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Executive summary

As the share of solar and wind in the energy mix increases, the inherent intermittency of these energy
sources pose a great challenge for the Dutch power grid. The occurrence of problems with congestion
and balancing power supply and demand are becoming more common. Companies in the Netherlands
show potential to implement means for smart use of energy to alleviate these kind of problems. How-
ever, the gap between academic solutions and the industry is often too large. This research presents
a method to find the optimal design of an integrated energy system in the Netherlands. A use case
at Picnic is used to apply the proposed method. A flexible load scheduling optimisation algorithm is
presented to explore the financial benefit of an integrated energy system that combines a photovoltaic
system, an energy storage system, a cold storage system and a fleet of electric vehicles. The financial
performance of different system designs are compared. Results show that the optimised load sched-
ules for the EV fleet and CS system achieve a 2.6% decrease of energy costs with respect to the
benchmark of Picnic. A PV system turns out to be beneficial for every size that the grid connection
allows. This research finds 600 square meters to be optimal in the case of Picnic. An energy storage
system would make optimised load schedules obsolete due to its flexibility. An energy storage system
with a capacity of 250 kWh is found to be optimal according to the performance analysis. However,
significant limitations in the assumptions of the storage system advise against installing it. Further re-
search is required to elaborate the different elements in the proposed model. Different markets are
suggested to use as a basis for load scheduling and a broader set of system designs is suggested to
analyse their performance.
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Introduction

"We are the first generation to feel the effect of climate change and the last generation who can do
something about it.”

- Barack Obama

1.1. Energy transition

It is evident that the emission of carbon dioxide and other greenhouse gases due to human activity is
increasing global average surface air temperatures and is changing the earths climate (Stocker et al.,
2013). Efforts to reduce these effects cause the share of renewable energy sources (RES) in the worlds
energy mix to become larger. The use of RES emits less or even no carbon dioxide. However, RES
are often decentralised and strongly dependent on weather conditions, particularly the availability of
wind and solar irradiance. In their study about wind energy generation forecasting, Ernst et al. (2007)
state that the existing electricity supply system was mainly designed for large units of fossil fuel and
nuclear power stations and therefore integration of renewable energy sources leads to challenges with
regard to capacity and balancing.

Generally, problems that arise due to the introduction of RES are divided in two categories: (i) balancing
of generated power and consumption and (ii) capacity related issues for energy transportation infras-
tructure. First, balancing issues occur when supply doesn’'t meet demand. Such events happen more
often with a high share of RES in the energy mix. On the other hand, there can be too much generation
of power while there is no consumer to alleviate the grid from its oversupply. Second, capacity issues
are related to peak loads that are too big for grid connections. When there is an overload of energy
and the infrastructure is not capable of handling this, it is commonly referred to as congestion. This can
occur for example due to quick and unexpected installation of large scale solar parks, large increase of
demand for electricity due to clustering of data-centres or more locally an increase of solar panels on
roofs, EVs and heat pumps. In their paper about smart charging of EVs, Zheng and Jian (2016) state
that it has been shown that uncoordinated charging of large scale EVs will threaten the stability and
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8 1. Introduction

security of the power grid. Future grid analyses predict that peak loads will start to increase and current
connections are not able to handle these high capacities. To renew all transmission lines, connectors,
cabling and transformers would require an investment that often is not cost-efficient.

Therefore, the transition from conventional fossil fuel based energy sources to the more unpredictable
RES calls for a new way to structure the energy grid. Heard et al. (2017) write in their comprehensive
review of the feasibility of 100% renewable-electricity systems that efforts to date seem to have sub-
stantially underestimated the challenge and delayed the identification and implementation of effective
and comprehensive decarbonisation pathways. It follows that with the expected rise of RES, a refor-
mation of our current energy system is inevitable to enable the energy grid to handle the intermittent
character of generation and balance it with energy demand. According to Sechilariu et al. (2013), a
solution to this problem is to expand the role of integrated energy systems (IES) that interact with the
utility grid and operate adjusted to limited availability of energy during peak hours or operate indepen-
dently in case of power outage. IES often include one or more renewable energy sources, integrated
with energy storage systems (ESS) and other technologies.

Therefore, more research is needed to stimulate the implementation of IES to decrease future prob-
lems due to grid balancing and congestion. Some companies possess the potential to ameliorate the
complexities caused by the energy transition. The availability of free roof space creates an opportu-
nity to install a solar system and locally generate electricity. High energy consumption that is flexible
creates the opportunity for demand response and grid balancing. To further research the potential of
companies in the Netherlands this research uses a case study at Picnic.

1.2. Picnic

Picnic is an online supermarket that exclusively delivers groceries, hence they have no physical stores
where customers can buy their groceries. They deliver the groceries with small electric vehicles right
up to the customers’ front door. In 2019, they had roughly 800 EVs in operation spread out over 30
distribution hubs in the Netherlands and Germany.

To enable the use of RES like wind and solar, policies and regulations within Europe stimulate the
transition to more use of electric vehicles as well as smarter and more efficient use of energy to com-
pensate for the intermittent character of these RES. Picnic shows great potential for the implementation
of a smart grid due to their large fleet of EVs, a lot of roof space suitable for PV, cold storage facilities
and overall large energy consumption. That is why Picnic has been awarded a grant for sustainable
energy use in transportation from the Dutch government to set up a collaborative project with ENGIE, a
French multinational electric utility company, and Dexter Energy Services, who provides energy price
forecasting and demand-side control services. Together they will test the possibilities for smarter en-
ergy use. The goal is to develop and test an experimental setup where a fleet of small electric trucks
can be charged in the most efficient and least costly way possible within the planned logistical bound-
aries, along with local energy generation with a PV system, smarter energy use by the cooling systems
and opportunities for energy storage.

The Picnic supply chain consists of a number of processes. Starting with ordering stock and inbound
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product delivery to the fulfilment centres. Here, the fulfiiment of the individual customers’ orders takes
place. Next, the orders are transported to distribution hubs for preparation of last mile delivery to the
customers’ home. A graphical representation is shown in Figure 1.1. The experimental location will be
at a distribution hub of Picnic in the city of Zaandam, the Netherlands. At this location there will be an
integrated combination of an on-site PV system for energy production, an energy storage system and
demand-side control activities applied on the cold storage facilities and EV charging stations based on
forecasts of energy prices.

o)
<&l =
.......... l H
Fulfilment Home
center

Figure 1.1: Graphical representation of the Picnic supply chain flow

1.3. Knowledge gap and problem statement

Research shows that there are numerous options for optimising energy use. However, a direct ap-
proach to combine energy storage, cold storage, EV charging and local energy generation in an in-
tegrated energy system has not yet been investigated. Besides, Picnic is new in the world of smart
energy use and is in need of an analysis of the technical implementation for their integrated energy
system. Therefore this research will focus on how to find the optimal design for an integrated energy
system for companies like Picnic.

1.4. Research outline
This thesis will focus on how to determine the optimal design for an integrated energy system for e-

commerce food distribution hubs. The following research question will be answered:

How can the optimal design for an integrated energy system for e-commerce food distribution hubs be
determined?

In order to lead to an answer to the main research question, the following six subquestions are consti-
tuted:

I. What elements are involved in an integrated energy system for e-commerce food distribution hubs?

Il. What are the characteristics of the energy flows between the elements in the integrated energy
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system?
Ill. What are the criteria for an optimal design of an integrated energy system?

IV. What method can be used to find the optimal sizing requirements of all physical components within
an integrated energy system?

V. How can the method for finding optimal sizing requirements be applied?

VI. What is the optimal design of an integrated energy system for the use case of Picnic?

1.5. Report framework

The objective of this research is to find a method to design an integrated energy system in the Nether-
lands. The study will concentrate on integrated energy systems for e-commerce food distribution hubs
and how to optimise such a system. The situation at Picnic will be used as a case study in this research.
The experiments in this research are performed over the most recent full year, 2018, and an advice is
constructed taking into account the present energy landscape.

» Chapter 2 describes relevant literature concerning this research.

» Chapter 3 describes the electricity landscape in the Netherlands, the electrical power systems
and the actors in the energy markets.

» Chapter 4 describes the design of the research and the method that is used.
» Chapter 5 documents the data that is used as input for the experiments.
» Chapter 6 documents and discusses the results of this research.

» Chapter 7 formulates the conclusions of this research and gives recommendations for further
research.



Literature review

This chapter provides an overview of modern literature concerning integrated energy systems (IES),
demand response (DR) strategies and optimisation methods with respect to integrated energy systems.

