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Preface

Over the last decades, humanity has slowly oriented towards an artificial intelligence (AI) rev-
olution with recent advancements promising to change the shape of modern world. This was
deeply felt in various job sectors as well as in education with more and more AI tools becom-
ing increasingly available to general public. However, these tools are extremely power hungry
requiring great amounts of energy for training and inference. This fact coupled with the re-
cent sustainability concerns begs the question: ”How can we improve the general efficiency of
AI?”. Inspiration can be taken from the human brain which is incredible efficient consuming
infinitesimal amounts of energy, leading the creation of neuromorphic computing field.

My MSc thesis inspiration started from the previous ideas and wondered how I can combine the
neuromorphic computing field with my passion for flight. A missing link was discovered which
led to the following topic: ”Perform a feasibility study focused on rapid guidance and control
of quadrotors with the help of spiking neural networks”. Even though this work is intended to
share my knowledge, it also led to many interesting discoveries on my part. It represented an
entertaining journey where I learn numerous facts about human brain and how learning is being
performed, facts that I try to sprinkle as often as possible through the report.

Even though I am the sole author of the report, the work realised throughout the 10 months could
not have been possible without the help of several people from TU Delft. First and foremost,
my thesis supervisors deserve my deepest gratitude for their immeasurable help and guidance.
Even though sometimes I felt discouraged by the slow advancement, Christophe and Stein were
a constant source of knowledge and incredible suggestions for further work and improvements.
Special thanks to Robin who inspired my thesis topic and continuously facilitated my research
allowing me to use most of his work such as the dataset as well as the simulation and experiment
implementations. Further, I want to send my sincere appreciation to Stavrow and Erik who were
always available to answer my endless questions and problems. A big thank you also to Nils and
Korneel who were always a source of help during experiments.

But beyond its academic value, the current work also represents the end of an incredible chapter
of my life. In 2018, I have moved to Netherlands aspiring to become an aerospace engineer at
TU Delft. 6 years and many incredible experiences later, this report marks the transformation.
And this could not be possible without the many inspiring friends who travelled continuously
with me through this academic journey. To my Romanian aerospace mafioso community, Alex,
Andrada, Crina, Nico and Tavi, thank you for providing a home far away from Romania, I
could not be here without all your support and motivation throughout these 6 years filled with
eternal ups and down. Further, I am extremely grateful to Marek who discovered me in my
introvert shell 5 years ago and provided me with unbelievable memories and great laugh ever
since. Thank you for all the support and I am looking forward to having new adventures with
you wherever that will be.

Even though the last, I want to use the current paragraph to thank the most important people
of my life, my family. Vă mult,umesc din tot sufletul pentru suportul nemărginit de-a lungul
studiilor. At, i fost continuu alături de mine s, i nu pot să exprim cât vă sunt de recunoscător
pentru asta. Vă iubesc s, i sper că v-am făcut mândri!

Tudor-Mihai Avarvarei
Delft, July 2024
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List of Abbreviations

AdEx Adaptive Exponential

AI Artificial Intelligence

ANN Spiking Neural Network

BCM Bienenstock-Cooper-Munro

CNN Convolutional Neural Network

CPG Central Pattern Generator

CPU Central Processing Unit

CuBa LIF Current Based Leaky Integrate-
and-Fire

DFBC Differential-Flatness-Based-Controller

DNN Deep Neural Network

DOF Degree Of Freedom

DRAM Dynamic Random Access Memory

DVS Dynamic Vision Sensor

ESN Echo State Network

FOLLOW Feedback-based Online Local
Learning Of Weights

G&CNET Guidance and Control Network

GAN Generative Adversarial Network

GNC Guidance, Navigation and Control

H Hypothesis

h2g Hover to Gate

h2h Hover to Hover

HM2-BP Hybrid Macro-Micro Level Back-
Propagation

IF-SFA Integrate-and-Fire with Spiking Fre-
quency Adaptation

IMU Inertial Measurement Unit

INDI Incremental Non-linear Dynamic Inver-
sion

LIDAR Light Detection and Ranging

LIF Leaky Integrate-and-Fire

LSM Liquid State Machine

LSTM Long Short-Term Memory

MAC Multiplier-Accumulator

MAE Mean Absolute Error

MAV Micro Air Vehicle

MLP Multi-Layer Perceptron

MSE Mean Squared Error

NCD Normalised Colour Difference

NLIF Non-Linear Integrate-and-Fire

ODE Ordinary Differential Equation

PBSNLR Perceptron-Based Spiking Neuron
Learning Rule

PES Prescribed Error Sensitivity

PI Proportional–Integral

PID Proportional–Integral–Derivative

PSNR Peak Signal Noise Ratio

QIF Quadratic Integrate-and-Fire

RBF Radial Basis Function

RC Resistor-Capacitor

ReLU Rectified Linear Unit

RL Reinforcement Learning

ix



Guidance & Control Implementation with Spiking Neural Networks

RNN Recursive Neural Network

RPM Revolutions Per Minute

RQ Research Question

SL Supervised Learning

SLAM Simultaneuous Localisation and Map-
ping

SNN Spiking Neural Network

SPAN Spike Pattern Association Neuron

SPTT SpikeProp Through Time

STBP Spatio-Temporal Back-Propagation

STDP Spike-Timing-Dependent Plasticity

STKLR Spike Train Kernel Learning Rule

SWAT Synaptic Weight Association Training

UAV Unmanned Aerial Vehicles

UL Unsupervised Learning

VLSI Very Large Scale Integration

x



Guidance & Control Implementation with Spiking Neural Networks

Part I

Scientific Paper

1





1

Guidance & Control Implementation
with Spiking Neural Networks

Tudor-Mihai Avarvarei1

Abstract—Quadrotors have continuously leveraged the use
of artificial intelligence for navigation and decision-making.
Moreover, neuromorphic computing, specifically Spiking Neural
Networks (SNNs), is considered as an energy-efficient solution
during inference. The current study will analyse the effects
of implementing SNNs for mimicking energy optimal guidance
and control. To achieve this, population encoding is used and
an equivalent of 7-8 spiking neurons per conventional neuron
is found to preserve most of the information. The equivalent
controller prefers fast adaptation which requires small spiking
threshold values and minimal reliance on past information. To
improve the controller performance, dataset selection is of utmost
importance with a careful trade-off between excessive race track
customisation and generalisability being required. The results
show that learning is feasible and SNN performance approaches
conventional state-of-the-art models trained with multi-layer
perceptrons. The current analysis represent an important step
towards the rapid guidance and control of ultra-small energy
efficient quadrotors.

Index Terms—G&CNET, supervised learning (SL), energy op-
timal, neuromorphic computing, spiking neural networks (SNN),
unmanned aerial vehicles (UAVs)

I. INTRODUCTION

THE rapid evolution of Artificial Intelligence (AI) tech-
nologies has brought humanity in a new era charac-

terised by machines enabled with unparalleled data process-
ing capabilities. This surge in the AI sector has profoundly
transformed various industries and disciplines. Likewise, Un-
manned Aerial Vehicles (UAVs), by their very nature, require
a high degree of autonomy, relying on AI for autonomous
navigation and decision-making due to the general absence of
human operators. This pursuit of autonomy presents a blend
of challenges and opportunities. On one hand, it drives the
need for sophisticated AI algorithms to ensure the safety and
reliability of UAVs operations. On the other hand, the lack of
human presence within quadrotors unlocks novel possibilities,
granting access to hazardous or otherwise inaccessible envi-
ronments such as radioactive or confined spaces. The agility
and autonomy of quadrotors have facilitated efficient goods
transportation, including delivery services [1], [2] and rapid
deployment of emergency supplies [3]. This confluence of
AI and UAVs promises transformative potential in enhancing
operational efficiency, safety, and access to critical areas.

In the pursuit of autonomy, quadrotors have conventionally
relied on energy-demanding artificial neural networks (ANNs).
These ANNs present challenges for compact UAV designs,
necessitating larger batteries that add weight and constrain

1Faculty of Aerospace Engineering, Technological University of Delft, the
Netherlands

acceleration and speed. Consequently, energy efficiency has
emerged as a critical priority for the quadrotor industry. To
address this challenge, the industry is transitioning towards
neuromorphic computing, an innovative AI approach that
mimics the human brain’s efficiency in computation. Spiking
neural networks (SNNs), a core component of neuromorphic
computing, offer an alternative to conventional ANNs. SNNs
encode information not based on signal intensity but through
binary events known as spikes and their relative timing or
combination, resembling biological neuronal activity. Another
advancement within neuromorphic computing is the adop-
tion of event-based cameras, which transmit data only upon
changes in pixel intensity. This approach minimises redundant
information transfer, aligning with the energy-efficient objec-
tives crucial for small quadrotors.

In recent times, there has been substantial research activity
on the convergence of UAVs and neuromorphic comput-
ing domains. Neuromorphic computing, known for its effi-
cient computational abilities, has been particularly applied
to very small aerial vehicles performing constrained tasks
such as hovering, landing, and emulating agile manoeuvres
akin to flies [4]–[6]. Advancements in event-based cameras
and neuromorphic chips at larger scales have now enabled
the feasibility of developing fully neuromorphic quadrotors
as well. Early investigations primarily focused on addressing
specific challenges. For instance, Pflaum et al. [7] devised
a quadrotor stabilisation algorithm, and Mitrokhin et al. [8]
demonstrated simulated flight control using data from em-
bedded dynamic vision sensors (DVS), a sub-type of event-
based camera technology. Additionally, Paredes-Vallés et al.
[9] utilised algorithms derived from optic flow estimation for
precision landings, while Landgraf et al. [10] extended these
approaches to learning 6-dimensional ego-motion. Further-
more, researchers successfully tackled quadrotor control tasks
using neuromorphic computing methodologies, including the
use of neuromorphic PID controllers to manage one or multi-
ple degrees of freedom [11]–[14] and employing neuromorphic
reinforcement learning techniques, as demonstrated by Jiang
et al. [15] for navigation.

However, while the predominant focus of prior research
endeavours has been on addressing specific challenges, efforts
have also been directed towards the realisation of a fully
neuromorphic quadrotor. Notably, several researchers have
successfully developed such autonomous UAVs capable of
executing tasks such as hovering, landing, and adhering to
predefined flight paths [16], [17]. The outcomes have demon-
strated significant promise, exhibiting low power consumption
and latency, while performing online learning and exceeding
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conventional architectures in certain scenarios. Additionally,
in the context of obstacle avoidance, investigations have in-
dicated that fully neuromorphic quadrotors achieve superior
energy efficiency (up to 6 times less power consumption) and
demonstrate enhanced performance compared to conventional
methodologies [18], [19].

In the realm of UAV applications, high-speed drone com-
petitions serve as dynamic environments where AI technolo-
gies emerge. Within this area, innovation takes precedence
over safety, providing researchers with the latitude to ex-
plore cutting-edge technology. Historically, quadrotor guid-
ance, navigation and control (GNC) have predominantly relied
on ANNs, achieving remarkable performance that surpasses
human capabilities [20]. However, the rationale behind tran-
sitioning from traditional ANNs to SNNs holds substantial
promise for high-speed drones, driven by two primary factors:
the energy demands and the computation time might be sub-
stantially curtailed which will alleviate both the battery system
and the processing delay. Capitalising on these factors, the
quadrotor will benefit from a size reduction. Other theoretical
advantages of SNNs include a more dynamic behaviour (lead-
ing to concurrent training and performing operational tasks)
and a heightened resilience to noise and sensory perturbations
(due to the temporal presentation of information) [21].

However, comprehensive research into a fully neuromorphic
high-speed drone has not been undertaken. Developing such
a quadrotor typically entails two essential components: first,
the ability to sense the environment and process its infor-
mation, and second, the quadrotor GNC. Sensing capabilities
have predominantly relied on event-based cameras, extensively
studied thus far with research spanning optic flow analysis [9],
[22] to high-speed divergence estimation [23]. Conversely, as
presented above, the neuromorphic implementation of GNC in
quadrotors has primarily utilised simple Proportional-Integral-
Derivative (PID) controllers or Spiking Neural Networks
(SNNs) capable of executing basic flight manoeuvres and ego-
motion, with an emphasis on robustness. However, achieving
rapid flight demands a faster operational approach, sacrificing
some robustness in favour of strategies closer to optimal con-
trol. To the best of the author’s knowledge, the implementation
of rapid guidance, control and navigation using neuromorphic
computing methods remains unexplored to the present day.

Given the novelty of this research field, the present paper
will primarily focus on feasibility, specifically examining the
potential and methods for implementing rapid GNC using
neuromorphic computing in high-speed quadrotor operations.
To streamline this investigation, the problem scope has been
narrowed by excluding navigation elements, concentrating
solely on the guidance and control aspects of high-speed
quadrotor flight. Additionally, although the integration of
SNNs typically requires specialised neuromorphic hardware to
maximise performance, conventional von Neumann hardware
will be employed for training and testing the control network.
This decision was made to mitigate potential risks and enhance
comprehension of the neuromorphic learning process.

With these practicalities in mind, the primary objective of
this paper is framed as follows: to evaluate whether a Spiking
Neural Network (SNN) architecture can maintain state-

of-the-art performance in guiding and controlling rapid
quadrotors. The benchmark model under consideration was
examined by Ferede et al. [24], [25], who utilised artificial
neural networks to guide and control a high-speed quadrotor
using both supervised and reinforcement learning methods.

In section II, the methodology employed to fulfil the re-
search objective will be elaborated, covering the specifics of
the controller training and simulation methodologies, along
with the approach for comparing performance against tra-
ditional ANNs. Subsequently, the findings obtained will be
expounded upon in section III. The results of this research
will be critically analysed in section IV, where additional
recommendations will be explored. Finally, the conclusions
drawn from this study will be summarised and presented in
section V.

II. METHODOLOGY

A. General SNN structure

A supervised learning approach was chosen to learn infor-
mation with neural networks, due to its simplicity and ease of
understanding. As during the training of the model a trade-
off between stable and rapid flight will have to be performed
while considering feasibility, a clear understanding of the
learning process is required which discards the unsupervised
learning method. On the other hand, an interesting approach
that was considered by Ferede et al. [25] was the usage
of reinforcement learning. However, very few researchers
considered applying neuromorphic reinforcement learning as
the inherent recurrence found in the neuromorphic neurons
could hardly be implemented with a reward mechanism. For
this reason, the reinforcement learning algorithm was mostly
applied to solving relatively easy problems such as a UAV
flying through a window [26] or simple control problems [27].
However, due to the focus of the research on proving the
feasibility, this approach will be discarded. Starting from the
work of Lu et al. [26], it is nevertheless worth considering
reinforcement learning for future research, as it might still
achieve better rapid guidance and control performance with
neuromorphic computing akin to the artificial neural networks
studies performed by Ferede et al. [24], [25].

However, the choice of supervised learning imposes novel
problems too. First of all, in artificial neural networks, learning
is generally done with the help of back-propagation. The same
approach cannot be used with SNNs as the spikes required
to transfer information are not continuous and thus non-
differentiable. To solve this issue, researchers have proposed
several methods, one of them being the Spike-based Back-
Propagation algorithm [28], an easy-to-understand approach
that achieves satisfactory performance [29]. This algorithm
treats the membrane potential of spiking neurons as a continu-
ous differentiable signal, where the discontinuity in the spiking
time is regarded as noise. In other words, this method follows
the error back-propagation mechanism of traditional ANNs
but acts directly on spikes and membrane potentials. In order
to perform back-propagation as mentioned previously, gradient
descent becomes surrogate gradient descent [30], an algorithm
that uses surrogate derivatives to define the derivative of the
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threshold-triggered firing mechanism. The function chosen to
approximate the spike is the arctangent due to its gradient
adaptability around the spike coordinates, an approach used
successfully by Fang et al. [31]. Thus the derivative used to
approximate the spike activation function is described by:

σ′(x) = α
1+β∗x2 (1)

where α controls the height of the derivative’s peak and β the
slope of the derivative function.

Fig. 1. Visualisation of the LIF and CuBa LIF neuron models and their
dynamics when

For the neuron, the literature study found that the Leaky
Integrate-and-Fire (LIF) family of neuron models is the fittest
for the current research due to their relative simplicity and
low computational requirements while greatly mimicking the
neuromorphic behaviour [32], [33]. Among the numerous
options available, the Current Based Leaky Integrate-and-Fire
(CuBa LIF) neuron model was selected for its superior ability
to retain past information. Unlike the standard LIF neuron
model, the CuBa LIF neuron model does not completely
discard past information after a spike is generated [30]. The
working principles of this type of neuron can be visualised
in Figure 1 where the spiking behaviour is controlled by
the membrane potential and current. The discretised system
of equations describing the CuBa LIF neuron dynamics are
described by [34]:

I
(l)
i [t] = τiI

(l)
i [t− 1] +

∑

j

W
(l)
ij S

(l−1)
j [t− 1] (2)

V
(l)
i [t] = τvV

(l)
i [t− 1] · (1− S

(l)
i [t− 1]) + I

(l)
i [t] (3)

The presented equations describe how the membrane current
and potential of neuron i of layer l get updated at every
time step t as a function of previous time steps parameters.
In this system of equations, τi and τv are the time constant
of the membrane current and potential respectively which
controls how fast the neuron current and potential leaks
after receiving information. V (l)

i [t] represents the membrane
potential while I(l)i [t] the membrane current. Otherwise, the
membrane potential V (l)

i [t] integrates the spikes received from

the presynaptic spike train by summing the product between
every previous layer’s neuron spike (written in the equation by
j) S(l−1)

j [t − 1] and their respective weight W (l)
ij . When the

membrane potential V (l)
i [t] exceeds a certain threshold V th

i ,
the neuron i will cause a spike S

(l)
i [t]. For the next time

step, the membrane potential V (l)
i [t] resets to a value that

depends only on the membrane current value I
(l)
i [t]. After

the spike is generated and the membrane potential is reset,
the neuron generally enters a refractory period during which
new incoming spikes do not affect the membrane potential.
However, during the current study, due to the inherent need
for fast processing of information, the refractory period was
discarded. In this neuron model, multiple parameters are learn-
able during the back-propagation process. Firstly, controlling
how fast the membrane potential leaks, the time constants
are bounded between 0 and 1 with the help of the sigmoid
function. Similarly, the threshold that causes the neuron to
generate a spike is also learnable and bounded only to positive
values by the ReLU function.

B. Dataset generation

For training an algorithm with supervised learning, a dataset
must be created which, to assure a better comparison with
traditional ANN approaches, will be adopted from the works
of Ferede et al. [24], [25]. Thus the state and control inputs
required for describing the system dynamics will be defined
as follows:

x = [p,v,λ,Ω,ω,Mext]
T u = [u1, u2, u3, u4]

T (4)

where p = [x, y, z] and v = [vx, vy, vz] represent the 3-
dimensional position and velocity of the drone expressed in
the world reference frame. Instead, using the body reference
frame, the angular velocity Ω = [p, q, r] and the Euler
angles λ = [ϕ, θ, ψ] that describe the drone’s orientation
are expressed. Lastly, ω = [ω1, ω2, ω3, ω4] represents the
angular velocity of each of the propellers in RPM while
Mext = [Mext,x,Mext,y,Mext,z] is a disturbance moment
added to compensate for unmodeled dynamics. The control
input u = [u1, u2, u3, u4] contains the target RPM commands
normalised between 0 and 1. During the previous enumeration,
body and world reference frames were mentioned which can
be visualised in Figure 2. The key difference is that the SNN
model learns to process parameters in the body reference frame
as it is also expressed in the system dynamics below, while
the world reference frame is primarily used for drone flight
simulation.

The equations of motion describing the drone’s dynamics
are described by:





ṗ = vv̇ = g +R(λ)F

λ̇ = Q(λ)ΩIΩ̇ = −Ω× IΩ+M +Mext

ω̇ = ((ωmax − ωmin)u+ ωmin − ω)/τ

˙Mext = 0ω̇

(5)

where g = [0, 0, g] represents the gravitational acceleration,
I is the 3-dimensional moment of inertia matrix given by
diag(Ix, Iy , Iz), wmin and wmax are the minimum and
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Fig. 2. The reference systems of the quadrotor used throughout the research
as well as the numbering order of the propellers [24]

maximum propeller RPM limits and τ is the first order delay
parameter of the actuator model. Moreover, R(λ) is the rota-
tion matrix between world and body reference frames while
Q(λ) represents a transformation matrix between angular
velocities and Euler angles. Lastly, F = [Fx, Fy, Fz] is the
specific force acting on the quadrotor in the body frame which
is modelled using a thrust and drag model based on Svacha
et al. [35]:





Fx = −kxvBx
4∑

i=1

ωi

Fy = −kyvBy
4∑

i=1

ωi

Fz = −kω
4∑

i=1

ω2
i − kzv

B
z

4∑

i=1

ωi − kh(v
B
x

2
+ vBy

2
)

(6)

where vBx , vBy and vBz represent the drone’s velocities in x,
y and z directions of the body reference frame as expressed
in Figure 2. Similarly, M = [Mx,My,Mz] is the specific
moment in the body reference frame acting on the quadrotor
modelled, can be expressed using a similar approach as a
function of body velocity v and propeller RPM ω:




Mx = −kp(ω2
1 − ω2

2 − ω2
3 + ω2

4) + kpvv
B
y

My = −kq(ω2
1 + ω2

2 − ω2
3 − ω2

4) + kqvv
B
x

Mz =kr1(−ω1 + ω2 − ω3 + ω4) + kr2(−ω̇1 + ω̇2 − ω̇3+

ω̇4)− krrr
(7)

After comparing the measured moments and specific forces
with modelled moments and specific forces, Ferede et al.
[24] found significant differences within the quadrotor’s mo-
ment estimation. To combat the discrepancies, the adaptive
environment, considered in the current paper, was developed
including disturbance moments Mext. These were generated
randomly from a predefined interval as follows: Mext,x and
Mext,y between -0.04 and 0.04 and Mext,z between -0.01 and
0.01. Adding these parameters to the guidance and control
network showed increased performance during ANN analysis.
The constants used throughout the dynamic model expressed

above for the Parrot Bebop 1 quadrotor were taken from the
work of Ferede et al. [24] and can be seen in Table I.

TABLE I
PARROT BEBOP 1 QUADROTOR PARAMETERS USED BY FEREDE ET AL.

[24]

kx [RPM−1s−1] ky [RPM−1s−1] kω [RPM−2s−2] kz [RPM−1s−1]
1.08e-05 9.65e-06 4.36e-08 2.79e-05
kh [m−1] Ix [kgm2] Iy [kgm2] Iz [kgm2]
6.26e-02 9.06e-04 1.24e-03 2.05e-03
kp [RPM−2Nm] kpv [Ns] kq [RPM−2Nm] kqv [Ns]
1.41e-09 -7.97e-03 1.22e-09 1.29e-02
kr1 [RPM−1Nm] kr2 [RPM−1Nm] krr [Nms] τ [s]
2.57e-06 4.11e-07 8.13e-04 0.06

With the model’s dynamics described, the dataset was
generated using an energy-optimal control problem. This was
formulated by Ferede et al. [24] as follows: Given a state space
X and output space of admissible control commands U , the
goal is to find a control trajectory u : [0, T ] → U that steers
the quadrotor from an initial state x0 to some target state
S ⊂ X in time T while minimising an energy cost function.
This can be formulated as:




minimise
u,T

E(u, T ) =

∫ T

0

∥u(t)∥2dt

subject to ẋ = f(x,u) x(0)− x0 x(T ) ∈ S

(8)

Minimising the final time T transforms the current problem
into a time-optimisation problem and this will be confirmed
by a parallel analysis of time and energy parameters below.
Moreover, the energy-optimal side of the problem is rooted in
the minimisation of the motor command vector u. This leads
to the solution u to exhibit oscillations around the hover thrust
approximately halfway between minimum and maximum pro-
peller commands. Using the AMPL [36] modelling language
with the SNOPT NLP solver [37], the optimal trajectory x(t),
u(t) can be computed. This is later discretised with a timestep
∆t = T/N where N is set to 200.

With these settings, 2 datasets were created where the initial
conditions x0 and final conditions x(T ) are different. The first
dataset (hover to hover (h2h)) tries to simulate trajectories
where the target is the hover state defined by x(T ), v(T ),
λ(T ), Ω(T ), v̇(T ), Ω̇(T ), ω̇(T ) = 0. Moreover to ensure
robustness the initial conditions are set randomly around
the map following a uniform sampling from the following
intervals:



x ∈ [−5, 5] y ∈ [−5, 5] z ∈ [−1, 1]

vx ∈ [−0.5, 0.5] vy ∈ [−0.5, 0.5] vz ∈ [−0.5, 0.5]

ϕ ∈ [−2π/9, 2π/9] θ ∈ [−2π/9, 2π/9] ψ ∈ [−π, π]
p ∈ [−1, 1] q ∈ [−1, 1] r ∈ [−1, 1]

ω ∈ [ωmin, ωmax]
4

(9)

The second dataset (hover to gate (h2g)) follows a similar
structure but simulates trajectories where the target is simu-
lated as a gate. To do this, a circular racing map was chosen
that should be flown in clockwise direction as will be detailed
in section III. Thus the target conditions are imposed to be
0 with the exception of the roll angle ψ which is set to π/4
and the y and x velocity ratio vy/vx which is set to tan(π/4).
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Moreover, the initial conditions are generated similarly, but the
intervals were slightly altered to represent the circular racing
map more accurately as follows:




x ∈ [−5,−2] y ∈ [−1, 1] z ∈ [−0.5, 0.5]

vx ∈ [−0.5, 5] vy ∈ [−3, 3] vz ∈ [−1, 1]

ϕ ∈ [−2π/9, 2π/9] θ ∈ [−2π/9, 2π/9] ψ ∈ [−π/3, π/3]
p ∈ [−1, 1] q ∈ [−1, 1] r ∈ [−1, 1]

ω ∈ [ωmin, ωmax]
4

(10)
It is important to mention that a second approach was

analysed for generating the dataset using the reinforcement
learning algorithm of Ferede et al. [25]. However, the resulting
dataset striving for time optimal flight was deemed to be
too noisy to be learned accurately by an SNN which led to
the rejection of this approach. The analysis and the rejection
argumentation can be found in appendix B.

C. Controller network

The controller tasked to fly the drone around the circuit will
be a spiking neural network. To check the feasibility of such an
innovative approach, a trivial network and learning algorithm
were chosen. Thus, a feed-forward fully connected structure
for the spiking neural network as well as a supervised learning
approach were considered for the current study. However, it is
important to state that even though a feed-forward architecture
is used, recursion exists in the network incorporated in the
spiking neurons which save past information. Moreover, to
simplify the analysis and have a better ANN-to-SNN compar-
ison, the 3-layered neural network structure created by Ferede
et al. [24], [25] was adopted in the current study and can be
visualised in Figure 3. The network’s training parameters were
initialised as follows. The optimiser was set to ADAM [38]
due to its fast and accurate search for regression problems,
the learning rate was first initialised to 1e-4 with a scheduler
that decreases the value when the learning plateau is reached
and the loss function considered was the mean squared error
calculated as follows:

MSE =
4∑

i=1

(ui − ūi)
2 (11)

where ui is the target control output command and ūi is the
SNN’s control output command prediction.

To operate an SNN, the inputs and outputs have to be
encoded as spikes. Various encoding techniques exist, inspired
by the human brain, such as rate, temporal or population
encoding. The first 2 methods are not desirable as they
require long times to process information [32], something
unwanted for rapid guidance and control. Instead, population
encoding can process instant information and be considered
as a first step to transforming the inputs into spikes. The
biggest disadvantage of such an approach is that multiple
spiking neurons are required to capture the information of
one value which might become prohibitive on von Neumann
architectures used in the current study. For this reason, a
preliminary analysis was performed to quantify the number of
spiking neurons necessary to capture most of the information

Fig. 3. General structure of the SNN network used throughout the research

on input parameters which can be found in appendix A. Its
conclusion found that 7-8 spiking neurons for each input value
can capture the input space information accurately enough, a
result that will be confirmed later by the sensitivity analysis
performed on the controller’s number of spiking neurons per
layer of neural network.

However, adding an extra layer for only encoding the
dataset adds just another source of error to the controller and
it consumes additional computational resources. Leaving the
encoding phase directly to the controller allows it to adjust the
parameters accordingly such that it can decrease the encoding
error directly. Thus, it was decided that the encoding should
be performed directly by the controller’s SNN which makes
the current approach use population encoding as well. In
this manner, the weights between the input layer and the
first hidden layer as well as the weights between the last
hidden layer and the output layer can be learned to summarise
the possible encoding and decoding layers respectively. An
important contribution that allows for the dismissal of these 2
steps is also represented by the ability of the neuron thresholds
to be learned and thus be correlated to the weights such that
accurate spiking behaviour of the neurons is achieved.

Regarding the dataset passed for training the network, 10000
different trajectories of N = 200 timesteps including state-
motor command pairs were generated. 90 % of the dataset
was used for training while the remaining 10 % was used for
testing the network and thus helping choose the best model.
It is also worth mentioning that as opposed to the ANN
approach of Ferede et al. [24] that uses only one pair of state-
motor commands, the SNN is required to receive sequences
of information due to its inherent recurrent nature. For this
reason, each trajectory was fed directly to the SNN. The
recurrence found in the neurons allows for understanding the
current timestep information as a function of the previous
timesteps information. However, recurrence also requires an
initialisation period when the neurons adapt their current and
voltage potential from their resting values which do not allow
for high spiking activity during the first timesteps.

III. RESULTS

To verify the performance of the controller, several metrics
need to be calculated. For this, a racing map simulator with
similar dynamics to the ones presented in subsection II-B
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was created. The target map that has to be followed by the
quadrotor was chosen to be the same as the one studied by
Ferede et al. [24], [25] and can be visualised in Figure 4. A
similar map was chosen in order to create a fair comparison
between neuromorphic and non-neuromorphic controllers. The
circuit has the trivial square shape as it is simple enough to
showcase the feasibility of such an approach while simulating
a high-speed environment. The simulator is created and the
equivalent trajectory is obtained by solving an Ordinary Dif-
ferential Equation (ODE). The timestep ∆t is chosen such that
the simulation is stable using the Runge-Kutta method. Finding
a stable timestep is crucial for further analysis becoming a
prerequisite for real experiments which are limited by the
Bebop quadrotor’s processing frequency of 500 Hz. In the
end, to simulate a racing environment, the quadrotor starts at
a random gate and runs for a time of 30 s. To adapt the training
dataset to the current racing map, the simulator switches the
reference frame by π/2 clockwise when a gate is passed and
thus the target is reset. To ensure that a gate is passed, the
Euclidean distance between the centre of the gate and the
centre of the quadrotor should be smaller than 0.5 m.

Fig. 4. Visualisation of the racing track used in simulation and experiments

A. Sensitivity analysis

Before presenting the results of the best model achieved, a
sensitivity analysis was performed illustrating how the best
model was chosen based on performance achieved during
training. The analysis was done predominantly on the hover to
hover (h2h) dataset and started with varying learning rates. The
results found in Table II show that the best starting value lies at
approximately 1e−3 for the current training approach with an
ADAM optimiser and a scheduler. The same table dictates that
a learning rate of 1e− 3 achieves the maximum performance
while reducing this value leads to the model converging to a
local minimum and increasing it leads to a fast convergence to
a sub-optimal solution. Thus the analysis continued with the
current finding and analysed further the shape of the surrogate
arctangent function used for back-propagation. In Table III
it can be observed that the steeper the surrogate function
becomes and resembling closer a spike, the better the learning
performance becomes with a high value for slope and a low

value for height being preferred as expected. However, a limit
exists and if the value of the slope increases over the value of
100, the performance of the network starts to drop.

TABLE II
INFLUENCE OF LEARNING RATE ON MSE LOSS

Learning rate 1e-2 1e-3 1e-4
MSE loss [-] 5.397e-3 2.731e-3 6.290e-3

TABLE III
INFLUENCE OF ARCTANGENT SHAPE ON MSE LOSS

XXXXXXXXHeight
Slope 1 10 100 1000

1 7.934e-3 6.290e-3 5.743e-3 3.377e-2
5 3.167e-2 2.317e-2 9.614e-3 9.735e-3

The analysis continued by verifying the influence of the
initial leak and threshold values on the training performance
with the results summarised in Table IV. The initial leak and
threshold values are generated randomly with the help of a
normal distribution function where the mean and variance are
passed. In the table below, the sensitivity analysis includes
exclusively the mean values while the standard deviation was
set directly to 0.5 for all parameters as it was found to have
little influence upon the training performance. It is important to
note that the leak values presented represent the value passed
to the sigmoid function to be bounded. Thus a low leak value
of -2, after passed through the sigmoid function is closer to 0
meaning that a great part of the past information is forgotten.
This further translates, in a contradictory manner, into a large
leak of information at every timestep. Similarly, the opposite
happens when a large leak value is passed leading actually
to a small leak of information at every timestep. With this in
mind, it can be observed from the table that low leak values
and thresholds are preferred leading to increased performance.
This translates further to the fact that previous information is
not crucial for the quadrotor’s performance due to the low
leak value but also that the quadrotor requires to have fast
adaptability due to the low threshold value. In the end, for the
simulations and experiments, the initial mean values for leaks
and thresholds were set to -1 and -1 respectively.

TABLE IV
INFLUENCE OF THRESHOLD AND LEAK INITIAL VALUE SELECTION ON

MSE LOSS

hhhhhhhhhhhhMean Leak
Mean Threshold

0.5 1 3

-2 2.453e-3 2.469e-3 6.530e-3
-1 2.297e-3 2.207e-3 9.667e-3
0 2.269e-3 2.416e-3 7.089e-3
1 3.554e-3 2.974e-3 1.189e-2
2 6.569e-3 1.197e-2 1.982e-2

Further, the sensitivity analysis looked at the influence of
the number of neurons on the performance of the model. As
illustrated in Figure 5a, 2 clear conclusions can be drawn.
Firstly, for both datasets used in training, the loss seems
to reach the plateau and, equivalently, the best performance
at approximately 1000 neurons with a minimal performance
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(a) The validation loss versus the number of
neurons for the 2 datasets

(b) The validation loss versus the dataset size
passed to the model trained with 500 neurons

per layer on the hover to hover dataset

(c) The validation loss versus number of epochs for various
trained models

Fig. 5. Sensitivity analysis

MSE loss of 1.0995e-3 for the hover to hover (h2h) dataset
and of 4.0452e-4 for the hover to gate (h2g) dataset. As can be
seen, the models trained on the hover to hover dataset perform
worse which led to the discard of this approach. During the
simulation phase, several plots were generated which show
the clear decrease in performance achieved with the hover to
hover dataset. The results and their analysis can be visualised
in appendix C.

