicates

that sampling only 500 or 1,000 time steps may lead to slightly higher computation times

for assets with A2 values of this order compared to sampling 2,000 time steps and above. The

likely cause is that when sampling less than 2,000 time steps, some overload events will be

missed requiring more traces to be computed until convergence occurs. Fortunately, for MSR

2 it does not appear that sampling more than 2,000 time steps decreases computation time

further. Thus, a value of< = 2,000 time steps seems to be a reasonable compromise which

allows assets with A2 > 10
−5

to be computed faster than with the default value of< = 5,000.

To sum up, only for two cases indications where found that it is reasonable to change

parameters away from their default values: Firstly, for @BD224BB a value of 0.95 requires less

traces for convergence than the default of 0.9 and therefore @BD224BB is adjusted accordingly.

Secondly, the number of time steps sampled per annual trace< is decreased from 5,000 to

2,000. For all other parameters the default values are retained.

7.1.2 Accuracy of the Investigated Monte Carlo Methods

The accuracy of the developed MC sampling methods was assessed on the set of 150 MSRs,

comprising of 100 MSRs with average and 50 MSRs with extreme characteristics, for all methods
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Figure 7.4: Results of varying the number of time steps< sampled per annual trace. The computation

time until reaching a relative error ≤ 10% is shown for each tested parameter value and replicate (points).

A small amount of random noise has been added to the x-coordinate of the points to avoid overplotting.

The medians of each set of �ve replicates are connected to highlight potential trends (lines).
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except for bin weight IS (IS-bw). The IS-bw method is a special case because it required the

weights resulting from the pro�le selection importance sampling method (IS-MC) as an input

for generalising customer speci�c weights to bin weights, as described in section 6.6. Therefore,

it was run after the simulation experiments for all other methods and, due to computational

limitations, it was chosen to test the method only on those 117 out of the 150 MSRs with

nonzero values of metrics 1 and 2. To further limit the computational e�ort, only �ve replicates

where produced for the IS-bw method instead of the nine replicates considered for all other

methods.

Assessing the accuracy of the sampling methods is meant here in the sense of verifying

whether the estimates produced by them are of a similar magnitude. Theoretically, the

MC estimator and the IS estimator are both unbiased, as detailed in section 4.1. Thus, the

theory predicts that the estimates produced by all investigated methods converge to the same

population value for in�nite sample sizes. However, when visually inspecting the nonzero

estimates obtained for 117 out of the 150 MSRs, it became apparent that the estimates for the

methods involving pro�le importance sampling (IS-MC, IS-IS and IS-bw) were not always in

accordance with the estimates produced by the remaining methods (MC-full, MC-MC and MC-

IS). The estimates of all methods and independent replicates obtained for two exemplary MSRs

are shown in �gure 7.5. While the estimates for MSRs 18 on the left are in good accordance for

both variants of risk metrics 1 and 2, for MSRs 117 on the right the IS-MC and IS-IS estimates

for A1,− and A2,− are orders of magnitude smaller than the other estimates. Interestingly, the

bin weight method IS-bw does not appear to su�er from the issue in this case, even though

it also involves pro�le selection importance sampling. However, it was noted that for other

assets the issue arose as well with bin weight importance sampling.
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Figure 7.5: Comparison of the risk metric 1 and 2 estimates obtained with di�erent sampling methods for

two exemplary MSRs. Point estimates and 95% con�dence intervals of all independent replicates produced

are shown on a pseudo-logarithmic scale which becomes linear as zero is approached. Con�dence

intervals are clipped at zero, as probabilities cannot be negative.

As the results of Monte Carlo methods are inherently stochastic, visual comparisons

between groups of estimates do not always allow to clearly conclude whether there is a bias

or not. A more objective and theoretically sound approach for comparisons between groups

of stochastic results are hypothesis tests for equal means. Since in this case the variances of
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two groups of replicates, as well as their sizes may be di�erent (the IS-bw method has fewer

replicates), Welch’s t-test is the appropriate choice.
12

The test was used to systematically

evaluate how often the magnitude of estimates produced by di�erent methods deviates by

testing the hypothesis of equal means between groups of replicates. Random sampling of full

annual traces (MC-full) was used as the reference method to which all other methods were

compared, since it directly uses the demand model outputs without any further assumptions.
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Figure 7.6: Visualisation of the hypothesis testing results with the signi�cance level U = 5% for the

MSRs with average and the MSRs with extreme characteristics. Note that the number of assets in the

set of extreme MSRs is lower compared to the set of average MSRs, therefore also the overall count of

hypothesis tests results shown on the right is lower.

The results of testing for each asset whether the replicates of the MC-full method have

a signi�cantly di�erent mean from the replicates of the �ve other methods are shown in

�gure 7.6. The common signi�cance level of U = 5% was adopted and the Holm method to

adjust for multiple testing was used when carrying out the hypothesis tests with the R package

rstatix [54]. Figure 7.6 shows that mainly estimates of the pro�le selection IS methods di�er

signi�cantly from the MC-full estimates. Furthermore, much more estimates of these methods

di�er signi�cantly from the MC-full estimates in the extreme set than in the average set.

Considering the high number of 280 customers of MSR 117 in �gure 7.5 and that a customer

number above average is common for MSRs in the extreme set, inaccurate estimates might

occur more often for assets with a high number of customers. To verify whether this is the

case, the following ratio was calculated for the risk metrics A2,+ and A2,− of each asset with

nonzero estimates:

;>610

(
A<4Cℎ>3

Ā"�−5 D;;

)
, (7.3)

where Ā"�−5 D;; is the mean of all MC-full replicates of a given asset and risk metric and A<4Cℎ>3
stands for individual replicates of the estimates obtained with the remaining methods. This

12 Welch’s t-test assumes normally distributed samples. Due to the central limit theorem, the estimates produced by

the MC and the IS estimator follow a normal distribution for su�ciently large sample size, determined in this case

by the number of traces computed. As this number is at least 200 and frequently more than 1,000, the assumption

of normality appears reasonable to make in this case.
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Figure 7.7: Order of magnitude comparison of the estimates with respect to the reference method

