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Preface

Changing lanes on a highway might seem like second nature to most humans: you flip on your indicator,
glance in the mirror, and seamlessly merge into the adjacent lane—right? However, once I decided
to model this “simple” manoeuvre, I quickly realized it was anything but. Over the past year, I have
explored lane change theories and driver interaction models, uncovering the complexity behind what
appears to be an effortless decision. This work results in a computational lane changemodel integrating
high-level decision-making with low-level control actions into a unified model based on communication
and beliefs about other drivers’ intentions. Its validity is assessed against naturalistic driving data, with
all findings detailed in this thesis.

Of course, I did not get here on my own. My sincerest thanks go to my supervisors, Arkady, Marijke,
and Olger, for their critical and clear guidance on the technical aspects of this project. I am especially
grateful to Arkady and Marijke for always showing compassion and mentorship when challenges piled
up. With your guidance, I managed to merge through the traffic and stay on track. I also deeply
appreciate Olger for his insightful discussions and brainstorming sessions, which played an important
role in shaping the ideas in this work.

Last but by no means least, I want to thank my family, friends, and especially my girlfriend, whose
unwavering encouragement and constant belief in me have kept me moving forward. This thesis is a
reflection of the collective support, advice, and encouragement from everyone who believed in me. I
am truly thankful for each and every one of you who helped me reach this milestone.

K. de Roodt
Delft, February 2025
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Modelling Human Driver Behaviour in Highway Lane Change
Interactions: A Communication-Based Approach

K. de Roodt
Delft University of Technology

Delft, The Netherlands

Abstract—With the increasing integration of Automated Vehi-
cles (AVs) into our daily traffic, validating their performance
poses a significant challenge. Virtual testing, where simu-
lated AVs operate in a simulated environment, has become
a widely adopted approach for efficient and cost-effective
validation. However, the lack of realistic human behaviour
models hinders the realism of these simulations, particularly
in simulating reciprocal driver interactions. In this research,
I introduce a discretionary lane change model based on
the Communication-Enabled Interaction (CEI) framework,
which simulates reciprocal driver interactions through im-
plicit communication and belief modelling. These recipro-
cal interactions involve mutual behaviours, where individual
drivers contribute through high-level decisions and low-level
control actions. By employing the CEI framework, decision-
making and control actions are integrated into a unified
model. The proposed model is validated against naturalistic
driving data in discretionary lane change scenarios to assess
its validity. Results demonstrate that the model successfully
reproduces qualitative and quantitative characteristics of hu-
man driving behaviour, reflecting both individual behaviours
and the collective contributions of multiple drivers. Moreover,
it reflects how varied tactical decisions yield distinct, human-
like operational execution characteristics. Thereby improving
the realism of interactive traffic simulations and posing a step
towards improving virtual testing environments for AVs.

1. Introduction

As Automated Vehicles (AVs) merge into our daily
traffic, they promise a future of more efficient commutes,
fewer accidents, and an overall improvement in travel
quality [1, 2]. Despite rapid advancements, AVs still face
challenges interacting with other traffic participants (e.g.,
pedestrians, passenger cars, or trucks) and incorporating
their behaviours into the decision-making process [3]. This
issue is particularly evident in scenarios involving recip-
rocal interactions, such as highway lane changes, where
road users mutually influence and respond to each other’s
actions.

In this work, I focus on discretionary lane changes,
a subset of lane changes performed voluntarily to gain
better driving conditions (e.g., a speed advantage) [4].
Compared to mandatory lane changes (e.g., entering a
highway), discretionary lane changes are more complex

as drivers must evaluate the necessity, desirability, and
safety of the manoeuvre [5]. However, drivers only need to
evaluate the safety of mandatory lane changes. This makes
discretionary lane changes highly sensitive to individual
differences and reciprocal influences.

To ensure AVs can manage these interactions safely,
leveraging human driver models has emerged as a tool for
validating AV performance [6]. Driver models can serve
two primary purposes in validating AVs: (1) by acting as
performance benchmarks representing competent human
drivers (e.g., [7–9]), and (2) by simulating the behaviours
of surrounding vehicles to test how an AV responds in
various scenarios (e.g., [10–13]).

Most existing performance benchmark models focus on
rear-end conflicts in car-following scenarios such as cut-
ins, cut-outs, and decelerations (e.g., [14, 15]). However,
recent work has begun to address mandatory lane changes.
One study proposed a kinematic Bi-Dimensional driver
model for evaluating the low-level control of evasive lane
changes [8]. Another included decision-making but treated
interaction mainly as a one-way response to other vehicles,
thus overlooking reciprocal influences [9]. So far, these
benchmark models have mainly emphasized single-driver
behaviour. They often assume that while the modelled
driver reacts to surrounding traffic, those vehicles do not
respond in turn. Although this assumption works for car-
following models, it does not suit interactive driving sce-
narios like lane changes. Furthermore, current benchmark
models remain limited to mandatory lane changes, leaving
discretionary lane changes largely unaddressed.

Besides models specifically meant for benchmarking,
there are other more general lane change models (e.g., for
modelling surrounding traffic in AV simulation) spanning
data-driven or mechanistic modelling approaches. On the
data-driven side, large-scale naturalistic datasets and ma-
chine learning techniques enable models to learn driver
behaviour characteristics (see [16] for a comparison). For
instance, the Waymo SimAgents challenge has promoted
the development of such data-driven approaches for gen-
erating realistic surrounding traffic simulations [17]. Al-
though these models often claim to incorporate interaction,
they typically rely on learned correlations (i.e., condi-
tioning one agent’s motion on others’ behaviours) rather
than explicitly modelling reciprocal interactions among
drivers. As a result, while they can match observed traffic
patterns accurately, they often lack interpretability, making
it unclear why drivers behave as they do.



