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Preface

At the end of 2001 it was time for me to choose a group for my MSc research.

The problem was that my interest in physics had never been very content-driven.

I enjoyed studying for exams in the years before, but I was never passionate

about any specific subject. My life was occupied with social and organizational

activities, and I focused on acquiring a wide variety of skills, ready for a business

career. I chose Quantum Transport because of the people and because I was hop-

ing that their drive and working spirit would motivate me to finish fast, so I could

start working for a consultancy firm or multinational. After all, their recruiters

promised me I would be ‘solving complex problems in a creative environment with

a steep learning curve, in a team with highly intelligent and inspiring people’.

My choice to become a PhD student thus came as a surprise, both to me and

my environment. The reason was the challenge of doing a PhD in fundamental

physics and more importantly, the pure joy in the work we do every day. Our job

cannot be characterized any better than by the description promised by recruiting

folders of the average consultancy firm or multinational, see above. On top of

that, most scientists are sincerely passionate about their work. Without passion

one would never be able to persist after each failed experiment. It turned out

to be the best decision of my life so far: every day in the past five years I drove

to the lab with pleasure and eagerness. Doing a PhD is a way of life with many

opportunities and an incredible amount of freedom. However, a strong intrinsic

motivation is essential to continuously work in an efficient and disciplined way

towards a long-term deadline.

I have spent six years in QT, one year as a Master student and five as a PhD

student. QT feels like a family: colleagues are like brothers and sisters. We do not

work hard because our boss tells us to, but because we really like our job. This

passion combined with the social environment and concern for another’s results

is crucial for the success of the group. There will always be pushy people who

mainly pursue their own goals. This may lead to good results for the individual,

but in the long run it will affect the group negatively. I hope everyone continues

to motivate and stimulate each other to greater heights.
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Preface

Leo Kouwenhoven, thank you for giving me the opportunity to spend four

months in the lab of professor Charles Marcus at Harvard University, and for

trusting me to set up collaborations with two other research groups at Harvard.

At crucial moments I have always had the feeling that you wanted the best for

both of us. I very much appreciate the liberal in you, who avoids making decisions

for another and who limits himself to strong suggestions. This way your students

learn that they themselves must be the driving force behind their research, not

the professor. I respect you as a scientist, as a personality, and as a football

player. In the second half of last year’s competition we missed your brilliant

organization in the defense of Réal RKC, the QT monday night football team. I

hope you will be back on the field soon and lead the team to many championships

in the coming years.

Our collaborations have been of great importance to this work. Erik Bakkers

and Aarnoud Roest at Philips Research have synthesized the InAs and InP

nanowires, thanks for many pleasant and informative meetings. The scanning

gate measurements were performed in the group of professor Robert Westervelt

at Harvard University. Ania Bleszynski, I enjoyed our (non-)scientific encounters

in Delft, Vienna, Cambridge, Los Angeles and Santa Barbara. The Si nanowires

were grown in the group of professor Charles Lieber at Harvard University. Thank

you for your hospitality and your enthusiasm about our collaboration. I felt wel-

come in your lab, everyone was open and willing to help me and to discuss

anything about nanowires. Ying Fang, it was a pleasure to work with you. Your

professionalism, eye for detail and fast answers to our questions were essential for

our success. Discussions with Daniel Loss, Yuli Nazarov, Sven Rogge and Bart

van Wees have contributed significantly to a better understanding of our results.

I wish to thank the scientific staff for making QT a special place by stimulating

all social interactions. You give the good example with small things as joining

the coffee breaks, but you also show the importance of social events by making

them possible. Please keep in mind, that fitting socially into the group is a very

important criterion for accepting PhD students and post-docs in QT. The most

intelligent and skilful people may get the job done, but they will not get far

without being able to interact with the rest of the group.

Hans Mooij, it is a great pleasure to be part of the group you built and espe-

cially of the Hans Pension Party Committee, the cream of the crops within QT.

I found it impressive to see and hear the people who came over for your pension

party. Lieven Vandersijpen, I enjoyed our squash games, het is eenvoudiger om

je te verslaan dan je te verstaan (sorry, this only works in Dutch). Val Zwiller,

your group has brought many new impulses to QT, I appreciate how you bring

people from everywhere into the lab.
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It has been a delight to supervise three fantastic MSc students. One after the

other worked intensively with me for twelve months and organized the annual

QT Trip. Without you I would have worked less hard and had less fun! In

almost three years we have fabricated 285 samples with the electron-beam pattern

generator, of which about 220 nanowire chips. This means that we have contacted

roughly 2640 individual nanowires, quite a production. Dirk van der Mast, a

small guy with a big mouth, and a magician on the football field. Thanks for

the good conversations and our trips to Poland and Arosa, where we explored

sausages, skiing and spin rausch. Anne van Loon, you are a wonderful person

in all respects. Besides that, you are a gifted hockey and football player, and

the Ultimate Multitasker. Too bad we lost you to the business world, see you in

NYC or down under! Cathalijn van Rijmenam, we made it to the national media

twice in 2007, both on television and in a renowned newspaper. We shared the

most exciting part of my PhD, when the long-awaited results came in the nick of

time. Thanks for fabricating the winning devices!

Raymond, the man who lives on sandwich spread, mueslibollen, tea, cake

and tin-lead solder. Thank you very much for your didactic talents, all elec-

tronic support, your synthesized compositions and the friday-afternoon projects.

Remember: A banana a day keeps the noise away. Bram, thanks for your direct-

ness, your open communication, your sense of humor and all technical support.

Remco and Peter, welcome to the club, it is good to see two naughty boys sneak-

ing through the corridor. Please do not stop making practical jokes! Yuki and

Angèle, I am glad we can rely on your administrative support. Wim and Willem,

thanks for supplying helium, especially in times of shortage.

Ronald Hanson, Ronny, S-prof, the new Herre, Roddelkoning, even during

your two years in Santa Barbara you managed to stay better informed than most

of us. I am glad you missed Stromboli, football and exchanging spicy stories so

badly that you limited your post-doc to two years. Thanks for your advice, your

help, the rickrolls and our many ‘1-2tjes’ on and off the football field. Ivo Vink,

thanks for your legendary impersonations and the deadline-borrel. You have the

most seductive Wink ever, and as the Chinese say: ‘St’ong wink is powful tool

against itching Nose’. I still wonder when our first manuscript titled ‘Leading

through technology by understanding people’ will appear in Harvard Business

Review. Pieter de Groot, Two-face, we still have to find out how Thorgal ends!

It is good to have someone in the group who is always smiling. I have never

met someone who can show such sincere happiness over breakfast, eleventies,

computer programs, lunch, microwave generators, second lunch, Sinterklaas (does

not exist), first dinners, second dinners, drinking, a midnight snack and a glass

of water next to our bed.
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Preface

After years of sharing the same space, your office mates know almost every-

thing about you. Frank Koppens, Floor Paauw, I am glad I could share it with

you. Frank, thanks for the strange sounds you produce and for all the fun, es-

pecially while mingling in Bostonian bachelorettes. Floor, glad you were in the

office to tame Frank and me. Remember to practice controlling the ball, im-

prove your shot and increase your running speed. Reinier Heeres, Reindeer, I am

glad to leave QT in the capable hands of my follow-up hockeying corpslid a.k.a.

the toptalent. Maarten van Kouwen, please make a joke. Juriaan van Tilburg

and Gary Steele, we have had some unforgettable breakfast sessions after steamy

nights in a non-airconditioned hotel room in sizzling Vienna. What ever hap-

pened to ‘ze fallen madonna’? Thanks to the four PhDs in the QT-house for

defying their background one way or the other: Pol Forn-Diaz, a Catalan play-

ing in royal white. Xinglan Liu, Lan, the only individualistic and direct Chinese.

Umberto Perinetti, an Italian who likes Dutch diepvriespizza and dislikes football

(on the train during a Euro 2008 match of the Squadra Azzurra). Katja Nowack,

ze German who vants to be Dutch but mistakes Belgians for zem. I would also

like to thank all other PhDs and Post-docs not mentioned here. I wish all current

PhD students good luck, make sure to enjoy the ride!

Many former QT members must not be left unmentioned: Jorden van Dam &

Hubert ‘Vroegslaper’ Heersche a.k.a. Jut & Jul, thanks to your diamond program

I ended up using Matlab instead of Excel for data processing. Herbert, I enjoyed

our discussions, trips and especially beating you by three seconds in the ski race

in Arosa. Jeroen Elzerman, left-wing intellectual and always optimistic about

the Dutch national football team. Laurens Willems van Beveren, thanks for

the brilliant idea to go to Sydney, see you at the barbie. Silvano De Franceschi,

madonna! Sami Sapmaz, the football miracle, you were personally responsible for

quite a few victories of Réal RKC. Jelle Plantenberg, proost! Alberto Morpurgo, I

hope Stromboli will not go bankrupt after your leave, good luck in Geneva. Herre

‘Trouwe Hond’ van der Zant, thanks for keeping us up-to-date with the most

recent NanoScience gossip and for your football lessons (in de voet!). Thomas

Balder, thanks for the capacitance calculations. Mauro Porcu of the HREM

group, thanks making the TEM images, for the caffès and the dinners.

Experiments in the lab do not work out without fun outside the lab. I found

plenty distraction, especially in sports: Playing in the Monday night football

team has been pure fun. Thanks to all players from past and present. Robert

Bartelds, thanks for many endless games of squash and for a great visit to Berlin,

also topsport. I have spent a significant part of the past five years on my hockey

club Groen Geel. Many thanks to my hockey team for your interest in my stories

and for all nano-nicknames.
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Furthermore, I am very grateful to many other friends who are important to

me: my former housemates of Koornmarkt 81E, my VvTP-board, my Almanak

committee and my ‘clubgenoten’. Marjanne Henderson, Nico, thanks for design-

ing the cover of my thesis – the result is beautiful! Without my car I would not

have been able to spend so many hours in the lab, thank you for five years of

unconditional logistic, audiovisual and mental support. Arthur and Bernard, I

am looking forward to having you in front of me during my defence.

Seeing my friends from grammar school in Zwollywood regularly is very valu-

able to me. Astarte, Bernard, Bettie, Dolf, Roland and your better halves, thanks

for the many dinners that got out of hand (e.g. due to the Sandorf’s dranken-

kabinet). Sorry for my late arrivals straight from the lab, even if the dinner was

at my own place... Our friendship has remained strong despite all of us moving

to different parts of the world one after the other. I have fantastic memories with

you in South Africa, Curaçao, Diemen-Zuid, Rome, Boston, Glimmen, Hurghada,

Alanya, Sharm El-Sheikh and several obscure villages in France. I hope we can

add Shanghai and Sydney to the list in the years to come!

I thank my brothers, their partners, my parents and grandparents for their

continuous love and support. Finally, I thank Marjolein for signing up her team

for the Haagse Hockey Open 2007, and Pauline for showing up. After thirteen

years at university in Delft, it is time for a change. Sydney, here I come!

Floris Zwanenburg

August 2008
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Chapter 1

Introduction

1.1 Quantum physics

Quantum physics generalizes classical physics, which is only a special case. It

provides accurate descriptions for many phenomena that cannot be explained

classically, such as the photo-electric effect and stable electron orbits. In the

early 20th century, Albert Einstein showed that an electromagnetic wave such as

light is composed of discrete quanta rather than continuous waves [1], earning him

the Nobel Prize in 1921. Ironically, he had serious theoretical issues with quan-

tum mechanics and tried for many years to disprove or modify it. In quantum

mechanics we discover that the entire universe is actually a series of probabili-

ties. Many quantum phenomena, such as the particle-wave duality and tunneling

through classically impenetrable barriers, are counterintuitive for humans used

to a world of classical objects. This lead the physicist Richard Feynman to say:

‘I think it is safe to say that no one understands Quantum Mechanics.’

While the interpretation of quantum physics remains under debate, the the-

ory is generally accepted to give an adequate description of our physical reality

within present-day experimental limits. So, rather than trying to comprehend it

we want to use quantum physics in applications. The experiments described in

this thesis have been carried out in the Quantum Transport Group, part of the

Kavli Institute of NanoScience at Delft University of Technology. The research

in our group focuses on understanding and controlling the quantum properties of

structures with typical sizes of 10 to 100 nanometer. We use nanotechnology to

design the small structures used in our experiments. Possible long-term applica-

tions of this fundamental research are novel electronics devices and the realization

of a new type of computer, the quantum computer. Here we study two properties

of electrons and holes in semiconductor nanowires: their electrostatic charge and

magnetic moment, called spin.
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1. Introduction

1.2 Spin and charge

In our daily lives we use the spin and charge of electrons practically every day.

The operation of the transistor is based on the charge of electrons in a semicon-

ductor. At the time of the invention in 1947 the researchers at Bell Labs could

not have guessed it would lead to the rapid development of the computer indus-

try. Analogously, the mechanism responsible for the giant magnetoresistance in

magnetic multi-layers is founded on the spin of electrons. After the discovery in

1988 it resulted in the realization of hard-disk drives, nowadays a billion-dollar

industry. Both breakthroughs were then a part of fundamental research, and

have later had an enormous impact on human society.

A long-term application of nanotechnology is the development of novel elec-

tronic devices that outclass modern-day silicon integrated-circuit technology. Com-

puter processing power has doubled roughly every 18 months in the past decades,

mainly by making the charge-based transistors smaller and smaller [2]. Nan-

otechnology offers the promise of continuing the miniaturization, but this will no

longer hold when the active components reach the size of individual atoms and

stop obeying the classical laws of physics. One solution is presented by the field of

‘spintronics’, where the spin degree of freedom is used in addition to, or instead

of the charge degree of freedom. Without having to proceed the miniaturiza-

tion, spintronics has the potential advantage of increased data processing speed,

decreased electric power consumption, non-volatility, and increased integration

densities [3, 4, 5].

Instead of avoiding the quantum mechanical nature of electrons, we may ex-

ploit it for computations that are classically impossible. A classical computer has

a memory made up of bits, where each bit represents either 1 or 0. A so-called

quantum computer maintains a sequence of quantum bits, or qubits, which can

be in a quantum superposition of both 0 and 1; moreover, a quantum computer

with n qubits can be in up to 2n different states simultaneously. The qubits are

then manipulated by means of a quantum algorithm to perform quantum logic.

A quantum computer would be able to carry out specific tasks that a classical

computer will not be able to solve within the lifetime of the universe, e.g. the

factorization of large numbers with Shor’s algorithm [6].

There are several proposals for quantum mechanical two-level systems that

can comprise the states of a qubit, e.g. atoms in an optical lattice [7], ions

in electrostatical traps [8], flux qubits in superconducting circuits [9] and solid

state spin qubits [10, 11]. In case of the latter, confined electron spins form the

basis of a quantum bit, where spin-up and spin-down represent the qubit states.

The potential of the spin qubit is underlined by the recent demonstration of

14



1.3 Semiconductor nanowires

coherent control of one and two spin states in quantum dots in GaAs/AlGaAs

heterostructures [12, 13]. A drawback of these materials is the limited electron

spin coherence time, caused by interactions with the nuclear environment. The

motivation to use silicon arises from the fact that those interactions are much

weaker in Si. Indeed, spin lifetimes longer than 500 ns have been measured on a

macroscopic number of spins [14, 15]. In this thesis we show the first report of

the identification of spin states of the first four holes in a silicon quantum dot.

These results are an important step towards the realization of spin qubits in a

material with a long spin coherence time, crucial for quantum computation with

single spins.

1.3 Semiconductor nanowires

In the past years, science has shown great interest in semiconducting crystalline

nanowires, cylinder-shaped wires with aspect ratios of 1000 or more. Nanowires

have diameters up to tens of nanometers and can be tens of microns long. Their

strength lies in the precisely controlled and tunable chemical composition, struc-

ture, size, and morphology, since these characteristics determine their corre-

sponding physical properties. The versatility of chemically grown semiconductor

nanowires promises a wide range of potential applications, such as nanoelec-

tronics, nanophotonics, quantum information processing and biochemical sensors

[16, 17, 18]. The high degree of freedom in nanowire synthesis additionally allows

epitaxial growth of heterostructures in both the radial and longitudinal direction.

The doping can be varied during growth, to make for example pn-junctions within

a single nanowire to create LEDs. It is essential for this work that a nanowire

provides natural confinement for electrons and holes due to its small size, making

it ideal to observe quantum effects.

1.4 Outline of this thesis

This thesis describes a series of electronic transport experiments aimed at a better

understanding of spin and charge effects in semiconductor nanowires. Chapter 2

starts with a general introduction to the theory of quantum dots. Next, we de-

scribe the growth of semiconductor nanowires, the fabrication of nanowire devices

and the measurement techniques.

Chapters 3 to 6 focus on silicon nanowires. In Chapter 3 we describe the

crystal structure and the energy bands of bulk silicon. Next, we address properties

such as the mobility, doping and the metal-silicon interface. We end by discussing
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1. Introduction

to what extent these properties apply to silicon nanowires.

In Chapter 4 we demonstrate the experimental realization of single quan-

tum dots in p-type silicon nanowires. We observe pronounced excited states in

many devices with short channel lengths, i.e. shorter than 50 nm. Most devices

split up into two dots before we reach the few-hole regime due to local potential

perturbations in the environment of the dot.

We demonstrate control of the hole number down to one in Chapter 5. De-

tailed measurements at perpendicular magnetic fields reveal the Zeeman splitting

of a single hole in silicon. We are able to determine the ground-state spin con-

figuration for one to four holes occupying the dot and find a spin filling with

alternating spin-down and spin-up holes, which is confirmed by additional mag-

netospectroscopy up to 9 T.

An unusual feature in single-hole silicon nanowire quantum dots is analyzed

in Chapter 6. We observe transitions corresponding to additional energy levels

below the N = 0 ground-state energy of the dot, which cannot correspond to

electronic or Zeeman states. The levels are quantized in multiples of 100–180

µeV and independent of magnetic field. We explain the discrete energy spectrum

as inelastic tunneling processes, where the excess energy is emitted to quantized

states in the environment of the quantum dot. The most likely explanation for

the excitations is acoustic phonon emission to a cavity between the two contacts

to the nanowire.

In Chapter 7 we show how a scanning probe microscope can be used to find

individual quantum dots inside InAs nanowires. Complex patterns of concen-

tric rings in conductance plots mapped across the length of the nanowires reveal

the presence of multiple quantum dots, formed by disorder. Rings of high con-

ductance are centered on each quantum dot, corresponding to the addition or

removal of electrons by the scanning probe.

Chapter 8 presents electric field control of the magnetoresistance in InP

nanowires with ferromagnetic contacts. The magnetoresistance is induced by

a single ferromagnetic contact and persists at high bias. The origin is found in

a magnetically induced change in the ferromagnetic work function, which alters

the electric field experienced by the InP nanowire and hence the total device

resistance. These results show our ability to combine the functionalities of semi-

conductors and magnetic materials.
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Chapter 2

Theoretical concepts and device

fabrication

2.1 Quantum dots

A quantum dot is a small box that can be filled with electrons. The box is coupled

via tunnel barriers to a source and drain reservoir, with which particles can be

exchanged (see Figure 2.1). By attaching current and voltage probes to these

reservoirs, we can measure the electronic properties of the dot. The dot is also

coupled capacitively to one or more ‘gate’ electrodes, which can be used to tune

the electrostatic potential of the dot with respect to the reservoirs. When the

size of the dot is comparable to the wavelength of the electrons that occupy it,

the system exhibits a discrete energy spectrum, resembling that of an atom. As a

result, quantum dots behave in many ways as artificial atoms [19]. In experiments

described in this thesis we have used the latter to study quantum dots defined in

segments of semiconductor nanowires. Here we present a general introduction to

electronic transport through quantum dots based on ref. [20].

Because a quantum dot is such a general kind of system, there exist quantum

dots of many different sizes and materials: for instance single molecules trapped

between electrodes, metallic or superconducting nanoparticles, self-assembled

quantum dots, semiconductor lateral or vertical dots, and also semiconducting

nanowires or carbon nanotubes between closely spaced electrodes. In this thesis,

we focus on semiconductor nanowire quantum dots.

Constant Interaction model

A simple, yet very useful model to understand electronic transport through QDs

is the constant interaction (CI) model [21]. The CI model makes two important

assumptions. First, the Coulomb interactions among electrons in the dot, and
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2. Theoretical concepts and device fabrication
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Figure 2.1: Schematic picture of a quantum dot. The quantum dot (represented
by a disk) is connected to source and drain contacts via tunnel barriers, allowing the
current through the device, I, to be measured in response to a bias voltage, VSD and
a gate voltage, VG.

between electrons in the dot and those in the environment, are parameterized

by a single, constant capacitance, C. This capacitance can be thought of as the

sum of the capacitances between the dot and the source, CS, the drain, CD, and

the gate, CG: C = CS + CD + CG. Second, the discrete energy spectrum can

be described independently of the number of electrons on the dot. Under these

assumptions the total energy of a N -electron dot in the ground state with the

source-drain voltage, VSD, applied to the source (and the drain grounded), is

given by

U(N) =
[−|e|(N −N0) + CSVSD + CGVG]2

2C
+

N∑
n=1

En(B) (2.1)

where −|e| is the electron charge and N0 the number of electrons in the dot at

zero gate voltage, which compensates the positive background charge originating

from the donors in the heterostructure. The terms CSVSD and CGVG can change

continuously and represent the charge on the dot that is induced by the bias

voltage (through the capacitance CS) and by the gate voltage VG (through the

capacitance CG), respectively. The last term of equation (2.1) is a sum over the

occupied single-particle energy levels En(B), which are separated by an energy

∆En = En − En−1. These energy levels depend on the characteristics of the

confinement potential. Note that, within the CI model, only these single-particle

states depend on magnetic field, B.
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Figure 2.2: Schematic diagrams of the electrochemical potential of the quan-
tum dot for different electron numbers. (A) No level falls within the bias window
between µS and µD, so the electron number is fixed at N−1 due to Coulomb blockade.
(B) The µ(N) level is aligned, so the number of electrons can alternate between N and
N − 1, resulting in a single-electron tunneling current. The magnitude of the current
depends on the tunnel rate between the dot and the reservoir on the left, ΓL, and on
the right, ΓR. (C) Both the ground-state transition between N − 1 and N electrons
(black line), as well as the transition to an N -electron excited state (gray line) fall
within the bias window and can thus be used for transport (though not at the same
time, due to Coulomb blockade). This results in a current that is different from the
situation in (B). (D) The bias window is so large that the number of electrons can
alternate between N − 1, N and N + 1, i.e. two electrons can tunnel onto the dot at
the same time.