MC-full, plotted against the number of MSR customers. Negative values indicate how many orders of

magnitudes an estimate is smaller than the mean reference estimate.

ratio is plotted against the number of customers connected to a given MSR for all sampling

methods in �gure 7.7. It becomes clear that the issue arises only for the pro�le importance

sampling methods IS-MC, IS-IS and IS-bw. Furthermore, it can be gathered from the �gure

that the issue is much more pronounced for negative overloads. A clear correlation of the

estimate deviations with the number of customers is visible for the IS-bw method above

250-300 customers. Below 250 customers, estimates remaining fairly accurate, while deviations

from the MC-full estimate increase up to more than 100 orders of magnitude for the two MSRs

with the most customers. It is noteworthy, that the low accuracy was not observed for these

MSRs with the IS-MC and the IS-IS methods. Manual inspection of the cases has revealed that

A2,+ and A2,− are both greater 0.01 and therefore very large in comparison to other overload

probabilities. This leads to the IS-MC and IS-IS methods converging in the �rst iteration of the

optimisation stage, before any importance sampling occurs. The IS-bw method, in contrast,

uses bin weights to perform importance sampling from the �rst trace onwards. Overall, these

�ndings indicate that estimates can become very inaccurate when using pro�le selection IS

for assets with a large number of customers for which overloads are rather rare events.

The likely explanation for why estimates become inaccurate has to do with the way the

importance weights are determined in the pro�le selection IS algorithms developed in the
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previous chapter. The challenging aspect hereby is that whenever more than a moderately

large number, i.e. more than 15-20, customers are assigned high probabilities of picking spiky

pro�les, the resulting importance weights are frequently very small. To illustrate this, MSR

117 from �gure 7.5 is used as an example: A detailed look at the results of the �rst replicate

of the IS-MC method for A2,− revealed that at the end of the CE optimisation stage, 25 out of

the total 280 customers received a success probability of larger than 0.6 (the probability of

picking a pro�le from the set of spiky pro�les is called success probability). For the sake of

this illustration, a situation is assumed where 25 customers have a success probability of 0.6

and the remaining 255 customer retain their initial success probabilities of 0.5.
13

Therefore,

the situation can be described using binomial distributions, since success probabilities are

the same for large blocks of customers. The importance weights can then be calculated by

evaluating

, (G) = 5 (G)
6(G) =

ℎ(G ;= = 25, ? = 0.05) · ℎ(G ;= = 255, ? = 0.05)
ℎ(G ;= = 25, ? = 0.6) · ℎ(G ;= = 255, ? = 0.05) , (7.4)

where 5 is the original sampling distribution, 6 the biased sampling distribution and ℎ(G ;=, ?)
denotes the probability mass function of the binomial distribution with the number of successes

G , number of trails = (here the number of customers) and success probability ? . The original

sampling distribution 5 in the numerator is split in two binomial distributions to highlight

that the terms for the 255 customers, whose success probabilities remain unchanged, cancel

out. With a probability of approximately 8%, sampling a number of G = 18 successes from 6 is

not an unlikely event. If in this case an overload event occurs, the trace importance weight is

, (G) = 5 (G)
6(G) =

ℎ(G = 18;= = 25, ? = 0.05)
ℎ(G = 18;= = 25, ? = 0.6) ≈

1.3 · 10
−18

0.080

≈ 1.6 · 10
−17 , (7.5)

and therefore very small. In itself, small importance weights are not an issue because they

mean that certain regions in the sample space are targeted with high probability. If the states

in these regions are the only states which lead to overload events, then variance reduction will

work very well. A problem arises, however, if also other states in the sample space farther away

from to the highly targeted regions lead to overload events. Continuing with the illustrative

example, if with a small probability overload events can also occur for a number of successes

G = 4, then the corresponding importance weight is

, (G) = 5 (G)
6(G) =

ℎ(G = 4;= = 25, ? = 0.05)
ℎ(G = 4;= = 25, ? = 0.6) ≈

0.027

7.2 · 10
−6
≈ 3.7 · 10

3 . (7.6)

Observing such large importance weights is very rare because the corresponding states are

only sampled with a probability of 7.2 · 10
−6

from 6 and furthermore, overload events only

occur infrequently when fewer spiky pro�les are sampled.

Two conclusions can be drawn from this illustrative example: Firstly, even though estimates

may be dragged down due to very low weights and appear strongly biased initially, in the

limit of large sample sizes they will nevertheless converge to the correct quantity due to the

infrequent occurrence of very large weights. Therefore, the inaccuracy of estimates observed

13 The initial success probabilities are only approximately 0.5, as explained in the previous chapter, however for the

sake of the illustration probabilities of exactly 0.5 are assumed.
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for certain cases here is not in con�ict with the theory which predicts unbiased importance

sampling estimates. Secondly, the example shows that care should be taken to prevent success

probabilities from becoming too extreme – because otherwise the initial estimates are of a

wrong order of magnitude and the goal of variance reduction is missed, because for convergence

eventually much larger sample sizes might be needed compared to conventional MC.
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Figure 7.8: Comparison of the weighted trace impact values, ·"2,− of MSR 117 for various numbers

of traces used per iteration in the optimisation stage of the IS-MC method. Only nonzero weighted trace

impacts are shown, corresponding to traces for which overload events occurred.

The idea of deploying the Cross-Entropy (CE) method in this case, was to prevent the

described scenario by setting targeted, but not too extreme importance weights. However, for

accomplishing this, a su�ciently large amount of samples in the optimisation stage of the

pro�le IS algorithms IS-MC and IS-IS is necessary for the CE method to work well. Due to

this, the suspicion arose that =>?C8< = 500 may be too small for reliably estimating a larger

number of parameters – in the case of MSR 117 with 280 customers, 280 parameters need to

be estimated. For the example of MSR 117, it was investigated whether increasing the number

of traces =>?C8< used for each iteration in the optimisation stage alleviates the accuracy issue.