Many longstanding mechanistic lane change models
exist (e.g., utility-based, game-theory-based, rule-based,
etc. See [18] for a review), but they have predominantly
operated at the level of traffic microsimulation, focusing on
macroscopic traffic flow characteristics rather than individ-
ual behaviours. These lane change models often segment
the problem into high-level decision-making (i.e., the need
to change lanes), followed by gap acceptance (i.e., eval-
uating whether the available space is sufficient), and end
with low-level control actions (e.g., changes in velocity).
Research on a driver’s motivations for discretionary lane
changes has focused on variables like relative distance
and speed [12], acceleration [13], or including variables
such as average travel time and time gaps [19]. To model
gap acceptance and control actions, these approaches often
utilize gap acceptance theory (e.g., [5, 12, 13]) alongside
acceleration models (e.g., the intelligent driver model [20])
to simulate behaviour before and after lane changes. How-
ever, these models primarily focus on decision-making as-
pects, overlooking the execution phase of the lane change,
particularly for discretionary lane changes [21]. Despite the
significant impact that the execution of lane changes has
on driver behaviour in real-world traffic, researchers rarely
capture the low-level control actions [18]. As a result, this
limits their ability to reproduce the variability (the range
of human behaviours that can be expected in response
to a given situation [22]) arising from different tactical
behaviours (i.e., describing which manoeuvres are executed
[23]) in the resulting operational behaviour (i.e., describing
how manoeuvres are executed) within a unified framework.
Furthermore, they often ignore or simplify interactions into
one-way responses, overlooking the reciprocal influences
[18]. Therefore, it is challenging for traditional, single-
agent-focused lane change models to reproduce human
interactive behaviour accurately.

In an attempt to model drivers as a joint interactive
system (as opposed to individual drivers), researchers have
widely used game-theoretic approaches (e.g., [10, 11], see
[24] for a review). However, these models often assume
humans act as rational, utility-maximizing agents without
any form of communication. Furthermore, most game-
theory-based interaction models rely on discrete actions for
drivers. This approach is useful for higher-level decision-
making (e.g., yielding or lane changing) but fails to encom-
pass the low-level control inputs (e.g., changes in velocity).
As noted by Siebinga et al. [25], these assumptions do not
accurately reflect real-world driver behaviour.

Based on these limitations, there is a need for an inter-
pretable, unified model that can describe reciprocal interac-
tions and integrate decision-making and low-level control
actions. I aim to address this gap by developing a compu-
tational human driver model based on the Communication-
Enabled Interaction (CEI) framework [25], see Section 2
for a brief overview. This framework models the two-
way interaction between drivers by considering the joint
interactive system, guided by communication and beliefs
about other drivers’ intentions.

The CEI framework has recently been validated only
for a simple one-dimensional merging scenario without lat-
eral behaviour [26]. Therefore, I extended the CEI frame-

work to more realistic scenarios involving two-dimensional
dynamics, multiple agents, and multiple lanes, as detailed
in Section 3. I validated whether and under which circum-
stances the model could reproduce individual and mutual
behaviours at both tactical and operational levels, as de-
scribed in Section 4. To do so, I compared the driving char-
acteristics from naturalistic driving data with the behaviour
generated by the model in a simulation environment. Com-
bined, the contributions of this paper are threefold: (1) the
development of a computational model for discretionary
lane changes based on the CEI framework, (2) the vali-
dation of the model against naturalistic driving data, and
(3) the demonstration of the model to reproduce individual
behaviours and collective contributions at both tactical and
operational levels within a unified model.

2. Background: Communication-Enabled In-
teractions Framework

Siebinga et al. [25] introduced the CEI framework to
model reciprocal interactions by considering how drivers
communicate and adjust their behaviours based on per-
ceived risks and probabilistic beliefs about others. The
framework comprises four components: deterministic plan,
communication, probabilistic belief, and risk perception, as
illustrated in Figure 1.

2.1. Plan

Each driver formulates a deterministic plan that out-
lines its intended actions over a future time horizon. This
plan uses a cost-minimization approach that prioritizes
objectives such as maintaining a desired speed and min-
imizing acceleration control inputs. During this optimiza-
tion, the plan is subject to a risk constraint to reduce the
perceived risk with the updated plan.

2.2. Communication

Drivers communicate their plans or intentions either
explicitly (e.g., turn indicators) or implicitly (e.g., posi-
tion, velocity, or acceleration). Other drivers interpret these
signals to form beliefs about the communicator’s intended
actions. In this way, communication links one driver’s plan
to the other driver’s belief.

2.3. Belief

Drivers use the observed cues to generate probabilistic
beliefs about one another’s positions in the near future,
which are modelled as normal Gaussian distributions. At
every time step, each driver’s belief is represented as a
probability density over the other drivers’ future positions.
By combining these beliefs with their deterministic plans,
drivers compute the probability of collisions, leading to a
perceived risk.

2.4. Risk-Based Replanning

The CEI framework integrates risk-based replanning
as a form of bounded rationality and satisficing to reflect



Figure 1: An overview of the CEI-based lane change model. A) A typical discretionary lane change scenario of the ego vehicle (orange) overtaking
the slower lead truck (green) while evaluating the observable cues of the left-following vehicle (blue). B) Each driver is modelled using the four
CEI components: plan, communication, belief, and risk. Drivers have deterministic plans for their own actions and hold probabilistic beliefs about
others’ future positions based on implicit communication. Combined, plan and belief results in a risk perception. Replanning is triggered when the
risk threshold is exceeded based on the risk perception or when the adjacent left lane is more beneficial, allowing drivers to initiate lane changes
proactively before risks become critical. While only the orange vehicle’s components are illustrated, the framework applies to all vehicles; the blue
vehicle and truck have the same components. C): The sequence of operations drivers perform each timestep, where plan adjustment is only performed
if the perceived risk exceeds the threshold or when the adjacent left lane is more beneficial.

drivers’ cognitive and perceptual characteristics. Drivers
continuously assess the risk associated with their current
plans by estimating potential hazards, such as proximity
to other drivers. Each driver has a personal risk threshold
based on subjective evaluations. When the perceived risk
exceeds this threshold, the driver initiates a replanning
process to adjust its trajectory and reduce the risk to an
acceptable level.

Using a form of satisficing, drivers seek an optimal
solution only when the perceived risk exceeds their per-
sonal threshold and follow the plan while the risk remains
below it. This reduces cognitive load by avoiding constant
optimization. Drivers with lower risk thresholds tend to
adjust their plans earlier, while those with higher thresholds
may delay adjustments, potentially relying on others to
mitigate the risk first. This reflects how drivers balance
safety and efficiency within their cognitive limits.

2.5. Sequence of Operations

By integrating all four framework components, drivers
perform the following sequence of operations at each
timestep:

• Observe communication: drivers observe the current
state of others.