However, looking again at the plot, it can be observed
that adding simply more neurons than the 1000 mark does
not help the performance while fewer neurons lead to worse
performance. The current result is consistent with the conclu-
sions drawn from appendix A where it is discovered that 7-
8 spiking neurons per non-spiking neurons conserve most of
the information. Similarly, using the hover to hover dataset,
the influence of the dataset size on training performance was
analysed and the results can be visualised in Figure 5b. As
expected, offering multiple input-output examples improves
the performance of the network leading to an MSE loss
decrease of the model trained on 500 neurons from 1.3430e-
3 with 5000 samples to 6.8967e-4 with the whole dataset of
100000 samples.

The sensitivity analysis also examined the influence of
various hyperparameters on the training time represented in
Figure 5c by the number of epochs required to flatten
the performance. For most models, the plateau is reached
relatively fast with 10 to 15 epochs being required. However,
the performance loss sometimes differs based on the influence
of the hyperparameter. For example, having more neurons
requires a longer time for convergence as more parameters
need to be optimised which also leads to a more irregular
shape with MSE loss fluctuations during training. Secondly,
having a bigger dataset with more variate examples leads
to faster convergence and thus fewer epochs are required
during training. Last but not least, confirming the results found
above, the hover to gate dataset achieves a better performance
including a faster convergence too.

B. Simulation performance

Using the outcomes of the sensitivity analysis presented
above, several models could be trained and simulated in
a similar environment and racing track as the ones used
by Ferede et al. [24] for a fair comparison. As mentioned
previously, the models presented throughout the remaining part
of the report will focus on the results obtained using the hover
to gate (h2g) dataset if not indicated otherwise.

Firstly, the direct output of 2 SNN models with 250 and
2500 neurons per layer on a separate testing dataset was anal-
ysed with respect to the target command output as presented
in Figure 6a. Moreover, the figure also includes the output
generated by the MLP model created by Ferede et al. [24] that
uses 120 neurons per layer. Comparing the MLP to SNN, it
can be seen that both neural networks types perform well with
the latter having bigger error differences from the real output
close to the end of the timestep range while the former having
a bigger error close to the beginning due to overshooting.
Moreover, it can be observed that the SNN model output
is less smooth than the MLP model output which can be
rooted in the inherent nature of spiking neurons that are not
fully continuous and present output is affected by previous
information. When comparing the influence of the number
of neurons on the SNN model performance, it can be seen
that having more neurons leads to a reduction in the error
as well as a smoother output is generated. However, it was
found that the noisy behaviour caused by the SNN models
have little influence, in the end, upon the behaviour of the
propeller rotational speed parameters. The generated propeller
rotational speed in RPM after being passed through the system
dynamics can be visualised in Figure 6b. The plot illustrates
that the noisy behaviour specific to SNN models is filtered out
by system dynamics and the errors of the propeller rotational
speed with respect to the ideal values are consistent with the
output command observations.

To quantify the performance of the SNN models for the
task of quadrotor racing, it is important to register the lap
times. Even though the models were trained on a dataset
generated with an energy optimal policy, it was discovered
that lap times and energy consumption are heavily correlated.



8

(a) Comparison of output command predictions (b) Comparison of generated propeller RPM

Fig. 6. Comparison between 2 SNN (with 3 layers of 250/2500 neurons) and 1 MLP (3 layers of 120 neurons) model performances with respect to target
dataset during a testing sample of 200 timesteps

This was expected as to reach a gate with minimum energy
consumption, it is important to fly there in the shortest time
possible. To confirm the results, Figures 7a and 7b are
presented and their clear resemblance is proved with the
boxplots showing similar trends. In order to achieve the current
results, the simulation involved the flight of the quadrotor
across the racing track for 30 seconds for 10 times. With these,
Table V was generated that includes the mean and variance
of both first and other lap times for SNN and MLP models.
Similarly, the mean and variance of the energy consumption
is included to confirm the correlation. Moreover, the table
includes the stable timestep required to simulate the flight of
the quadrotor across the racing track. In order to calculate
the energy consumption, the squared output command of all
the propellers is summed up over all the timesteps. Then the
value is multiplied by the time difference between consecutive
timesteps and by the number of gates passed during the 30
seconds simulation for normalising it to the existing dataset.

One clear conclusion of the current analysis is that the
SNN models perform generally worse than the MLP models
trained by Ferede et al. [24], [25] whether the training method
involved supervised learning (SL) or reinforcement learning
(RL). However, the performance of the SNN models gets
closer and closer to the performance of the SL MLP model
as more neurons are being used. The best performance of the
SNN model was attained with 1500 spiking neurons per layer
that achieves the smallest energy consumption and the shortest
time for other laps. The energy consumption of the SNN
models flattens at approximately 500 neurons with fluctuations
happening as the number of neurons increases. However, the
big difference still stands in the times of the first lap which
proves to be the most difficult task for the SNN model due to
the starting point. Once the model enters the racing optimal
track, the quadrotor seems to have fewer problems. One outlier
exist when it comes to the influence of the number of neurons
on the performance of the model. This is the model trained
using 2000 neurons per layer which achieve longer lap times

than expected for both first lap and other lap times as well
as a higher value for energy consumption. Another important
outcome is the variance of the lap times. This value shows
how robust the model is to disturbances, a very important
attribute of the network that proves the feasibility of this
approach and possible implementation to real experiments.
Again this decreases generally with the number of neurons
in the model with a clear outlier being the model trained
with 2000 neurons per layer that has very high variance.
The maximum stable timestep serves as an indicator of both
model stability and experiment update frequency requirement.
A lower value suggests decreased stability, as observed in the
model with 250 neurons, which necessitates a very high update
frequency (≈ 157Hz) and thus a more powerful processor.
Conversely, models with 500 or 2500 neurons demonstrate
higher maximum stable timesteps, allowing for a reduced
update rate (≈ 49Hz) while maintaining stability. This inverse
relationship between neuron count and the required update
frequency underscores the importance of optimising model
parameters for both computational efficiency and stability.

Based on the lap times achieved, the racing tracks chosen
to be followed by the model could also reveal important
observations about the performance of the models. For this
reason, several SNN models as well as the MLP model trained
with SL were simulated in the environment and can be seen in
Figures 8a-8f. The current results can explain the outcomes
found in the previous paragraph. Thus, it can be firstly
observed that in all SNN models the starting point causes
the most problems with the model with 250 neurons starting
the simulation clearly in the wrong direction, confirming the
very high variance and mean values found in the previous
analysis. The deficient starting of the model may be caused
by the dataset whose samples do not start from a hovering
condition and are created to fly directly through a future gate in
a clockwise manner. Moreover, the SNN models are not clearly
aiming to fly through the centre of the gate as it is being done
by the MLP model. Similarly, the time of the laps can also be
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TABLE V
INFLUENCE OF THE NUMBER OF NEURONS ON THE SNN MODEL’S PERFORMANCE QUANTIFIED THROUGH LAP TIMES AND ENERGY CONSUMPTION,

COMPARED TO EXISTING LITERATURE MODELS

Model First lap times Other laps times Energy consumed Maximum stable
timestep [ms]Mean[s] Variance[s2] Mean[s] Variance[s2] Mean[s] Variance[s2]

SL model Ferede et al. [24] 4.334 2.54e-4 4.202 1.92e-3 1.316 2.03e-6 -
RL model Ferede et al. [25] 3.393 4.90e-2 2.749 1.67e-2 2.685 2.15e-2 -

250 neurons h2g dataset 12.661 42.951 4.648 3.35e-2 5.010 25.449 6.349
500 neurons h2g dataset 7.008 5.433 5.317 3.26e-2 1.720 7.41e-2 20.394

1000 neurons h2g dataset 6.608 5.757 4.541 0.731 1.929 0.560 13.340
1500 neurons h2g dataset 5.574 0.688 4.482 2.51e-2 1.444 1.96e-3 14.627
2000 neurons h2g dataset 7.399 22.475 5.300 0.501 1.851 0.484 12.386
2500 neurons h2g dataset 5.233 0.669 4.593 0.456 1.491 1.15e-2 20.505

(a) Boxplots of lap times registered in simulation (b) Boxplots of energy consumed in simulation

Fig. 7. Statistical analysis of models trained with various numbers of neurons on the hover to gate (h2g) dataset

explained by looking at the general racing track patterns. Thus,
the SNN model with 2000 neurons chooses to go consistently
through the exterior part of the gate which, even though it
uses a higher velocity, makes the quadrotor fly slower through
the track. This confirms the high energy consumption as well
as the the high values for lap times shown previously. On the
other hand, one of the most energy and time optimal SNN
model, namely the one trained on 2500 neurons learns to fly
correct through the interior of the gate which helps it generally
fly faster and with less energy. Another outcome is that the
outlier lap times observed in Figure 7a are caused by models
missing a gate and having to return to pass through it as seen
in both Figures 8d and 8e. The best example is the track
achieved by the model trained on 1000 neurons. Generally,
this model flies through the interior of the circuit but the poor
performance caused by missing the gate sometimes generates
slower lap times and very high variance. Overall all the SNN
models trained on the hover to gate dataset seem to show good
adaptability with the quadrotor being able to recover in case
it flies off the track.

The last metric analysed during the simulation is the time re-
quired to run the created models. Looking at Figure 9, 2 times
were registered involving the initialisation and the forward
function. The times were calculated on an Intel(R) Core(TM)
i7-8750H CPU @ 2.20GHz processor. It is important to see
that both the initialisation and forward function times show

the same exponential behaviour as a function of the number
of neurons. However, the forward function time is more crucial
as this might make the quadrotor unstable if left too large. As
a reference, the time of running the forward function on the
MLP model trained with supervised learning is 8.6 ms slightly
below the value of 11.2 ms of the SNN model with 250
neurons. Even though, the times presented here are irrelevant
as the quadrotor uses a different, less powerful processor. The
relation between the number of neurons and the running time
could still prove beneficial during experiments. For this reason,
this has been theorised in Equation 12 where the time required
to run a forward function on PC in ms (tPC) is expressed as
a quadratic function of the number of spiking neurons in the
model (Nneuro).

tPC = 2.41e−6·N2
neuro+1.25e−4·Nneuro+4.68e−2 (12)

IV. DISCUSSION

The current study proposed an experiment that analysed the
feasibility of building a guidance and control neural network
for rapid quadrotors with neuromorphic computing techniques.
The analysis involved mimicking the work of Ferede et al.
[24], [25] that performed a similar analysis with the help
of traditional artificial neural networks. Thus, various spiking
neural networks were built and trained to fly around a simple
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(a) The performance of the MLP model 500
neurons per layer

(b) The performance of the SNN model with 250
neurons per layer

(c) The performance of the SNN model with 500
neurons per layer

(d) The performance of the SNN model with 1000
neurons per layer

(e) The performance of the SNN model with 2000
neurons per layer

(f) The performance of the SNN model with 2500
neurons per layer

Fig. 8. Racing track performance of various models trained on the hover to gate dataset

Fig. 9. Running time of both initialisation and forward function of the neural
network (NN) models trained with various numbers of neurons on personal
computer

track shown in Figure 8 and the results presented previously
were obtained with the help of a quadrotor racing simulator
environment. The focus of the performed analysis was to verify
computationally if such an approach is feasible. However, as
positive as the results look, the current study still lacks a
clear answer as practical experiments could not be realised
with the current quadrotor and SNN controllers. Even though,

important conclusions can be drawn from the current study as
it will result from the paragraphs below.

The sensitivity analysis performed on the initial values
of leaks and thresholds in the model indicates a preference
for rapid responses due to low threshold values, while the
preference for low leak values implies minimal consideration
for previous information. This suggests that recursion is not
significantly more beneficial. Specifically, long-term memory
proves less useful than just a few previous timesteps, neces-
sitating a small leak value. This can also be confirmed by
the good performance achieved by MLP models that learn
directly from input-output command pairs without the need
for temporal information. Moreover, the preference for low
leak values means that fast adaptability is crucial. This can
be rooted to the random initialisation done during the dataset
generation which demands swift adjustments. Additionally,
the need for both rapid control and the ability to respond to
disturbances further supports the need for quick adaptation
without heavily relying on past timesteps.

Furthermore, conclusions regarding the optimal number of
neurons are evident from the encoding procedure described in
appendix A but also from the sensitivity analysis performed on
the SNN controllers trained with various numbers of spiking
neurons in Figure 11. To effectively convert a 32-bit floating
point value into spiking neurons, it was discovered that a ratio
of 7-8 is necessary to preserve most of the information. This
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ratio accounts for the elimination of additional factors:

• The precision provided by floating points could poten-
tially convey excessive information to the drone discarded
by the usage of spiking neurons;

• The use of recursive relations, specific to spiking neural
networks, aids in information preservation with a low
number of spiking neurons, as the subsequent values
remain close to the previous ones for most parameters;

• Grouping parameters to avoid redundant information
transfer as done by population encoding also supports
this neuron ratio. For example, velocity could be derived
from position data and the timestep;

The quality of the dataset is critical for developing a highly
accurate model. For example a dataset that is widespread and
generalisable, such as the hover to hover dataset, is valuable
as it can be used at later research stages for more complex
tasks such as navigation. However, it has been observed that a
more specialised dataset, like the hover-to-gate dataset, which
is created in such a manner that it teaches the quadrotor
how to fly in a circle in a clockwise direction, results in
better learning outcomes. The general nature of the hover-to-
hover dataset means that fewer specific behaviours are learned,
leading to cautious simulation with slower speeds and longer
times to travel between waypoints as can be seen in appendix
C. Conversely, if the dataset is excessively specialised, as was
observed when the reinforcement learning approach was used
explained in appendix B, the SNN manages to learn accurately
but crashes when minimal disturbances or deviations from
ideal track are involved. Therefore, a balance between how
adaptable the model has to be and how fast the quadrotor
should fly is essential for optimising spiking computation. If
the race track is known and navigation is not necessary, a
dataset with more constraints imposed may be more suitable
as total adaptability is not required, but for general navigation
and guidance, a robust dataset is advantageous.

Notable outcomes are observed when analysing the dataset
size as well which is done with the hover to hover (h2h) dataset
in appendix C. As expected, increasing the number of samples
enhances performance. However, the quadrotor’s velocity does
not significantly improve with a larger dataset. This might
be due to the h2h dataset’s design, which emphasises on
stopping at the next gate rather than passing through at non-
zero speeds. A positive of the dataset is that the starting point
is not from a standstill, which explains why a model trained
on a smaller dataset can still fly but with less precision in
reaching the endpoint. This causes the model to be able to
adapt to disturbances such as overshooting, undershooting or
deviating laterally from the gates. With the current analysis,
future research should explore augmenting the h2h dataset to
make it easier to learn for complex tracks and navigation tasks.
Currently, the only improvement is brought by the augmen-
tation that transforms it into a hover to gate (h2g) dataset,
optimised for right turns in a circular track. Reinforcement
learning could also be a promising solution for developing a
faster model, but achieving robustness and training an SNN
through a recurrent RL approach might prove challenging.
Another outcome of the analysis is that the SNN controller

is more noisy than the MLP one. This result was expected
as the output of the SNN controller is calculated as the sum
of discrete values. However, it was found that this had no
influence upon the smoothness of the propeller rotational speed
signal being filtered by the system dynamics.

A practical experiment was also done with the current
approach to verify if the SNN model can be flown outside
simulation. Thus, the approach of Ferede et al. [24], [25] was
chosen to be reproduced and for the experiments, a Parrot
Bebop 1 quadrotor was flown whose parameters can be found
in Table I. To include the controller, the onboard software of
the quadrotor is replaced by the Paparazzi-UAV open-source
autopilot [39]. Real-time computation was performed on a
Parrot P7 dual-core CPU Cortex A9 processor. The Bebop
quadrotor was equipped with an MPU6050 IMU sensor to
measure specific force and angular velocity, as well as RPM
measurements for each propeller, which were crucial for the
control method. Flight tests were conducted in The Cyber-
Zoo, a 10x10x7 meter flight arena at TU Delft’s Aerospace
Engineering faculty, featuring an OptiTrack motion capture
system for real-time position and attitude data. An extended
Kalman filter was employed to fuse the OptiTrack position and
attitude measurements with accelerometer and gyro data from
the IMU, enabling accurate estimations of position, velocity,
attitude, and IMU biases. A schematic of the experiment can
be visualised in Figure 10

Fig. 10. A schematic of the experiment [25]

However, the experiment revealed that the number of spik-
ing neurons is a great hindrance for the performance if im-
plemented on the Bebop quadrotor. Thus no successful flights
were obtained. Instead, the focus was on finding the minimum
update frequency that SNN is capable to deliver when im-
plemented on von Neumann architecture. Thus, several SNN
models with various numbers of neurons were implemented
on the actual quadrotor and the results were summarised in
Table VI. With the current findings, implementing the SNN
controller on a quadrotor cannot be performed. Looking again
at the minimum timestep for stability imposed by the Runge-
Kutta criterion during simulations shown in Table V, it is
clear that for all 3 models this cannot be achieved in a real
experiment. Another important outcome from the experiment
is that the running time of the code as a function of the number
of neurons is closely related to the finding shown in Figure
Figure 9. Thus switching from an Intel(R) Core(TM) i7-8750H
CPU @ 2.20GHz processor to a Parrot P7 dual-core CPU
Cortex A9 processor of the Bebop quadrotor slows down the
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running time by a factor of approximately 50 - 60 times. The
required time to run a forward function on the Bebop quadrotor
in ms (tBebop) was also expressed as a function of the number
of neurons (Nneuro) in Equation 13.

TABLE VI
MINIMUM UPDATE FREQUENCY OF SNN CONTROLLER WITH VARIOUS

NUMBER OF NEURONS ON THE PARROT P7 DUAL-CORE CPU CORTEX A9
PROCESSOR

No neurons 250 500 1000
Minimum update

frequency [Hz] 73.1 28.4 7.96

Running time [ms] 13.7 35.2 126

tBebop = 1.28e− 4 ·N2
neuro − 9.6e− 3 ·Nneuro +8.13 (13)

The current study showed that neuromorphic controllers
used for rapid guidance and control are possible. However,
future research is still required especially as the capability
of such a controller in real environment has not been proven.
Thus the following recommendations could be made for future
research:

• Investigate better network structures, including different
numbers of layers, various neuromorphic neuron types,
and alternative back-propagation techniques. The current
study did not focus on obtaining the best SNN controller
but the focus was on verifying the feasibility of such an
approach. This led to the choice of the safest approach
with most of the inspiration being drawn from the work of
Ferede et al. [24] while the neuromorphic approach was
only aimed at the easiest and fastest implementation;

• Explore the possibility of learning the track through
reinforcement learning with SNN. While this approach
may prove difficult due to the need of creating a rein-
forcement learning approach to learn a recurrent neural
network (given by SNN) [40], it showed very good
results by achieving the fastest lap times along the racing
track when implemented with traditional artificial neural
networks [25];

• For the supervised learning approach, verify other dataset
creation methods involving other constraints or adding
more parameters, such as force disturbances or the next
gate position and yaw. This approach might be the fastest
method to increase the performance of the current SNN
but the gain in performance is not expected to be great;

• Conduct real experiments with this model, either by
moving to a more powerful drone (which necessitates
a new training as a new drone model is required) or
by analysing new methods to speed up the current net-
work implementation on the Bebop quadrotor. This study
will answer the research objective of the current paper
possibly proving that controlling a rapid quadrotor with
neuromorphic computing is feasible in a real experiment;

• Verify the implementation on neuromorphic hardware.
Evaluate the potential time and energy gains, considering
that fast information updates of rapid quadrotors may
limit the advantages of neuromorphic hardware, which
operates only when activated;

V. CONCLUSION

The aim of the current paper was to analyse if training a
spiking neural network (SNN) for guidance and control of
a rapid quadrotor across a racing track is feasible. Despite
achieving a worse performance and the impossibility for im-
plementation on a real experiment, the current study confirms
through the simulation results the potential for successful
implementation.

Several key findings emerged from the current research.
Performance optimisation can be achieved by maintaining
lower leak rates as there is minimal need for past information
but also by preserving lower threshold values as rapid neuron
adaptation is necessary at every timestep. The choice and
size of the dataset proved critical: for general guidance and
control (and possibly even navigation), a complete and diverse
dataset such as the hover to hover dataset is essential, while
improving performance can be done by imposing several
racing circuit constraints on the dataset as it was performed
through the hover to gate dataset. Generally, a larger dataset
yields better outcomes. A notable trade-off was observed
between maximising the general speed of the quadrotor and
robustness (expressed through adaptability of the controller to
disturbances), influenced mostly by the number of neurons
used in the model. The optimal ratio from floating point to
spiking neurons was identified to be 1:7-8 to preserve most of
the information. While the output of the SNN remains noisy,
increasing the dataset size or neuron count can reduce the noise
interval. Running time was found to be exponential propor-
tional to the number of neurons, with relatively proportional
variations observed across different processors.

Practical experiment was hindered by the Bebop quadro-
tor’s processor speed, which was insufficient for the current
network requirements. But to address the research objective
outlined at the beginning of this study, introducing neuro-
morphic computing generally resulted in poorer performance
compared to state-of-the-art artificial neural network models
across parameters such as loss, speed, and training/running
time. This discrepancy may also be attributed to the usage
of von Neumann architecture instead of neuromorphic hard-
ware, which relies on floating-point operations rather than
spiking neurons, thus not fully leveraging the advantages of
SNNs. Additionally, the discrete calculations inherent in SNNs
led to noisier outputs and thus higher loss. Overall, while
SNNs show potential for quadrotor racing applications, further
advancements in neuromorphic hardware and optimisation
techniques are necessary to fully exploit their benefits and
achieve stability and performance comparable to traditional
guidance and control models.

APPENDIX A
ENCODING THE DATASET

Before the building process of the controller started, a
preliminary analysis of the encoding phase was performed. As
mentioned, a population encoding approach was chosen due
to its fast processing of the information required for racing.
However, this approach introduced a novel problem as multiple
spiking neurons are needed to represent the information of
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one floating point neuron which will make the SNN too
complex and large to be processed efficiently. For this reason,
an analysis of the optimal ratio between spiking neurons and
floating point neurons to achieve accurate representation was
performed. The analysis involved the reproduction of the input
series through an autoencoder structure where the hidden layer
is formed out of a variable number of spiking neurons [41]. For
analysing the performance, a new dataset was created based
on the work of Ferede et al. [25] which learned how to fly the
racing track using reinforcement learning. Using this approach
a dataset was generated as explained in appendix B, with 24
inputs (adding the next gate 3-dimensional position and yaw
as well as a disturbance force on the z-axis) and 4 outputs to
be encoded. The dataset is made of 2048 sequences of 2000
timesteps which resembles the flight of the quadrotor for 10
seconds along the circuit.

Using this dataset the autoencoder was trained and the
results can be observed in Figure 11 where the 28 parameters
(both inputs and outputs) were encoded with various numbers
of parameters. As can be seen, the performance flattens at
around 200 neurons after a huge drop in MSE loss when fewer
neurons are being used. This leads to a ratio of 1 to 7-8 spiking
neurons to achieve an accurate representation of the input
space using spiking neurons. The research was also extended
by analysing this ratio when encoding groups of parameters.
The grouping was done such that parameters with common
features and interdependencies were encoded together. For
example, the 3-dimensional position and 3-dimensional ve-
locity parameters were encoded as one group as well as the
3-dimensional attitude and the 3-dimensional angular velocity
together. The analysis showed that the flattening of the curve
for encoding 6 floating point values was happening at around
45 neurons where an accurate representation of the input space
was achieved, confirming once again the previously mentioned
ratio.

Fig. 11. The influence of the number of spiking neurons on MSE Loss used
to encode 28 floating point inputs using a neuromorphic autoencoder

APPENDIX B
DATASET GENERATED WITH REINFORCEMENT LEARNING

An alternative approach used to generate the dataset was to
use the work of Ferede et al. [25] that applied reinforcement

learning for flying the racing track time optimally. For this, a
neural network using the same structure as in the supervised
learning approach [24], was trained with reinforcement learn-
ing to fly along the track as fast as possible. With the trained
model, a quadrotor was flown in the racing track environment
and thus a dataset was generated with a timestep of 0.005s.
In addition, the dataset would record more parameters with
the next gate 3-dimensional position and yaw as well as
the disturbance force on the z-axis being registered at every
timestep. In the end, the simulations were done for 10 seconds
(equivalent to 2000 timesteps) and the dataset was given 2048
of such simulations.

Using the generated dataset, an SNN controller was trained
but its performance proved to be heavily sub-optimal. This
weak performance can be attributed to the noisy signal that can
be found in the dataset caused by the inherent aggressiveness
of the neural network controller trained with the reinforcement
learning approach. This leads to a controller that cannot fly in
real life as it lacks adaptability to possible disturbances and
deviations from learned optimal track. Consequently, training
both the SNN controller and an MLP controller on this dataset
proved challenging, resulting in poor performance in both
models, as demonstrated by the results shown in Table VII.
Analysing Figure 12, it can be revealed that both networks
tend to converge towards the average signal value, neglecting
the peaks, thereby indicating a failure to capture the noisy
behaviour of signal dynamics which is crucial for flying the
quadrotor in the end. An interesting outcome from the current
analysis is that the SNN model performs slightly worse than
the MLP model when the same network structure is passed.
In any case, the performance drop is not drastic and can be
attributed to the noisy behaviour inherent in SNN that was
also observed with the energy optimal dataset in 6a. Moreover,
the SNN output command occasionally overlaps the maximum
possible value of 1 which requires the imposing of a limit for
an accurate functioning of the quadrotor.