To describe transport experiments, it is often more convenient to use the

electrochemical potential. The electrochemical potential of the dot is by definition

the energy required for adding the Nth electron to the dot:

µ(N) ≡ U(N)− U(N − 1) =

= (N −N0 −
1

2
)EC −

EC

|e|
(CSVSD + CGVG) + EN (2.2)

where EC = e2/C is the charging energy. This expression denotes the transition

between the N -electron ground state and N − 1-electron ground state. To avoid

confusion when also excited states play a role, we will sometimes use a more

explicit notation: the electrochemical potential for the transition between the

N − 1-electron state |a〉 and the N -electron state |b〉 is then denoted as µa↔b,

and is defined as Ub − Ua.

The electrochemical potential for the transitions between ground states with

a different electron number N is shown in Figure 2.2A. The discrete levels are

spaced by the so-called addition energy:

Eadd(N) = µ(N + 1)− µ(N) = EC + ∆E. (2.3)
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2. Theoretical concepts and device fabrication

The addition energy consists of a purely electrostatic part, the charging energy

EC , plus the energy spacing between two discrete quantum levels, ∆E. Note

that ∆E can be zero, when two consecutive electrons are added to the same

spin-degenerate level.

Of course, for transport to occur, energy conservation needs to be satisfied.

This is the case when an electrochemical potential level falls within the ‘bias

window’ between the electrochemical potential (Fermi energy) of the source (µS)

and the drain (µD), i.e. µS ≥ µ ≥ µD with −|e|VSD = µS − µD. Only then can

an electron tunnel from the source onto the dot, and then tunnel off to the drain

without losing or gaining energy. The important point to realize is that since the

dot is very small, it has a very small capacitance and therefore a large charging

energy – for typical dots EC ≈ a few meV. If the electrochemical potential levels

are as shown in Figure 2.2A, this energy is not available (at low temperatures

and small bias voltage). So, the number of electrons on the dot remains fixed

and no current flows through the dot. This is known as Coulomb blockade.

The Coulomb blockade can be lifted by changing the voltage applied to the

gate electrode. This changes the electrostatic potential of the dot with respect

to that of the reservoirs, shifting the whole ‘ladder’ of electrochemical potential

levels up or down. When a level falls within the bias window, the current through

the device is switched on. In Figure 2.2B µ(N) is aligned, so the electron number

alternates between N − 1 and N . This means that the Nth electron can tunnel

onto the dot from the source, but only after it tunnels off to the drain can another

electron come onto the dot again from the source. This cycle is known as single-

electron tunneling.

By sweeping the gate voltage and measuring the current, we obtain a trace as

shown in Figure 2.3B. At the positions of the peaks, an electrochemical potential

level is aligned with the source and drain and a single-electron tunneling current

flows. In the valleys between the peaks, the number of electrons on the dot is

fixed due to Coulomb blockade. By tuning the gate voltage from one valley to

the next one, the number of electrons on the dot can be precisely controlled.

The distance between the peaks corresponds to EC + ∆E, and can therefore give

information about the energy spectrum of the dot.

A second way to lift Coulomb blockade is by changing the source-drain voltage,

VSD (see Figure 2.2C). (In general, we change the electrochemical potential of

only one of the reservoirs, and keeping the other one fixed.) This increases the

bias window and also ‘drags’ the electrochemical potential of the dot along, due

to the capacitive coupling to the source. Again, a current can flow only when

an electrochemical potential level falls within the bias window. When VSD is

increased so much that both the ground state as well as an excited state transition
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conductance, dI/dVSD, versus VSD and VG, up to large bias. The edges of the diamond-
shaped regions (black) correspond to the onset of current. Diagonal lines emanating
from the diamonds (gray) indicate the onset of transport through excited states.

fall within the bias window, there are two paths available for electrons tunneling

through the dot. In general, this will lead to a change in the current, enabling

us to perform energy spectroscopy of the excited states.

Usually, we measure the current or differential conductance (the derivative of

the current with respect to the source-drain bias) while sweeping the bias voltage,

for a series of different values of the gate voltage. Such a measurement is shown

schematically in Figure 2.3B. Inside the diamond-shaped region, the number

of electrons is fixed due to Coulomb blockade, and no current flows. Outside

the diamonds, Coulomb blockade is lifted and single-electron tunneling can take

place (or for larger bias voltages even double-electron tunneling is possible, see

Figure 2.2D). Excited states are revealed as changes in the current, i.e. as peaks

or dips in the differential conductance. From such a ‘Coulomb diamond’ the

energy of excited states as well as the charging energy can be read off directly.

The simple model described above explains successfully how quantization of

charge and energy leads to effects like Coulomb blockade and Coulomb oscilla-

tions. Nevertheless, it is too simplified in many respects. For instance, the model

considers only first-order tunneling processes, in which an electron tunnels first

from one reservoir onto the dot, and then from the dot to the other reservoir. But

when the tunnel rate between the dot and the leads, Γ, is increased, higher-order

tunneling via virtual intermediate states becomes important. Such processes are

known as ‘cotunneling’. Furthermore, the simple model does not take into ac-

count the spin of the electrons, thereby excluding for instance exchange effects.

21



2. Theoretical concepts and device fabrication

2.2 Semiconductor nanowire growth

In this section we describe in detail the growth of semiconductor nanowires,

based on ref. [22]. The nanowire growth was performed in the group of prof.

C.M. Lieber at Harvard University, and at Philips Research in Eindhoven, The

Netherlands. After growth, further device processing was carried out at the Delft

Institute of Microelectronics and Submicron-technology (DIMES).

Several fabrication methods are available to grow semiconductor nanowires.

They can be divided into two classes: top-down and bottom-up methods. In

top-down methods the strategy is to start with a large piece of semiconduc-

tor material and use techniques to obtain nanoscale wires, like nanolithogra-

phy and etching. In bottom-up methods the starting point is a nano-scale ob-

ject and a chemical process is used to obtain semiconductor nanowires. The

nanowires studied in this thesis were grown using a bottom-up process based on

the vapor-liquid-solid (VLS) growth method [23]. We have studied Si, InP and

InAs nanowires grown by two different types of VLS growth methods. The most

important difference between the methods is the way semiconductor vapor is sup-

plied. In the laser-ablation method, semiconductor vapor is supplied by focusing

a high-intensity laser on a semiconductor material [24]. In case of Metal-Organic

Vapor-Phase Epitaxy [25] (MOVPE) or Metal-Organic Chemical Vapor Deposi-

tion (MOCVD) the semiconductor material is supplied through organic molecules

like trimethylindium (TMI) and phosphine (PH3). Despite the fact that we use

two different growth methods and various semiconductor materials, all wires are

grown by the VLS growth mode. We will now discuss the growth of Si nanowires

by MOCVD method (see Figure 2.4A).

A substrate with gold nanoclusters is heated under H2 gas to 430−440◦C [26].

The silicon nanowires grow under a silane (SiH4) gas flow. The silane decomposes

and Si atoms rapidly condense into Si-rich liquid nanoclusters (see Figure 2.4A).

When the clusters become supersaturated, silicon will start to crystallizes below

the gold particle and a solid silicon nanowire grows from the substrate. The

length of the nanowires is controlled by the growth time. Typically nanowires

with a length of serval micron are grown.

Figure 2.4C shows a typical Scanning Electron Microscopy (SEM) image of

the as-grown nanowires. Over 95% of the deposited material consists of one-

dimensional structures. High-resolution Transmission Electron Microscopy (HR–

TEM) images are used to determine the growth direction and the crystal structure

(Figure 2.4C). The long axis of most of the wires is perpendicular to the (111)

lattice plane as has been reported [27], but also growth along the [211] direction

is observed occasionally. Each wire is terminated by a particle containing Au and
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Figure 2.4: (A), Schematic of the VLS growth of semiconductor nanowires. The
upper part of the panel shows the different stages of nanowire growth. Starting from a
gold particle on the left, the second stage is a Au-Si eutect when semiconductor vapor
is dissolved in the particle. When the particle is saturated with semiconductor material
the single-crystal nanowire starts to grow. (B) HR–TEM image of a 30 nm diameter
silicon nanowire, grown from a gold particle in the 〈111〉 direction (from [26]). (C) SEM
image of a substrate after growth showing the nanowires standing on the substrate.

an amount of semiconductor. The diameter of the nanowires is largely dictated

by the size of the gold nanoclusters. However, the substrate temperature during

growth affects the resulting diameter as well. Growth takes places via two pro-

cesses, namely the liquid/solid interface between the eutectic and the nanowire

(VLS growth) and the gas/solid interface between reactants and the exposed sur-

face of the growing nanowire. Precipitation through the first interface results

in axial elongation of the nanowire, while adsorption via the nanowire sidewalls

results in vapor-solid growth and thickening of the radial direction. The latter is

mostly unwanted because it disrupts the longitudinal uniformity of the nanowires.

As mentioned at the beginning of this section, the growth of Si by MOCVD is

only one of several growth processes used throughout this thesis. Other semicon-

ductor materials have been grown, like InAs nanowires via an MOVPE-method

in chapter 7 and InP nanowires via a laser ablation method in chapter 8.
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2. Theoretical concepts and device fabrication

2.3 Device fabrication and measurement tech-

niques

In this section we discuss the techniques for device fabrication. After describ-

ing the nanowire deposition on suitable substrates we present the principle of

electron-beam lithography, which is used for defining the electrodes. Finally, we

discuss the deposition of metallic contacts.

Nanowire deposition

After growth the nanowires are transported to Delft and subsequent process-

ing takes place at the DIMES nanofacility. The first step is the deposition of

nanowires on suitable substrates for further device fabrication. We use degen-

erately doped p++ silicon wafers covered by a 50 or 285 nm thick dry thermal

oxide. This allows us to use the substrates as a global gate for field-effect devices

where the thermal oxide acts as the gate dielectric.
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Figure 2.5: (A) SEM image of a silicon nanowire (indicated by white arrows) on the
marker field, used to determine the position of nanowires with respect to alignment
markers. (B) Computer design of the metallic contacts with distances of 300, 400,
and 300 nm respectively. (C) Scanning electron microscope image of the device after
contact fabrication.

Several different methods are available for the transfer of nanowires from the

growth chip to the doped silicon substrates. Here we describe two processes,

namely: (i) deposition from solution, and (ii) direct transfer. When the wires are

deposited from solution, we first put the chip with as-grown nanowires (as in Fig-

ure 2.4C) in 2-propanol (IPA). By low-power ultrasonic agitation the nanowires

are released from the growth-chip and suspended in solution. The nanowires in

the IPA can now be transferred to the silicon substrate using a reference pipette.

The second deposition method, called direct transfer, is even more straightfor-

ward than deposition from solution. We gently put the growth chip on top of

the oxidized silicon substrate resulting in the direct transfer of nanowires to the
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Figure 2.6: Schematic of the electrode fabrication process. In the first step a double-
layer of e-beam resist (PMMA) is exposed using an e-beam pattern generator (EBPG).
Then the exposed areas are dissolved with a suitable developer and a metal film is
deposited using e-beam evaporation. In the last step the remaining resist is removed
using a solvent (right panel).

silicon substrate.

After nanowire deposition the position of the nanowires on the substrate have

to be determined in order to fabricate individual electrodes. This is done by

using pre-deposited markers on the silicon substrate. These markers are defined

by electron beam lithography, a technique we discuss below. Figure 2.5a shows

an SEM image of a silicon nanowire deposited on a substrate with a predefined

marker. We have used Computer Aided Design (CAD) software in order to de-

sign individual electrodes to the nanowires. An example of a design connecting

the nanowire with four Ni contacts is shown in Figure 2.5b.

Electron-beam lithography

We have used electron-beam lithography (EBL) for defining the electrodes in a

layer of resist. This process is illustrated schematically in Figure 2.6 and consists

of the following steps: (i) Spinning of resist, (ii) E-beam exposure, (iii) Metal

deposition, (iv) Lift-off.

(i) For this thesis we have used a double layer of polymethyl methacrylate

(PMMA). The double layer improves the lift-off process due to a better resist

profile with an undercut. This results from a higher sensitivity of the bottom

layer compared to the top layer. The bottom layer (8% PMMA/MMA in ethyl-

L-lactate) is spun for 55 seconds at 3000 rpm and subsequently baked at 175◦C

for 15 minutes. The top layer (2% 950k PMMA in chlorobenzene) is spun at 4000

rpm for 55 seconds. We use a final bake at 175◦C for 60 minutes.

(ii) The CAD design is written in the resist by an e-beam pattern generator

(EBPG). Due to the exposure by an electron beam bonds in the polymer are

broken and the resist becomes soluble in a developer. We have used methyl-

isobutyl-ketone (MIBK):IPA 1:3 as a developer with a development time of 60

seconds. Subsequently, the sample has been rinsed for 60 seconds in IPA.
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2. Theoretical concepts and device fabrication

(iii) Metal deposition is typically done by e-beam evaporation in a vacuum

system with a background pressure of 3·10−8 mBar using deposition rates of

typically 1 Å/s. In order to reduce contact resistances between metal contacts

and semiconductor nanowires we perform a wet etch just before evaporation.

This process consists of a 5 seconds dip in an Ammonium-buffered HF solution

(BHF) followed by a rinse in H2O.

(iv) The final step in the fabrication process is lift-off. In this step the re-

maining resist is dissolved by immersing the sample in hot acetone (55◦C) for

15 minutes. Subsequently, the sample is rinsed in cold acetone and dried with

a nitrogen flow. Figure 2.5c shows a scanning electron microscope image of a

sample after lift-off.

The samples (with a typical size of 5×5 mm) are glued on a 32-pin chip-carrier

using silver paint. The silver paint ensures a good electrical connection between

the silicon substrate and the chip-carrier which is important if we use the sub-

strate as a global gate. Electrical connections from the chip to the chip-carrier

are made by ultrasonic bonding using Al/Si(1%) wires. Because the electrical

contacts on the chip are separated from the substrate by a thin silicon oxide, the

bonding has to be done carefully in order to prevent gate leakage. Therefore we

use a flat bonding-tool and minimize the force during bonding (equivalent to ∼18

gram).

Measurement techniques

Measurements have been performed at low temperatures in order to study the

quantum mechanical phenomena of interest. The temperature ranges from 4.2

K down to 30 mK. For measurements between 1.5 and 4.2 K we have used a

dip-stick which is immersed in a liquid helium dewar. By pumping on a 1K-pot

the temperature can be reduced to 1.5 K. For most other measurements we have

used a dilution refrigerator in order to reach temperatures as low as 30 mK.

Although various different systems have been used throughout this thesis to

cool down samples, the equipment for the electrical measurements has always

been very similar. We have used battery-powered, in-house-built measurement

equipment for all our electrical measurements in order to minimize the noise level.

Voltage and current sources are computer-controlled and optically isolated from

the electrical environment of the sample. Also the outputs of voltage amplifiers

and IV-converters are optically isolated from the measurement computer.
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Chapter 3

Silicon and silicon nanowires

3.1 Crystal structure and energy bands

Four of the fourteen electrons in a silicon atom lie in its outer shell. The remaining

ten electrons occupy deeper levels, n = 1 and n = 2, see figure 3.1A. These levels

are completely full and have an electronic configuration 1s22s22p6 in which s and

p are subshells of a level n. The n = 1 and n = 2 levels can contain ten electrons

in total. These levels are tightly bound to the nucleus. The outer shell, the n = 3

level, contains the 3s subshell, with two valence electrons, and the 3p subshell

which can contain six electrons, but has only the two remaining valence electrons.

as shown schematically in figure 3.1A. The energy of an electron occupying the 3s-

orbital is different from an electron occupying the 3p-orbital, since the electrons

occupy different energy levels.

Silicon crystallizes in a face-centered cubic (FCC) primitive lattice, the same

pattern as diamond. The four electrons in the outer orbital of every Si-atom

form a bond with one electron of each of the four neighboring Si atoms. An FCC

lattice has one atom on every corner and every face of a cube, and the extra

atoms in the Si-lattice are placed at (1
4
, 1

4
, 1

4
)a with respect to each atom in the

FCC lattice, in which a is the lattice constant. This structure is shown in three

dimensions in figure 3.1B. The lines between Si atoms in the lattice illustration

indicate nearest-neighbor bonds. The FCC lattice has a body-centered cubic

(BCC) lattice in reciprocal k-space. The Brillouin zone of the FCC lattice is

then the Wigner-Seitz cell of the BCC lattice. This is a truncated octahedron,

shown in figure 3.1C. Roman letters are used for points on the surface of the

octahedron and Greek letters for directions inside the lattice.

When Si atoms form a lattice, the energy levels of the 3s and 3p subshells will

interact and overlap, which causes splitting of the energy levels and the formation

of two bands. Four quantum states per atom make up the conduction band and
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Figure 3.1: Silicon crystal in real and reciprocal space. (A) Schematic picture
of a single silicon atom and its electrons, spread over three levels, picture based on [28].
(B) 3D plot of the unit cell of the silicon crystal in real space, showing the diamond
or Face-Centered Cubic (FCC) lattice, with covalent bonds between all Si atoms. (C)
Silicon crystal in reciprocal space. Brillouin zone of the silicon crystal lattice. It is the
Wigner-Seitz cell of the BCC lattice. Γ is the center of the octahedron.

four make up the valence band. Figure 3.2A shows the band structure of silicon.

The conduction and valence bands are shown versus the different directions in

k-space, denoted by Greek and Roman letters. These directions are taken from

the middle of the Brillouin-zone (Γ), see also figure 3.1C.

In an intrinsic semiconductor the Fermi energy, EF , lies in the gap, so both

bands are full and there are no free charge carriers. Transport can only occur

when electrons are available in the conduction band or holes in the valence band.

The energy difference between the conduction and the valence band is called the

bandgap energy, Eg, which is 1.12 eV for bulk silicon at room temperature and

increases to 1.17 eV below 50 K. The thermal energy, kBT , is much smaller at

room temperature (∼0.03 eV) than the band gap energy, hence the absence of
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Figure 3.2: Silicon band structure. (A) Band structure of silicon in K-space. The
four lower bands in the valence band, the four upper bands in the conduction band and
the band gap energy are shown. (B) Band structure of the pz-orbitals only, the band is
heavy in the kx direction and light in the kz direction. (C) Total bands from all three
p-orbitals in the kxkz-plane, which shows a doubly degenerate band ‘heavy’ band and a
single ‘light’ band. The bands look identical in the kxky-plane and the kykz-plane. (D)
Zoom-in on the top of the valence band. The heavy and light holes are degenerate for
K = 0, but have different masses for small K. For large K, they converge and form the
‘heavy’ band. The split-off band is separated from this band by the spin-orbit splitting
∆so. Figures from [29].

thermally excited free charge carriers. Silicon has an indirect gap, which means

that not only an energy change is required to get an electron excited into the

conduction band, but also some momentum change. For excitation, a phonon is

needed to require the change in momentum, because a photon does not provide

a high enough momentum. It is therefore impossible to determine the bandgap

of silicon by optical absorbtion of a photon with a certain wavelength. Besides

that, silicon is not a very efficient light emitter.

Top of the valence band

The different bands for heavy and light holes in the valence band are shown in

fig 3.2A. Holes in the top of the valence band have wave functions that display a

symmetry similar to the symmetry of p-orbitals [29]. If we consider a lattice of pz-

orbitals, carriers in the pz-orbital can travel easily in the z-direction, because the

wave functions overlap strongly in this direction. In the kxky-plane, the overlap

is much weaker, carriers travel less freely, and thus the effective mass is higher in

these directions, see figure 3.2B. For the px- and py-orbitals, the wave functions
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3. Silicon and silicon nanowires

overlap strongly in respectively the kx and ky direction, and weak in the other

directions. The picture of all p-orbitals results in a doubly degenerate upper band

for heavy holes and a lower single band for light holes, which is shown in figure

3.2C. The result is that the top of the valence band of silicon consists of a single

band for holes traveling slowly, and a doubly degenerate band for fast traveling

holes (figure 3.2C).

Bulk silicon has a spin-orbit splitting, ∆so = 0.044 eV, which is quite small

compared to e.g. GaAs (0.34 eV) and Ge (0.29 eV). Spin-orbit coupling in sili-

con is even smaller for electrons in the conduction band. This band consists of

s-orbitals, which have an angular momentum l = 0. Since the spin-orbit coupling

is proportional to l·s, it can be neglected and the conduction band is fourfold

degenerate. This is known as the valley degeneracy of Si. Since the valence

band consists of p-orbitals, the carriers have an angular momentum of l = 1,

and a small spin-orbit coupling is present. When we zoom in on the top of the

valence band, the simple picture of figure 3.2A fails. Figure 3.2D shows that a

single band is split off from the degenerate band by ∆so. The degenerate band

itself is no longer degenerate for all small K, but only for K = 0. Instead, we

have an upper band with heavy holes and a lower band containing light holes [29].

Effective mass

There has been an inconsistency in literature between commonly used values of

the intrinsic carrier concentration, the effective densities of states, the band gap

and the carrier effective mass in silicon. The assessment of Green [30] critically

evaluates the literature and identifies a self-consistent set of these parameters.

Here we present a description of the different types of effective masses based on

his work.

Holes with an energy close to a band maximum behave as free electrons,

since the E-k relation can be approximated by a parabola. They accelerate in an

applied electric field just like a free electron in vacuum. Their wave functions are

periodic and extend over the size of the material. The presence of the periodic

potential, due to the atoms in the crystal without the valence electrons, changes

the properties of the electrons. Therefore, the mass of the electron differs from

the free electron rest mass, m0 = 9.11·10−31 kg. For isotropic and parabolic bands

the resulting effective mass, m∗, is defined as

1

m∗
=

1

~2

d2E

dk2
. (3.1)

Because of the anisotropy of the effective mass and the presence of multiple

equivalent band minima in Si, two types of effective mass are used: (i) the ef-

fective mass for density of states calculations, m∗dos, and (ii) the effective mass
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3.1 Crystal structure and energy bands

for conductivity calculations, m∗cond. The latter is used for the calculation of

amongst others mobility, diffusion constants and the shallow impurity levels us-

ing a hydrogen-like model. Here we will only use the effective mass for density

of states calculations.

The two types are equal if the effective mass is isotropic, e.g. electrons in

GaAs have m∗e,dos = m∗e,cond = 0.067m0. The conduction band in silicon, however,

has six equivalent conduction band minima forming ellipsoidal constant energy

surfaces with anisotropic effective masses: one longitudinal mass, ml, and two

transverse masses, mt. In that case the density of states effective mass is obtained

from

m∗e,dos = M3/2
c

3
√
mlmtmt, (3.2)

where Mc is the number of equivalent conduction band minima. Mc = 6 for silicon

since it has three doubly degenerate valleys at the Γ-point. With ml = 0.92m0

and mt = 0.19m0 one finds m∗e,dos to be 1.06m0 at 4 K, going up to 1.09m0

at room temperature [30]. The temperature dependence of the effective mass

is related to two effects: (i) the shape of the energy-momentum curves changes

with temperature as the lattice expands and electron-phonon coupling increases

[31]. (ii) The conduction band and valence band move towards each other with

temperature or, in other words, the bandgap energy becomes smaller. States

away from the band edge approach the other band faster than those at the edge,

resulting in flattening of the bands and thus an increased effective mass [32].