• Belief update: drivers update their probabilistic beliefs
based on the observed communication.

• Risk assessment: drivers estimate the risk associated
with their current plans using the updated beliefs.

• Plan adjustment: drivers replan their trajectory to mit-
igate the risk only if the perceived risk exceeds the
upper-risk threshold.

• Action execution: drivers execute the next step of their
plan, and the process repeats in the subsequent time
interval.

3. Communication-Enabled Interactions
Model

3.1. Model Development

The proposed two-dimensional lane change model is
based on the CEI modelling framework [25] and its sub-
sequent implementation in [26]. The model consists of
instantiations for each component, as shown in Figure 1.
This involves the overall dynamics, planning, communica-
tion, belief construction, risk evaluation, and an additional
replanning mechanism for early lane changes.

3.1.1. Overall Dynamics. The overall dynamics of the
simulation are extended to two dimensions, as opposed
to the original one-dimensional point mass kinematics in
[26]. The agents drive in the 2-dimensional x-y-plane and
are modelled using a dynamic bicycle model [27]. The
dynamic bicycle model is constructed using six states and
two inputs:

X =
[
x y vlong vlat ψ ψ̇

]⊤
(1)

U =
[
along δf

]⊤ (2)

where x and y denote the longitudinal and lateral po-
sition, respectively, vlong and vlat are the corresponding
velocities, and ψ denotes the yaw angle. The inputs of the
system are the longitudinal acceleration along and the front
wheel steering angle δf , with maximum absolute values of
along = 1.5 m/s2, δf = π

18 rad.



3.1.2. Plan. The planning is performed in acceleration
space and consists of a set of waypoints over a time horizon
T = 8.0s. The plan is obtained by optimizing cost function
Jplan for each waypoint of the time horizon:

Jplan =

T∑

t=t0

(
λ1(dvlong)

2 + λ2(dvlat)
2 + λ3(dψ)

2

+λ4δ
2
t + λ5a

2
t

)
(3)

where dvlong and dvlat are the deviation from the desired
longitudinal and lateral velocity, dψ is the deviation from
the desired heading, δt is the steering input, and at is
the acceleration input. The λ-parameters are weights to
adjust the relative importance of the different components.
By adjusting the cost-function weights, the model can be
tuned to favour lane changes over speed reductions (or
vice versa), achieving different tactical and operational
behaviours.

The cost function does not contain terms for collision
avoidance or maintaining within lane bounds. Instead, the
CEI framework ensures safety by requiring drivers to keep
the risk below the risk threshold, which is enforced through
an optimization constraint in the model’s planning process.

At each simulation timestep, the first action (acceler-
ation and steering) from the updated plan is applied to
the bicycle model and removed from the planning horizon.
Because drivers do not continuously replan every timestep,
I extend the acceleration input using the final action to
reflect the idea of continuing with the current plan. For
steering, I compute a new steering input using a PD
controller to maintain lane alignment and counteract lateral
drift, which can arise from minimal steering inputs at high
speeds near the end of the planning horizon.

3.1.3. Communication. Drivers base their belief about
other agents’ future trajectories on implicit communication
through vehicle movements. At each time step, drivers
observe the positions, velocities, and accelerations of sur-
rounding vehicles. While position and acceleration are
assumed to be observed as perfect, velocity perception is
modelled as noisy and influenced by perceptual delays.
This accounts for drivers’ tendencies to under- or overes-
timate other vehicles’ velocities at high speeds [28, 29].
The updates are defined as:

∆vlong,o = αc (vlong,t − vlong,o) + βdW (4)

∆vlat,o = αc (vlat,t − vlat,o) + βdW (5)

The perception update rate αc controls how quickly
drivers adjust their perceived velocities toward the true
values (subscript t), modelling the perception delay. The
noise scaling factors (βlong and βlat) introduce variability
into the perception, simulating the inaccuracy in estimating
other vehicles’ velocities. Additionally, W represents a
stochastic Wiener process, further contributing to the noise
in perception. This method is adapted from [26].

3.1.4. Belief. The observed communication is used to cre-
ate a two-dimensional belief about the future positions of
other drivers. These beliefs consist of belief points, which
are probabilistic predictions of the other vehicle’s position
at specific future times. The belief points share the same
time horizon and planning frequency (4Hz) as the driver’s
own plan. Each belief point is constructed using a joint
longitudinal and lateral probability distribution, assuming
independence between the longitudinal and lateral compo-
nents.

The longitudinal belief is based on the CEI simple
merging model [26]. Each of the longitudinal belief points
is represented by the sum of two normal distributions:

bt =
1

2
N
(
µt, σ

2
t

)
+

1

2
N
(
µt, ϕσ

2
t

)
(6)

where bt is the belief point representing the probability
distribution over longitudinal positions for the other vehicle
at time t. ϕ is a scaling factor that adjusts the variance of
the second normal distribution to capture uncertainty in
acceleration behaviour.

The expected position µt and variance σ2
t for each be-

lief point are calculated by extrapolating the other vehicle’s
observed position, velocity, and heading:

µx,tb = xt0 + (vlong,t0 cos(ψt0)−

vlat,t0 sin(ψt0)) tb +
1

2
(tb − t0)

2µx,a

(7)

σ2
x,tb

=

(
1

2
(tb − t0)

2

)2

σ2
x,a (8)

where µx,tb denotes the extrapolated x position at time tb,
xt0 denotes the observed position, vlong,t0 and vlat,t0 the
perceived (noisy) velocity of the other vehicle, tb denotes
the time of this belief point and t0 the current time. The
parameters µx,a and σ2

x,a are derived from a normally
distributed expected acceleration based on the driver’s
memory of recent longitudinal acceleration observations,
as detailed in [26].

The lateral belief is modelled using the same method
as the longitudinal belief but includes an adjustment for
the vehicle’s heading to prevent excessive lateral drift. This
adjustment converges the belief toward lane centring by the
end of the planning horizon. The adjusted heading ψconv is
computed as:

κconv =
1

1 + exp(−1( tbT − ηconv))
(9)

ψconv = (1− κconv)ψ (10)

where ηconv denote the shift parameter where κconv starts
to adjust the heading.