TABLE VII
MSE LOSS OF DIFFERENCE MODELS TRAINED ON THE DATASET

GENERATED WITH REINFORCEMENT LEARNING APPROACH FOR ALL 4
PROPELLERS OUTPUT COMMAND

`````````Model
Propeller u1 u2 u3 u4

SNN 2.354e-2 4.833e-3 8.648e-3 9.633e-3
MLP 2.254e-2 4.051e-3 8.116e-3 8.372e-3

SNN smooth 1.603e-3 1.602e-3 2.238e-3 1.995e-3

To address the issue of noisy behaviour found in the
dataset, a penalisation strategy was implemented within the
reward function to reduce the slope of the output command
at every timestep, thereby diminishing the quadrotor’s speed.
This adjustment led to the drone command outputs converging
closer towards a hover average of approximately 0.6 as can
be visualised in Figure 13. As a result, the SNN was able to
follow the output more closely, as evidenced by the results
presented in Table VII with the MSE loss being reduced by
more than 3 times. However, the signal remained relatively
noisy and the training was highly specialised to fly the racing
track, ultimately failing to facilitate a successful flight in the
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Fig. 12. The MLP and SNN controller estimations trained on the dataset
generated with the reinforcement learning approach in comparison with target
signal

simulator. Consequently, this approach for dataset generation
was abandoned and the focus switched towards the dataset
generated with the energy optimal problem. An alternative
approach that could be promising involves training the SNN
directly using the reinforcement learning approach, though this
method presents significant challenges that could potentially
yield beneficial outcomes to navigate the racing track with
close to optimal speed.

Fig. 13. The SNN controller estimations trained on a smoothed dataset
generated with the reinforcement learning approach in comparison with target
signal

APPENDIX C
HOVER TO HOVER DATASET SIMULATION

The current section shows the simulation results of various
models trained on the hover to hover (h2h) dataset. The
simulations were done as described in section III and Figure 14
indicate that the dataset is not very effective in achieving
the goal of rapid guidance and control of the quadrotor. The
models are clearly less robust with numerous unpredictable
flying trajectories being incapable of reaching a clear round

pattern around the race track. This could be caused by the large
number of possibilities offered in the dataset which does not
allow the model to learn the characteristics of the racing track.
Even though, an important outcome can be observed when
comparing the models trained with different dataset sizes.
Using a bigger dataset achieves overall higher robustness with
the SNN model being able to fly the track in a more predictable
manner but at much lower speeds. The lower speeds might be
caused simply by the fact that the model does not require to fly
faster as its goal is to reach the gate in its hovering state. Thus,
the high speed shown for the models trained on less samples
are simply an error and are either caused by overshooting or
missing a gate.

REFERENCES

[1] N.T. Chi and L.T. Phong and N.T. Hanh, ”The drone delivery services:
An innovative application in an emerging economy”, The Asian Journal
of Shipping and Logistics, vol. 39, no.2, pp.39-45, January 2023.

[2] X. Li and J. Tupayachi and A. Sharmin and M.M. Ferguson, ”Drone-
Aided Delivery Methods, Challenge, and the Future: A Methodological
Review”, Drones, vol. 7, no. 3, March 2023.
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Abstract

The present literature study aimed to identify a research gap by exploring the intersection of
neuromorphic computing and racing drones as well as devising a strategy to address the issue.
Both domains show promise for synergy: racing drones demand cutting-edge solutions, while
neuromorphic computing offers instead high parallelisation and energy efficiency. Although neu-
romorphic computing is a novel field, some progress has been made, with applications ranging
from specialised hardware to relatively simple problem-solving tasks, including drone control in
conjunction with event-based cameras. While most applications demonstrate improved perfor-
mance compared to artificial neural networks especially focusing on energy consumption, this
typically requires specialised neuromorphic hardware. Despite these advancements, the current
investigation revealed a significant research gap: the absence of studies on rapid guidance and
control with neuromorphic computing, which is crucial for the flight of fully neuromorphic racing
drones. Overall, this study seeks to bridge the gap between neuromorphic computing and racing
drones, laying the groundwork for future advancements in both fields leading to the following
research objective:

The research objective of the current paper is to assess whether a Spiking Neural Network
architecture can preserve state-of-the-art performance for rapid quadrotor guidance and control.

Conducted as part of the master’s program at Technological University of Delft, this study is
limited time constraints and priorities simplicity in implementation due to its pioneering nature.
Thus, the focus lies on assessing the feasibility of implementing a spiking neural network (SNN)
for rapid drone control, with minimal optimisation and direct adaptation of existing implementa-
tions provided by Technological University of Delft’s resources, including neuromorphic libraries
and simulation software. The project is divided into three phases, each with distinct objectives.
The first phase involves building an encoder to accurately represent input parameters with min-
imal spiking neurons, utilising an autoencoder structure. The second phase focuses on training
with supervised learning a spiking neural network for drone control, using datasets created with
2 separate approaches: one through a neural network trained with reinforcement learning ap-
proach and the second one trained using energy optimal problem formulation. Finally, the third
phase quantifies the performance of the SNN model compared to conventional artificial neural
network models through simulation and real-flight data analysis.

In analysing how an SNN could learn the task, several considerations were made. Autoencoders
were chosen for the first phase due to their efficient and recursive learning capabilities, being
able to understand relations between various parameters effectively. The leaky integrate-and-fire
model was selected for neurons due to its great computational efficiency and extensive usage
and analysis in the literature while the connections between layers were assigned to simple linear
synapses. Spiking neural network will impose the need for a combination between simple feed-
forward fully connected neural network and recurrent neural network learning procedures for
both the autoencoders as the structure is given by the initial procedure while the latter is given as
information is encoded over time within the spiking neurons. Supervised learning was identified
as suitable learning approaches due to its focus on optimality and adaptability for recurrency
present in spiking neural networks, with surrogate gradient descent chosen for back-propagation
due to its simplicity and good performance with non-continuous spiking neural networks.
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1

Introduction

The relentless advancement of artificial intelligence (AI) technologies has brought humanity into
an era where machines possess the power to process, analyse, and interpret vast amounts of
data with unprecedented accuracy and speed. Some are even claiming that due to these rapid
digital advancements, society has just entered a new technological revolution—specifically, an
informational one[1]. A confluence of factors is considered to have contributed to this remark-
able revolution, including the exponential increase in computing power, the accessibility of vast
datasets, and groundbreaking advancements in machine learning algorithms.

A defining characteristic of AI’s rise is its widespread influence across diverse industries, en-
compassing a broad spectrum of human activities. In the realm of healthcare, AI has revolu-
tionised diagnostics through the analysis of medical images, outperforming human experts in
detecting diseases such as cancer[2] and diabetic retinopathy[3]. Additionally, on a completely
different topic, the advent of autonomous vehicles stands as a testament to AI’s capacity to
redefine transportation and safety standards. Starting gradually with technologies that assist
the driver in keeping the lane and speed, car companies such as Tesla and Waymo have exploited
AI’s capabilities to develop complete self-driving cars, paving the way for a complete driverless
transportation[4].

Moreover, the ascendance of artificial intelligence (AI) exhibits a sustained momentum, notably
with the surge in popularity of transformers, culminating in substantial advancements across
diverse domains, including natural language processing, object recognition, and segmentation[5].
Notably, ChatGPT, a recent prominent manifestation of this progress, exemplifies the evolving
landscape of human-machine interaction, prompting a profound reassessment of domains such
as education and academia[6]. Concurrently, heightened energy consumption in conventional AI
approaches has prompted a gradual pivot towards neuromorphic computing, drawing inspiration
from the human brain[7]. The appearance of neuromorphic hardware, epitomised by event-based
cameras and specialised chips, has underscored its efficacy, leading to a surge in implementation,
particularly in fields such as audio signal processing and robotics[8].

Similarly, drones, as manifestations of autonomous systems, embody the vanguard of automation
implementations, consistently integrating cutting-edge technologies to enhance their operational
capabilities. Automation in drones is fundamental to their functionality, enabling efficient and
precise execution of tasks without direct human intervention. This pursuit of autonomy presents
both challenges and opportunities. On one hand, it necessitates the development of advanced
AI algorithms to ensure safe and reliable drone operations. Conversely, the absence of human
presence within drones unlocks new possibilities, granting access to hazardous or inaccessible
environments like radioactive or confined spaces but also in a fast manner. Notably, in the
field of agriculture, drones equipped with automated spraying systems have revolutionised crop
management, optimising resource utilisation and minimising environmental impact[9]. Further-
more, in the realm of logistics, companies are pioneering drone delivery systems, automating the
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last-mile delivery process[10].

High-speed drones represent a notable frontier in automation applications too, pushing the
boundaries of technological innovation. In competitive racing scenarios, these drones exemplify
automation’s effectiveness by executing difficult manoeuvres at remarkable speeds, surpassing
human capabilities[11]. The implementation of advanced algorithms allows these drones to
navigate complex courses with precision, relying on real-time data processing to make split-
second decisions. Beyond the realm of entertainment, the high-speed capabilities of drones offer
potential applications in surveillance[12] and emergency response[13], where rapid, automated
data collection and analysis can be critical. The combination of automation with high-speed
drone technology underscores their versatility, emphasising their pioneering role in the continual
evolution of automated systems.

In the pursuit of achieving greater autonomy, drones have conventionally leaned on energy-
intensive artificial intelligence techniques. However, the incorporation of these, while instru-
mental in improving decision-making capabilities, imposes great challenges on the design and
performance of smaller drones. The resultant need for larger batteries, essential for sustaining
these types of computation, leads to increased weight, subsequently negatively affecting accel-
eration and speed metrics. Consequently, optimising energy efficiency has emerged as a pivotal
concern for the fast-expanding high-speed drone industry[14]. Responding to this imperative,
the industry is witnessing a notable paradigm shift towards the previously mentioned neuromor-
phic computing[15] — an approach that emulates the complex functionality of the human brain
to facilitate energy-efficient computation. Moreover, this shift towards neuromorphic comput-
ing marks as well a transformative step in aligning drone technology with the imperatives of
sustainability and enhanced operational performance.

In the realm of computer science, neuromorphic computing constitutes an interdisciplinary field
wherein computation draws inspiration from human biological systems, notably the brain and
nervous system. This convergence of disciplines, including computer science, biology, mathe-
matics, electronic engineering, and physics, results in the development of bio-inspired computer
systems and hardware[16]. The main advantages of neuromorphic computing manifest in a sig-
nificant reduction in energy demands and computation time, encouraging dynamic behaviour
and enhanced resilience to noise and sensory perturbations. However, realising these benefits
necessitates the complex integration of a comprehensive neuromorphic architecture, compris-
ing both hardware and software components, a non-trivial task, particularly in the context of
high-speed drone applications[17].

Central to neuromorphic computing, spiking neural networks (SNNs) emerge as a compelling
branch from traditional artificial neural networks (ANNs), showing intrinsic capability in han-
dling binary information (spikes) and extracting meaningful knowledge from it[18]. Noteworthy
advancements in neuromorphic hardware include bio-inspired solutions that markedly reduce
energy consumption and accelerate computation. Specialised hardware, exemplified by IBM’s
TrueNorth chip[19] and Intel’s Loihi chip[20], achieves up to 10,000 times greater energy effi-
ciency than conventional microprocessors, utilising power only when essential1. Parallel research
in neuromorphic vision is realised through event-based cameras, which signal changes in light
intensity at a pixel level, achieving processing speeds of up to 1 million frames per second[21].
This exploration underscores the promising trajectory of neuromorphic computing in reshaping
computational paradigms and advancing applications across diverse domains.

Evident from the foregoing discussion is a recurrent theme: the nascent stage of neuromorphic
technology, coupled with the dynamic and expansive landscape of drone technology, creates a
domain at their intersection with a rich research potential. Beyond its technical significance, this
literature study forms an integral component of a master’s thesis at Technological University of

1https://spectrum.ieee.org/how-ibm-got-brainlike-efficiency-from-the-truenorth-chip
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Delft. Executed within the Micro Air Vehicle department, the report seeks to identify a well-
defined research topic conducive to comprehensive analysis and conclusion within a six-month
time frame. It is imperative to note that this study is inspired by a larger faculty project aimed
at constructing a fully neuromorphic high-speed drone, with its main objective to compare
its performance against a conventional ANN approach. Currently, a concept is characterised
by the state-of-the-art achievements of Ferede et al.[22, 23] whose work employs an end-to-
end reinforcement learning approach as well as an end-to-end supervised learning approach to
adeptly navigate a predefined track.

In synthesis, the literature study attempts to identify and investigate a research topic
integrating neuromorphic technology for rapid guidance and control of a drone,
with a focus on feasibility analysis. The study unfolds in two segments. Firstly, as neu-
romorphic technologies are novel in this context, the initial phase searches for their exposition
and implementation. Commencing with chapter 2, the study outlines existing applications of
neuromorphic technologies including hardware that is required to make the whole process brain-
like. Given the binary nature of these technologies, the encoding methodologies are expounded
in chapter 3. Subsequently, chapter 4 inspects the foundational unit of neuromorphic comput-
ing—neurons and their interconnections. Culminating in chapter 5, the structural aspects of
neuromorphic computing are delineated, along with potential challenges. The second phase of
the study entails selecting and detailing the chosen research topic, articulated in chapter 6.
Methodological implementation is explained in chapter 7, with time planning considerations
in chapter 8. Finally, a comprehensive conclusion encapsulating the entirety of the report is
presented in chapter 9.

24



Guidance & Control Implementation with Spiking Neural Networks

2

Existing Neuromorphic Applications

Even though several neuromorphic technologies have been theorised gradually during the 20th
century, it wasn’t until the last decade that they found some useful applications. For this
reason, although this domain is still in its infancy, various applications have emerged which
will be analysed in the current chapter. Firstly, the initial try-outs and the inspiration for this
novel domain will be detailed in section 2.1 followed up by some general applications which
will be presented in section 2.2, mostly focused on the origin of neuromorphic science. Next,
it will explain how the neuromorphic hardware revolution was created in section 2.3, including
sensors inspired by this novel technology. All things considered, some drone applications of the
neuromorphic technology will be analysed in section 2.4.

2.1 History and Inspiration

The idea of using neuromorphic inspiration to solve problems is not a recent solution. Similarly,
computer hardware, even from the very beginning, was mostly influenced by the thinking process
of humans. Based on this information, Alan Turing proposed in one of his papers[24] a simple
device that could be capable of performing any conceivable mathematical computation if it were
given as an algorithm. This later evolved into today’s computing industry where computers are
built on the base of von Neumann’s architecture[25]. However, in addition to the work leading
to the digital computer, Turing foresaw the evolution of neuron-like computing by describing
a machine that consists of artificial neurons connected in any pattern. The architecture would
include modifier devices which could be configured to pass or destroy a signal similar to how a
spiking neural network works[26].

Following Turing’s work, researchers began to show greater interest and commitment to the
field of artificial learning. Thus, Hebb[27] proposed synaptic plasticity as a mechanism for
learning while Rosenblatt[28] theorised the principles of connectionism and the perceptron. The
perceptron invention led to enthusiasm in the field and, with the subsequent discovery of error
back-propagation[29] and recurrent neural networks[30] in the 1980s, the computational learning
revolution began.

With the increasing importance of traditional artificial networks, interest in neuromorphic tech-
nology started to fade. However, some important results were still developed. One such discovery
was ADALINE, a physical device that uses electro-chemical plating of carbon rods to emulate the
synaptic elements[31]. Thus, this work became the first integration of memristive-like elements
to emulate a learning system in computers. Inspired by this work, Chua postulated a decade
later that the missing link in realising a fully neuromorphic computer is a memristor, an element
whose memory resistance depends on the integral of the input applied to the terminals[32].

However, these discoveries did not inspire the necessity of switching computers to a fully neu-
romorphic approach. Thus, for the following decades, the studies included theory focused on
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computers using the von Neumann architecture such as synaptic modification[33] or VLSI (Very
large scale integration) systems[34]. Only recently the attention has switched again to neu-
romorphic architectures by starting to produce practically some of the ideas presented in the
previous research. In 2006, researchers at Georgia Tech released a field programmable neural
array, marking the initial development of arrays comprising floating gate transistors. These
transistors enabled the manipulation of charge on the gates to emulate the channel-ion traits
observed in neurons within the brain[35]. In 2008, HP Laboratories started the production of
the memristor, theorised by Chua, and explored its use as synapses in neuromorphic circuits[36].
Further in time, in 2011, a team from Massachusetts Institute of Technology created a chip that
simulates the analogue, ion-based communication between two neurons using 400 transistors[37].

With these studies, research in neuromorphic engineering started to grow exponentially. But the
current research is not limited to reproducing perfectly the brain including all of its functions.
Instead, it focuses on extracting the structure and operations of the brain to be used computa-
tionally both for a better understanding of biology as well as for generating more energy-efficient
algorithms. Thus, research has been preponderantly focused on replicating biological computa-
tions in an analogue manner but also on the role of neurons in cognition[38].

The main source of inspiration for neuromorphic engineering remains the human brain and its
intricacy. To understand where this inspiration comes from, it will be detailed how the brain
functions with the help of Figure 2.1. Firstly, the neuron is the fundamental atomic unit of
the brain and consists of 3 parts: dendrites, soma and axons. Dendrites are structured in a
tree-like distribution and transmit the received input signals from pre-synaptic neurons to the
soma. With this input information, the soma adapts its membrane potential as a response to all
data from the dendrites. When the membrane potential reaches a certain threshold, an action
potential is generated (a discrete spike) which is sent further to the axon. With the help of the
axon, the information is passed to the further neurons. It is important to mention that this was
a generalisation and not all the neurons are the same with most of them being polarised cells
which help the brain perform specialised functions.

The connection between neurons is done with synapses which are the spaces between axon
terminals and dendrites. These send a biological signal which typically consists of either chemical
or electrical signals. In the chemical case, the signal releases chemical neurotransmitters that
bind to receptors of the postsynaptic neuron, which then cause the propagation of an electrical
signal. In the electrical case, the neurons are connected by gap junctions which pass the current
having the great benefit of quicker transmission times. Synaptic transmission has two basic
forms: excitation and inhibition which either prompts the downstream neuron to fire or to
further its membrane potential from the threshold. The neuron continuously receives these
types of transmission and, when this input sum reaches or exceeds the threshold, it excites an
action potential, otherwise, it remains silent.

The membrane potential is the electrical potential of the neuron and the key to the spike
generation that is regulated with the help of substances inside and outside the cell membrane
such as charged ions and molecules. To understand this process, a brief example will show how
a spike is generated. The membrane potential is initially resting at the minimum threshold of
the neuron. When the neuron is stimulated, voltage-gated sodium channels will open, causing
the membrane potential to rise rapidly. This happens until a threshold is reached. After this, if
the membrane potential keeps rising, sodium channels deactivate and potassium channels open.
Then, the membrane potential decreases rapidly because of the sodium channels’ inactivation
and the opening of potassium channels, which gradually return to the resting potential with the
closing of potassium channels.[39, 40]
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Figure 2.1: The graphical explanation of how the brain functions; on the left, a schematic
presentation of the neuron; in the middle, the connection between 2 neurons, called synapse;

on the right, the membrane potential phases along with the spike generation [40]

2.2 General Applications

The applications of neuromorphic engineering are highly diverse, with no domains yet discov-
ered where this innovative type of computing and devices clearly excel. Initially, the focus of
applications has primarily centred on replicating a wide range of small learning tasks already
performed by traditional ANNs. However, only recently, with the rapid evolution of neuro-
morphic hardware, attention has shifted towards more challenging tasks by integrating various
neuromorphic architectures and establishing more comprehensive networks.

But to begin with, a great survey of the first applications was performed by Schuman et al.[7].
As mentioned in the survey, implementing neuromorphic networks to learn these types of appli-
cations on neuromorphic hardware may lead to lower power consumption and faster computation
than on a von Neumann architecture. However, as many of these applications do not necessar-
ily require any of those characteristics due to their small size, researchers have not thoroughly
tested the previous performance allegations but only focused on the feasibility of neuromorphic
technologies.

With this in mind, Schuman et al.[7] summarised the existing applications of neuromorphic en-
gineering in 2017 which can be visualised in Figure 2.2. Most of the applications were focused
on reproducing the existing capabilities of traditional ANNs without explicitly trying to sur-
pass their results. Thus most of the applications focused on image classification and processing
performing relatively easy tasks such as edge detection, image filtering, image compression or
feature extraction on common datasets such as MNIST or CIFAR-10. Other common applica-
tions include pattern recognition capabilities for tasks such as data classification and anomaly
detection.

Similarly, researchers have looked for reproducing closely and biologically accurate sensory sys-
tems such as visual and sound capabilities. Due to the infancy of this realm, a big part of the
applications focused on basic benchmark tests including common problems such as N-bit parity,
two spirals or simple logic gates (AND, NOR, XOR). Last but not least, some applications
focused on solving robotics and control problems as very small, power-efficient and real-time
performance systems are often required in these domains. These include easy motor control
tasks such as learning a particular behaviour, joint control, target following, autonomous navi-
gation, cart-pole problem or inverted pendulum but also classical games such as PACMAN or
Pong.

However, in recent years, the difficulty of these applications increased, including in some cases
the implementation on specialised hardware. For example, Zheng and Mazumder created 2
hardware architectures that can implement supervised learning tasks. One is relatively close
to the conventional von Neumann architecture while the other one focuses on memristors and
phase-change memory[41]. Another focus of recent neuromorphic research was on mapping a
pre-trained DNN to SNN which led to several applications. Tasks such as keyword spotting,

27



Guidance & Control Implementation with Spiking Neural Networks

Figure 2.2: Visual breakdown of applications to which neuromorphic systems have been
applied; the size of the boxes is directly proportional to the number of works in which a

neuromorphic system was developed for that application[7]

medical image analysis and object detection have been demonstrated to run efficiently on existing
platforms such as Intel’s Loihi[20] and IBM’s TrueNorth[19]. Inspired by the human brain,
several neuromorphic applications were found in the realm of medicine. For example, clustering
mechanisms have been used as a spike sorter in brain-machine interfaces and functional magnetic
resonance imaging signals have been used in applications such as sleep state detection and
prosthetic controllers[8].

Recently, a lot of attention has also been focused towards robotics and control applications. Evo-
lutionary algorithms have been successfully applied to control applications such as autonomous
robot navigation or for various games using the LIDAR techniques and SNNs[8]. These include
encoding sensory information into distributed maps and generating motor commands, head
direction, reference frame transformation, distance mapping, observation likelihood, Bayesian
inference and other simultaneous localisation and mapping (SLAM) implementations. Other
applications focus on a more biologically accurate approach and try to reproduce the central
pattern generators (CPGs) for robot control. Using neuromorphic hardware they help a hexa-
pod robot to learn to walk, but also to simulate repetitive motions inspired by a human’s gait
or the swimming of lampreys. Moreover, inspired by classic control, PID controllers have also
been theorised and implemented in the neuromorphic domain[18].

2.3 Neuromorphic Hardware

Neuromorphic hardware refers to the specialised computing architectures that are completely
based on the neural network structure. For this reason, the behaviour of neurons is emulated
by dedicated processing units while the physical interconnections are done in a web-like manner
and facilitate the rapid exchange of information. This concept is fully inspired by the human
brain, where biological neurons and synapses work similarly to the hardware presented above.

Thus neuromorphic computers can be viewed currently as non-von Neumann computers whose
structure and function are inspired by brains. In a neuromorphic computer, memory and pro-
cessing are ruled by the neurons and the synapses while in a Von Neumann computer, these
2 are separate units. For this reason, programs in neuromorphic computers are defined using
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the structure of the neural network and its parameters, rather than by explicit instructions. In
addition, von Neumann computers use numerical values (as binary values) to express informa-
tion. In neuromorphic computers, information is received and output as spikes, encoded in the
associated time at which they occur, their magnitude and their shape[8]. Their architectures and
their comparison can be visualised in Figure 2.3 leading to some advantages and disadvantages
for neuromorphic hardware:

• Advantages:

– Highly parallel operation due to all of the neurons and synapses potentially working
simultaneously;

– Collocated processing and memory which helps mitigate von Neumann’s bottleneck
regarding the separation of processor and memory, which causes a slowdown in the
maximum throughput that can be achieved; this collocation also helps avoid data
accesses from main memory, which consumes a considerable amount of energy in
conventional computing systems;

– Event-driven computation which means that neurons and synapses only perform work
when there are spikes to process; this allows for extremely efficient process and low
power consumption;

– Inherent scalability by combining additional neuromorphic chips which simply in-
creases the number of neurons and synapses; in the end, the newly created chip can
be treated as a single large neuromorphic implementation to run larger and larger
networks;

• Disadvantages:

– Difficult to program it due to its novelty in the market; Having a completely different
architecture than von Neumann computers, neuromorphic hardware requires all the
basic programming to be redone which makes complex solvers hardly implementable;

– Hard to interpret and understand due to having everything encoded in spikes, neurons
and synapses including the structure of the network, memory and processing logic;

Figure 2.3: The fundamental differences between von Neumann and neuromorphic
architectures[8]

With these differences in mind, it is important to note that during the last decade, neuromorphic
engineering-focused to a great extent on specialised hardware. Thus, several neuromorphic
hardware became recently available for use with many more projects under development. A
summary of the most important ones include:
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• Loihi[20]: by far, the most common hardware for SNNs, it is a neuromorphic many-core
processor that supports on-chip learning, making it a viable option for both inference
and deployment; it also has 128 cores, simulates up to 131,072 neurons with 130,000,000
synapses possible[42];

• SpiNNaker[43]: it is an open-access cloud that contains 18 on-chip dynamic random access
memory (DRAM) processor cores with approximately 1000 simulated neurons and 182 MB
off-chip DRAM where synaptic parameters are stored; it can be used for simulation and
testing of different applications that do not require on-site implementations[42];

• TrueNorth[19]: its computational core contains 256 neurons and a 256 × 256 size synaptic
array; it uses both synchronous and asynchronous event-driven calculations, which helps
the chip consume only 100 mW when it simulates an SNN with millions of neurons[44];

• BrainScaleS[45]: it is a hybrid analogue neuromorphic supercomputer which contains 352
chips with 512 spiking neurons for each chip; the system consumes approximately 1 kW[44];

• ODIN: Acronym for optimised digital neuromorphic processor, it allows the use of slightly
more complex neuron models[8];

• Tianjic[46]: it is a platform that supports both neuromorphic SNNs and traditional ANNs
for a wider class of applications[8];

• DYNAPS[47]: it is an offline learning mixed platform with each circuit board containing
9 chips each having 4 computing cores with 256 neurons per core[44];

• Neurogrid[48]: it contains 16 chips in the circuit board, each with 256 × 256 neurons, that
are connected by a tree routing network, consuming in the end 3.1 W[44];

All the listed examples are silicon-based; however, the research trend focuses on developing
new types of materials for neuromorphic implementations, such as phase-change, ferroelectric,
non-filamentary, topological insulators or channel-doped bio-membranes. Similarly, research
focuses their attention on memristors as the fundamental device to have resistive memory to
collocate processing and memory, but other types of devices have also been used to implement
neuromorphic computers, including optoelectronic devices[8].

So, neuromorphic computing hardware is a critical future technology becoming increasingly im-
portant and relevant in modern research. This is mostly caused by the von Neumann bottleneck
which predicts that computer performance will soon reach its limits. However, a consistent
problem for neuromorphic hardware remains in the non-cohesive nature of the research commu-
nity. To achieve the actual results of neuromorphic hardware, all the architecture must become
neuromorphic including computing and sensors such that steps are not lost for encoding and
decoding of data[49].

Neuromorphic sensors refer mostly to the hardware which can be excited or inhibited by external
factors and, transmit this information in the form of spikes. One domain where this was realised
until now is haptic sensitivity. Thus haptic behaviour was summarised by Zeng et al.[50] which
names various studies based on pressure sensory neurons or on monitoring toxic chemicals. Their
paper focuses on the chemical part of sense, naming various devices that were implemented using
this approach. One of them is Sarkar et al.[51] who created a neuron that mimics the biology
of sensing by simulating accurately its chemical reactions.

Even though haptic domain research is mostly centred around chemistry and is still in its
infancy, the same cannot be said about visual sensing. These have been facilitated by event-based
cameras which, instead of capturing whole images at a fixed rate, measure the brightness changes
for each pixel and output these as a stream of events that encode their time, location and sign[52,
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53]. Its advantages vary from high temporal resolution (in the order of µs to very high dynamic
range (140 dB versus 60 dB), low power consumption, and high pixel bandwidth (on the order of
kHz) leading to a motion blur reduction. These advantages come with the drawback of novelty
with new methods being required to process the unconventional output of these sensors[52].
Until today, event-based cameras were applied to various visual tasks including feature detection,
optical flow, stereo vision, 3D monocular reconstruction, pose estimation, SLAM etc.[52]. With
the help of neuromorphic computing, the applications extended to control tasks, creating drone
applications that solve visual problems with the help of event-based cameras as will follow in
the following section.

2.4 Drone Applications

After a general presentation of neuromorphic computing, the current section will centre on ap-
plications done in the drone realm. Drones were selected due to their more relaxed requirements
for implementation but also due to their small size which requires low power consumption, neu-
romorphic computing promising gains in this field. For other aviation realms, neuromorphic did
not get too prevalent mostly due to its infancy. This causes heavy safety concerns not alleviated
by the possible size (and implicitly weight) gains. However, these could be implemented in the
future according to Parlevliet et al.[54], first starting with inessential and easy tasks such as an
altitude controller for an autonomous open-source blimp[55].

The very first drone applications were implemented on very small flyers to accurately simulate the
flight of insects. Trying to create such a small machine capable of flying requires computational
power but the traditional power-hungry ANNs along with von Neumann architecture require
a big processor and memory space which cannot be physically implemented within the current
size. Thus, for both computational power and energy reasons, the focus has been switched to
neuromorphic computing. This led to the creation of a biologically inspired, insect-scale robot,
weighing 80 milligrams and being able to hover and fly simple tracks[56]. Further, the research
increased the difficulty of the performed tasks including the landing phase of the RoboBee[57]
or mimicking the rapid escape manoeuvres of flies[58]. Lastly, McGuire et al.[59] designed the
swarming flight of insect-sized MAVs.

Following this success with small flyers, drone researchers started to adopt neuromorphic com-
puting for performing increasingly difficult tasks. Initially, the studies started with a relatively
facile task, namely ego-motion which refers to estimating the camera’s motion relative to a fixed
background. For example, Pflaum et al.[60] implemented a drone stabilisation algorithm by
processing the data from an embedded dynamic vision sensor (DVS), a sub-type of event-based
camera. Later, researchers simulated flight control using either DVS[61] or using a process sim-
ilar to a bat’s echolocation[62]. Moreover, neuromorphic computing has been used for attitude
estimation by processing data from traditional sensors[63].

In any case, most of the research performed at the intersection of neuromorphic computing and
drone domains focused on the control tasks. In traditional control, a popular solution to fly the
drone is the use of PID controllers. However, due to the integral and derivative parts of this
technology, accurately implementing PID controllers on neuromorphic hardware is not trivial.
Some studies focused on MAV applications managed to implement such a controller[64, 65].
Moreover, researchers have applied PID controllers for the control of one degree of freedom[66,
67]. Another prevalent task for drone flight is navigation. To solve this problem, Jiang et al.[68]
used visual means and reinforcement learning algorithms to control the drone while Landgraf
et al.[69] used optic flow to learn 6-dimensional ego-motion. As a novel domain still in great
development, the algorithms of previous work have few functions in common, making them hard
to be generalised to other applications. For this reason, researchers created some frameworks
which were generalised for drone control[70, 71]. Last but not least, using inspiration from na-
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ture, researchers managed to solve various problems encountered by drones. For example, using
an event-based camera, Paredes-Vallés et al.[72] could estimate the optic flow. The resulting
algorithm could be used for landings[73], one approach even using a divergence-based algorithm
for high-speed drones[74].

Research was also directed towards making a fully neuromorphic drone which flies using an
event-based camera and whose information is processed and output by a neuromorphic chip.
Computing ego-motion with an event-based camera, a few researches were centred on making
a fully neuromorphic drone capable of hovering, landing or following a course of set points[75,
76, 77]. The results look very promising with low power consumption and latency while per-
forming online learning and even surpassing traditional architecture performance in some cases.
Another recurrent task for drones is obstacle avoidance and research also suggests that a fully
neuromorphic drone achieves better energy consumption (up to 6 times less power) but also
better performance compared to a conventional approach[78, 79, 80, 81]. To facilitate future
implementations, Bian et al.[82] created a framework that can be used for fully neuromorphic
drones to solve various tasks.
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3

Encoding

Due to the inherent need for spikes to process data within neuromorphic computing, encoding
is usually required. Thus, it is important to examine the methods by which numbers can be
encoded (and later decoded if necessary) in spikes. It is not always the case that the SNN
requires encoding as data expressed as spikes start to be more common with the introduction of
neuromorphic sensors and event-based cameras. However, most neuromorphic drone applications
still rely heavily on encoding as implementation on neuromorphic hardware represents a difficult
procedure hardly considered during feasibility analysis. For this reason, common encoding
methods will be studied in the current chapter. The analysis will start with clearly defined
methods using the rate (section 3.1), time (section 3.2) and population (section 3.3) of spikes.
Then, a non-deterministic method of learning a specific encoding technique using the principles
of autoencoders will be described in section 3.4.

Before diving into the details of these conventional encoding methods, it is important to state
that more encoding possibilities are available or can be created, but due to their scarce applica-
bility, it was decided to discard them. To briefly mention a few, Schuman et al.[83] performed
a thorough analysis of novel encoding methods. Similar to position coding summarised in sec-
tion 3.3, inputs can be encoded by sending several spikes at a fixed rate. Thus the range of the
input is again encoded in bins but now each bin is represented by how many spikes are gener-
ated at a fixed rate. Another method is more probabilistic and relies on the charge value that
enters the neuron which may or may not make the neuron spike. Moreover, combining various
encoding methods is also possible and has been largely done in literature. However, for the sake
of simplicity, the resulting merged algorithms will not be detailed but only the traditional basic
methods will be presented below.

3.1 Rate Coding

Rate coding is used to encode the information into the spiking rate. In short, the value of the
stimulus entering the neuron is proportional (direct or inverse) to the firing rate. However,
this encoding method ignores any information present in the exact timing of the spike as well as
