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ABSTRACT
Rank-Biased Overlap (𝑅𝐵𝑂) is a similarity measure for indefinite
rankings: it is top-weighted, and can be computed when only a
prefix of the rankings is known or when they have only some items
in common. It is widely used for instance to analyze differences
between search engines by comparing the rankings of documents
they retrieve for the same queries. In these situations, though, it
is very frequent to find tied documents that have the same score.
Unfortunately, the treatment of ties in 𝑅𝐵𝑂 remains superficial and
incomplete, in the sense that it is not clear how to calculate it from
the ranking prefixes only. In addition, the existing way of dealing
with ties is very different from the one traditionally followed in
the field of Statistics, most notably found in rank correlation coeffi-
cients such as Kendall’s and Spearman’s. In this paper we propose a
generalized formulation for 𝑅𝐵𝑂 to handle ties, thanks to which we
complete the original definitions by showing how to perform prefix
evaluation. We also use it to fully develop two variants that align
with the ones found in the Statistics literature: one when there is a
reference ranking to compare to, and one when there is not. Over-
all, these three variants provide researchers with flexibility when
comparing rankings with 𝑅𝐵𝑂 , by clearly determining what ties
mean, and how they should be treated. Finally, using both synthetic
and TREC data, we demonstrate the use of these new tie-aware
𝑅𝐵𝑂 measures. We show that the scores may differ substantially
from the original tie-unaware 𝑅𝐵𝑂 measure, where ties had to be
broken at random or by arbitrary criteria such as by document ID.
Overall, these results evidence the need for a proper account of ties
in rank similarity measures such as 𝑅𝐵𝑂 .
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• Information systems → Evaluation of retrieval results; •
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1 INTRODUCTION
Rankings are part of our everyday lives: music albums are ranked by
sales, universities are ranked by research output, cities are ranked
by livability, etc. In Information Retrieval (IR) and Recommender
Systems (RecSys), rankings are essential: search engines rank doc-
uments by likelihood of relevance to a query, and recommenders
rank for instance books by likelihood of purchase. But rankings
can be made following alternative criteria, such as music albums by
replays, universities by alumni success, cities by pollution, etc. One
way to understand the differences and commonalities of ranking
criteria is to compare the rankings they produce. In IR this happens
when we compare the rankings of documents returned by differ-
ent systems, topics that documents are estimated to fit to, terms
for query expansion, or rankings of systems sorted by different
evaluation metrics or different relevance assessors.

Comparing rankings requires a rank similarity measure. Some of
themost well-known examples are 𝜏 by Kendall [12], 𝜌 by Spearman
[27], and 𝐷 by Kolmogorov [15], while others developed in the
context of IR and related disciplines are 𝜏∗ by Melucci [21], 𝑑rank by
Carterette [9], 𝜏𝑎𝑝 by Yilmaz et al. [37], 𝐾∗ and 𝐹 ′∗ by Kumar and
Vassilvitskii [16], and 𝜏𝑤 by Vigna [33]. While some of these are
top-weighted and thus assign more importance to similarities at
the top of rankings than at the bottom, none of them can compare
non-conjoint rankings that have only some items in common. This
is very often the case in IR and RecSys when comparing the results
from search engines that have different indexes, recommenders
that have different catalogs, or simply cases where the rankings
are truncated after a certain depth. The problem of rank similarity
under non-conjointness has received far less attention, with works
inspired by Spearman’s footrule [3, 11], the Hoeffding distance
[30], and even IR metrics [5, 31]. Most notably, Webber et al. [35]
proposed Rank-Biased Overlap (𝑅𝐵𝑂), which has become popular
in IR research for example to compare search engine results [8, 23],
measure topic similarity [1, 19], assess consistency of systems to
query variations [2], or compare rankings of documents in general
[10, 22, 26, 38]. Beyond IR, it is also used for example in RecSys
[7, 34], Network Science [18, 25] and Neuroscience [4, 28].
𝑅𝐵𝑂 is top-weighted, and it handles non-conjointness as well as

incomplete rankings, even of different lengths. Incomplete rank-
ings appear for instance after truncation, because their very top-
weighted nature implies that, after a sufficiently deep rank, what
items appear next is negligible. For example, a search engine may
return only the top 20 documents in response to a query, a recom-
mender may suggest only the top 5 items, and a typical TREC run
consists of only the top 1,000 documents per topic. This means that
rankings may actually consist of a seen part or prefix, and an unseen
part that extends further, potentially up to infinity. Therefore, 𝑅𝐵𝑂
scores have to be computed from a prefix only, ideally accompanied
by some quantification of the uncertainty due to the unseen items.
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Table 1: Summary statistics of the adhoc runs in the last
editions of TRECWeb. Fifty topics were used in all cases.

Runs Rankings Docs Avg. tie
Year Groups Runs with ties with ties tied group size
2009 25 71 90% 88% 22% 19.3
2010 21 56 96% 87% 30% 17.7
2011 14 37 89% 79% 27% 3.6
2012 11 27 63% 63% 20% 2.8
2013 14 34 62% 57% 35% 26.6
2014 10 30 60% 60% 24% 5.1
Avg. 16 43 77% 72% 26% 12.5

Webber et al. [35] showed how to compute upper and lower bounds
for this uncertainty, as well as a point estimate, called 𝑅𝐵𝑂EXT. This
is the score typically reported when using 𝑅𝐵𝑂 .

1.1 The Problem of Tied Items
Rankings may very well contain tied items. For example, systems
with the same 𝑃@10 score, or documents with the same retrieval
score for a query. The latter is a well-known issue in IR research.
For instance, Table 1 presents summary statistics from all the adhoc
runs in TREC Web between 2009 and 2014, showing that 77% of the
runs contained ties in 72% of the rankings, with 26% of the docu-
ments tied in groups of 12.5 documents on average. This begs the
question: how should these documents be ranked when evaluating
effectiveness? Different approaches to this problem, as well as their
impact, have been studied for example by Cabanac et al. [6], Lin
and Yang [17], McSherry and Najork [20], Raghavan et al. [24].

A similar question may be asked about rank similarity measures
such as 𝑅𝐵𝑂 : how should tied items be handled? The first approach
is to break the ties, essentially ignoring them. For example, ties may
be broken at random, but this would introduce noise. Other, rather
arbitrary criteria may be used to break ties, such as by document
ID; this is the approach implemented in trec_eval, but it has its
own issues [6, 17]. For 𝑅𝐵𝑂 specifically, it inflates similarity scores
because tied documents would artificially appear in the same order
in both rankings. We illustrate this in Figure 1 with the 𝑅𝐵𝑂 scores
computed between pairs of the TREC Web runs summarized in
Table 1, as well as synthetic rankings (details are presented in
Section 5). As expected, these tie-breaking strategies generally lead
to different 𝑅𝐵𝑂 scores, but some differences are strikingly large,
specially in the TREC data. Differences are larger than normal
reporting fidelity (i.e. 2 decimal digits) in 10% of the TREC cases,
and 66% of the synthetic ones. In addition, it is clear that breaking
ties by document ID does inflate scores.

The second approach is to explicitly handle the ties, in a prin-
cipled way, in 𝑅𝐵𝑂 itself. Webber et al. [35] followed this line to
motivate a tie-aware variant by assuming that all items tied be-
tween ranks 𝑛 and𝑚 occur at the same rank 𝑛. In essence, they
assumed that tied items really occur at the same rank. This contrasts
with the view typically taken in the Statistics literature, where a
tie represents uncertainty. Specifically, an integral ranking is as-
sumed to exist, with a strict order between all items, and a tie really
represents that it is not known, for whatever reason, which item
goes first. This happens when their underlying scores are the same
within reporting fidelity, or when they represent observations that

Figure 1: Differences in 𝑹𝑩𝑶 (𝒑 = 0.9) when breaking ties by
doc ID or at random, for TREC and synthetic data

are too noisy to discern the actual order. In essence, a tie here rep-
resents a loss of information. This notion of ties for rank similarity
dates back to more than a century ago, to the work of Student [29]
for adapting Spearman’s 𝜌 to handle ties. It was later popularized,
most notably by Kendall [13, 14], when similarly adapting his 𝜏
coefficient, which resulted in two tie-aware variants: 𝜏𝑎 and 𝜏𝑏 .