This approach avoids extrapolating lateral positions
into unrealistic trajectories. The expected lateral position
µy,tb and variance σ2

y,tb
for each belief point are calculated

by extrapolating the other vehicle’s observed position,
velocity, and adjusted heading:



µy,tb = yt0 + (vlong,t0 sin(ψconv,t0) +

vlat,t0 cos(ψconv,t0)) tb +
1

2
(tb − t0)

2µy,a

(11)

σ2
y,tb

=

(
1

2
(tb − t0)

2

)2

σ2
y,a (12)

where µy,tb denotes the extrapolated y position at time tb,
yt0 denotes the observed lateral position, and µy,a and σ2

y,a

are derived from a normally distributed expected lateral
acceleration based on the driver’s memory of recent lateral
acceleration observations.

3.1.5. Risk. Risk perception involves the driver’s planned
trajectory, beliefs about other vehicles’ future positions,
and maintaining safe lateral positions within lane bound-
aries. Combined, three elements contribute to risk per-
ception: collision risk (Pcol), driving beyond the road
boundaries (Pbounds), and lane proximity risk (Pprox).

At each time step, every corresponding plan-belief
point pair is evaluated against the three risk components,
resulting in a perceived risk contribution for each compo-
nent ranging between 0 and 1. The combined risk value
consists of the summation of all three risk elements.

Collision Risk: The collision risk (Pcol) is derived
from the planned position and the belief point representing
the perceived probability of vehicle positions at the same
time step. This method is adapted from [26]. To estimate
the probability of a collision, the concept of bounds of
collision is used [25]. These bounds define the positions
of the other vehicle that would lead to a collision based on
the position of the ego vehicle. At each belief time point tb,
the collision risk is determined by the probability that the
other vehicle’s position falls within the collision bounds of
the ego vehicle:

Pcol (xe,tb − rl ≤ xb,tb ≤ xe,tb + rl) ·
Pcol (ye,tb − rw ≤ yb,tb ≤ ye,tb + rw)

(13)

where xb,tb and yb,tb are the belief x and y-positions of
the other vehicle at time tb, xe,tb and ye,tb are the plan x
and y-position of the ego vehicle, added and subtracted by
the vehicle length rl and vehicle width rw to obtain the
upper and lower bounds of collision.

Road Boundary Risk: The risk of driving beyond the
road boundaries (Pbounds) increases as the lateral position
of the ego vehicle approaches the sides of the road. This
risk is modelled using hyperbolic tangent functions, which
smoothly transition from low risk when the vehicle has
a large distance to the road edge to high risk as it comes
close to the road edge, based on the planned point’s lateral
position xtb . The road boundary risk is calculated as:

Pbounds = 1− 1

2
tanh

(
η(xe,tb +

rw
2
)
)
+

1

2
tanh

(
η(xe,tb −

rw
2
)
) (14)

where η is the scaling factor that determines the steepness
of the function. rw represents the vehicle’s width to let
the risk be approximately one as the vehicle approaches

the road edge and decreases toward 0 when the vehicle is
centred within the lane.

Lane Proximity Risk: The lane proximity risk (Pprox)
evaluates the risk of driving too close to adjacent lanes
without intending a lane change (e.g., in the case of
lane-keeping). This risk is also modelled using hyperbolic
tangent functions to estimate proximity to each adjacent
lane’s centre (xcentre) based on the planned point’s lateral
position xtb and the vehicle width rw. For each lateral
position xtb , the positional risk is calculated as:

Pprox, pos =
1

2
tanh

(
η(xe,tb − xcentre +

rw
2
)
)
−

1

2
tanh

(
η(xe,tb − xcentre −

rw
2
)
) (15)

An additional Gaussian term, Pprox, head, lowers the risk
if the vehicle’s heading deviates from the road’s direction,
ensuring that when a lane change is actually intended,
the model does not mistakenly discourage it. The addition
heading term that lowers Pprox is calculated as:

Pprox, head = exp

(
−0.5 ·

(
ψtb

σheading

)2
)

(16)

where σheading determines how sensitive the risk is to
deviations of the vehicle’s heading (ψtb).

The combined risk for driving too close to adjacent
lanes is the multiplication of the positional and heading
risks:

Pprox = Pprox, pos · Pprox, head (17)

Risk Incentive: The perceived risk is assessed rela-
tive to two dynamic thresholds ρu (upper threshold) and
ρl (lower threshold). These dynamic thresholds use an
incentive function that reflects traffic conventions. The
underlying idea is that while two drivers may perceive
the same level of risk, traffic conventions can influence
which driver is more likely to take action. For instance, in
car-following scenarios, it is typically the responsibility of
the following vehicle to avoid a collision. Each threshold
consists of a driver’s individual base value (θu for the upper
threshold and θl for the lower threshold), adjusted by an
incentive function:

ρu = θu + λu,1∆x+ λu,2∆vlong (18)

ρl = θl + λl,1∆x+ λl,2∆vlong (19)

where ∆x and ∆vlong are the longitudinal position and
velocity difference between the ego and a leading and/or
lead vehicle. These adjustments apply only to vehicles in
the current lane, keeping risk thresholds for other lanes
unchanged to maintain equal bounds.

A replan is triggered when the upper-risk threshold (ρu)
is exceeded, aiming to reduce the perceived risk below
0.8ρl. If the risk stays below the lower risk threshold (ρl)
for longer than the saturation time (τ ), a replan ensures
the driver does not remain with an overcautious plan,
constraining risk below 0.5ρu. Another replan occurs if
the desired velocity is reached to maintain it. This method
is adapted from [26].



3.1.6. Benefit-Based Replanning. Human drivers often
initiate discretionary lane changes before risk levels be-
come critical, particularly when they foresee speed gains
in an adjacent lane [19, 30]. To model this behaviour,
I introduce an additional benefit-based trigger alongside
the existing risk-based trigger. This trigger uses a speed
incentive [12] combined with evidence accumulation to
model response timing, which has been previously utilized
in studies on driver decision-making [31, 32]. The benefit-
based trigger considers how much faster the adjacent lane
is compared to the driver’s current lane, accumulating
evidence toward a “change lanes” decision (see Figure 2)
whenever the speed advantage remains sufficiently high.