In case of isotropic and parabolic valence bands the densities of states effective

mass barely changes with temperature and is defined as

m∗h,dos = {m∗ 3/2
lh +m

∗ 3/2
hh + (m∗soe−∆so/kBT )3/2}2/3. (3.3)

Here m∗hh, m∗lh and m∗so refer to the effective masses of respectively the heavy hole

band, the light hole band and the split-off band with values of m∗hh = 0.54m0,

m∗lh = 0.15m0 and m∗so = 0.23m0 [33]. In Si, however, the non-parabolic nature

of the heavy and light hole bands gives rise to a temperature dependent hole

effective mass [34]. If that is taken into account one can make an exact calculation

of the effective masses as a function of temperature and calculate m∗h,dos(T ) as

the weighted average:

m∗h,dos(T ) = {m∗ 3/2
lh (T ) +m

∗ 3/2
hh (T ) +m∗ 3/2

so (T )}2/3, (3.4)

yielding a densities of states effective mass of 1.15m0 at room temperature and

0.59m0 at 4 K. There is no analytical expression available, but a polynomial fit

to the computed values can be used to get an accurate number of the effective

mass [35]. In this work we use the densities of states effective mass to calculate

the Fermi energy and the level spacing in a silicon nanowire.
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3. Silicon and silicon nanowires

3.2 Transport properties

Doping and mobility

Free charge carriers can be introduced to a semiconductor by impurity doping.

Electrons (holes) can be ionized from donor (acceptor) atoms to the conduction

(valence) band to create an n-type (p-type) semiconductor. Commonly used

donors for silicon are As, P and Sb with respective ionization energies of 0.054,

0.045 and 0.043 eV. The acceptor atoms Al, B and Ga require respectively 0.072,

0.045 and 0.074 eV for ionization. Addition of donors or acceptors pulls the

Fermi energy up or down compared to the bands, increasing the carrier density

and the conductivity. However, impurities have a negative effect on the mobility

of the charge carriers, µ, which describes the relation between drift velocity, vd

and applied electric field, ~E, as ~vd = −µ~E. It is derived from the Drude model,

which assumes that the electron system can be described as an ideal gas, and

the motion of electrons is only limited by occasional scattering events [36]. The

mobility depends on the mean free time and the effective mass, according to

µ =
eτ

m∗
, (3.5)

where τ is the scattering time. τ is determined by various scattering mechanisms,

of which lattice and impurity scattering are most dominant. Lattice scattering

arises from thermal vibrations of the lattice (phonons), damping out at low tem-

peratures. Impurity scattering results from dopant atoms and dominates at low

temperatures. The scattering time goes up with increasing impurity concentra-

tion, diminishing the mobility, see Figure 3.3. The difference between electron

and hole mobility is mainly due to the degeneracy of the top of the valence band,

where τ is lowered by interband scattering [37]. Equation (3.5) also makes clear

that materials with higher effective masses generally have a lower mobility. E.g.

bulk intrinsic InAs has an electron effective mass of ∼0.023m0 and a mobility of

about 105 cm2/Vs at 77 K, whereas in bulk Si, with m∗e∼0.3m0, the mobility is

∼ 8·103 cm2/Vs.

Contacts

In order to incorporate a semiconductor into an electronic circuit, metal contacts

are required to connect the active semiconductor region to the external circuit.

When a metal and an n-type semiconductor are brought into contact, alignment

of the Fermi levels is accomplished by the transfer of electrons from the semicon-

ductor to the metal, thus pinning the Fermi level below the conduction band of

the semiconductor. Close to the interface the semiconductor is depleted of mobile

charges, and an electric field builds up in the area where only ionized atoms are
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3.2 Transport properties
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Figure 3.3: Mobility at room temperature versus doping density in bulk
silicon. The mobility of holes and electrons goes down as the doping concentration
increases. Graph from [38].

left. The resulting Schottky barrier is in theory determined by the work func-

tions of metal and semiconductor [28]. The work function φm is defined as the

energy difference between the Fermi level, EF , and the vacuum level, and can be

regarded as the minimum energy needed to remove an electron from a solid to a

point directly outside the surface of the solid. For an n-type semiconductor the

Schottky barrier height is defined as

φB,n = φm − χ, (3.6)

where χ corresponds to the electron affinity of the semiconductor. Similarly,

the Schottky barrier of a p-type semiconductor, φB,p, equals the bandgap energy

minus φB,n. Experimental values of the barrier height for different metals with

n-type and p-type silicon lie typically between 0.3 and 0.9 eV (Table 3.1). While

in theory the height of a Schottky barrier is determined by the difference between

work functions of metal and semiconductor, in practice the presence of surface

states can alter the theoretical value, especially in case of group IV and III-V

semiconductors [39].

Ag Al Au Cr Ni NiSi Pt W

φm (eV) 4.3 4.25 4.8 4.5 4.5 4.5 5.3 4.6

φB,n (eV) 0.78 0.72 0.8 0.61 0.61 0.65 0.90 0.67

φB,p (eV) 0.54 0.58 0.34 0.50 0.51 0.45 0.45

Table 3.1: The work function of several metals and experimental values of the Schot-
tky barrier height with n-type and p-type silicon. Values from [38].
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3. Silicon and silicon nanowires

3.3 Silicon nanowires

Diameter and crystal structure

The preferential crystallographic growth direction of silicon nanowires depends

on the diameter. The smallest wires (3–10 nm) grow in the 〈110〉 direction, wires

with diameters of 10–20 nm grow mostly in the 〈112〉 direction and the bigger

ones (20–30 nm) grow in the 〈111〉 direction [26]. In this research, p-Si nanowires

were studied with diameters of 5–30 nm.

A nanowire provides confinement for charge carriers in two spatial dimensions,

which can lift the degeneracy of the conduction and valence subbands. Since there

are only few analytical results we use a simple conceptual picture to explain how

the band edges may be pulled apart, see Figure 3.4. Confinement can lead to

the ‘heavy’ holes having a lower energy at k = 0 in the valence band. The two

bands then cross because the heavy hole energies increase more rapidly with k

than the energies of the ‘light’ holes. The heavy holes then turn out to be lighter

for transverse motion than the light holes. If we assume coupling between the

two bands, the crossings are in fact anti-crossings.

Ev(z)

“heavy”

“light”

k

E

“anti-
crossing”

Figure 3.4: Conceptual model of valence band in a quantum well, showing how con-
finement can lift the degeneracy of the heavy and light hole subbands. Coupling be-
tween these subbands results in anti-crossing behavior, shown by the grey line. Picture
based on [29], page 385.

We can use a simple model to get an order of magnitude estimate of the

splitting between the valence subbands. If we assume a 1D box of size L to be

confined by a hard wall potential, the level spacing between the N + 1th and the

N th subband is [21]

∆EN = EN+1 − EN =
(2N + 1)π2~2

2m∗L2
. (3.7)
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3.3 Silicon nanowires

Based on a densities of states effective mass at 4 K of 0.59m0 and a 6 nm diameter,

E2−E1 = 53 meV. If the splitting between the first and second subband is greater

than the Fermi energy, we can to consider the nanowire as a one-dimensional

system. The Fermi energy can be written as

EF =
~2k2

F

2m∗
, (3.8)

where kF is the Fermi wave number. The Fermi wave vector in one dimension

is kF−1D = nπ/2, resulting in a one-dimensional Fermi energy of EF−1D = 13

meV for a carrier density of 1019 cm−3. Since EF < E2 − E1, only the lowest

subband is filled and we have one-dimensional transport. Figure 3.5 plots the

Fermi energy EF and the level spacing energy E2 − E1 in the radial direction as

a function of wire diameter for various carrier densities. Calculations of the sub-

0 10 20
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5x1018
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1x1019

2x1019

4x1019 n(cm-3)

ΔE2

m_hh=0.54m_0

Figure 3.5: Dimensionality of silicon nanowires. The Fermi energy EF and the
level splitting energy between the first and second energy level ∆E2 as a function of
diameter d. Curves for EF are made for various carrier densities.

band structure using tight-binding models support this conceptual picture, but

give smaller values for the subband splitting. The energy difference between the

first and second valence subbands in 3 nm diameter Si nanowires is theoretically

found to be ∼ 18 meV [40, 41].

Doping and mobility

The incorporation of dopant atoms in silicon nanowires is largely determined by

the ratio of the precursor gases, silane and e.g. diborane. The boron-doped silicon

wires in this research were grown with an atomic feed-in ratio of Si:B = 4000:1 and
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3. Silicon and silicon nanowires
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Figure 3.6: Surface oxide of silicon nanowires. (A) HR–TEM image of a silicon
nanowire with a diameter of 25 nm. The native oxide shell is about 2 nm thick. (B)
HR–TEM image of a 25 nm diameter silicon nanowire after 10 min oxidation at 600◦C
in an O2-atmosphere. The oxide shell has grown to a thickness of 4 nm.

3000:1, resulting in a carrier density of ∼1019 cm−3 according to [42] and our own

experience [43]. The presence of ∼1019 cm−3 carriers reduces the hole mobility

of bulk Si to below 80 cm2/Vs (Figure 3.3). One would expect an even lower

number for Si nanowires due to increased surface roughness scattering: since the

surface-to-volume ratio is much higher, silicon nanowires are more susceptible for

local potential fluctuations than planar silicon. After growth, silicon nanowires

have a thin amorphous surface oxide of 1-3 nm, see Figure 3.6A. Surface defects

in SiO2 or molecules from the ambient adhering to the oxide can induce potential

fluctuations, increasing the scattering rate and thus lowering the mobility. In

order to passivate these potential fluctuations we terminate the surface during

fabrication by exposing the nanowires to oxygen for ten minutes at 300◦C, after

which the time in ambient is minimized.

Hole mobilities of 20-30 nm diameter nanowires are found to be 10-50 cm2/Vs

[43], as expected. However, the mobility of 3-10 nm diameter nanowires is roughly

100-500 cm2/Vs, an order of magnitude bigger. The origin may be found in

the radial confinement, which can lift the degeneracy of the valence subbands

[40, 41] and therefore reduce intersubband scattering. Consequently, the decrease

in scattering rate enhances the mobility, see equation (3.5).

Below a certain diameter the dopant atoms introduced during nanowire growth

may be driven to the surface [44, 45]. In order to investigate this, we have cul-

tivated the SiO2 shell by means of dry oxidation at elevated temperatures. The
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3.3 Silicon nanowires

oxidation of Si nanowires is not constant over time: after a first rapid oxida-

tion, the oxygen molecules have to diffuse through the SiO2 layer, which limits

the oxide growth [46]. Exposure of silicon nanowires to an O2-atmosphere for

10 minutes at 600◦C results in an oxide shell of ∼ 4 nm, see Figure 3.6B. We

have made contacts to another set of nanowires after exposure of 30 minutes at

the same temperature, see Figure 3.7. The two-terminal resistances of the vast

majority of these devices are greater than 100 MΩ, whereas devices of which

the surface has only been passivated (see above) have two-terminal resistances of

below 1 MΩ. The dopant atoms have probably been oxidized as well, resulting

in an effectively lower carrier density and hence a lower conductance.

Contacts

Frequently used contact metals for p-type and n-type silicon nanowires are Al/Au

[47, 48], Ti/Au [49, 50, 51] and Ni [45, 52, 53, 54]. We have tried three different

contacting schemes for p-type silicon nanowires, namely Ti(100nm)/Al(10nm),

Ti(1–2nm)/Pd(100nm) and Ni(100nm). Figure 3.7 shows two scanning electron

micrographs of nanowires with Ti/Al contacts. Near each contact the wire is thin-

ner due to the removed SiO2 shell. The oxide has been etched with buffered hy-

drofluoric acid prior to metal evaporation, resulting in a thinner piece of nanowire

near the contacts and a trench that has been etched off the substrate.

500 nm

V S
D

(m
V)

30

100 nm

Figure 3.7: Etched surface oxide of silicon nanowires. Scanning Electron Mi-
crographs of silicon nanowire devices with Ti/Al (100 nm/10 nm) contacts. The sur-
face oxide has been cultivated to 6–7 nm by dry oxidation for 30 min at 600◦C. The
nanowire is thinner near the contact, where the SiO2 shell has been etched prior to
metal evaporation.
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3. Silicon and silicon nanowires

All three metallization schemes generally result in contact resistances of 10–

50 kΩ when deposited on nanowires with diameters of 15–30 nm, see [43]. The

interface resistance can be further reduced by rapid thermal annealing at temper-

atures between 300–400◦C, which stimulates alloying of metal and semiconductor

to form a silicide. On 5–10 nm diameter wires the above mentioned metalliza-

tions result in Schottky barriers of 0.5–1 V without annealing. In case of Ni and

Pd the elevated temperatures induce radial and longitudinal diffusion into the

nanowire, leading to an effectively shorter Si channel lengths and two-terminal

resistances between 100 kΩ and 5 MΩ.
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Chapter 4

Silicon nanowire quantum dots

The observation of quantum states in silicon devices requires small structures

because of the relatively high electron and hole effective mass compared to e.g.

InAs or GaAs. Additionally, planar silicon devices show localization on short

length scales, caused by potential fluctuations which can arise from structural

roughness or dopant fluctuations. These often result in multiple dots connected in

series. Nearly all reports so far have been on Si quantum dots greater than 50 nm,

e.g. in Si MOSFETs [55, 56, 57], silicon-on-insulator structures [58, 59, 60] and

Si/SiGe heterostructures [61, 62]. In these three systems excited states have been

observed only recently [63, 64, 65]. They were all preceded by the results on silicon

nanowire quantum dots in 2005 [45], which include excited-state spectroscopy,

spin spectroscopy and a strong indication of the realization of a single-hole dot.

We have continued this work, and gained a better understanding of the specific

system. This has allowed us to realize the first experimental identification of the

first four spin states in a silicon quantum dot, which we will present in the next

chapter. We start by giving a full description of the advantages and disadvantages

of Si nanowire quantum dots in this chapter.

We have measured many single quantum dots in p-type silicon nanowires,

defined by Schottky tunnel barriers with Ni and NiSi contacts. Quantum dots

shorter than 30 nm with pronounced excited states have been realized, which

readily allow spectroscopy of at least ten consecutive holes. We can make a reli-

able estimate of the dot length by comparing the measured backgate capacitance

to the capacitance computed with a model based on the Poisson equation. The

Si channel lengths visible in SEM images match the dimensions predicted by the

model. Finally, we show the difficulty of creating a single-hole silicon quantum

dot: many single dots split up in two dots upon reaching the few-hole regime. So

far only very short dots (< 12 nm) have allowed identification of the last charge.
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4. Silicon nanowire quantum dots

4.1 Two types of Si nanowire quantum dots

In this section two approaches for fixing the Si channel length are compared: (i) Si

nanowires with evaporated Ni contacts which are defined by electron-beam litho-

graphy and (ii) NiSi–Si–NiSi nanowires, fabricated by thermally induced diffusion

of Ni into Si nanowires. Silicon nanowire devices are prepared as described in

Chapter 2. During evaporation we deposit Ni contacts, leaving a Si channel of 50-

300 nm uncovered, see Figure 4.1A. In order to make NiSi–Si–NiSi nanowires the

samples are annealed in sequential steps of 20-30 seconds at 380 ◦C and 410 ◦C,

to induce radial and longitudinal diffusion of Ni into the Si nanowire. From both

Ni contacts a NiSi segment is formed in the nanowires with lengths of 100-150

nm, depending on diameter, temperature and time. Details about the results for

different annealing temperatures and times can be found in ref. [66]. The remain-

C

A

B

SiO2

p++-Si

EF

SiNiSiNi NiSi Ni

SiNi Ni

Figure 4.1: Two types of Si nanowire quantum dots. Schematic top view of
a Si nanowire quantum dot with Ni leads (A) and with NiSi leads (B). Here the Ni
has diffused into the Si nanowire during a two-step annealing process. (C) Schematic
of the corresponding Schottky tunnel barriers that define the quantum dot. Occupied
(empty) hole states are indicated in red (blue).

ing Si section is connected to the lithographically defined Ni contacts by two NiSi

leads, see Figure 4.1B. These devices have room-temperature resistances varying

from 100 kΩ to 5 MΩ. Some nanowires are fully transformed into the metal NiSi

having room-temperature resistances of 1-5 kΩ, corresponding to ρ ∼ 10 µΩcm,

consistent with values found in NiSi nanowires [67] and large single crystals [68].

The sensitivity of the potential landscape in silicon nanowires to surface states

demands clean fabrication to keep a flat valence band profile [66]. Otherwise

fluctuations of the potential in the Si channel can give rise to the unintentional

formation of extra tunnel barriers and thus in multiple-dot behavior.
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4.1 Two types of Si nanowire quantum dots

LSi<6 nmLSi=60 nm

LSi=59 nm

LSi=200 nm

B

C

A

VBG (V) 2

V S
D

(m
V)

5

-5

dI/dVSD (µS)0 6

1

-12

V S
D
(m

V)

12
dI/dVSD (µS)-0.25 3

VBG (V) 4010

VBG (V) -6.0

V S
D

(m
V)

40

-40
-6.6 -6.4

dI/dVSD (µS)-0.1 1.2

-150

V S
D
(m

V)

VBG (V) -20-50

150

D

dI/dVSD (nS)-2 18

Δ
V S

D

ΔVBG

Figure 4.2: Single quantum dots of varying lengths. Stability diagrams of four
Si nanowire quantum dots, measured at 2 K (A-C) and 20 mK (D). (A,C) Ni–Si–
Ni quantum dots of 200 and 60 nm, as defined by electron-beam lithography. (B,D)
NiSi–Si–NiSi nanowire quantum dots with estimated lengths of 59 and 6 nm, see next
section. The devices A, C and D were fabricated on substrates with SiO2 thicknesses
of 285 nm and device B on 50 nm thick SiO2.

41



4. Silicon nanowire quantum dots

4.2 Single quantum dots of varying lengths

The Ni–Si or NiSi–Si interfaces in each device form the Schottky tunnel contacts

between the metallic leads and the p-Si quantum dot, see Figure 4.1C. We have

measured 6 Ni–Si–Ni and 30 NiSi–Si–NiSi single quantum dots on substrates with

SiO2 thicknesses of 50 and 285 nm. In Figure 4.2 the differential conductance,

dI/dVSD, of four devices of varying sizes is plotted versus source-drain voltage,

VSD, and backgate voltage, VBG. We will refer to devices A, B, C and D for the

respective Figures 4.2A, B, C and D.

All four subfigures consist of diamond-shaped regions in which the current is

zero due to Coulomb blockade and the number of holes, N , is fixed, see Chapter

2. From these Coulomb diamonds we have derived the involved capacitances in

Table 4.1. The backgate-to-dot capacitance, CBG, is calculated as CBG=e/∆VBG,

where ∆VBG is the voltage needed to add a single charge, see Figure 4.2B. We

assume that the level spacing is much smaller than the charging energy. The

diamond edges have slopes of −CBG/CS and CBG/(C-CS), where C is the sum

of all capacitances to the dot and CS (CD) is the capacitance between dot and

source (drain) [69]. If we assume that no other gates have a significant capaci-

tive coupling to the dot C=CS+CD+CBG. We also compute the gate coupling

factor, α, as Eadd/∆VBG, where the addition energy, Eadd, is half the sum of the

maximum and minimum VSD of a diamond, indicated by blue arrows in Figure

4.2B. The length, L, of the NiSi–Si–NiSi quantum dots is estimated by means of

a capacitance model, see next section.

The stability diagrams of the Ni–Si–Ni quantum dot in Figure 4.2A and of the

NiSi–Si–NiSi nanowire quantum dot in Figure 4.2B both display a set of uniform

Coulomb diamonds. Besides a longer Si channel, device A also has a diameter

of ∼20 nm, versus ∼6 nm for device B. The source and drain capacitances of

device A are about ten times bigger than those of device B, because of the order

Device Lead metal L (nm) CBG (aF) 1
2
(CS+CD) (aF) α (eV/V)

A Ni 200 1.3 19.4 0.032

B NiSi 59 1.6 2.1 0.28

C Ni 60 0.005 4.0 0.001

D NiSi < 6 0.005 0.64 0.004

Table 4.1: Parameters of the quantum dots of Figure 4.2. The length of the Si dots
with NiSi leads is estimated as explained in the next section. We estimate CBG from
a single diamond, see text. For Figures 4.2C and 4.2D we have used the only full
Coulomb diamond to determine the capacitances.
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4.2 Single quantum dots of varying lengths

of magnitude difference in volume. The backgate capacitances, however, have

comparable values. This can be understood by the difference in SiO2 thickness,

and the fact that in a NiSi–Si–NiSi nanowire the leads and quantum dot have

comparable diameters. This strongly reduces screening of the backgate compared

to lithographically defined leads.

Outside the diamonds of device B many lines of increased conductance run

parallel to the edges, whereas the conductance of device A shows no such struc-

ture. The origin can be found in the availability of extra channels for transport.

Lines ending on the N th diamond are attributed to the excited states of the N th

hole, see Chapter 2. The magnitude of the excited states depends on the dot

size. We can use a simple hard-wall potential to get an order or magnitude esti-

mate of the level spacing, see equation (3.7). For a 200 nm quantum dot with an

effective hole mass of 0.59m0, ∆E2 = 0.048 meV. Such a small level spacing is

washed out by the thermal energy, kBT ∼ 0.2 meV. However, in case of a 59 nm

dot ∆E2 = 0.55 meV is bigger than kBT , and corresponds well to the observed

excited state lines of about 1-2 meV.

The fact that excited states are visible is a direct consequence of the small size

of quantum dot B. We have also fabricated Ni–Si–Ni dots of the same size, see

Figure 4.2C. The comparable source and drain capacitances confirm the similarity

of the dot sizes. However, the backgate voltage needed to add one hole is about

30 V, a factor of 300 more than needed for device B. Performing spectroscopy of

four consecutive holes thus requires a change in backgate voltage of more than

100 V. This is problematic since sweeping VBG over a large range increases the

chance of gate leakage and charge rearrangements on the SiO2. Both can lead to

potential fluctuations and thus unstable devices, see Figure 4.2C.