The 𝑎-variant was proposed for cases where one ranking rep-
resents a reference and the goal is to compute the accuracy of the
other ranking with respect to this reference. To this end, 𝜏𝑎 was
precisely defined as the expected value of 𝜏 when breaking ties at
random. The 𝑏-variant was proposed for cases where there is no
reference and one wants to calculate the agreement between the
two rankings. To this end, 𝜏𝑏 corrects the measured similarity by
the amount of information lost due to ties. Vigna [33] followed the
second approach to define his 𝜏𝑤 coefficient, albeit without explicit
mention of it. More recently, Urbano and Marrero [32] followed
both approaches to define tie-aware variants of Yilmaz et al.’s 𝜏𝑎𝑝 .

1.2 Contributions
Webber et al. [35] tackled the issue of ties in 𝑅𝐵𝑂 only in passing: as
will be detailed in Sections 3.2 and 4, it is unclear how to calculate
𝑅𝐵𝑂EXT and its bounds when dealing with ties. This is very well
illustrated by one of the popular implementations available online,1
where authors argue that the equations in [35] need modifications
in order to handle ties, but it turns out that these modifications
make the results incorrect when rankings do not have ties.

In this paper we deal with the problem of explicitly treating ties
in Rank-Biased Overlap. Specifically:

(1) We show how to compute both 𝑎- and 𝑏-variants of 𝑅𝐵𝑂 .
(2) We develop a formulation for 𝑅𝐵𝑂 that generalizes all three

variants and allows us to derive the point estimate 𝑅𝐵𝑂EXT
and the bounds (i.e., 𝑅𝐵𝑂MIN, 𝑅𝐵𝑂MAX and thus 𝑅𝐵𝑂RES).

(3) Using both TREC data and synthetic data we illustrate the
differences among variants, as well as the importance of
following a principled approach to deal with ties, as opposed
to arbitrarily breaking them and computing bare 𝑅𝐵𝑂 .

(4) We provide a full implementation of all coefficients,2 as well
as guidelines for when to use each (see Section 6).

In summary, we contribute the theoretical underpinnings for a
principled treatment of ties in 𝑅𝐵𝑂 , providing complete formula-
tions and implementations of three variants that align with different
notions of ties, namely 𝑅𝐵𝑂𝑤 , 𝑅𝐵𝑂𝑎 and 𝑅𝐵𝑂𝑏 .

1https://github.com/dlukes/rbo
2https://github.com/julian-urbano/sigir2024-rbo
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Table 2: Summary of notation. See Figure 2 for examples.

𝑆, 𝐿 Rankings of lengths 𝑠 and 𝑙 , where 𝑠 ≤ 𝑙 .
𝑆𝑑 , 𝑆

−1
𝑒 Item at rank 𝑑 and rank of item 𝑒 , in 𝑆 .

𝑆𝑛:𝑚 Set of items from rank 𝑛 to𝑚 in 𝑆 .
Ω = {𝑆 ∪ 𝐿} Set of all items seen in 𝑆 or 𝐿.
𝑑 Evaluation depth for computing agreement.
𝑋𝑑 , 𝐴𝑑 Overlap and agreement at depth 𝑑 .
𝑝 Persistence parameter of 𝑅𝐵𝑂 .
𝑡𝑒,𝑆 , 𝑏𝑒,𝑆 Top and bottom ranks of 𝑒’s tie group in 𝑆 .
𝑐𝑒,𝑆 |𝑑 Contribution of item 𝑒 in 𝑆 given depth 𝑑 .
Inactive item One that is surely below 𝑑 (i.e. 𝑑 < 𝑡𝑒 ).
Active item One that is surely above 𝑑 (i.e. 𝑏𝑒 ≤ 𝑑).
Crossing group One that is crossed by 𝑑 (i.e. 𝑡𝑒 ≤ 𝑑 < 𝑏𝑒 ).

2 RANK-BIASED OVERLAP
Throughout the paper we will use the notation in Table 2 and the
example in Figure 2. In particular, let 𝑆 and 𝐿 be two indefinite
rankings of lengths 𝑠 and 𝑙 , where 𝑆 is generally shorter than 𝐿.
Webber et al. [35] defined their overlap, up to a depth 𝑑 , as the
number of items that are in common between the two rankings:

𝑋𝑆,𝐿,𝑑 = |𝑆:𝑑 ∩ 𝐿:𝑑 | , (1)

where 𝑆:𝑑 = {𝑒 : 𝑆−1𝑒 ≤ 𝑑} represents the set of items in 𝑆 that are
ranked at or above the evaluation depth 𝑑 ; throughout the paper
we refer to these items as active in 𝑆 given 𝑑 . The proportion of
active items that overlap is called the agreement:

𝐴𝑆,𝐿,𝑑 =
𝑋𝑆,𝐿,𝑑

𝑑
. (2)

In the example from Figure 2, only item a overlaps at depth 3 and
thus 𝐴3 = 1/3. The Rank-Biased Overlap is then defined as the
infinite and weighted sum of the agreements at all depths:

𝑅𝐵𝑂𝑆,𝐿,𝑝 =
1 − 𝑝
𝑝

∑︁∞
𝑑=1

𝐴𝑆,𝐿,𝑑 · 𝑝𝑑 , (3)

where 𝑝𝑑 is the weight given to the agreement at depth 𝑑 , and the
(1 − 𝑝)/𝑝 term ensures that 𝑅𝐵𝑂 is bounded in the range [0, 1].
Fully disjoint rankings result in 𝑅𝐵𝑂 = 0, while identical rankings
result in 𝑅𝐵𝑂 = 1. This is because agreement would be 0 and 1,
respectively, at all depths.

The parameter 𝑝 is called persistence, and it determines how
steep the decline in weights is: a small 𝑝 places a very high weight
at the top of the ranking compared to the bottom, while a large 𝑝
flattens the decay so that the weight of deep items is not as small
compared to those at the top. For a full account on the properties
of 𝑅𝐵𝑂 , such as metricity, the reader is referred to [35].

3 TIES IN RANK-BIASED OVERLAP
As discussed in Section 1.1, the original view on ties by Webber
et al. [35] is that tied items occur at the same rank, while the view
traditionally taken in the Statistics literature is that a tie represents
uncertainty as to which item goes first, that is, a loss of information.
In the subsequent subsections we first describe Webber et al.’s
approach, which we call𝑤-variant, and then fully develop both the
𝑎- and 𝑏-variants.

Figure 2: Main example used throughout the paper. Colored
letters represent tied items, and square brackets represent tie
groups. The grayed-out sections illustrate the arrangement of
items that would maximize 𝑹𝑩𝑶MAX. Exemplifying notation
in Table 2: 𝒍 = 13, 𝒔 = 7, 𝑳6 = e, 𝑺−1b = 2, 𝒕g,𝑳 = 𝒕h,𝑳 = 𝒕f,𝑳 = 7,
and 𝒃e,𝑺 = 𝒃c,𝑺 = 𝒃d,𝑺 = 6.

3.1 𝒘-variant: 𝑹𝑩𝑶𝒘

Webber et al. [35] assumed that all items tied in a group occur at
the same rank, namely the top rank of the group. Rankings where
tied items are assigned ranks in this way are typically known as
sports rankings.3 In essence, they assumed that items that are tied
really occur at the same rank.