2.1. Integrated energy systems

Integrated energy systems are commonly understood as a location specific design for the integration
of different renewable energy sources and other innovative technologies for smarter use of energy. An
integrated energy system is also known as a smart grid. Hatziargyriou (2014) states the definition of a
smart grid as follows:

"A smart grid is an electricity network that can intelligently integrate the actions of all users connected to
it - generators, consumers and those that assume both roles - in order to efficiently deliver sustainable,
economic and secure electricity supplies.”

From this definition, three key concepts can be distilled, namely the energy generation source, the
energy end user and intelligent integration between those two to balance generation and consumption.
Intelligent energy use beholds that the power system is monitored, controlled and that there is some
sort of communication between the generator and consumer. According to Verzijlbergh and Lukszo
(2013), intelligent energy systems are often a combination of the elements of flexible electricity de-
mand anticipating on real-time prices and distributed generation. Consequently, to anticipate on price
stimuli, a suitable system needs to be developed to control energy flows. Koirala et al. (2016a) describe
the modern development to re-organise local energy systems where they focus on integrated commu-
nity energy systems (ICES) and distributed energy resources. They present a model-based framework
to assess the value of ICESs for local communities and use it to assess the value of an ICES in the
Netherlands. In June 2016, Koirala et al. (2016b) describe the same framework but for a combination
of ten households in Spain. In both articles, grid-connected ICESs are preferred over the alternative of
solely being supplied from the grid, both in terms of costs and carbon dioxide emissions. It follows that
the use of intelligent energy systems attractive in terms of costs. Verzijlbergh et al. (2014) investigated

11



12 2. Literature review

possible congestion management mechanisms for price-responsive EV demand in electricity distribu-
tion networks. They find that in order to yield desirable outcomes, it is a necessity to have optimal
dynamic grid tariffs. This way, the volatility of energy costs and price signals can be used to stimulate
or discourage the use of energy by the end user. Therefore, in this research dynamic grid tariffs will be
used as an input parameter for the optimisation problem. Lund and Minster (2006) present the analy-
sis of different ways of increasing flexibility in the Danish energy system by the use of local regulation
mechanisms. They find that it can increase grid flexibility in an energy system and that it can benefit
from energy trading. Also, it stimulates a better use of wind and other types of renewable energy. It
follows that the use flexible assets is able to be financially preferred. According to Farhangi (2010),
the smart grid is required to be self-healing and resilient to system anomalies. Khan and Khan (2013)
state that a robust communication infrastructure is the touchstone of a smart grid that differentiates it
from the conventional electrical grid by transforming it into an intelligent and adaptive energy delivery
network.

Concluding, different research shows that the implementation of integrated energy systems can be
financially desirable. Typical technologies in an IES include energy storage, local renewable energy
production (e.g. PV systems) and demand management on basis of dynamic grid tariffs. It shows that
for the design of an integrated energy system, there is a need for a robust control system that can
schedule load for flexible assets and control other energy flows. Dynamic grid tariffs are needed to
create value when scheduling this load. Chapter 3.4 elaborates further on the dynamic grid tariffs in
different energy markets.

2.2. Demand response

As concluded in Section 2.1, part of the implementation of IES involves load scheduling based on dy-
namic grid tariffs. This practise is also referred to as demand response (DR). DR is a form of load
management that focuses on the demand side and often uses flexible assets to solve congestion or
imbalance between demand and supply. In this section the way of restructuring the load is reviewed.
The basic principle of demand response is to lower energy demand during specific time intervals as a
response on price signals which are determined by the supply and demand of energy. Carreiro et al.
(2017) focus in their paper on the role of energy management systems aggregators. They review re-
cent literature and projects to put perspective the role of energy management systems aggregators in
the context of intelligent energy systems. They find that the involvement of end-users is a key element
for the implementation of demand response, as a way to enhance the energy efficiency of the electric-
ity infrastructure also enabling to cope with the intermittency of renewable energy sources. There are
multiple types of demand side management that can help alleviate capacity constraints in the electricity
grid. Figure 2.1 gives a graphic illustration of different demand management techniques as described
by Eid et al. (2016).
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Load shape DR type Load shape DR type

Peak Clipping Load Shifting

Valley Filling Flexible load shapes (dynamic energy management)

Load Building (Strategic Load Growth) A Strategic Conservation (energy efficiency)

PP
2

Figure 2.1: Demand response load shapes (Eid et al., 2016).

Considering the various approaches of demand response described, it is concluded that the main goal
in designing an integrated energy system is to have the opportunity to adjust the load profile of energy
consuming assets. The problems with most strategies and the application for flexible assets is that
their energy demand during a specific time period is fixed. Meaning that when at one point in time the
demand is decreased, it needs to be increased in another point of time. Resulting, the only applicable
demand response strategy for these assets is load shifting. The basic concept as described by Eid
et al. (2016) is decreasing peak demand and shifting it forward or backward in time. Concluding, DR
can be used to schedule load on basis of dynamic grid tariffs in a smart energy context.

2.3. Load scheduling techniques

Previous sections conclude that flexibility is key in integrated energy systems and demand response
can be applied to schedule load based on dynamic energy tariffs to achieve a financial advantage.
In this section different techniques with respect to load scheduling in integrated energy systems are
reviewed. Three main techniques are discussed to create load schedules for assets within integrated
energy systems: optimisation with linear programming, model predictive control and stochastic optimi-
sation.

2.3.1. Load schedule optimisation

Zhu et al. (2012) propose a consumption scheduling mechanism for home area load management in
a smart grid based on integer linear programming. Their objective is to minimise the peak hourly load
in order to achieve an optimal daily load schedule. Their simulation results demonstrated the effec-
tiveness of the optimisation technique. Logenthiran et al. (2012) present a demand side management
strategy based on load shifting technique for demand side management of future smart grids with a
large number devices of several types. They propose a day-ahead load shifting technique formulated
as a minimisation problem. They find that their proposed strategy achieves substantial financial sav-
ings. Ng and Sheble (1998) present a linear programming based algorithm for a scheduling problem
that maximises profit by customer loads. They find that it is an inexpensive and powerful approach. A
similar conclusion is found by Kurucz et al. (1996) who have developed a linear programming model to



14 2. Literature review

optimise the amount of power system peak load reduction thorough scheduling of industrial and resi-
dential loads. Concluding, (mixed integer) linear programming proves to be a inexpensive and powerful
approach for day ahead scheduling of loads to minimise energy costs.

2.3.2. Model predictive control

In the research of Okur et al. (2019), a model predictive control approach is applied and employed
in combination with an optimisation model in a smart energy use context. It uses a rolling horizon
approach to optimise imbalance for aggregators for a certain time period based on solar irradiance
input that is updated between consecutive runs of the optimisation model. Mayne et al. (2000) state
that MPC is a form of control in which the current control action is obtained by solving a model for a
finite horizon in multiple consecutive sampling instants. The output of a current model output is used as
an input for the next instant. Garcia et al. (1989) states that MPC designs have the ability to yield high
performance control systems capable of operating without expert intervention for long periods of time.
When making a load schedule with day ahead linear programming optimisation, the input parameters
could consist of forecasts of energy prices or solar irradiance. Because these forecasts are generally
more accurate as the time for which is forecasted comes closer, a model predictive control approach
could result in a better performance in comparison with a single day ahead load schedule.

2.3.3. Stochastic optimisation

When working with forecasts of energy demand, energy generation by PV systems or energy prices,
there is some degree of variability due to possible inaccuracy forecasts of weather, energy demand or
energy prices, which causes optimisation techniques to be not completely accurate. To be able to deal
with variations in input parameters, stochastic optimisation is often introduced. In their paper, van der
Linden et al. (2018) present a model to minimise operational costs and propose a stochastic optimi-
sation method of an EV aggregator that models the uncertainty of the imbalance price, the reserve
prices and the probability of acceptance and deployment of reserves. Their experimental evaluation
shows that the proposed stochastic optimisation method results in lower costs than deterministic and
quantity-only bid solutions. Four classes of load optimisation strategies are described in a two-part
tutorial on stochastic optimisation in energy (Powell and Meisel, 2015a) (Powell and Meisel, 2015b).
These classes are control theory, dynamic programming, stochastic programming and robust optimisa-
tion. They conclude in the first part that each of these classes may be best, depending on the optimisa-
tion problem. In the second part they propose a fifth hybrid policy that illustrates the ability to combine
the strengths of multiple policy classes. Concluding, stochastic optimisation is a technique that can be
used for load scheduling in smart energy settings to illustrate the stochastic nature of forecasts related
to weather, demand or energy prices.

2.4. Literature review conclusion

Concluding from the literature study, load scheduling and measuring total energy costs is a suited
approach to test the performance of integrated energy systems and load shifting is proved to be an ef-
fective demand response strategy. A requirement is the availability of dynamic tariffs for energy taken
from the grid. Three techniques are reviewed for load scheduling in integrated energy systems. The
main approach used in different load scheduling algorithms and demand planning is linear program-



2.4. Literature review conclusion 15

ming. It proves to be an inexpensive and powerful approach for day ahead load scheduling. Model
predictive control and stochastic optimisation show potential for load scheduling with forecasts. These
approaches are suited when optimising with a limited horizon forecast of e.g. imbalance prices.