Figure 2: A visual representation of the evidence accumulation model
for driver decision-making illustrating how evidence favouring a ”change
lanes” or ”stay” decision accumulates over time. This figure is adapted
from [32].

The evidence accumulation consists of variable drift
rate s(t) and constant boundary b(t). The drift rate depends
on the speed incentive vgain and parameters α, θs, and W .
This drift rate represents the relative evidence x favouring
either a ”Change lanes” or ”Stay” decision at any given
time. The ”Stay” decision resets evidence accumulation,
preventing evidence from continuously growing negatively.
This reset allows the model to reassess lane change deci-
sions when conditions change quickly.

The parameter αb is the contribution of incoming per-
ceptual information to the accumulated evidence, while θs
sets the threshold of vgain at which the drift rate changes
sign. W denotes a stochastic Wiener process (thus, dW is
a sample from a normal distribution N (µ = 0, σ2 = dt)):

s(t) = αb (vgain(t)− θs) + dW (20)

The drift process ends upon reaching the positive or
negative boundary, where height B represents the required
amount of evidence to make a decision. In previous re-
search, constant [32, 33] or collapsing boundaries [32, 34]
were used. Recent evidence concluded that simpler ev-
idence accumulation models with a constant boundary
can accurately account for decision outcomes, similar to
more complex models [32, 33]. For this reason, a constant
boundary to describe the end of the drift process is used:

b(t) = ±B (21)

The benefit of driving in the adjacent lane is estimated
using the anticipated speed to assess its advantage:

vgain = vi−1
ant − viant (22)

where i − 1 and i are the left adjacent and current lanes,
respectively. The remaining details of the formulation of
anticipated speed vant can be found in [12].

The benefit-based trigger is integrated into the plan as
a soft constraint, allowing discretionary manoeuvres when
beneficial without enforcing lane changes universally. The
constraint is applied with γ = 1, aligning the final lateral
position yT with the centre of the desired lane yd. For all
other cases, the constraint is deactivated with γ = 0:

J = Jplan + γ (yT − yd)
2 (23)

3.2. Model and Simulation Parameters

The model and simulation rely on 24 parameters. A list
of all parameters, including their values and descriptions,
is provided in Appendix A. Of these, 14 parameters were
manually set based on design considerations, while the
remaining 10 were tuned using preliminary simulations
and a grid search. The preliminary simulations are used
to tune and evaluate model parameters under controlled
scenarios, demonstrating the model can reproduce expected
behaviours before comparison against naturalistic driving
data (details in Appendix B).

The timing parameters for the simulation include the
time step (∆t), planning horizon (T ), and belief memory
duration (Tm). These were designed to suit the scenario,
assuming drivers complete a lane change manoeuvre within
the planning horizon and to ensure reasonable computation
times.

For the communication parameters, the noise scaling
factors (βlong and βlat) for communication were manually
set to reflect a reasonable level of noise. The perception
update rate (αc) was based on an empirical study on driver
perception and response times [28].

For the belief parameters, the comfortable accelerations
(ac,long and ac,lat) were derived based on empirical studies
[35]. The belief scaling factor (ϕ) was adjusted to ensure
adequate resolution in the risk signals, with a chosen value
of ϕ = 3.0.

The cost-function weights (λ1 to λ5) were manually
adjusted based on a systematic validation of the model
using the controlled simulations (Appendix B). Using the
cost-function weights, the model balances between differ-
ent driving objects (e.g., reduce speed or perform lane
changes) in the planning process and to obtain stable
behaviour.

To account for variability among drivers due to differ-
ences in risk tolerance and decision-making styles, I mod-
elled the risk thresholds (θu, θl) as uniformly distributed
across the driver population. The upper threshold θu was
uniformly distributed between 0.4 and 0.5, and the lower
threshold θl between 0.2 and 0.3.

The drift rate αb and parameter θs were fitted using
grid search to reproduce observed tactical behaviours in a
preliminary scenario (details in Appendix D). To account
for drivers’ variability due to individual decision-making
styles, αb was uniformly distributed between 0.02 and 0.04,
and θs between 3.0 and 4.0 across the driver population.



4. Validation Against Naturalistic Driving
Data

To demonstrate that the proposed driver model repro-
duces human-like behaviour, I validated it against natural-
istic driving data for two representative discretionary lane
change scenarios. These scenarios illustrate how individual
drivers with unique preferences respond to a slower lead
vehicle. By targeting these scenarios, I aim to demonstrate
that the proposed approach leads to human-like variability
in tactical behaviour (i.e., which manoeuvres are executed)
and operational behaviour (i.e., how the manoeuvres are
executed).

While these scenarios represent only a subset of real-
world driving situations, they demonstrate the fundamental
workings of the approach. Additional preliminary checks
using controlled simulations for other scenarios are pro-
vided in Appendix B. A systematic validation through
controlled simulation against empirical research on lane
change behaviour is included in Appendix C.

4.1. Validation Setup

For the validation, I used the highD dataset [36],
which contains high-precision vehicle trajectories from
German highways captured by unobtrusive aerial drones.
Two discretionary lane-change scenarios are selected from
the dataset, each with distinct incentives to overtake or
continue in the current lane. Both scenarios include at least
a slow lead vehicle in the right lane, an approaching ego
vehicle, and a following vehicle in the left lane, but they
differ in how favourable overtaking is:

• Scenario A high-speed-difference (Figure 3A): A
slow-moving lead vehicle (green) occupies the right-
most lane, while a faster ego vehicle (orange) ap-
proaches from behind. A left-following vehicle (blue)
travels in the adjacent lane, and a left-leading vehicle
(purple) is present but does not directly influence the
lane change. In this scenario, multiple responses are
feasible for the ego, such as accelerating and changing
lanes, braking to let the left-following vehicle pass
before changing lanes or continuing behind the slower
lead vehicle.

• Scenario B low-speed-difference (Figure 3B): A sim-
ilar configuration to scenario A, except the ego vehi-
cle’s speed is closer to that of the lead vehicle, reduc-
ing the urgency and potential benefit of overtaking.

Human drivers exhibit considerable variation in tactical
and operational behaviour even under these seemingly
similar conditions [22, 37], e.g., some overtake promptly,
while others continue following for extended periods. To
capture and validate the variability in behaviours, I employ
two complementary methods:

• Hausdorff extraction method [22]: a mathematical
metric (Hausdorff distance) that identifies and extracts
traffic scenarios from large-scale datasets based on
their similarity to a scenario.