specific spike sequences and only works by recording the number of pulses in a time interval. As a
result, it can be considered a quantitative measure of the neuron’s output[84]. Moreover, because
the sequence of spikes generated by a given stimulus varies from trial to trial even though the
firing rate is the same, the output of a neuron is usually treated as probabilistic[85]. This coding
scheme is inspired by biology and it was initially demonstrated by Adrian and Zotterman[86]
which found these types of neurons in the muscle. They found that a high stimulus (e.g: the
muscle has to carry a heavier weight) led to a higher frequency of spikes and this effect can
be visualised in Figure 3.11. This rate encoding research set the standard in describing the

1https://backyardbrains.com/experiments/ratecoding
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properties of neurons by measuring the firing rates which inspired further the encoding methods
in neuromorphic computing.

Figure 3.1: The rate
encoding experiment

Being the first encoding model discovered in the brain, it was
also the easiest to understand and apply. However, many draw-
backs were discovered over time. For example, encoding data
only using rate, has poor performance compared to temporal
encoding as the information encompassed in the exact timing of
the spikes or in the interval between spikes is lost[87]. This
means further that stimuli that vary fast are not accurately
represented by rate encoding[44]. Despite all these disadvan-
tages, researchers found some strong points of this method in-
cluding here the ease of implementation. Moreover, rate en-
coding is highly robust to Inter-Spike Interval Noise as com-
pared to temporal encoding[85] and it can be applied easily to
ANN-to-SNN conversions[84]. With these pluses and minuses
in mind, researchers have theorised multiple encoding methods
to be applied to neuromorphic computing. One such method
takes the proportionality mentioned above and transforms the
linear relation between the intensity of the stimulus and firing
rate to other functions such as the Poisson or Bernoulli distri-
butions[88]. More such methods are presented by Dupeyroux et
al.[87]:

• Hough Spike Algorithm[89] starts from the premise
that the output will be decoded with a convolution which
means that the encoding replicates a ”reverse convolution”
to invert the effect; the spike timings are determined with
a finite impulse response method;

• Threshold Hough Spike Algorithm[90] is similar to
the Hough Spike Algorithm but it introduces a threshold
to be compared with the error between input and output;
when the threshold is exceeded, a spike is emitted and the
input signal is updated by subtracting the threshold;

• Ben’s Spike Algorithm[90] is similar to the previous
methods but it uses 2 errors to generate a spike now: the
sum of differences between the signal and the filter and
the sum of the signal values; then a spike is generated by
comparing the first error to a fraction of the accumulated
signal, defined as the product between the second error
and a predefined threshold

The drawbacks of rate encoding did not discourage the researchers from using this method
and it found application easily, especially in innovative solutions to neuromorphic computing
problems due to its simplicity. For example, Stroobants et al.[65] used this encoding approach to
implement a better-performing PID controller that adapts thresholds based on the input weights.
The method was implemented to control the rate of the very small flyer Crazyflie. Next, Zaidel
et al.[91] implemented rate encoding for manipulating a 6 DOF robotic arm. To solve this task,
a PID controller along with inverse kinematics to compute an approximation of the robot’s state
was used. In these examples, only basic raw encoding was implemented. However, Clawson et
al.[57] applied a more complex rate encoding for performing hover, trajectory-following, and

34



Guidance & Control Implementation with Spiking Neural Networks

perching on a very small flyer. To get faster information from the firing rate, multiple neurons
encode the same input which allows the averaging window to be much smaller and the decoded
output can therefore respond much more quickly to changes.

3.2 Temporal Coding

Compared to rate encoding, the temporal encoding scheme is based on the precise timing of
spikes where the dynamics of the stimulus and the nature of the neural encoding process influence
the temporal structure of a spike train[85]. For example, information that is more important
can be encoded as earlier spike times[18]. The inspiration for this encoding approach stems
from biology where it was found that neurons exhibit high-frequency fluctuations of firing rates.
While rate coding implies that these irregularities are noise, temporal coding suggests that these
encode information. Apart from the evolutionary disadvantages of the irregularities, responses
between similar stimuli are different enough to suggest that the spike train contains a higher
volume of information than can be encoded in rate. For example, information can be acquired
from the time-to-first-spike, phase-of-firing, spike randomness, temporal spike patterns, etc.[92].
A brief visualisation of temporal encoding can be seen in Figure 3.2 where the time-to-first-spike
is exemplified. These allegations were supported by neuro-physiological studies showing that,
due to fine timing of the tasks, auditory and visual information is processed with high precision
in the brain such as sound localisation or defined edges[87]. Moreover, this encoding works with
no absolute time reference, which means that the information is carried either in terms of the
relative timing of spikes or with respect to an ongoing oscillation.[93]

Figure 3.2: A schematic of how information
can be encoded in time using

time-to-first-spike[94]

Analysing the theoretical background of tempo-
ral encoding, some clear advantages can be no-
ticed with respect to rate encoding. For exam-
ple, much sparser spikes are produced which al-
low for expressing the input with few neurons
that reduces the energy consumption even more
in the end[18]. But probably the most important
advantage is that temporal codes employ many
more features of the spiking activity that cannot
be described by the firing rate which allows more
information capacity to be carried in a shorter pe-
riod and with fewer resources[87, 85]. However,
there are some disadvantages too. Due to the
quantity of information that has to be stored in
time, several studies have found that the tempo-
ral resolution of the neural code is on a millisec-
ond time scale, proving that precise spike timing
is required. This makes temporal encoding vul-
nerable to input noise and temporal jitter[18]. Moreover, using this coding approach can lead
to extracting a sheer volume of unimportant information as every timing feature now leads to
data[44]. Last but not least, temporal encoding has not been applied often until now due to
the difficulty of identifying a temporal code in the interplay between stimulus and encoding
dynamics[85]. With the advantages and disadvantages in mind, some encoding approaches were
still implemented for neuromorphic computing as summarised by Dupeyroux et al.[87]:

• Temporal Based Representation[95] generates a spike whenever the signal difference
between two consecutive timestamps, gets higher than a fixed threshold; this is the same
principle used by event-based cameras which generate a spike when the pixel brightness
changes;
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• Step Forward[96] which is based on the previous algorithm but uses a baseline signal
(usually the first input) to compute the signal differences; when the variation exceeds the
threshold, the baseline gets updated, taking into account the threshold;

• Moving Window[96] which is based on the Step Forward algorithm but the baseline
signal is calculated as the mean of the previous signal intensities over a time window;

The drawbacks of temporal encoding mentioned above made it difficult to be applied consistently.
For this reason, this approach was not implemented in drone applications but some researchers
still found utilisation in other realms. For example, as mentioned above, the Temporal Based
Representation algorithm was specifically made for interpreting the event-based camera dataset.
Other applications include learning and acquiring information from datasets such as image
classification[97], pattern recognition and event prediction[96]. Temporal coding has also stayed
at the basis of SpikeProp, a solution that promises to solve the back-propagation problems
often recurrent in neuromorphic computing[98]. To conclude, temporal coding has been mostly
applied to innovative and low-level solutions that require extremely fast encoding.

3.3 Population Coding

Figure 3.3: A schematic of how
information can be encoded using a

population of neurons

Different from the previous methods which encoded
information within time, population coding is an ap-
proach that represents stimuli by using the joint activ-
ities of several neurons. In more detail, each neuron
acquires a distribution of responses over the range of
inputs. When a stimulus arrives, the activity of the
neuron is greater if the stimulus value is close to the
neuron’s distribution and vice-versa. Then, for recon-
struction, the spiking activity of the neurons can be
combined which will result in the decoded response.
The overall pattern of activity in the set of neurons is
taken and then combined with various methods such
as simple averaging or, for a more accurate response,
maximum likelihood[99]. This approach was also the-
orised and it remains one of the few mathematically
well-formulated problems in neuroscience. This makes
this method simple enough for theoretical analysis but
it also maintains the essential features of neural cod-
ing[85]. This method was found to be widely used in
the brain for sensing and locomotion such as ganglion cells of the retina or the somatosensory
cortex[87]. To exemplify the whole population coding process, an experiment was done that
relates the process of visually following a source of light. Shortly, if each neuron represents
movement in its preferred direction after the vector sum of all neurons is calculated, the sum
will point in the direction of motion[100]. This is exemplified visually in Figure 3.32.

As a population of neurons is being used compared to a single one, this encoding method has
several advantages. For example, in the neuron system, it was found that individual neurons
are susceptible to interference, while population encoding helps to solve this problem and can
increase accuracy[44]. Moreover, due to the higher number of parallel neurons, it can represent
many different stimulus attributes simultaneously. However, it was found that individual neurons
typically select to which stimuli to respond. This means that, based on the difficulty and
accuracy of the task to be performed, not all the neurons in a population respond to the stimulus

2https://openbooks.lib.msu.edu/neuroscience/chapter/execution-of-movement/

36



Guidance & Control Implementation with Spiking Neural Networks

to save more power. Compared to rate encoding, population encoding is also much faster and it
can process stimuli variability nearly instantaneously[100]. Even though population encoding has
several advantages, there is a drawback that seriously reduces its application. To have accurate
and fast results, it is necessary to assign numerous neurons to one stimulus that usually penalises
the size and power required. However, the advantages and the clear mathematical formulation
led to various implementations, as theorised by Dupeyroux et al.[87]:

• Position coding is based on binning (dividing the range of possible input in multiple
bins) assigning a spiking neuron for each bin which fires when the input is in the range of
the respective bin; the division can be done linearly with all neurons representing a similar
portion of the input space but also non-linearly allowing more precise representation at
certain parts of the input space where accuracy is important;

• Gaussian Receptive Fields encodes the signal using a set of neurons whose activity
distributions are defined as Gaussian waves determined by a centre(µ) and a variance(σ2);
all the centres of neurons are regularly spaced to cover the maximum amplitude of the
input signal, while the variances are set equal; this method also looks at the timing of the
spikes as the neurons with a high activation will fire at the beginning, and neurons with a
lower activation later;

These 2 implementations have been applied to various tasks in numerous domains which makes
population coding an easy approach to solve a wide variety of problems. One perfect application
for binning remains discrete input as possible values can be accurately split for each neuron. This
was implemented in the work of Patton et al.[101] for autonomous racing where the steering
commands were discretised. Linear position encoding has been applied also in the realm of
drones where neuromorphic PID controllers were theorised and implemented to navigate to
various locations[64, 66]. The non-linear approach has been used for a drone control task as
well. In their paper, Dupeyroux et al.[73] manage to control the thrust based on the divergence
of the optic flow field for landing. However, for an accurate representation of the input space, a
lot of neurons are required which sometimes is not possible. For this reason, Gaussian Receptive
Fields have been used for image recognition tasks[85].

3.4 Autoencoder

Autoencoders use a different procedure to transform values to spikes compared to the previous
encoding methods which have a biological inspiration. While the other approaches focus on
creating clear rules for the transformation, autoencoders try to learn these rules with the help
of neural networks. For this reason, they are usually coupled with other encoding methods but
autoencoders formulate the rules. The inspiration for this encoding method came from the realm
of traditional ANNs. Autoencoders can be considered as a type of representation learning that
was first introduced with the scope of performing dimensionality reduction[102]. They aim to
learn a data-driven representation of the input information in abstracted and compressed form
without performing any additional ”cognitive” task[103]. Moreover, its applications focused
not only on the removal of noise from corrupted data but also on generating data with the
help of variational autoencoders[102]. Recently, these applications have been largely applied
to neuromorphic computing too for learning representations of values into spikes, as will follow
from the following paragraph.

Most of the autoencoder applications used in neuromorphic computing were focused on repro-
ducing the capabilities of traditional ANNs for image recognition. However, using this applica-
tion, some researchers also looked at improving existing SNN algorithms. For example, Fang et
al.[97] achieved better results when the time constant was also introduced in the learning process.
Other papers focused on reducing the dimensionality of images with spiking autoencoder[104,
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102, 103]. Using only one hidden layer between the input and output layers, Comsa et al.[102]
concluded that keeping accuracy is still possible while having only 10% of the initial input neu-
rons in the hidden layer. Autoencoders have been used for generating new datasets too, with the
work of Kamata et al.[105] implementing a variational autoencoder with SNN that managed to
exceed the performance of traditional ANNs. The visualisation of autoencoders can be seen at
Figure 3.4. The applications of autoencoders do not resume only to image recognition, but also
to encoding data for drones. Within a fully neuromorphic drone that uses event-based cameras
as input, Paredes-Vallés et al.[75] have trained an autoencoder for decoding the spikes to motor
commands. Similarly, Stroobants et al.[63] estimate the drone’s attitude neuromorphically by
encoding the input formed of gyro and acceleration values and then decoding the received roll
and pitch values from spikes.

As can be seen, autoencoders are an increasingly popular method for encoding data into spikes,
especially for image recognition but for drone applications too. One of the main advantages is
their efficient approach. Managing to save only the most important features of the whole input
space, autoencoders reduce noise and, implicitly, energy consumption. Moreover, the inspiration
for this approach lies in the traditional ANNs which were analysed in detail making the spiking
autoencoders become just a simple translation which eases the understanding and application
of this approach. On the negative side, this method has some drawbacks too. Firstly, the
translation from ANN to SNN is not as straightforward. Making an autoencoder with SNN
requires the creation of a latent space which is often represented as a normal distribution in
ANNs. However, sampling from a normal distribution is not possible within SNNs because all
features must be binary time series data. This problem was solved with an autoregressive SNN
model which randomly selected samples from its output to sample the latent space variables[105].
Another problem is that, as opposed to the previous methods based on clear rules, the neural
network needs training. Thus, the creation of an unbiased dataset is required. Along with the
training process, temporal investment is needed to achieve good performance.

Figure 3.4: A visual explanation of how autoencoders work. For encoding data into spikes,
only the first half is required while the second half is required for decoding[105]
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4

Neuron Models

With the data encoded, it is important to start analysing the neuromorphic computing archi-
tectures. Similar to the brain, but also to the traditional ANNs, the powerhouse of the SNNs
is represented by the neuron. Starting from this requirement, literature has proposed models
which vary from mimicking the brain as closely as possible to focusing on being computationally
efficient. In SNN literature, the neuron models are composed of 2 parts. Firstly, the actual pro-
cessing dynamics are calculated inside the neuron module which will be presented in section 4.1
along with its different models. Secondly, the links between the neuron modules, namely the
synapses, also require special dynamics which will be detailed in section 4.2.

4.1 Neuron Module

Within the field of neuromorphic computing, the analysis of neuron modules has been extensively
documented in the literature leading to various possibilities depending on what the researcher
seeks. For example, if accurate biological representation is required, several models were sum-
marised in subsection 4.1.1. On the other hand, if the researcher looks for better computing
performance, the Leaky Integrate-and-Fire (LIF) model is a better compromise, presented in
subsection 4.1.2. Due to its simplicity but still being able to achieve accurate results, this neu-
ron model was applied the most in the literature. However, different variations still arose which
will be better detailed in subsection 4.1.3. A graphical comparison of these models focusing on
biological plausibility and implementation cost is presented in Figure 4.1.

Figure 4.1: A comparison of spiking neuron models analysed in future sections by looking at
both implementation cost and biological plausibility[18]
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Before entering the analysis, it is important to mention some factors that are common to all
models irrespective of biological accuracy or computational efficiency. Firstly, the neuron models
are expressed using mathematical equations that describe the behaviour of spiking neurons.
These equations consider various factors such as the input current, membrane potential, and
membrane time constant, to simulate the behaviour of biological neurons. Each of the models
mentioned below is implemented using the update method, which takes as inputs a current and
a time step and returns whether a spike has occurred or not. With the help of the equations
above, the update method calculates each neuron’s membrane potential at each time step. If
the membrane potential exceeds a certain threshold, a spike is generated and propagated to the
next neurons through the synapse[106].

4.1.1 Biological Inspired Models

In this subsection, the neuron dynamics models, centred around biological accuracy will be
detailed. To understand the process these models try to reproduce, it is important first to
understand the biology behind the neuron, presented in section 2.1. With this in mind, the
most accurate biological neuron model is the one created by Hodgkin and Huxley[107](for a
summary of the equations check the work of Yamazaki et al.[18]). This neuron model was first
introduced in 1952 and it is relatively complex to be implemented and computed. It is formed
of four-dimensional nonlinear differential equations which describe the neuron’s behaviour us-
ing the chemistry behind the transfer of ions into and out of the neuron. Because of their
biological plausibility, Hodgkin-Huxley models have been heavily implemented in neuromorphic
applications trying to accurately model biological neural systems. Another plausible biological
model is the Morris-Lecar model[108] which focuses on slightly reducing the complexity due to
its two-dimensional nonlinear equation. For this reason, it is also commonly implemented in
neuroscience and neuromorphic systems[7].

However, for the computational side of neuromorphic computing, the complexity of the pre-
sented models is not favourable. Thus, some researchers created simplified models requiring
fewer parameters that can be implemented on neuromorphic hardware. Trying to replicate the
behaviour of the Hodgkin-Huxley neuron, the Fitzhugh-Nagumo[109] and Hindmarsh-Rose[110]
models were created. Similarly, the Izhikevich spiking neuron model[111] was developed to
produce similar behaviour as the Hodgkin-Huxley model when it comes to the most impor-
tant neuron attributes (bursting and spiking behaviour) but using much simpler computations.
Achieving great biological plausibility with a low computational cost, the Izhikevich model be-
came increasingly popular in the neuromorphic literature. Following this success, other models
arose which imitated the approach of Izhikevich such as the Mihalas-Niebur neuron model[112].
It is also important to note that other researchers looked at replicating the biological behaviour
of neurons with lower implementation costs by focusing on accurately implementing parts of
the neuron. Thus they contain a much higher level of biological detail than the models men-
tioned above but focus on hardware implementation of smaller components such as membrane
dynamics, ion-channel dynamics or axons and dendrites[7].

4.1.2 Leaky Integrate-and-Fire (LIF)

Focusing especially on computational efficiency, researchers created a much simpler set of spiking
neuron models, namely the integrate-and-fire family. These models are less biologically realis-
tic but still vary in complexity from the basic integrate-and-fire model to those approaching
complexity levels near that of the Izhikevich model. To start with, the basic idea used by the
neurons in this family is, as the name suggests, to integrate the spikes received in the neuron
until a certain threshold is achieved which makes the neuron fire a spike itself. This principle is
summarised by the integrate-and-fire neuron model which maintains the current charge level of
the neuron after a spike is received[7].
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To achieve better biological accuracy by reflecting the diffusion of ions that occurs through the
membrane when some equilibrium is not reached in the neuron, the leaky integrate-and-fire (LIF)
model was created which includes a leak term to the model causing the neuron’s potential to
decay over time[18]. Moreover, a refractory time is often included after each spike during which
the neuron will not integrate any presynaptic spikes[57]. This increase in accuracy makes it one
of the most popular models used in neuromorphic systems but also one of the most researched
models with many variations being brought in numerous papers. The dynamics are summarised
in Equation 4.1[97]:

τ dvi(t)
dt = −(vi(t)− vrest) +Xi(t) (4.1)

In Equation 4.1, τ is the time constant of the membrane potential which controls how fast
the neuron potential leaks, vi(t) represents the membrane potential of the neuron i at time t,
vrest is the resting potential and Xi(t) represents the input function to the neuron i at time t
which can add various properties to the LIF neuron. The presented equation describes only the
exponential leak equation which functions between spikes. Otherwise, the membrane potential
vi(t) integrates the spikes received from the presynaptic spike train sj(t). When the membrane
potential vi(t) exceeds a certain threshold vth at time tf , the neuron will cause a spike and then
the membrane potential vi(t) goes back to a reset value vreset which should be strictly smaller
than vth. Usually, the reset value vreset and resting potential vrest are equal in the neuron
dynamics but they can differ too. After the spike is generated and the membrane potential is
reset, the neuron enters a refractory period ∆trefr during which new incoming spikes do not
affect the membrane potential vi(t). The whole dynamics of the neuron leads into a postsynaptic
spike train si(t). To conclude, the whole process can be visualised in Figure 4.2[72, 97].

Figure 4.2: A generic model of a LIF neuron; the graph on the right shows the temporal course
of the membrane potential vi(t) driven by a sample presynaptic spike train sj(t) coming from 3
input synapses which leads to the postsynaptic spike train si(t); also, in this graph, the reset

value vreset and resting potential vrest are equal in magnitude [72]

The LIF neuron description given above is mostly focused on the physical side. However, to
implement it on neuromorphic hardware some changes are required. A trivial implementation
using the dynamics of a simple RC circuit was done by Clawson et al.[57]. However, for a more
complicated implementation taking into account more parameters and factors in the hardware,
the method presented by Burkitt[113] could be used. All this analysis was done if specialised
neuromorphic hardware is available but applications can still be implemented on a von Neumann
architecture. The problem translates then to the necessity of derivative discretization which
requires a discrete-time system of equations as suggested by Stroobants et al.[63]. Also, it is
important to state that different variations of the LIF neuron model can be implemented using
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the input function Xi(t) from Equation 4.1. For example, Clawson et al.[57] use this function to
add a disturbance scalar meant to represent noise in the neural circuit. Another example was
given by Paredes-Vallés et al.[72] who created a LIF neuron model that adapts neural response
to the varying input statistics using the presynaptic trace as an excitability indicator. Using
this method, the LIF neuron model can be used also for rapidly varying input statistics such as
event-based cameras.

To conclude the analysis of the LIF neuron model, the advantages and disadvantages of using
such an approach will be presented. First of all, it seems the main advantage of LIF neuron
models is their simplicity allowing for a low computational cost while keeping the biological
plausibility of the spiking behaviour. In this way, the method provides both analytical methods
of solution and intuitive insights into many important questions regarding neuromorphic com-
puting[113]. Moreover, its simplicity also allows for computational traceability but also for the
rapid conversion of an ANN to an SNN. This can be done by transforming the firing rate of the
neuron in SNNs in such a manner that it behaves similarly to the ReLU activation function in
ANNs[18]. However, some drawbacks exist too and mostly concern the biological plausibility of
the model. In other words, the LIF neuron model cannot stimulate accurate neuronal behaviours
except for leakage, accumulation, and threshold excitation[44]. Moreover, the model neglects
the spiking mechanisms and the lack of spatial structure which leads to issues with the irregular
nature of interspike interval but also of neural gain modulation[113].

4.1.3 Other variations of Integrate-and-Fire

The integrate-and-fire models became popular in neuromorphic research due to their low com-
putational complexity, allowing for numerous papers on this method. Some of these papers
also focused on fixing some drawbacks by slightly altering the model as it was mentioned in
subsection 4.1.2. However, its main drawback remained the low biological plausibility compared
to other neuron models as can be seen in Figure 4.1. To fix this issue, researchers created more
complex variations of the integrate-and-fire models with a higher biological plausibility while
keeping the computational cost at an acceptable level. This subsection will analyse some of
them while trying to present their assets and drawbacks. Before jumping into the analysis, it
is important to state these methods follow the basic principles of the neuron model presented
in the previous subsection if not indicated otherwise. There exist many variations of the basic
integrate-and-fire models but the most important ones that were used frequently in literature
can be found in the list below.

• Non-Linear Integrate-and-Fire (NLIF)[114]: compared to the LIF neuron model,
NLIF is made more complex by adding two additional parameters for the refractory period;
thus, the non-linear relationship between the membrane potential and the input current
in the integration process is included;

• Adaptive Exponential (AdEx)[115]: this neuron model includes an exponential term
to account for the adaptation of neuron firing rates over time; this model has parameters
for the membrane time constant, rheobase voltage, spike voltage, adaptation parameter,
reset voltage, initial voltage, and the number of neurons which makes it more biologically
accurate;

• Quadratic Integrate-and-Fire (QIF)[116]: this model is an application of the NLIF
model as it incorporates a quadratic term to capture the non-linearity of the neuron’s
behaviour near the spike threshold; it is thus a simple yet effective way to introduce non-
linearity, which allows it to capture certain behaviours of spiking neurons more accurately;

• Integrate-and-Fire with Spiking Frequency Adaptation (IF-SFA)[117]: IF-SFA is
based on the LIF model with an additional adaptation current, which modifies the mem-

42



Guidance & Control Implementation with Spiking Neural Networks

brane potential and firing rate of the neuron over time in response to input stimuli; the
adaptation current is computed based on the difference between the membrane potential
and the resting potential and is added to the input current; thus an increase in the adap-
tation current leads to a decrease in the firing rate of the neuron over time, allowing the
neuron to adapt to the input stimulus;

• Spike Response Model (SRM)[118]: SRM is less inspired by the basic integrate-
and-fire model as it tries to provide a more detailed description of neuron behaviour;
it does this by capturing the post-spike response characteristics of neurons, which include
the refractory period and the shape of the post-spike potential; this model manages to
accurately model the temporal effects in neural computations;

• ThetaNeuron[119]: this neuron model is even closer to biological plausibility as it focuses
on capturing the theta rhythm observed in the brain; it incorporates the influence of a
sinusoidal waveform, in addition to the input current and membrane potential to update
the membrane potential;

Sanaullah et al.[106] described the mentioned models while also performing a comparison analy-
sis (including also the basic LIF neuron model). To compare the performance of these models as
accurately as possible, Sanaullah et al.[106] used various methods. The first one calculates clas-
sification performance per neuron model providing insights into the diverse spiking behaviours
and relative strengths of the different SNN models. The metrics used for comparison are: ac-
curacy which is calculated as the mean of the element-wise equality comparison shown as a
percentage and error rate which is simply the percentage of misclassified samples. The results
are summarised in Table 4.1 and show some interesting conclusions. For example, the neuron
models that are less similar to integrate-and-fire models and try to simulate closer the biological
neuron (SRM and ThetaNeuron) show the worst learning capabilities for classification tasks. On
the contrary, the integrate-and-fire models that include some adaptation components (IF-SFA
and AdEx) for learning perform the best. The models closest to the basic integrate-and-fire
model (LIF, NLIF and QIF) perform similarly. An interesting outcome is that making the
integrate-and-fire models not depend on time (QIF and NLIF) decreases the performance which
could be explained by the missing temporal component of the learning process.

Table 4.1: Comparison of various integrate-and-fire models considering the accuracy and the
error rate as calculated by Sanaullah et al.[106]

Parameter LIF NLIF AdEx QIF IF-SFA SRM ThetaNeuron

Accuracy [%] 71.20 66.55 90.05 70.70 84.30 49.95 58.55

Error rate [%] 0.32 0.35 0.10 0.27 0.14 0.50 0.42

Next, Sanaullah et al.[106] looked at comparing the network integration of the aforementioned
models. Thus a consistent network with a similar topology was created. The network included
one layer of 1000 neurons using random initial weights. Even though this network structure
might favour some neuron models, it was decided to still perform the comparison as the results
will evaluate the inherent characteristics of each model in a controlled setting. Using this
approach, a deeper understanding of the fundamental properties of each model, such as their
spike response dynamics and computational capabilities can be gained.

One such property is the spiking activity of the neuron models which provides information on
the mechanisms underlying neural computation and communication. For instance, it can be
investigated how different input patterns affect the firing rate and temporal precision of spike
trains which can further lead to better simulations of biological neurons behaviour. Additionally,
spiking activity can provide insights into the computational efficiency and resource requirements
of different models. With these in mind, the results of Sanaullah et al.[106] lead to some
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interesting conclusions. Firstly, the neuron models which are more similar to the integrate-and-
fire model, show similar behaviour, with spikes being generated when the threshold is reached.
The main difference between them consists in the exact timing of the spike. For example, the
LIF neuron spikes exactly when the threshold is reached. On the other hand, AdEx, NLIF,
QIF and IF-SFA introduce non-linearity near the spike threshold which allows it to capture
certain behaviours of spiking neurons more accurately. On the other hand, the other models
(ThetaNeuron and SRM) spike continuously. Using this feature, the ThetaNeuron model can
be adapted to capture various patterns by adjusting the model’s parameters. Moreover, the
leak conductance of SRM makes it a valuable model for computational neuroscience and neural
network simulations that involve synaptic interactions.

Last but not least, computational complexity (which can be argued that is directly proportional
to energy consumption) was analysed by Sanaullah et al.[106] by looking at the mathematical
operations required by these models. These are summarised in Table 4.2 by showing the required
operations for updating the neuron state in one time step. Before starting the analysis, it is
important to state that addition/subtraction requires lower complexity than multiplication/di-
vision and the comparison operation requires the least complexity. Based on the results, it can
be observed that the LIF neuron model is the least complex by a great margin. With similar
complexity, the adaptive neuron models (AdEx and IF-SFA) follow the ranking along with SRM.
The non-linear neuron models (QIF and NLIF) show a dramatic increase in complexity com-
pared to LIF. ThetaNeuron is the most complex which is explained by the focus of the model
on biological plausibility.

Table 4.2: Comparison of various integrate-and-fire models considering the computational
complexity[106]

Operation LIF NLIF AdEx QIF IF-SFA SRM ThetaNeuron

Addition/Subtraction 1 3 4 3 3 3 4

Multiplication/Division 1 3 1 3 2 2 3

Comparison 1 1 1 1 1 0 0

4.2 Synapse Module

The synapse is the linking part between neurons, being also the most numerous component
in spiking neural networks. For this reason, nowadays, many hardware implementations and
novel materials for the neuromorphic industry focus on optimising the synapse implementation.
Regarding computation, unless they are attempting to explicitly model biological behaviour,
synapse models tend to be relatively simple without meeting as much variation as the neuron
module[7]. However, it is still important to present the existing models and how they differ.
Again, while some models focused on the accurate biological representation, others concentrated
on making the computation more efficient as will result from the following paragraphs.

For more biologically accurate neuromorphic networks, synapse implementations that model
explicitly the chemical interactions of synapses, such as the ion pumps, ion channels or neuro-
transmitter interactions, have been utilised in some neuromorphic systems such as the Hodgkin-
Huxley model. Another popular inclusion for more complex synapse models is a plasticity
mechanism, which causes the neuron’s strength or weight value to change over time as was ob-
served in biological brains. Neuromorphic synapses that exhibit plasticity are common for novel
biologically inspired learning mechanisms that use excitation and inhibition in synapses as will
be detailed in section 5.2. Moreover, synapses have also been used as homeostasis mechanisms
to stabilise the network’s activity, a common issue in SNN systems.[7]

The methods presented above are mostly based on conductance which is easier to implement
on neuromorphic hardware and more biologically accurate. However, this is more difficult to
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implement on traditional hardware which led to the need for a current-based (CuBa) synapse.
The methodology behind it was inspired by the LIF model which uses a decaying exponential
model for the post-synaptic potential (PSP). The novelty of the CuBa synapse includes the
modelling of the post-synaptic current (PSC) using a similar decaying exponential model[18,
120]. Another method suggested by Zheng et al.[40] is called synapse integration which simulates
plasticity using 2 neurons. One neuron spikes when the synapse should inhibit the weight while
the other one is used similarly but for excitation. Last but not least, synapses could also be used
as a linear connection between neurons and all the learning parameters depend on the neuron
itself. In this case, the synapses will only contain the weight values which will be learned as it
will follow from the following chapter.
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5

Implementation

With neuromorphic technology and its possible applications inspected, it is crucial to understand
how learning can be achieved with this novel technology. Until now, most of the information
focused on the basics of neuromorphic computing where the neuron and synapse models were
examined followed by possible encoding techniques to adapt this novel technology to existent
hardware. This chapter will analyse how all this information can be linked and thus an SNN
learn a model. It is important to note that most of the information presented below is heavily
inspired by ANN applications but the focus of the sections will be on the SNNs adaptations.
Firstly, possible architectures of neurons and synapses to generate better-performing networks
will be analysed in section 5.1. With a network generated, learning can be performed and various
general algorithms for this will be shown in section 5.2. Moreover, as the information is not
continuous anymore but is discretised due to spikes, the traditional back-propagation method of
learning cannot be used and the new neuromorphic methods of learning will be included in the
same section. Lastly, after learning a model, quantifying the performance is crucial and possible
metrics will be presented in section 5.3.

5.1 Network Architectures

The focus of the literature study in the previous sections was on analysing the network compo-
nents such as the neuron or synapse while their possible combinations have not been analysed.
The numerous possibilities of connecting the neurons and synapses lead to various capabilities
of the resulting network. The current section will highlight how a network architecture may
prove advantageous for one application while not necessarily suitable for another. The analysis
will begin with the classical feed-forward neural networks as well as its multitude of variations
presented in subsection 5.1.1. This will be followed by recurrent neural networks, a structure
that allows also for passing the information in cycles in subsection 5.1.2. Lastly, a sub-layer
of feed-forward, namely convolutional neural networks, which has been heavily used for image
processing will be detailed in subsection 5.1.3. Most of the network architectures mentioned in
the current section can be visualised in Figure 5.11.

5.1.1 Feed-Forward Neural Networks

The standard method of creating an ANN and by far the most prevalent neural network used
to learn a model is the feed-forward structure. Within this architecture, neurons are organised
into layers and they can communicate between them only sequentially from layer to layer, using
synapses. Thus, neurons receive the input and pass the information further only to the next
layer’s neurons. The process is repeated and finishes when the output layer is reached. In this
structure for artificial neural networks, the basic element is called the perceptron. This works by

1https://www.asimovinstitute.org/neural-network-zoo/
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Figure 5.1: The schematic representation of various neural network architectures (both
neuromorphic and non-neuromorphic)

first adding up the values received from the previous layer’s neurons and then, after passing the
result through an activation function, the perceptron sends its information to the neurons of the
next layer. In this structure, learning is being done through back-propagation, a technique in
which the weight of every synapse is adjusted to improve the performance of the whole network.
The performance is usually quantified by comparing the output of the network model to the
expected output. Due to its simplicity, this network architecture remains the standard of the
feed-forward structure, being used for general learning problems but also for understanding the
principles of ANNs.

To broaden the applications of feed-forward neural networks, several variations have been
brought regarding its components. One of them analyses the number of synapses between
layers with the standard model having fully connected layers (every neuron in a layer is directly
connected through synapses to every neuron in the preceding and succeeding layers). However,
researchers found that this usually leads to increased computational consumption especially
during training as more weights have to be optimised. Thus they proposed more sparsely con-
nected layers or fully connected only locally. Similarly, literature studied the possibility of
saving the stochastic behaviour of neurons by introducing a new layer to record the probabilis-
tic features of the network. This led to the creation of the probabilistic neural network which
expresses weights and biases using a distribution function instead of a fixed value (Bayesian