On the other hand, we have measured 22 single NiSi–Si–NiSi quantum dots

shorter than 50 nm. Even dots with channel lengths between 10 and 20 nm need

less than 2 V to add a single charge and thus readily allow spectroscopy of at least

ten holes. Figure 4.2D shows a stability diagram of the shortest single NiSi–Si–

NiSi dot we measured, with a length below 6 nm. The confining potential used

above yields a level spacing of 53-120 meV for a dot of 4-6 nm. This value is

close to the measured excited state of 120 meV ending on the leftmost diamond

and thus confirms the ultra-small size of the dot. Just like in device C the peak-

to-peak distance is 30 V on the backgate, despite the fact that the dot is more

than an order of magnitude shorter than device C. Also, the stability of device

D compared to device C over this gate voltage range is striking and has allowed

us to resolve the Zeeman energy of the first hole, see Figure 5.6.
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4. Silicon nanowire quantum dots

4.3 Capacitances and dot lengths

A cylinder-on-plate model can be used to connect the measured backgate-to-dot

capacitance to the Si dot length as

CBG =
2πε0εrL

ln(2t/r)
, (4.1)

where t is the backgate distance and r is the nanowire radius, see e.g. [70]. In this

model CBG increases linearly with the nanowire length, see Figure 4.3A. However,

the capacitance is smaller in real devices because the metallic contacts screen the

electric field induced by the backgate. To get around this, the Poisson equation is

projected onto a discrete grid of the full three-dimensional geometry of realistic

devices. The type of material as well as the dielectric constant and the fixed

charge are defined for every grid point. The output of the numerical iteration

contains the potential and electric field lines in all three dimensions, as well as

the induced charge on every surface. Since the system is linear, the capacitance

between two surfaces can be calculated by dividing the induced charge on one

surface by the voltage on another. Details can be found in ref. [71].

With this Poisson solver we have calculated the backgate-to-dot capacitance

of the Si nanowire devices used in this research, see Figure 4.1A and B. In case

of the Ni–Si–Ni devices we varied the Ni contact separation from 0 to 300 nm,

connected to each other by a 6 nm diameter Si nanowire. For the NiSi–Si–NiSi

nanowire devices we have used a constant distance of 300 nm between the Ni

contacts which sandwich the nanowire with a Si (NiSi) diameter of 6 nm (8 nm).

We have varied the length of the Si dot from 0 to 300 nm, resulting in two NiSi

leads of 150 to 0 nm. The computed CBG versus the Si dot length has three

regimes for NiSi–Si–NiSi nanowires, see Figure 4.3A: (i) For dot sizes between 6

and 250 nm CBG increases proportionally with the length, by roughly 27 aF/µm

(9 aF/µm) on substrates with 50 nm (285 nm) SiO2. (ii) In case of Si dot lengths

above 250 nm the slope of CBG(L) becomes less steep due to screening by the

wide Ni contacts. (iii) Below 6 nm the diameter becomes comparable to the dot

length and the electric field lines from the backgate are screened by the NiSi

leads, see the zoom in Figure 4.3B.

In case of Ni–Si–Ni dots we have only performed calculations for substrates

with 285 nm SiO2, see Figure 4.3A. At a channel length of 300 nm the calculated

capacitance is the same as for NiSi–Si–NiSi dots, because the latter have no NiSi

leads left in the model and the geometries are thus equal. Below 300 nm the

capacitance of Ni–Si–Ni dots drops rapidly, whereas the values of dots with NiSi

leads decreases slowly. At dot lengths below 40 nm there is more than a factor
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Figure 4.3: Capacitances and dot lengths. (A) Computed values of the backgate
capacitance for NiSi–Si–NiSi dots on substrates with 50 nm (red) and 285 nm (black)
thick SiO2, and Ni–Si–Ni dots on substrates with 285 nm thick SiO2 (blue). Dashed
lines are calculated with a cylinder-on-plate model, straight lines with a model based on
the Poisson equation, which includes screening. Blue triangles are measured backgate
capacitances on Ni–Si–Ni quantum dots. Right panel shows a zoom at dot lengths below
20 nm. (B) Experimentally found gate coupling factors versus dot length for all types
of quantum dots. The Ni–Si–Ni dots have much smaller α-values than NiSi–Si–NiSi
dots, as a result of stronger screening of the electric field induced by the backgate.

of 5 difference between the capacitances of NiSi–Si–NiSi and Ni–Si–Ni dots. The

measured capacitance values of the latter correspond well to the computed values

and the model thus gives a reliable estimate of the dot length.

Along these lines we can connect the measured backgate capacitance of a

NiSi–Si–NiSi device to a dot length. We calculate the capacitance from Coulomb

diamonds at high hole numbers, where the tunnel barriers are thinnest and ac-

cordingly the size of the orbital wave functions corresponds best to the Si channel

length. Scanning electron micrographs reveal silicide segments as bright regions

which sandwich a darker section of Si, see Figure 4.4. When the channel length
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Figure 4.4: Dot lengths in SEM. SEM images of five different NiSi–Si–NiSi
nanowire quantum dots (A, B, C, D, E) measured on substrates with 50 nm SiO2

and one Ni–Si–Ni quantum dot (F) measured on substrates with 285 nm SiO2. The
image in (D) does not reveal a distinct Si segment. The device in (E) blew up after
the measurements, but the remaining NiSi gives an upper bound for L of 70 nm. Mea-
surements of the devices in (C), (E) and (F) are shown in respectively Figure 5.1D,
4.2B and 4.2C. Insets: the backgate capacitance deduced from the measurements, and
the corresponding model length, see Figure 4.3.

measured in SEM images is compared to the length predicted by the model we

obtain an accuracy within 30% in different devices. In some cases we cannot

exactly determine the dot in the SEM images, e.g. Figure 4.4D and E.

Additionally we have derived the gate coupling factors from the measurements

and plotted them versus dot length in Figure 4.3C. In this geometry the gate

coupling factor is a good measure for the strength of the screening. This explains

the distinct difference in α-values between NiSi–Si–NiSi dots and Ni–Si–Ni dots.
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4.4 Towards the few-hole regime

In case of the latter enormous screening due to the wide Ni contacts strongly

complicates measuring Si quantum dots smaller than 50 nm. Clearly we have

been able to fabricate many NiSi–Si–NiSi dots with lengths below 50 nm, which

readily allow spectroscopy of at least ten holes.

In conclusion, we have demonstrated the realization of single Si quantum dots

with Ni and NiSi contacts. In Ni–Si–Ni quantum dots we have strong control over

the size of the quantum dots down to 50 nm channel lengths. However, the metal-

lic leads severely screen electric field lines induced by a backgate, whereas the

leads and quantum dot have comparable diameters in a NiSi–Si–NiSi nanowire.

Screening from contacts at NiSi–Si junctions is very small compared to Ni–Si

junctions and thus the backgate has a stronger capacitive coupling. A capaci-

tance model based on the Poisson equation gives a reliable estimate of the dot

length in NiSi–Si–NiSi nanowire quantum dots. An extra advantage is that this

technique allows the formation of dots shorter than 30 nm with pronounced ex-

cited states. A drawback is the variation in Ni diffusion per device and therefore

the lack of exact control of the dot length.

4.4 Towards the few-hole regime

Finally, we have attempted to isolate a single hole on a Si quantum dot by driving

the gate voltage to more positive values. The result is shown for two devices in

Figure 4.5A and B with estimated dot lengths of respectively 17 nm and 29 nm.

More Coulomb diamonds at a higher resolution of the device in Figure 4.5B can

be found in Figure 5.1C. At higher hole numbers, both stability diagrams consist

of closing Coulomb diamonds, a signature of single-dot behavior. Small potential

fluctuations in the bottom of the potential well will not be felt and the orbital

wave functions spread over the entire width of the quantum well, see Figure 4.5C.

As the gate voltage is increased, holes leave the dot and some diamonds no longer

close, e.g. the diamonds numbered 2–6 in Figure 4.5A. This can be understood

by fluctuations of the potential in the Si channel resulting in the formation of an

extra tunnel barrier. In practice it turns out that most devices split up into two

dots before we reach the few-hole regime.

We attribute the local potential perturbations to impurities or defects in the

environment of the dot. So far, only very short dots have allowed positive iden-

tification of the last charge, see Figures 5.2, Figure 5.6 and Figure 4 in ref. [45].

The estimated dot lengths of these devices are respectively 12 nm, 5 nm and

9 nm. Shorter channels increase the chance to get a single-hole dot. First for

statistical reasons: the chance of having e.g. an impurity or a defect right next
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Figure 4.5: Towards the few-hole regime. (A, B) Stability diagrams of two Si
nanowire quantum dots near depletion. Both devices display single-dot behavior at
higher hole numbers and double-dot behavior at lower hole numbers. (C) Schematic
diagram of a p-type quantum dot with a fluctuation in the bottom of the potential well,
explaining the transition from single-dot behavior at higher hole numbers (left panel)
to double-dot behavior at lower hole numbers (right panel).

to the dot decreases with the channel length. Secondly, if the confining potential

is determined by two Schottky barriers without a flat valence band in between,

the quantum well is less sensitive to modulations in the electrostatic potential

due to the steepness of the bent valence band.
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Chapter 5

Few-hole spin states in a silicon

nanowire quantum dot

F. A. Zwanenburg, C. E. W. M. van Rijmenam, Y. Fang,
C. M. Lieber & L. P. Kouwenhoven

We report an extensive experimental study of single spins in silicon quantum

dots. We perform electronic transport measurements on 30 single quantum dots

in silicon nanowires, defined by Schottky barriers with NiSi leads. Excited-state

spectra of three quantum dots are presented, one of which shows control of the

hole number down to one. Detailed measurements at magnetic fields ranging

from 0 to 9 T reveal the Zeeman energy at both the 0 ↔ 1 and 1 ↔ 2 hole

transition, corresponding to a g-factor close to the Si bulk value. By combining

the observation of Zeeman splitting with our knowledge of the absolute number

of holes, we are able to determine the ground-state spin configuration for one to

four holes occupying the dot. We find a spin filling with alternating spin-down

and spin-up holes which is confirmed by magnetospectroscopy from 0 to 9 T.

The results in this chapter will be submitted for publication.
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5. Few-hole spin states in a silicon nanowire quantum dot

5.1 Introduction

Long spin lifetimes are crucial for applications such as spintronics [4] and, more

specifically, quantum computation with single spins. The proposal to use single

spins as quantum bits [10, 11] exploits an optimal combination of the spin and

charge degree of freedom [69]. The potential of this spin qubit is underlined

by the recent demonstration of coherent control of one [13] and two [12] spin

states in quantum dots in GaAs/AlGaAs heterostructures. Most experiments

have focused on quantum dots formed in III-V semiconductors; however, electron

spin coherence in those materials is limited by hyperfine interactions with nuclear

spins and spin-orbit coupling. Group IV materials are believed to have long spin

lifetimes because of weak spin-orbit interactions and the predominance of spin-

zero nuclei. This prospect has stimulated significant experimental effort to isolate

single charges in carbon nanotubes [72, 73], Si FinFETs [74] and Si nanowires [45].

The recent observation of spin blockade in Si/SiGe heterostructures is argued to

confirm the predicted long-lived spin states [65].

In this work the spin states of single charges in silicon quantum dots are

studied by means of low-temperature electronic transport experiments, for the

first time to the level of individual spins. We have measured 30 single Si nanowire

quantum dots with pronounced excited states we present stability diagrams of

three representative devices. The quantum dots are defined by Schottky barriers

with NiSi leads. Both a backgate and a side gate allow control of the number of

charges down to a single hole in the dot. We observe the Zeeman energy of the

first two holes at magnetic fields ranging from 0 to 9 T, from which we deduce

a g-factor close to the Si bulk value. Magnetospectroscopy of the first four holes

allows determination of the successive spins that are added to an empty dot and

reveals a spin filling with alternating spin-down and spin-up holes. The isolation

and identification of a single spin in silicon demonstrated here constitutes an

important step towards the realization of spin qubits in a material with a long

spin coherence time.

Single-crystal p-type Si nanowires are prepared by a gold nanocluster medi-

ated vapor-liquid-solid process [23], using silane and diborane as precursor gases

[45]. The typical diameter is 7-12 nm, comprising a Si core of 3-8 nm and a native

oxide of ∼2 nm. After growth we deposit the nanowires on a highly doped silicon

substrate capped with a dry thermal oxide. Predeposited markers allow locating

individual nanowires with an SEM and defining contacts by means of electron-

beam lithography. The samples are treated with buffered hydrofluoric acid for

5 s prior to metal deposition to etch off the native SiO2. We then evaporate

60-100 nm thick Ni contacts, leaving a Si channel of typically 300 nm uncovered.
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5.2 Small silicon quantum dots

After metal lift-off the samples are annealed in sequential steps of 20-30 seconds

at 380 ◦C and 410 ◦C, to induce radial and longitudinal diffusion of Ni into the

Si nanowire. From both Ni contacts a NiSi segment is formed in the nanowires

with lengths of 100-150 nm, depending on amongst others diameter, temperature

and time. In Figure 5.1A a schematic of a resulting NiSi–Si–NiSi nanowire is

shown. The remaining Si section is connected to the lithographically defined Ni

contacts by two NiSi leads. Scanning electron micrographs reveal silicide seg-

ments as bright regions which sandwich a darker section of Si, see e.g. Figure

5.1B or [75, 76]. These devices have room-temperature resistances varying from

100 kΩ to 5 MΩ. They are cooled down to cryogenic temperatures with a pumped
4He-cryostat or a dilution refrigerator. All data in this chapter have been taken

at base temperature of 20 mK. Some nanowires are fully transformed into NiSi

having room temperature resistances of 1-5 kΩ, corresponding to ρ ∼ 10 µΩcm,

consistent with values found in NiSi nanowires [67] and large single crystals [68].

5.2 Small silicon quantum dots

The relatively high electron and hole effective mass in silicon, about 5-10 times

higher than in InAs or GaAs, brings along a relatively small energy level spacing.

As a consequence, the observation of quantum states in silicon nanowires requires

short channel lengths. Electron-beam lithography can be used to define Schottky

tunnel contacts with separations down to 30-50 nm. However, the minimum width

of the source and drain contacts is at least ten times the nanowire diameter.

In this geometry the distance to the backgate is greater than the dot length,

and thus the electric field lines coming from the backgate are severely screened

by the metallic leads. In a NiSi–Si–NiSi nanowire the leads and quantum dot

have comparable diameters, which strongly reduces screening of the backgate

compared to lithographically defined leads [75, 76]. Thus the backgate has a

stronger capacitive coupling. An extra advantage is that this technique allows

the formation of dots shorter than 30 nm.

Electrical characterization is carried out by measuring the current from drain

to ground while sweeping the bias voltage, VSD, at the source and stepping the

backgate voltage, VBG. The resulting differential conductance, dI/dVSD, versus

VSD and VBG shows a set of diamond-shaped regions, in which the current is zero

due to Coulomb blockade [21]. A typical measurement is presented in Figure

5.1C. Inside a Coulomb diamond the number of charges, N , on the dot is fixed.

The diamond edges mark the onset of a finite current when the ground state of

the N th hole, GS(N), becomes available for transport and the number of holes
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5. Few-hole spin states in a silicon nanowire quantum dot

starts to alternate between N and N − 1. Outside the diamonds many lines run

parallel to the edges, indicating a change in conductance which is caused by the

availability of extra channels for transport. Note that lines ending on the N th

diamond are attributed to the excited states of the N th hole, ES(N) [69]. The

fact that excited states are visible is a direct consequence of the small size of the

quantum dots and therefore large level spacing. This demonstrates that we have

access to individual quantum states.

We have measured 30 Si nanowire single quantum dots on substrates with

SiO2 thicknesses of 50 and 285 nm. The backgate-to-dot capacitance, CBG, is

derived as CBG=e/∆VBG, where ∆VBG is the voltage needed to add a single

charge, see Figure 5.1C. A cylinder-on-plate model can be used to connect CBG

to the Si dot length, L, see e.g. [70]. However, this model does not take into

account screening of the electric fields. To get around this we have applied the

Poisson equation to the geometry of Figure 5.1A to compute CBG(L), yielding

e.g. L = 28 nm for the device in Figure 5.1B. When the channel length measured

in SEM images is compared to the length determined from the model we obtain

an accuracy within 30% in different devices. We conclude that the model gives a

good estimate of the dot length and that the screening from contacts at NiSi–Si

junctions is very small.

So far our results do not differ qualitatively from quantum dots in other sys-

tems. However, Figure 5.1D shows ten Coulomb diamonds of the device shown

in Figure 5.1B, which are almost kite-shaped: the slopes of two adjacent dia-

monds are not parallel, in contrast to the conventional parallelograms of Figure

5.1C. This can be explained by looking at the schematic picture of the stability

diagram in Figure 5.1E (slopes copied from the data in 5.1D): The electrochemi-

cal potential denotes the difference between the dot ground-state energy with M

holes and M − 1 holes, µ(M) = U(M) − U(M − 1). In other words, it corre-

sponds to the transition between GS(M) and GS(M − 1). The M -hole diamond

edges are set by µ(M) (green lines) and µ(M + 1) (blue lines) and have slopes of

−CBG/CS and CBG/(C-CS), see ref [69]. Here C=CS+CD+CBG is the sum of all

capacitances to the dot and CS (CD) is the capacitance between dot and source

(drain). We assume that no other gates have a significant capacitive coupling to

the dot. Within this model a difference in slopes for two successive transitions

is the result of different capacitances to the consecutive orbitals. The slopes we

observe for excited states are consistent with this picture: the dotted blue line is

the electrochemical potential of the transition from ES(M) to GS(M + 1), where

the additional transport channel is formed by a higher orbital. Since the same

orbital is used for transport at the next ground state transition it has the same

capacitive coupling to source, drain and gate. In the stability diagram of figure
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Figure 5.1: Small silicon quantum dots. (A) Schematic of a Si nanowire quantum
dot with NiSi leads on an oxidized Si substrate. Lower panel shows a diagram of the
corresponding Schottky tunnel barriers that define the quantum dot. Occupied (empty)
hole states are indicated in red (blue). (B) SEM of an actual device, where the NiSi is
much brighter than the Si. (C) Typical stability diagram, showing dI/dVSD in color
scale versus VSD and VBG, revealing eleven Coulomb diamonds and a charge switch at
VBG=-8.5 V. (D) Stability diagram of the device in (B) with kite-shaped diamonds.
White dotted lines are guides to the eye to indicate the diamond edge (see additional
material). Grey and blue arrows indicate six pairs of excited-state lines parallel to the
ground state line of the next hole, with a slope different from the adjacent hole ground
state line (black and green arrows). ( E) Schematic of four diamonds from (D). The
GS(M)↔ GS(M−1) transition (green line) is not parallel to the GS(M+1)↔ GS(M)
transition and the ES(M) ↔ GS(M + 1) transition (blue lines).
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5. Few-hole spin states in a silicon nanowire quantum dot

5.1D we can find six pairs of excited-state lines parallel to the ground state line of

the next hole (grey arrows), with a slope different from the adjacent hole ground

state line (black arrows). We note that close inspection of the (N + 3)-diamond

in Figure 5.1C reveals that it is also kite-shaped. In short, the kites observed in

Figure 5.1D can be explained by different capacitances to different orbitals in the

quantum dot.

Now we discuss the physical origin of the kites. As stated before, the variation

in diamond slopes implies that at least one capacitance changes for different

orbital occupation. Combining the above equations with the measured slopes

gives source and drain capacitances between 1.7 and 2.2 aF for Figure 5.1C.

In Figure 5.1D the spread is much wider and values vary from 2 to 9 aF. In

a quantum dot the specific shape of the orbital wave function determines its

capacitive coupling to a metallic gate. We expect CBG to be roughly the same

for different orbitals, because the backgate is relatively far away. On the other

hand, since the source and drain are extremely close to the quantum dot and

the shape of the wave function changes with each orbital, CS and CD can vary

strongly. We remark that the kites cannot be explained by multiple-dot behavior

[77] since all diamonds neatly close (clearly visible on a logarithmic scale, see

additional material).

As far as we know kites have not been reported in any other material system.

Based on that we suggest that the origin may lie in the degeneracy of the top

of the valence band of Si, absent in e.g. GaAs 2DEGs and InAs nanowires. If

a quantum dot is alternately filled by heavy and light holes which have different

types of orbitals, the coupling of the wave functions to the leads can differ for

consecutive hole numbers. This can induce strong variations in capacitive cou-

pling of successive orbitals and thus kites as we have observed. However, it does

not identify what determines whether a stability diagram will consist of mainly

parallelograms or kites, as in Figures 5.1C and 5.1D.

In these small diameter nanowires the degeneracy of the heavy hole and light

hole subbands can be lifted by confinement, see e.g. calculations based on density

functional theory [78, 79] and tight-binding models [40, 41]. If so, an empty Si

nanowire quantum dot will start to fill with holes of the highest subband, resulting

in a regular diamond pattern as in Figure 5.1C. At higher charge numbers holes

of the second subband, with a different effective hole mass, can also enter the dot

and cause different slopes of adjacent diamond edges as in Figure 5.1D. The latter

device contains about 23–32 holes, whereas the first has about 3–13 holes, see

additional material. The higher hole number can thus cause the kites. Another

explanation is the absence of subband splitting due to weaker confinement in the

nanowire of Figure 5.1D, e.g. in the case of a bigger diameter.
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5.3 Observation of the last hole

The results in Figure 5.1 show that we can reproducibly fabricate Si nanowire

quantum dots with sizes of 3 to 100 nm and a tuneable hole number over a large

range. The observed asymmetry in Coulomb diamonds is a strong indication of

the degeneracy of heavy and light hole bands in silicon.

5.3 Observation of the last hole

We have also fabricated devices with an additional side gate (see the inset of Fig-

ure 5.2A). The side gate allows for more tunability – it is about 40 nm away from

the nanowire and the distance between the lithographically defined Ni contacts

is 250 nm. Based on the backgate capacitance at high hole numbers we estimate

the Si dot length to be about 12 nm, becoming even smaller as holes leave the

dot. The nanowire broke after the measurements.

In the main panel of Figure 5.2A we plot the current versus VBG and side gate

voltage, VSG, at a bias of 2 mV. Each time a hole is added to the quantum dot, a

current peak appears as a diagonal line, a typical signature of a single quantum

dot [80]. The slopes give roughly CSG=1.3CBG, with CBG ∼ 0.07aF , based on

diamond 10 in Figure 5.2B. The peak of the last hole is about 5 pA high and as

a result barely visible in this color scale.

The shape of the confinement potential is modified differently by VBG and

VSG because of their global (backgate) and more local electric field (side gate).

As a result the potential well is not a perfect parabola as sketched in Figure 5.1A,

but its width at a fixed height can vary in gate space. Therefore the diagonal

Coulomb peak lines are slightly curved instead of perfectly parallel. The bending

of two adjacent peaks towards or away from each other means that the addition

energy changes. This is also reflected in the stability diagrams of Figure 5.2B,

taken versus VBG (upper panel) and VSG (lower panel), where diamonds of the

same hole number have different sizes. Some peaks become switchy over a certain

gate range, e.g. the bistable behavior for values of VBG between -18 and -10 V in

Figure 5.2A.

In Figure 5.2C we see many similarities in the stability diagrams versus side

gate (left panel) and backgate voltage (right panel): The addition energy of

in the N = 1 diamond is 114 meV, the first excited state lies about 80 meV

above the ground state and is more pronounced at positive than at negative VSD.

This is a result of asymmetric tunnel barriers and will be explained later. The

excited state line of the second hole (the singlet-triplet splitting) is about 10

meV above the ground state line and it does not run parallel to µ(1) but to µ(2).