Dutch electricity landscape & context

This chapter creates an overview of the electricity landscape and the context of this research. This
research focuses on integrated energy systems in the Netherlands with a case study at Picnic. It is
concluded that there is a requirement for dynamic grid tariffs. There are multiple ways to achieve this.
Therefore, in this chapter, the Dutch electricity system will be explained as well as the markets on which
electric energy is traded and the different actors who fulfil key roles in this system.

3.1. The Dutch power system

Generation is the first step in the electricity supply chain. Electricity is conventionally generated in steam
generators fuelled by coal or gas but renewable energy sources are gaining a larger share in the energy
mix. The energy is transported via a transmission network managed by Tennet. TenneT is the Dutch
transmission company, or transmission system operator (TSO), controlled and owned by the Dutch
government. It is TenneT’s responsibility to balance the grid and prevent the Netherlands from power
outages. They manage 110 kV, 150 kV, 220 kV and 380 kV AC grids and control interconnections with
neighbouring countries. This is referred to as the high voltage grid and covers all of the Netherlands.
Distribution in specific regions or among households is the responsibility of the distribution system
operators (DSOs) and is done via distribution networks. They take care of transforming the high voltage
to medium and low voltage of 230 V and distributes it to the consumer who applies a load to the grid.
There are seven DSOs in the Netherlands who are each operational in a specific region: Rendo, Coteq,
Liander, Enexis, Stedin, Westland and Enduris. Communicating energy demand by consumers with
the TSO is managed by program responsible parties (PRPs). A PRP is a legal entity that manages at
least one physical connection the the grid. The PRPs can bid supply as well as demand they are the
party that correspond with TenneT. The supplying of energy is managed the the retail company. This
party takes care of direct contact with the end user and manages the trading between the PRP and
the end user. Figure 3.1 shows an illustration of the power system in the Netherlands with the different
actors and physical systems.

17
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Figure 3.1: Representation of the Dutch power system (De Vries, 2018)

3.2. Wholesale markets

For the situation in the Netherlands, there are generally three main types of markets distinguished:
the bilateral market, the power exchanges, and balancing markets. In these three segments there are
different markets that are accessible to trade energy.

Bilateral market

On the bilateral market market bilateral contracts are traded. These are long term purchase agree-
ments between energy producers and utility companies. Bilateral contracts are also referred to as
power purchase agreements (PPAs). The majority of electricity is traded bilaterally between producers
and industrial consumers or retail companies. The use of this construction reduces the investment risk
of price changes. Most of these contracts have a duration not longer than 3 years but they can be as
long as 10 years. These type of contracts are private, this means that it is hard to know the price that is
agreed upon. Producers and consumers can avoid uncertainty of short term price variations. For the
producer, these contracts reduce the risk of sudden low prices and for the consumer it reduces risk for
sudden high prices.

Day ahead market

Most of the energy is traded on the day ahead market (DAM), this is a type of spot market and in
the Netherlands the largest exchange is the European power exchange (EPEX), known as the EPEX
SPOT. They also operate the markets in Germany, Austria, Luxembourg, France, the UK, Belgium and
Switzerland. On the DAM, the market price is determined by pairing supply and demand bids with a
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method called market clearing. For every hour in one day a different price is determined. The market
closes at noon the day before the concerning day. Since all bids are based on a prediction of supply or
demand, deficits or surpluses in bids are not uncommon. These deviations are settled on the intraday
market and the balancing market.

Intraday market

The intraday market has a similar structure as the day ahead market and trading also happens on the
EPEX SPOT. The main difference is that energy is traded within the concerning day. Prices determined
hourly via the same bidding structure and market clearing. The intraday market is not used as much
as the DAM and is therefore not as liquid.

3.3. Balancing markets
When load profiles that are communicated by the PRP to TenneT are not fulfilled, the imbalance in the
energy grid that arises is balanced with help of the different balancing markets.

The frequency containment reserve

The frequency containment reserve (FCR) is the first link in balancing the energy grid and is focused on
keeping the frequency of the grid at 50 Hz. PRPs can submit bids for a certain power capacity, starting
at 1 MW. The PRP is required to be able to activate the offered capacity within 30 seconds for at least
15 minutes. The PRPs are required to monitor the frequency themselves and act upon changes and
document this and send it to TenneT. The contracted time for which a bid is selected is one week.

Automatic and manual frequency restoration reserve

The automatic frequency restoration reserve (aFRR) is designed to control substantial imbalances in
the frequency of the energy grid. Bidding is done for time units of 15 minutes. There are two ways
to participate in the aFRR. These are as a contracted bidder or on voluntary basis. With a contracted
participation there is a contract compensation plus a compensation when you are requested to sup-
ply energy. Regulation takes place on voluntary basis, only when regulation takes place the bidder
is compensated TenneT (2018). The manual frequency restoration reserve (mFRR) serves the same
purpose as the aFRR but is activated in a later stadium and is manually controlled.

TenneT imbalance

Based on day ahead and intraday markets, load profiles are communicated by the program responsi-
ble party (PRP) to TenneT who balances the transmission grids with this information. The imbalance
market is where deficits or surpluses of the initial bids are settled. Imbalance prices are determined by
TenneT and are based the tariffs of the balancing services FCR, aFRR and mFRR.

3.4. Context conclusion

In order to create a financial incentive to apply demand response, dynamic grid tariffs need to be avail-
able. These tariffs need to be easily predictable to create a schedule up front. The different markets
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as decribed in this section are considered to act as a basis to create a schedule for the energy flows
within an integrated energy system. Starting with the bilateral market, it is obvious that when prices
are fixed for long periods of time there is no advantage to steer energy demand. Next, the day ahead
market shows high potential to steer energy demand on. The prices differ every hour of the day and
a forecast can be obtained of adequate quality. The intraday market has similar qualities except for
the fact that the market liquidity in the Netherlands is deficient. When a bid is made on the day ahead
market or intraday market, the deviation of this bid is settled on the imbalance market. The prices on
this market differ every period of 15 minutes and are highly volatile. Negative prices, which mean that
one receives a benefit when consuming energy, are not uncommon. These prices are based on costs
that are made on the ancillary markets. To create a load schedule based on this market shows great
potential due to the high volatility. However, to predict these prices is often problematic. Furthermore,
the ancillary markets require a more involved bidding system. The FCR market is only accessible when
providing services for a week. This would largely constrain daily operation of most assets. The aFRR
seems to have potential. However, there are high fines involved with not complying with obligations
regarding the bids. This is simply a too large risk for commercial company’s that do not pursue these
activities as their core business. The 1 month contract duration of MFRR markets are a direct limitation
to the usability of this system.

Concluding from this analysis, because of the hourly different prices and the availability of price fore-
casts, the day ahead market is the most suitable trading platform for the scheduling of energy demand
based on energy prices. Therefore, these market prices will be used as an input for the load scheduling
model. Total costs from the energy grid will be minimised by shifting energy load. A perfect foresight
of the day ahead prices is assumed in the model.

In order to make a bid on the day ahead market, there is the need of a PRP. In this case study, ENGIE
takes up this role and communicates the load schedule of Picnic to TenneT. This research only con-
siders the system design performance with the generation of a load schedule, the actual simulation of
the application of the load schedule with the accompanying forecast errors and imbalance settlement
is not covered in this research.



Methodology

In this section a methodology presented to find the optimal design of an integrated energy system in the
Netherlands. No parameters are given a value so that the complete methodology can be replicated in
further research with different data. Chapter 5 gives an overview of the input data used in this research.

A set of different system designs for an integrated energy system (IES) is proposed in which the pres-
ence of a photovoltaic (PV) system, an energy storage system (ESS) and the ability for optimised load
scheduling for electric vehicle (EV) charging and a cold storage (CS) system load is varied. The energy
flows between all system elements are determined by the load scheduling algorithm. The energy flows
are controlled by an energy management system (EMS). A mixed integer linear programming (MILP)
optimisation problem is designed to determine the load scheduling for the integrated energy system as
well as the resulting performance for each system design in terms of average costs per unit of energy,
taking into account investment costs. Figure 4.1 shows the system with all elements that are included
in the IES. The arrows indicate the direction of energy flows.

21
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Figure 4.1: Schematic representation of the energy flows within an integrated energy system
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4.1. System designs
For the experiments in this model, there are four elements of the system design selected that have two
variations, present or absent. These are:

1. Smart charging
EV smart charging is tested both optimised for costs and for a charging schedule that resembles
the conventional charging schedule. Flexibility for smart charging is created by extending the
end-time of the charging session.