From this point of view, when considering a group crossed by
the evaluation depth 𝑑 , all its items will be active because they are
assumed to occur at the top of the group, that is, 𝑆−1𝑒 = 𝑡𝑒,𝑆 . Thus,
under the sports ranking assumption, 𝑆:𝑑 may contain more than 𝑑
items, in particular all items that are either above the depth or tied
with it. Webber et al. then modified the definition of agreement as:

𝐴𝑤
𝑆,𝐿,𝑑

=
2 · 𝑋𝑆,𝐿,𝑑
|𝑆:𝑑 | + |𝐿:𝑑 |

. (4)

In the example from Figure 2, 𝑆:5 includes item d because it belongs
to a crossing group, which happens to increase overlap because it
is also found in 𝐿:5. The denominator is thus 11.

This new definition of agreement may just be plugged into Eq. (3)
to calculate a tie-aware variant of 𝑅𝐵𝑂 under the assumption of
sports rankings. We will refer to this variant as 𝑅𝐵𝑂𝑤 . Note that in
the absence of ties 𝐴𝑤 reduces to 𝐴, so 𝑅𝐵𝑂𝑤 = 𝑅𝐵𝑂 as expected.

At this point we hint at the gap in the work of Webber et al.
[35]. Indeed, 𝐴𝑤 can be directly used for computing the full 𝑅𝐵𝑂
score on infinite rankings, but it remains unclear how to use it
when computing 𝑅𝐵𝑂 from prefix evaluation (i.e. how to compute
𝑅𝐵𝑂𝑤EXT and its bounds). This is because the relevant equations in
their work, as well as their rationale, are always expressed in terms
of overlap divided by a constant equal to the evaluation depth
𝑑 , not in terms of agreement. The tie-aware 𝐴𝑤 in Eq. (4) has a
different functional form altogether, so one can not simply use their
equations to compute 𝑅𝐵𝑂𝑤 . This will become more evident next,
when we introduce the 𝑎- and 𝑏-variants, as well as in Section 4
when we actually deal with prefix evaluation.

3.2 𝒂-variant: 𝑹𝑩𝑶𝒂

For the problem of rank correlation, the first way of handling ties
under the semantics of uncertainty asked this question: what is
the average correlation across all possible permutations of the ties?
This interpretation was followed by Woodbury [36] to define a
tie-aware variant of Spearman’s 𝜌 , later by Kendall [13] to define
his 𝜏𝑎 , and recently by Urbano and Marrero [32] to formulate a
tie-aware variant of Yilmaz et al.’s 𝜏𝑎𝑝 , namely 𝜏𝑎𝑝,𝑎 .

3For example, two athletes tied at position 2 share the same rank 2. The next athlete
would be at position 4, so that rank 3 is simply unassigned.
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In the same spirit, we ask this question: what is the average
agreement among all possible permutations of the ties? This is:

𝐴𝑎
𝑆,𝐿,𝑑

=
1

|P𝑆 | |P𝐿 |
∑︁
𝑆∈P𝑆

∑︁
�̃�∈P𝐿

𝑋
𝑆,�̃�,𝑑

𝑑
, (5)

where 𝑆 refers to a single permutation of the tied items in 𝑆 , and
P𝑆 refers to all possible such permuted rankings.4 In our example,
the number of permutations are 288 and 6 for 𝐿 and 𝑆 , respectively.
Note that the overlap is still defined as in Eq. (1), only that it is
computed between permuted rankings instead of the originals.

Computing Eq. (5) by enumerating all possible permutations
would be extremely expensive because the number of permutations
grows factorially with the number of ties. In order to derive a
simple expression that does not require enumeration, we begin by
reformulating overlap as follows: instead of calculating the size of
the intersection between the items active at depth 𝑑 , we will count
the number of items that are active in both rankings:

𝑋𝑆,𝐿,𝑑 =
∑︁
𝑒∈Ω
I
[
{𝑆−1𝑒 ≤ 𝑑 ∧ 𝐿−1𝑒 ≤ 𝑑}

]
=

∑︁
𝑒∈Ω
I
[
{𝑆−1𝑒 ≤ 𝑑}

]
· I

[
{𝐿−1𝑒 ≤ 𝑑}

]
, (6)

where Ω = {𝑆 ∪ 𝐿} is the set of all items, and I is the Iverson
bracket (i.e. I[𝑃]=1 if 𝑃 is true, 0 otherwise). As expected, an item
will contribute to overlap only if it appears at or above 𝑑 in both
rankings. In our example, the summand for item b is 1 ·0 at 𝑑 =3 (i.e.
does not overlap), whereas for item a it is 1 · 1 (i.e. it does overlap).

We can now plug the overlap between two permutations, as
defined in Eq. (6), into the agreement averaged across permutations
in Eq. (5). After minor rearranging, we obtain:

𝐴𝑎
𝑆,𝐿,𝑑

=
1
𝑑

∑︁
𝑒∈Ω

∑︁
𝑆∈P𝑆

I
[
{𝑆−1𝑒 ≤ 𝑑}

]
|P𝑆 |

∑︁
�̃�∈P𝐿

I
[
{�̃�−1𝑒 ≤ 𝑑}

]
|P𝐿 |

. (7)

Note that the last two summations represent, respectively, the frac-
tion of permutations of 𝑆 and 𝐿 where the item 𝑒 is active. There
are three possibilities for an arbitrary item and ranking:

(1) Inactive: an item or group that is entirely below the evalua-
tion depth 𝑑 (i.e. 𝑑 < 𝑡𝑒 ) will remain below in all permuta-
tions and will never contribute to overlap. In our example,
items e, c, d and n are inactive in 𝑆 at 𝑑 = 3.

(2) Active: an item or group that is entirely at or above the
evaluation depth 𝑑 (i.e. 𝑏𝑒 ≤ 𝑑) will remain above in all
permutations andwill always be able to contribute to overlap.
In our example, items a, d, i, m and c are active in 𝐿 at 𝑑 = 5.

(3) Crossing: an item within a crossing group (i.e. 𝑡𝑒 ≤𝑑 < 𝑏𝑒 )
will be able to contribute to overlap in as many permutations
as it is placed at or above𝑑 . The itemwill appear in position 𝑡𝑒
a total of (𝑏𝑒 − 𝑡𝑒 )! times, at position 𝑡𝑒 +1 another (𝑏𝑒 − 𝑡𝑒 )!
times, and so on. Only (𝑑 − 𝑡𝑒 + 1) positions will make the
item active, which happens in (𝑑 − 𝑡𝑒 + 1) · (𝑏𝑒 − 𝑡𝑒 )! permu-
tations. Because there are a total of (𝑏𝑒 − 𝑡𝑒 + 1)! permuta-
tions of the group, the item’s total contribution to overlap
is (𝑑 − 𝑡𝑒 + 1) /(𝑏𝑒 − 𝑡𝑒 + 1). In our example, item e in 𝑆 ap-
pears at each of ranks 4, 5 and 6 in 1/3 of the permutations.

4For instance, the possible permutations of ranking ⟨A [B C][D E] F⟩ are
⟨A B C D E F⟩, ⟨A B C E D F⟩, ⟨A C B D E F⟩ and ⟨A C B E D F⟩.

At depth 5 there are two slots available for the items in the
crossing group (i.e. 4 and 5), so each of its items will have a
contribution of 2/3.

At a given depth 𝑑 , we can therefore define the total contribution
of an item 𝑒 across permutations as:

𝑐𝑒 |𝑑 =


0 𝑑 < 𝑡𝑒 (inactive)
1 𝑏𝑒 ≤ 𝑑 (active)
𝑑−𝑡𝑒+1
𝑏𝑒−𝑡𝑒+1 otherwise (crossing)

. (8)

In doing so, we are implicitly assuming that the first unseen item
is not tied with the last one seen, as otherwise it should have been
seen in the prefix. In the example, b is assumed to not be tied with
the last tie group in 𝐿, so that 𝑐𝐿 |𝑑 can be computed from the prefix
only. The contribution of item c in 𝑆 would be 0 for depths 1 to 3,
1/3 and 2/3 for depths 4 and 5, and 1 for depths 6 and beyond.