This confirms our previous observation in Figure 5.1D and E and underlines the
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Figure 5.2: Observation of the last hole. (A) Current in color scale versus side
gate voltage VSG and VBG at a bias of 2 mV. Diagonal lines correspond to transitions
from N to N + 1 holes, indicated in white digits. White dashed lines refer to the
diagrams in (B). Inset: SEM of the device with two Ni contacts and a SiO2/Cr/Au
side gate. (B) Stability diagrams of the same device with the backgate (upper panel,
VSG=0 V) and the side gate (lower panel, VBG=-28 V). Diamonds of the same hole
number have different addition energies for side gate and backgate sweeps, consistent
with the bending Coulomb peak lines in (A). (C) Either gate can be used to control
the number of holes down to zero. In both cases the last diamond opens completely, a
strong indication that we have pushed out the last hole.
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5.4 Zeeman energy of the first four holes

impact of different capacitive couplings of consecutive orbitals to the leads. The

voltage on the source deforms the confinement potential as well as the Schottky

barriers, which leads to bending of the ground and excited state lines outside

the diamonds. This may account for the unexpected feature right of the last

diamond at negative bias. The last diamond opens completely up to ± 200 mV

bias. We have measured no current up to VBG=50 V, which means that the last

diamond does not close and we have indeed observed the last hole. In Figure 5.3

we will provide extra proof. The results in Figure 5.2 demonstrate a high degree

of tunability, allowing for control of the number of holes on this quantum dot

down to the last one with both the side gate and the backgate.

5.4 Zeeman energy of the first four holes

Now we zoom in on the N = 0↔ 1 and the N = 1↔ 2 transition at B = 0, 1, 2,

4 and 8 T (Figure 5.3A) applied perpendicular to the substrate. Both transitions

exhibit a set of excited states parallel to the GS(1) and GS(2) lines. They cannot

be attributed to electronic states, since those are both higher in energy than 10

meV, see 5.2C. The origin of the additional lines is not yet fully understood, but

we have indications that they correspond to phonon-assisted tunneling, see next

chapter. In this work we focus on the Zeeman splitting EZ = |g|µBB, where µB

= 58 µeV/T is the Bohr magneton. A finite magnetic field lifts the ground-state

spin degeneracy, and splits it in a spin-up and spin-down line separated by EZ .

In our measurements the Zeeman-split spin state (indicated by blue arrows)

can be distinguished from the other excited states because (i) it has a higher

differential conductance and (ii) it moves away from the ground state when the

magnetic field is increased. In Figure 5.3B we show the Zeeman splitting ex-

tracted from measurements as in Figure 5.3A at magnetic fields up to 9 T. Lin-

ear fits yield measured g-factors of |g| = 2.27 ± 0.18 for N = 0 ↔ N = 1 and

|g| = 2.26± 0.23 for N = 1↔ N = 2.

At the N = 0 ↔ 1 transition the Zeeman-split spin-up state, |↑〉, appears

only at positive VSD as a result of asymmetric source and drain tunnel barriers:

when the electrochemical potential for the N = 0 to |↓〉 transition, µ0↔↓, becomes

available for transport, only a spin-down hole can tunnel through the dot. Upon

increasing the bias window the N = 0 to |↑〉 transition, µ0↔↑, enters the bias

window as well and raises the tunnel rate onto the dot from Γin
↓ to Γin

↑ +Γin
↓ because

a hole with either spin-up or spin-down can enter. This is shown schematically in

the energy level diagrams of the dot in the upper left panel of Figure 5.3C. The

tunnel rate to leave the dot Γout does not change since only one hole can tunnel
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Figure 5.3: Zeeman energy of the first four holes. (A) Zoom on the 0↔1 and
the 1↔2 transition at B = 0, 1, 2, 4 and 8 T. At the 0↔1 (1↔2) transition the Zeeman
line appears at positive (negative) bias and moves away from the ground state line with
|g|µBB (blue arrows). (B) Zeeman energy versus magnetic field for both transitions.
Red and black lines are linear fits. (C) Energy level diagrams explaining the influence
of asymmetric barriers when the Zeeman split state is added to the bias window. At
the 0↔1 (1↔2) transition there is only an observable increase in conductance if the
holes tunnel in (out) through the barrier with the lowest tunnel rate. (D) Zooms on
the 2↔3 and the 3↔4 transitions at 0 and 9 T.
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5.5 Magnetospectroscopy of the first four holes

off (upper right panel): Γout = Γout
↑ or Γout

↓ , depending on which spin entered the

dot previously (assuming no spin relaxation). This means that the addition of an

extra level in the bias window only increases the conductance noticeably if the

holes tunnel into the dot via the barrier with the lowest tunnel rate, see Figure

5.3C. In our Si dot the source barrier has the lowest tunnel rate. Therefore in the

0↔1 transition the Zeeman splitting only becomes visible at positive bias [81].

The situation is reversed at the N = 1 ↔ 2 transition, where the (N = 2)-

diamond edge splits at negative bias. In contrast to the edges of the (N = 0) and

(N = 2)-diamonds, the (N = 1)-diamond edges do not show Zeeman splitting.

This means that in the 2-hole ground-state both holes are in the lowest orbital

with opposite spins [82, 83]. Assuming the g-factor is positive as in bulk Si the

first hole ground-state is spin-down, |↓〉. When the second hole is added to the

lowest orbital it is spin-up, |↑〉. In the transport cycle of this transition Γin does

not change when an additional level enters the bias window, since only one spin

species can enter the dot (lower left panel of Figure 5.3C). After this event the dot

state can change to either |↓〉 or |↑〉 when respectively a spin-up hole or a spin-

down hole leaves the dot. Since both spin species can tunnel off Γout increases

to Γout
↑ + Γout

↓ when the second level becomes available for transport. This is

reflected by the Zeeman split line at negative bias, where holes tunnel off via the

barrier with the lowest tunnel rate, the source.

At the N = 2 ↔ 3 and the N = 3 ↔ 4 transitions the tunnel barriers

become less opaque and more symmetric. This makes it harder to distinguish

the Zeeman spin states from the other excited states. The zooms in Figure 5.3D

at 0 and 9 T, give a strong indication of Zeeman splitting of the (N = 2)- and

(N = 4)-diamond edges, corresponding to |g| = 2.3±0.7 in both cases. From the

splitting of even-N diamond edges we deduce that the third and fourth hole are

respectively spin-down and spin-up.

The results in Figure 5.3 show excited-state spectroscopy of the Zeeman en-

ergy of hole 1 to 4, from which we deduce a g-factor of ∼2.3 and spin filling with

alternating spin-down and spin-up. This is the first experimental observation of

Zeeman splitting in a few-hole Si quantum dot. The clarity of our data allow for

a complete understanding of the spin states of the first four holes.

5.5 Magnetospectroscopy of the first four holes

We have also performed magnetospectroscopy on the first four holes to deduce

the spin filling of the quantum dot. Figure 5.4A shows the current versus side

gate voltage, where the number of holes goes from four to zero. The 0 ↔ 1
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Figure 5.4: Magnetospectroscopy of the first four holes. (A) Coulomb peaks
corresponding to the addition of hole 1 (upper panel, VSD=0.8mV) and hole 2, 3 and 4
(lower panel, VSD=0.6mV). (B) Evolution of the Coulomb peaks with magnetic field.
The direction alternates due to even-odd spin filling. (C) The peak-to-peak distance
∆VSG versus magnetic field and linear fits for 1, 2 and 3 holes. In the inset the offset
has been subtracted. Conversion of the fitted slope values to the Zeeman energy via
the gate coupling factor, α, gives corresponding g-factors of 1.72±0.29, 1.77±0.43 and
2.02±0.58.

peak (upper panel) is about 2 pA at a bias of VSD=0.8 mV, whereas the peaks

in the lower panel are taken at VSD=0.6 mV. Stepping the magnetic field from

0 to 9 T while sweeping the side gate voltage gives the evolution of the peak

positions in Figure 5.4B. The current peaks move towards or away from each

other, depending on the spin direction of the additional hole. The change in

side gate voltage is small compared to the total peak-to-peak distance, but it is

nevertheless observable.
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5.5 Magnetospectroscopy of the first four holes

This is made clear in Figure 5.4C, where we plot the distance ∆VSG between

consecutive peaks for 1, 2 and 3 holes. In the inset ∆VSG is plotted without the

offset. Linear fits through the data points have slopes of 5.05±0.56 mV/T for

N = 1, -6.05±0.74 mV/T for N = 2 and 7.17±0.69 mV/T for N = 3. The

gate coupling factor α converts the change in gate voltage to the Zeeman energy

as |g|µBB = α∆VSG. Analysis of Figure 5.2C gives α-factors of 0.020±0.001,

0.017±0.002 and 0.016±0.003 for respectively N = 1, N = 2 and N = 3. Com-

bining these values with the fitted slopes yields g-factors of 1.72±0.29, 1.77±0.43

and 2.02±0.58. The deviation from the numbers found in Figure 5.3 is caused

by the uncommon diamond shapes. They are not parallelograms just as in Fig-

ure 5.1D, which makes conversion to energy with the strict definition of α as

∆VSD/2∆VBG deviate as well. The alternating direction of the Coulomb peak

evolution indicates that spin-up and spin-down holes alternately enter the dot.

We have observed the same even-odd spin filling for hole numbers up to N = 14

(not shown here), as has been reported previously [45].

In conclusion, we report on a consistent set of data on many small quantum

dots in silicon nanowires. We argue that the asymmetry in Coulomb diamonds is

caused by the degeneracy of heavy and light hole bands. A detailed investigation

of a few-hole quantum dot reveals the first observation of the Zeeman energy of a

single spin in silicon. The magnetic field dependence of the Zeeman energy for the

0↔1 and 1↔2 hole transition yields a g-factor close to the Si bulk value. We have

observed spin transitions corresponding to even-odd filling through both excited-

state spectroscopy and magnetospectroscopy. The isolation and identification of

a single spin in silicon is an important step on the route towards the realization

of solid state spin qubits in silicon. In order to perform quantum operations, a

double quantum dot scheme with tuneable tunnel barriers is required, e.g. by

means of local gates. Such gates demand a resolution in lithographic techniques

of ∼ 10 nm, due to short channel length of these Si quantum dots (10-30 nm). If

that requirement is met, the coherent manipulation of single spins in Si nanowire

quantum dots should be well within reach.

We thank T. Balder, R. Hanson, A. A. van Loon, K. C. Nowack, R. N.

Schouten, G.A. Steele and I. T. Vink for help and discussions.
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5. Few-hole spin states in a silicon nanowire quantum dot

5.6 Additional material

Differences between devices

The three most obvious differences between these two devices in Figures 5.1C

and 5.1D are hole number, dot length and tunnel coupling:

(i) The exact hole number in both devices is unknown because the diamonds

no longer close before reaching the last hole. This is likely due to roughness

in the bottom of the confining potential, which can split the single dot into a

double dot. Therefore we estimate the number of charges by counting up holes

from zero, starting at the backgate voltage at which the dot is emptied at a high

bias (100 mV). We combine this so-called pinch-off voltage of VBG=-1.3 V with

CBG=0.2 aF to estimate the number of charges in Figure 5.1C to change from

3 to 13. Analogously, CBG=0.7 aF and high-bias pinch-off at VBG=9 V indicate

that the hole number in 5.1D runs from about 23 to 32.

(ii) The estimates for the dot lengths are 23 nm for Figure 5.1C and 28 nm

for Figure 5.1D. Note that CBG is about 0.2 aF in 5.1C and 0.7 aF in 5.1D, a

consequence of backgate distances of respectively 285 nm and 50 nm.
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Figure 5.5: Logarithmic plots. (A) and (B) show the data of Figure 5.1C and 5.1D
on a logarithmic scale. Cotunneling processes appear in red, e.g. in the two leftmost
diamonds in (A), and in almost all diamonds in (B). Also, these plots make clear that
all diamonds close, as a result of single-dot behavior.
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(iii) The conductance outside the diamonds is higher in 5.1D than in 5.1C, as

a result of stronger tunnel coupling. This is confirmed by the onset of cotunnel-

ing inside most kites in 5.1D, see Figure 5.5, and its absence in most diamonds

in 5.1C. The larger tunnel coupling is likely due to thinner Schottky barriers at

higher holer numbers. A stronger overlap of the wave function with the leads

naturally corresponds to a larger capacitance to source and drain.

Zeeman energy in a few-hole Si nanowire quantum dot
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Figure 5.6: Zeeman energy in a few-hole Si nanowire quantum dot. (a)
Stability diagram of a single-hole silicon nanowire quantum dot in another device. Here
we need 30 V on the backgate to go from one to two holes as a result of a very small
capacitance to the dot. The excited state of the second hole is about 120 meV. The
small capacitive coupling and the large level splitting indicate a very small quantum dot
(< 10 nm). This device exhibits switching behavior at the 0↔1 transition, probably
due to bistable potential fluctuations caused by a charge in the environment of the
dot. (b) Zoom of the 0↔1 transition at 0 and 9 T, revealing the Zeeman splitting at
positive bias, cf. Figure 5.3a.
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Chapter 6

Quantized energy emission in a few-hole

Si nanowire quantum dot

Many electronic transport measurements on few-electron quantum dots show

transitions corresponding to additional energy levels below the N = 0 ground-

state energy. No one has been able to give a satisfying explanation so far. Our

data on a single-hole silicon nanowire quantum dot show many discrete energy

levels at different magnetic fields, allowing for a detailed analysis. The levels

are quantized in multiples of 100-180 µeV and independent of magnetic field.

They can neither correspond to electronic or Zeeman states of the quantum dot

itself, nor to density of states modulations in the leads. Instead, we explain the

discrete energy spectrum as inelastic tunneling processes, where the excess energy

is emitted to quantized states in the environment of the quantum dot. We discuss

different explanations for the excitations, in particular phonon emission, photon

emission and a resonances in the electric circuit. The existence of additional

energy levels below the N = 0 ground-state energy in various material systems

with different geometries underlines the universality of the phenomenon.

The results in this chapter will be submitted for publication.
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6. Quantized energy emission in a few-hole Si nanowire quantum dot

6.1 Introduction

The proposal to use single spins in quantum dots as quantum bits [10] exploits

an optimal combination of the spin and charge degree of freedom [69]. The po-

tential of this spin qubit is underlined by the recent demonstration of coherent

control of one [13] and two [12] spin states in quantum dots in GaAs/AlGaAs

heterostructures. Most experiments have focused on quantum dots formed in III-

V semiconductors; however, electron spin coherence in those materials is limited

by hyperfine interactions with nuclear spins and spin-orbit coupling. Group IV

materials are believed to have long spin lifetimes because of weak spin-orbit inter-

actions and the predominance of spin-zero nuclei. This prospect has stimulated

significant experimental effort to realize single-charge quantum dots in carbon

nanotubes [72, 73], Si/SiGe heterostructures [65] and Si nanowires [45].

We have demonstrated the realization of a single-hole silicon nanowire quan-

tum dot in chapter 5. An unusual feature in these measurements are transitions

corresponding to additional energy levels below the N = 0 ground-state energy

of the dot, which cannot correspond to electronic or Zeeman states. In this paper

we investigate the nature of these discrete energy levels, specifically their mag-

nitude, spacing and magnetic field dependence. It turns out that the levels are

quantized in multiples of 100-180 µeV and independent of magnetic field. We

explain the discrete energy spectrum via inelastic tunneling processes, where the

excess energy is emitted to quantized states in the environment of the quantum

dot. We discuss different explanations for the excitations, in particular phonon

emission, photon emission and a resonant LC-line.

The additional energy levels below the N = 0 ground-state energy appear in

virtually all electronic transport measurements on one-electron quantum dots, see

e.g. the energy level spectra of single charges in vertical InGaAs quantum dots

[84, 85], lateral GaAs quantum dots [86], carbon nanotube quantum dots [72],

InAs nanowire quantum dots [87, 88], and also silicon nanowire quantum dots.

The existence in various material systems with different geometries underlines the

universality of the phenomenon. The detailed analysis of our data on a single-

hole silicon nanowire quantum dot paves the way to a better understanding of

the additional discrete energy levels.

6.2 Discrete energy spectrum due to environment

We prepare NiSi-Si-NiSi nanowire devices with a diameter of 7-12 nm as de-

scribed in Chapter 5, resulting in a Si quantum dot with metallic NiSi leads.

The measurements presented in this work are performed on the device shown in
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6.2 Discrete energy spectrum due to environment

the right panel of Figure 6.1A, which has a dot length of about 12 nm and NiSi

leads of ∼120 nm. The side gate is about 40 nm away from the nanowire and
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Figure 6.1: Discrete energy spectrum due to environment. (A) Left panel:
Stability diagram of the last four holes, showing ln|dI/dVSD| in color scale versus VSD

and VSG. The excited states in the first two diamonds are more than 10 meV above the
ground state energy. Right panel: SEM of the device with two Ni contacts and a side
gate. (B) Zoom on the 0↔1 transition at B = 8 T, showing many lines of increased
conductance at discrete energies ending on both the N = 0 and N = 1 region. The
brightest of these lines can be attributed to the Zeeman energy. (C) Zoom on the 1↔2
transition at B = 4 T, showing the same features as (B).
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6. Quantized energy emission in a few-hole Si nanowire quantum dot

the distance between the lithographically defined Ni contacts is 250 nm. The

left panel of Figure 6.1A shows the differential conductance, dI/dVSD, versus

the source-drain voltage, VSD, and the side gate voltage, VSG, measured at zero

magnetic field. Inside the diamond-shaped regions, the current is zero due to

Coulomb blockade [21] and the number of holes on the dot is fixed. We can

control of the number of charges down to a single hole in the dot, as explained

in Chapter 5. The line of increased conductance ending on the N = 1 diamond

edge is attributed to the excited orbital state of the first hole, which is about 80

meV above the ground state. Analogously we observe that the excited state of

the second hole is about 10 meV above the ground state energy. Measurements

on other devices show a comparable discrete energy level spectrum.

In Figure 6.1B we zoom in on the transition from 0 to 1 holes at a magnetic

field of 8 T applied perpendicular to the substrate. The diamond edges mark

the onset of a finite current when the electrochemical potential of the transition

between GS(0) and GS(1) enters the bias window. Many lines of increased con-

ductance end on both the N = 1 and N = 0 diamond edge. The brightest line is

1.02 meV above the ground state line, which corresponds to the Zeeman energy

at 8 T. We followed this line versus magnetic field, see Chapter 5. At negative

bias voltages the Zeeman-split excited state is not visible because it does not give

a significant contribution to the current due to asymmetric tunnel barriers, see

Chapter 5. The other lines of increased conductance cannot be attributed to the

level spacing or the Zeeman splitting of the Si quantum dot. Firstly because the

energies of the corresponding transitions are very small, spaced by roughly 100-

150 µeV. More important, the lines ending on the N = 0 diamond edge would

involve transitions using states below the N = 0 ground state. Such a transition

can only be an electronic state of quantum dot if it is an excited state of the

first electron, which is 1.17 eV in energy away from the zero hole ground state.

From this we conclude that the additional lines do not originate from an intrinsic

property of the Si quantum dot itself, but are necessarily due to interactions with

the (local) environment. The zoom of the transition from 1 to 2 holes at 4 T in

Figure 6.1C clearly shows the same features as the 0 to 1 transition. The only

(qualitative) difference is the presence of the Zeeman energy at negative instead

of positive bias voltages, as we have already explained in Chapter 5.

The results in Figure 6.1 demonstrate that the measured lines of increased

conductance cannot be attributed to hole transport via higher orbital states or

Zeeman-split states. Instead, the origin lies in something in the environment of

the quantum dot that results in lines of increased conductance above and under

the ground state transition. We first investigate the properties of these lines

before we try to identify the nature of the environment that causes them.
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6.3 Quantized energy spectrum for different bias

directions

We start out by verifying whether the magnitude and spacing of the lines depend

on the bias direction. We measure the current versus VSD and VSG at the N =

1↔ 2 transition at 0 T (Figure 6.2A). The corresponding differential conductance

in Figure 6.2B displays a similar line pattern as we have seen at the N = 0↔ 1

transition. Figure 6.2C shows two IV-characteristics taken from Figure 6.2A in

which the current makes a step of about 10-20 pA when the ground-state enters

the bias window. After that, current peaks of 1-5 pA appear which look equally

spaced in energy. The lower increase in current of the latter is a direct result of

lower tunnel coupling.

Now we look in more detail at the energies, En, of the lines, to which we

have assigned a number n as shown in Figure 6.2A. Since the lines are roughly

equidistant, we have leave out n = 2 and n = 6 at negative bias, and n = 8 at

positive bias. The difference in energy between the nth line and the ground state

transport line, En − E0, is plotted as a function of n in Figure 6.2C (For En we

take the center of each line). The linear fits through the data points have slopes

of 126.0 ± 2.0 µeV and −126.1 ± 3.7 µeV for respectively positive and negative

bias voltages. Both the fact that all points fit a straight line with little error

and the symmetry in bias strongly suggests that the energies involved in these

transitions are equidistant. This indicates something in the environment that is

either determined by a harmonic oscillator potential or has a bosonic nature. The

unobservable lines are probably washed out by modulations of the ground-state

resonant tunnel rate due to modification of the barrier while VSD is increased.

For example, the big dip in (negative) current at VSD = -0.7 mV in the green

trace of Figure 6.2B masks the n=2 line.

The quantitative analysis in Figure 6.2 demonstrates that the discrete energy

levels are equidistant and symmetric in voltage bias. The energy spectrum is

quantized in multiples of ∆E = 126 µeV, even up to nine energy quanta.

6.4 Quantization independent of magnetic field

The second property we investigate is the evolution of the discrete energy levels

with magnetic field. The Zeeman energy adds an electrochemical potential level

to the quantum dot, see e.g. the bright line at positive bias in Figure 6.1B. For

simplicity we look at the discrete energy level spectrum which is not parallel to the

Zeeman-split excited state, so we have only one level in the dot that contributes
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to the current. Since only the edges of even-N diamonds are Zeeman-split, we

look at negative (positive) bias of the N = 0 ↔ 1 (N = 1 ↔ 2 transition). The

spectrum of both transitions has been analyzed as in Figure 6.2 at magnetic fields
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ranging from 0 to 9 T and is plotted in Figure 6.3A and B. The level energies do

not change with magnetic field and linear fits have slopes of 117.0±3.4 µeV and

110.9±4.0 µeV for respectively the N = 1↔ 2 and the N = 0↔ 1 transition.
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6. Quantized energy emission in a few-hole Si nanowire quantum dot

We have combined energy spectroscopy with magnetospectroscopy to study

the magnetic field evolution of the discrete spectrum at the N = 2↔ 3 and the

N = 3 ↔ 4 transition. The upper panel of Figure 6.3C reveals a grid of lines in

the zoom of the N = 2 ↔ 3 transition, whereas only lines in one direction are

visible at the N = 0 ↔ 1 and the N = 1 ↔ 2 transition in Figure 6.1. Here the

lines from top left to bottom right are suppressed due to a strong asymmetry in

the tunnel barriers. The N = 2↔ 3 transition is at a side gate voltage where the

barriers are more symmetric, and lines appear parallel to both diamond edges.