2. CS load scheduling.
The optimised CS load schedule is compared to the conventional cooling demand schedule.
Flexibility is created by increasing the peak power of the CS system.

3. PV system
The PV system is tested for both presence and absence in the integrated energy system.

4. ESS
The presence and the absence of the energy storage system are included in the set of system
designs.

All these variations result in a set of sixteen different system designs which are shown in Table 4.1.

Table 4.1: Set of system designs

System design EV CS PV ESS
1 EV Cs

2 EV smart CS

3 EV CS smart

4 EV smart CS smart

5 EV Cs PV

6 EV smart CS PV

7 EV CS smart PV

8 EV smart CSsmart PV

9 EV Cs ESS
10 EV smart CS ESS
11 EV CS smart ESS
12 EV smart CS smart ESS
13 EV CSs PV ESS
14 EV smart CS PV ESS
15 EV CSsmart PV ESS
16 EV smart CSsmart PV ESS

For each system design the total costs of energy per day is determined with the load scheduling al-
gorithm that is introduced in Section 4.2. From there, section 4.5 explains how the performance is
determined for each system design in terms of levelised average costs per unit of energy.
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4.2. Model design

The load scheduling for each element in the IES is determined with an optimisation problem that is
solved using mixed integer linear programming. The optimisation problem in this research is based
on a time period of 24 hours, starting at 00:00. This is modelled as such because EV have to be fully
charged each day and day ahead prices are determined on daily basis. The model determines the
daily load schedule for the grid connection, the fleet of EVs, CS system and ESS. Figure 4.2 provides
a schematic representation of the solver. The output is modelled in such a way that the schedules can
be used by the manager of the IES to control the energy use of the different assets. Resulting from
the optimised load scheduling, the total cost of electricity is determined over the day. To anticipate on
variations in terms of solar irradiation and energy price between days, the daily model is run for a series
of days to find the cumulative result. How this is used to determine the performance of the different
system designs is explained in Section 4.5.

Solar EV charge
irradiation schadule
EV demand CS load

schedule
Solver
CS demand ESS charge
schedule
Day ahead Grid
prices schedule

Figure 4.2: Schematic representation of the solver

4.3. Parameters and indices
The proposed model requires a number of input parameters and model parameters to determine the
value of the decision variables. These parameters are described in this section.

4.3.1. Indices

To specify the different parameters, four indices are used to indicate the program time units (PTUs)
within a day, the PTUs that are not available for EV charging, the day for which the model is run for
and for each vehicle in the simulation. These indices are listed in Table 4.2 where t,,,, indicates the
number of PTUs in a day, t.,4 indicates the last PTU of an EV charging session, d,,,, indicates the
number of days in the experiment and n,,,,, indicates the number of vehicles in the experiment.

Table 4.2: Indices for the mathematical formulation

Index Definition Values

t PTU in day teT={1,2, .., thax}

t PTU after end of charging session t € T, = {teng + 1, -, tmax}
d Day deD={1,2,..,dnax}

n Vehicle neN={1,2,..,Nyuax}
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4.3.2. Decision variables

The optimisation model is designed to find the optimal value for four decision variables that are de-
termined for each PTU in a day. These decision variables are listed below along with their upper and
lower limit constraints.

« Ef VteT Energy flow from the grid [KWh]
These continuous decision variables represents the energy consumed from the grid connection
per time interval. This is all the energy that is consumed minus the energy that is locally generated
and drawn from the energy storage system. Constraints 4.1 show the minimum and maximum of
the decision variable.

ES. <Ef <ES. VteET 4.1)

min —

* by VvneN,vteT EV charging [binary]
These binary decision variables represent whether EV n during PTU t is charging or not. Con-
straints 4.2 show the binary values of the decision variables.

1, if EV nis charging during PTU t
bEY = 9ng 9 vn €N VteT (4.2)
0, otherwise

« ESS VteT Energy flow Cold storage [kWh]
These continuous decision variables represent the energy that is used by the cold storage system
during PTU t to meet the daily CS demand. Constraints 4.3 show the upper and lower limits of
the decision variables.

ESS < EfS < ESSx VtET (4.3)

« EESS vt eT Energy flow of energy storage system [kWh]
These continuous decision variables represent the energy drawn from or consumed by the energy
storage system during PTU t. Constraints 4.4 show the upper and lower limits of the decision
variables.

EESS < EFSS < EESS, VtET (4.4)
4.3.3. Input parameters
The four sets of input parameters that are used to solve the optimisation problem are listed below.

* p, VteT Energy price forecast [E/kWh]
These input parameters represent the forecasted prices per kilowatt hour for each PTU.

« E'M vt eT Solarirradiance forecast [kWh/m?]
These input parameters represent the solar irradiance forecast that is used to determine the
energy generation of the PV system during each PTU.
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EEVe  wvneN EV demand forecast [kWh]
These input parameters represent the daily forecasted energy demand for each EV in the fleet.

ECSe  CS demand forecast [kWh]
This input parameter represents the daily forecasted demand of the cold storage system.

4.3.4. Model parameters
The supplementary parameters that are required for the model are described below.

PEV  EV charging rate [kW]
The charging rate determines the charging power of the EVs and is fixed.

LPTU  Length of one PTU [h]

EEY  EV energy charged in a single PTU [kWh]

The energy charged during a PTU is equal to the charging power and the length of one PTU.
Equation 4.5 shows that the energy charged during a single PTU is equal to the power times the
length of a PTU.

EEV — pEV . | PTU (45)
CESS  Capacity energy storage system [kWh]
This is the capacity of the energy storage system.

SOCESS  Initial SOC of energy storage system at t = 0 [%]
The state of charge (SOC) of the energy storage system at the beginning of a day.

APV Surface PV [m?]
This is the total surface that is used for the PV system.

nPV PV efficiency [%]
This is the percentage of energy that is converted from the irradiation to electric energy.

EFV PV system energy generation [kWh] This parameter represents the energy that is gener-
ated by the PV system and is equal to the product of the solar irradiation energy, the surface of
the PV system and the system efficiency as represented by Equation 4.6.

EPV = EI'm . APV . PV VtEeT (4.6)

P&, Cold storage system maximum power [kW]
This parameter represents the maximum power drawn by the CS system.

ESS, Cold storage system max energy during a PTU [kWh]
This parameter represents the maximum energy drawn by the CS system during one PTU and is
defined by Equation 4.7

Ergglx = Pnc;gx - LPTU 4.7)
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4.4. Optimisation problem
The optimisation problem is represented as an objective function with a set of constraints.

4.4.1. Objective function
The objective Function 4.8 minimises the cost paid for energy from the electricity grid during a single
day.

tmax

min Z py - ES (4.8)

t=1
The help Functions 4.9 state that the energy taken from the grid is equal to the sum of the energy
demand of the EVs, the cooling system and the ESS minus the PV system during each PTU.

Nmax

E¢ = ( Z bin) - E®V + EFS + EFSS — EPY VteT (4.9)
n=1

4.4.2. Constraints

Constraints 4.10 ensure that the sum of energy charged during each PTU meets the daily energy
demand. Since it is not always the case that the daily demand has no remainder when it is divided
by the amount of PTU’s needed to meet this demand, the sign used is greater or equal to make sure
there is a feasible solution. A condition accompanying this modelling choice is that there should be no
negative prices so there is no incentive to charge the EV further than the minimum demand.

tmaX
Z bEY - EFV > EEVA Vnen (4.10)
t=1

Constraints 4.11 state that for each EV, there is a time period where the EV is out driving so it is not
connected to the charger and cannot be charged.

biy, =0 vn €N YVt €T,y (4.11)

Constraint 4.12 makes sure that sum of the energy supplied each time unit to the CS system is equal
to the daily cooling demand.

tmax
Z ECS = gesd (4.12)
t=1

Constraints 4.13 make sure that the SOC of the ESS for each PTU are equal to the sum of the SOC
during the precedent PTU and the energy delta during that PTU.

SOCESS - CFSS = SOCESS - CFSS + EFSS VteT (4.13)
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Constraints 4.14 state the minimum and maximum SOC percentages of the ESS.

SOCESS < SOCESS < SOCESS, VtET (4.14)

min —

Constraint 4.15 makes sure that the energy storage systems initial SOC is equal to the SOC at the end
of the day.