The results of these trials are visualised in terms of the nonzero weighted trace impact values

in �gure 7.8. As shown in equation (4.11), the estimates are calculated by taking the average

of all zero and nonzero trace impacts. Therefore, a high number of low trace impact values

will drag down the overall estimate. It can be observed, that with an increasing number of

traces used in the CE optimisation stage, the trace impact values are indeed of larger orders of

magnitude. For =>?C8< = 20, 000 the estimate was found to be still slightly to small, yet in the

correct order of magnitude.

The problem for the IS-bw method is likely of a very similar nature: Due to the fact that

customer success probabilities are determined based on their bin membership, for larger assets

many customers may be part of a given bin. If many customers are part of bins with large

bin success probabilities, a large number of high customer success probabilities is likely. For
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example, the MSR shown in the bottom right of the right IS-bw panel in �gure 7.7 has a total

of 1,175 customers. A look at the results of one replicate of the IS-bw method for A2,− revealed

that 495 customers were assigned success probabilities larger than 0.48. Therefore, it is clear

what caused the deviation of more than 100 orders of magnitude in this case. Furthermore,

the clearer correlation of the accuracy with the number of customers for the IS-bw method

compared to the other pro�le selection IS methods (IS-MC and IS-IS) is also sensible in this

light, because the number of customers in bins with high weights should on average increase

proportionally with the overall number of customers.

7.1.3 E�iciency of the Investigated Monte Carlo Methods

Before comparing the e�ciency of the investigated Monte Carlo methods in terms of compu-

tational speed, it is useful to consider the overview of the nonzero A2 and converged estimates

in �gure 7.9. Note that the higher nonzero fractions of the IS-bw method are due to the fact

that the method was only evaluated for the 117 MSRs which resulted in nonzero estimates for

the other methods. It is notable that for approximately 2/3 of the 100 average MSRs nonzero

overload probabilities were found, while the share is with approximately 80-90 % even higher

in the set of MSRs with extreme characteristics. Furthermore, it can be observed that only a

part of the estimates converged within the maximum number of 20,000 traces per simulation

run, where convergence is de�ned as reaching a relative error ≤ 10%.

To benchmark the computational e�ciency of the various methods, their computation
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Figure 7.9: Overview of the nonzero A2 estimates and the A2 estimates which reached a relative error

≤ 10 within a simulation run of 20,000 traces. Note that the higher nonzero fractions of the IS-bw method

are due to the fact the method was only evaluated for the 117 MSRs which produced nonzero estimates

for the other methods.
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times were measured. On a shared access server, such as the one used for carrying out the

simulations, time measurements are not always reliable because computation times may

vary depending on the current load of the server. In order to evaluate how reliable the time

measurements are, a generic calculation with a computation time of approximately one minute

was implemented and timed before the simulation of each estimate. Of course, this only gives

a snapshot impression of how busy the server currently is, but it can at least give a rough

indication. It was found that the computation time of the generic calculation varied with

a standard deviation of 48.7 seconds around a mean of 57.5 seconds. Due to the presence

of a few extreme outliers, the standard deviation is relatively high compared to the mean.

However, a look at the histogram in �gure 7.10 reveals that the computation times varied in

most cases approximately within a 15 second range. This is seen as an indication that at least

time measurements averaged over several replicates can be seen as reasonably reliable.
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Figure 7.10: Histogram showing the timing results of the generic calculation to evaluate the current

load of the shared access server. A small number of extreme outliers is omitted in the �gure.

Another important issue which makes the direct comparison of computation times chal-

lenging is the fact that only a part of the estimates reached the pre-de�ned convergence target

of a relative error ≤ 10%, as shown in �gure 7.9. If it is assumed that the estimates which do

not converge are on a steady convergence path close enough to the asymptotic limit when

hitting the maximum number of 20,000 traces, an approximation can be made to estimate

the total computation time necessary for convergence to a relative error ≤ 10%. Being close

to the asymptotic limit is important because then the central limit theorem is valid and the

relation for the relative error or coe�cient of variation given in equation (4.8) holds. From the

expression for the relative error, the following approximation for the computation time C'�=0.1

necessary to reach a relative error of 10% can be obtained:

C'�=0.1 =

(
(�Â

'� · Â

)
2

· C=<0G =

(
(�Â

0.1 · Â

)
2

· C=<0G (7.7)

where Â denotes the estimate, (�Â its standard error and C=<0G the actually measured computa-

tion time until reaching the maximum number of trace =<0G = 20,000. Therefore, the relation

rescales the measured computation time based on the desired target relative error and the

estimate as well as its standard error, obtained when reaching =<0G .

A comparison of the average speed-up of all methods with respect to the reference method
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MC-full is shown in �gure 7.11. To compute the average speed-up, the average computation

time over all MC-full replicates C̄"�−5 D;; was calculated per asset and metric. Then the ratio

C̄"�−5 D;;/C<4Cℎ>3 was formed individually for each replicate, metric and asset. Subsequently,

the averages of the individual speed-up ratios were formed for each method. The methods

were bench-marked only for those cases where they produce accurate estimates, because

this indicates their full potential for possible speci�c use cases (e.g. assets with a number of

customers up to 80). Therefore, all estimates whose accuracy was found to di�er signi�cantly

from the estimates of the reference method MC-full (in the hypothesis tests of the previous

subsection) were removed before calculating the average speed-ups. The average speed-ups

without removing the inaccurate estimates are shown in �gure A.2 of appendix A. Furthermore,

also zero estimates have been excluded from the average speed-up computation, because their

computation times depend on how stopping criteria are set (in this case =I4A>,<0G was set to

10,000) and do not allow conclusions on the estimation e�ciency.
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Figure 7.11: Comparison of the average speed-up C̄"�−5 D;;/C<4Cℎ>3 for all methods with respect to the

reference method MC-full. Only nonzero estimates and estimates whose accuracy was not found to di�er

signi�cantly from the estimates of the reference method were used to compute the average speed-ups.