One of the tunnel barriers becomes slightly more opaque at the gate voltage of

the N = 3 ↔ 4 transition, resulting in a lower differential conductance and less

pronounced inelastic transport lines, see lower panel in Figure 6.3C.

Magnetospectroscopy of the energy levels is performed at side gate voltages

close to both transitions, indicated by white dashed lines in Figure 6.3C. The first

thing we notice is that, with increasing magnetic field, the Coulomb blockaded

region increases at the N = 2 ↔ 3 transition (Figure 6.3D, left panel) and

decreases at the N = 3 ↔ 4 transition (Figure 6.3D, right panel). This is

directly connected to the observed Coulomb peak evolution in Figure 5.4: the

peak at the N = 2 ↔ 3 transition moves away from the gate voltage at which

the magnetospectroscopy is performed, whereas the peak at the N = 3 ↔ 4

transition moves towards it. The lines above the ground state transport remain

equidistant and again form a grid (red in the color scale). They neatly follow the

ground state transport line at a constant distance throughout the magnetic field

sweep. The energy difference between the discrete levels is about 160–188 µeV

at the N = 2 ↔ 3 transition and 103–114 µeV at the N = 3 ↔ 4 transition.

We note that the Zeeman splitting of the N = 4 diamond is faintly visible at the

N = 3↔ 4 transition.

The evolution of the energy level spectrum with magnetic field in Figure 6.3

demonstrates that the line spacing is independent of magnetic field at the first

four hole transitions.

6.5 Quantized energy emission to the environment

Now we will discuss the possible explanations for the quantized energy spectrum,

starting by summarizing the most important properties. (i) The levels are quan-

tized in multiples between 100 and 180 µeV. (ii) They exist above and below the

ground-state transport levels, including below the N = 0 ground state. (iii) The

levels are independent of magnetic field. As mentioned before, electronic states

of the Si quantum dot and the Zeeman energy can be ruled out because neither
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6.5 Quantized energy emission to the environment

matches any of the three observed properties. To our knowledge this leaves two

possible explanations, which we will address below: 1. Density of states modula-

tions in the leads, e.g. quantized states. 2. Quantized energy emission, e.g. to a

phonon cavity.

It has been suggested that density of states modulations in the leads can

cause extra resonances [86, 89]. In those experiments the electron reservoirs were

semiconductors, whereas here they are metallic. The NiSi leads would have to

form an island in series with the Si dot, that only allows states at discrete energies.

However, this interpretation can be ruled out by the following arguments. First

and most important, the lines are parallel to the diamond edges and their slopes

are determined by the capacitive coupling to source, drain and gate [69]. In order

to explain our data, the alleged NiSi islands must have the same capacitances as

the Si quantum dot, which is highly unlikely due to their different sizes and

locations. In the hypothetical case of equal capacitances, the electrochemical

potentials of the NiSi islands move up and down by the same amount as the levels

in the Si quantum dot. The lines ending on the N = 0 region correspond to the

situation where the N = 0 ground-state energy is in the bias window, exactly

∆E above the drain (source) at positive (negative) bias voltage, comparable to

the situation in the right two panels of Figure 6.4. The NiSi islands can have

available states below the N = 0 ground-state energy of the Si dot, but higher-

order tunneling processes would be required to explain transport from those NiSi

states up to the lowest electrochemical potential level of the Si dot. Furthermore,

based on ∼120 nm long NiSi cylinders with a diameter of ∼10 nm and a Fermi

energy of 14 eV [90], we can expect a mean level spacing of ∼8 µeV [91], which

is more than an order of magnitude smaller than measured. Besides that, its

resistance would have to be larger than the resistance quantum h/e2 in order

to see single hole charging effects [92]. Based on a resistivity of 10 µΩcm [67]

the NiSi cylinder will have a resistance of about 150 Ω, two orders of magnitude

smaller than required. Last, since NiSi is a non-magnetic material it should show

Zeeman splitting, in contrast to the results in Figure 6.3.

A more likely origin of the energy spectrum are inelastic tunneling processes

via discrete energy levels above and under the ground-state transition. The excess

energy is absorbed to the environment of the quantum dot in quanta. In this

scenario, additional tunneling processes exist where packets of energy, ∆E, are

emitted to the environment of the dot as illustrated in the diagrams in Figure

6.4. The middle panel sketches the measured non-zero differential conductance of

Figure 6.1B. The adjacent electrochemical potential diagrams show the possible

tunnel processes when the level of the GS(0) to GS(1) transition is in the bias

window. Black arrows correspond to ground-state transport via elastic tunneling.
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Figure 6.4: Quantized energy emission to the environment. The middle panel
sketches the measured non-zero differential conductance of Figure 6.1B in straight
lines; dashed lines are present but do not contribute significantly to the current. The
adjacent diagrams show the possible tunnel processes when the ground-state transport
level is aligned to source (blue symbols) or drain (green symbols). Black (red) arrows
correspond to tunneling processes without (with) energy emission ∆E. The tunnel
rate into (out of) the dot increases for lines ending on the N = 1 (N = 0) region.
Due to an asymmetry in tunnel barriers the inelastic tunnel processes only enhance
the conductance if the holes tunnel inelastically in (out) through the barrier with the
lowest tunnel rate.

In the leftmost panels red arrows indicate additional inelastic tunnel processes,

where holes can tunnel into the quantum dot while emitting an energy ∆E.

For both bias directions the tunnel rate into the dot increases, but it can only

be observed in the measured current, if it concerns the barrier with the lowest

tunnel rate, i.e. the source (upper left panel). Therefore the lines ending on the

N = 1 diamond are only visible at positive bias voltages in Figure 6.1B.

The situation is reversed in the rightmost panels, where holes can tunnel

inelastically out of the dot (red arrows). Here the increase in outgoing tunnel

rate only leads to an observable change in conductance at a negative bias (lower

right panel), hence the lines ending on the N = 0 diamond. Analogously, at

higher bias voltages the nth line corresponds to inelastic transport with a total

energy emission of n∆E. Our measurements give values for ∆E of 111, 122

± 5, 180 ± 10 and 106 ± 5 µeV for respectively the 0↔1, the 1↔2, the 2↔3

and the 3↔4 transition. We stress that the lines must be directly connected to

ground-state transport since the slopes of the lines are parallel to the ground

state transport lines.
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6.6 Discussion

In Figure 6.2C the current-voltage characteristic shows a peak at each discrete

energy level instead of a step as one might expect for an excited state. A tunnel

event with energy emission does not have a higher rate than a tunnel event

without energy emission, since additionally there has to be a process of energy

absorption. The lower coupling of the inelastic tunnel events can also make their

tunnel rate more sensitive for changes in VSD, because the Schottky barrier is

modified as the bias voltage increases, hence the peaks instead of steps.

In short, holes can tunnel inelastically into or out of the dot via discrete

energy levels above or under the one-hole ground state level. We stress that these

electrochemical potential levels, indicated by red dashed lines, are not available

states for holes residing on the dot: only the ground state can be occupied (black

straight line).

6.6 Discussion

The logical next question addresses the precise nature of the environment that

absorbs the energy. We see three options: phonons, photons and resonances in the

electric circuit. Energy emission via these mechanisms can explain the existence

of energy levels below the N = 0 ground state (Figure 6.1) and the insensitivity

for changes in magnetic field (Figure 6.3).

In case of resonances in the electric circuit a standing electromagnetic wave

would have to be confined to an open or closed cavity that is strongly coupled

to the quantum dot. This can only take place in a homogeneous waveguide that

has a large enough impedance mismatch with its direct electrical environment to

reflect incoming electromagnetic waves. If such a cavity would exist on-chip, we

can get an order of magnitude estimate for its size. The wave length corresponds

to λ = hc/∆E, where c = c0/
√
εr, i.e. the speed of light in vacuum corrected by

the dielectric constant of the medium under consideration. The measured energy

steps of ∆E = 100µeV or 24 GHz would then yield a wavelength of ∼ 6 mm. An

open (closed) cavity would have a size of λ/4 ∼ 1.5 mm (λ/2 ∼ 3 mm). The thin

films on chip leading from the Al bond wires to the device are constituted of six

metallic segments of varying widths, thicknesses and materials (AuPd/Ni/NiSi),

making it virtually impossible to create a high-Q cavity. Possibly the Al bonding

wires that connect the chip to the wiring of the chip carrier could form a cav-

ity. However, the nanostructures on-chip effectively operate as a low-pass filter,

with a damping greater than 80% for frequencies above 100 MHz. Since the ob-

served energies emission correspond to 24 GHz and the damping of a high-quality

resonator must be less than 1%, we find this explanation unlikely.
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6. Quantized energy emission in a few-hole Si nanowire quantum dot

If the energy is emitted to phonons or photons, there must be discrete empty

states for the quantized emission. The energy quantum is then determined by

the phonon or photon speed, v, and the length of the cavity, L, according to

∆E = hv/2L. This allows us to estimate the order of magnitude of the cavity

size required for an emission of ∆E ∼ 100µeV. Based on a speed of sound (light)

of ∼ 5000 ms−1 (3·108 ms−1), the phonon (photon) cavity must be ∼ 104 nm (∼ 6

mm) long. If the energy is emitted to free photons the cavity could be the chip

carrier in which we have glued the substrate with the quantum dot. However,

since the chip carrier is not sealed off as a designed microwave cavity and the

density of states of free photons is very small at energies of 100 µeV, emission of

photons highly unlikely in this situation.

The third option of acoustic phonons is the most likely explanation. In case

of a phonon wavelength, λ, of ∼ 208 nm, the Si quantum dot of 12 nm length

is smaller than 0.1λ and will hardly perturb the phonon. The cavity edges are

situated at the transition from the amorphous Ni contacts to the crystalline

NiSi, where the cross-sectional area drops stepwise by more than three orders of

magnitude. The required cavity length of 104 nm corresponds well to the total

length of NiSi–Si–NiSi nanowire of 250 nm.

An energy emission of n∆E can be interpreted by two possible scenarios: (i)

one phonon with energy n∆E is sent out. Each line corresponds to one phonon

mode of energy n∆E, hence the modes are equidistant in energy as in a harmonic

oscillator potential. (ii) n phonons with energy ∆E are emitted. Here only one

phonon mode is used, so we have no knowledge of the phonon spectrum. Since

we observe emission even up to 13∆E (see Figure 6.3A), the electron-phonon

coupling must be very strong in the latter scenario [93].

In conclusion, we have shown evidence for discrete energy levels that assist

transport through a Si nanowire quantum dot. The additional transitions corre-

spond to energy levels below the N = 0 ground-state energy of the dot, which

cannot correspond to electronic states of the quantum dot itself or to Zeeman

states. The energy levels are quantized in multiples of 100-180 µeV and do not

change with magnetic field. The magnitude of the quantization as well as the in-

dependence of magnetic field, and the presence of energy levels below the N = 0

ground state level rule out the possibility of quantized states in the leads. Instead

we attribute them to the emission of quantized energies during inelastic trans-

port. The most likely explanation for the excitations is acoustic phonon emission

to a cavity between two Ni contacts. The detailed analysis of our data on a

single-hole silicon quantum dot marks a significant step to a better understand-

ing of a phenomenon that is observed in single-charge quantum dots in nearly all

material systems. Nevertheless it still requires a detailed theoretical explanation.
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Chapter 7

Scanned probe imaging of quantum dots

inside InAs nanowires

A. C. Bleszynski, F. A. Zwanenburg, R. M. Westervelt,
A. L. Roest, E. P. A. M. Bakkers, & L. P. Kouwenhoven

We show how a scanning probe microscope (SPM) can be used to image electron

flow through InAs nanowires, elucidating the physics of nanowire devices on a

local scale. A charged SPM tip is used as a movable gate. Images of nanowire

conductance versus tip position spatially map the conductance of InAs nanowires

at liquid-He temperatures. Plots of conductance versus backgate voltage without

the tip present show complex patterns of Coulomb-blockade peaks. Images of

nanowire conductance identify their source as multiple quantum dots formed by

disorder along the nanowire−each dot is surrounded by a series of concentric

rings corresponding to Coulomb blockade peaks. An SPM image locates the

dots and provides information about their size. In this way, SPM images can be

used to understand the features that control transport through nanowires. The

nanowires were grown from metal catalyst particles and have diameters ∼80 nm

and lengths 2-3 µm.

This chapter has been published in Nano Letters Vol. 7, No. 9, p. 2559-2562 (2007).
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7. Scanned probe imaging of quantum dots inside InAs nanowires

7.1 Introduction

An explosion in research activity on semiconducting nanowires has occurred in the

past decade [94, 17, 18]. The ability to control the dimensions and composition

of nanowire devices shows great promise for nanoelectronics, nanophotonics, and

quantum information processing. Quantum effects are naturally important due

to their small size, opening new possibilities for quantum devices.

InAs nanowires are a particularly attractive system for several reasons. InAs

has a large g-factor, making it useful for spintronics and quantum information

processing. Its large bulk exciton Bohr radius aB = 34 nm is comparable to the

radius of nanowires studied in this paper, producing quantum confinement. While

some semiconductors are known to have a surface depletion layer, the surface of

InAs is known to have a charge accumulation layer. As a result, very small radius

nanowires are not depleted of electrons, and one can make Schottky-barrier-free

contacts to metallic leads.

Recent achievements in the field of semiconducting nanowires including single-

electron control [45, 95, 96], high-performance field-effect transistors [97], and

proximity-induced superconductivity [98, 99]. Progress requires an understanding

of where the electrons are along the nanowire and how they flow through it.

Standard transport measurements provide information about the conductance of

the whole length of the nanowire [45, 95, 96] but do not provide detailed spatial

information.

7.2 Scanned probe microscopy of InAs nanowires

Scanning probe microscope (SPM) imaging allows one to probe the motion of

electrons along the nanowire locally, with high spatial resolution, and to modify

the potential profile to allow or block electron transport. Cooled scanned probe

microscopes have proven to be powerful tools for imaging and controlling electron

flow in nanoscale systems including carbon nanotubes, a two-dimensional elec-

tron gas, and GaAs quantum dots [100, 101, 102, 103, 104, 105, 106]. Imaging

techniques for nanowires are just being developed [107, 108].

In this Letter we present conductance images of InAs nanowires obtained

with a liquid-He-cooled SPM. Plots of nanowire conductance G versus backgate

voltage VBG without the tip present show complex patterns of Coulomb blockade

peaks with uneven spacings and heights. SPM images of nanowire conductance,

using the tip as a movable gate, show the pattern of peaks is produced by mul-

tiple quantum dots located along the InAs nanowire, accidentally produced by

disorder. Each dot is surrounded by a set of concentric rings of high conductance
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7.2 Scanned probe microscopy of InAs nanowires

Figure 7.1: (A) SEM photo of an InAs nanowire (device D1) contacted with Ti/Al
electrodes. (The slight kink in the wire at the top contact, due to an atomic force
microscope (AFM) tip crash, occurred after the data presented in this paper was ob-
tained.) The scale bar is 500 nm long. (B) Imaging schematic. A charged AFM tip
is scanned ∼100 nm above the contacted InAs nanowire. Nanowire conductance as
a function of lateral tip position is recorded to form an image. The wire lies atop a
conducting Si substrate with a 250 nm thick SiO2 capping layer.

corresponding to Coulomb blockade conductance peaks [102]. The spacing and

intensity of the rings about a dot provide information about the dot size and

tunneling rate. The rings from nearby dots overlap. By using the tip as a mov-

able gate, we can tune the charge state of each dot individually. These results

show how a cooled SPM can be a powerful diagnostic tool for the development

of nanowire devices.

The InAs nanowires were grown in a catalytic process from small gold seed

particles using metal-organic vapor-phase epitaxy [109]. The nanowires have

diameters ∼80 nm and lengths ∼2-3 µm. After growth, the InAs nanowires are

transferred onto a conducting p+ silicon substrate capped with a 250 nm thick

SiO2 insulating layer. The silicon substrate acts as a backgate that can tune

the number of charge carriers in the wire through an applied backgate voltage

VBG. Electron beam lithography is used to define electrodes ∼2-3 µm apart,

and 110 nm of Ti/Al is subsequently deposited to form the contacts. Figure 1A

shows a scanning electron microscopy (SEM) picture of a contacted InAs wire. A

home-built liquid-He-cooled SPM is used to image electrical conduction through

the nanowires. As schematically shown in Figure 1B, an image is obtained by

scanning a conducting SPM tip across a plane above the nanowire and recording

the nanowire conductance G versus tip position with fixed Vtip and VBG [102]

The conducting tip gates the nanowire locally, whereas the backgate gates the

nanowire globally. The tip voltage Vtip creates a dip or peak in the electron

density below. For an open nanowire, one can image electron flow by using the
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7. Scanned probe imaging of quantum dots inside InAs nanowires

tip to scatter electrons, thereby changing G. However, for a quantum dot in

the Coulomb blockade regime, a different pattern is observed. An image of a dot

shows a series of concentric rings corresponding to Coulomb blockade conductance

peaks that occur as electrons are added to the dot. This Coulomb blockade

imaging technique has been used to image multielectron quantum dots formed in

carbon nanotubes [101] and a one-electron GaAs quantum dot [102].

7.3 Spatially mapping quantum dots

Parts A and B of Figure 2 show plots of nanowire conductance G versus backgate

voltage VBG for two InAs nanowire devices, D1 and D2; the nanowires are near

pinchoff with G � e2/h. Each plot shows an irregular series of peaks with vari-

able spacing and amplitude similar to Coulomb blockade oscillations for multiple

quantum dots in series [110, 21, 111]. The low conductance and the existence of

complex patterns of peaks show the InAs nanowires are not spatially uniform.

Without additional information, it is difficult to identify the source of these ir-

regular oscillations.

The SPM conductance images in parts C and D of Figure 2 show the presence

of multiple quantum dots located along each nanowire. Nested conductance rings

occur about three positions along nanowire D1 in Figure 2C and about two

positions along nanowire D2 in Figure 2D. Each ring corresponds to a Coulomb

conductance peak of the quantum dot at the ring’s center as electrons are added

or removed by the SPM tip [101, 102]. The charge induced by the tip on a single

dot is

qind(rt−d, Vt−d) = Ct−d(rt−d) · Vt−d, (7.1)

where rt−d is the distance between the tip and the dot, Ct−d is the capacitance

between the tip and the dot (assuming a conducting dot with a fixed geometry),

and Vt−d is the voltage difference between tip and dot, including effects of the

contact potential and the dot’s capacitance to ground. Because Ct−d changes with

tip position, the induced charge qind can be controlled either by the tip voltage

Vtip or by the tip position rt−d. If one were to plot G versus rt−d, a conductance

peak would occur every time the charge in the dot changes by one electron. In

images, the conductance peaks take the form of closed rings centered on the dot

that are contours of constant tip-to-dot capacitive coupling Ct−d. When the tip

is between two rings, the dot charge remains constant at an integer multiple of

the electron charge e.

The images in parts C and D of Figure 2 show that the complex conductance

plots in parts A and B of Figure 2 were caused by multiple quantum dots in
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7.3 Spatially mapping quantum dots

Figure 7.2: InAs nanowire transport measurements and corresponding images that
spatially illuminate the behavior. (A, B) Nanowire conductance G vs backgate voltage
VBG for devices D1 and D2, respectively. The plots show a complex pattern of Coulomb
blockade conductance peaks characteristic of multiple quantum dots in series. From
these plots, it is difficult to determine the number and locations of the dots in each
wire. (C, D) SPM images of devices D1 and D2, respectively, that display G vs position
of a charged SPM tip scanned along a plane 100 nm above the nanowire. Concentric
rings of high conductance, corresponding to Coulomb blockade peaks, are centered on
quantum dots in the nanowire. (C) shows three sets of concentric rings identify three
quantum dots whose positions are marked by black dots. (D) reveals rings surrounding
two quantum dots in the nanowire. Dotted lines denote the outline of the wire and the
electrical contacts.

series. In Figure 2C, three sets of concentric rings indicate the presence of three

quantum dots at locations indicated by the black dots superimposed on the image.

The rings surrounding the middle dot in D1 are more closely spaced than those

surrounding the other two dots, indicating that the center dot is larger. In

Figure 2D, two sets of concentric rings indicate the presence of two quantum

dots, whose locations are again marked by black dots. In both parts C and D of

Figure 2, the rings are elongated along an axis perpendicular to the wire due to

a slight screening of the tip by the metal contacts. Formation of the quantum

dots is accidental, presumably due to local potential fluctuations or defects in the

nanowires.
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7.4 Quantum dot size

The SPM images together with plots of G versus VBG allow us to estimate the

sizes of the quantum dots located along the nanowire. We use a simple model

in which the capacitance CBG between the dot and the backgate is given by the

capacitance of a cylindrical nanowire segment [112] of radius r = 40 nm and

length L located at a height z above the backgate CBG = 2εrε0L/ln(2z/r); here

ε0 is the permittivity of a vacuum, z = 250 nm is the thickness of the insulating

SiO2 layer, and εr = 2.0 is the average dielectric constant including both the SiO2

layer and the gap between the nanowire and SiO2 layer away from the line where

they touch. The length L of a given dot can be estimated from the period of

its Coulomb blockade conductance oscillation versus VBG. For Figure 2A this is

possible for the rapid oscillation. This rapid oscillation corresponds to the closely

spaced rings about the middle dot in the image Figure 2C; the ring spacing for

the other dots is larger. Comparing the backgate voltage period with the ring

spacing for a given dot calibrates the image for all of the dots shown, so that

the ring spacing for another dot can be used to estimate its length L, even if its

conductance oscillation cannot be picked out of the G versus VBG conductance

plot. Using this procedure, we found the lengths of the three dots from left to

right in Figure 2C for sample D1 to be L = 63, 520 and 140 nm, and the lengths

of the two dots from top to bottom in Figure 2D for sample D2 to be L = 400

and 122 nm. The dot lengths vary, and some dots are longer than their diameter,

as one might expect for accidental dots.

Using the SPM tip as a movable gate allows us to control the charge on one

dot in a nanowire that contains many dots, like the devices shown here. The

movable gate technique has a great advantage over static gating techniques for

the manipulation of quantum dots in nanowires: The movable gate allows one

to image and locate the position of one or more quantum dots along a nanowire.

In addition, the SPM tip can be used to address an individual dot in a nanowire

that contains multiple dots. Doing this can be difficult using lithographically

defined gates if the dot locations are unknown or if the spacing between two dots

is smaller than the lithographic resolution. The images in Figure 3 show how the

nanowire conductance is pinched off by a negative backgate voltage to produce

Coulomb conductance peak patterns characteristic of quantum dots in series [110].