Back in Eq. (7), we can now replace each of the last two summa-
tions with the corresponding contributions of 𝑒 in 𝑆 and 𝐿, avoiding
the need for enumerating all permutations. All together, a simple
and efficient formulation of the agreement for 𝑅𝐵𝑂𝑎 is:

𝐴𝑎
𝑆,𝐿,𝑑

=
1
𝑑

∑︁
𝑒∈Ω

𝑐𝑒,𝑆 |𝑑 · 𝑐𝑒,𝐿 |𝑑 . (9)

In the absence of ties, note that only the first two cases apply in
Eq. (8), which means that𝐴𝑎 reduces to𝐴 because Eq. (6) reduces to
Eq. (1), so that 𝑅𝐵𝑂𝑎 =𝑅𝐵𝑂 . Also note that, by construction, 𝑅𝐵𝑂𝑎

gives the right answer to the naive approach of computing bare
𝑅𝐵𝑂 after breaking ties at random, eliminating unnecessary noise.
In addition, note that Eq. (9) can be computed efficiently because
the summation does not need to enumerate all items in Ω, but only
those that are active or crossing in both rankings, that is, those
where 𝑐𝑒,𝑆 |𝑑 > 0 and 𝑐𝑒,𝐿 |𝑑 > 0.

3.3 𝒃-variant: 𝑹𝑩𝑶𝒃

Still under the semantics of uncertainty, the principle for this variant
is that it should account for the amount of information actually
available to measure overlap. Because a tie represents uncertainty
with respect to the actual rank of items, they can not contribute fully
to the measured overlap. This inability to fully contribute should
be reflected in the normalization term (i.e. the denominator in the
agreement function). This leads to the idea of measurable overlap
in a ranking, or “untiedness” as called by Vigna [33]. Whilst the
𝑎-variant always expects a full measurable overlap of 𝑑 regardless
of the presence of ties, the 𝑏-variant should not.

This principle to handle ties was first followed by Student [29]
to propose a 𝑏-variant of Spearman’s 𝜌 , later by Kendall [13] to
define his 𝜏𝑏 , and recently by Vigna [33] and Urbano and Marrero
[32]. In order to define a 𝑏-variant of the agreement for 𝑅𝐵𝑂 , we
thus draw inspiration from Kendall’s 𝜏𝑏 which, for two arbitrary
(conjoint) rankings 𝑈 and 𝑉 is:

𝜏𝑏 (𝑈 ,𝑉 ) =
∑
𝑖< 𝑗 sign(𝑢 𝑗 − 𝑢𝑖 ) · sign(𝑣 𝑗 − 𝑣𝑖 )√︃∑

𝑖< 𝑗 sign(𝑢 𝑗 − 𝑢𝑖 )2
√︃∑

𝑖< 𝑗 sign(𝑣 𝑗 − 𝑣𝑖 )2
, (10)

where the numerator quantifies actual, observed concordance be-
tween the rankings, and the denominator quantifies their measur-
able concordance. From this equation we can recognize how an
item pair (𝑖, 𝑗) affects 𝜏𝑏 when it is tied: because the tie represents
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Figure 3: Sample rankings that would lead to unexpected
𝑹𝑩𝑶 scores with strops rankings. Colored letters represent
tied items, and square brackets represent tie groups.

uncertainty, it does not contribute to the numerator in a positive
or negative direction. As for the denominator:

(1) If the item pair is tied in both rankings, it does not contribute
to the denominator either. In this case, the item pair is es-
sentially ignored because it does not bear any information
about measurable concordance. As such, 𝜏𝑏 can still be 1 if
both rankings tie exactly the same items.

(2) If the item pair is tied in only one ranking, it will still con-
tribute to the denominator on behalf of the other ranking.
In this case, the item pair is not completely ignored because
it still contributes to the measurable concordance. As such,
𝜏𝑏 can not reach 1 any more.

Applying the same rationale to 𝑅𝐵𝑂 ’s agreement, we recognize
that tied items should be inactive until the evaluation depth reaches
the bottom rank of the group. This is because, until then, their
actual ranks are unknown and it should therefore not be possible
for them to contribute to overlap at earlier depths. In our example,
at depth 5 we can not know which items are actually at ranks 4 and
5 in 𝑆 ; it could be any two of e, c and d. Thus, only items f, b and a
can contribute to overlap. In contrast, both m and c can contribute
in 𝐿 because their group is entirely active already at depth 5.

Items in a crossing group should therefore not contribute to the
numerator. As for the denominator:

(1) If both rankings have crossing groups at the same ranks,
the amount of untiedness is the same in both, say 𝑛 (in
the example, 𝑛 = 3 at depth 4). Therefore, the measurable
overlap is at most 𝑛. As such, agreement can still reach 1
if both rankings tie exactly the same ranks, regardless of
which items they tie.

(2) If the rankings do not have crossing groups at the same ranks,
the amount of active items they contribute to the measurable
overlap is different (in the example, 6 from 𝐿 and 7 from 𝑆 at
depth 7). As such, agreement can not reach 1 any more.

Dealing with ties in this way, we can recognize an approach some-
what opposite to that of 𝐴𝑤 . Indeed, while the 𝑤-variant assigns
to tied items the top rank of their group (i.e. 𝑆−1𝑒 = 𝑡𝑒,𝑆 ), here we
assign them the bottom rank instead (i.e. 𝑆−1𝑒 = 𝑏𝑒,𝑆 ). By analogy,
let us refer to the resulting ranking with the anadrome “strops”
ranking, to clearly reflect the reverse of “sports” ranking.

Unfortunately, a naive application of the strops ranking would
lead to unexpected 𝑅𝐵𝑂 results, as illustrated in Figure 3:

• 𝑅 vs𝑊 : the rankings only have the top item in common,
so we should intuitively expect an 𝑅𝐵𝑂 score close to 0.
However, agreement is 1 at every depth except at the end,
where it becomes nearly 0 because all items would contribute

to measurable overlap while the actual overlap remains as 1.
The final 𝑅𝐵𝑂 would thus be close to 1 instead of close to 0.

• 𝑅 vs 𝑇 : the top item is different but all the tied items are the
same, so we should intuitively expect and 𝑅𝐵𝑂 score close to
1. However, agreement is 0 at every depth except at the end,
where it becomes nearly 1. The final 𝑅𝐵𝑂 would therefore
be close to 0 instead of close to 1.

• 𝑃 vs𝑄 : the top items are tied in both rankings, which means
that at the earliest depths there is no actual overlap, but no
measurable overlap either. This would naturally lead to an
undefined agreement at those depths, ultimately resulting
in an undefined 𝑅𝐵𝑂 .

From these examples, we can make two observations:
• O1: we need to “look inside” the tie groups to distinguish
between simply tying the same items (e.g. 𝑅 vs 𝑇 ) and tying
different items altogether (e.g. 𝑅 vs𝑊 ).

• O2: the measurable overlap should always be non-zero to
guarantee that agreement is always defined (e.g. 𝑃 vs 𝑄).

Note that O1 is also required if we want to ensure that the 𝑅𝐵𝑂
of a ranking with itself is always 1 regardless of the ties. On the
other hand, O2 contrasts with Kendall’s 𝜏𝑏 because it is undefined
if one ranking is fully tied, reflecting the absence of information to
measure concordance in the first place. But for 𝑅𝐵𝑂 this can not be
the case because at least at the very end of the rankings there is no
more uncertainty due to ties, so all items are active and contribute
to measurable overlap.

In the path towards a solution, we recognize in the actual concor-
dance of 𝜏𝑏 (i.e. the numerator in Eq. (10)) a similar structure to that
of 𝑅𝐵𝑂 ’s actual overlap in Eq. (6): they are both defined as the accu-
mulation of the product of two individual contribution terms, one
from each ranking. To define these individual contribution terms,
we note that observation O1 above told us to “look inside” the tie
groups so that their items have a chance to contribute to actual over-
lap. This is precisely what we achieved in Eq. (8) when formulating
𝐴𝑎 , so if we similarly define actual overlap as

∑
𝑒∈Ω 𝑐𝑒,𝑆 |𝑑 · 𝑐𝑒,𝐿 |𝑑 ,

then by analogy to Kendall’s 𝜏𝑏 we can define the measurable over-
lap of a single ranking as

√︃∑
𝑒∈Ω 𝑐

2
𝑒 |𝑑 . Finally, we note that 𝑐𝑒 |𝑑

is always non-zero for every item in Ω, which ensures a non-zero
measurable overlap as required by observation O2 above.