Figure 7.11 displays, that for negative overloads the IS-bw method clearly outperforms all

other methods in terms of computational speed. This indicates that the chosen bin weights are

able to achieve a considerable variance reduction in case of negative overloads. In contrast to

other pro�le selection IS methods, due to the pre-speci�ed bin weights importance sampling

begins with the �rst trace in the IS-bw method. The computational cost of the optimisation

stage which is part of the IS-MC and IS-IS pro�le importance sampling methods is saved. Also

for positive overloads and metric A2, the IS-bw method still outperforms all other methods.

However, in light of the discussion in the previous section, the big caveat of bin weight

importance sampling in the current form is that it only produces reliably accurate estimates

for assets with less than 50-100 customers (depending on the desired safety margin the upper

customer bound can be set more or less conservatively).

The solid performance of conventional Monte Carlo sampling of partial annual traces
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(MC-MC) across all cases shown in �gure 7.11 with respect to sampling entire annual traces

(MC-full) is also a promising result, as it is easy to implement and its accuracy does not depend

on the number of asset customers. Importance sampling of time steps does not appear to bring

about speed-advantages compared to conventional MC sampling, neither alone (MC-IS) nor in

combination with pro�le importance sampling (IS-IS).
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Figure 7.12: Comparison of the average speed-up C̄"�−5 D;;/C<4Cℎ>3 of estimates with zero probability

for all methods with respect to the reference method MC-full.

It is also interesting to consider average computation times in the case of MSRs which did

not show any overload events, resulting in zero overload probabilities. As mentioned above,

the computation times in these cases depend mainly on the stopping criteria which can be set

more or less restrictively. Here, a simulation run was stopped after =I4A>,<0G = 10,000 traces.

Comparing average speed-ups for zero estimates, shown in �gure 7.12, is telling in the sense

that the relative overhead of the various methods can be compared. Clearly, and as expected,

conventional Monte Carlo sampling (MC-MC) has the smallest overhead. Also, the time step

importance sampling method MC-IS performs well.

Average speed-up comparisons across many assets with di�erent properties hide much

of the underlying detail. Generally, one of the most crucial parameters which in�uences the

required computational e�ort of Monte Carlo methods is the magnitude of the quantity being

estimated. Therefore, all estimates of metrics A2,+ and A2,− have been binned according to their

order of magnitude, and average speed-ups for each bin and method have been calculated. As

for �gure 7.11, only nonzero estimates and estimates which do not su�er from the accuracy

issue are considered, and the same approach is used to calculate the average speed-ups shown

in �gure 7.13. Furthermore, the �gure shows the number of traces (number of independent

samples) necessary for convergence of each method in relation to MC-full, termed trace ratio.

This ratio is computed as =̄"�−5 D;;/=<4Cℎ>3 , where =̄"�−5 D;; is the average number of traces per

asset and metric for the baseline method and =<4Cℎ>3 is the number of traces for an individual

replicate for all methods. Averages over these ratios calculated for individual replicates were

formed per method, bin and metric, analogously to the procedure for the speed-up ratios. In
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Figure 7.13: Comparison of the average speed-ups C̄"�−5 D;;/C<4Cℎ>3 (top panels) and average trace

ratios =̄"�−5 D;;/=<4Cℎ>3 (middle panels) of estimates per bin for all methods with respect to the reference

method MC-full. The bottom panels show histograms indicating how many estimates fall in which order

of magnitude.

the bottom panel of the �gure, the absolute frequency of estimates in all bins is shown, to

indicate how the overload probability magnitudes are distributed over the shown range.

Three interesting conclusions can be drawn from �gure 7.13: Firstly, for estimates in the

order 10
−5

and smaller, impressive speed-ups of more than 10 times are achieved for several

bins. This is in good accordance with the theory referred to in section 2.3 and section 4.1,

which describes the usefulness of importance sampling especially for the estimation of rare

events. The highest speed-up of more than 30 times was found for metric A2,− in the 10
−5

bin

with the IS-bw method. Also the other pro�le importance sampling methods (IS-MC and IS-IS)

show a strong performance for several bins on the right hand side. It is noteworthy that for

the bins 10
−8

and 10
−9

IS-MC and IS-IS outperform the IS-bw method. The reason for this

could be that a IS distribution optimised individually for each assets with the CE method is

likely to be more suitable than the generalised IS distribution based on bin weights used in the

IS-bw method.
14

For these particular two bins, this e�ect may outweigh the advantage of the

IS-bw method of skipping the optimisation stage, which clearly materialises for several other

bins.

Secondly, smaller advantages in terms of a lower number of traces required for conver-

14 To avoid confusion: The bins of the IS-bw method are the 48 bins used in the demand model and are not related to

the bins shown in �gure �gure 7.13.
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gence is also visible for all pro�le IS methods in the bins 10
−3

and 10
−4

. This indicates that

the variance reductions works well also for estimates in these orders of magnitude. However,

due to the higher overhead of the pro�le IS methods, this advantage does not materialise in

the computation times (expect for bin 10
−4

of metric A2,− with the IS-bw method). Thirdly,

the bottom panel in �gure 7.13 shows that many of the 150 MSRs have overload probabil-

ities A2 > 10
−6

. As 10
−6

was identi�ed as the threshold above which overload probabilities

become relevant from a distribution capacity planning perspective in the introduction of

this section, this can be seen as a concerning �nding regarding the available headroom of

MV/LV substations. However, this �nding is of course a result of how the demand model was

speci�ed and its validity strongly depends on the validity of the model. Therefore, one should

be cautious in drawing general conclusion on this basis. More important for the main concern

of this subsection is another implication of the observation that many MSRs have overload

probabilities A2 > 10
−6

: It explains why the high speed-ups for the smaller orders of magnitude

of the pro�le IS methods do not appears as pronounced in the average speed-ups shown in

�gure 7.11.