SOCESS = SOCESS (4.15)

tmax

4.5. System performance

Section 4.4 introduces the optimisation problem which is used for finding the load schedule that min-
imises the objective value; the total energy costs per day. To assess the system design performance,
this optimisation is carried out for a series of days and the cumulative objective values of each day are
divided by the total energy used by the two energy consuming assets; EV fleet and the cold storage
system. Equation 4.16 shows the calculation for the energy costs (EC).

dmax tmax
A ’\G
Z (Pt - Et,d)
d=1 t=1

EC = (4.16)

dmax tmax
FEV | BCS
Z (Eca +Eca)

d=1 t=1

The presence of a PV system and an ESS require investment costs. The costs to control the system
and apply the load scheduling are assumed to be negligible. Therefore, to determine the levelised
energy costs (LEC), only the investment costs are taken into account. The ESS and PV system are
are assumed to have a certain lifetime, respectively indicated by [ and IV, by which the payment
of the capital expenditures, respectively CAPEXESS and CAPEX?Y, are divided. The amount of days in
this equation is assumed to be 365, equal to one year. The lifetimes are expressed in years. Equation
4.17 shows the calculation of the LEC.

Admax tmax
. ag . CAPEX®SS  CAPEX®Y
(pt,d : Et,d) + lESS + lPV
d=1 t=1

LEC = 4.17)

Both metrics are used to determine the performance of the proposed set of system designs.
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4.6. Sensitivity analysis

In order to determine the robustness of the optimisation model, a sensitivity analysis is carried out. For
the sensitivity analysis of the model that is proposed in this research, the effect of changing different pa-
rameters is tested. Parameters that actively constrain the outcome of the model are assumed to have
a significant effect on the system design performance; the EC and the LEC. In order to test the effect
of changing these parameters, they are changed to become smaller and larger and are respectively
compared to the change in performance. The relation between these percentages give an indication
of the sensitivity of that specific parameter. The parameters that are tested in this research are listed
in Section 6.3.






Data

This chapter documents the data that is used for the experiments carried out in this research. The case
at Picnic is used as motivation for most parameter values. All motivations are argued in this chapter.

5.1. Picnic test location: distribution hub Zaandam

The location where Picnic will carry out the different test for smart energy use will be the distribution
hub in the city of Zaandam. The reason why this location is chosen is because the roof strength is
high enough to support the installation of a PV system, there is a good cooperation with the owner of
whom Picnic rents the building and because the electricity infrastructure is installed in such a way that
is easily altered for new systems that might be required for smart energy use. At the hub there are
9 EVs in operation that on average use 9 kWh per day each and a cool cell is installed to cool cold
products that have arrived from the fulfilment centres and are waiting to be delivered to the customer
the same day. This cool cell uses 96 kWh per day on average. The size of the PV system according to
the project plan is 300 square meters and the capacity of the ESS is 500 kWh. The grid connection has
a capacity of 80 kW. These values are used as initial parameters for the experiments of this research.

5.2. Input parameter datasets

In contrast to the model parameters that are fixed for each optimisation, the input parameters can
change every PTU during the optimisation. In the experiments in this research a perfect forecast is
assumed of hourly day ahead energy prices and hourly solar irradiance. Also, the energy demand of
both the EV fleet and the cold storage system is assumed to be known in advance. In these experi-
ments, the daily load of the EVs and the CS system is assumed to be constant every day, however the
model allows to have varying data per day and per individual EV. The data that is used for the input
parameters is listed below.

* Energy price
For the input of the energy prices, the historic hourly day ahead prices from the year 2018 as
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traded on the EPEX SPOT market platform are used as input (ENTSO-E, 2019). In the ex-
periments in this research a perfect foresight of energy prices is assumed to create the load
schedules.

Solar irradiation
The historic solar irradiation data of the year 2018 of the KNMI weather station in Schiphol is used
as an input (KNMI, 2019). A perfect foresight of these data is assumed for the model.

Cooling demand
Based on average data by Picnic, the CS system demand in this research is assumed to be 96
kWh per day and constant throughout the year.

EV demand
At Picnic, an average of 75% of a 12 kWh battery capacity is assumed to be demanded for trips
every day, thus 9 kWh per EV per day.

5.3. System design parameters
Table 4.1 shows the different system designs that are proposed to compare their performance. Below,

the values are described that characterise the different system designs. Three experiment setups

are proposed, case A represents the case as introduced in the Picnic case. Case B and case C are

respectively a twice as small and twice as large setup of the PV system surface and ESS capacity. The

values for case A are described below. Tables 5.1, 5.2 and 5.3 show the system design parameters for

case A, B and C respectively.

. 'EV & EV smart’

Smart charging and regular charging is distinguished by changing the length of the charging
session. Two options are tested: 4:15 (t = 17) or 14:00 (t = 56). The optimisation and the
start of the charging sessions of the EVs start at 00:00. In 4:15 hours the EV meets it's energy
demand. Therefore this test has no flexibility and represents charging according the standard
charging schedule. At 14:00, the EVs leave to drive their trips, this time indicates the length of
the charging session with flexibility; 'EV smart..

17, Normal charge schedule
t d =
o 56, Optimise charge schedule

. 'CS & CS smart’

For the cold storage unit, the demand is 96 kWh. To test smart and non-smart energy use the
maximum cooling power is changed from 4 kW for non-smart and 16 kW for smart energy use.
Which results in maximum energy during one PTU of 1 and 4 kWh respectively.

1kWh, Normal cooling schedule
Efn%zx =
4kWh, Flexible cooling schedule



5.3. System design parameters 33

3. 'PV’ For the PV system, the base system is 300 square meters. The absence and presence of
this system are tested in the system designs.

47— 0m?, No PV system
300m?, PV system

4. 'ESS’ For the ESS, the base system has a capacity of 500 kWh. The absence and presence of
this system are tested in the system designs.

CESS _ 0kWh, No ESS
500kWh, ESS

5.3.1. Case A

Concluding from these parameter values, for case A, Table 4.1 translates into Table 5.1 as shown
below.

Table 5.1: Case A set of system designs

System design  t.,q[#] ESS.[kWh] APV[m?] CESS[kWh]

1 17 1 0 0
2 56 1 0 0
3 17 4 0 0
4 56 4 0 0
5 17 1 300 0
6 56 1 300 0
7 17 4 300 0
8 56 4 300 0
9 17 1 0 500
10 56 1 0 500
11 17 4 0 500
12 56 4 0 500
13 17 1 300 500
14 56 1 300 500
15 17 4 300 500
16 56 4 300 500
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5.3.2. Case B

Table 5.2: Case B set of system designs

System design  t..q[#] ESS.[kWh] APY[m?] CESS[kWh]

1 17 1 0 0
2 56 1 0 0
3 17 4 0 0
4 56 4 0 0
5 17 1 150 0
6 56 1 150 0
7 17 4 150 0
8 56 4 150 0
9 17 1 0 250
10 56 1 0 250
11 17 4 0 250
12 56 4 0 250
13 17 1 150 250
14 56 1 150 250
15 17 4 150 250
16 56 4 150 250

5.3.3.Case C

Table 5.3: Case C set of system designs

System design  t.,q[#] ESS.[kWh] APV[m?] CESS[kWh]

1 17 1 0 0
2 56 1 0 0
3 17 4 0 0
4 56 4 0 0
5 17 1 600 0
6 56 1 600 0
7 17 4 600 0
8 56 4 600 0
9 17 1 0 1000
10 56 1 0 1000
11 17 4 0 1000
12 56 4 0 1000
13 17 1 600 1000
14 56 1 600 1000
15 17 4 600 1000
16 56 4 600 1000
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5.4. Model parameter data

This section discussed the assumptions that underlie the input parameters of the model in the experi-
ments.

+ Efficiency of PV system
The efficiency with which the PV system converts solar irradation to energy is assumed to be
15%.

» Surface PV system
The surface of the PV system is assumed to be 300 square meters, based on specifications of
the project requirements.

» Capacity ESS
The capacity of the ESS is 500 kWh based on the project specifications at picnic.

« CAPEX ESS
The CAPEX of the ESS are assumed to be €200 per kWh capacity as provided by the project
specifications.

+ CAPEX PV system
The CAPEX of the PV system are assumed to be €150 per square meter as provided by project
specifications.

* Number of days in test
The number of days in the experiments for determining the EC and LEC is 365, representing the
whole year 2018.

* Energy demand per day CS system
The energy demand per day by the CS system is assumed to be 96 kWh based on average
consumption by Picnic.

* EV charge rate

The charging rate is assumed to be 2.2 kW, derived from specifications of the Picnic vehicles.
Figure 5.1 shows a charging curve of one EV measured on the 9th of January 2019. The shape
closely resembles a square charging curve. The manufacturer specifies a peak charging power
of 2.2 kW while the actual peak power is slightly less. When the charging cycle ends a small
inaccuracy is seen and for the time the EV plugged in there is a small power measured of a few
watts. Figure 5.2 shows the assumption of a perfect square charging shape that is used in this
research with a constant charging power of 2.2 kW.
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Figure 5.1: Actual charging curve of a single EV Figure 5.2: Actual and assumed charging curve of a single EV

Energy per PTU charged to EV
The charging power is 2.2 kW, a PTU has a length of 15 minutes. The energy per PTU is therefore
0.55 kWh.