• Human factors validation approach [38]: this frame-
work outlines validation steps to assess how a driver
model aligns with naturalistic driving data.

4.1.1. Hausdorff Extraction Method. To systematically
obtain data reflecting human variability in the two scenar-
ios, I used the Hausdorff extraction method [22]. First, each
scenario (A or B) was formalized as a scenario of inter-
est, specifying the relative positions and velocities of the
ego and surrounding vehicles. These were then converted
into a context set, which mathematically encodes multi-
dimensional data based on vehicle positions and velocities
relative to the ego vehicle.

The Hausdorff distance measured the dissimilarity be-
tween the scenario of interest and other context sets in the
highD dataset. It calculated the greatest minimum distance
between points in the two sets, identifying contexts most
similar to the scenario of interest. The 300 closest samples
were then selected for each scenario.

Figure 3 (C and D) illustrates the spatial and veloc-
ity distribution of vehicles in these extracted samples. In
Scenario A, 108 out of 300 samples involve a lane change
(36%), while 192 correspond to lane-keeping. In Scenario
B, 45 samples involve a lane change (15%), and 255
correspond to lane-keeping.

4.1.2. Human Factors Validation Approach. The vali-
dation starts with a scenario-level validation of scenarios
A and B to illustrate how the model’s internal components
(plan, communication, risk, and belief) interact to produce
tactical decisions and their operational execution.

After the scenario-level validation, I apply a two-stage
human factors validation approach outlined in [38]. Using
this approach, the model’s tactical and operational be-
haviour is validated across all 300 representative extracted
samples per scenario. In the first stage (tactical validation),
I validate whether the model’s high-level decisions (e.g.,
lane change vs. lane keeping) align with the variability
observed in naturalistic data. In the second stage (oper-
ational validation), I examine whether the model’s lane-
change and lane-keeping behaviours reflect the empirically
observed patterns that emerge once a driver commits to
overtaking or continues to follow a slower lead vehicle.

4.1.3. Simulation Setup. A simulation environment repli-
cating highD highway conditions was created. The simu-
lation is implemented in a two-dimensional plane, repre-
senting a straight highway segment of fixed length (420m)
and a varying lane width and number of lanes (2 or 3)
depending on the original dataset recording.

The initial positions and velocities of all vehicles are
based on their Hausdorff-extracted locations and observed
speeds in the data sample, respectively. Each agent’s pre-
ferred velocity is then set to its maximum velocity, defined
as the point at which the driver no longer accelerates.
Risk thresholds and evidence accumulation parameters are
uniformly distributed per sample, while other parameters
remain constant. All simulations include the benefit-based
trigger. For completeness, Appendix E provides results
from the same scenarios without this trigger.

The process of simulating each scenario (A and B),
containing 300 samples each, was repeated 10 times to
capture the variability in behaviour through the stochastic
components of the model and the uniformly distributed
parameters. This yielded 6000 simulations in total.



Figure 3: An overview of the scenarios and the spread of representative samples for each scenario. A-B) Scenario A (highD dataset 24, frame 17620,
ego vehicle id 952) and scenario B (highD dataset 22, frame 1068, ego vehicle id 53). Both scenarios contain an ego (orange), leading (green),
left-following (blue), and a left-leading (purple) vehicle. The white arrow denotes the direction of travel. The blue vehicle denotes a left-following
vehicle, the green vehicle denotes a leading truck, and the purple vehicle denotes a left-leading vehicle. C-D) The spread of the points represents the
samples obtained after the Hausdorff extraction [22], for scenario A (first column - C) and scenario B (second column - D). The upper plot displays
the positions of surrounding vehicles relative to the ego vehicle, while the lower plot illustrates their relative velocities. The green, blue, and purple
dots represent the 300 closest samples extracted from the highD dataset.

4.2. Scenario-Level Validation

This section qualitatively analyzes individual driver
behaviours and model dynamics in scenarios A and B.
The left-leading vehicle (purple vehicle in Figure 3A-B)
is excluded from this comparison as it does not directly
influence the lane-change interaction, ensuring a clearer fo-
cus on the primary drivers involved. Additional qualitative
results on individual behaviours in controlled simulations
are provided in Appendix B.

4.2.1. Scenario A: High-Speed-Difference. In scenario A
(Figure 4A), three vehicles travel on a two-lane highway.
The ego vehicle (orange) initially approaches the lead
vehicle (green) with a relative speed of approximately
5m/s. At the same time, the left-following vehicle (blue)
has a similar 5m/s speed advantage over the ego vehicle.
Around a longitudinal position of 150m (Figure 4A -
Human), the ego vehicle initiates a lane change to overtake
the slower lead vehicle. After the lane change is initiated,
the left-following vehicle starts braking to align with the
speed of the ego vehicle.

The model simulation reproduces these elements of
behaviour (Figure 4A - Model). When the ego closes
in on the slower lead, and enough evidence accumulates
(denoted by the cross), the benefit-based trigger initiates
a lane change. Similar to the human driver, the ego does
not attempt a strong acceleration upon moving into the left
lane. Instead, it continues at roughly the same speed it had
before leaving the right lane. This causes the model’s left-
following vehicle to perceive a high risk, prompting it to
decelerate and align with the ego’s slower speed.

However, there is a slight difference in the timing of
the braking of the left-following vehicle. In both the hu-
man behaviour and the model simulation, the ego roughly
initiates the lane change at the same time. However, the
left-following vehicle only starts decelerating after the ego
almost crosses the lane boundary (Figure 4A - longitudi-

nal velocity). Meanwhile, for human behaviour, the left-
following vehicle anticipates the ego’s speed right after
the lane change initiation. This difference arises primarily
due to the model’s simplified belief construction of other
agents, which is based on extrapolating current positions,
velocities, and accelerations rather than inferring intent
early on.

4.2.2. Scenario B: Low-Speed-Difference. In scenario
B (Figure 4B), the same three vehicles travel on a two-
lane highway, but no lane change is initiated. The key
interaction is between the ego and the lead vehicle, which
stays in the same lane throughout. The ego vehicle follows
closely, adjusting speed to any fluctuations in the leader.
This results in the characteristic accordion effect. As the
follower accelerates more quickly or the leader slows
down, the gap between them shrinks. Conversely, the gap
expands again when the follower reduces acceleration, or
the leader regains speed.