7.1.4 Performance of the Investigated Monte Carlo Methods for
Substations

Due to limited computational resources, the Monte Carlo methods were only bench-marked

on a small subset of HV/MV substations, Onderstation (OS) in Dutch, selected for modelling

in subsection 5.2.1. This subset was identi�ed after doing a trial run with conventional MC

sampling and for a maximum of 500 traces on all 57 originally selected OSs. Nonzero overload

probabilities were found for 13 out of the 57 OSs, whereas only four OSs did not converge to a

relative error of ≤ 10% before the maximum number of 500 traces was reached. These four

OSs are the interesting cases for further investigation because only here the IS-based methods

can potentially unfold their advantages. Furthermore, in the trail run no nonzero probabilities

of negative overloads where found and therefore A1,− and A2,− were not considered further. A

main run with =<0G = 2,500 was then conducted for A1,+ and A2,+ for all methods (except for

IS-bw which was not considered due to the accuracy issues discussed in subsection 7.1.2).

The comparison of the estimates obtained with the di�erent methods in �gure 7.14 reveals

that almost all A1,+ estimates are zero. Therefore, only the A2,+ estimates are considered for

bench-marking the computational e�ciency of the various sampling methods in the following.

It can also be gathered from the �gure that the estimates obtained with the pro�le importance

sampling methods IS-MC and IS-IS are in a much smaller order of magnitude than the estimates

of the other methods. This is hardly surprising in light of the �ndings and discussion in

subsection 7.1.2, because with at least 18,000 customers all of the considered OSs are very

large assets and the 500 traces used in the CE optimisation stage are far from su�cient for

correctly estimating suitable success probabilities for each customer.

The average speed-ups shown in �gure 7.15 were computed analogously to how speed-ups

were computed for MSRs in the previous subsection, using C̄"�−5 D;;/C<4Cℎ>3 and similarly for

the trace ratio =̄"�−5 D;;/=<4Cℎ>3 . In light of the results for the MSRs in the previous subsection,

perhaps the most striking observation that can be made in the �gure is the average speed-up

of more than 3.5 times of the time step importance sampling method (MC-IS) which clearly

outperforms all other methods for the considered four OSs. The reason why time step IS
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Figure 7.14: Comparison of the risk metric A1,+ and A2,+ estimates obtained with di�erent sampling

methods for the four investigated OSs. Point estimates and 95% con�dence intervals of all independent

replicates produced are shown on a pseudo-logarithmic scale which becomes linear as zero is approached.

Con�dence intervals are clipped at zero, as probabilities cannot be negative.

works so well here might have to do with the fact that large assets with many customers

show stochastic variability to a smaller extent than assets with few customers. The e�ect can

be observed quite clearly when comparing the 5th-95th percentile ranges of �gure 5.7 and

�gure 5.9 in subsection 5.2.3, where the MSR with 41 customers shows much more variability

than the OS with 7,505 customers. The lower degree of stochasticity in the aggregate behaviour

of large OSs could result in overload events occurring more regularly at the same time of the

year. A smaller subset of relevant time steps can be targeted more e�ectively by the time step

IS algorithm which could explain its signi�cantly better performance than all other methods.

While it is not as surprising that the pro�le selection IS methods IS-MC and IS-IS do

not perform well here due to the large number of asset customers, it is more surprising that

the conventional MC method of sampling 2,000 time steps per annual trace only leads to a

small speed advantage compared to sampling 35,040 time steps. A look at the right panel in

�gure 7.15 suggests why this is the case: The ratio =̄"�−5 D;;/="�−"� is much smaller than

one which means that the MC-MC method requires much more traces for convergence than

the MC-full method in the four considered cases on average. The likely reason for this is that

many relevant time steps might be missed when randomly sampling partial annual traces.

The e�ect results in the advantage of a lower computation time per partial annual trace to

almost disappear, as a higher number of traces is required for convergence. This implies that

for OSs with a large number of customers the optimal number of time steps sampled per trace

is possibly higher than the value of< = 2,000 used here.
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Figure 7.15: Comparison of the average speed-up C̄"�−5 D;;/C<4Cℎ>3 (left panel) and average trace

ratio =̄"�−5 D;;/=<4Cℎ>3 (right panel) of estimates for all methods with respect to the reference method

MC-full.

7.2 Inference of Demand Maxima and Minima – Risk
Metric 3

Before proceeding with the presentation of the extreme value inference results, a brief reitera-

tion of the de�nition of risk metric 3 may be useful: The metric is de�ned as the power value

which will not be exceeded with 95% probability by the annual maxima, and equivalently the

power value which will not be undercut with 95% probability by the annual minima. These

values are given by the quantiles of the Generalised Extreme Value (GEV) distribution which

can also be framed in terms of return levels – here the demand level which will only be

exceeded once in 20 years. The results presented in this section have been obtained using

the R package extRemes [39]. Estimates of the parameters of the GEV have been obtained by

maximum likelihood estimation and con�dence intervals were computed with the normal

approximation.

The results of �tting the GEV distribution to the demand maxima series obtained from

entire annual traces are shown for two exemplary MSRs in �gure 7.16 and �gure 7.17. It can

be observed for MSR 23 shown in �gure 7.16, that the distribution of maxima produced by

the demand model is in good accordance with the theory for all diagnostic plots. This is in

contrast to MSR 18 shown in �gure 7.17, where the demand maxima deviate substantially from

what the theory predicts above a certain magnitude. In the plot of the return level against the

return period in the bottom right panel of the �gure, two distinct steps and an upper plateau

for the demand maxima magnitude are visible. In the density plot of the bottom left panel, the

same phenomenon manifests as to clearly discernible bulges.

This phenomenon can be seen as a result of how the demand model was constructed: It

relies on a �xed and �nite set of smart meter pro�les and is therefore a discrete model. In the

example of �gure 7.17 and similarly for other inspected examples, this discreteness shows

quite distinctly. Potentially two pro�les or two speci�c combinations of pro�les are mainly

responsible for the highest demand maxima in this example, leading to the two steps visible in
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Figure 7.16: Diagnostic plots of the GEV distribution �t for the exemplary MSR 23 obtained with the

extRemes package [39].

the �gure, while other pro�les cause the small variations around the plateau values which can

be observed.