All this considered, we propose the following formulation of
agreement for 𝑅𝐵𝑂𝑏 :

𝐴𝑏
𝑆,𝐿,𝑑

=

∑
𝑒∈Ω 𝑐𝑒,𝑆 |𝑑 · 𝑐𝑒,𝐿 |𝑑√︃∑

𝑒∈Ω 𝑐
2
𝑒,𝑆 |𝑑

√︃∑
𝑒∈Ω 𝑐

2
𝑒,𝐿 |𝑑

, (11)

which is bounded between 0 and 1 due to the Cauchy–Schwarz
inequality. In the absence of ties, note again that only the first two
cases apply in Eq. (8) and the denominator equals 𝑑 , which means
that 𝐴𝑏 reduces to 𝐴 and therefore 𝑅𝐵𝑂𝑏 = 𝑅𝐵𝑂 .

Note that 𝐴𝑏 and 𝐴𝑎 measure actual overlap at the numerator in
the same way, but differ in the measurable overlap at the denomina-
tor. In our main example, 𝐴𝑎4 has a measurable overlap of 4, while
for 𝐴𝑏4 ranking 𝑆 contributes

√︁
3 + 1/3 and ranking 𝐿 contributes√︁

3 + 1/2. As a side product then, 𝐴𝑎 is always less than or equal to
𝐴𝑏 . This relation between the 𝑎- and 𝑏-variants is a result of how
Kendall [13] connected the work of Student [29] and Woodbury
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[36] for his definitions of 𝜏𝑎 and 𝜏𝑏 . The numerator is the same,
nicely representing the expected amount of concordance across all
permutations of the tied items, but the denominators then differ
in whether they correct for untiedness or not. This is exactly the
relation we have between 𝐴𝑎 and 𝐴𝑏 , and by extension between
𝑅𝐵𝑂𝑎 and 𝑅𝐵𝑂𝑏 .

4 PREFIX EVALUATIONWITH TIES
As presented in Eq. (3), 𝑅𝐵𝑂 is defined on infinite rankings, but
they are usually truncated, as mentioned in Section 1. This means
that rankings actually consist of a seen part or prefix, and an un-
seen part that extends up to infinity. Therefore, 𝑅𝐵𝑂 scores have
to be computed from a prefix only, ideally accompanied by some
quantification of the uncertainty due to the unseen items. Webber
et al. [35] presented the rationale and equations to compute up-
per and lower bounds on 𝑅𝐵𝑂 . For the lower bound 𝑅𝐵𝑂MIN, it is
assumed that all items in the unseen parts are disjoint, thus mini-
mizing the agreement. For the upper bound 𝑅𝐵𝑂MAX, it is assumed
that every item in the unseen part of one ranking matches an item
in the other one, thus maximizing the agreement. The difference,
𝑅𝐵𝑂RES = 𝑅𝐵𝑂MAX −𝑅𝐵𝑂MIN, directly quantifies the magnitude of
the residual. Lastly, they also introduced a point estimate named
𝑅𝐵𝑂EXT, calculated by extrapolating the agreement measured in
the prefixes, assuming the same agreement would be observed
throughout the unseen parts.

However, as mentioned already in Section 3.1, the relevant equa-
tions they present (i.e. (11), (30) and (32)), as well as the rationale
behind them, are always expressed in terms of overlap, not in terms
of agreement. It is clear already with their 𝐴𝑤 in Eq. (4) that a def-
inition for agreement may have, not only a custom denominator
other than simply 𝑑 , but a different functional form altogether. This
is now even more evident from𝐴𝑎 in Eq. (9) and𝐴𝑏 in Eq. (11). As a
consequence, their equations can not be used for prefix evaluation
of 𝑅𝐵𝑂 in the presence of ties and, as will be shown in Section 4.1,
the rationales behind 𝑅𝐵𝑂MAX and 𝑅𝐵𝑂EXT are actually a bit more
involved than it seemed with bare 𝑅𝐵𝑂 and no ties.

In order to fill this gap and derive a general formulation for 𝑅𝐵𝑂
and prefix evaluation, we first rewrite the full 𝑅𝐵𝑂 from Eq. (3) by
explicitly separating three sections: 1) from depth 1 up to 𝑠 , where
both rankings are seen, 2) from 𝑠 + 1 up to 𝑙 , where only 𝐿 is seen,
and 3) from 𝑙 + 1 up to infinity, where both rankings are unseen:

𝑅𝐵𝑂𝑆,𝐿,𝑝 =
1 − 𝑝
𝑝

(
𝑠∑︁

𝑑=1
𝐴𝑑𝑝

𝑑

︸     ︷︷     ︸
1

+
𝑙∑︁

𝑑=𝑠+1
𝐴𝑑𝑝

𝑑

︸       ︷︷       ︸
2

+
∞∑︁

𝑑=𝑙+1
𝐴𝑑𝑝

𝑑

︸       ︷︷       ︸
3

)
. (12)

For simplicity, in the remainder of the paper we will use exclu-
sively the formulations that compute overlap based on the products
of individual contributions, such as in Eq. (6) and Eq. (9). Note that
the𝑤-variant can be easily expressed in this way, for example as:

𝐴𝑤
𝑆,𝐿,𝑑

=
2 · ∑𝑒∈Ω 𝑐𝑒,𝑆 |𝑑 · 𝑐𝑒,𝐿 |𝑑∑
𝑒∈Ω 𝑐𝑒,𝑆 |𝑑 + ∑

𝑒∈Ω 𝑐𝑒,𝐿 |𝑑
, (13)

where 𝑐𝑒,𝑆 |𝑑 = I
[
𝑡𝑒,𝑆 ≤ 𝑑

]
, and likewise for 𝑐𝑒,𝐿 |𝑑 .

Note that agreement can be readily measured in the first section
because both rankings are seen, but for the second section we need

tomake an assumption about the unseen items in 𝑆 and their overlap
with 𝐿. Likewise, in the third section we need an assumption about
unseen items in both 𝑆 and 𝐿. What assumptions are made, depends
on whether we compute 𝑅𝐵𝑂MIN, 𝑅𝐵𝑂MAX or 𝑅𝐵𝑂EXT.

In addition, we assume there are no ties in the unseen parts.
This is necessary for the𝑤-variant because prior information about
conjointness would otherwise be needed to compute bounds. In-
deed, tying all the unseen items when rankings are mostly conjoint
would maximize 𝑅𝐵𝑂𝑤 because they would contribute to both the
numerator and denominator in Eq. (4) at earlier depths. On the
other hand, tying all unseen items in a mostly non-conjoint case
would actually minimize 𝑅𝐵𝑂𝑤 because they would only contribute
to the denominator. For the 𝑎- and 𝑏-variants, it just makes sense
to assume no ties, as they assume the existence of fully untied rank-
ings in the first place; recall that in these variants a tie just reflects
an inability to distinguish items that are too close together.

4.1 Second Section: from 𝒔 + 1 to 𝒍
The agreement in this second section depends on how the unseen
items in 𝑆 are assumed to overlap with 𝐿, and how the agreement
function combines this unseen overlap with both the seen and
measurable overlaps, which ultimately depends on the tie-variant.