In the human data, the ego decelerates while closing
the gap to the lead vehicle before accelerating again to
maintain a safe following distance. The model simulation
reproduces these behaviour characteristics (Figure 4B -
Longitudinal velocity). The ego vehicle decelerates until
it reaches a speed below that of the lead vehicle, then
accelerates slightly due to a lower bound replan, causing
the gap to shrink. Once its perceived risk threshold rises,
an upper-risk threshold replan restores a more comfortable
distance (Figure 4B - Perceived risk). A notable difference
is that the model holds a slightly larger preferred distance
than the human driver, causing the gap to open and close
one additional time (Figure 4B - Gap).

This lane-keeping behaviour is not explicitly pro-
grammed, and the planner does not impose any cost related
to gap-keeping terms. Instead, these distance gaps occur
from the interaction between risk perception and the other
driver’s probabilistic belief, which serves as a constraint in
the plan optimization process.



Figure 4: An overview of the scenario-level validation. A) Human and model behaviour in scenario A (high-speed-difference). The ego (orange), leading
(green), and left-following (blue) vehicles correspond to vehicles 952, 949, and 955, respectively, in Figure 3A. The first row shows vehicle positions
over time, with numbers indicating positions at 2.0 s intervals. The second and third rows present longitudinal and lateral velocities, where large dots
indicate replanning due to exceeding the upper-risk threshold, stars for falling below the lower-risk threshold for longer than the saturation time, and
crosses for a benefit-based replan. The fourth row depicts the gap between the ego and the left-following vehicle relative to the lead vehicle’s position.
The final row illustrates perceived risk over time. B) Human and model behaviour in scenario B (low-speed-difference). The ego (orange), leading
(green), and left-following (blue) vehicles correspond to vehicles 53, 51, and 54, respectively, in Figure 3B.



4.3. Tactical Behaviour Validation

Following Siebinga et al. [38], I classified tactical
behaviours into lane-keeping, lane-changing, off-road driv-
ing, and collisions, with the first two considered desirable
and the latter two undesirable.

In scenario A (high-speed-difference), both the model
and human ego vehicle exhibit similar behaviour across
the 3000 simulated samples: the lane-change rate is 36.4%
for the model and 36.0% for the human drivers, with
corresponding lane-keeping rates of 63.7% and 64.0%
(Table 1). This close alignment indicates that the model
reproduces human decision-making when the speed differ-
ential is significant, providing a clear incentive to change
lanes.

In scenario B (low-speed-difference), the incentive to
change lanes is reduced, and as expected, both the model
and human drivers predominantly opt to keep their lanes
(Table 1). Here, the lane-keeping rates are 77.5% for
the model and 86.0% for human drivers. However, the
model initiates lane changes slightly more often (22.4%
compared to 15.0% in the human data), suggesting that
it may be more sensitive to lane-change opportunities in
conditions where the speed differential is minimal. Still,
the overall trend remains consistent; lane-keeping is the
more prevalent decision over all samples in scenario B
because of the small speed differential to the lead vehicle.

In addition to the results on desired behaviour, the
results on undesired behaviour indicate a robust safety
performance: no collisions occurred in any scenario, and
off-road events were minimal, with only 0.1% occurrence
in scenario A (n = 4) and 0.1% in scenario B (n = 2).

The strong overlap in both scenarios and the reason-
able split between lane-changing and lane-keeping pro-
vide evidence that the proposed approach reproduces the
discretionary characteristics of tactical manoeuvres while
reflecting the heterogeneity in the human data. While the

Table 1: Tactical behaviour of the ego vehicle in scenarios A (high-speed-difference) and B (low-speed-difference), comparing lane-change, lane-keeping,
off-road events, and collision rates between the model and human drivers. Each scenario contained 300 samples and was repeated 10 times, yielding
6000 simulations in total. The reported percentages represent the mean and standard deviation across these repeated simulations.

Scenario A: high-speed-difference Scenario B: low-speed-difference

Percentage Percentage Percentage Percentage
of model behaviour of humans behaviour of model behaviour of humans behaviour

Lane-change 36.2± 1.2 36.0 22.4± 2.7 15.0
Lane-keeping 63.7± 1.2 64.0 77.5± 2.8 85.0
Off-road 0.1± 0.2 0.0 0.1± 0.1 0.0
Collision 0.0± 0.0 0.0 0.0± 0.0 0.0

Table 2: One-to-one comparison of lane-change and lane-keeping decisions between human and the model ego vehicles in scenarios A and B. The table
presents absolute counts of the model’s decisions (rows) given the human driver’s decision (columns), with column-wise percentages in parentheses.
For scenario A, four off-road samples are excluded, and for scenario B, two off-road samples are excluded.

Scenario A: high-speed-difference Scenario B: low-speed-difference

Human Human Human Human
lane-change lane-keeping lane-change lane-keeping

Model 852 236 373 298
lane-change (79.8%) (12.2%) (83.3%) (11.7%)

Model 216 1692 75 2252
lane-keeping (20.2%) (87.8%) (16.7%) (88.3%)

goal of this model is not to predict specific lane-change
or lane-keeping samples, a one-to-one comparison (Table
2) is performed to prevent misleading conclusions. This
ensures that a well-matched overall distribution does not
mask discrepancies.

In scenario A (high-speed-difference), Table 2 shows
that when human drivers chose to change lanes, the model
did so in 79.8% of these samples, whereas for human
lane-keeping decisions, the model’s corresponding match
was 87.8%. In scenario B (low-speed-difference), Table 2
shows that the model slightly overestimates lane-change
actions. Specifically, among the samples where humans
opted for a lane change, the model chose lane change
83.3% of the time, leaving a higher mismatch rate of 11.7%
for lane-keeping decisions in these samples.

Figure 5 illustrates the ego’s lane-changing and lane-
keeping responses over the course of scenarios A and B,
providing a qualitative perspective on tactical behaviour. It
visualises how behaviour unfolds across time for both the
human data and the model in one representative iteration
of the 10 runs per scenario.