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Neural Network). Next, researchers examined single-layer feed-forward networks that are capa-
ble of learning complex, non-linear information using radial basis function instead of the simple
neuron’s summation. Last but not least, augmenting the complexity of the network by increas-
ing the number of hidden layers, led to the notion of deep neural networks thereby enhancing
performance, efficiency and accuracy.

The information presented in the paragraphs above applies to traditional ANNs but neuromor-
phic computing works with slightly different principles. A spiking neuron learns by correctly
distinguishing the times of desired output spikes. Even though the information is processed
differently, the network structure remains generally similar with neurons being split into layers
connected by synapses and information being passed successively between layers. The difference
consists mainly in the neuron and synapse models as presented in chapter 4 and in the back-
propagation techniques detailed later in section 5.2. The network structures mentioned above
were adapted to neuromorphic computing principles and technology. For example, the percep-
tron became the tempotron[121] in which the spiking neurons optimise the synaptic weights by
minimising the error between the actual and desired output potential[41].

Based on the elementary feed-forward component of tempotron, more complex networks could
be generated that focus on imitating the learning capabilities of traditional ANNs. Thus, single-
layer feed-forward networks with spiking RBF were created[122] as well as spiking probabilistic
neural networks[123] and their application was mostly focused on learning general problems such
as image recognition with the MNIST or CIFAR-10 datasets or basic benchmark tests. However,
the performance of these networks is generally worse than their traditional counterparts but
these papers proved a breakthrough in neuromorphic research. To reduce the overhead, some
papers looked to increase the complexity of the SNNs by adding more layers to achieve better
performance, efficiency and accuracy leading to deep SNNs[124]. Neuromorphic research oriented
its study also towards different approaches to learning information. This includes the work of
Diehl et al.[125] who used 2 neurons (excitatory and inhibitory) for controlling the synapse
weight applying this technique to extracting features from images[40].

Using the feed-forward principle but in a completely different manner, 2 more types of networks
can be distinguished. The first one requires training more models to improve the accuracy of the
output. It is called a generative adversarial network (GAN) which creates a new framework for
estimating generative models using an adversarial process. Thus 2 models are simultaneously
trained: firstly, a generative model (G) that captures the data distribution and generates data
such that the other model is forced to make a mistake and secondly, a discriminative model (D)
that estimates the probability that a sample came from the training data rather than from G. As
long as G and D are built of multi-layer perceptrons, the entire system can be trained using the
same feed-forward principles while achieving excellent results for both generative and recognition
problems on MNIST dataset[126]. Using neuromorphic computing, this adversarial approach
to learning was applied to the MNIST dataset but worse results were achieved compared to
its conventional counterpart. For example, Rosenfeld et al.[127] created a GAN composed of a
probabilistic SNN generator and an ANN discriminator while Kotariya and Ganguly[128] created
a full neuromorphic GAN structure.

Another principle implemented using the feed-forward structure is the attention mechanism.
This mimics cognitive attention by using 2 types of weights: soft which can be changed during
each runtime and hard that are pre-trained and fine-tuned remaining frozen afterwards. This
principle applied on a feed-forward neural network with fully connected layers for both the en-
coder and decoder led to transformers. These proved great capabilities for sequence modelling
and transduction in various tasks. This allowed transformers to model the dependencies be-
tween bits of information without regard to their distance in the sequences leading to global
dependencies between input and output. Moreover, at each step, the model is auto-regressive,
consuming the previously generated symbols as additional input while also generating the next
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ones[129]. This network structure has also been successfully applied to neuromorphic computing
for image classification[130], audio signal processing[131] and automatic speech recognition[132]
with models outperforming standard SNNs but not the traditional ANNs. One possible solution
to improve results might be to create special hardware such as a spike-driven transformer[133].

5.1.2 Recurrent Neural Networks

A second method to combine the neurons and synapses in a network does not require such
an organised structure with information being passed successively from layer to layer. Instead
recurrent neural networks (RNNs) allow for cycles that translate to information being passed
backwards jumping to previous layers. There are still similarities to the feed-forward neural
networks such as the usage of the perceptron neuron. But as opposed to feed-forward structures
which memorise the overall sequence information, RNNs focus on memorising the relation be-
tween the information in the sequence. Thus they can be used for time series by combining the
representational information of the previous time step in the hidden layer with the input of the
current step to infer the output of the current time step. This makes RNNs a great application
for processing sequential data or time-series data or for solving ordinal or temporal problems,
such as language translation, and speech recognition[40]. To learn the correct synapse weights
the same principles as feed-forward networks are used but slightly altered to adapt to the change
in time leading to the back-propagation through time approach.

The distinctive feature of RNNs lies in their flexibility regarding structure, resulting in varying
degrees of connectivity. For example, the feed-forward structure can still be preserved but
recurrence between layers is also allowed now. An application of this principle is the one-
layer recurrent neural network that proved itself efficient for sequence processing such as time
series analysis. Extending this principle to feedback connections between each neuron leads
to the long short-term memory (LSTM) network that improves memory capabilities. Another
level of recurrence scraps the principle of layers and allows neurons to communicate between
themselves directly and at any time. This leads to fully-connected recurrent networks where each
neuron is connected to every other neuron. Although this architecture allows for very dynamic
nonlinear behaviour, it is nevertheless complex and thus difficult to analyse and train. Therefore,
simplification is required such as fewer connections between neurons or more structured relations.
With this in mind, reservoir computing networks were created which allow for sparsely connected
recurrent structures in the middle of the network. Their key advantage is that it does not require
specific training rules as they use the sparse and recurrent connections with synaptic delays to
cast the input to a spatially and temporally higher dimensional space. However, this requires
a readout mechanism, such as a linear regression, that is trained to recognise the output of the
reservoir. When the reservoir receives the network input and passes further the network output,
the network becomes an echo state network (ESN)[7, 8].

RNNs have also been prevalent in the neuromorphic computing field as SNNs mostly process se-
quences of information due to the recurrent nature of the neuromorphic neurons. Moreover, the
brain also uses a chaotic structure with neurons being connected randomly, allowing for complex
nonlinear dynamics. Following the same principles as traditional RNNs, feedback connections
to multi-layer feed-forward SNNs were implemented too. This led to slight variations as the
feedback could be either external (passing the output back to hidden layers) or just internal
(passing the information generated by hidden layers back into hidden layers themselves)[41].
Reservoir computing was also adapted to neuromorphic technology leading to liquid-state ma-
chines (LSMs). These work by transforming the time-varying input information into a higher
dimensional space that can exhibit rich temporal and spatial properties as well as memorising
past input information[40]. Several demonstrations of LSMs have shown their effectiveness at
processing temporally varying signals for bio-signal processing and prosthetic control applica-
tions to video and audio signal processing applications[8].
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Figure 5.2: A schematic of how a central
pattern generator works especially for rhythmic

motor patterns[134]

A slightly distinct network that does not fit
clearly into the field of RNNs even though it
uses recursion is the central pattern generator
(CPG) model. This model was inspired by
nature and was found to underlie the rhyth-
mic motor patterns in virtually every system
of the human body. What makes these models
special is that they create the rhythmic mo-
tor patterns locally with minimal sensory feed-
back leading to extremely fast reaction times
without the need to pass the information to
the brain and back. Based on this informa-
tion, researchers have created CPG mathe-
matical models, also implemented in neuro-
morphic computing. One such implementa-
tion was researched by Angelidis et al.[134]
who designed a modular SNN architecture in
which the oscillatory centre is represented by a population of spiking neurons as can be visu-
alised in Figure 5.2. To solve the coupling between the neural oscillators, they introduce an
intermediate population of neurons that receive the x and y values from neighbour oscillators
and compute the coupling term. The final application of the paper was to control a simulated
lamprey robot.

5.1.3 Convolutional Neural Networks

Even though convolutional neural networks (CNNs) follow generally a feed-forward network
structure, they deserve a separate section for the outstanding performance and usage they
achieved in image analysis and language processing. To achieve this performance, they use layers
that are specially created to detect patterns (edges, corners or textures) in the gridded data by
grouping it in smaller batches. CNNs add to the feed-forward network structure convolutional
and pooling layers and have been intensively used for image processing. The convolutional layer
allows the CNNs to perform feature-oriented, two-dimensional processing. Each neuron in the
convolutional layer receives input only from the local receptive field of the previous feature map
layer and reuses the convolutional kernel weights to perform local two-dimensional convolution.
In other words, this layer is essentially a cross-correlation operation, followed by a nonlinear
activation function, and multiple filters to obtain multiple corresponding outputs equivalent to
the features. In addition, the pooling layers resize the feature maps extracting only relevant
features. Lastly, a fully connected layer is used to build the final classifier, a highly abstract and
low-dimensional information representation[41, 40].

As mentioned above, a common application of neuromorphic computing is image recognition
with several papers analysing the performance of created SNNs on common datasets such as
MNIST or CIFAR-10. Some of these applications such as texture, edge or corner identification in
images implemented also a spiking CNN that uses spiking convolutional kernels. In some cases,
the spiking CNNs require a novel error function made of spike trains, based on spiking kernels.
Then the synaptic weight can be derived using a learning rule that uses directly the mechanism
of error back-propagation. However, Zheng et al.[40] found that the performance of directly
trained spiking CNNs is often inferior to that of traditional CNNs but superior when referring
to training time. One possible solution is CNN conversion to spiking CNNs as many studies
have shown that converted networks work well and perform close to the traditional approach
while also consuming less energy[40, 41].
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5.2 Learning Algorithms

With a clear description of the spiking neural network structure as well as its neuromorphic
components, the focus can be switched to the learning algorithms. These were initially developed
and applied to traditional ANNs. Even though their common principles are not altered by
neuromorphic computing, implementing them in a network will require special operations. Due
to the necessity of differentiability and as spikes introduce a temporal dimension to the error
assignment problem, traditional ANN learning algorithms cannot be directly adapted to SNNs.
To solve this problem, every learning algorithm created its solutions that will be presented below
in their respective section. The first algorithm and the most used in literature and industry is
supervised learning (SL), analysed in subsection 5.2.1, which requires mapping the input-output
relation for acquiring information. Next, information can also be obtained without the need
for input-output mapping and this can be done through unsupervised learning (UL), detailed
in subsection 5.2.2. Lastly, learning can be done solely through repetition and reinforcement
learning (RL) algorithm exploit that in subsection 5.2.3.

Before presenting the mechanisms of learning algorithms, several general comments must be
made. Even though the previous paragraph mentions that ”every algorithm created its meth-
ods”, it is important to state that these methods are not clearly divisible between learning
algorithms. The best example is reinforcement learning, which, in some cases, can be classified
as an application of supervised learning and thus most of the learning methods presented in
subsection 5.2.1 can also be applied to subsection 5.2.3. With this versatility in mind, it is
important to mention the categorisation made by Schuman et al.[7] which splits the neuromor-
phic learning methods into 4 clear categories that can be visualised in Figure 5.3 as follows:

Figure 5.3: A visual summary of
training/learning algorithms. The size
of the box corresponds to the number of

papers in that category[7]

• Back-propagation: inspired by the tradi-
tional ANN learning method, it is mostly used
for supervised learning algorithms, showing
broad applicability but being relatively complex
to be implemented in neuromorphic architec-
tures due to the differentiability requirement;

• Evolutionary: also used preponderantly for
supervised learning, this learning method is
easier to implement but, compared to back-
propagation, it requires more time for conver-
gence;

• Hebbian: even though this method was de-
rived for unsupervised learning, several appli-
cations used it for supervised learning too; it is
more biologically plausible than previous meth-
ods but it has not yet been applied largely to
industry;

• Spike-timing-dependent plasticity (STDP):
it is very similar to Hebbian methods and it is
the most commonly used algorithm proposed
for training spiking systems; however, it has a more complex implementation than Heb-
bian algorithms with the literature not specifying a clear learning or training rule;

While analysing the learning methods, some general principles and terms were observed to be
recurrent throughout every neuromorphic learning algorithm. The first of them is synaptic
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plasticity, heavily inspired by the biological process, where specific synaptic activity patterns
result in changes in synaptic strength. One repeated problem encountered in neuromorphic
computing is that neuronal activity can fall silent or saturate when the average synaptic input
falls extremely low or rises significantly high. One possible solution involves intrinsic plasticity,
found in the biological brain, which regulates intrinsic excitability to promote stable firing
within an appropriate range. By changing the neuron’s intrinsic properties learned during
training, it can achieve the optimal firing rate distribution. Another possible solution involves
the normalisation of synapse weights. Thus, when a synapse weight overpasses the maximum
threshold, all other synapses are required to decrease their weights. An alternative approach to
learning a model involves the ANNs to SNNs conversion which is based on the idea of importing
pre-trained parameters such as weights and biases. This way, the heavy computational cost of
running ANN models is mitigated by neuromorphic computing which reduces the number of bits
per transmission and makes signals sparse in time. However, handling data with spatio-temporal
properties cannot be exploited. Converting ANNs to deep SNNs has achieved comparable results
to those of original ANNs while being more energy efficient[18].

5.2.1 Supervised Learning

Supervised learning (SL) is a type of learning that uses labelled datasets to train algorithms
capable of predicting outcomes and recognising patterns by creating a mapping from the input
space to the output space. With high-quality input-output relations, SL can achieve very efficient
learning. Unfortunately, this requires the annotation of data, a process that requires abundant
human resources. In ANNs, the mapping can be learned using a supervised method through
a loss function between the current output of the network and the expected output. The loss
function should be minimised and this can be done through back-propagation which updates
the weights after every forward pass. To find the minimum of the loss function, various methods
exist including stochastic gradient descent or RMSProp but also evolutionary algorithms. The
supervised learning algorithm described in the lines above is based solely on offline learning but
several papers have shown that online learning is possible too. Moreover, supervised learning has
been successfully applied to feed-forward neural networks, recurrent neural networks (but using
back-propagation through time) and convolutional neural networks. The successful application
of back-propagation has caused a renaissance in the field of research on ANNs, becoming the
standard in machine learning.[7, 40]

However, the back-propagation method presented above does not work in neuromorphic com-
puting for several reasons. One of them is rooted in biology and it is called the weight trans-
port problem, which argues that forward and feedback neurons cannot share the same synaptic
weights during learning in biological neural networks. Another issue is that spike signals are
not continuous which makes the SNNs not differentiable and thus the back-propagation through
stochastic gradient descent cannot be simply done. To solve this issue, researchers have created
continuous functions that approximate the spiking behaviour[40, 84]. Moreover, the traditional
back-propagation method ignores the temporal effects of spikes[135]. To address these issues, re-
searchers created novel approaches to learning information in a supervised manner within SNNs
including adaptations or simplifications of the traditional method. Nevertheless, additional chal-
lenges emerged over time, such as the restriction of back-propagation to specific types of neuron
models, network architectures, and topologies for efficient utilisation, as well as the difficulty of
implementation in hardware. Despite all these problems, supervised learning managed to achieve
some success in neuromorphic computing being applied for feed-forward networks, RNNs and
CNNs[7]. Further, general learning methods applied successfully for supervised learning in SNNs
will be listed:

• SpikeProp[98]: heavily inspired by back-propagation, SpikeProp was one of the first
supervised learning methods for SNNs; it uses the SRM neuron model to avoid the dis-
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continuity problem at the threshold by linearly processing the relationship between the
pulse firing time and the membrane potential; SpikeProp takes the time difference be-
tween the target pulse and the actual pulse as the objective function and the loss function
is calculated as the sum squared error. It has low learning efficiency, mostly because it
can only optimise a single neuron connection; to solve this issue, Multi-SpikeProp was
created which adjusts the connection between neurons for the multi-connection case; simi-
larly, a new supervised learning rule named MultilayerSpiker was made capable of training
multi-layer feed-forward SNNs using stochasticity; moreover, due to its popularity, several
variations were brought to this method; for example, in one case, SpikeProp specialised
in optimising event-driven data that led to the event-driven random BP (eRBP) rule that
uses error-modulated synaptic plasticity for learning deep representations; in other cases,
SpikeProp performance was enhanced by adding learning rules based on gradient descent
for parameters such as synaptic delays, the threshold of spike firing, and the time constant;
inspired by classical back-propagation, SpikeProp was further improved and sped up either
by adding a class of nonlinear neuron models or by adding new terms such as momentum,
adaptive learning rate, adaptive delays or regularisation; furthermore, SpikeProp was also
adapted to RNNs creating thus SpikeProp through time (SPTT) method[84, 44, 18, 41];

• SuperSpike[136]: it is an improved method of SpikeProp that utilises the derivative of the
membrane potential for optimisation instead of the spike, which allows training a model
with an absence of spike occurrence; SuperSpike uses the van Rossum distance between
the output and desired spike trains as the loss function[18];

• Spatio-Temporal Back-Propagation(STBP)[137]: this algorithm combines both the
spatial domain and the temporal domain in the training phase based on approximating
the derivatives of impulse functions; STBP achieved high accuracy and could be used on
both static and dynamic datasets[84, 41];

• Tempotron[121]: inspired by the ANN’s perceptron, Tempotron is a single-connection
optimisation method that uses the difference between the target output membrane po-
tential and the actual output membrane potential as the objective function; it adjusts
the synaptic weights by minimising the sum squared error; an improved method is the
Chrontron, which uses the Victor-Purpura distance as the construction basis of the loss
function. Further, Chrontron proposed two learning rules: E-learning (based on gradient
descent) and I-learning (more biologically explanatory). Experimental results showed that
Chrontron converges faster and more reliably than Tempotron and does not rely on a
specific reset mechanism[84, 41];

• Perceptron-Based Spiking Neuron Learning Rule (PBSNLR)[138]: it is an SNN-
to-ANN conversion method that transforms SL into a classification problem and then
solves the problem using the perceptron learning rule; some improvements were proposed
including dynamic learning parameters (e.g.: threshold) with distance items and a better
method for choosing negative samples[41];

• ReSuMe: this method combines the unsupervised learning methods of STDP and anti-
STDP with remote supervision to minimise the gap between the output and the target
without the need for gradient descent; the STDP and anti-STDP methods work after the
Widrow-Hoff rule which continuously adjusts the weights and thresholds of the network in
the direction of the fastest reduction of the sum of squared errors; the ReSuMe algorithm
can also learn the mapping of RNNs, being capable of altering the synaptic weights of
the liquid state machine; a variation of this method includes the delay-learning remote
supervised method (DL-ReSuMe) in which synaptic weights are updated by the delayed
version of the ReSuMe rule; as ReSuMe can only be applied to single connections, Multi-
DL-ReSuMe extended the applications to more neurons by proposing a cross-correlated
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delay shift (CCDS) method, in which synapse and axonal delays are modulated together
with weights during learning; in addition, T-ReSuMe is an improved learning algorithm
that combines the ReSuMe algorithm with triplet-based STDP too[44, 84, 41];

• Spike Pattern Association Neuron (SPAN)[139]: it is another single-connection
optimisation method created for learning in spiking CNNs; the idea of the SPAN algorithm
is to transform the spike trains during the learning phase into analogue signals using an α-
kernel function such that the Widrow-Hoff rule can be applied directly to the transformed
signal to adjust synaptic weights; inspired by the SPAN algorithm, a precise-spike-driven
(PSD) supervised learning rule can be used to associate a spatio-temporal spike pattern
input with a desired spike train by the double-exponential kernel function[84, 41];

• Spike-based Back-Propagation[140, 141]: this algorithm treats the membrane poten-
tial of spiking neurons as a continuous differentiable signal, where the discontinuity in
the spiking time is regarded as noise; spike-based BP follows the error back-propagation
mechanism of traditional ANNs but acts directly on spikes and membrane potentials; one
special case is the surrogate gradient descent that uses surrogate derivatives to define the
derivative of the threshold-triggered firing mechanism; this approach achieved remarkable
robustness while having no restrictions on simulating time steps compared to ANN-to-SNN
conversion as it is not based on rate coding[84, 97];

• SLAYER[142]: it assumes a stochastic spiking neuron approximation for the IF model
with a refractory response and can simultaneously learn both synaptic weights and axonal
delays; to solve the drawback of event-based methods, SLAYER distributes the credit of
error back in time[18];

• Prescribed Error Sensitivity (PES)[143]: suited for online learning, this algorithm
learns a function by minimising an external error signal frequently used with the neural
engineering framework[18];

• Hybrid Macro-Micro Level Back-Propagation (HM2-BP)[144]: it performs error
back-propagation on both macro-level trigger frequencies as well as micro-level pulse se-
quences; then HM2-BP directly computes the gradient of the loss function for frequency
encoding with adjustable parameters spatio-temporal back-propagation (STBP) algorithm
in SNN based on approximating the derivatives of impulse functions[84];

• Spike Train Kernel Learning Rule (STKLR)[145]: it was created for spiking CNNs
to translate kernel functions to be adapted into neuromorphic computing; various kernel
functions were transformed using this algorithm and it was even adapted to RNNs with
the help of the R-STKLR algorithm; moreover, STKLR was extended to more neurons
leading to the multi-STIP algorithm[41];

• Feedback-based Online Local Learning Of Weights (FOLLOW)[146]: created for
both feed-forward and recurrent SNNs, the error of the network is fed back through fixed
random connections with a negative gain, which causes the network to learn the desired
dynamics[41];

• Whetstone algorithm[147]: this algorithm implements an ANN-to-SNN conversion, in
which the activation function of each layer is gradually approached towards the threshold
activation during training[84];

As can be seen, a multitude of algorithms for supervised learning were developed and choosing
only one for training an SNN depends on several factors. For example, some of them were
tailored for specific applications or specific network algorithms such as CNNs or RNNs. De-
spite these factors, a comparison can still be made by looking at accuracies achieved by these
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methods. Wang et al.[41] found that, for single connection optimisation, the spike train learning
performance of the SPAN algorithm is the best, while that of the SpikeProp algorithm is the
worst. Likewise, for learning a multi-layer SNN, the Multi-STIP algorithm, inspired by STKLR,
achieves the highest learning accuracy for the shortest training time. Moreover, this algorithm
along with Multi-ReSuMe has a relatively short running time making the Multi-STIP algorithm
suitable for training large-scale feed-forward SNNs. For RNNs, it was found that the R-STKLR
algorithm achieved a higher accuracy while the FOLLOW algorithm required less training as
well as a slightly shorter running time.

Furthermore, He et al.[84] analysed the accuracy of various learning algorithms on classical
image classification datasets and can be seen in Figure 5.4. For the MNIST dataset, the best
performances were achieved by the Spike-Based Back-Propagation algorithm followed closely
by HM2-BP applied both on convolutional networks. For the N-MNIST dataset, it was found
that Spatio-Temporal Back-Propagation achieves the best accuracy followed closely by Spike-
Based Back-Propagation. Otherwise, single-connection learning algorithms such as Tempotron
achieved the worst performance while, on more complex datasets such as CIFAR-10 or ImageNet,
ANN-to-SNN conversion achieved inferior results.

Figure 5.4: Accuracy of various neuromorphic learning algorithms for image recognition on
different datasets from the paper of He et al.[84]

In summary, current research on SNNs has focused on adapting the core optimisation algo-
rithms from ANNs. The results show that the current SNN algorithms perform well on rela-
tively small datasets but poorly on large datasets such as ImageNet and are still far from the
mainstream ANN algorithms. However, finding an SNN optimisation algorithm that is both
bio-interpretative and efficient is necessary to exploit the properties of SNNs fully[84]. Never-
theless, there seems to be a great variety of applications using supervised learning. On-chip
supervised weight training has been used for least-mean-squares algorithm, weight perturba-
tion and CNN training but also hardware implementation such as Boltzmann machines or deep
belief networks and hierarchical temporal memory. Even evolutionary learning such as genetic
algorithms or particle swarm optimisation has been trained both online and offline[7]. All these
applications focused on general problems but supervised learning for SNNs was also applied for
a great variety of problems. Out of these, a few will be named such as image classification
with spike-based back-propagation[97], angular velocity regression with SLAYER[135], adaptive
control of quadrotor flight with PES[18], classification with ReSuMe[84], real-time user authen-
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tication with PBSNLR, image recognition and classification with STKLR and standard XOR
problem with Multi-SpikeProp[41].

5.2.2 Unsupervised Learning

Unsupervised learning (UL) is an algorithm for learning patterns from unlabelled data, which
is prevalent in biological systems. At the same time, this learning approach hopes to solve the
resource problem of SL which requires intensive data labelling in great quantities and of good
quality. Moreover, it was found that UL manages to discover hidden structures in the data. Due
to these 2 features, it has become a research hotspot in recent years even in the traditional ANN
realm. Thus numerous unsupervised learning algorithms were created to obtain patterns from
unlabelled data. For example, autoencoders were created to compress the input information or
reduce the dimensionality of the input space. These were also applied to neuromorphic com-
puting for encoding as detailed in section 3.4. Similarly, UL also helps to create self-organising
maps, a method capable of producing a low-dimensional representation of the input space. An-
other application of unsupervised learning includes the generation of data such as image creation
or writing creatively. To do this, Generative Adversarial Networks (GANs) were created which
were detailed in subsection 5.1.1[40].

In the domain of neuromorphic computing using unsupervised learning, it is important to men-
tion that this approach finds its closest analogue in the learning processes observed in biolog-
ical systems. In the brain, it is used preponderantly for information encoding in biological
visual systems such as recognition and comparison of the outside world without the need for
labelling[72]. However, looking at neuromorphic computing, unsupervised learning rules are still
in their infancy when compared to SL[40]. However, as is the case with biological systems, these
self-learning training algorithms will almost certainly be necessary to realise the full potential of
neuromorphic implementations and thus fully reach its advantages. With this in mind, several
implementations of on-chip unsupervised training mechanisms in neuromorphic systems have
been done, most of them inspired by the spike timing-dependant plasticity (STDP), as it will
follow from the list below:

• Hebbian STDP[148]: it is an unsupervised learning mechanism, that adjusts synaptic
weight based on the temporal order of the pre-and post-synaptic spikes; when the pre-
synaptic spike arrives before a post-synaptic spike, the synaptic weight is increased, which
is known as long-term potential (LTP); otherwise, the synaptic weight is reduced, which is
known as long-term depression (LTD); the current rule seems to have no boundary on the
synaptic strength which is capable of being increased or decreased infinitely that makes
it biologically unrealistic; this is solved with a Winner-Take-All (WTA) mechanism; this
form of competition implies that when a neuron fires a spike and the presynaptic weights
are updated, the rest of the postsynaptic cells (from the same layer) locally connected to
the same input neurons get inhibited; as a result, these cells are prevented from triggering
STDP while the neuron that fired first, remains in the refractory period; furthermore,
STDP rules do not include attenuation mechanisms or enhancement thresholds for synaptic
connections, so the model is susceptible to noise and not stable[18, 72, 84];

• Anti-Hebbian STDP (aSTDP): aSTDP shows the opposite dependence on the relative
timing of pre-synaptic input and the post-synaptic spike compared to Hebbian STDP; with
aSTDP, pre-synaptic activity occurring before post-synaptic activity leads to depression,
and vice versa; this algorithm was inspired from biology where not all systems follow the
Hebbian STDP synaptic weight modification rules but some follow a different order such
as synapses between parallel fibres and Purkinje-cells in the cerebellum-like structure[18];

• Mirrored STDP (mSTDP)[149]: introduced as an effort to implement autoencoders in
a biologically realistic fashion, mSTDP combines STDP and aSTDP for feed-forward and
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feedback connections of a two-layer autoencoder such that the layers are symmetric; this
learning rule accounts for a high LTP correlation with no causality which leads to a low
biological plausibility[18];

• Triplets STDP (tSTDP)[150]: in this algorithm, LTP is constructed as a combination
of one presynaptic and two postsynaptic spikes, while LTD is based on the combination
of one presynaptic and one postsynaptic spikes; one advantage of tSTDP is that it is not
affected by the spike-timing interactions as the relative timing is more accurate by adding
the third ”observer” spike[40];

• Probabilistic STDP (pSTDP): [151]: as mentioned above, STDP formulations change
the weights based on the relative timing between spikes; these algorithms are referred
to as additive rules and are inherently unstable, requiring the use of constraints for the
weights; to solve this issue, multiplicative STDP rules were created which incorporate the
current weight values in changing the weights themselves; moreover, by incorporating the
weight dependency in an inversely proportional manner, stable, robust distributions are
obtained irrespective of the complexity of the network; this method represents the current
state-of-the-art in pattern recognition with SNNs[72, 18].

• Bienenstock-Cooper-Munro (BCM)[152]: this method assumes that the neuron de-
termines the threshold at which the synaptic weight changes direction; moreover, BCM
allows the threshold to dynamically adapt to the neuron’s historical activity so that the
connection weight eventually reaches a steady state; to measure neuron activity, the firing
rate is required which makes this method compatible with rate encoding[84];

• Synaptic Weight Association Training (SWAT)[153]: it combines the variable thresh-
old feature of the BCM rule with the feedback given by the STDP plasticity window; this
method enhances the stability of SNNs during training offering SWAT good generalisation
ability[84];

With many models presented, a comparison between them based on their performance should
be executed. Unfortunately, the literature showed very little applicability, with He et al.[84]
comparing some applications of unsupervised learning for image recognition, summarised in
Figure 5.4. They found that Hebbian STDP as well as BCM can achieve good results on
small datasets (MNIST, IRIS) but the performance is still lower than supervised learning algo-
rithms. Despite this lack of success, researchers applied unsupervised learning for tasks such as
self-organising maps, self-organising rules or expectation-maximisation algorithms but also for
accurately reproducing biological systems[7, 97]. Looking at more practical applications, unsu-
pervised learning was used for estimating optical flow with the help of probabilistic STDP[72],
for clustering and segmenting images and for detecting edges with Hebbian STDP[85] and for
an asynchronous feed-forward spiking neural network that mimicked the ventral visual pathway
using Hebbian STDP rules[84].

5.2.3 Reinforcement Learning

Reinforcement learning (RL) is the last presented machine learning method that functions by
teaching an agent how to take action in a dynamic environment to maximise the final reward.
It differs from SL as it does not need labelled data and from UL as it should achieve a pre-
defined goal. The RL focuses on finding a balance between exploration (what SL lacks) and
exploitation (what UL lacks) to maximise the long-term reward. To achieve this performance,
RL learns by receiving feedback over iterative trials that are sequential and evaluated through
the use of powerful nonlinear function approximations. Based on these rules, a great variety
of algorithms were created that can be applied to different tasks based on a series of factors:
continuous vs discrete domain, off-policy (follow the most advantageous action irrespective of
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the policy) vs on-policy (follow the policy all the time), model-based (already have some rules
in place) vs model-free (figure out from scratch how it works) or policy-based (policy is learned
as a mapping from the state space to the action space) vs value-based (choose an action based
on the value function). Based on the problem that has to be solved, the characteristics can be
chosen and thus the best RL algorithm too[40].

The inspiration for reinforcement learning roots deeply in biology where it is heavily used for
learning motor control tasks[72]. Moreover, RL was found to act on multiple regions of the
brain, resulting in changes in the connectivity of the neural networks. This works by creating
reward or punishment signals induced by dopaminergic, serotonergic, cholinergic, or adrenergic
neurons. Based on this, agents gradually develop expectations of stimuli in response to reward-
ing or punishing stimuli given by the environment, producing habitual behaviours that yield the
greatest benefit. For example, dopamine neurons enable this function, comparing future expec-
tations with previous mental benchmarks and thus releasing neurotransmitters depending on
the result. This makes the creature happy or frustrated, using a reward mechanism as the basis
for learning. Switching to neuromorphic computing SNNs have great potential in reproducing
reinforcement learning rules based on the performance found in the human brain[97, 40]. But
until now, few RL algorithms have been implemented:

• Reward Modulated STDP (rSTDP)[154]: while STDP operates based upon the cor-
relation between the spike timings of the pre-and post-synaptic neurons, a reward signal
is introduced to modulate STDP to implement a reinforcement learning mechanism; if the
reward is positive, the corresponding synapse is reinforced; otherwise, the corresponding
synapse is weakened[18, 155];

• Three-factor Learning Rules[156]: this approach works by setting a flag, called an
eligibility trace, on the synapse upon co-activation of presynaptic and postsynaptic neu-
rons; if a third factor (indicating reward) is present when the flag is set, synaptic weights
change[40];

• Spiking Actor-Critic[157]: the Actor-Critic algorithm is inspired by the Generative
Adversarial Network as it contains 2 networks: the actor and the critic; the actor decides
which action should be taken and the critic informs the actor how good was the action and
how it should be adjusted; the learning of the actor uses a policy gradient approach while
critics evaluate the action by calculating the value function; for neuromorphic computing
adaptation, the same network structure is used but LIF neurons with temporal coding are
incorporated;

• Spiking Q-learning[158]: Q-learning is a model-free reinforcement learning algorithm
that finds an optimal policy by maximising the expected value of the total reward over
all successive steps, starting from the current state; given infinite exploration time and a
partly random policy, it can find the absolute optimal action selection; the neuromorphic
adaptation uses the membrane voltage of non-spiking neurons as the representation of the
Q-value.

As can be observed few learning methods were created in the realm of neuromorphic reinforce-
ment learning and the existent ones are relatively novel. Moreover, as is the case for traditional
RL, each method is tailored for specific applications making the performance comparison even
more irrelevant. And this is not surprising as the neuromorphic neurons are inherent time de-
pendent and performing reinforcement learning on sequences of information was found to be
problematic in the research field. Nevertheless, RL applications were mainly focused on neu-
roscience research, with only several goal-directed navigation problems and digit recognition
applications[72]. For example, the reward-modulated STDP method was used to solve a tem-
porarily coded XOR problem with a delayed reward as well as a Morris water maze puzzle. Next
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using the spiking Q-learning algorithm, Chen et al.[158] learned how to play the Atari game.
Similarly, the spiking Actor-Critic algorithm was used for classical RL environments such as
mountain car, cart-pole, and acrobot problems as well as for learning a UAV to fly through a
window and avoid a flying basketball task[157, 155]. A more popular approach to neuromorphic
reinforcement learning involves simply learning the logic with an SNN while keeping the tra-
ditional RL structure. This approach could achieve good performance on much more complex
tasks such as 3D Visual Navigation for MAV With Depth Camera[68].

5.3 Performance Metrics

After building a spiking neural network, its performance should be assessed. This process might
involve comparison with existing models or simply self-analysis to understand what has been
learned in the model and how it can be improved. The comparison can be performed both to
other spiking neural networks (mostly to check if other formulations are performing better) or
to other artificial neural networks (to assess the advantages and disadvantages of implementing
neuromorphic computing). In any case, some clear metrics to have an objective comparison are
needed that are listed below:

• Accuracy: it is probably the most important metric that is capable of describing in gen-
eral terms how good the network performance is; it could be used for both SNN-to-SNN