Energy demand per day for single EV
The energy demand for each EV is 9 kWh per day.

Lifetime ESS
The lifetime of the ESS is assumed to be 10 years as provided by the project specifications.

Lifetime PV system
The lifetime of the PV system is assumed to be 25 years as provided by the project specifications.

Length of PTU
The length of the program time units is 00:15 hours.

Number of EVs
The number of EVs in the experiments in this research is assumed to be 9, the same number of
EVs in the test location hub in Zaandam.

ESS (dis)charge rate
The discharge and charge rate of the ESS are set to 1 C, meaning that it can (dis)charge with
one kW per kWh of capacity.

Grid connection maximum and minimum
As provided by the specifications of the Picnic test location in Zaandam the grid connection allows
a limit of 80 kW to be consumed or fed into the grid.

CS system maximum power
In this research the maximum power assumed is 16 kW. This creates high flexibility. For the
scenario of low flexibility, 4 kW is assumed.

Energy storage system initial SOC
The ESS is assumed to have a SOC of 50% at the beginning of the optimised day and will end
up with with the same SOC at the end of the day.
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« ESS max SOC

The maximum SOC of the ESS is set to 100%.

+ ESS min SOC

The minimum SOC of the ESS is set to 0%.

* EV charging session end

For the daily cost optimisation is assumed that EVs are connected to the chargers from 00:00 till

14:00.

* Number of PTUs in experiment
Since a PTU is 00:15 hours, there are 96 PTUs in one day.

The parameters are summarised in Table 5.4

Table 5.4: Parameter assumptions

symbol

Assumptions

Value

nPV
APV

CESS
CAPEXESS

CAPEXPY

dmax
ECSd

B
EEV
EEVd
lESS
lPV
LPTU
nmax
PESS
PEV
Prgax
Pidx
Prin
SOCESS
SOCRGx
SOCESS
tend

tmax

Efficiency PV system

Surface PV system

Capacity energy storage system
Capital expenditures of ESS

Capital expenditures of PV system
Number of days in test

Energy demand per day for cooling system
Maximum energy per PTU

Energy per PTU charged to EV
Energy demand per day for single EV
Lifetime ESS

Lifetime of PV system

Length of PTU

Number of EVs

ESS (dis)charge rate

EV charge rate

Grid connection maximum

Cooling max power

Grid connection minimum

Energy storage system initial SOC
Energy storage system maximum SOC
Energy storage system minimum SOC
EV charging session end

Number of PTU’s in experiments

15 %

300 m?
500 kWh
€150 -CESS
€200 -APY
365

96 kWh
1, 4 kWh
0.55 kWh
9 kWh

10 years
25 years
00:15 h

9

500 kW
2.2 kW
80 kW

4 kW, 16 kW
-80 kW
50%
100%

0%

17, 56

96







Results and discussion

This chapter documents the results for the sixteen different system designs that are tested for the year
2018. To create an understanding of how the model works, the first section gives a detailed overview of
the load schedules for a single day. The second section gives the results of the performance analysis
for the system designs for case A, B and C and the third section discusses the sensitivity analysis.

6.1. Load scheduling demonstration for a single day

This subsection gives a detailed overview of the behaviour of the optimisation model for a single day.
The sytem is run for 1 January 2018, all figures show the outcome for this date. The optimised results
are based on system design 16, case A, as described in Table 5.1. Smart charging and optimised CS
system schedules are also compared to conventional load schedules.
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6.1.1. Hourly energy price data

The model proposed in this research optimises on basis of day ahead prices. Figure 6.1 shows the
hourly day ahead prices within one day. It can be observed that there is large variation between prices
for different hours. There is a peak during noon and prices are lower during the night and early morning.
Itis expected that the load scheduling will follow these variations and will schedule loads on times where
prices are relatively low.
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Figure 6.1: Hourly day ahead prices 01-01-2018

6.1.2. Power output of PV system
The power generated by the PV system is used as input for the optimisation as is shown in Figure 6.2.
This data clearly shows a typical solar bell curve for the output of the PV system, apparent between

roughly 9:00 and 17:00; a short day with low maximum power output, which is expected during the
winter season.

PV power [kw]

Figure 6.2: Power output by PV system 01-01-2018
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6.1.3. EV charge schedule

In Figure 6.3 the normal charging curve is shown for a single EV, considering no flexibility or optimised
scheduling as in system design 1. Figure 6.4 shows the optimised charging schedule for a single EV
as in system design 16. It shows that the optimised charging schedule does not charge during T,,, and
avoids high prices during the middle of the day as depicted by Figure 6.1, as expected.
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Figure 6.4: Optimised charging curved for a Single EV 01-01-

Figure 6.3: Charging curve for a single EV 01-01-2018 2018

Adding the charging curves for the fleet of 9 EVs together results in Figure 6.5 and 6.6. Showing the
cumulative charging curve of the fleet for conventional charging and optimised charging respectively.
It is noticed that not all charging curves are the same which would be expected because no constraint
is inhibiting simultaneous charging. It is also noticed that at no time all EVs are charging at the same
time while there is no constraint limiting this. Both observations can be explained by the presence of
an energy storage system which uses its flexibility in such a way that the charging of EVs make no
difference because the grid capacity limits the use of available flexibility. In system design 2 where
there is no ESS, all EV charging curves have the same shape.
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Figure 6.5: Conventional cumulative charging curve for a fleetFigure 6.6: Optimised cumulative charging curve for a fleet of 9
of 9 EVs 01-01-2018 EVs in system design 16 including an ESS 01-01-2018
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6.1.4. Cold storage system load schedule

Figure 6.7 shows the assumed normal power curve of the cold storage system and Figure 6.8 shows
the optimised energy consumption curve for the CS system. Alike the EV charging schedule, the cold
storage schedule avoids the high prices during the afternoon. A consequence of this schedule could
be that the temperature would rise significantly during noon and evening since it is not active during

that period.
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Figure 6.7: Normal CS system load schedule 01-01-2018 Figure 6.8: Optimised CS system load schedule 01-01-2018

6.1.5. Energy storage system (dis)charge schedule

The charge and discharge power for the energy storage system is shown in Figure 6.9. Positive values
increase the SOC of the ESS and negative values decrease the SOC. The resulting state of charge
is shown in Figure 6.10. The full capacity of the energy storage system is used, it reaches it's upper
capacity twice and is fully discharged at once. It is observed that the ESS is continuously charging and
discharging and is discharging energy during the afternoon. The system is feeding energy to the grid
at these moments because prices are high.
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Figure 6.9: The (dis)charge of the energy storage system 01-01-Figure 6.10: The state of charge of energy storage system 01-
2018 01-2018
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6.1.6. Grid connection

The total energy taken from and fed into the energy grid is shown in Figure 6.11. It is noticed that
at nearly all times the system is reaching it's constraints of 80 and -80 kW. This indicates that these
are active constraints. When comparing the energy consumption to the energy prices it shows that
when prices are high the system feeds energy back to the grid while when energy prices are lower the
energy is taken from the grid. This is only possible when the system includes an ESS. With systems
that include a PV system, the system shows that energy is fed back in the grid when energy prices are
high. When there are no PV or ESS systems included, the system designs do not feed energy back in
the grid.
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Figure 6.11: Total consumption from and fed into the energy grid 01-01-2018

Concluding from this section, the proposed model seems to work like expected. It is noticed that the
grid connection is an important constraint, limiting the power that is drawn to and fed into the energy
grid. This is the case because the battery system is ’buying’ energy cheap and ’selling’ it back when
prices are higher, making money in the process. The presence of an ESS limits the benefits of smart
charging and optimised CS load scheduling.
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6.2. System design performance
This section shows the performance of the set of system designs for case A, B and C.

6.2.1. Case A system design performance

Case A includes 300 square meter for the PV system and 500 kWh as capacity for the ESS, this is the
case as provided by the project specifications of the case study. Table 6.1 shows the performance per
system design. The EC as well as the LEC for each system design are shown. Figure 6.12 gives a
graphical representation of the results. Blue bars and brown bars indicate the EC, orange bars indicate
the LEC and the orange and brown bars together represent the CAPEX for each system design. The
lowest EC are found for system design 16. The lowest LEC and therefore the most preferred system
design in terms of costs are found for system design 8.