Let us define this assumed overlap �̃�𝑑 by separating two compo-
nents: one measuring the actual overlap among the seen items, and
another one incorporating the assumed contribution of the unseen
items in 𝑆 :

�̃�𝑑 =
∑︁

𝑒∈Ω 𝑐𝑒,𝑆 |𝑑 · 𝑐𝑒,𝐿 |𝑑︸                    ︷︷                    ︸
seen

+
∑︁𝑑

𝑘=𝑠+1 𝑐𝑘,𝑆 |𝑑 · 𝑐𝑘,𝐿 |𝑑︸                       ︷︷                       ︸
unseen

. (14)

Note that the first summation is simply the regular overlap, and
that an item that only appears in 𝐿 will not contribute here because
its 𝑐𝑆 |𝑑 is 0. These unmatched items from 𝐿 are the ones that have
a chance to overlap with the 𝑑 − 𝑠 unseen items in 𝑆 through the
second summation. For each of those unseen items in 𝑆 we assume a
contribution 𝑐𝑘,𝑆 |𝑑 , and a corresponding non-constant contribution
𝑐𝑘,𝐿 |𝑑 that depends on what item is actually matched in 𝐿. This
is the point where the derivations by Webber et al. [35] are not
sufficiently general to accommodate ties, because when an item in 𝐿
is matched in the unseen part of 𝑆 , they give it a unitary contribution
to overlap, which is not necessarily correct in the presence of ties
and fractional contributions.

In order to compute agreement in each of the three variants, we
need to combine the assumed overlap in Eq. (14) with the measur-
able overlap. In this respect, we note that the measurable overlap
contributed by 𝑆 is always equal to 𝑑 because unseen items are
assumed to be untied. The second summation in Eq. (12) becomes:(

𝑙∑︁
𝑑=𝑠+1

𝐴𝑑𝑝
𝑑

)𝑤
=

𝑙∑︁
𝑑=𝑠+1

2 · �̃�𝑑
𝑑 + |𝐿:𝑑 |

𝑝𝑑 , (15)(
𝑙∑︁

𝑑=𝑠+1
𝐴𝑑𝑝

𝑑

)𝑎
=

𝑙∑︁
𝑑=𝑠+1

�̃�𝑑

𝑑
𝑝𝑑 , and (16)

(
𝑙∑︁

𝑑=𝑠+1
𝐴𝑑𝑝

𝑑

)𝑏
=

𝑙∑︁
𝑑=𝑠+1

�̃�𝑑√
𝑑
√︃∑

𝑒∈Ω 𝑐
2
𝑒,𝐿 |𝑑

𝑝𝑑 . (17)
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4.1.1 𝑅𝐵𝑂MIN. For the lower bound it is assumed that all unseen
items are disjoint. This means that their individual contributions
are 0, so they do not contribute to the unseen overlap in any way:5(

𝑐𝑘,𝑆 |𝑑
)
MIN = 0 ,

(
𝑐𝑘,𝐿 |𝑑

)
MIN = 0 . (18)

4.1.2 𝑅𝐵𝑂MAX. Every unseen item in 𝑆 has a unitary contribution
because it is untied and it matches an item in 𝐿. However, the
corresponding contribution in 𝐿 must take into account the order
of the unmatched items. Indeed, 𝑅𝐵𝑂 is maximized when the 𝑘-th
unseen item at rank 𝑠 + 𝑘 matches the 𝑘-th still unmatched item
in 𝐿. These are the grayed-out items in Figure 2. For instance, m is
the item that maximizes agreement at depth 9, with a contribution
𝑐𝐿 |𝑑 = 1. Note that the item maximizing agreement at depth 12
can be any of j, k, o and q, for they are in a crossing group at that
depth. In the𝑤-variant they would have an individual contribution
𝑐𝐿 |𝑑 = 1, or 𝑐𝐿 |𝑑 = 3/4 in the 𝑎- and 𝑏-variants.

We therefore need to know the sequence of items unique to 𝐿 that
are potentially active, and arranged in the same order; let us refer
to these as𝑈𝑑 = ⟨𝑢𝑖 : 𝑐𝑢𝑖 ,𝐿 |𝑑 > 0∧𝑐𝑢𝑖 ,𝑆 |𝑑 = 0∧𝑐𝑢𝑖 ,𝐿 |𝑑 ≥ 𝑐𝑢𝑖+1,𝐿 |𝑑 ⟩.
The individual contributions to the unseen overlap are therefore:(

𝑐𝑘,𝑆 |𝑑
)
MAX = 1 ,

(
𝑐𝑘,𝐿 |𝑑

)
MAX = 𝑐𝑢𝑘 ,𝐿 |𝑑 . (19)

In the absence of ties, note that all 𝑐𝑘,𝐿 |𝑑 are equal to 1.

4.1.3 𝑅𝐵𝑂EXT. In this case, no specific items are assumed for the
unseen ranks of 𝑆 . Instead, the assumption is about their individual
contributions to unseen overlap. Webber et al. [35] decided to set
these contributions equal to 𝐴𝑠 , albeit the corresponding contri-
bution from ranking 𝐿 was still assumed to be 1. However, and
similarly to the case of 𝑅𝐵𝑂MAX, these contributions are not nec-
essarily 1 when dealing with ties and crossing groups. We take a
slightly different approach and assume that an unseen item in 𝑆
may match, with equal probability, any of the potentially active but
still unmatched items in 𝐿, that is, any of the items in 𝑈𝑑 . We then
ask for the expected value of the joint contribution at rank 𝑘 :

E
[
𝑐𝑆 |𝑑 · 𝑐𝐿 |𝑑

�� 𝑘] = 𝑃 (unmatch | 𝑘) · 0 +
+ 𝑃 (match 𝑢1 | 𝑘) · 1 · 𝑐𝑢1,𝐿 |𝑑 +
+ 𝑃 (match 𝑢2 | 𝑘) · 1 · 𝑐𝑢2,𝐿 |𝑑 + · · · =
= 𝑃 (match | 𝑘) · E

[
𝑐𝐿 |𝑑

��𝑈𝑑 ] , (20)

We note here that 𝑃 (match | 𝑘) is precisely where extrapolation
happens via 𝐴𝑠 ; indeed, agreement can be interpreted as the prob-
ability that an item chosen at random appears in both rankings.
From this view, 𝐴𝑠 is therefore not the assumed contribution of the
unseen item in 𝑆 , which is always 1 because we assume it to be
untied, but rather the probability that it matches something in 𝐿.
Nonetheless, the individual contributions may be defined as follows
to incorporate in Eq. (14):(

𝑐𝑘,𝑆 |𝑑
)
EXT = 𝐴∗

𝑠 ,
(
𝑐𝑘,𝐿 |𝑑

)
EXT =

1
|𝑈𝑑 |

∑︁
𝑒∈𝑈𝑑

𝑐𝑒,𝐿 |𝑑 . (21)

Note that the agreement at 𝑠 depends on what tie-aware variant
is being used, which we indicate with the star ∗. In the absence of
ties, all contributions from 𝐿 are also unitary, which means that all
𝑐𝐿 |𝑑 are ultimately equal to 1, making the total contribution of an
unseen item equal to 𝐴𝑠 , as formulated for bare 𝑅𝐵𝑂 .
5Setting 𝑐𝑘,𝐿 |𝑑 = 0 is arbitrary, but this is irrelevant because 𝑐𝑘,𝑆 |𝑑 must be 0 anyway.

Finally, we must note that the agreement in Eq. (17) is still
bounded by 1. Loosening notation,

∑
𝑐𝑆 |𝑑𝑐𝐿 |𝑑 is bounded by√∑

𝑐2
𝑆 |𝑑

√∑
𝑐2
𝐿 |𝑑 due to the Cauchy–Schwarz inequality. The first

term is itself bounded by
√
𝑘 because 𝐴∗

𝑠 ≤ 1, and the second term
is bounded by

√∑
𝑐2
𝐿 |𝑑 due to Jensen’s inequality.

4.2 Third Section: from 𝒍 + 1 to∞

Regarding the third summation in Eq. (12), we first note that all the
items seen in the prefixes are active at depths 𝑙 and beyond, so the
seen overlap at those depths is independent of the tie variant.