and SNN-to-ANN comparison as well as for training and quantifying the performance of
the SNN itself; for example, it was used by Sanaullah et al.[106] to quantify the classifi-
cation performance of SNN and compare various neuron models at the same time; in this
case, the accuracy was calculated as the mean of the correctly classified samples or data
points by a model; using the same testing method, Wang et al.[41] applied the accuracy
metric to compare various learning methods for supervised learning; the accuracy was also
implemented by Meftah et al.[85] for evaluating the performance of image segmentation;
looking at the accuracy of pixel detection, several metrics were proposed such as precision
(used if false positives are a concern), recall (used if false positives are a concern) or the
F1 score (if a balance between precision and recall is required); Deng et al.[159] used top-1
accuracy to compare ANN to SNN for the visual recognition task which is measured as
the percentage of the correctly recognised samples;

• Performance loss: complementing the accuracy, this metric quantifies the error of the
model’s predictions from the ground truth or desired output; it provides essential infor-
mation for model selection, optimisation, and understanding of the behaviour of SNNs in
practical applications; for classification problems, this can be calculated as simply the error
rate which is the percentage of misclassified samples[106]; it can be better generalised for
more variate data with the help of Mean Square Error (MSE) and Mean Absolute Error
(MAE); for image clustering and segmentation, more metrics were proposed by Meftah et
al.[85] such as Peak Signal Noise Ratio (PSNR) or Normalised Colour Difference (NCD);

• Spiking activity: this metric serves for analysing and understanding spiking neural
networks as it describes the dynamic behaviour of neurons; it provides insights into the
network’s temporal characteristics, spike patterns, firing rates and information processing
capabilities[106]; the spiking activity can indicate neurons that fail to generate spikes,
allowing for their identification and removal from the network; to quantify this parameter,
Dupeyroux et al.[73] proposed the infill percentage of a spiking sequence as the ratio of
the number of spikes within a layer to the maximum of spikes in that layer; they used
this metric to compare the behaviour of 2 SNNs: one simulated and one implemented on
neuromorphic hardware;

• Training time: it can be used both to compare 2 SNN models and for getting insights into
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the network’s training performance; it can be measured simply as the total time required
to train a model;

• Running time: it describes how fast the network can perform a task and can be used
for any network comparison; this parameter can reveal information about the network’s
capable frequency of generating an output; to calculate it accurately, it is important to
verify the total number of operations, the network has to perform; in ANNs, the opera-
tional cost is mainly determined by the MAC operations, which are widely used in ANN
accelerators; in SNNs, the major operational overhead is the spike-driven input integration
but the costly multiplication can be removed due to the binary spike inputs; moreover, the
integration is event-driven, implying no computation occurs if no spike is received[159];
Lemaire et al.[160] developed a system of equations to calculate the operational cost of
both ANNs and SNNs for both feed-forward architectures and convolutional architectures
focusing on addition and multiplication operations;

• Memory cost: This metric is critical for embedded devices as the hardware might prohibit
the network implementation; it can be used to compare both ANN-SNN and SNN-SNN
model performances; in ANNs, the memory cost includes the weight memory and acti-
vation memory; in SNNs, the memory cost includes weight memory, membrane potential
memory, and spike memory; other parameters such as the firing threshold and time con-
stant are negligible since they are usually shared in the network[159]; Lemaire et al.[160]
have developed a system of equations to calculate the memory cost that involves the read
operations to inputs, parameters and potentials as well as write operations to potentials
and outputs;

• Energy efficiency: technically, this metric adds the results of the operational cost metric
and the memory cost metric and it can calculate energy consumption; it is mostly used
for ANN-to-SNN comparison as it shows the clear advantages of SNN due to its low
energy consumption; Lemaire et al.[160] formulated a system of equations to calculate this
metric including the operational and memory parameters and assigning a standard energy
consumption for each of them;

These parameters can serve as a good start in describing some neuromorphic capabilities. As
mentioned by Deng et al.[159], more evaluation metrics might be needed to assess the capability
of temporal association, memorisation capacity, fault tolerance, and practical running efficiency
on devices. Moreover, a great number of parameters were found in papers that quantify general
aspects of neuromorphic computing but they will not be considered further as they find little
applicability to the current study. For example, a prevalent metric mentioned in the section
above is biological plausibility which describes how closely a neuron model resembles a biological
neuron. Some hardware metrics were also found such as the maximal output and input frequency
of neurons or the power required by one neuron.[41].
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6

Research Proposal

Having examined the technical background, it is crucial to shift the focus towards the practical
aspects of the current study. Until now, the paper analysed how a neuromorphic computing
architecture works, how it can be built and what are its advantages and disadvantages. Several
drone applications where this technology was used have also been explained and will serve as
inspiration for the current work. But before making a decision, it is important to analyse
the background of the paper such that the current high-speed drone realm is understood and
practical limits are imposed in section 6.1. With these in mind, the objective of the research
will be detailed in section 6.2 followed by some questions that will have to be answered at the
end of the research period presented in section 6.3.

6.1 Current Development

This section aims to narrow down the selection procedure of the research proposal such that
the following sections will focus on its details. The procedure will start with the background
information of the research and the requirements imposed such that a feasible research topic
will be selected. Thus the research is part of the Control & Simulation Master’s programme of
the Aerospace Engineering faculty of the Delft University of Technology. This leads to a strict
rule that the research has to be conducted for approximately 9 months (excluding holidays).
Moreover, due to their focus on artificial intelligence and neuromorphic computing applied to
aerospace engineering, it was decided to continue the research with the MAV Lab1. This depart-
ment is mostly focused on operating Micro Aerial Vehicles (MAVs) including the flight of small
aircraft ranging from DelFly, a flapping wing aircraft weighing around 16 grams to much larger
drones. As mentioned above, the research of MAV Lab is mostly focused on artificial intelli-
gence which includes numerous research topics such as autonomous flight, collision avoidance
and swarming.

One research topic very active in the MAV Lab department that stands out with vibrant activity
is racing drones. As they require cutting-edge technology and relentless optimisation to push the
speed boundaries, racing drones have also a remarkable degree of developmental freedom. As
mentioned, optimisation is at the forefront of improving the performance of racing drones which
is often facilitated by neural network control techniques. Through these methods, a precise
control law is created for the dynamical system, that is built upon the optimisation of an ob-
jective function (in the case of racing drones, the pursuit of reducing lap times). This approach
was heavily studied in MAV Lab starting with the creation of the world’s smallest autonomous
racing drone[161]. Over time, multiple optimisation research ideas were introduced. Ferede et
al. found that training an adaptive neural network for the end-to-end guidance and control of a
racing drone achieved better results than state-of-the-art methods such as Differential-flatness-

1https://mavlab.tudelft.nl/
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based controller (DFBC) or Incremental Non-linear Dynamic Inversion (INDI) using both super-
vised learning[22] and reinforcement learning[23]. Another approach studied by Westenberger
et al.[162] suggested doing time optimal control with a bang-bang model predictive method in
which the helices are either set to full power or turned off and thus only the switching time
needs to be found.

A novel domain that could bring many advancements to the racing drone field is the neuromor-
phic computing realm itself. The promises this technology keeps as mentioned previously regard-
ing concerning energy consumption and processing power makes it a research hotspot. For this
reason, numerous research papers that study neuromorphic computing were created inside the
MAV Lab starting from a general toolbox developed for encoding and decoding input signals[87].
Similarly, many researchers focused on drone control with neuromorphic computing reproducing
the technology of classical controllers such as PI[75], PID[66] or using input-weighted threshold
adaptation[65]. Further, neuromorphic vision information was introduced in the control process
of the drone. Thus optic-flow-based[73] and high-speed divergence-based[74] landings of MAVs,
were implemented as well as more complex tasks such as autonomous flying using both sim-
ple control laws[75] or self-supervised learning[163]. Additionally, neuromorphic estimation of
the attitude using simply the IMU measurements onboard quadrotors was conducted[63] and
some of these researches were also implemented on neuromorphic hardware (namely Loihi)[73,
163, 66]. Even though numerous studies were created for MAV control, there still seems to be
a missing link when it comes to performing guidance and control for high-speed drones using
neuromorphic computing.

Before continuing the analysis, it is important to highlight the resources offered by the MAV Lab
that could prove useful during the study period. Looking at the software realm, it is worth men-
tioning the Technological University of Delft GitHub platform which contains a neuromorphic
toolbox repository that could be used for developing spiking neural networks (SNNs)2. Simi-
larly, a clear framework was created for testing drone simulations using the Paparazzi software
project3. Regarding hardware, if real testing is desired, MAV Lab offers the Bebop drone also
used in the works of Ferede et al. where a dynamical model can also be found[22, 23]. Even
though this drone was not specifically designed for autonomous drone racing, it still manages to
reach saturation of its controls in a relatively small flight space while also being safer to test with.
The Bebop drone is also equipped with an MPU6050 IMU and a Parrot P7 dual-core Cortex
A9 CPU which is used to run the code in real-time onboard the drone. Even though this is not
neuromorphic hardware, this drone can still simulate neuromorphic behaviour. The schematic
presented throughout the current paragraph required for testing the drone performance can be
visualised in Figure 6.1.

6.2 Research Objective

As mentioned above, even though neuromorphic computing seems to be a clear solution for
increasing the efficiency and performance of racing drones, at the intersection of these 2 realms
still lies a critical missing link: the guidance and control implementation with spiking neural
networks. In other words, the operation of racing drones typically necessitates two core mod-
ules: vision/sensors for the perception of the environment and a control law for fast guidance
and manoeuvring of the drone. While significant attention has been devoted to refining vision
capabilities, including the integration of event-based cameras and sensor fusion techniques in
drones, the realm of neuromorphic rapid guidance and control remained absent from the lit-
erature. This absence presents a great obstacle to the realisation of neuromorphic high-speed
drones, but by successfully addressing this integration challenge, new opportunities may emerge,

2https://github.com/tudelft/spiking
3https://wiki.paparazziuav.org/wiki/Main Page
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Figure 6.1: The schematic provided by Technological University of Delft for testing the
performance of the drone in real flight

enabling further expansion of MAV boundaries.

However, the convergence of these two domains gives rise to several challenges, which explains
the lack of research aimed at replicating it. On one hand, rapid control demands cutting-edge
technology but with robust and clear laws for pushing guidance and navigation solutions to the
boundaries of feasibility. On the other hand, neuromorphic computing is marked by its inherent
instability and there is a brief understanding of how it functions. Moreover, despite the promises
of neuromorphic computing regarding high energy efficiency and powerful computational power
due to its parallelism, its implementation on racing drones might hinder performance as great
quantities of data will have to be processed which is not favourable for this novel technology.
Given these complexities, the research approach must proceed accordingly, prioritising simplicity
and feasibility within the constraints of available resources and time. Therefore, the available
resources of the MAV Lab will be used and the work of Ferede et al. for end-to-end neural
network-based quadrotor rapid guidance and control[22] will serve as inspiration for the current
study.

Throughout the research, the most complex and accurate model learned by Ferede et al. will
be addressed based on the end-to-end reinforcement learning algorithm for generating rapid
quadrotor flight[23]. The paper contains both a physical model of the drone and its environment
as well as a complex model to learn the drone’s behaviour. Thus, the created algorithm focuses
on learning how to fly optimally through a rectangular circuit with the following corners in (x,
y) format position on the map as can be visualised in Figure 6.2: (-2, 2), (-2, 2), (2, 2), (2,
-2). To learn such a model, the algorithm receives several inputs about the drone’s state and
environment as follows: the 3-dimensional position (x, y and z), velocity (vx, vy, vz), angular
displacement (ϕ, θ, ψ) and angular velocity (p, q, r) of the drone as well as the actual angular
velocity of the propellers of the drone (ω1, ω2, ω3, ω4). Regarding the environment, Ferede et al.
found that to improve performance, it is necessary to add random disturbance in the learning
process simulated as a 3-dimensional momentum (Mext,x, Mext,y, Mext,z) and as a force in the
vertical z-direction (Fext,z) as well as sending the next gate 3-dimensional position (gatex, gatey,
gatez) and yaw (gateyaw). Lastly, the output is expressed as motor commands the drone needs
to generate for the 4 propellers registered as u1, u2, u3, u4. For a better understanding of the
reference system used for the drone as well as the numbering of the propellers, Figure 6.3 can
be checked. All these 28 values are used as floating points (32 bits) in the code and will serve
as a starting point for the current research.

The future research work will be influenced by pragmatic considerations and the necessity to
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Figure 6.2: The track used by Ferede et al.[22,
23] for testing

Figure 6.3: The reference system of the drone
as well as the numbering order of the

propellers[22]

reach achievable progress against heavy time constraints. Thus the broader goal of the research
will be to establish a robust foundation for future advancements in neuromorphic high-speed
drone technology. The first decision was to leverage readily accessible simulation tools and hard-
ware platforms such as Paparazzi software and the spiking repository of Technological University
of Delft mentioned above, alongside possible testing implementation on the Bebop drone.

Consequently, for the training procedure, a few decisions could be taken to speed up the re-
search without degrading the conclusions leading to a neural network structure that is easy to
implement and achieves good performance. Even though they have low biological plausibility
(which is of little importance for the current research), it was decided to continue with LIF
neurons connected by simple synapses. This comes as these 2 components were found to achieve
good learning accuracy with low computational resources. Mostly due to time constraints and
ease of understanding, the network will use a fully connected feed-forward structure, studied
intensively in the literature. This network will use a supervised learning approach while the
back-propagation will be solved using an approximation function (spike-based back-propagation
with surrogate gradient descent) due to its good performance and ease of implementation. With
all these in mind, the research objective could be summarised as:

The research objective of the current paper is to assess whether a Spiking Neural
Network architecture can preserve state-of-the-art performance for rapid

quadrotor guidance and control.

6.3 Research Questions

To best tackle the research objective, several key stages were established, each aimed at ad-
dressing a specific major component of the research. They were inspired by the learning process
of a spiking neural network which led to the following 3 research questions, each addressing a
particular hypothesis:

• RQ.1: How can the input/output values be transformed into spikes such that
the lowest resources are used?

This question addresses the first stage of learning with a spiking neural network that requires
transforming values into spikes or, in other words, the encoding procedure addressed in chapter 3.
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As the research tries to achieve a higher performance for racing drones, it is crucial to make
the encoding efficient. Thus, the research purpose of the current stage will be to express the
input and output values in as few spiking neurons as possible while preserving good accuracy.
Rate coding cannot be a solution for the current research as it usually requires longer times
for processing (more spikes have to be sent to express a value) which is not desired for high-
speed drones that require fast decisions. Similarly, temporal coding was not considered due to
its infancy in neuromorphic computing which might lead to a multitude of problems for the
short time available to the research. Lastly, population coding and autoencoders remain viable
options. In the end, due to time constraints, it was decided to continue with the autoencoder
approach as it was easier to implement for the multitude of variables involved. Moreover, the
autoencoder is expected to find better ways to compress the information as population encoding
is better concerned with accuracy per value.

To learn the encoding with the help of autoencoders, it is necessary to create a representative
dataset following the model created by Ferede et al.[23]. As mentioned above there are 28
floating point values that have to be transformed which, for perfect accuracy will require 896
spiking neurons by assuming that one spiking neuron is responsible for 1 bit. However, accurate
reproduction is not necessarily desired but the large number of neurons is a great problem for
efficiency which should be solved by the autoencoder. Another reason for selecting autoencoders
is that they are expected to save only the important information from all the values. For example,
the gate position and yaw can take only a discrete number of values and thus a few neurons
are required while other more complex parameters will require more neurons. Additionally,
autoencoders will look at the relations between variables in time. For example, it is expected
that the velocity will depend mostly on the position variance. These actions cannot be done by
population encoding that encodes unimportant information at every time step. With these in
mind, the following hypothesis could be drawn:

H.1: With a variate and detailed dataset, autoencoders can transform values to spikes while
compressing the information and thus using the least number of spiking neurons.

• RQ.2: How should a spiking neural network be implemented for rapid quadro-
tor guidance and control?

The second stage of the research will involve the training procedure of the spiking neural network
itself which will address the selection of the learning algorithm as detailed in section 5.2. This
part of the project will imply that an analysis will be done that will consider the feasibility
and accuracy of the algorithms as well as the implementation time. It was decided to continue
with the same approach as Ferede et al. and implement a supervised learning algorithm. Due
to its unpredictable nature and difficult implementation, unsupervised learning was discarded.
Similarly, reinforcement learning was not considered due to its infancy in the neuromorphic
domain and the great time and resources required to implement such an approach. Moreover,
implementing reinforcement learning on a neural network that is recurrent has proved to be a
challenging task. The current research question will also consider if it is feasible to do a direct
ANN-to-SNN conversion or, in other words, if a direct adaptation of the code of Ferede et al.[22]
to neuromorphic computing is possible. As supervised learning will be used, a thorough input-
output dataset is required and this will require further analysis in chapter 7. In the end, the
best dataset will be implemented for learning the guidance and control law of high-speed drones.
This will lead to the following hypothesis:

H.2: A spiking neural network can be implemented and can learn how to guide and control a
rapid quadrotor.
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• RQ.3: Compared to state-of-the-art models, how is introducing neuromorphic
computing affecting performance?

The last stage of the research will involve quantifying the performance of the created spiking
neural network model and the comparison with existing non-neuromorphic solutions. The per-
formance metrics will be selected from section 5.3 and will mostly involve the accuracy of the
model as well as the computational efficiency. To obtain these results, the learned model will
be implemented in both a simulation environment (the Paparazzi framework) as well as on a
real drone (the Bebop drone). In any case, due to time constraints, it was decided that the
learned model would be implemented in a von Neumann architecture and not on neuromorphic
hardware. This factor will not favour the spiking neural network model which is expected to
reach its full potential only on neuromorphic hardware. However, it is important to restate that
the current research will focus on the implementation feasibility of a spiking neural network
for guidance and control of a rapid drone. With this in mind, the following hypothesis can be
formulated:

H.3: Replacing a spiking neural network for guidance and control can achieve good learning
accuracy but compared to state-of-the-art non-neuromorphic models, the accuracy and
computational efficiency are worse when implemented on non-neuromophic hardware.
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7

Research Methodology

This chapter will detail the methodology used throughout the research that will lead to the
research objective achievement. However, not every detail of the process will be presented as
some design freedom will be left for adaptation during the research. Moreover, it is expected
that the process might deviate a bit from the procedure if new results are found on the way. In
any case, the research will follow the 3 stages mentioned in the previous chapter that led to the 3
main research questions. Thus, this chapter will stick to the same structure and will be divided
into sections corresponding to the work required for each research phase. Firstly, the encoding
procedure to transform the dataset input values to spikes will be detailed in section 7.1. Secondly,
the phase of implementing and training a spiking neural network for rapid guidance and control
will be analysed in section 7.2. Lastly, after a model was created capable of controlling and
guiding a quadrotor, analysis and performance comparison will be required and the procedure
will be detailed in section 7.3.

7.1 Encoding

As mentioned above, the practical implementation will debut with the encoding step required
to transform the received input by the drone into spikes. This section will present the required
methodology during the research to answer RQ.1. Moreover, looking at hypothesis H.1, 2
research points can be deducted. Firstly, a large and representative dataset has to be created to
understand how efficient autoencoders can become for the transformation task. Secondly, using
the created dataset, the autoencoder can be built and tweaked such that the required number
of spiking neurons is heavily reduced. In the end, the quality of the encoding will be analysed
with the sole goal of reducing the total number of spiking neurons.

There exists a multitude of neuromorphic datasets on the market ranging from drone flight
in urban aerial for detection and localisation[164] to the flight of blimps with a radar-based
altitude controller[55]. However, a critical aspect of dataset creation is ensuring completeness
by incorporating all relevant input parameters essential for model development. While existing
datasets may offer valuable insights into the research process, they often lack certain inputs
necessary for capturing the intricacies of the system dynamics comprehensively. To solve this
issue, the existing setup created by Ferede et al. can be used to generate a rich dataset with the
required array of input parameters. This can be done with the reinforcement learning model[23]
that can be trained to navigate complex circuits in a fast manner. Further, by simulating diverse
flight scenarios and capturing the system states, a clear dataset is generated that encompasses
a broad spectrum of operational conditions. Thus, it is expected that creating a tailored and
comprehensive dataset for the current research problem, not only will enhance the fidelity of
the guidance and control network models but will also facilitate robust training and evaluation
processes.
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Figure 7.1: The track used to create the
encoder dataset, seen from above

Figure 7.2: The track used to create the
encoder dataset, seen from perspective

As mentioned above, to simulate datasets helpful for a better understanding on how to generate
guidance and control with neuromorphic computing, the reinforcement learning approach created
by Ferede et al.[23] will be used. A robust dataset is created by learning how to navigate complex
circuits while time around the circuit is minimised. This ensures a faithful representation of real-
world complexities and can be done by learning a great variation of manoeuvres. Fortunately,
the reinforcement learning environment of Ferede et al.[23] can learn directly to mimic the
target system dynamics even if the track is more complex. Thus the required work for this step
will involve creating a complex map as seen in Figure 7.1-7.2 that the reinforcement learning
model will learn to navigate it over iterative training cycles. The model will focus on improving
the drone’s control such that the time required for flying the created map is reduced. With the
learned model, a complex dataset comprised of all the input parameters mentioned in section 6.2,
can be generated by simply simulating new flights. To do this, the drone is initialised at various
gates along the complex map and required to continue the flight from there. Even though
generating data using the same map as the one used during training might lead to a slight bias,
for the task of encoding, this was deemed acceptable as considerable time was saved.

In the end, the encoding dataset was created starting from various gates along the map and
simulating the flight for 10 seconds. With a frequency rate of 0.05 seconds, this led to a batch
size of 2000 timesteps, with one timestep having all the 28 required inputs as floating point
values. Further, for a comprehensive and robust dataset, 2048 batches were created to train
the autoencoder. To ensure the reliability and effectiveness of the trained models, a dataset-
splitting strategy encompassing training, validation, and testing phases was adopted. During
the training phase, the dataset is partitioned into a training subset (90% of the whole dataset)
and a validation subset (10% of the whole dataset), enabling the model to learn from a diverse
range of data while validating its performance on unseen samples. Additionally, a separate
dataset is reserved for testing purposes, allowing for an unbiased assessment of the model’s
generalisation capabilities. Through this multi-stage dataset-splitting approach, the risk of
overfitting is mitigated and the trained models are ensured to exhibit robust performance across
a wide range of scenarios.
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With the dataset acquired, the code to transform the 28 floating point inputs into spikes could
be created. The structure designed for this task leverages the spiking library developed by
Technological University of Delft within the PyTorch framework1. The architecture used is
straightforward, consisting of an input layer with 28 floating point neurons fully connected
to a layer of spiking neurons. The spiking layer is fully connected to an output layer aimed
at reproducing the 28 initial floating point variables. The sole design philosophy centres on
identifying the minimum number of spiking neurons in the middle layer necessary to maintain
acceptable accuracy, facilitating further model refinement during the network training. For an
accurate evaluation of the performance, the dataset was normalised between 0 and 1. With this
in mind, the accuracy will be calculated as the mean squared error (MSE) between the actual
dataset and the predicted values. An acceptable value was deemed to be around 0.05 for every
input variable.

Regarding the structure of the network, the model adheres closely to the base model suggested
in the repository as it is tailored to spiking specific requirements. Thus the autoencoder is
created as a feed forward neural network that receives every time a batch of 2000 timesteps and
learns how to encode the variable evolution in time. Moreover, the current structure employs
the Arctan surrogate gradient descent function for optimisation and the Adam optimiser to
find the global minimum. Additionally, it utilises the CuBa LIF neuron model and linear
connections between layers which introduces recurrency in the network. As CuBa LIF neurons
and a feed forward neural network are used, leaking of the voltage and current potentials is
required which are initialised with sigmoid functions, constraining values between 0 and 1.
Moreover, also the thresholds within the network are initialised but with ReLu functions that
do not allow for negative values. Further, no biases are used inside the network as the spiking
neural networks have a tendency to tweak especially those for encoding leading only to a local
minimum convergence.

With an initial base model generated, the process passes further to the next phase where the
focus lies on optimising the remaining parameters. On one hand, some parameters such as
the potential values, thresholds and synapse weights remain adaptable throughout the learning
process, allowing the model to dynamically adjust and optimise its performance. On the other
hand, it is required to also fine-tune hyperparameters such as the number of epochs, number of
spiking neurons, voltage and current potential leaks and thresholds initial values as well as the
size of the dataset. The second step requires a methodical exploration of parameter space, aiming
to strike a balance between model complexity and performance efficacy. By iteratively adjusting
hyperparameters and fine-tuning the network architecture, the autoencoder seeks to improve its
performance while enhancing the model’s ability to generalise across diverse datasets. If this
procedure does not succeed, encoding every parameter or batch of parameters with separate
autoencoders can also be considered as a solution.

7.2 Learning Control Algorithm

The next step in the research procedure requires the practical implementation of the spiking
neural network capable of learning the rapid guidance and control mapping for quadrotor flight.
Thus this section will focus on answering to RQ.2 as well as certifying the hypothesis H.2.
Similar to the previous section, 2 research points can be deducted, one focused on the net-
work itself and the other one on the dataset. The envisioned network entails a simple Spiking
Neural Network (SNN) designed to learn through supervised learning, leveraging input-output
relationships derived from a specialised dataset. The fundamental objective is for the network
to assimilate input data of the drone’s state and subsequently deduce through mapping, motor
commands for each propeller (4 outputs). Secondly, this section also requires the creation of

1https://github.com/tudelft/spiking
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a novel dataset which has to be carefully crafted to increase the performance of the network.
For the dataset creation, 2 approaches were chosen that leverage the previous work of Ferede et
al.[22, 23] as it will be presented below.

Firstly, the dataset creation through the supervised learning method will be detailed. This was
inspired by the work of Ferede et al.[22] and it is created by generating optimal trajectories for
a range of initial conditions. Thus a dataset of state-action pairs can be created in the form
(x∗i , u

∗
i ) based on an energy optimal control problem as follows: ”Given a state space X and set

of admissible controls U , the goal is to find a control trajectory u : [0, T ] → U that steers the
system from an initial state x0 to some target state S ⊂ X in time T while minimising some cost
function”[22]. In mathematical formulation, the following cost function has to be minimised:

E(u, T ) =

∫ T

0
∥u(t)∥2dt (7.1)

subject to:

ẋ = f(x, u) (7.2)

x(0) = x0 (7.3)

x(T ) ∈ S (7.4)

Further, according to Ferede et al.[22], this control problem can be transformed into a nonlinear
programming (NLP) problem using Hermite Simpson transcription. The trajectories x(t), u(t)
can be discretised into N + 1 points and thus the problem can be solved with a specialised
NLP solver. In the end, optimal discretised trajectory x∗0 . . . x

∗
N and u∗0 . . . u

∗
N can be computed.

The advantages of such a method include a better generalised dataset that is solely focused
on achieving the optimal control rule without being constrained by a clear map that has to be
followed. Moreover, this method does not need a model to be fully trained before creating a
dataset which might reduce the computation time drastically.

By setting the values for x0 and xT , datasets can be generated with various constraints. Inspired
by the work of Ferede et al.[22], one approach would be to learn to fly to a preset standing
point from a widespread range of initial conditions as expressed by the following starting point
intervals: 




x ∈ [−5, 5] y ∈ [−5, 5] z ∈ [−1, 1]

vx ∈ [−0.5, 0.5] vy ∈ [−0.5, 0.5] vz ∈ [−0.5, 0.5]

ϕ ∈ [−2π/9, 2π/9] θ ∈ [−2π/9, 2π/9] ψ ∈ [−π, π]
p ∈ [−1, 1] q ∈ [−1, 1] r ∈ [−1, 1]

ω ∈ [ωmin, ωmax]
4

(7.5)

With these as initial conditions, the final point was imposed to be set fully to 0. Or, in other
words, this was defined by x(T ), v(T ), λ(T ), Ω(T ), v̇(T ), Ω̇(T ), ω̇(T ) = 0. With the initial and
goal conditions established, a dataset can be created that will learn how to fly to a hover state.
In order to fly the controller trained on the created dataset on a racing circuit, the simulator
will have to update the goal conditions every time a gate is passed. It is expected that the
current dataset, even though very generalisable and capable of performing even navigation, to
fly slow as it is trained to converge towards a standing still ending point. In order to combat
this problem and as the racing track is known, a new dataset will be generated with different
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initial and final conditions. The initial conditions are given by the following system of intervals:




x ∈ [−5,−2] y ∈ [−1, 1] z ∈ [−0.5, 0.5]

vx ∈ [−0.5, 5] vy ∈ [−3, 3] vz ∈ [−1, 1]

ϕ ∈ [−2π/9, 2π/9] θ ∈ [−2π/9, 2π/9] ψ ∈ [−π/3, π/3]
p ∈ [−1, 1] q ∈ [−1, 1] r ∈ [−1, 1]

ω ∈ [ωmin, ωmax]
4

(7.6)

The ending point is assumed to be a gate and keeping in mind that the flight has to be performed
in a circular clockwise direction new constraints for x(T ) are set. Thus the target conditions
are imposed to be 0 with the exception of the roll angle ψ which is set to π/4 and the y and x
velocity ratio vy/vx which is set to tan(π/4). A more specialised dataset can be generated in
this manner and the corresponding trained controller can be simulated in a similar fashion as
explained in the paragraph above.

The second dataset will be generated through a reinforcement learning approach as was done
in the previous section. In a few words, using the approach of Ferede et al.[23], a network
model can be trained through reinforcement learning to fly through a circuit. Using the model,
a discretised dataset with the drone’s states and motor commands can be created. However,
as opposed to the previous section, the map has to be better analysed as learning to navigate
a random complex map will not provide value for rapid guidance and control. To have a fair
comparison with the models trained by Ferede et al.[23], a similar map will be utilised that can
be seen in Figure 6.2.

The current reinforcement learning approach to generate a dataset was still chosen due to several
factors. One of the most important ones refers to the fact that a dataset was already created
and reproducing the method will save considerable time. Furthermore, the encoder is trained
on datasets generated specifically through this approach, facilitating the integration of the au-
toencoder and spiking neural network in future networks. Secondly, while slightly improved
performance may be anticipated when the model is tested on the same map it was trained on,
generalising this approach to more complex maps poses a greater challenge. As mentioned pre-
viously, the focus of the current research is just to prove the feasibility of rapid guidance and
control with neuromorphic computing. Thus the drawback mentioned previously is not crucial
for the current research.

Figure 7.3: The neural network used
for optimal control by Ferede et al.[22,

23]

With a carefully crafted dataset established, a spik-
ing neural network (SNN) model for rapid control and
guidance of the drone can be built. While further ad-
justments and refinements will be implemented after-
wards, an effort will be made to adhere closely to the
network architecture established by Ferede et al.[22]
which can be seen in Figure 7.3, primarily to facilitate
a more accurate and insightful comparison. This archi-
tecture contains a three-layered network housing 120
neurons per layer. This structure is deemed crucial to
respect due to the harsh hardware limitations caused
by the drone’s operational environment. Moreover, it is
important to mention that the same network structure,
as the autoencoder structure mentioned previously, will
be used for creating the current spiking neural network. Using this approach, a versatile frame-
work for data processing and feature extraction within the SNN model development process can
be created.

However, the current approach detailed in this section summarises in a big picture what is
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expected to happen and how theoretically guidance and control can be done with neuromorphic
computing. As this approach depends severely on the previous encoding phase results some
mitigation solutions are going to be suggested in the current paragraph. Firstly, one possible
problem might be that the dataset is too spread and contains too much detail to be encoded
accurately. One possible solution would require the creation of a reduced dataset with less
problematic parameters. For example, if disturbances mentioned in section 6.2 might be difficult
to encode, discarding them will not affect the performance greatly.

7.3 Testing

The last step that has to be taken involves choosing the best-created model, testing it and
comparing it to existing state-of-the-art models. With this in mind, the current section will
focus on presenting the methodology to answer RQ.3 as well as certifying the hypothesis H.3.
Thus this segment can also be split into 2 subparts: one focused only on testing the created
spiking neural network performance and another one focused on comparing the performance to
the state-of-the-art artificial neural network approach. Moreover, it is important to remember
that the hypothesis does not expect outstanding performance of the neuromorphic model. In the
end, just flying the circuit can be considered satisfactory, with the performance being expected
to be largely below the artificial neural network’s.

To test the model thoroughly and compare it, a definitive course must be charted for the drone
to be trained on and fly during testing. In the end, a strong consideration is given to using a
rectangular trajectory similar to that employed in the previous work of Ferede et al.[22] that
can be observed in Figure 6.2. This choice will facilitate direct performance comparison with
non-neuromorphic models and will offer practical advantages, given the simplicity of mapping
and the existing implementation in both the Paparazzi simulator and real-world drone setups.
Moreover, simulation exercises will be conducted using Paparazzi, while real-world testing will
be conducted at the Cyberzoo facility using the Bebop drone described in section 6.2 and the
environment visualised in Figure 6.1. Key parameters that will be calculated for estimating the
performance of the models were inspired by section 5.3 and include accuracy, performance loss
and simulation duration, alongside more practical metrics such as training time and memory
utilisation, coupled with energy efficiency assessments.
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8

Research Planning

This chapter will offer an overview of the logistics required for the research project. Thus, a clear
plan that should be followed for the remainder of the project will be presented. It is important to
state that this planning is being done halfway through the research but the past tasks will still be
considered for a better understanding and approximation of the timeline. The chapter will begin
with a presentation of the main stages of the planning along with some milestones set during
the research project. This will be followed by a Gantt chart to show the clear timeline of the
project along with several practicalities during the development of the planning. For managing
the work undertaken for this research, five major project phases have been established:

1. Literature Study: The first phase of the entire research project is the literature study
which involves acquiring information such that the research objective can be generated
and answered. The work usually includes an overview of the current state of the art,
identifying a research gap and formulating clear research questions and a corresponding
research methodology. This will result in a literature review paper which is the current
document. Moreover, this phase will include a project plan report for a better organisation
of the research project and will conclude with a mid-term review presentation to assess