Extreme Value Theory (EVT), in turn, implicitly assumes the process generating the extreme

values under scrutiny to be continuous and extrapolates beyond the available observations

under that assumption. This assumption is certainly sensible, as many processes in nature

and society are continuous. Also the real-world power demand behaviour of customers is

continuous – it varies around characteristic patterns which will never repeat in exactly the

same way. In the demand model, however, this continuous range is approximated by a discrete

set of pro�les. In some cases this approximation works very well, as can be observed in

�gure 7.16, while in other cases discrete characteristics become apparent. All this suggests that

it would likely be wrong to conclude from the discrepancies between theoretical predictions

and the simulated demand extreme values that the GEV distribution is not a suitable model

for the given context. Rather, EVT assumes a more realistic model and extrapolates the given

observations on that basis. Thus, the inference results obtained from the demand model can

still give practically relevant indications.

In view of the overarching objective to obtain the risk metrics in the computationally most

e�cient way possible, it would be desirable to integrate the evaluation of risk metric 3 with

the evaluation of risk metrics 1 and 2. The series of maxima used for the exemplary GEV
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Figure 7.17: Diagnostic plots of the GEV distribution �t for the exemplary MSR 18 obtained with the

extRemes package [39].

distribution �ts in �gure 7.16 and �gure 7.17 were obtained from entire annual traces sampled

for the respective assets. The crucial question is then, whether �tting the GEV distribution

to the series of demand maxima and minima obtained from the other Monte Carlo sampling

methods leads to approximately the same resulting 20-year return levels for metric 3.

To investigate this question, the estimates for A3,+ and A3,− obtained for the replicates of

each method (except for IS-bw) are compared in �gure 7.18. While it appears as if the minima

return levels of MSR 29 could be approximately in the same range for MC-full, MC-MC and

MC-IS, this is certainly not the case for MSR 33. The visible tendency of smaller return levels

in absolute terms for the MC-MC and MC-IS methods and larger return levels for the pro�le IS

methods compared to the reference method MC-full, was also observed more generally when

inspecting other examples. Due to the purposefully introduced bias of sampling spiky pro�les

with higher probability in the pro�le IS methods, it stands to reason that here the frequency

of high demand maxima increases leading to generally higher return level estimates. It may

be possible to make use of the importance weights to correct for the introduced bias, as done

in IS. However, the theoretical foundations for carrying out such a correction could be new

territory – no previous research was found on this particular matter – and are outside the

scope of this thesis. Also the tendency for return levels of smaller absolute magnitude for

MC-MC and MC-IS with respect to the reference method is explainable, considering that it is
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Figure 7.18: Comparison of the risk metric 3 estimates obtained based on the results of the di�erent

sampling methods for two exemplary MSRs. Point estimates and 95% (normal approximation) con�dence

intervals of all independent replicates produced obtained with the extRemes package [39] are shown.

Note that in some cases the con�dence intervals are too small to be visible.

likely to miss some high values when sampling a subset of time steps per annual trace. If this

happens, smaller extreme values in absolute terms and consequently return levels result.

To systematically assess how comparable the A3 estimates based on the di�erent sampling

methods are in relation to the reference method MC-full, Welch’s t-test was employed in ana-

logous manner as in subsection 7.1.2. The number of hypothesis test showing non-signi�cant

and signi�cant di�erences with respect to the con�dence level U = 0.05 are shown in �gure 7.19.

It can be observed that for the vast majority of tests a signi�cant di�erence was found. This

suggests clearly that the 20-year return levels obtained from the results of MC-full and all

other sampling methods are not in good accordance with each other. Therefore, sampling full

annual traces appears to be required for a reliable estimation of extreme value return levels in

the given context.
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Result of Welch's t−test: No significant difference to MC−full Significant difference to MC−full

Figure 7.19: Visualisation of the hypothesis testing results with the signi�cance level U = 5% for the

MSRs with average and the MSRs with extreme characteristics. Note that the number of assets in the

set of extreme MSRs is lower compared to the set of average MSRs, therefore also the overall count of

hypothesis tests results shown on the right is lower.
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8 Conclusion and Outlook

The research in this thesis focused on two main objectives: Firstly, the creation of a probabilistic

power demand model which re�ects the volatile nature of real customer demand in an adequate

manner. Secondly, the development and evaluation of methods to estimate certain model

output quantities of interest in a computationally e�cient manner. These two overarching

objectives are motivated by the ambition of the Distribution System Operator (DSO) Alliander

to explore possibilities of improving its predictive modelling capabilities of power demand –

with the ultimate goal of preparing the distribution network operated by Alliander for the

ongoing energy transition in an optimal way. The speci�c modelling application which may

bene�t from this research is the Advanced Net DEcision Support (ANDES) model. The model’s

purpose is the provision of detailed predictions on which long-term capacity planning decision

can be based.

Even though the ANDES model represents a major improvement with respect to traditional

capacity planning methods, it is likely that demand peaks and troughs are underestimated

in many cases due to the use of average category pro�les for the modelling of unmonitored

customers. Monte Carlo simulation-based probabilistic demand models, such as the one

implemented within this thesis, have the potential to re�ect the natural variability of customer

demand in a more realistic manner. However, the major drawback of the approach is the high

computational cost which the simulation of many random realisations of customer demand

entails.

With the goal of estimating model output quantities of interest in an e�cient manner,

variance reduction techniques have been investigated. The sample space of the developed

demand model has two fundamental subspaces: The space comprising all possible ways in

which measured smart meter pro�les can be randomly assigned to unmonitored customers

and the space comprising the 35,040 quarter-hourly time steps of a yearly demand pro�le.

Importance Sampling (IS) of the states in both subspaces has been investigated separately

and in combination. The art of devising e�ective importance sampling strategies consists in

choosing a suitable importance distribution by exploiting available knowledge on the structure

of the problem. In order to automate this process, several methods have been developed and

evaluated which aim to sequentially approach the optimal IS distribution for a given grid

asset as far as possible. Furthermore, an approach of generalising the importance distributions

optimised for individual assets to all assets has been studied.