4.2.1 𝑅𝐵𝑂MIN. All unseen items in the third section are assumed
to be disjoint, so the overlap will remain constant and equal to 𝑋𝑙 :( ∞∑︁

𝑑=𝑙+1
𝐴𝑑𝑝

𝑑

)
MIN

=

∞∑︁
𝑑=𝑙+1

𝑋𝑙

𝑑
𝑝𝑑 = 𝑋𝑙

[
ln

(
1

1−𝑝

)
−

𝑙∑︁
𝑑=1

𝑝𝑑

𝑑

]
. (22)

4.2.2 𝑅𝐵𝑂MAX. The 𝑙−𝑠 unseen items in 𝑆 from the second section
are assumed to match an item in 𝐿, so the assumed overlap at depth
𝑙 becomes 𝑋𝑙 + 𝑙 − 𝑠 . After 𝑙 , every unseen item in 𝐿 is assumed to
match an unmatched item in 𝑆 and vice-versa, thus contributing
+2 to the overlap (in our example, this happens at depths 14 and
15). This continues until all the remaining unmatched items are
placed after the prefixes, which happens at depth 𝑓 = 𝑙 + 𝑠 − 𝑋𝑙
(in our example, 𝑓 = 15). After 𝑓 , it is assumed that the same item
would appear in both rankings, thus continuing the full agreement
indefinitely. The third summation for 𝑅𝐵𝑂MAX is therefore split in
two subsections: from 𝑙 + 1 up to 𝑓 , where overlap increases by 2 at
each step, and from 𝑓 + 1 up to∞, where full agreement is assumed:( ∞∑︁

𝑑=𝑙+1
𝐴𝑑𝑝

𝑑

)
MAX

=

𝑓∑︁
𝑑=𝑙+1

2𝑑 − 𝑙 − 𝑠 + 𝑋𝑙
𝑑

𝑝𝑑 +
∞∑︁

𝑑=𝑓 +1
𝑝𝑑

=

𝑓∑︁
𝑑=𝑙+1

2𝑑 − 𝑙 − 𝑠 + 𝑋𝑙
𝑑

𝑝𝑑 + 𝑝 𝑓 +1

1 − 𝑝 . (23)

4.2.3 𝑅𝐵𝑂EXT. Recall that we have to extrapolate the agreement
at 𝑙 to all subsequent depths up to infinity. Because all items are
finally active in this third section, we have that 𝑐𝐿 |𝑑 is always
1. This means that the assumed overlap �̃�𝑙 that we extrapolate
equals 𝑋𝑙 +𝐴∗

𝑠 (𝑙 − 𝑠). In addition, both 𝑆 and 𝐿 have the same full
contribution to measurable overlap at the denominators, which
means that the extrapolated agreement at 𝑙 takes the same form for
all tie-variants:

(
𝑋𝑙 +𝐴∗

𝑠 (𝑙 − 𝑠)
)
/𝑙 . Extrapolating this agreement up

to infinity, we have the third summation for 𝑅𝐵𝑂EXT:( ∞∑︁
𝑑=𝑙+1

𝐴𝑑𝑝
𝑑

)∗
EXT

=

∞∑︁
𝑑=𝑙+1

𝑋𝑙 +𝐴∗
𝑠 (𝑙 − 𝑠)
𝑙

𝑝𝑑

=
𝑋𝑙 +𝐴∗

𝑠 (𝑙 − 𝑠)
𝑙

· 𝑝
𝑙+1

1 − 𝑝 . (24)

In the absence of ties, all these formulations reduce to bare 𝑅𝐵𝑂 .

5 EXPERIMENTAL DEMONSTRATIONS
We now illustrate the use of 𝑅𝐵𝑂 in the presence of ties, empha-
sizing the differences between each of the three tie-aware variants
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a) Ties broken at random in 𝑅𝐵𝑂

b) Ties broken by doc ID in 𝑅𝐵𝑂

Figure 4: Differences between bare 𝑹𝑩𝑶 and each of the three
tie-aware variants. TREC data, 𝒑=0.9.

and bare 𝑅𝐵𝑂 , thus showing the importance of handling ties explic-
itly. Because using 𝑅𝐵𝑂 normally involves the calculation of the
extrapolated score, we focus only on 𝑅𝐵𝑂EXT. Revisiting Section 4,
we see that all variants are essentially the same with respect to the
bounds, where the only difference is the definition of

(
𝑐𝑘,𝐿 |𝑑

)
MAX.

These differences are negligible and make 𝑅𝐵𝑂RES depend mostly
on the evaluation depth, not on the handling of ties.

5.1 TREC Data
A common use case for 𝑅𝐵𝑂 is comparing the document rankings
returned by an experimental system with those of a baseline. From
all adhoc runs in the TREC 2009–2014 Web track (see Table 1), we
compared the rankings between all 255 pairs of runs by the same
group and over the 50 topics, for a grand total of 12,750 pairs of
rankings. Of those, 9,256 contained ties, which are the ones we
report about. The average ranking length was 978 documents, with
a maximum of 1,000. For every pair of rankings, we computed the
tie-unaware 𝑅𝐵𝑂 , breaking ties at random and by doc ID, as well
as 𝑅𝐵𝑂𝑤 , 𝑅𝐵𝑂𝑎 and 𝑅𝐵𝑂𝑏 . The chosen values for 𝑝 were 0.8, 0.9
and 0.95, thus setting the expected number of results compared by
the 𝑝-persistent user to 5, 10 and 20 documents, respectively.

Figure 4 compares all 𝑅𝐵𝑂 scores for 𝑝 = 0.9. All variants are of
course highly correlated, but we can observe some striking differ-
ences. Focusing first on 𝑅𝐵𝑂𝑤 and 𝑅𝐵𝑂𝑏 , we see that they are closer
to bare 𝑅𝐵𝑂 when breaking ties by doc ID. As mentioned earlier,
this is expected because both rankings will have these tied items
artificially sorted in the same order when presented to bare 𝑅𝐵𝑂 ,
inflating the result. On the other hand, 𝑅𝐵𝑂𝑤 and 𝑅𝐵𝑂𝑏 are specif-
ically designed to deal with these items, and if they happen to be
similarly distributed in both rankings they will actually contribute
positively. In contrast, 𝑅𝐵𝑂𝑎 is closer to bare 𝑅𝐵𝑂 when breaking
ties at random. Again, this is expected, as they are by construction
equal on expectation (see Section 3.2). As a consequence, 𝑅𝐵𝑂𝑎 is
generally lower than 𝑅𝐵𝑂 breaking ties by doc ID because these
documents contribute in different directions across permutations.
The key takeaway is that there can be very large differences among

Table 3: Summary of differences between bare 𝑹𝑩𝑶 and each
of the three tie-aware variants. M for medium differences in
(0.01, 0.1], and L for large in (0.1, 1]. TREC data.

a) Ties broken at random in 𝑅𝐵𝑂

|𝑅𝐵𝑂 − 𝑅𝐵𝑂𝑤 | |𝑅𝐵𝑂 − 𝑅𝐵𝑂𝑎 |
��𝑅𝐵𝑂 − 𝑅𝐵𝑂𝑏

��
𝑝 Avg. Max. M L Avg. Max. M L Avg. Max. M L

0.8 0.02 1 8% 5% 0.01 0.43 7% 2% 0.02 1 7% 5%
0.9 0.02 1 9% 4% <.01 0.26 7% 1% 0.02 1 8% 4%
0.95 0.01 1 9% 3% <.01 0.15 6% <1% 0.01 1 8% 3%

b) Ties broken by doc ID in 𝑅𝐵𝑂

|𝑅𝐵𝑂 − 𝑅𝐵𝑂𝑤 | |𝑅𝐵𝑂 − 𝑅𝐵𝑂𝑎 |
��𝑅𝐵𝑂 − 𝑅𝐵𝑂𝑏

��
𝑝 Avg. Max. M L Avg. Max. M L Avg. Max. M L

0.8 0.01 0.60 6% 2% 0.01 1 6% 4% 0.01 0.63 5% 3%
0.9 0.01 0.45 6% 2% 0.01 0.99 8% 2% 0.01 0.48 5% 2%
0.95 <.01 0.31 5% 1% 0.01 0.98 8% 2% 0.01 0.45 5% 2%

variants, so a sensible decision should be made as to which one
should be computed depending on the specific meaning of ties.