The system design overview shows the impact of smart charging, smart cooling, presence of a PV
system and presence of an energy storage system. For each pair of smart charging and non-smart
charging system designs, smart charging is more cost reducing than non-smart charging. By an order
of around one euro per MWh. This difference becomes smaller when introducing an energy storage
system, where the difference is only a few cents. This can be explained by the fact that the flexibility
capacity of the storage system greatly exceeds the flexibility of the EV fleet and the limitations of the
grid capacity make smart charging obsolete.

The difference between optimised CS load scheduling and conventional CS energy consumption is
more significantly in terms of cost reduction. The order of reduction is around 5 euro’s compared to
conventional cooling. It can be stated that optimised CS load scheduling is beneficial. Simliar to smart
charging, the performance of optimised CS energy use is less significant when an ESS is introduced.

The introduction of a PV system is obviously reducing EC significantly. But also, the LEC of system
designs with a PV system shows an improvement with respect to all situations without PV. This means
that the current payback of the PV weigh up against the investment costs.

What is noticed instantly is that the ESS performs best in terms of EC due to selling and buying of en-
ergy. However, the investment costs of the ESS make the LEC the highest for all scenario’s including
ESS.

Concluding from this analysis, the introduction of optimised charging of the EV fleet and optimised CS
load scheduling is recommended as long as there is no energy storage system present. The PV system
is recommended since it returns a positive performance. The ESS does return the best EC however it
is not recommended since the profits do not weigh up against the investment costs.
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Table 6.1: Case A system design performance

System design EC LEC

1 €47.35 €47.35
2 €46.46 €46.46
3 €40.84 €40.84
4 €39.95 €39.95
5 €4.87 €32.24
6 €3.97 €31.35
7 €-165 €2573
8 €-254 €2484
9 €-23.97 €77.41
10 €-24.03 €77.36
1 €-27.76 €73.62
12 €-27.80 €73.59
13 €-64.99 €63.77
14 €-65.07 €63.69
15 €-68.54 €60.22
16 €-68.60 €60.16
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Figure 6.12: Case A system design performance
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6.2.2. Case B system design performance

Case B uses 150 square meter for the PV system and 250 kWh as capacity for the ESS, this repre-
sents half the capacity as provided by the project specifications of the case study. Table 6.2 shows
the performance per system design. The EC as well as the LEC for each system design are shown.
Figure 6.13 gives a graphical representation of the results. Blue bars and brown bars indicate the EC,
orange bars indicate the LEC and the orange and brown bars together represent the CAPEX for each
system design. The lowest EC are found for system design 16. The lowest LEC and therefore the most
preferred system design in terms of costs are found for system design 16 as well.

The difference can be explained by the grid connection that is the same size and was limiting the per-
formance of the ESS in case A. Because the performance of the ESS in comparison to its capacity is
higher in case B, the LES turns out to be the most preferred. It is concluded that an ESS is recom-
mended with a smaller capacity.
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Table 6.2: Case B system design performance

System design EC LEC

1 €4735 €47.35
2 €46.46 €46.46
3 €40.84 €40.84
4 €39.95 €39.95
5 €26.11 €39.80
6 €2522 €38.90
7 €19.60 €33.28
8 €18.71 €32.39
9 €-6.79 €43.90
10 €-7.08 €4362
11 €-11.86 €38.83
12 €-12.07 €38.62
13 €-27.76 €36.62
14 €-28.07 €36.31
15 €-32.75 €31.63
16 €-32.99 €31.39
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Figure 6.13: Case B system design performance
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6.2.3. Case C system design performance

Case C uses 600 square meter for the PV system and 1000 kWh as capacity for the ESS, this repre-
sents double the capacity as provided by the project specifications of the case study. Table 6.3 shows
the performance per system design. The EC as well as the LEC for each system design are shown.
Figure 6.14 gives a graphical representation of the results. Blue bars and brown bars indicate the EC,
orange bars indicate the LEC and the orange and brown bars together represent the CAPEX for each
system design. The lowest EC are found for system design 15 and system design 16. The lowest LEC
and therefore the most preferred system design in terms of costs are found for system design 8 just
like in case A.

6.2.4. Conclusion

When increasing the capacity of the PV system and ESS while keeping the grid connection the same
limits the performance of the ESS per unit of capacity. This means that the full capacity cannot be used
and investment costs are made while the system is not being used to its full potential. In this case the
introduction of a 1000 kWh ESS is not recommended. The PV system decreases the LEC significantly,
system design 8, returns a |IEC of €24.84, €32.39 and €9.73 for case A, B and C respectively. Therefore,
it is recommended to install a large PV system of 600 square meters.
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Table 6.3: Case C system design performance

System design EC LEC

1 €47.35 €47.35
2 € 46.46 € 46.46
3 €40.84 €40.84
4 €39.95 €39.95
5 €-3762 €17.13
6 €-38.51 €16.24
7 €-4413 €10.62
8 €-45.02 €9.73

9 €-33.77 €169.00
10 €-33.77 €169.00
11 €-34.02 €168.76
12 €-34.02 €168.76
13 €-114.44 €143.09
14 €-114.44 €143.08
15 €-114.71 €142.81
16 €-114.71 €142.81

System design overview

0.15 -

0.10 -

0.05 1

0.00 4

—0.05 4

Levelised average costs per kWh [£€]

—0.10 4

L
1 2 3 4 5

Figure 6.14: Case C system design performance

T
6

T T 1T 71 1T 7
7 8 9 10 11 12 13 14 15 16

System design #



50 6. Results and discussion

6.3. Sensitivity analysis

Tables 6.4 and 6.5 and Figures 6.15 and 6.16 show the performance for the sensitivity analysis of the
grid capacity parameter for case A. Initially, the power from te grid has a limit of 80 kW. Section 6.1.6
concludes that the grid capacity is a constraint that actively limits the performance of the system design
including an ESS. Therefore this parameter is chosen to analyse. This section explains the effect of
changes in the minimum and maximum grid capacity parameters of a 10 % decrease and increase,
resulting in limits of 72 kW and 88 kW respectively.

The sensitivity analysis for the grid connection is compared to the base case and shows that there
is a significant impact when increasing or decreasing the grid constraint. When decreasing the grid
capacity the effects are the highest for the EC of system designs 9 to 12, the system designs with a
PV system but no ESS, which are around 20% higher than the base case. When an ESS is added,
the cost increase is slightly lower than 10%. For the LEC, all cost increase lies a little below 10 %.
The system designs 1 to 8 show no change in performance. This is obvious considering that these
system designs do not depend on the grid to supply energy back to the grid. When the grid connection
is increased, the same pattern shows for all system designs as described above but result in a cost
decrease. Percentages are in the same order.

Concluding from this analysis it can be stated that the grid connection is a constraint that influences the
performance of system designs that include PV or ESS. The presence of an ESS in the energy system
is only interesting when it is in proportion with the grid connection, thus enabling it to work on its full
capacity. When there is no ESS present in the system design, the grid capacity has no influence on
the system design performance.
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Table 6.4: Grid capacity constraint 10% decrease - system design performance

System design EC Deviation LEC result Deviation
1 €4735 0% €47.35 0%
2 €46.46 0% €46.46 0%
3 €40.84 0% €40.84 0%
4 €39.95 0% €39.95 0%
5 €4.87 0% €32.24 0%
6 €3.97 0% €31.35 0%
7 €-165 0% €25.73 0%
8 €-254 0% €24.84 0%
9 €-18.81 22% €82.58 7%
10 €-18.84 22% €82.55 7%
1 €-21.80 21% €79.59 8%
12 €-21.81 22% €79.57 8%
13 €-59.67 8% €69.09 8%
14 €-59.73 8% €69.03 8%
15 €-62.49 9% €66.27 10%
16 €-62.53 9% €66.23 10%
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Figure 6.15: Grid capacity constraint 10% decrease - system design performance
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Table 6.5: Grid capacity constraint 10% increase - system design performance

System design EC Deviation LEC Deviation
1 €4735 0% €4735 0%
2 €46.46 0% €46.46 0%
3 €4084 0% €40.84 0%
4 €39.95 0% €39.95 0%
5 €4.87 0% €3224 0%
6 €3.97 0% €31.35 0%
7 €-165 0% €25.73 0%
8 €-254 0% €2484 0%
9 €-2893 -21% €7245 -6%
10 €-29.00 -21% €7238 6%
11 €-33.02 -19% €68.37 -7%
12 €-33.07 -19% €68.32 -7%
13 €-70.10 -8% €58.66 -8%
14 €-70.19 -8% €58.57 -8%
15 €-73.95 -8% €5481 -9%
16 €-74.03 -8% €54.74 -9%
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Figure 6.16: Grid capacity constraint 10% increase - system design performance
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6.4. Conclusion and comparison to benchmark

This research aimed to propose a method to find an optimal system design of an integrated energy
system. It considered the potential of smart charging, smart cooling, local energy generation and en-
ergy storage. It found that there is a high potential for optimised load schedules for an EV fleet and a
CS system in combination with local energy generation by a PV system. The ESS shows only to be
profitable with a grid connection that is in proportion with the capacity of the ESS. The grid capacity is
found to be a limiting constraint of which influences the performance of the system designs that include
an ESS.