The electron density is reduced everywhere in the nanowire, producing effectively

higher barriers. A series of SPM images of device D1 are shown in parts A-C of

Figure 3 for VBG = -1.94, -2.05, and -2.12 V, respectively. The small pink dots in

Figure 3 show quantum dot locations, and the dashed ellipses in panels B and C

of Figure 3 show the location of the rings for the two outer dots from Figure 3A.
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7.5 Evolution of SPM images with tip voltage

Figure 7.3: SPM images of conductance G for device D1 showing the interaction
of Coulomb blockade rings from the three quantum dots in the nanowire. Pink dots
mark the dot locations, and dashed lines show outlines of the nanowire and contacts
in (A). The images were recorded with Vtip = 0 V and backgate voltages (A) VBG =
-1.94 V, (B) -2.05 V, and (C) -2.12 V. As VBG is made more negative, conductance
occurs only near the intersection of rings from different dots, where each dot is on a
Coulomb blockade conductance peak. Elliptical dash-dotted rings in (B) and (C) show
the location of rings in (A) from the two outermost dots. The expected rings for the
middle dot have not been shown, because they are so closely spaced that their inclusion
would clutter the image.

As the nanowire is depleted, conductance only occurs when all three dots are on

a Coulomb blockade peak; this occurs at the intersections of conductance rings

from different dots. Clearly seen in Figure 3C, this peaks at the intersection

of conductance rings from different dots is the expected pattern for multiple

quantum dots in series with negligible coupling between them [110].

7.5 Evolution of SPM images with tip voltage

The SPM images of device D2 in Figure 4 show how the Coulomb blockade rings

from a given dot evolve as the tip voltage is increased from Vtip = 0.48 to 1.44 V

while keeping VBG constant: the rings move radially outward, and their spacing

decreases. In these images, a dominant set of rings is centered on the quantum

dot in the upper half of the image. We can track the motion of an individual

ring by taking a series of images with small increments in Vtip (see Supporting

Information). A subset of these images is shown in Figure 4, where a superim-

posed black triangle is used to indicate the location of a particular ring. The

radius grows as Vtip is increased, because the positive tip pulls more electrons

onto the dot. It is difficult to estimate the absolute number of electrons, because

the dot contains many electrons and we cannot deplete the number to zero. In
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7. Scanned probe imaging of quantum dots inside InAs nanowires

addition, the rings become more closely spaced as Vtip is increased, because the

induced charge on the dot increases, in proportion to Vtip. So a smaller change

in tip position and tip-to-dot capacitance Ct−d is needed to add or remove one

electron.

Figure 7.4: Evolution of SPM images of device D2 with tip voltages: (A) Vtip = 0.48
V, (B) 0.90 V, and (C) 1.44 V. The wire and top contact are denoted with dashed
lines in (A). Coulomb blockade rings surround a quantum dot in the upper half of the
image. As Vtip increases, the rings expand outward in size and become more closely
spaced. The black triangle tracks one Coulomb peak, demonstrating how the size of
the rings grows with tip voltage.

We acknowledge useful discussions with Jorden van Dam, Silvano De Franceschi,

Markus Brink, and Gary Steele. This work was supported at Harvard and at Delft

by the Nanoscale Science and Engineering Center (NSEC), Grant NSF PHY-01-
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Research (NWO).
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7.6 Additional material

7.6 Additional material

The scanning probe microscope images of nanowire device D2 in Figure 7.4 are

three images of a larger series. The full evolution of Coulomb rings moving

outward is shown in Figure 7.5.

Figure 7.5: Series of cooled scanning probe microscope images of nanowire device D2
taken as the tip voltage varied from 0.48V to 1.40V, from top left to bottom right. The
black arrow on each frame tracks the Coulomb ring corresponding to the addition of
the nth electron, where n has the same value in each image.
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Chapter 8

Electric field control of

magnetoresistance in InP nanowires

F. A. Zwanenburg, D. W. van der Mast, H. B. Heersche,
E. P. A. M. Bakkers & L. P. Kouwenhoven

We demonstrate electric field control of sign and magnitude of the magnetore-

sistance in InP nanowires with ferromagnetic contacts. The sign change in the

magnetoresistance is directly correlated with a sign change in the transconduc-

tance. Additionally, the magnetoresistance is shown to persist at such a high bias

that any possible form of Coulomb blockade has been lifted. We also observe the

magnetoresistance when one of the ferromagnets is replaced by a non-magnetic

metal. We conclude that it must be induced by a single ferromagnetic contact,

and that spin transport can be ruled out as the origin. Our results emphasize

the importance of a systematic investigation in order to discriminate between

ambiguous interpretations.

The results in this chapter will be submitted for publication.
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8.1 Introduction

The realization of the field effect transistor in 1947 may be the greatest invention

of the 20th century, allowing the development of modern-day electronics. The

discovery of the giant magnetoresistance in multi-layers of magnetic and nonmag-

netic metals [113, 114] has had an enormous impact on the data storage industry.

It opened the field of spintronics which wants to exploit both the spin and charge

degree of freedom of electrons for useful devices [3, 4, 5]. The proposal of Datta

and Das, that combines the functionalities of semiconductors and magnetic ma-

terials into a spin transistor [115], has triggered many research groups to pursue

its experimental realization.

The typical signature of giant magnetoresistance, or spin valve effect, is the

onset of a low and high resistance state for parallel (P) and anti-parallel (AP)

orientations of the magnetizations of two ferromagnets. These different magneti-

zation directions result in different densities of states for spin-up and spin-down

electrons at the Fermy energy. In metallic systems this is a well-understood phe-

nomenon, but it took almost a decade until the first demonstration was claimed

on carbon nanotubes with ferromagnetic contacts [116], after which many fol-

lowed [117, 118, 119, 120, 121, 122].

However, the Magneto-Coulomb effect can have the exact same signature, re-

sulting in ambiguous interpretations of spin transport experiments [123]. Magneto-

Coulomb oscillations were first observed in ferromagnetic single electron tran-

sistors in 1997 [124, 125]. These experiments showed how amagnetic field can

induce single electron charging effects: a change in magnetic field B shifts the

densities of states for spin-up and spin-down electrons in a ferromagnet by the

Zeeman energy ∆EZ = ±gµBB/2. Here g is the gyromagnetic ratio, µB the Bohr

magneton and the sign is negative (positive) for spin-up (spin-down). The total

number of electrons stays constant, and as a consequence the chemical potential

has to change by P∆EZ , with P the spin polarization at the Fermi energy. If

the ferromagnet is capacitively coupled to the metallic island of a single electron

transistor, the resulting modification in work function acts as a voltage on a gate.

Via this mechanism a magnetic field can give rise to single electron charging ef-

fects. Along these lines the Magneto-Coulomb effect should also be observable in

semiconductors contacted by ferromagnets.

If one wants to inject and detect spins electrically, the non-local measurement

of a spin imbalance [126, 127] is generally regarded as the best configuration

to exclude misleading effects that leave the same signature. Only recently three

non-local experiments have been reported in non-metallic systems, namely carbon

nanotubes [128], GaAs [129] and graphene [130]. The results on carbon nanotubes
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with ferromagnetic contacts [117, 118, 119, 120, 121, 122] were all carried out in a

2-point (or ‘local’) geometry. They observed the typical spin valve-like signal of a

low- and high resistance state for parallel (P) and anti-parallel (AP) orientations

of the magnetizations of the ferromagnetic electrodes.

Here we present the first experiments on semiconductor nanowires with fer-

romagnetic contacts. We use InP nanowires that are contacted with both ferro-

magnetic and non-magnetic metals, allowing for discrimination of spin transport

effects and the Magneto-Coulomb effect, thus avoiding ambiguous interpreta-

tions of the experiments. We demonstrate electric field control of the sign and

magnitude of the magnetoresistance in these devices. Additionally, the magne-

toresistance is shown to persist at such a high bias that any possible form of

Coulomb blockade has been lifted.

Crystalline InP nanowires are grown from gold catalyst particles via a vapor-

liquid-solid process [23, 109, 131]. During growth Se is incorporated as dopant

atom (100 ppm Se) aiming at 1018 electrons/cm3. The effective doping level

is higher due to extra impurity incorporation, resulting in an electron density of

∼ 1019 cm−3. The typical diameter is 50 nm and lengths vary from 5 to 20 micron.

After growth we deposit the nanowires on a thermally oxidized silicon wafer with

250nm SiO2. The silicon is highly doped, enabling use of it as a backgate to induce

an electric field in the nanowires. Predeposited markers allow locating individual

nanowires and definition of electrodes by means of electron-beam lithography.

Before metal deposition, the samples are treated with buffered hydrofluoric acid

for 5s in order to etch off the native oxide layer around the nanowires. We then

evaporate 100nm of the alloy Co80Fe20 for ferromagnetic contacts. After a second

lithography step and etch treatment, 110nm Ti/Pt is deposited for non-magnetic

contacts. In the experiments shown here the distance between the contacts is

varied from 200 to 460nm. The resulting two-point resistances are typically 20-

80 kΩ, but can be as low as 5 kΩ. For both CoFe-InP and Ti/Pt-InP the contact

resistance is estimated between 1 and 10kΩ. The high carrier concentration

results in a very thin Schottky barrier. At low temperature we see an increase

in differential resistance around zero bias, but no sign of Coulomb blockade.

Measurements of the conductance versus source-drain and backgate voltage show

an interference pattern which most likely originates from universal conductance

fluctuations or Fabry-Pérot-like interference between source and drain contacts.

The presented data in this paper are taken at 1.6-1.8 K in a pumped 4He-cryostat.

We only show 2-terminal measurements, where we bias a DC current from source

to drain and measure the source-drain voltage.
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8. Electric field control of magnetoresistance in InP nanowires

8.2 Electric field control of magnetoresistance

Figure 8.1A shows a scanning electron micrograph of device A, an InP nanowire

with four CoFe (F) contacts. Two contacts have a width of 100 nm and the

other two 300 nm, resulting in different coercive fields: when the magnetic field

is swept parallel to the easy axis of the contacts, the magnetizations of the wider

(300 nm) electrodes will switch before the two 100 nm electrodes. This allows

us to measure the device resistance both with parallel (P) and anti-parallel (AP)

magnetizations of the involved electrodes. The distance between the contacts is

about 200nm, and the device has a resistance of 10 kΩ at zero gate voltage. The

devices B and C (later in this paper) have almost identical designs and differential

resistances of 15-20 kΩ and 140-260 kΩ respectively.
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Figure 8.1: Electric field control of magnetoresistance. (A) SEM of device A,
an InP nanowire with four CoFe contacts. The electrodes have different widths (100
nm and 300 nm) in order to realize different coercive fields. We perform 2-terminal
measurements on the two rightmost contacts, which are separated by 220 nm. The
wire part between the middle contacts has broken off after metal lift-off and is not
used for measurements. We bias a DC current I from source to drain and measure the
source-drain voltage V . The other contacts are floating. (B) Magnetic field sweeps at
2K of the voltage at a current bias of 10 nA for different values of the backgate voltage.
The magnetic field is swept up and down parallel to the easy axis of the electrodes;
arrows indicate the sweep direction. At 3 of the 4 backgate voltages the magnetization
switches at ±55 and ±100 mT result in jumps in the measured voltage varying from
-1.4% to +2.3%.

90



8.3 Relation between transconductance and magnetoresistance

The magnetization switches are clearly visible in the measured voltage at a

constant current bias of 10nA, see Figure 8.1B. When the magnetic field is swept

in the positive direction, jumps in the voltage appear at 55 and 100 mT. Going

to negative fields two jumps are seen symmetrically in B-field. Between ±55 mT

and ±100mT the two ferromagnets have anti-parallel magnetizations. Outside

these regions they are aligned parallel, either in the positive or negative B-field

direction. Four sets of traces are shown at backgate voltages of 13V, 16V, 24V

and 28V. When we define the magnetoresistance as (RAP − RP/(RAP + RP )

we find respective values of 1.4%, -1.0%, 0% and 2.3% for these gate voltages.

Besides observing the 2-terminal magnetoresistance in more than twenty different

F-InP-F devices, we have also measured the magnetoresistance of a nanowire in

a 4-point geometry: we measured the voltage between the inner two contacts

of a nanowire, with a constant bias current through the outer two electrodes

(all ferromagnetic). This resulted in the same magnetoresistance as in a 2-point

measurement on the inner two contacts, both qualitatively and quantitatively.

The results in Figure 8.1 demonstrate that we can control and even turn off the

magnetoresistance by means of an electric field.

8.3 Relation between transconductance and mag-

netoresistance

Now we look in more detail at the relation between the sign of the magnetoresis-

tance and the transconductance. We perform the same magnetic field sweeps on

device B. With no gate voltage applied this device has a differential resistance

of 18kΩ at zero bias and 15kΩ at a bias of 100nA. When we take magnetic field

sweeps while stepping the different gate voltage from 17 V to 26.5 V, it turns out

that the change in resistance with electric field (∼20%) is much bigger than the

sudden change due to the switches (∼0.5-1% in this device). Plotting the numer-

ical derivative dV/dB, which is proportional to the magnetoresistance, allows us

to discern the magnetization switches.

Figure 8.2A shows a grayscale plot of dV/dB versus backgate voltage and

magnetic field. The switches appear as horizontal alternating black and white

lines at ±80, +150 and ±190 mT. In the measurement set-up the magnetic field

was not aligned with the easy axis but under a non-zero angle with the electrodes.

This results in higher switching fields for both CoFe contacts, and one of the

electrodes switches in two parts (at 150 and 190mT). The switching lines change

from black to white or vice versa a couple of times, corresponding to a sign change

in magnetoresistance. The middle panel shows several minima and maxima in the
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Figure 8.2: Relation between transconductance and magnetoresistance. (A)
For device B the voltage is measured at a current bias of 10 nA. The grayscale plots
show the numerical derivative dV/dB versus magnetic field and gate voltage. The
upper (lower) panel depicts the magnetoresistance while sweeping the magnetic field
up (down). White (black) represents a positive (negative) magnetoresistance. Three
switches are visible at ±80, +150 and ±190 mT. The first can be attributed to the 300
nm wide CoFe electrode, and the latter two to the 100 nm contact (its magnetization
switches in two steps). The middle panel shows a line cut of the measured voltage versus
gate voltage at B=250 mT, taken from the upper panel. (B) Line cuts of (A) at three
different gate voltages. The magnetoresistance changes sign while the normal resistance
goes through a minimum at VBG=22.9V. (C) Schematic explaining sign change of the
conductance in case of the Magneto-Coulomb effect. If the chemical potential µ of one
of the ferromagnetic contacts changes by an amount ∆µ, it results in an effective ∆VBG

on the device. The change in conductance G depends on the position in gate space.
When the conductance goes through a maximum it can change from ∆G > 0 (before
the maximum, situation 1) to ∆G = 0 (situation 2) to ∆G < 0 (situation 3).
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normal resistance versus backgate voltage. The three line cuts in Figure 8.2B are

taken around the minimum at VBG=22.9V. The sign of the magnetoresistance

changes from negative at VBG=22.5V to zero (at VBG=23.05V) to positive (at

VBG=23.38V). We have observed this in devices A and C as well. These results

show that a sign change in the transconductance, dG/dVBG, goes together with

a sign change in the magnetoresistance.

8.4 Magneto-Coulomb effect and spin transport

The origin of this relation can be understood by both the Magneto-Coulomb

effect and spin transport. We will explain both, starting with the latter.

The experiments on carbon nanotubes with ferromagnetic contacts are in the

coulomb blockade regime, and the presented magnetic field sweeps display the

spin-valve signature. Different mechanisms are suggested to explain the data,

namely spin injection, spin-dependent quantum interference and spin-dependent

coupling between quantum dot and lead. The latter two [121, 122] reported

the correlation of sign changes of their magnetoconductance with resonances in

the normal conductance, just like in Figure 8.2A and B. Man et al. add the

disappearance of the effect on increasing the voltage bias of the device[122].

The Magneto-Coulomb effect has been demonstrated and carefully explained

for the first time in metallic devices by Ono et al. [125]. In this case, a change in

magnetic field shifts the densities of states for spin-up and spin-down electrons

in a ferromagnet by the Zeeman energy ∆EZ = ±gµBB/2. Since the spin-up

and spin-down densities of states differ and the total number of electrons stays

constant, the chemical potential has to change by

∆µ = PgµBB/2. (8.1)

Here P is the spin polarization of the electron density of states at the Fermi

energy of the ferromagnet. The work function of the ferromagnet changes by the

same amount as µ. When the ferromagnet is capacitively coupled to an island

via a capacitance C, the charge on the island changes by ∆q = C∆µ/e [123].

Adding up all contributions leads to the total accumulated charge

∆q = CS∆VS + CD∆VD + CBG∆VBG, (8.2)

where the subscripts S, D and G refer to source, drain and gate. Equations (8.1)

and (8.2) demonstrate how an applied magnetic field can change the electric

field experienced by the device (Figure 8.2C). The corresponding change in the

conductance depends on the position in gate space. When the conductance goes
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8. Electric field control of magnetoresistance in InP nanowires

over a peak it can change from ∆G > 0 (before the peak, situation 1) to ∆G = 0

(situation 2) to ∆G < 0 (situation 3). This is an adequate explanation for the

magnetoresistance at different gate voltages as shown in Figure 8.1CB.

We stress that in order for the latter effect to be observed only one ferro-

magnetic contact is sufficient. In contrast, electrical detection of spin transport

requires spin coherence from one ferromagnet to another, and therefore at least

two ferromagnets are necessary for that experiment. Using only one ferromag-

netic contact results in two possible scenarios: (i) The signal is absent, indicating

spin transport as the origin. (ii) The signal of one magnetization switch is present,

proving that the Magneto-Coulomb effect causes the magnetoresistance.

8.5 Magnetoresistance with one ferromagnet

To find out which effect comes into play in our experiment we have fabricated

devices with both ferromagnetic and normal contacts to InP nanowires. We have

performed magnetic field and electric field sweeps on device C, which has three

working CoFe contacts and one working Ti/Pt contact, see Figure 8.3A. The

differential resistance of both combinations CoFe-InP-CoFe (F-InP-F) and CoFe-

InP-Ti/Pt (F-InP-N) is ∼230 kΩ at zero bias and ∼150 kΩ at a bias of 100 nA.

Figure 8.3B shows the magnetoresistance in grayscale versus gate voltage for the

F-InP-F configuration.

Just like in Figure 8.2 three distinct resistance jumps show up at ±60, ±110

and +170/-200 mT, which we can relate to the coercive fields of F1 (± 110 mT

and +170 mT/-200) and F2 (± 60mT). Contrary to the measurements of Figures

8.1 and 8.2 the magnetoresistance barely changes with respect to gate voltage.

The reason is that the gate dependence of the conductance has no minima or

maxima: at this current bias the conductance only goes up with increasing gate

voltage, see middle panel of 8.3B. When we carry out the same measurement

in the F-InP-N configuration, we still see the two jumps that correspond to the

magnetization switching of F1 (Figure 8.3C), but the coercive field of F2 at ± 60

mT is no longer visible. We observe the same signature at a current bias of 3 nA.

Apparently we do not need two ferromagnetic electrodes to observe a resistance

jump caused by a magnetization switch. We conclude from Figure 8.3 that the

magnetoresistance is induced by a single ferromagnetic contact.

94



8.6 Magnetoresistance at high bias

B A 

VBG (V) 

B 
(m

T)
 

B 
(m

T)
 

VBG (V) 

0

250

-250

0

250

-250
200200

F1

F2

F1

C 

F3 F1
–

F2
N

–

1µm

SWEEP
UP

SWEEP
DOWN

32

V 
(m

V)
 

31

5

4

F2

V 
(m

V)
 

0.3-0.3 dV/dB

F1-InP-F2 F1-InP-N 

0.3-0.3 dV/dB

B=265mT 
Ibias=200nA 

B=265mT 
Ibias=25nA 

Figure 8.3: Magnetic field sweeps on device C: an InP wire with four fer-
romagnetic and two normal contacts. (A) SEM of the device. The two leftmost
electrodes are not connected. (B) F1-InP-F2: we measure V from F1 to F2 in the range
VBG=[0,20V] at a current bias of 200 nA while sweeping the magnetic field up (top
panel) and down (bottom panel). By plotting dV/dB in grayscale the jumps caused
by the magnetization switches are highlighted. In both sweep directions three magne-
tization switches are visible at ±60, ±110 and +170/-200 mT. The first switch can be
attributed to F2, and latter two to F1. (C) F1-InP-N: we measure V from F1 to N
at a current bias of 25 nA. The switch of F2 at ±60 mT has disappeared. However,
the two switches at ±110 and +170/-200 mT are still visible. Both are caused by the
magnetization switching of F1, which means that the observed magnetoresistance is
induced by one ferromagnetic contact alone.

8.6 Magnetoresistance at high bias

We have also investigated whether the magnetoresistance remains at high current

bias. Figure 8.4A shows the magnetic field sweeps on device C while the current

bias is swept from 10 to 400nA. Here we use F2 and the third ferromagnetic

contact F3, with an InP channel length of 460nm. Throughout the entire bias
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8. Electric field control of magnetoresistance in InP nanowires

range jumps appear at ±60 and ±170 mT, caused by the magnetization switches

of respectively F2 and F3. Above 250 nA the jumps are more difficult to resolve

due to instability of the device, but they are present nevertheless. The sign and

relative magnitude of the magnetoresistance do not change when the bias current

is increased up to 400 nA.
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F2 and F3. The gate voltage is kept at VBG=0 V. The sign and magnitude of the
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In the negative sweep direction of both traces two jumps in voltage of about

-20 and -10 µV are visible at -60 and -170mT, corresponding to a conductance

change of 0.1 and 0.05%. In Figure 8.4C we plot the IV of F2-InP-F3. The

presence of the switches at high bias indicates that single electron charging is not

necessary to observe the coercive fields of the ferromagnets. This is confirmed

by Figure 8.3B where the switches appear at a high bias of 200 nA. In order

to be complete we have measured the bias dependence of device B as well, and

saw no change in the magnetoresistance when the bias was varied from 1 nA

to 225 nA (not shown here). The results in Figure 8.4 demonstrate that the

magnetoresistance persists at such a high bias that any possible form of Coulomb

blockade has been lifted.

The data in Figures 8.3 and 8.4 demonstrate that we are dealing with a

ferromagnetic contact-induced effect, visible without the necessity of Coulomb

blockade. Figure 8.3 demonstrates that the observed magnetoresistance is not

related to coherent spin transport from one ferromagnet to another. Also, the

fact that both voltage jumps in the negative sweep direction can go down (e.g. fig.

8.4B, down-sweep) means there are more than two resistance levels in a magnetic

field sweep. That makes it impossible to refer to low- and high-resistance states

of the device as the direct result of P and AP configurations of the ferromagnets.