Table 3 provides a summary of these differences among variants.
In particular, we can see that, while differences are small on average,
there are very large cases. Overall, the table confirms that 𝑅𝐵𝑂𝑤

and 𝑅𝐵𝑂𝑏 are most different from bare 𝑅𝐵𝑂 when breaking ties
at random, whilst that makes it closer to 𝑅𝐵𝑂𝑎 . Recall here that
the table reports absolute differences; signed differences with 𝑅𝐵𝑂𝑎

are actually 0, as expected. Another way to look at deviations is by
classifying them in large (more than 0.1), medium (between 0.01
and 0.1) or small (less than 0.01), which roughly translates into
differences in the first, second, or third decimal digit of a reported
𝑅𝐵𝑂 score, respectively; the first two are identified as M and L
in Table 3. As can be seen, about 4% of the observed differences
are large, while about 8% are of medium size. This means that the
strategy followed to deal with ties brings a substantial difference
in about 12% of the comparisons between rankings.

While these summary statistics give us a broad idea of the con-
trast between dealing with ties or not, we must note that the largest
differences are mostly found between rankings with an extreme
structure in one or two specific aspects. The first aspect is the
amount of ties: 𝑅𝐵𝑂𝑤 and 𝑅𝐵𝑂𝑏 achieve maximum overlap when
the tie groups are the same in both rankings, and the chance of
this happening increases when all or most items are actually tied
(e.g., 9% of the rankings have at least 90% of their items tied). For
instance, Figure 5-top illustrates the case of bare 𝑅𝐵𝑂 vs 𝑅𝐵𝑂𝑏 ,
faceting by the amount of ties found in the rankings. The most ex-
treme differences indeed appear when most items are tied, although
even with a small number of ties we can observe differences larger
than 0.2. The second aspect is the position of the tied items: it is
not enough to have many ties; they need to appear towards the
top of the ranking in order to have an impact in the score. We may
roughly quantify the potential impact of ties by simply summing
the 𝑝-dependent weight of their ranks:

( ∑
𝑑 I[𝑑 is tied] 𝑝𝑑

)
/∑𝑑 𝑝

𝑑 .
Figure 5-bottom confirms that differences between bare 𝑅𝐵𝑂 and
𝑅𝐵𝑂𝑏 are more pronounced when the potential impact of ties is
large. Therefore, rankings with a moderate number of ties may still
exhibit large variations if those ties appear towards the top.
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Figure 5: Differences between bare 𝑹𝑩𝑶 (ties broken at ran-
dom) and 𝑹𝑩𝑶𝒃 , faceted by the amount of tied items (top)
and by their potential impact (bottom). TREC data, 𝒑=0.9.

In general, Figure 5 shows that the presence of ties does not
immediately lead to a difference with respect to bare 𝑅𝐵𝑂 , as this
ultimately depends on the arrangement of those tied items. What
ties give is room for these variations to be large. In other words,
ties affect mostly the variance between measures, not the bias.

5.2 Synthetic Data
The results from the previous section should not generalize well to
non-IR settings, as they involved quite long rankings, mostly even,
and where the underlying domains (i.e. the document collections)
are several orders of magnitude larger than the rankings, thus
leading to a high degree of non-conjointness. In order to provide
more general results, in this section we consider a synthetic dataset,
generated as follows. Two rankings are generated with a Kendall 𝜏
between 0.5 and 1 over the same 1,000 items. Ties are introduced
at random in each ranking and independent of the other, for a
target tiedness between 10% and 100%, after which it is truncated
to a length between 10 and 100. This was repeated 100,000 times,
resulting in rankings with an average of 55 items, an average length
difference of 30 items, and an average of 54% items tied. In this case,
we only break ties at random when computing bare 𝑅𝐵𝑂 .

Figure 6 similarly compares all 𝑅𝐵𝑂 scores for 𝑝 = 0.9. In clear
contrast with Figure 4, we can first see that there are far fewer
extreme deviations. This is because the simulated dataset does not
contain rankings with such extreme structures as displayed in the
TREC data. In general, we see that 𝑅𝐵𝑂𝑤 , and specially 𝑅𝐵𝑂𝑏 , tend
to produce higher scores than bare 𝑅𝐵𝑂 , because at a given depth
they allow all items in a group to contribute to the final score, not
only those that are active at that depth. On the other hand, 𝑅𝐵𝑂𝑎

calculates the expected 𝑅𝐵𝑂 over permutations of the tied items,
so differences are again nicely distributed around the diagonal.

Even if there are no extreme cases, deviations are generally
larger than observed with the TREC data. As summarized in Table 4,
average deviations are 3 to 4 times larger, but most importantly,
the amount of medium and large deviations is even an order of

Figure 6: Differences between bare 𝑹𝑩𝑶 (ties broken at ran-
dom) and the three tie-aware variants. Synthetic data, 𝒑=0.9.

Table 4: Summary of differences between bare 𝑹𝑩𝑶 and each
of the three tie-aware variants. M for medium differences in
(0.01, 0.1], and L for large in (0.1, 1]. Synthetic data.

|𝑅𝐵𝑂 − 𝑅𝐵𝑂𝑤 | |𝑅𝐵𝑂 − 𝑅𝐵𝑂𝑎 |
��𝑅𝐵𝑂 − 𝑅𝐵𝑂𝑏

��
𝑝 Avg. Max. M L Avg. Max. M L Avg. Max. M L

0.8 0.07 0.76 50% 26% 0.05 0.51 52% 17% 0.08 0.77 46% 31%
0.9 0.04 0.67 64% 10% 0.03 0.34 63% 4% 0.06 0.68 56% 20%
0.95 0.03 0.53 63% 3% 0.02 0.25 56% <.01% 0.04 0.54 62% 8%

magnitude larger. In this case, the strategy followed to deal with
ties brings a substantial difference in about 70% of the comparisons.

6 CONCLUSION AND RECOMMENDATIONS
In this workwe delved into the problem of tied items in Rank-Biased
Overlap. First, we argued that the existing approach is incomplete,
for it is unclear how to apply it to compute 𝑅𝐵𝑂EXT and its bounds.
More importantly, we showed that the notion of ties behind this
approach (i.e. the sports ranking) is very different from the one
traditionally used in the Statistics literature (i.e. uncertainty as to the
actual order), most notably in Kendall’s 𝜏 . We therefore developed
two other variants of 𝑅𝐵𝑂 to accommodate this traditional view on
ties. Through a general formulation for prefix evaluation of 𝑅𝐵𝑂 ,
we also showed how to fully compute all three variants.

Filling this gap, researchers can now make a conscious and sen-
sible decision when dealing with ties. Our recommendations are:

• When a tie represents equality, so that tied items really occur
at the same rank, one should compute 𝑹𝑩𝑶𝒘 .

• When a tie represents uncertainty, so that it is not known
which item appears first:
– Ties should not be broken deterministically, such as by
doc ID, because it inflates 𝑅𝐵𝑂 scores.

– Ties should not be broken at random because it introduces
noise. 𝑹𝑩𝑶𝒂 should be used instead, as it precisely com-
putes the expected 𝑅𝐵𝑂 when breaking ties at random.

– If the measured overlap should be corrected by the amount
of information lost due to ties, 𝑹𝑩𝑶𝒃 should be used. This
ensures 𝑅𝐵𝑂𝑏 (𝑋,𝑋 ) = 1, and implies 𝑅𝐵𝑂𝑎 ≤ 𝑅𝐵𝑂𝑏 .

As future work, we will bound the uncertainty introduced by
ties, similarly to how bounds are used to quantify the uncertainty
due to unseen items.
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