8.1 Research �estions
At the end of this work, the research questions posed in the introduction are taken up again to

present the answers obtained and discuss where limitations were encountered:
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Chapter 8 Conclusion and Outlook

1. Which approaches exist to model distribution network power demand on the
basis of limited customer monitoring data?

In the literature study in chapter 2, three major groups of demand modelling approaches relying

on limited smart meter measurement data as input were identi�ed: Firstly, approaches in which

appliance demand pro�les are simulated and aggregated to obtain household and eventually

residential sector electricity demand. Secondly, approaches which employ characteristic

average household demand pro�les for the modelling of unmonitored customers. Usually, the

characteristic pro�les are assigned to the modelled customers based on socio-economic or

other household attributes. The ANDES model in its current version falls into this group of

approaches. Thirdly, Monte Carlo simulation approaches were reviewed which, in this speci�c

context, consist frequently in the repeated and random assignment of measured electricity

consumption or generation pro�les from a large pool to unmeasured customers.

2. Which methods are able to improve the computational e�iciency of estimating
model output quantities of interest?

The model output quantities of interest in this case are the risk metrics speci�ed in chapter 5:

The probability of demand exceeding a critical value above the rated asset capacity (1), the

probability of exceeding the rated asset capacity (2) and the return levels of demand maxima

and minima (3). Among the most common variance reduction methods reviewed in chapter 2,

IS was identi�ed as particularly suitable to estimate risk metrics 1 and 2 due to their rare

event character. For the task of automatically determining a suitable IS distribution, the

Cross-Entropy (CE) method was seen as promising. For risk metric 3, Extreme Value Theory

(EVT), and more speci�cally the block maxima method, is the most relevant approach.

3. What assumptions underlie the current ANDES model? Which of them are
reasonable in light of research question (1) and which requirements for the
implementation of the demand model can be derived from the discussion?

The principle issue identi�ed in chapter 3 regarding these matters is the modelling of unmon-

itored customers using average category pro�les which are smoother and show less of the

desirable stochastic variability of real customer demand. This is likely to lead to the underes-

timation of demand extremes. Furthermore, certain aspects of how the future development

of technologies is modelled may be problematic. However, this is not within the scope of

this thesis and the focus was placed on the �rst issue. To address the issue, the principle

requirement regarding the baseload demand modelling derived from the discussion was to

introduce more stochastic variability – however, while striking a reasonable balance between

introducing too little and too much variability, to avoid under- or overestimating network

impacts.

With this aim in mind, a binning scheme of smart meter pro�les and modelled customers

according to their yearly consumption was integrated in the demand model. The idea here was

to con�ne variability to a reasonable extent by randomly assigning pro�les to the modelled

customers within similar yearly consumption ranges. However, a practical limitation was

encountered when implementing the idea in chapter 5: It became clear that the given set

of smart meter pro�les used in this thesis has a much smaller yearly consumption range

compared to the customers which are to be modelled for most of the customer categories.
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Research �estions Section 8.1

This may limit the e�ectiveness of the binning approach in practice, as it can occur that spiky

pro�les with a relatively small yearly consumption are scaled to a probably unrealistic extend.

Aside from this challenging aspect, the demand model was found to ful�l the requirements

speci�ed in subsection 3.2.2.

4. How do the most promising methods from research question (2) perform in the
given context?

As introduced in the beginning of this chapter, self-tuning IS methods giving di�erent weight

to time steps and/or customer load pro�les have been developed. The purpose of the self-

tuning methods is to �nd the most suitable IS distribution per grid asset. In order to make

the optimisation stage super�uous, additionally an approach to generalise the per customer

probabilities of choosing more spiky pro�les to per bin probabilities (where the bins are the 48

bins of the demand model referred to above) has been implemented. Next to these methods,

also conventional Monte Carlo (MC) sampling of time steps and pro�les was implemented.

Sampling entire annual traces from the demand model (corresponding to conventional MC

sampling of pro�les only) served as the reference method for the evaluation of the accuracy

and e�ciency of the various approaches.

The essential �nding from evaluating all considered methods was that their performance

in terms of e�ciency and accuracy depends mainly on two variables – the order of magnitude

of the estimated quantity and the number of customer connected to an asset in question:

• For small assets with less than 50-80 customers and an estimated overload probability of the

order 10
−5

or smaller, all pro�le IS methods and especially the generalised bin probability

IS showed the strongest performance with average speed-ups of 5-30 times with respect

to the reference method of sampling full annual traces. Furthermore, the estimates were

found to be accurate.

• For assets with more than 80 customers and small overload probabilities, the pro�le IS

methods were found to frequently produce estimates of a much too small order of magnitude.

Conventional MC sampling and time step IS, in turn, were found to produce reliable

estimates regardless of the number of customers.

• For assets of all sizes with an estimated overload probability of the order 10
−4

and larger,

conventional MC sampling showed the best performance with speed-ups above 5 times.

• For the few investigated very large assets with more than 18,000 customers, time step IS

was found to outperform all other methods with speed-ups of more than 3.5 times.

Thus, the bottom line here is that conventional MC sampling was found to perform robustly in

all circumstances, while IS demonstrated its potential to signi�cantly increase the estimation

e�ciency of rare event probabilities in certain cases. This is in good accordance with what

is theoretically expected (as described in section 2.3). An interesting result was that using

generalised per bin probabilities for the pro�le IS resulted in the highest observed speed-ups.

This suggest that it is principally possible to use the same distribution for many assets and to

avoid the computational cost of the optimisation stage. A perhaps more unexpected �nding

was the accuracy issue observed for pro�le IS in the case of large assets. Its occurrence is most

probably related to the usage of too extreme importance weights, as detailed in subsection 7.1.2,
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leading to the conclusion that caution should be taken to prevent extreme weights. This shows

what the main challenge in �nding a generalised pro�le IS distribution is. Finally, it also

became apparent that most of the MV/LV substations have overload probabilities > 10
−6

. This

implies that rare event probabilities occur less frequently than initially expected and that,

therefore, conventional MC sampling is a good choice in many cases.