the feasibility of the project and propose a research alternative.

2. Encoding: This will be the second phase of the research project and will focus on the work
required to answer the first research question. As encoding is considered to be the main
problem of the research project that will dictate the continuation of the work expected
during the mid-term review, it will be done in parallel with the literature study phase.
This step will include the analysis and creation of the dataset and the implementation and
tweaking of the autoencoder.

3. Guidance and Control Network: The first step after the mid-term review will focus
on answering the second research question and thus creating a spiking neural network for
the guidance and control of a quadrotor. This step is dependent on the encoding phase
and thus can be analysed after a performing and efficient encoder is achieved. It will be
focused on programming and including dataset generation and network optimisation.

4. Testing: Following the creation of a guidance and control network, its performance has
to be quantified. Thus this phase will answer the third research question and will be
concerned with the implementation of drone simulations and real flights. Moreover, the
results obtained will be compared and analysed.

5. Reporting: The final phase will be to report all results and conclusions of the current
research project through a final paper and a final presentation. It can be done in parallel
to the previous 2 phases and it will contain numerous milestones which imposes several
limitations to the timeline of this phase.
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Throughout the previous enumeration, several milestones have been mentioned. For the current
project, they are of utmost importance as they serve as clear time limits, aimed at evaluating
the progress of the project as the research is conducted:

1. Kick-off Meeting: The kick-off meeting marks the initial significant milestone of this
project and also represents the formal beginning. It aims to assess the research proposal
after the research domain has been thoroughly studied. During the meeting, attention
will be directed towards the methodology crafted for the research, as well as the research
questions and objectives. Moreover, it will set some clear guidelines that have to be
followed for the mid-term review.

2. Literature Study Submission: The subsequent significant milestone during the re-
search is the literature study paper submission. This is scheduled close to the mid-term
review as a thorough analysis of the current literature is required. Moreover, due to the
infancy of the neuromorphic domain, it is necessary to start the encoding implementation
for a more accurate research objective and questions for the remainder of the project.

3. Mid-term Review Presentation: The mid-term review is scheduled approximately
three months before the green light review. During this session, a presentation will be de-
livered, offering an overview of the approach taken and presenting details on the method-
ological steps and current findings. Furthermore, detailed plans for the subsequent stages
of the project will be outlined to ensure its successful progression. This milestone will
serve as an intermediary GO/NO-GO meeting to clarify the status of the research project.

4. Green Light Review: The green light review aims to assess the current state of the
research and determine if the progress made thus far is adequate to initiate the submis-
sion and review process. This milestone is the final GO/NO-GO meeting in which the
assessment of the research work thus far will be analysed.

5. Thesis Hand-in: The ultimate version of the thesis, incorporating all received feedback
throughout the project, will subsequently be submitted for review and defence and has to
be at least 2 weeks before the final defence presentation.

6. Defence: The thesis defence represents the concluding phase of the process. During this
stage, the research will be presented, and a group of examiners will have the opportunity
to pose questions or concerns before conducting a final assessment of the entire project.
This milestone has to be set at least 4 weeks after the green light review.

The summary of the phases and milestones along with their time prediction can be seen in
Figure 8.1-8.4 where the Gantt chart presents the plan of the master thesis. This will follow a 5-
day work week including the national Dutch holidays. Supplementary, 6 weeks of the holiday will
be included (one during October, 3 during the Christmas period, another one during February
and another week split into 2 periods in May-June). Additionally, as the strict ending deadline
of the project was established to be around the middle of August 2024, a 4-week buffer time
is introduced when possible delays or wrong estimations can be mitigated. Moreover, the time
required for the tasks is also heavily overestimated to mitigate the problems that might arise
during research. This overestimation and risk mitigation is required by the novelty of the
neuromorphic domain which might lead to many problems during development.

A lot of freedom was introduced in the task succession due to risk mitigation issues. Thus it is
important to see that some tasks that depend on one another, were made partially in parallel to
include some buffer time. Similarly, almost every task has another different task in parallel which
also allows for backup work in case the research gets stuck in a practical problem. Moreover,
the learning curve was a considered factor when determining the work effort during the project.
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For example, during the first half of the research, the first tweaking of hyperparameters was
assigned 9 weeks while, later, performing the same task was only given 3 weeks. This is because
the first time doing the block requires also understanding the task and creating the code which
is not necessary when reiterated.

Figure 8.1: Gantt chart I

Figure 8.2: Gantt chart II
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Figure 8.3: Gantt chart III

Figure 8.4: Gantt chart IV
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9

Conclusion

The current literature study aimed to analyse the implementation of guidance and control for
a racing drone using the novel domain of neuromorphic computing. After a comprehensive
exploration of applications leveraging neuromorphic computing, a research gap was identified
in the realisation of a fully neuromorphic racing drone, particularly in terms of rapid guidance
and control methodologies. Despite an extensive review of the literature, no existing studies
were found that addressed the neuromorphic implementation of rapid guidance and control
which offers the current research a pioneering role at the confluence of these two domains.
However, given the novelty, prudent risk mitigation strategies are imperative. Constrained by
a relatively short timeline, the research project will lay the groundwork for future endeavours,
focusing primarily on verifying the feasibility of such an implementation. Accordingly, the
current research will focus on elucidating how a spiking neural network can be trained to generate
propeller motor commands based on the drone’s state to fly rapidly a racing circuit. To address
this research problem, the project was split into three distinct phases.

The initial phase entails the encoding of floating-point inputs into spikes. Out of different
approaches, this task was entrusted to autoencoders due to their capacity for information com-
pression and temporal correlation identification. The spiking neural network structure comprises
input and output layers for floating-point variables, interconnected by a layer of spiking neu-
rons. This layer employs leaky integrate-and-fire dynamics, connected by simple, linear synaptic
connections. The time dependency specific of spiking neurons will impose reccurency to the
feed-forward neural network architecture. Supervised learning, facilitated by surrogate gradi-
ent descent methods for back-propagation, is adopted, necessitating a meticulously generated
dataset derived from 2 frameworks proposed by Ferede et al. One will focus on generating the
dataset with a neural network model trained using a reinforcement learning approach[23] while
the second will focus on solving an energy optimal problem and thus generate multiple flying
trajectories. The anticipated outcome involves a significant reduction in spiking neuron count,
leading to a model capable of deployment on diminutive drones.

Subsequently, using insights drawn from the autoencoder framework, a spiking neural network
for learning fast drone manoeuvring can be constructed. However, this phase will differ by the
number of neural network layers and by the respective number of spiking neurons. Moreover, the
dataset will be regenerated to accommodate a facile integration of the neural network. Based
on the performance achieved with the current structure, several mitigation techniques have
been proposed. Lastly, the developed neuromorphic guidance and control undergoes evaluation
using state-of-the-art artificial neural network models of Ferede et al.[22, 23], encompassing both
simulation and real-world drone flights. While achieving similar performance to conventional
artificial neural network models is not anticipated, this stage is crucial for determining the
efficacy of the proposed approach.

Despite the steps made in developing the groundwork for a fully neuromorphic racing drone,
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several research gaps persist, leading to some recommendations for future investigations. Among
these, there is the imperative need to explore alternative approaches, such as a fully neuromor-
phic reinforcement learning algorithm, for enhanced performance of a racing drone. Additionally,
a correct comparison to conventional artificial neural networks necessitates the integration of
event-based cameras and specialised neuromorphic hardware to facilitate a comprehensive eval-
uation. Furthermore, a deeper understanding of unsupervised learning and temporal encoding
mechanisms prevalent in biological systems requires the need for continued exploration. Like-
wise, advancements in neuromorphic hardware remain pivotal for maximising the potential of
spiking neural networks, that inquire sustained effort into streamlined implementation method-
ologies.
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A

Encoder

The aim of the current chapter is to detail what work has been performed to answer the first re-
search question of the literature study: How can the input/output values be transformed
into spikes such that the lowest resources are used?. For this, encoding procedure was
analysed in detail but, in the end, it was discovered that it does not improve the general per-
formance of the controller so it was discarded completely. Even though the work performed
will be presented here including how the dataset was generated for this stage in section A.1.
Secondly, the sensitivity analysis performed on the autoencoder will be detailed in section A.2
while the work required to answer the research question will be presented in section A.3. Lastly,
the results that led to the discard of the encoder will be presented in section A.4. Even though
not clearly part of the encoder work, it was decided to include here also the work of generating a
training dataset with reinforcement learning focused on learning to fly to a hover position as was
done with the energy optimal control problem. The work required and the results obtained can
be found in section A.5. Similarly, in order to improve the performance of the SNN controller,
weight decaying was implemented during the training phase and the analysis can be seen in
section A.6.

A.1 Generating Dataset with RL

When the work for the current study started, the encoder was the initial concern. The feasibility
of switching from floating point values to spiking values was the first question to be answered
by the research. For this reason, to analyse the capability of encoders (and namely population
encoding in the current case), a general dataset had to be created that contained as little
bias as possible. The quality of the dataset for learning an SNN controller was not of great
importance during this phase. With this mindset, it was decided to develop the dataset with
the reinforcement learning approach created by Ferede et al.[23].1 In order to generate it, a model
had to be learned through reinforcement learning, and with its help, after running it through
the environment several times, the dataset could be generated containing multiple parameters at
every timestep. Another reason for choosing this approach compared to the supervised learning
one was that the current reinforcement learning model could produce more parameters for the
dataset. Thus, 24 inputs for every timestep were saved instead of 19 as the supervised learning
model was producing.

In order to make the dataset more general and with as little bias as possible for a better
verification of the encoder abilities, the creation of a more complex map is required that has to
be learned through reinforcement learning. Thus, as presented during the literature study, the
map shown in Figure A.1 - A.2 will be used to generate the dataset. With this, a model is learned
to fly the circuit as fast as possible and then, on the same circuit, the drone flight is simulated

1https://github.com/tudelft/optimal quad control RL
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Figure A.1: The track used to create the
encoder dataset, seen from above

Figure A.2: The track used to create the
encoder dataset, seen from perspective

for 2048 times for 10 seconds. With a timestep of 0.005 seconds, this leads to 2000 samples for
each simulation. As mentioned above, each sample contains the input (that is the 3-dimensional
position (x, y and z), velocity (vx, vy, vz), angular displacement (ϕ, θ, ψ) and angular velocity
(p, q, r) of the drone as well as the actual angular velocity of the propellers of the drone (w1, w2,
w3, w4) and a 3-dimensional disturbance momentum (Mext,x, Mext,y, Mext,z) and force in the
vertical z-direction (Fext,z) as well as the next gate 3-dimensional position (gatex, gatey, gatez)
and yaw (gateyaw)). Moreover, the target output is also saved at every timestep containing the
output command between 0 and 1 for each propeller (u1, u2, u3, u4).

Figure A.3: The structure of the
encoder SNN

For the encoder the following structure has been chosen.
The dataset is initially normalised between 0 and 1 for all
the parameters and structured in such as manner that one
dataset sample will contain the 2000 timesteps mentioned
above to perform recursion with SNN. Following this, the
dataset is then split in 2 for training and validation follow-
ing a 9 to 1 ratio. Later, to train the network, a similar
structure as presented in section B.1 was used. Thus, with
the ADAM optimiser and with a learning rate of 0.01 but
no learning rate scheduler, the SNN started training for
several number of epochs. Using the MSE loss to quantify
the performance, the model with the lowest error on the
validation dataset is chosen as the best one. The SNN
is formed of one spiking layer between input and output.
The input is formed of all the parameters that have to be
encoded while the target output is simply the same in-
put list which has to be reproduced. The structure of the
resulting network can be seen in Figure A.3.

With the created dataset and the equivalent trained controller, the encoding results could be
simulated for all the input and output parameters. The results can be visualised in Figure A.4
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where the signal was simulated for a new validation dataset which is comprised of 5 samples,
each of 2000 timesteps. As it can be observed, the output of the spiking network is not very
accurate. Even though for some parameters, the network learns how to encode the input such
as the position and velocity signals, for the angles and angular rates the performance is much
worse and shows no clear learning capabilities. Moreover, the performance of encoding the
disturbance moments and gates is very noisy which was not expected due to the discrete nature
of the parameters.

Figure A.4: The results of the first encoder trained on the dataset generated with
reinforcement learning. The figure contains both the input and output parameters. In blue

there is the target signal while in orange there is the reproduced signal with SNN;

Once the 2 problems were identified, the search for solving them started. It was discovered
that the poor performance of the angles and angular rates was given by a poor normalisation
technique as well as by a bad dataset which included some samples that were close to crashing.
This pushed the minimum and maximum values of the angles and angular rates to extremes
which, after normalisation, forced the output to be in a very small interval of values. This small
interval is not favourable for SNN as it requires a very large number of spiking neurons with small
weights for accurately identifying the small differences present in the dataset now. Moreover,
with the help of large weight values, several neurons have to be used for extreme cases and can
be considered wasted as repeating them is improbable. Thus, to solve this issue, a new dataset
was generated with all the samples having stable intervals and not being close to crashing. This
meant the target signal as well as the output of the SNN could explore a larger spectrum of
values more accurately. However, the problem of the moment and force disturbances and of the
gate position and yaw values poor performance, could only be rooted to the influence of other
parameters. As it will be analysed in section A.3, the solution for this problem involved the
usage of different training for groups of parameters with specific characteristics.

A.2 Sensitivity Analysis

The current section will focus on the sensitivity analysis performed on the built encoder. Be-
fore the study of the controller started, an initial sensitivity analysis was done on the encoder
procedure for 2 main reasons. Firstly, the performance of the encoder had to be increased as,
before attaching it to the controller, accurate results ought to be expected. Secondly, as the
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work was pioneering a novel domain, a better understanding of the SNNs and how they function
was done with the help of this step. Moreover, it is important to mention that this step required
the implementation of the TU Delft’s Delftblue supercomputer. As several programs had to be
run in parallel, for a better time efficiency and a more thorough analysis, it was decided to use
the capabilities of the Delftblue supercomputer. The obtained results and models were then
analysed on the personal computer and can be visualised below.

First analysis results focused on the influence of initial leak and threshold values upon the
performance of the network. It is important to note that both the leak current coefficient
(leaki) as well as the leak voltage coefficient (leakv) are considered as one instance and thus
were modelled in a similar manner and will be analysed together. To reiterate, the values are
generated in a random manner with the help of a normal distribution function where the mean
and variance are passed as can be seen in the table below. Again, as mentioned in the main thesis
paper work, it is important to note that the leak values presented represent the value passed
to the sigmoid function to be bounded. For this reason, a low leak value of -2, after passed
through the sigmoid function, is closer to 0 meaning that a great part of the past information
is forgotten. This translates actually, in a contradictory manner, to a large leak of information
every timestep. Similarly, the opposite happens when a large leak value is passed to the sigmoid
function, leading, in the end, to a small leak of information over every timestep. Compared
to the analysis done in the main paper work, the current one is focused more on the general
behaviour of the parameters. That is the reason why during this phase the standard deviation
(STD) was analysed as well as large intervals were used for the mean of the threshold and leak
values as the general trend should be observed. Tweaking the parameters was not analysed in
detail during this step.

With these observations in mind, the performance of the SNN as a function of the mean and
standard deviation of initial leak and threshold values can be observed in Table A.1. As can be
seen, the best performance is achieved when the leak value is modelled with a normal distribution
with a low mean of -2 and a standard deviation of 1.5 while the threshold also needs a low mean
of 1 leading to an MSE loss of 3.529e-3 of the encoder. Overall some trends can be observed.
For example, low leak values are preferred which means that the past information is not very
important for the encoder. This means that the SNN does not use recursion a lot and just
prefers to transform the input directly to output for every timestep. This can be explained by
the little correlation over time observed in the dataset as it is the case for the output command
and the propeller rotational speed parameters (as observed in Figure A.4) which are generally
very noisy and do not depend on previous timesteps. Thus, with a high variance in the dataset
it is more difficult to learn a relation over time and the model just focuses to predict only
during the current timestep. As it was observed in the controller sensitivity analysis, a slightly
higher value is observed closer to 0. This can be rooted to a similar cause as the dataset output
command is smoother in the energy optimal dataset and thus easier to follow.

Regarding the standard deviation of the leak values a clear trend cannot be observed as the
performances fluctuates irrespective of the value of the mean. Instead, it can be observed that
when a wrong combination of initial threshold and leak values is chosen, a higher standard
deviation will lead to a smaller MSE loss. This can be explained by the fact that a higher
standard deviation will lead to some values closer to the correct leak and threshold optimal
values which will boost the performance in the end. Similarly, when the error is relatively low,
a standard deviation of 0 will keep the error low. Thus if a standard deviation of 0 is preferred,
it can be used as a confirmation of the right selection of threshold and leak initial values mean.
Regarding the analysis of the threshold value, a similar observation as done for the controller can
be done for the encoder as well. Thus, a smaller value is definitely preferred which translates
in the need of the SNN to react fast to different changes. This was expected as the input
signal changes very fast due to the noisy behaviour observed for output command and propeller
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rotational speed.

Table A.1: Influence of threshold and leak initial value selection on MSE loss of the encoder

Leak Value
Threshold Value Mean=1

STD=0.5
Mean=5
STD=0.5

Mean=-2; STD=0 3.931e-3 4.443e-3

Mean=-2; STD=0.5 3.712e-3 4.685e-3

Mean=-2; STD=1.5 3.529e-3 4.962e-3

Mean=0; STD=0 3.606e-3 2.512e-2

Mean=0; STD=0.5 4.157e-3 2.194e-2

Mean=0; STD=1.5 4.974e-3 8.236e-3

Mean=2; STD=0 7.056e-3 2.727e-2

Mean=2; STD=0.5 6.826e-3 2.538e-2

Mean=2; STD=1.5 6.744e-3 1.988e-2

The next parameters considered during the sensitivity analysis were the dataset size and the
number of epochs required for training and their influence on the performance. The results
can be observed in Figure A.5 where the performance of models trained on various dataset
sizes is shown on a separate validation dataset along different epochs. As expected, the higher
the dataset size and the more epochs are being used, the higher the performance of the SNN
model. Moreover, the convergence trend along different epochs can be seen the most clear for the
smallest dataset which does not seem to have converged fully not even after 5 epochs. Otherwise,
the performance line of the models varies greatly when close to convergence with various up and
downs shifts that depend solely on the optimisation procedure and efficiency. An important
thing to mention during the analysis was that the maximum number of epochs was chosen to
be 5 as it was discovered during the previous study that most models converge very fast and
do not require more than 3-5 epochs to achieve convergence. After this convergence is reached,
the model performance fluctuates around the convergence MSE loss for the remaining number
of epochs.

Figure A.5: The influence of the dataset size upon the network performance over multiple
epochs

Last but not least, a special analysis of the trained models was done on a longer dataset than
trained on. As mentioned previously, one sample of dataset contained 10 seconds of simulation
but the current analysis wanted to verify how the model would perform if simulated on a much
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longer time, namely 50 seconds (or 10000 timestep). The resulting behaviour can be observed
in Figure A.6 - A.7. First of all, by looking at the encoding of position and velocity, it can be
seen that having a higher timestep than trained on does not influence the results. This was
expected as the SNN prefers encoding every timestep separately as seen in the analysis of the
initial leak values and does not get influenced by the length of the sample. On the other hand,
doing the sample longer, the value for the heading angle ψ keeps increasing over the maximum
allowed value. This makes the encoder SNN to not be able to encode the value any longer
and flattens at a stable maximum value. It is important to see that this problem affects all
the other angles and angular velocity parameters as well with a decrease in performance after
the maximum value is overpassed. Moreover, the model showing the current plots was trained
to encode all parameters at once showing that there is a strong correlation between the angles
and angular velocities but no correlation when comparing also to the position and velocities.
This observation that grouping parameters for a better encoding was used during the following
section when the number of neurons had to be optimised and a better performance was achieved
with this approach.

Figure A.6: The comparison between target
encoder output (blue) and predicted output
by the encoder (orange) on the position and
velocity parameters of a dataset longer that

the sample size;

Figure A.7: The comparison between target
encoder output (blue) and predicted output
by the encoder (orange) on the angles and
angular velocity parameters of a dataset

longer that the sample size;

A.3 Number of Neurons Optimisation

The current section will present the sensitivity analysis performed during the encoding to un-
derstand how the number of spiking neurons can be reduced to achieve a good performance out
of the list of floating point values. The first approach considered for encoding was to send all the
input parameters at once through the neuromorphic autoencoder. In the current approach, the
sensitivity analysis involved changing the number of neurons in the layer with spiking neurons.
After several models were trained with various number of spiking neurons, the resulting perfor-
mance plot can be seen in Figure A.8. The outcome confirms the results found while analysing
the controller performance (namely 7-8 spiking neurons per conventional neuron) and suggests
that the optimal number to achieve good performance is to use 200 neurons for 28 floating
point values. At 200 neurons, the performance flattens and adding more neurons will either
slightly increase or decrease the performance loss. Decreasing the number of spiking neurons
will drastically raise the performance loss which is also undesired.

However, another approach considered during the encoding phase was to encode parameters in
groups based on similarity. The similarity means that in the group the parameters should have
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Figure A.8: The influence of the number of
neurons on the training performance of the

encoder when all input parameters are trained
at once;

Figure A.9: The influence of the number of
neurons on the training performance of the
encoder when only the propeller angular

velocity is considered;

a correlation between them. For example, position and velocities can be considered similar as
velocities represent the direct derivative in time of the position. This behaviour was observed
in Figure A.6 and Figure A.7 when a problem in the heading angle ψ led to bad encoding only
for other angles and angular velocities but not for position and velocities. For this reason, the
following groups of parameters were created:

• Positions and velocities: Including the positions x, y and z as well as the equivalent
velocities vx, vy and vz;

• Angles and angular velocities: Including the angles ϕ, θ and ψ as well as the equivalent
angular velocities p, q and r;

• Propeller angular velocities: Even though not having a lot of correlation between
them, it was chosen to group these parameters together to not affect the other parameters.
Including the angular velocities of all 4 propellers w1, w2, w3, w4;

• Next gate positions and yaw: Including the positions of the next gate gatex, gatey
and gatez as well as the yaw gateyaw;

• Disturbances: Even though not having a lot of correlation between them, it was chosen
to group these parameters together to not affect the other parameters. Including the
3 moment disturbances on x-axis Mext,x, on y-axis Mext,y and on z-axis Mext,z and the
disturbance force on z-direction Fext,z;

• Output commands: Separate to use these parameters for decoding. Including the output
commands for all 4 propellers u1, u2, u3, u4;

With the groups of parameters realised (batches), it was important to find how many spiking
neurons to assign for each group to have a well-performing encoding. Unfortunately, the sen-
sitivity analysis was not so thorough for the groups of parameters and it involved just a small
sensitivity analysis for the propeller angular velocities. The plot can be seen in Figure A.9 and it
was chosen to continue with 30 spiking neurons as the performance loss seems to plateau at that
value with only a very slight decrease in performance when 40 neurons are used. Based on this
finding, the following number of spiking neurons were proposed for each group of parameters:

• Positions and velocities: 45 neurons chosen based on proportionality as 6 parameters
are used compared to 4;
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• Angles and angular velocities: 45 neurons chosen based on proportionality as 6 pa-
rameters are used compared to 4;

• Propeller angular velocities: 30 neurons;

• Next gate positions and yaw: 20 neurons as the task to encode the values is more
trivial as there is little fluctuation in the dataset;

• Disturbances: 20 neurons as the task to encode the values is more trivial as there is
little fluctuation in the dataset;

• Output commands: 30 neurons chosen based on proportionality as a similar number of
parameters is used;

As can be seen, summing up all the spiking neurons of all the groups leads to a value of 190
neurons which is below the value of 200 neurons when parameters are encoded all together. It
was decided to continue with less neurons as the performance is already better as will follow
from the following analysis and further sensitivity was not required. Moreover, a relatively
fair comparison between the 2 approaches had to be done and thus having a similar number
of spiking neurons helped. In order to train the encoder and keep the groups of parameters
separated a mask was applied to both weight matrices before and after the encoding layer. The
mask matrix was built of the same size as the weight matrix and the multiplication was done
element wise. Based on the input (and implicitly the output) order, the mask matrices were
build of block matrices of 1s on the main diagonal. In total there were 6 block matrices and
their size was given by the number of floating point parameters and by the number of expected
spiking neurons. For a better understanding of the implementation check section B.1 where the
code required for masking the parameters was built.

However, before showing the final results and their analysis, it is important to explain how
the disturbance group of parameters was actually encoded. When encoding the parameters
in batches, it was discovered that the performance was terrible and this can be visualised in
Figure A.10. This could be explained for several reasons. First of all, the disturbances are
generated randomly and thus there is no temporal correlation between consecutive timesteps
which does not benefit SNNs. For this reason, the fluctuating behaviour (the big orange blocks
in the image are a continuous up and down behaviour in the signal) is happening because the
SNN does not know which value to converge to. Secondly, the disturbances are constant over
the whole sample of 2000 timesteps. The SNN is not very accurate in keeping constant random
values as it is used to behave similar to a signal that changes over time due to the inherent nature
of spiking neurons to not spike continuously. Thus, passing constant random values is the worst
feature that can be processed by SNNs. For this reason, it was considered that this group of
parameters will be encoded differently with binning. This encoding method is also a population
encoding method that assigns for every sub-interval a unique combination of spikes. What makes
binning special is that the interval is split in equal sub-intervals. In order to build this encoding
method, equal number of spiking neurons was assigned for each of the 4 parameters (5 spiking
neurons per parameter). This leads to 25 combinations per parameter which means that the 0
to 1 interval was split in 32 sub-intervals. Thus to encode a value, the number should fall into
a sub-interval and thus gets assigned a combination of spikes. The resulting improvement can
be seen in Figure A.15.

With the encoding procedure clarified, it is important now to analyse the encoder output closely
as well as to compare the performance of training the encoder using groups of parameters or
training all the parameters at once. The first group of parameters considered are the positions
and the velocities. As seen in Figure A.11, training in batches is clearly preferred. By looking
at the plot on the left side, it can be seen that the encoder manages to follow the target signals
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Figure A.10: The performance of the encoder model trained only on the disturbance
parameters before binning is applied;

very close for all the parameters. A peculiar thing can be observed for the signal of z which is
much noisier than the other signals. This can be rooted to the dataset which has a very small
range for the values of z as the target z-position of all the gates is the same at -1 and very few
room for flying around is allowed. Moreover, this signal is not periodic as the one for the x and
y which follow a sinusoidal graph. Thus, the movement in z-axis is very irregular which makes
the signal look more noisy. The error shown on the right side is the absolute error between
signals and is most likely caused by the ”noisy” behaviour specific to SNNs.

Figure A.11: The comparison between target output (blue) of the position and velocity
parameters and the encoder estimation (orange) on the left. On the right the performance
comparison between the 2 encoder models where the parameters are trained as one batch
versus when all parameters are encoded all together. The left plot uses the encoder model

trained only on the position and velocity parameters;
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The same behaviour can be seen when analysing the encoding of angles and angular velocities
as seen in Figure A.12. Thus, training in batches is preferred and the encoding signal is followed
closely irrespective of the parameter. Even though, a weird thing happens for all parameters at
8000 timesteps. In order to understand this weird behaviour, the spiking activity of all neurons
was plotted and can be seen in Figure A.13. The peculiar behaviour was discovered to be caused
by one neuron (namely 30) which behaves normally as a bias neuron for all parameters. However,
when 8000 timesteps gets reached, the neuron does not spike for one timestep. The reason for
this could be that a new sample is being started which means translates in a sudden change in
the input signal which further causes this weird behaviour. However, this is not consistent as
previous sample changes happened but neuron 30 did not stop spiking.

Figure A.12: The comparison between target output (blue) of the angles and angular velocity
parameters and the encoder estimation (orange) on the left. On the right the performance
comparison between the 2 encoder models where the parameters are trained as one batch
versus when all parameters are encoded all together. The left plot uses the encoder model

trained only on the angles and angular velocities parameters;

Figure A.14 shows a similar behaviour as shown also for the previous plots. Thus, training in
batches is again preferred and the performance of encoding is very good. However, this time,
the improvement shown by training in batches compared to training all parameters at once is
much smaller. This can be explained as there is little correlation between parameters generally.
Thus training in batches does not bring a great advantage within itself just that the encoding
is not affected by the values of the other parameters.

Next we have the disturbances which can be seen in Figure A.15. This time the comparison is
done between training all parameters at once and using binning as described above. As expected,
using binning helps a lot the controller achieving very low errors while the disturbances encoded
all at once suffer from the same problem as mentioned above.

Next the gate positions and yaw performance can be seen in Figure A.16. As expected training
in batches benefits these parameters the most which are no longer affected by the inputs of
other parameters. Thus, the absolute error gets very close to 0 as the input is periodic over
time and has some discrete predefined values. This behaviour benefits SNN the most and can be
easily encoded by it. However, in the output plot, weird spikes can be seen at 0, 6000 and 8000
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Figure A.13: The spiking activity of the neurons required to encode the parameters for angles
and angular velocity when the masked model is used;

Figure A.14: The comparison between target output (blue) of the propeller angular velocity
parameters and the encoder estimation (orange) on the left. On the right the performance
comparison between the 2 encoder models where the parameters are trained as one batch
versus when all parameters are encoded all together. The left plot uses the encoder model

trained only on the propeller angular velocity parameters;

timesteps. These are again probably caused by the switch of samples in the dataset which leads
to a sudden change in the input parameters values. However, this time the spikes are not caused
by a special neuron which decides to spike, when analysing the spiking activity in Figure A.17.
Instead, the spike is caused by a slight delay between 2 neurons. In other words, a neuron is
not synchronised and starts 1 timestep later compared to the others.
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Figure A.15: The comparison between target output (blue) of the disturbance parameters and
the encoder estimation (orange) on the left. On the right the performance comparison between

the 2 encoder models where the parameters are trained as one batch versus when all
parameters are encoded all together. The left plot uses the encoder model trained only on the

disturbance parameters;

Figure A.16: The comparison between target output (blue) of the next gate position and yaw
parameters and the encoder estimation (orange) on the left. On the right the performance
comparison between the 2 encoder models where the parameters are trained as one batch
versus when all parameters are encoded all together. The left plot uses the encoder model

trained only on the next gate position and yaw parameters;

Last but not least, the output commands were encoded and the comparison can be seen in
Figure A.18. As opposed to all the previous comparisons, training all parameters at once shows a
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Figure A.17: The spiking activity of the neurons required to encode the parameters for next
gate position and yaw when the masked model is used;

better performance than training into batches. Even though, for both encoders, the performance
is pretty weak which can be caused by the very stochastic and noisy behaviour of the signals
which is hard to be understood and followed over time. However, training all the parameters at
once helps the encoding of the output commands. This can be caused by 2 explanations. Firstly,
as was the case for the angular velocities of the propeller, there is little correlation between the
4 output commands which does not benefit training in batches. Secondly, as opposed to the
angular velocities of the propeller case, it seems receiving information from the other parameters
helps the performance of the encoder. This translates further that there is a correlation to be
learned between all the parameters and the output commands. Thus this step showed initially
that learning a controller is feasible as well as there might be no need for an encoding phase for
the neuromorphic controller to learn the information.

With the performance analysed, the study continued by checking how the population encoder
works. For this, for every group of parameter, the neuron activity was plotted along with the
weights of the decoder to understand which neuron is responsible for every parameter and in
which manner. The analysis will begin with the positions and velocities and can be visualised
in Figure A.19 and Figure A.20 respectively. One important observation that can be observed
directly as it was the case for the analysis of angles and angular velocities is that a bias neuron
is being used for all parameters (neuron 17). This neuron acts as the mean calculator of all the
parameters as it requires to bring the signal to its average through its high weight attached to
it. Several neurons are not used at all (neurons 12, 15, 28, 33, 38, 41). Even though they might
seem useless and discarding them could be a solution to save more neurons, they may have been
trained for extreme cases which is also explained by the relatively large weights attached to
them. Otherwise, it was observed that the z parameter has the smallest weights and this can
be explained by the low variability in this parameter which requires little change.

Other general observations found from the encoding procedure of the previous batch of param-
eters that apply generally to all the encoding procedures include:

• It happens rarely that some neuron is tweaked to influence only one parameter but gener-
ally the weights are shared between parameters. In other words, it is very common that
one neuron has non-zero weights for all parameters but the values varies greatly. This may
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Figure A.18: The comparison between target output (blue) of the output parameters and the
encoder estimation (orange) on the left. On the right the performance comparison between the
2 encoder models where the parameters are trained as one batch versus when all parameters
are encoded all together. The left plot uses the encoder model trained on all the parameters;

show some correlation between parameters but could also show that the SNN will learn
and encoder that is over complicated;

• There usually exist neurons that do not fire at all. Even though they may seem useless,
they may be used when an extreme case happens and thus a sudden change is needed very
fast as they generally have relatively higher weights;

• There exist usually one or more bias neurons that find the mean of all parameters and fire
continuously;