Picnic paid in 2018 an integral commaodity price of €41.01 per MWh. Smart scheduling of loads reaches
€39.95 per MWh for all tested cases. Therefore, the use of optimised load scheduling of both EV
charging and the CS system results in savings of 2.6%. When introducing a PV system the price
becomes significantly lower depending of the size of the PV system.

6.5. Discussion

There are several factors that could be more elaborated on or modelled more precisely during this
research. Different assumptions for most parameters could return different results. This section gives
an overview of the main points of criticism of the used method.

+ In the experiments for different system designs, trip planning is not taken into consideration. The
assumption is that each EV has the same energy demand each day. However, vehicles often are
not used on nonpeak days and energy demand might be higher on peak days. Using real trip
planning data would prove more realistic, or even using a week cycle to indicate the difference
between peak and nonpeak demand.

* The EV demand has no maximum, so when the model is used with a dataset where prices are
negative it could be the case that it will charge more than its capacity. This is a flaw in the model
that has no consequences for this research but might cause problems if it is applied in further
research.

» The solar production is based on the solar irradiance during specific time intervals. In this calcu-
lation the direction in which the system faces is not taken in to account. In reality this leads to
a lower energy production because of the angle in which irradiance reaches a PV system. The
orientation of the PV system could also increase the direct solar irradiation. Right now the direct
irradiation is assumed to be used. But at the moment the respective panels are tilted towards the
sun the actual electricity generation could be increased. Here the direction in which it would be
aimed is also important. Generally speaking two direction are typical, an east-west facing setup
or a south facing setup. Furthermore, historical irradiation data is used assuming it is a perfect
foresight during the year which is modelled. In practice this is nearly impossible to forecast on
a local scale due to the unpredictability of clouds and the resulting shade. Therefore, in reality
it would by nearly impossible to have such a specific forecast for a small scale PV system as
in the model in this research. Probably some errors in forecast would have some effect but not
significant. The errors could mean that there is more solar, which means less energy from the
grid or more feed-in, both not problematic, or less solar which would result in more energy con-
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sumed from the energy grid. This could have some negative effects but are assumed not to be
significant.

The ESS is able to consume from and feed-in to the energy grid. When running the optimisation
algorithm, it causes the model to maximally utilise the maximum (dis)charge power to buy energy
at low prices and sell at high prices. This causes multiple charge cycles per day. Depending
on the type of storage, this could cause significant degradation of the system and decreases its
lifetime. Furthermore, the efficiency is assumed to be 100% which is difficult to reach.

The CS system demand in this research is modelled on basis of a fixed daily energy demand.
Filling in the energy usage during the day results in meeting this demand. However, in reality
there is a constant in and outflow of cold products which results in different demand fluctuations
during the day to keep the cooling system at the right temperature. Furthermore, the outside
temperature is not taken into account for the cooling system while this has a significant impact
on the cooling efficiency of a cold storage system. The variation of cooling demand for seasonal
changes on basis of outside temperature would give a better feasibility with respect to PV instal-
lation. Because higher solar irradiation would make up for higher cooling demand due to higher
temperatures. Furthermore, an optimum may be reached for the size of the PV system when
matching production and demand.

In this research, feed-in of energy to the grid is allowed and the same energy tariffs are assumed
as for consuming energy. This is possible with current Dutch net metering policy, however this
might change in the future. Also, multiple taxes and fees play a role with consuming energy
from the grid, these costs are not taken into account during this research, only the bare energy
price. It has shown that without the possibility to feed-in, the proposed model returns a number
of infeasible days within the year 2018 and is therefore not further investigated. Pursuing these
options could however give insights in the performance of a system that is able to minimise energy
taken from the grid or be completely self sufficient if there is enough local generation.

The sensitivity analysis shows usable results but conclusions could be improved by analysing all
parameters. Also, different cases for other capacities for the PV system and ESS would provide
better conclusions.

The number of EVs in the fleet at the hub which is used as a case for the simulations of this
research is 9. However in 2019, there are more than 800 EVs operational in the fleet of Picnic.
To create a better understanding of the costs reduction, the experiments could be carried oud for
a larger scale.

During this research a number of optimisation techniques is reviewed which include model predic-
tive control and stochastic optimisation. In this research only mixed integer linear programming
is applied. However, for further research and the implementation of optimisation on basis of im-
balance prices these optimisation techniques could be further investigated and applied.

Bidirectional charging opportunities for electric vehicles are not taken into account. Literature
suggests that there is a potential for bidirectional charging to be cost efficient and have a positive
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impact on balancing the energy grid.

* Interest rate are set at 0 % in the experiments in this research, which is simply not realistic. For
more accurate results for the investment costs and LEC, a high percentage should be used.






Conclusions and recommendations

This chapter documents the conclusions of this research. The research questions will be answered
and recommendations are made for further research and implementation by Picnic.

7.1. Research questions

This research aimed to find a method for optimising an integrated energy system and uses a case study
at Picnic to guide the results. The first subquestion asks for the elements in an integrated energy sys-
tem. In the case study at Picnic these are found to be a PV system, a fleet of EVs, an energy storage
system and a cold storage system. The second research question asks for the characteristics of the
energy flows. It is found that all elements are connected to a main grid connection, the PV system is
solely generating energy, the EV fleet and cold storage system only consume energy and the energy
storage system is able to both consume and supply energy. The third research question ask for the
criteria for an integrated energy system of which the most important criterion is found to be costs. Sub-
question four asks for a method to find the sizing requirements. An optimisation model is proposed
to find the performance of a set of sixteen different system designs. The fifth research question asks
how this method can be applied, the mixed integer linear programming problem is solved in Python
using PuLP as a solver. The last research question ask for the optimal design of an integrated energy
system for the case of Picnic. It is found that using an optimised charging schedule for the EV fleet and
an optimised cold storage load schedule in combination with a PV system is most desirable. The PV
system is advised to be 600 square meters and the capacity of the ESS is optimal at 250 kWh.

The main research question asks for a method for determine the optimal design for an integrated energy
system. The proposed methodology gives an overview of sixteen different system designs, varying in
the presence of the different system design elements and calculates the performance in terms of lev-
elised costs per unit of energy taking into account investment costs for the PV system and energy
storage system. A sensitivity analysis is carried out to determine the robustness of the chosen param-
eter values. The proposed method can be used by other parties to assess the performance of their
integrated energy system designs.
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It is found that the grid connection is an active constraint in the design of an integrated energy system
when an ESS is installed. Smart charging is obsolete with the presence of an ESS. The presence of
a PV systems turns out to be financially desirable in all cases. Increasing the session length for EV
charging optimisation increases the performance of a system design. Increasing the maximum power
for the CS system increases the performance of the load scheduling algorithm.

7.2. Recommendations for further research

The proposed method proves adequate to assess the performance of different system designs of an
integrated energy system. However, concluding from the discussion, to create an adequate overview
of system design performance, more cases should be tested and parameter assumptions should be re-
viewed. The day ahead price optimisation gives a reasonable cost reduction. However, other systems
working with balancing markets could provide higher returns. Therefore, the main recommendations
are as follows:

+ Test more system designs to be able to create a broader view of the possibilities.
* Reconsider parameter assumptions to create a more trustworthy result.

» Research other markets like the imbalance market for the potential implementation of load schedul
ing algorithms.

+ Elaborate on the design of individual system designs to make the proposed model more realistic,
e.g. temperature dependency of CS system and losses while charging and storing energy.

7.3. Recommendations for Picnic
Following from this research the following recommendations are formulated for Picnic.

» Optimised load scheduling for the EV fleet and CS system shows to decrease costs by 2.6%
based on day ahead prices. However, further research has to be carried out to determine the
capabilities for changing the CS system load schedule in practice.

» The flexibility that is available in the operation at Picnic can be exploited with a load scheduling
algorithm on basis of day ahead prices like in this research. However, this flexibility might be of
much more value to ENGIE to balance their own portfolio. It is advised to further investigate the
value for ENGIE and how this flexibility can be ’sold’ to them.

» The installation of a PV system is in all cases profitable as long as the grid connection is capable
of handling the load to supply energy back to the grid during oversupply. A system with a surface
of 600 square meters like in this research shows to be applicable with the grid connection capacity
of 80 kW.

* An energy storage system of 250 kWh shows a desirable performance. However, the form of
storage is not investigated and the complexity of the system could impose other challenges.
Further research is advised on this matter before implementing the system.
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