The major limitation in the evaluation of the developed sampling methods were scarce

computational resources. For example, it would have been desirable to tune the parameters

of the developed methods also for much larger assets and in multiple combinations. For the

four very large HV/MV substations investigated, it was observed that time step IS performed

best which was never the case for smaller assets. To verify the generality of this �nding,

it would have been useful to test on a bigger set of HV/MV substations, however, this was

challenging to do because computation times are signi�cantly higher here than for smaller

assets. A limitation in evaluating the generalised bin probability IS approach was that the

same assets were used for training and testing. Testing the approach on di�erent assets would

have required testing the other sampling methods on the di�erent assets as well to allow for

speed-up comparisons. Due to limited time and computational resources, this was not possible.

Nevertheless, if generalisation of asset importance distributions were not possible at all, the

strong performance of the bin weight IS method would probably not have been observed.

5. How compatible are the MC sampling-based methods developed for the first two
model output quantities of interest and extreme value inference for the third
quantity in the given context?

Risk metric 3 – the 20-year return levels of demand maxima and minima – was obtained by

�tting the Generalised Extreme Value (GEV) distribution to the extreme values obtained from

the yearly traces of the demand model. To investigate the compatibility of the Monte Carlo

methods with extreme value inference, it was investigated whether similar 20-year return

levels result based on the reference method compared to all other sampling methods. This

was not found to be the case, sampling full annual traces appears to be required for a reliable

estimation of maximum and minimum demand return levels. Therefore, obtaining risk metric

3, while also estimating risk metrics 1 and 2 with one of the computationally more e�cient

sampling methods, is not possible. On the upside, extreme value inference works already well

for relatively small sample sizes from 200 upwards (see section 4.2) and the separate evaluation

of risk metric 3 would, therefore, require much less samples than a typical run of the Monte

Carlo methods to obtain the other risk metrics.

8.2 Avenues for Future Research
The following ideas and suggestions for future research have emerged while carrying out the

research of this thesis:

• During the implementation of the demand model, it became clear that it would be worth-

while to further investigate how customers with Solar Photovoltaic (PV) installations are

modelled. In the newest version of ANDES (which was released after the demand model

had already been built for this thesis), PV customers and other customers are distinguished

in separate categories. Incorporating the new customer categories into the demand model
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Avenues for Future Research Section 8.2

of this thesis has the potential of improving its prediction accuracy. Furthermore, it would

also be interesting to use a set of smart meter pro�les with a wider yearly consumption

range as input for the demand model and to observe to what extent the model’s properties

change. If the yearly consumption range of smart meter pro�les used corresponded more

closely to the yearly consumption range of the customers to be modelled, the over-scaling

of spiky pro�les with a low yearly consumption could be prevented.

• It was found that there is not a single best-performing Monte Carlo method for all types of

assets. Rather, a strong performance dependency on the number of asset customers and

the magnitude of the estimate became apparent. This suggests that it could be promising

to implement a �exible sampling algorithm which starts with conventional MC sampling

and decides then, based on the magnitude of the estimate obtained so far and other asset

parameters, whether to proceed with conventional MC or IS, if a rare event probability is

encountered. Such a �exible algorithm could also start with sampling 200 entire annual

traces, which can be used for extreme value inference, before switching to the sampling of

partial annual traces. Overall, this would allow evaluating all risk metrics together and

reaping the bene�ts of all methods at once.

• At the level of the sampling algorithms themselves, there are also several interesting

possibilities for future research: It was observed that not all bins of smart meter pro�les

contain the same amount of very spike pro�les. Therefore, it could be worthwhile to set the

threshold which decides whether a pro�le is considered spiky or not spiky in a more �exible

manner. If this is possible, the advantage could be a more targeted pro�le IS. Continuing

along these lines, it could also be e�ective to split the pro�les in each bin in more than two

categories (e.g. average, spiky and very spiky) and optimise the probabilities of drawing

pro�les from these category with the CE method.

• In the literature on the CE method an extension of the common algorithm is proposed,

termed Fully Automated Cross-Entropy (FACE) algorithm [27]. In the FACE algorithm, the

sample size used per iteration in the optimisation stage is adapted in a �exible manner. The

idea here is to update the CE optimised parameters always based on a �xed number of the

best performing samples, and to continue collecting samples in the optimisation stage until

this �xed number is reached. Potentially, the FACE algorithm could prevent weights from

being set in a too extreme manner which was identi�ed as the likely cause of the accuracy

issue.

• It would be interesting to further investigate possibilities of generalising asset-centred IS

distributions to wider classes of assets. Clearly, hereby strategies to prevent too extreme

IS distributions would be crucial. For example, the usage of high bin weights could be

restricted to a �xed maximum number of customers, potentially those with the highest

yearly consumption as they are likely to have the biggest impact on the aggregate asset

demand.

• An application within Alliander, related to the ANDES model, are the grid losses calculations.

In their current version, the grid losses calculations rely as well on the average customer

category pro�les used within ANDES. Therefore, they are prone to the same peak demand

underestimation issues as ANDES. Investigating a suitable sampling strategy for the grid
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losses application would be an interesting topic for future research, because estimating the

power losses over a given period of time is not a rare event estimation task. For this reason,

using a di�erent variance reduction technique than importance sampling would likely be

more appropriate. For example, a strati�ed sampling approach could lead to an e�ective

variance reduction here, since for estimating the expected grid losses over a period of time

all parts of their distribution matter. By taking samples from all strata, strati�ed sampling

ensures more representative samples of the overall distribution than random sampling. A

re�ned strati�ed sampling algorithm with a self-adapting sample size is proposed in [82],

which constitutes a promising starting point for potential future research on this topic.
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Figure A.1: Parameter variation results for the time step importance sampling algorithm. The number

of traces needed to reach a relative error ≤ 10% is shown for each tested parameter value and replicate

(points). A small amount of random noise has been added to the x-coordinate of the points to avoid

overplotting. The medians of each set of �ve replicates are connected to highlight potential trends (lines).
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Figure A.2: Comparison of the average speed-up for all methods with respect to the reference method

MC-full. Also the estimates whose accuracy was found to di�er signi�cantly from the estimates of the

reference method were used to compute the average speed-ups for this �gure. This is in contrast to the

�gure shown in the main body of the report. Estimates with zero probability were not included in the

average speed-up computation.
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