8.7 Discussion

Next we will discuss four possible interpretations of our measurements: spin

transport in InP nanowires, a direct measurement of the work function, the

Magneto-Coulomb effect (an indirect measurement of the work function) and

magnetic field dependent contact resistances.

1. Spin transport in InP nanowires

Spin transport can suffice to explain the results in Figures 8.1 and 8.2,

along the same lines as the mechanisms in refs [121] and [122]. However,

it is ruled out by four observations: (i) The presence of the signal with

only one ferromagnetic contact (Figure 8.3), since spin transport requires

coherent spin transport between two ferromagnets. (ii) The presence of

more than two magnetoresistance levels in some devices (e.g. Figure 8.4),

instead of only high-resistance (AP) and low-resistance (P) states. (iii) Its

presence in the absence of single electron charging, whereas other reports

only see the magnetoresistance at low bias [121, 122]. (iv) The absence

of a spin-valve like signal in the non-local experiment: in that geometry

we measure a magnetic hysteresis with only one visible switch (not shown
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here). We have measured the non-local voltage in more than 20 different

samples at different current biases and gate voltages, but we never observe

a spin-valve like signal.

2. Direct measurement of the work function

One could argue that the magnetically induced change in ferromagnetic

work function is added directly to the measured voltage instead of indi-

rectly via a capacitive coupling, appearing as voltage jumps at the mag-

netization switches. Two arguments contradict this interpretation: (i) If

the change in work function were to result in a permanent voltage drop in

the electronic circuit, then it would be able to generate a current without

an externally applied voltage bias. The sudden change in work function is

comparable to the formation of a Schottky barrier: it results in a very brief

charge rearrangement between metal and semiconductor, but it cannot in-

duce a constant current flow for reasons of energy conservation. (ii) Since a

ferromagnet is not affected by electric fields, the magnetoresistance should

be the same for all gate voltages. The gate dependence of the magnetore-

sistance in Figures 8.1 and 8.2, however, shows a clear gate dependence.

3. Magneto-Coulomb effect

Unlike spin transport the Magneto-Coulomb effect can be responsible for

all our observations, because we have to do with an electrostatic effect ac-

companied by the individual magnetization switches of the ferromagnets.

As long as the non-magnetic material has an electric field dependent con-

ductance and a strong enough capacitive coupling to the ferromagnet, the

change in chemical potential will be observable. Since it is an electro-

static effect, the sign and magnitude of all individual jumps depend on the

transconductance dG/dVBG in that specific situation just before the mag-

netization switch. After each switching event the position in gate space of

the semiconductor has changed, and this determines the effect of the next

switch. We cannot pinpoint the origin of the sign of all switches in our

data, but the Magneto-Coulomb effect allows the signs of two consecutive

switching events to be the same, like in Figure 8.4B.

4. Magnetic field dependent contact resistances

A two-point measurement (e.g. F-InP-F) incorporates the sum of the InP

nanowire resistance, RW , and two F-InP contact resistances, RC . A change

in work function as in equation (8.1) raises the CoFe-InP Schottky barrier

by the same amount, implying a higher RC , so we can readily expect jumps

as in Figures 8.1-8.4. Since the Schottky barrier (and hence also RC) de-

98



8.7 Discussion

pends on the electric-field dependent carrier density in InP [28], changes

with respect to gate voltage as observed in Figures 8.1 and 8.2 cannot be

excluded. This interpretation is challenged by the persistence of the magne-

toresistance in four-terminal measurements. In that geometry the current

runs underneath the contacts if RC � RW , and the outcome gives RW .

However, if RC ∼ RW , the current will cross the Schottky barrier and the

magnetic field dependent contact resistance can emerge.

The first two interpretations can be eliminated as plausible explanations of the

magnetoresistance, leaving a further investigation of the latter two. The mech-

anism of magnetic field dependent contact resistances is in fact a Magneto-

Coulomb effect. Due to the low contact resistances we cannot discriminate

between the two, so we can reduce the discussion to an investigation of the

Magneto-Coulomb effect.

The experimental value of the chemical potential change can be derived from

a comparison of the magnitudes of the backgate effect and the magnetoresistance

in one and the same device. The voltage jumps of device C in Figure 8.3B are

typically 30±10 µV at all gate voltages. At this current bias the measured voltage

decreases with increasing gate voltage by roughly 60 µV/V, see middle panel of

Figure 8.4B. In other words, a change in backgate voltage ∆VBG of 500±167 mV

induces a change of 30 µV, i.e. equal to the effect of one magnetization switch.

When the two effects are equally strong we can write

CS∆µ/e = CBG∆VBG. (8.3)

A realistic value for the ratio of the capacitances CBG/CS is 0.33, based on a

50 nm diameter wire and a 200 nm contact distance1. By combining CBG/CS

= 0.33 with equation (8.3) we find an experimental change in chemical potential

∆µ of 165±55 meV. We get comparable numbers for devices A and B. Equation

(8.1) yields a theoretical value for ∆µ of 5 µeV, if we use P=0.4, B=0.2 T, g=2

and µB = 9.7·10−24J/T. The theoretical prediction is four orders of magnitude

smaller than the empirical value.

At first sight, the enormous discrepancy throws strong doubts on the Magneto-

Coulomb effect as the origin of the observed magnetoresistance, and asks for an

evaluation of theory and experiment. The theoretical number of 5 µeV seems

extremely small when compared to the work function of CoFe of about 5 eV.

Intuitively one expects a negligible effect on transport, especially in case of the

highly doped InP. On the other hand, the experimental number of 165 meV is

in itself not an oddly huge number when compared to the work function of CoFe

1Numerical simulations based on the Poisson equation yield CBG=4.3 aF and CS=13 aF.
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of about 5 eV. One explanation could be that the effective magnetic field in

equation (8.1) is higher due to shape anisotropy of the ferromagnetic contacts at

the F-InP interface. The surface charges of the CoFe contacts add a component

to the external magnetic field. This demagnitizing field will not be larger than

1 T, which can contribute up to 50 µeV to theoretically expected change in

work function. Moreover, a recent report has investigated the magnetoresistance

of single metallic nanoparticles contacted with Co [132]. They can faithfully

reproduce their data with Monte Carlo simulations, resulting in fitting parameters

for the total capacitance CT = 4.6 aF and induced charge of ∆Q0 = 0.03e [133].

If we convert this to a change in work function, we obtain ∆µ = 1.0 meV.

Clearly, the Magneto-Coulomb effect as described by equation (8.1) does not

apply to these two experiments. The quantitative difference between experiment

and theory suggests a stronger change in work function than theory predicts,

which may be caused by anisotropic density of states in the ferromagnet.

Recently there have been reports of spin-orbit induced tunneling anisotropic

magnetoresistance caused by a single Fe [134] and a single Co [135] contact.

Anisotropic magnetoresistance in ferromagnetic metals stems from spin-orbit in-

teraction, which mixes the conductive s-bands with the exchange-split d-bands.

Free particle-like s-states determine the transport properties of a metal. The

density of states of the d-bands depends on the direction of the magnetization.

Therefore spin-orbit induced scattering of electrons from conductive s-states into

localized d-states increases the resistivity of the metal. A magnetization switch

can thus affect the conductivity by changing the density of states of the d-bands.

Analogously, in tunnel devices with a ferromagnetic contact the density of states

can be anisotropic and depend on the direction of the magnetization. The

anisotropy can be sensed by electrons tunneling into or from the ferromagnet.

It is also present in our F-InP junctions, where the deposited CoFe electrodes

are wrapped around the InP nanowire, resulting in a locally very strong shape

anisotropy. Since each contact is different on a microscopic scale, there will be

a wide variety in anisotropy of all electrode shapes. Unfortunately, at the mo-

ment of writing we can no longer carry out measurements at other magnetic field

orientations to check the anisotropy. The anisotropic density of states can play

a significant role in our devices. It may for example add a significant contribu-

tion to the change in work function, and thus confirm the values we found. A

calculation of this contribution is not feasible since the evaporated CoFe is poly-

crystalline: the dependence of density of states on the magnetization direction is

not as straightforward as e.g. for single crystals [136].

In conclusion, we have reported the first observation of magnetoresistance in

InP nanowires with CoFe and Ti/Pt contacts. The electric field control of sign
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8.7 Discussion

and magnitude of the magnetoresistance demonstrates a direct correlation with

the transconductance. Also, the methods we use allow discrimination between

effects induced by the contacts and spin transport phenomena. We observe the

magnetoresistance when one of the ferromagnets is replaced by a non-magnetic

metal, ruling out spin transport and proving that it is caused by a single ferro-

magnetic contact. We attribute the magnetoresistance to the Magneto-Coulomb

effect, where a magnetically induced change in its work function alters the elec-

tric field experienced by the InP nanowire and hence the total device resistance.

Our results emphasize the importance of making the distinction between differ-

ent effects with the exact same signature to avoid ambiguous interpretations of

magnetoresistance measurements.

We thank G. E. W. Bauer, A. J. S. Bernand-Mantel, J. A. van Dam, D. Loss,

G. A. Steele and B. J. van Wees for discussions.
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M. Liebau, W. Pamler, C. Chèze, H. Riechert, P. Lugli, and F. Kreupl,

“Silicon-nanowire transistors with intruded nickel-silicide contacts,” Nano

Lett, vol. 6, no. 12, pp. 2660–2666, 2006.

[77] A. V. Danilov, D. S. Golubev, and S. E. Kubatkin, “Tunneling through

a multigrain system: Deducing sample topology from nonlinear conduc-

tance,” Physical Review B, vol. 65, no. 12, p. 125312, 2002.

[78] P. W. Leu, B. Shan, and K. Cho, “Surface chemical control of the electronic

structure of silicon nanowires: Density functional calculations,” Physical

Review B, vol. 73, no. 19, p. 195320, 2006.

[79] P. B. Sorokin, P. V. Avramov, A. G. Kvashnin, D. G. Kvashnin, S. G.

Ovchinnikov, and A. S. Fedorov, “Density functional study of [110]-oriented

thin silicon nanowires,” Physical Review B, vol. 77, p. 235417, 2008.

[80] W. G. van der Wiel, S. De Franceschi, J. M. Elzerman, T. Fujisawa,

S. Tarucha, and L. P. Kouwenhoven, “Electron transport through double

quantum dots,” Reviews of Modern Physics, vol. 75, no. 1, pp. 1–22, 2002.

[81] D. H. Cobden, M. Bockrath, P. L. McEuen, A. G. Rinzler, and R. E. Smal-

ley, “Spin Splitting and Even-Odd Effects in Carbon Nanotubes,” Physical

Review Letters, vol. 81, pp. 681–684, 1998.

109



BIBLIOGRAPHY

[82] D. H. Cobden and J. Nyg̊ard, “Shell Filling in Closed Single-Wall Carbon

Nanotube Quantum Dots,” Physical Review Letters, vol. 89, p. 46803, 2002.

[83] L. H. Willems van Beveren, R. Hanson, I. T. Vink, F. H. L. Koppens, L. P.

Kouwenhoven, and L. M. K. Vandersypen, “Spin filling of a quantum dot

derived from excited-state spectroscopy,” New Journal of Physics, vol. 7,

2005.

[84] L. P. Kouwenhoven, T. H. Oosterkamp, M. W. Danoesastro, M. Eto, D. G.

Austing, T. Honda, and S. Tarucha, “Excitation Spectra of Circular, Few-

Electron Quantum Dots,” Science, vol. 278, no. 5344, p. 1788, 1997.

[85] T. Kita, D. Chiba, Y. Ohno, and H. Ohno, “A few-electron vertical InGaAs

quantum dot with an insulating gate,” Applied Physics Letters, vol. 91,

p. 232101, 2007.
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Summary

Spin and Charge in Semiconductor nanowires

The operation of computer processors and data storage devices relies on the spin

and charge of a macroscopic number of electrons. Spin is a magnetic moment,

that points either parallel to an applied magnetic field (spin-up) or anti-parallel

to the field (spin-down). Quantum mechanics describes the spin as being in

both states at the same time, a superposition of spin-up and spin-down. This

quantum property of spin manifests itself when we consider a single electron, but

is no longer observable when a large number of spins is involved.

The field of spintronics tries to exploit the latter to realize novel spintronic

devices that exceed modern-day silicon integrated-circuit technology in terms of

data processing speed, power consumption, non-volatility and integration den-

sities. A single spin can be used as a building block of a quantum computer,

where the spin-up and spin-down states form the logical 0 and 1 of the quantum

bit, or qubit. A future quantum computer should be able to carry out a certain

class of computations that are not possible classically. This thesis describes a

series of experiments aimed at a better understanding of spin and charge effects

in semiconductor nanowires, with both spintronics and quantum computation as

future applications.

The research in this thesis is motivated by an interest in quantum physics

and by the prospect of new applications based on the spin of electrons or holes.

This work focuses on confining single spins in quantum dots, which can serve as

building blocks of a future quantum computer. Long spin lifetimes are crucial to

carry out quantum operations on spin qubits.

We report a number of important steps towards the creation of spin qubits

in a material with an expected long spin lifetime: the demonstration of single

quantum dots in silicon (Si) nanowires, the isolation of a single hole in a Si

quantum dot, energy and magnetic field spectroscopy of the first four spin states,

and the use of a scanning probe microscope to locate quantum dots inside indium

arsenide (InAs) nanowires. Additionally we try to make novel spintronic devices
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using a macroscopic number of spins, by demonstrating electric field control of the

magnetoresistance in indium phosphide (InP) nanowires. This way we show the

ability to combine the functionalities of semiconductors and magnetic materials.

The versatility of semiconductor nanowires in terms of chemical composition,

structure, size, and morphology promises a wide range of potential applications.

The high degree of freedom in nanowire synthesis additionally allows growth of

heterostructures in both the radial and longitudinal direction. It is essential for

this work that a nanowire provides natural confinement of electrons and holes

due to its small size, making it ideal to observe quantum effects. We use Si and

InAs nanowires to create small islands with a controllable number of electrons.

These quantum dots can exchange electrons with reservoirs via tunnel barriers.

Additionally, the capacitive coupling to a gate electrode allows the number of

electrons on the dot to be varied. If the dot size is small enough (typically < 50

nm) it exhibits a discrete energy spectrum which can be observed if the thermal

energy is smaller than level spacing between the quantum states.

We start with the experimental realization of single quantum dots in p-type

silicon nanowires. We observe pronounced excited states in many devices with

short channel lengths. Many single dots split up in two dots upon reaching the

few-hole regime. We demonstrate control of the hole number down to one in

very short dots (< 12 nm). Detailed measurements at perpendicular magnetic

fields reveal the Zeeman splitting of a single hole in silicon. We are able to

determine the ground-state spin configuration for one to four holes occupying the

dot and find a spin filling with alternating spin-down and spin-up holes, which is

confirmed by magnetospectroscopy up to 9 Tesla.

An unusual feature in single-hole silicon nanowire quantum dots is analyzed.

We observe transitions corresponding to additional energy levels below the N = 0

ground-state energy of the dot, which cannot correspond to electronic or Zeeman

states. The levels are quantized in multiples of 100–180 µeV and independent

of magnetic field. We explain the discrete energy spectrum as inelastic tun-

neling processes, where the excess energy is emitted to quantized states in the

environment of the quantum dot. The most likely explanation for the excitations

is acoustic phonon emission to a cavity between the two contacts to the nanowire.

Additionally we show how a scanning probe microscope can be used to find

individual quantum dots inside InAs nanowires. A charged tip is used as a mov-

able gate to image electron flow through InAs nanowires. Complex patterns of

concentric rings in conductance plots reveal the presence of multiple quantum

dots, formed by disorder. Rings of high conductance are centered on each quan-

tum dot, corresponding to the addition or removal of electrons by the scanning

probe.
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Finally, we present electric field control of the magnetoresistance in InP

nanowires with ferromagnetic contacts. The magnetoresistance is induced by

the magnetization switch of a single ferromagnetic contact and persists at high

bias. Since we still observe the magnetoresistance when one of the ferromagnets

is replaced by a non-magnetic metal, it must be induced by a single ferromag-

netic contact. The most likely origin is a magnetically induced change in the

ferromagnetic work function, which alters the electric field experienced by the

InP nanowire and hence the total device resistance.

Floris Zwanenburg

August 2008
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Spin en lading in halfgeleidende nanodraden

De werking van computerprocessoren en harde schijven is gebaseerd op de spin

en lading van elektronen. Spin is een magnetisch moment dat ofwel parallel staat

aan een aangebracht magnetisch veld (spin-omhoog), ofwel anti-parallel aan dat

veld (spin-omlaag). Quantummechanisch beschrijven we de spin alsof die in beide

toestanden tegelijkertijd is, een superpositie van spin-omhoog en spin-omlaag. De

quantummechanische aard van de spin komt naar boven als we kijken naar een

enkel elektron, maar speelt geen rol meer in het geval van een groot aantal spins.

Het onderzoeksveld genaamd spintronica probeert een macroscopisch aan-

tal spins te gebruiken om nieuwe schakelingen of apparaten te realiseren, die

de huidige silicium IC-technologie overtreffen op het gebied van processorsnel-

heid, energieverbruik, duurzaam geheugen en integratiedichtheid. Een enkele

spin kan gebruikt worden als bouwsteen van een quantum computer, waarbij de

spin-omhoog en spin-omlaag toestanden de logische 1 en 0 vormen van het quan-

tum bit, of qubit. Een quantum computer zou in staat zijn een bepaald type

berekeningen uit te voeren die voor een klassieke computer onmogelijk zijn. Dit

proefschrift beschrijft een reeks experimenten die tot doel hebben om het gedrag

van spin en lading in halfgeleidende nanodraden beter te begrijpen, met als lange

termijn toepassingen spintronica en een quantum computer.

De motivatie voor het onderzoek in dit proefschrift komt voort uit interesse in

quantum fysica en het vooruitzicht op nieuwe toepassingen gebaseerd op de spin

van elektronen of gaten. Dit werk richt zich op het opsluiten van enkele spins in

quantum dots, die kunnen dienen als bouwstenen van een toekomstige quantum

computer. Een lange levensduur van de spintoestand is cruciaal om quantum

operaties uit te voeren op spin qubits.

We doen verslag van een aantal belangrijke stappen in de richting van het

maken van spin qubits in een materiaal, waarvan men verwacht dat de spintoe-

stand een lange levensduur heeft: de demonstratie van enkelvoudige quantum

dots in silicium (Si) nanodraden, de isolatie van een enkel gat op een Si quantum
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dot, energie en magnetisch veld spectroscopie van de eerste vier spintoestanden

en het gebruik van een zogenaamde scanning probe microscoop om quantum

dots in indiumarsenide (InAs) nanodraden te localiseren. Bovendien proberen

we nieuwe spintronische schakelingen te ontwikkelen waarbij we gebruik maken

van een macroscopisch aantal spins. De demonstratie van controle over de mag-

netoweerstand in indiumfosfide (InP) nanodraden met behulp van een elektrisch

veld laat zien dat we de functionaliteiten van halfgeleiders en magnetische mate-

rialen kunnen combineren.

De veelzijdigheid van halfgeleidende nanodraden wat betreft de scheikundige

samenstelling, structuur, afmetingen en vorm beloven een breed spectrum aan

mogelijke toepassingen. De grote vrijheidsgraad in de synthese van nanodraden

maakt het mogelijk om heterostructuren te maken, zowel in de radiële richting

als de lengterichting. Voor dit werk is het essentieel dat een nanodraad door zijn

kleine afmetingen van nature zorgt voor insluiting van elektronen en gaten, ideaal

voor de waarneming van quantum effecten. We gebruiken Si en InAs nanodraden

om kleine eilanden te creëren met een controleerbaar aantal elektronen. Deze

quantum dots kunnen via tunnelbarrières elektronen uitwisselen met reservoirs.

Bovendien zorgt de capacitieve koppeling met een gate elektrode ervoor dat het

aantal elektronen op de dot kan worden gevarieerd. Als de dot klein genoeg is

(typisch < 50 nm) vertoont hij een discreet energiespectrum dat waargenomen

kan worden als de thermische energie kleiner is dan de afstand tussen de niveaus

van de quantum toestanden.

We beginnen met de experimentele realisatie van enkelvoudige quantum dots

in p-type silicium nanodraden. We nemen geprononceerde aangeslagen toestan-

den waar in een groot aantal quantum dots van korte lengte. De meeste dots

splitsen zich in tweeën wanneer er nog maar een paar gaten op zitten. We laten

zien, dat we in zeer kleine dots (< 12 nm) zelfs controle hebben tot één gat op de

dot. Gedetailleerde metingen bij loodrechte magneetvelden onthullen de Zeeman-

splitsing van een enkel gat in silicium. We zijn in staat om de grondtoestanden

te bepalen van één tot vier gaten op de dot en we ontdekken dat de dot wordt

gevuld met afwisselend spin-omlaag en spin-omhoog gaten. Dat wordt vervolgens

bevestigd door magnetisch veld spectroscopie tot 9 Tesla.

We analyseren een eigenaardigheid in quantum dots in Si nanodraden waar

slechts één gat op zit. We nemen transities waar die overeenkomen met energie-

niveaus onder de energie van de N = 0 grondtoestand van de dot, maar die geen

elektronische of Zeemantoestanden kunnen zijn. De niveaus zijn gequantiseerd

in veelvouden 100–180 µeV en onafhankelijk van magnetische velden. We leggen

het discrete energiespectrum uit als gevolg van inelastische tunnel processen,

waarbij de overtollige energie wordt uitgezonden naar gequantiseerde toestanden
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in de omgeving van de quantum dot. De meest waarschijnlijke verklaring voor

de excitaties is emissie van akoestische fononen naar een resonantieruimte tussen

de twee contacten aan de nanodraad.

Daarnaast laten we zien hoe een scanning probe microscoop gebruikt kan

worden om individuele quantum dots te localiseren in InAs nanodraden. Een

opgeladen tip wordt gebruikt als een verplaatsbare gate elektrode om de elektro-

nenstroom in InAs nanodraden in beeld te krijgen. Complexe patronen van con-

centrische ringen in geleidingsmetingen onthullen de aanwezigheid van meerdere

quantum dots, die gevormd zijn door wanorde in de draad. Ringen van hoge

geleiding zijn gecentreerd om iedere quantum dot en komen overeen met de to-

evoeging of verwijdering van elektronen door de scanning probe.

Tenslotte presenteren we controle over de magnetoweerstand in indiumfosfide

nanodraden met behulp van een elektrisch veld. De magnetoweerstand wordt

veroorzaakt door het omschakelen van de magnetisatie van een enkel ferromag-

netisch contact en houdt aan bij hoge stroominstellingen. De meest waarschijnli-

jke verklaring is een magnetisch gëınduceerde verandering in de werkfunctie van

de ferromagneet. Als bijgevolg verandert het effectieve elektrische veld dat de

InP nanodraad voelt en daarmee de totale weerstand.

Floris Zwanenburg

Augustus 2008
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