• Generally, if the neurons are spiking rarely, a larger weight is given to the neuron. Thus
that neuron receives a greater importance. The opposite is also true and the neurons with
small weights attached usually control through their spiking behaviour the low amplitude
”noisy” behaviour specific to SNN.

The analysis continues with the angles and angular velocities with the focus upon their spiking
activity in Figure A.21 and weights in Figure A.22. What this group of parameters has different
is that, similar to the analysis done above, the bias neuron (which in this case is 41) suddenly
stops spiking most probably due to a sudden switch in the dataset caused by the start of a new
sample. An interesting behaviour is observed regarding how r is encoded. For this, neurons 32
and 33 are mostly being used. Thus neuron 33 is kept as an addition to the bias (so constantly
spiking) and if a sudden drop is required, neuron 32 fires (with its negative weight) and if the
drop is too big followed even by the neuron 33 stopping to fire. The same behaviour and usage
of neurons could be observed for θ, p and ψ parameters. Otherwise, it seems neuron 24 seems
to be used mainly for the encoding of ϕ

Next, the angular velocities of the propeller spiking activity and weights have been plotted in
Figure A.23 and Figure A.24 respectively. Some interesting observation can be made based
on the current plots. For example, this time, 3 spiking neurons are used to control the bias
with the most important of them being neuron 2. However, it was found that these parameters
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Figure A.19: The activity of all the spiking neurons found in the encoder specialised for
positions and velocities;

Figure A.20: The influence of every spiking neuron upon the positions and velocities predicted
parameters of the encoder by looking at the corresponding weights;

often require sudden changes especially when a new sample begins which explains the relatively
frequent stopping in the spiking behaviour observed for these bias neurons. Moreover, the
average state of the normalised propeller rotational speed parameters is close to 1 which means
that most of the neurons are focused on spiking. Otherwise, as the signal is much more irregular
than for the other groups of parameters, there are multiple neurons which spike very aggressively
and still have a large weight as rapid adaptation is absolutely required. Moreover, it was observed
that 2 neurons are being used almost exclusively to encode w3 and these are neurons 8 and 30
while they have little influence upon the other parameters.

An important group of parameters that benefited from the current analysis the most was the
one of the gate positions and yaw which can be seen in both Figure A.25 and Figure A.26. The
current plots show clearly how the encoding procedure functions as the task is much easier for
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Figure A.21: The activity of all the spiking neurons found in the encoder specialised for angles
and angular velocities;

Figure A.22: The influence of every spiking neuron upon the angles and angular velocities
predicted parameters of the encoder by looking at the corresponding weights;

this group of parameters. This time the x and y position of the gate can only take 2 values, z
position is continuously constant and the value of yaw can only take 4 different values. Moreover,
it seems that the current encoder needed much less neurons with 9 of them never firing. There
are 4 neurons which regulate the bias (4, 5, 6 and 20). These act in contradictory manner such
that they cancel their influence when used for x and y position as well as for the yaw. However,
they are mostly used by the z position to keep the constant value. Otherwise neurons 8 and 11
perform most of the encoding as follows: neuron 8 controls the x position, neuron 11 controls
the y position and both neurons control the yaw value. Otherwise, neurons 1 and 13 are not
used as they counteract their influence. Moreover, it was observed that the delay between these
2 neurons leads to weird spiking behaviour observed previously for the next gate parameters
encoding. And last but not the least, neurons 14 and 18 have low weights but spike very often
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Figure A.23: The activity of all the spiking neurons found in the encoder specialised for the
angular velocities of the propellers;

Figure A.24: The influence of every spiking neuron upon the angular velocities of the
propellers predicted parameters of the encoder by looking at the corresponding weights;

having low influence upon the encoding procedure. To conclude, the encoding of the next gate
parameters can be realised with only 3 neurons, one for the bias and 2 for the encoding of the
4 gate possibilities.

Last but not least, the encoding of the output commands can be visualised in Figure A.27 and
Figure A.28. Even though the plots do not show clear information, some conclusion can still
be drawn for them. Again, the encoding of output commands requires a special neuron for bias
which stops firing if a sudden change is required. The vague spiking behaviour with most of
the neurons spiking aggressively suggests that the input data is extremely irregular and ”noisy”
which requires for very fast adaptation.

To conclude, it seems there is a sweet spot for the encoder where the ratio of spiking neurons
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Figure A.25: The activity of all the spiking neurons found in the encoder specialised for the
next gate position and yaw;

Figure A.26: The influence of every spiking neuron upon the next gate position and yaw
predicted parameters of the encoder by looking at the corresponding weights;

per number of floating point neurons is around 7-8. However as specified in the main paper, the
current approach cannot fly the drone in a real experiment due to the size of the spiking neural
network which requires long processing times. In order to reduce the number of spiking neurons
and thus speed up the running time required several techniques have been observed that include
the following suggestions:

• If the parameters are discrete and their possible values are known as in the case of next
gate parameters, encoding them separately with clear rules will improve definitely the
performance;

• Binning or other population encoding techniques might be more beneficial than using
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Figure A.27: The activity of all the spiking neurons found in the encoder specialised for the
output commands;

Figure A.28: The influence of every spiking neuron upon the output commands predicted
parameters of the encoder by looking at the corresponding weights;

autoencoder as very good performance could be observed for the disturbance values;

• Grouping similar parameters together really helps the performance of the encoder. This
could be studied in the future if the introduction of masks in the training procedure of the
controllers might bring some new benefits;

A.4 Influence on the Controller

The current section will focus on the influence of the encoder upon the controller performance
and the reasons why it was decided not to introduce it in its structure in the end. The analysis
involved the creation of different controller structure including the training of both SNN and
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MLP models. First 3 models considered were focused on the influence of the encoder and decoder
upon the performance of the SNN controller. The structure of the models can be visualised in
Figure A.29 - A.31. As can be seen, the structure with 3 layers with 500 neurons per each layer
is preserved and was used for all the models considered in the analysis. The difference between
the models consists in the usage of the encoder and decoder networks. Thus, one model does
not use the encoder or decoder at all and is trained to perform the encoding as well as decoding,
another model uses only the encoder and is trained to output the commands directly while the
last model of the controller receives spikes as input and outputs spikes which should be decoded
in the end with the previously trained models.

Figure A.29: The end to end controller structure;

Figure A.30: The spiking to end controller structure that used the best performing encoder to
transform input values to spikes;

The performance of the models can be visualised in Table A.2 with the mean absolute error
values for the output command of each propeller. The training has been done on the dataset
generated with the reinforcement learning approach. As can be seen, the table does not contain
the controller model trained from spikes to spikes as this is inherently impossible. The reason
for this is that learning a controller to output spikes is very risky. If one spiking neurons fires
a spike at the wrong time, the output of the whole network after being passed through the
decoder might be very different. This comes as the spikes of the controller as well as the decoder
behaviour are not continuous and function in a discrete manner. However, starting from spikes
instead should not cause problems. When looking at the comparison of the end to end model to
the spiking to end model, it can be seen that the end to end model performs marginally better
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Figure A.31: The spiking to spiking controller structure that used the best performing encoder
and decoder to transform input and output values to spikes;

for all the propellers but both models manage to learn a controller. The reason why the model
trained without an encoder performs better is rooted in the fact that the encoder will bring an
additional error which has to be accounted by the controller. If the encoding procedure would
be flawless and consistent with almost no error being caused, the spiking to end controller might
be able to perform better as the controller model is not concerned with encoding anymore but
this should be left as future recommendation for study.

Table A.2: Absolute error of different methods of building a controller for every output
command

Model u1 u2 u3 u4

End to End 0.1534 0.0695 0.0930 0.0981

Spiking to End 0.1589 0.07107 0.1007 0.1064

Controller p&ϕ 0.2126 0.1078 0.1816 0.1713

MLP End to End 0.1501 0.0636 0.0901 0.0915

RNN 0.2241 0.2517 0.2895 0.3334

During the initial analysis of the controller structure, several other controller models have been
trained for a better understanding of the training process. Firstly, training an SNN controller
with less input parameters was analysed. For this, a pair of related parameters was chosen that
is not periodic over time (such as the x or y position) and provides important information about
the state of the flight (as opposed to z position or the ψ angle). Thus, it was decided to use only
the roll angle ϕ and its derivative p to build a controller. The results are as expected as very few
information is being passed to the controller. Even though, the output is discrete and it learns to
follow mostly the average of the signal without being capable to model the aggressive behaviour
of the signal with sudden upward and downward values. This behaviour can be visualised in
Figure A.32.

Following this, some artificial neural networks have been trained to learn the controller as well.
Thus 2 such models were created, one that uses a multi-layer perceptron (MLP) structure and
learns the controller end to end and a second one that uses recurrent neural network (RNN)
also to learn the controller end to end. Comparing their performance with the other models,
it can be seen that the MLP achieves the best performance on learning the controller but the
improvement compared to SNN is not that evident. Instead, using RNN to learn the controller
shows how recursion causes poor performance. This can be explained as the output command is
very spiky and the output commands barely depend on previous timesteps. This also explains
why the SNN chooses an approach closer to the MLP approach (so little recursion) with very low
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leak values and thus very little dependency on previous timesteps. This can also be visualised
by comparing the predicted controller output to the target output of the 3 models (the RNN,
the MLP and the SNN). The RNN output can be seen in Figure A.34, the MLP output in
Figure A.33 and the SNN can be visualised in the main paper work but it is very similar to
the MLP output and thus it was decided not to reproduce it anymore. From the 2 plots some
conclusions can be drawn. First of all, the dataset is so aggressive and spiky that not even with
an MLP can be accurately reproduced and thus the performance is still very poor. For this
reason, it was decided to make the RL controller output a smoother dataset that can actually
be learned as explained in the main paper work. Secondly, the recursion makes the controller
run smoother without sudden jumps across the dataset and just being concerned of following
the average value of the dataset. Thus it is expected that the controller trained with RNN
to achieve great performance at following the average trend as it learns from present and past
information.

Figure A.32: The performance of the controller that had as inputs only the p and ϕ parameters;

A.5 Hover to Hover with Reinforcement Learning

This section will present how various datasets were generated with the reinforcement learning
approach. Even though the title mentions about a hover to hover dataset, the current section
will also present how the dataset generated with reinforcement learning was made smoother.
The outcomes of the process can be seen in Figure A.35 where the output of the SNN can be
seen. It is clear now that when a smoother dataset, that can be followed more accurately, is
passed to the controller, its performance gets definitely improved. In order to make the dataset
smoother more constraints were imposed in the reward function. Until this moment, the only
constraint present was to minimise the distance to the gate as fast as possible. However, to
make the dataset smoother, 2 more constraints were added:

• The derivative of the command output should be reduced such that sudden jumps in
the output are avoided. In order to combine it with the existing reward system it was
found that a ratio factor of 0.00002 should be applied with respect to the existing distance
constraint;

• Following a similar approach as the energy optimal control dataset, the command output
should be reduced such that the drone flies directly to the gate with the lowest resources
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Figure A.33: The performance of the MLP controller trained end-to-end;

Figure A.34: The performance of the RNN controller;

possible. In order to combine it with the existing reward system it was found that a ratio
factor of 0.004 should be applied with respect to the existing distance constraint;

A similar approach was applied for generating a hover to hover dataset with reinforcement
learning as done with the energy optimal control problem dataset. Thus a model was learned
to fly optimally from one position to a hover state using reinforcement learning. With the
resulting model, a dataset containing 10000 samples of 800 timesteps each (equivalent to 8
seconds per sample) was generated. This was passed both to an SNN as well as to an MLP to
be learned. Figure A.36 shows the performance of the SNN controller on a testing dataset formed
of 10 samples while Figure A.37 shows the performance of the MLP controller in the simulator.
Unfortunately, the SNN model could not be flown in the simulator as the controller crashed
immediately. As can be seen, the SNN manages to follow the target signal relatively close but
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Figure A.35: The trained SNN model performance on the smooth dataset generated with
reinforcement learning;

there seems to be a slight bias in the output command as the value is slightly higher than it
should be. The reason for the bias was not found and it requires further research but overall the
performance seems very good and able to perform. The bias might also be the reason behind
the SNN failure in the simulator. On the other hand, the MLP model manages to learn the
controller even better as it can fly around the racing track. As observed and analysed through
the current paper, the SNN should be capable of getting close to the MLP performance. This
leads to a future research recommendation as it should be possible to train an SNN controller
with a dataset generated with reinforcement learning.

Figure A.36: The trained SNN model performance after being trained on a hover to hover
dataset that was generated with the reinforcement learning approach;

116



Guidance & Control Implementation with Spiking Neural Networks

Figure A.37: The trained MLP model performance in the flight simulator around the racing
track after being trained on a hover to hover dataset that was generated with the

reinforcement learning approach;

A.6 Weight Decaying

Even though this section is not related to the study of the encoder, it was still included in
the current chapter as the analysis reveals important conclusions with regard to the learning
performance of spiking neural networks not included in the main paper work. The weight
decaying was applied to the SNN controller as an attempt to reduce the heavy jumps present
in the output commands. In order to apply it, L2 normalisation technique has been used. This
tries to minimise the following loss function:

MSE =
4∑

i=1

(ui − ūi)
2 + λ

Nparam∑

j=1

βj (A.1)

where the first part of the equation is simply the mean squared error value of the network to be
minimised. The second part of the equation includes the regularisation term which implies that
all the Nparam parameters βj should be minimised. The term λ is a factor which controls how
strong the regularisation should be which in the case of the current analysis was initialised to
0.001.

In the end, using regularisation did not achieve the intended outcome making the SNN con-
troller less stable as can be observed in Figure A.38. The MSE loss of the model with weight
decay increased to 2.256e-2 compared to without decay where the MSE loss is only 5.387e-3
on the validation dataset. This decrease in performance can be attributed to the weight decay
constraints which just imposes more limits on finding the best performance as it is concerned
with minimising the values of all the parameters throughout the model. Even though a weaker
performance is achieved during training, when comparing the lap times achieved by the 2 SNN
models, better performance can be generally attributed to the controller trained using weight
decay. So, the current analysis shows that adding normalisation to the loss function improves
marginally the lap times but leads to less stable laps with the several outliers for other laps times
and a high standard deviation for first lap times. The reason for this might be that with less
constraints, better training is achieved and thus a more stable controller as well. The faster lap
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times might be caused by the fact that the controller with weight decay learned to fly closer to
the inside of the racing circuit. This generally leads to faster lap times but also brings a riskier
approach with a higher chance of missing the gates explaining the outlier lap times as well.

Figure A.38: The influence of the weight decay on the lap robustness and aggressiveness of the
SNN model trained on the hover to gate dataset with 500 neurons per layer

118



Guidance & Control Implementation with Spiking Neural Networks

B

Coding Contributions

The aim of this chapter is to present the extra work performed while developing the programming
code required for the current study. The focus of the current chapter will be on explaining what
has been adapted and what innovations have been brought to achieve the final goal of the
research. The work done during the current thesis can be found on a public repository1. Thus,
the chapter has been split in 2 sections, each responsible for a programming part of the current
project. Firstly, section B.1 was focused on the simulator part of the code and will explain
how the SNN model was built and trained using Python programming language. Secondly,
section B.2 will detail how the best SNN models were adapted to C programming language such
that they can be implemented in the experiment on the Bebop 1 drone.

B.1 Spiking library

For training an SNN, an existing repository in Python offered by TU Delft was used.2 Through
the usage of PyTorch library, the repository allowed for the training of an SNN using neuromor-
phic approach with the creation of CuBa LIF neuron modules and surrogate gradient descent
backpropagation methods. The existing repository was specialised on image recognition which
required the need of restructuring to be adapted to the current problem of guidance and control.
Thus this included the normalisation of data between 0 and 1, the use of MSE Loss for calcu-
lating the error and optimising the model as well as the inclusion of a learning rate scheduler
which decreases the use of learning rate when the learning plateau is reached. Moreover, the
division between training and validation dataset is still used and the selection of the optimal
model is done based on the best performing model on validation dataset. For this reason, the
number of epochs have been increased and the model is left to converge slowly to the optimal
result. However, some choices were still left to the existing code such as the ADAM optimiser,
or the arctangent as the function used for surrogate gradient descent.

With all these in mind, some changes had to be brought to the code as well. For example,
as mentioned above, the existing code was specialised on image recognition which required the
usage of convolutional synapses. However, for learning a controller with SNN using supervised
learning, a new module was required that would combine the existent CuBa LIF neurons module
with the linear synapse module. Moreover, as explained in section A.3, the research required the
analysis of the optimal number of neurons by grouping similar parameters together. To achieve
this during the training procedure, a mask was imposed upon the weight matrices to allow for
the grouping of parameters in the correct manner. This led to the creation of a new type of
synapse module which was added to the existing framework named MaskedLazyLinear which
can be visualised below:

1https://github.com/TudorAvarvarei/Code
2https://github.com/tudelft/spiking
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1 c l a s s MaskedLazyLinear (nn . LazyLinear ) :
2 c l s to become = None
3 de f i n i t ( s e l f , ou t f e a tu r e s , b ias , mask=None ) :
4 super ( ) . i n i t ( ou t f e a tu r e s , b i a s ) # Input s i z e i s s e t to 0 i n i t i a l l y
5 s e l f . mask = nn . Parameter (mask , r e qu i r e s g r ad=False )
6

7 de f forward ( s e l f , input ) :
8 # Apply the mask to the weight matrix
9 masked weight = s e l f . mask ∗ s e l f . weight

10 input = nn . f un c t i o n a l . l i n e a r ( input , masked weight , s e l f . b i a s )
11 re turn input , [ input ]
12

13 de f i n i t i a l i z e p a r am e t e r s ( s e l f , input , ∗ ) : # d i s ca rd s t a t e argument
14 super ( ) . i n i t i a l i z e p a r am e t e r s ( input=input ) # add delay dimension

The inclusion of this module required the change of several functions. This changes included the
creation of a new layer module that combined the usage of the CuBa LIF neuron module to the
MaskedLazyLinear synapse module as well as the change of the function that reads the SNN
model which required a new input, namely the mask matrix. Using the current library required
further changes in other modules such as the simulator developed by Ferede et al.[22, 23] for
the supervised learning and reinforcement learning code. However, the changes were generally
local and spread across the code so a detail of the procedure is beyond the scope of the current
section.

B.2 Switching to C Code

In the current section a presentation of the work required to transform the existing PyTorch
SNN model to C programming language will be done. This requirement is imposed by the
experiment and the Bebop 1 drone which can only process the information in real time through
the C programming language. In order to do this, the existing repository created for training
an MLP with supervised learning by Ferede et al.[22]3 will be used. However, this repository
was crafted for traditional artificial neural networks and cannot process directly SNNs. In order
to solve this issue, inspired by the work present in another repository4, the current code was
adapted to process SNNs in C programming language. In order to adapt the existing C code
spiking repository, the following modules were changed as follows. The connection module that
forwards the information between 2 consecutive layers and saves the weights of the synapses is
given by the following code:

1 #inc lude ”Connection . h”
2 #inc lude <s t d i o . h>
3 #inc lude <s t d l i b . h>
4

5 // Build connect ion
6 Connection bu i l d connec t i on ( i n t const post , i n t const pre ) {
7 // Connection s t r u c t
8 Connection c ;
9

10 // Set shape
11 c . post = post ;
12 c . pre = pre ;
13

14 // Al l o ca t e memory f o r weight array
15 c .w = c a l l o c ( post ∗ pre , s i z e o f (∗ c .w) ) ;
16 re turn c ;
17 }
18 // I n i t connect ion

3https://github.com/tudelft/optimal quad control SL
4https://github.com/tudelft/tinysnn
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19 void i n i t c o nn e c t i o n ( Connection ∗c ) {
20 // Loop over weights
21 f o r ( i n t i = 0 ; i < c−>post ; i++) {
22 f o r ( i n t j = 0 ; j < c−>pre ; j++) {
23 c−>w[ i ∗ c−>pre + j ] = rand ( ) / ( f l o a t )RANDMAX;
24 }
25 }
26 }
27 // Reset connect ion
28 // Doesn ’ t a c t ua l l y do anything , j u s t f o r c on s i s t ency
29 void r e s e t c onn e c t i o n ( Connection ∗c ) {}
30

31 // Load parameters f o r connect ion ( weights ) from a header f i l e
32 // ( us ing the ConnectionConf s t r u c t )
33 void load connec t i on f rom heade r ( Connection ∗c , ConnectionConf const ∗ conf ) {
34 // Check i f same shape
35 i f ( ( c−>pre != conf−>pre ) | | ( c−>post != conf−>post ) ) {
36 p r i n t f ( ”Connection has a d i f f e r e n t shape than s p e c i f i e d in the ”
37 ”ConnectionConf !\n” ) ;
38 e x i t (1 ) ;
39 }
40 // Loop over weights
41 f o r ( i n t i =0; i<c−>post ∗c−>pre ; i++){
42 c−>w[ i ] = conf−>w[ i ] ;
43 }
44 }
45 // Free a l l o c a t e d memory f o r connect ion
46 void f r e e c onn e c t i o n ( Connection ∗c ) {
47 // Only one c a l l , so only one f r e e ( as opposed to other methods f o r 2D arrays )
48 f r e e ( c−>w) ;
49 }
50

51 // Forward
52 // Spikes as f l o a t s to dea l with rea l−valued inputs
53 void f o rwa rd c onne c t i on f l o a t ( Connection ∗c , f l o a t out [ ] , f l o a t const in [ ] ) {
54 // Loop over weights and mult ip ly with sp i k e s
55 f o r ( i n t i = 0 ; i < c−>post ; i++) {
56 f o r ( i n t j = 0 ; j < c−>pre ; j++) {
57 out [ i ] += c−>w[ i ∗c−>pre + j ] ∗ in [ j ] ;
58 }
59 }
60 }
61 // Forward
62 // Spikes as i n t s to dea l with rea l−valued inputs
63 void f o rwa rd conne c t i on in t ( Connection ∗c , f l o a t out [ ] , i n t const in [ ] ) {
64 // Loop over weights and mult ip ly with sp i k e s
65 f o r ( i n t i = 0 ; i < c−>post ; i++) {
66 f o r ( i n t j = 0 ; j < c−>pre ; j++) {
67 out [ i ] += c−>w[ i ∗c−>pre + j ] ∗ in [ j ] ;
68 }
69 }
70 }

Similarly, the neuron module responsible for saving the parameters of all the neurons in all the
layers such as leak and threshold values but also the voltage and current potentials as well will
be detailed below. This module required the highest amount of change as the existing neuron
model was the LIF neuron while in the Python spiking library, the CuBa LIF neuron module
was used. Thus, both the parameters used as well as the neuron dynamics had to be adapted.
For a better understanding, the created module will be shown below:

1 #inc lude ”Neuron . h”
2 #inc lude ” f un c t i o n a l . h”
3
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4 // Build neuron
5 Neuron bu i ld neuron ( i n t const s i z e ) {
6 // Neuron s t r u c t
7 Neuron n ;
8

9 // Set s i z e
10 n . s i z e = s i z e ;
11

12 // Al l o ca t e memory f o r ar rays : inputs , vo l tage , thresho ld , sp ikes , l e ak s
13 // No need f o r type ca s t i ng
14 n . x = c a l l o c ( s i z e , s i z e o f (∗n . x ) ) ;
15 n . v = c a l l o c ( s i z e , s i z e o f (∗n . v ) ) ;
16 n . thresh = c a l l o c ( s i z e , s i z e o f (∗n . thresh ) ) ;
17 n . l e a k i = c a l l o c ( s i z e , s i z e o f (∗n . l e a k i ) ) ;
18 n . l e ak v = c a l l o c ( s i z e , s i z e o f (∗n . l e ak v ) ) ;
19 n . s = c a l l o c ( s i z e , s i z e o f (∗n . s ) ) ;
20 n . i = c a l l o c ( s i z e , s i z e o f (∗n . i ) ) ;
21 // Reset cons tant s
22 n . v r e s t = 0 .0 f ;
23

24 re turn n ;
25 }
26

27 // I n i t neuron ( add i t i on /decay/ r e s e t constants , inputs , vo l tage , sp ikes ,
28 // thresho ld , l e ak s )
29 void i n i t n eu r on (Neuron ∗n) {
30 // Loop over neurons
31 f o r ( i n t i = 0 ; i < n−>s i z e ; i++) {
32 // Inputs
33 n−>x [ i ] = 0 .0 f ;
34 // Voltage
35 n−>v [ i ] = n−>v r e s t ;
36 // Spikes
37 n−>s [ i ] = 0 .0 f ;
38 // Trace
39 n−>i [ i ] = 0 .0 f ;
40 // Leak o f cur rent
41 n−> l e a k i [ i ] = 0 .0 f ;
42 // Leak o f vo l t age
43 n−>l e ak v [ i ] = 0 .0 f ;
44 // Threshold
45 n−>thresh [ i ] = 1 .0 f ;
46 }
47 // Spike counter
48 n−>s count = 0 ;
49 }
50

51 // Reset neuron ( inputs , vo l tage , sp ikes , thresho ld , t r a c e )
52 void r e s e t neu ron (Neuron ∗n) {
53 // Loop over neurons
54 f o r ( i n t i = 0 ; i < n−>s i z e ; i++) {
55 // Inputs
56 n−>x [ i ] = 0 .0 f ;
57 // Voltage
58 n−>v [ i ] = n−>v r e s t ;
59 // Spikes
60 n−>s [ i ] = 0 .0 f ;
61 // Trace
62 n−>i [ i ] = 0 .0 f ;
63 }
64 // Spike counter
65 n−>s count = 0 ;
66 }
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67

68 // Load parameters f o r neuron from header f i l e ( us ing the NeuronConf s t r u c t )
69 void load neuron f rom header (Neuron ∗n , NeuronConf const ∗ conf ) {
70 // Check shape
71 i f (n−>s i z e != conf−>s i z e ) {
72 p r i n t f ( ”Neuron has a d i f f e r e n t shape than s p e c i f i e d in the NeuronConf !\n” ) ;
73 e x i t (1 ) ;
74 }
75 // Loop over neurons
76 f o r ( i n t i = 0 ; i < n−>s i z e ; i++) {
77 // Constants f o r add i t i on o f vo l tage , th r e sho ld and t ra c e
78 n−>thresh [ i ] = conf−>thresh [ i ] ;
79 n−> l e a k i [ i ] = conf−> l e a k i [ i ] ;
80 n−>l e ak v [ i ] = conf−>l e ak v [ i ] ;
81 }
82 // Constant f o r r e s e t t i n g vo l tage
83 n−>v r e s t = conf−>v r e s t ;
84 }
85

86 // Free a l l o c a t e d memory f o r neuron
87 void f r e e neu ron (Neuron ∗n) {
88 // c a l l o c ( ) was used f o r vo l tage /decay/ r e s e t constants , inputs , vo l tage ,
89 // thresho ld , sp ike and l e ak s ar rays
90 f r e e (n−>x ) ;
91 f r e e (n−>v ) ;
92 f r e e (n−>i ) ;
93 f r e e (n−>thresh ) ;
94 f r e e (n−>s ) ;
95 f r e e (n−> l e a k i ) ;
96 f r e e (n−>l e ak v ) ;
97 }
98

99 f l o a t s i gmo id f ( f l o a t n) {
100 re turn (1 / (1 + powf (EULERNUMBER, −n) ) ) ;
101 }
102

103 f l o a t r e l u ( f l o a t n) {
104 re turn (n < 0 .0 f ? 0 .0 f : n ) ;
105 }
106

107 // Check sp i k e s
108 s t a t i c void sp i k i ng (Neuron ∗n) {
109 // Loop over neurons
110 f o r ( i n t i = 0 ; i < n−>s i z e ; i++) {
111 // I f above/ equal to th r e sho ld : s e t sp ike , e l s e don ’ t
112 f l o a t thresh = r e l u (n−>thresh [ i ] ) ;
113 n−>s [ i ] = n−>v [ i ] >= thresh ? 1 : 0 ;
114 }
115 }
116

117 // Do r e f r a c t i o n
118 s t a t i c void r e f r a c (Neuron ∗n) {
119 // Loop over neurons
120 f o r ( i n t i = 0 ; i < n−>s i z e ; i++) {
121 // I f sp ike , then r e f r a c t i o n
122 // We don ’ t have a r e f r a c t o r y per iod , so no need to take care o f that
123 n−>v [ i ] = n−>s [ i ] == 1 ? n−>v r e s t : n−>v [ i ] ;
124 // Also increment sp ike counter !
125 n−>s count += n−>s [ i ] == 1 ? 1 : 0 ;
126 }
127 }
128

129 // Update vo l tage
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130 s t a t i c void update vo l tage (Neuron ∗n) {
131 // Loop over neurons
132 f o r ( i n t i = 0 ; i < n−>s i z e ; i++) {
133 // Decay d i f f e r e n c e with r e s t i n g po t en t i a l , then i n c r e a s e f o r incoming
134 // sp i k e s
135 f l o a t l e a k i = s igmo id f (n−> l e a k i [ i ] ) ;
136 f l o a t l e ak v = s igmo id f (n−>l e ak v [ i ] ) ;
137 n−>i [ i ] = (n−>i [ i ] ∗ l e a k i ) + n−>x [ i ] ;
138 n−>v [ i ] = ( ( n−>v [ i ] − n−>v r e s t ) ∗ l e ak v ) + n−>i [ i ] ;
139 }
140 }
141

142 // Update/ r e s e t inputs ( o therw i s e accumulation over time )
143 s t a t i c void update inputs (Neuron ∗n) {
144 // Loop over neurons
145 f o r ( i n t i = 0 ; i < n−>s i z e ; i++) {
146 // Set to zero
147 n−>x [ i ] = 0 .0 f ;
148 }
149 }
150

151 // Forward : encompasses vo l tage / t r a c e / th r e sho ld updates , sp i k i ng and r e f r a c t i o n
152 void forward neuron (Neuron ∗n) {
153 // Update vo l tage
154 update vo l tage (n) ;
155 // Get sp i k e s
156 sp i k i ng (n) ;
157 // Re f rac t i on
158 r e f r a c (n) ;
159 // Reset inputs ( o therw i s e we get accumulation over time )
160 update inputs (n) ;
161 }

With novel connection and neuron modules a new code that encompasses all of them had to
be created. This is the network module and should contain one function for initialisation as
well as one function for when the neuron network gets forwarded as new output commands are
required. To perform this, the following code was created:

1 #inc lude ”Network . h”
2

3 // Build network : c a l l s bu i ld f unc t i on s f o r ch i l d r en
4 Network bui ld network ( i n t const i n s i z e , i n t const h i d l a y e r s i z e ,
5 i n t const h id neu ron s i z e , i n t const o u t s i z e ) {
6 // Network s t r u c t
7 Network net ;
8

9 net . i n s i z e = i n s i z e ;
10 net . h i d l a y e r s i z e = h i d l a y e r s i z e ;
11 net . h i d n eu r on s i z e = h id neu r on s i z e ;
12 net . o u t s i z e = ou t s i z e ;
13

14 // Al l o ca t e memory f o r input p laceho lde r s , p lace c e l l c en t e r s and under ly ing
15 // neurons and connect i ons
16 net . input = c a l l o c ( i n s i z e , s i z e o f (∗ net . input ) ) ;
17 net . input norm = c a l l o c ( i n s i z e , s i z e o f (∗ net . input norm ) ) ;
18 net . in norm min = c a l l o c ( i n s i z e , s i z e o f (∗ net . in norm min ) ) ;
19 net . in norm max = c a l l o c ( i n s i z e , s i z e o f (∗ net . in norm max ) ) ;
20 net . output = c a l l o c ( ou t s i z e , s i z e o f (∗ net . output ) ) ;
21 net . output decoded = c a l l o c ( ou t s i z e , s i z e o f (∗ net . output decoded ) ) ;
22 net . inh id = mal loc ( s i z e o f (∗ net . inh id ) ) ;
23 net . hid1 = mal loc ( s i z e o f (∗ net . hid1 ) ) ;
24 net . hid2 = mal loc ( s i z e o f (∗ net . hid2 ) ) ;
25 net . hidout = mal loc ( s i z e o f (∗ net . hidout ) ) ;
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26 net . l ay e r1 = mal loc ( s i z e o f (∗ net . l ay e r1 ) ) ;
27 net . l ay e r2 = mal loc ( s i z e o f (∗ net . l ay e r2 ) ) ;
28 net . l ay e r3 = mal loc ( s i z e o f (∗ net . l ay e r3 ) ) ;
29

30 // Cal l bu i ld f unc t i on s f o r under ly ing neurons and connect ions
31 ∗net . inh id = bu i l d connec t i on ( h id neu ron s i z e , i n s i z e ) ;
32 ∗net . hid1 = bu i l d connec t i on ( h id neu ron s i z e , h i d n eu r on s i z e ) ;
33 ∗net . hid2 = bu i l d connec t i on ( h id neu ron s i z e , h i d n eu r on s i z e ) ;
34 ∗net . hidout = bu i l d connec t i on ( ou t s i z e , h i d n eu r on s i z e ) ;
35 ∗net . l ay e r1 = bui ld neuron ( h i d n eu r on s i z e ) ;
36 ∗net . l ay e r2 = bui ld neuron ( h i d n eu r on s i z e ) ;
37 ∗net . l ay e r3 = bui ld neuron ( h i d n eu r on s i z e ) ;
38

39 re turn net ;
40 }
41

42 // I n i t network : c a l l s i n i t f un c t i on s f o r ch i l d r en
43 void in i t n e two rk (Network ∗net ) {
44 // Loop over input p l a c eho l d e r s
45 f o r ( i n t i = 0 ; i < net−> i n s i z e ; i++) {
46 net−>input [ i ] = 0 .0 f ;
47 net−>input norm [ i ] = 0 .0 f ;
48 net−>in norm min [ i ] = 0 .0 f ;
49 net−>in norm max [ i ] = 0 .0 f ;
50 }
51

52 f o r ( i n t i = 0 ; i < net−>o u t s i z e ; i++) {
53 net−>output [ i ] = 0 .0 f ;
54 net−>output decoded [ i ] = 0 .0 f ;
55 }
56 // Cal l i n i t f un c t i on s f o r ch i l d r en
57 i n i t c o nn e c t i o n ( net−>i nh id ) ;
58 i n i t c o nn e c t i o n ( net−>hid1 ) ;
59 i n i t c o nn e c t i o n ( net−>hid2 ) ;
60 i n i t c o nn e c t i o n ( net−>hidout ) ;
61 i n i t n eu r on ( net−>l ay e r1 ) ;
62 i n i t n eu r on ( net−>l ay e r2 ) ;
63 i n i t n eu r on ( net−>l ay e r3 ) ;
64 }
65

66 // Reset network : c a l l s r e s e t f unc t i on s f o r ch i l d r en
67 void r e s e t ne twork (Network ∗net ) {
68 r e s e t c onn e c t i o n ( net−>i nh id ) ;
69 r e s e t c onn e c t i o n ( net−>hid1 ) ;
70 r e s e t c onn e c t i o n ( net−>hid2 ) ;
71 r e s e t c onn e c t i o n ( net−>hidout ) ;
72 r e s e t neu ron ( net−>l ay e r1 ) ;
73 r e s e t neu ron ( net−>l ay e r2 ) ;
74 r e s e t neu ron ( net−>l ay e r3 ) ;
75 }
76

77 // Load parameters f o r network from header f i l e and c a l l load func t i on s f o r
78 // ch i l d r en
79 void load network f rom header (Network ∗net , NetworkConf const ∗ conf ) {
80 // Check shapess
81 i f ( ( net−> i n s i z e != conf−> i n s i z e ) | |
82 ( net−>h i d l a y e r s i z e != conf−>h i d l a y e r s i z e ) | |
83 ( net−>h i d n eu r on s i z e != conf−>h i d n eu r on s i z e ) | | ( net−>o u t s i z e != conf−>

o u t s i z e ) ) {
84 p r i n t f (
85 ”Network has a d i f f e r e n t shape than s p e c i f i e d in the NetworkConf !\n” ) ;
86 e x i t (1 ) ;
87 }
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88 // Decoding
89 net−>output sca l e min = conf−>output sca l e min ;
90 net−>output sca le max = conf−>output sca le max ;
91 // Encoding
92 f o r ( i n t i = 0 ; i < net−> i n s i z e ; i++) {
93 net−>in norm min [ i ] = conf−>in norm min [ i ] ;
94 net−>in norm max [ i ] = conf−>in norm max [ i ] ;
95 }
96

97 // Connection input −> hidden
98 l oad connec t i on f rom heade r ( net−>inhid , conf−>i nh id ) ;
99 // Hidden neuron

100 l oad connec t i on f rom heade r ( net−>hid1 , conf−>hid1 ) ;
101 // Hidden neuron
102 l oad connec t i on f rom heade r ( net−>hid2 , conf−>hid2 ) ;
103 // Connection hidden −> output
104 l oad connec t i on f rom heade r ( net−>hidout , conf−>hidout ) ;
105 // Layer 1
106 l oad neuron f rom header ( net−>l ayer1 , conf−>l ay e r1 ) ;
107 // Layer 2
108 l oad neuron f rom header ( net−>l ayer2 , conf−>l ay e r2 ) ;
109 // Layer 3
110 l oad neuron f rom header ( net−>l ayer3 , conf−>l ay e r3 ) ;
111 }
112

113 // Free a l l o c a t e d memory f o r network and c a l l f r e e f unc t i on s f o r ch i l d r en
114 void f r e e ne twork (Network ∗net ) {
115 // Cal l f r e e f unc t i on s f o r ch i l d r en
116 // Free ing in a bottom−up manner
117 // TODO: or should we c a l l t h i s be f o r e f r e e i n g the network s t r u c t members?
118 f r e e c onn e c t i o n ( net−>i nh id ) ;
119 f r e e c onn e c t i o n ( net−>hid1 ) ;
120 f r e e c onn e c t i o n ( net−>hid2 ) ;
121 f r e e c onn e c t i o n ( net−>hidout ) ;
122 f r e e neu ron ( net−>l ay e r1 ) ;
123 f r e e neu ron ( net−>l ay e r2 ) ;
124 f r e e neu ron ( net−>l ay e r3 ) ;
125 // c a l l o c ( ) was used f o r input p l a c eho l d e r s and under ly ing neurons and
126 // connect i ons
127 f r e e ( net−>input ) ;
128 f r e e ( net−>input norm ) ;
129 f r e e ( net−>in norm min ) ;
130 f r e e ( net−>in norm max ) ;
131 f r e e ( net−>i nh id ) ;
132 f r e e ( net−>hid1 ) ;
133 f r e e ( net−>hid2 ) ;
134 f r e e ( net−>hidout ) ;
135 f r e e ( net−>l ay e r1 ) ;
136 f r e e ( net−>l ay e r2 ) ;
137 f r e e ( net−>l ay e r3 ) ;
138 }
139

140 void p r ep ro c e s s i npu t ( f l o a t ∗ input , f l o a t ∗ input norm , const f l o a t ∗ in norm min ,
const f l o a t ∗ in norm max , const i n t i n s i z e )

141 {
142 f o r ( i n t idx = 0 ; idx < i n s i z e − 3 ; idx++)
143 {
144 input norm [ idx ] = ( input [ idx ] − in norm min [ idx ] ) /( in norm max [ idx ] −

in norm min [ idx ] ) ;
145 }
146 input norm [ i n s i z e − 3 ] = 0 .0 f ;
147 input norm [ i n s i z e − 2 ] = 0 .0 f ;
148 input norm [ i n s i z e − 1 ] = 0 .0 f ;
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149 }
150

151 // Function : Post−proce s s outputs ( unsca l i ng l a y e r s )
152 void pos tp roce s s output ( f l o a t ∗output , f l o a t ∗output decoded , const f l o a t

output sca le min , const f l o a t output sca le max , const i n t o u t s i z e )
153 {
154 i n t idx ;
155

156 f o r ( idx = 0 ; idx < o u t s i z e ; idx++)
157 {
158 // unsca l e from [ 0 , 1 ] to the i n t e r v a l [ contro l min , control max ]
159 output decoded [ idx ] = output sca l e min + output [ idx ] ∗ ( output sca le max −

output sca l e min ) ;
160 }
161 }
162

163 // Forward network and c a l l forward func t i on s f o r ch i l d r en
164 // Encoding and decoding i n s i d e
165 void forward network (Network ∗net ) {
166 f o r ( i n t i =0; i<net−>o u t s i z e ; i++){
167 net−>output [ i ] = 0 ;
168 }
169 pr ep ro c e s s i npu t ( net−>input , net−>input norm , net−>in norm min , net−>in norm max

, net−> i n s i z e ) ;
170 // Cal l forward func t i on s f o r ch i l d r en
171 f o rwa rd c onne c t i on f l o a t ( net−>inhid , net−>l ayer1−>x , net−>input norm ) ;
172 forward neuron ( net−>l ay e r1 ) ;
173 f o rwa rd conne c t i on in t ( net−>hid1 , net−>l ayer2−>x , net−>l ayer1−>s ) ;
174 forward neuron ( net−>l ay e r2 ) ;
175 f o rwa rd conne c t i on in t ( net−>hid2 , net−>l ayer3−>x , net−>l ayer2−>s ) ;
176 forward neuron ( net−>l ay e r3 ) ;
177 f o rwa rd conne c t i on in t ( net−>hidout , net−>output , net−>l ayer3−>s ) ;
178 // Decode output neuron t r a c e s to s c a l a r va lue
179 pos tp roce s s output ( net−>output , net−>output decoded , net−>output sca le min , net

−>output sca le max , net−>o u t s i z e ) ;
180 }

With the SNN modules translated to C programming language, it is important now to under-
stand how the integration in the Paparazzi simulator was done as well as how the SNN parame-
ters were passed to new programming language. Firstly, the code, required to run the Paparazzi
simulator, can be found in the following repository.5 This works simply by sending the initial-
isation function build_network followed by the loading function load_network_from_header

when the guidance and control module is initialised. When the update of the output commands
is required, the forward_network function is called at every timestep.

Secondly, it is important to understand how the network parameters are passed to the C module.
In short, the parameters are passed within a file as 1D arrays. Thus, all the leaks and threshold
values are passed as 1D arrays of the same length as the number of neurons in the layer. Similarly,
the normalisation array for the input values are also passed as 1D arrays with one array for the
maximum of all the parameters and one array for the minimum of all the parameters. Last
but not least, the weight matrices between consecutive layers are passed as 1D arrays as well.
Thus, they are built to follow the row-major criterion specific of C programming language which
means that, in order to call the weight from the ith row and the jth columns, it is necessary to
use the following structure: i∗n col + j where ncol is the number of columns. Moreover, in the
current code, the number of columns is given by number of neurons in the preceding layer while
the number of rows is given by the number of neurons in the following layer.

5https://github.com/tudelft/paparazzi/tree/race min snap2 SNN

127


	Preface
	List of Figures
	List of Tables
	Nomenclature
	I Scientific Paper
	II Literature Study
	Abstract
	Introduction
	Existing Neuromorphic Applications
	Encoding
	Neuron Models
	Implementation
	Research Proposal
	Research Methodology
	Research Planning
	Conclusion
	References

	III Additional Work
	Encoder
	Coding Contributions