In scenario A, many human drivers initiate a lane
change between 50−200m of travel. The model exhibits a
similar split, with the ego vehicle often changing lanes at
roughly the same positions. As shown by the lane change
decision rate in Table 1, the proportion of lane changes is
closely matched, indicating that the model captures both
quantitative and qualitative aspects of tactical decision-
making. By contrast, in scenario B (low-speed-difference),
both humans and the model predominantly remain in their
lane. Consequently, lane-keeping appears as the most com-
mon decision, driven by the reduced speed differential with
the lead vehicle.

Beyond these overall trends, the model also shows
some emergent behaviour. In three samples (two in sce-
nario A and one in scenario B), the model performed a
second lane change immediately after the first (Figure 5 -



Figure 5: An overview of the variability in ego’s responses for the human and model behaviour in scenarios A and B. This figure shows results for one
representative iteration of those 10 runs per scenario to keep the presentation comprehensible. The top row represents scenario A, while the bottom row
represents scenario B. The left column corresponds to human behaviour, and the right column represents the model behaviour. The longitudinal and
lateral positions are normalized so that 0m represents the longitudinal position on the highway in the first frame and the centre of the right-most driving
lane. Each dot in the figure corresponds to one time step in one of the 300 samples, and the distributions at the top and right sides of the figure show
how the variability in response spreads out over time. The horizontal grey bars denote the span in which all lane markings are positioned. Operational
variability can also be observed in human and model behaviour regarding longitudinal and lateral positions for lane-keeping and lane-changing. This
figure uses adaptations from [22].

Model). Typically, vehicles accelerate after an initial lane
change to create a safe gap; however, these particular
drivers opted for an additional lane change to mitigate
high risk due to a faster-approaching vehicle from behind.
Because the current model does not explicitly enforce
traffic rules and norms, this second lane change emerges
from the balance between steering and acceleration plan
weight, where the cost of a second lane change was lower
than accelerating to reduce risk.

Moreover, three agents aborted their lane changes and
returned to the rightmost lane, one for scenario A (at 2.0s,
around 50m) and two for scenario B (at 4.0s, around
125m). This demonstrates the model’s ability to handle
“failed” lane change attempts. Although sufficient space
was initially available, the increasing risk from an ap-
proaching following vehicle triggered a replan back to the
rightmost lane.

4.4. Operational Behaviour Validation

The following validation aggregates data from scenar-
ios A and B but only includes those samples in which both
the model and human drivers exhibited the same tactical
behaviour (i.e., correctly reproduced samples from Table
2). The figures in this subsection show results for one
representative iteration of those 10 runs per scenario to
keep the presentation comprehensible.

4.4.1. Distinct Execution Characteristics from Differ-
ent Tactical Choices. Figure 6 compares the model’s
variability in operational behaviour for different tactical
behaviours (lane-changing and lane-keeping) with human
behaviour using inverse time-to-collision (TTC) vs time
gap. In the human data, during a lane change (Figure 6
- Lane-change), the inverse TTC increases while the time
gap decreases until the moment the vehicle crosses the
centre lane marking, represented by the green circles. This
increase in inverse TTC reflects a typical human tendency,
also noted in empirical research, to accelerate and close the
gap to the lead vehicle during a lane change to overtake
a slower lead vehicle [30, 39]. Similarly, the model’s
lane-changing behaviour exhibits dynamics that closely
resemble those observed in human behaviour. However,
the model makes some lane changes at a lower inverse
TTC (higher TTC) than humans.

When comparing the model’s lane-keeping behaviour
to that of human drivers, oscillations around an equilib-
rium point are observed for most samples (see Figure 6,
lane-keeping). Empirical studies suggest that human lane-
keeping can be characterized by cyclic behaviour around
an approximate equilibrium spacing [38, 40], as seen in the
inverse TTC vs time gap plot. These oscillations reflect the
adjustments drivers make to maintain a stable following
distance.



Figure 6: An overview of the operational characteristics for different tactical behaviours. Blue lines denote the human behaviour and orange lines the
model behaviour. The first row shows lane-changing behaviour, while the second row depicts lane-keeping behaviour. Black circles represent the initial
positions of the ego vehicle, and green circles mark the final positions. For lane-changing samples, the green circles indicate the moment of boundary
crossing at the centre-line between lanes. To facilitate a clear comparison for lane-keeping, 25 random sample pairs are highlighted. This figure uses
adaptations from [38].

Compared to human drivers, the model decelerates
more abruptly when the time gap decreases upon reaching
its upper-risk threshold (see Figure 6 - Lane-keeping). This
leads to sharper “corners” in the model’s lane-keeping
behaviour. In contrast, observations from the human data
indicate that drivers typically adjust their speed in smaller
increments, leading to smoother transitions. After slowing
down, the model also tends to maintain a larger gap for
a longer period, whereas human drivers usually acceler-
ate sooner once the gap has sufficiently widened. Con-
sequently, human drivers exhibit higher-frequency oscilla-
tions around the equilibrium compared to the model. These
differences can be partly explained by the model’s discrete
replan intervals. Following the initial replan triggered by
risk, there is often a prolonged delay before the next
replan occurs (e.g., upon crossing the preferred velocity or
reaching the saturation time). Once triggered, this second
replan ensures that the model no longer remains in an
overly cautious state once the conflict is resolved.

However, overall, the model consistently reproduces
distinct operational characteristics that emerge from differ-
ent tactical decisions, aligning with the patterns observed
in human lane-changing and lane-keeping.

4.4.2. Accepted Gaps at Lane Change Initiation. To
further validate the operational lane change behaviour, I
investigated the distributions of time gap at the moment
of lane-change initiation for all surrounding vehicles from
the ego vehicle’s perspective (Figure 7A-B). Across all
interactions, the model closely reproduces the variability
in human time gap distributions. For the ego–lead vehicle
time gap, the medians of the human and model overlap

at approximately 1.1s. The time gap between the ego
and both left-lane vehicles also shows broad consistency,
with the model reproducing the primary region where
drivers accept gaps in the target lane. In the corresponding
scatter plots (Figure 7B), the modelled time gaps correlate
strongly with measured human values (R2 between about
0.7 and 0.8), and the regression slopes are close to unity.

By contrast, when examining inverse TTC at lane
change initiation (Figure 7C-D), the distributions still over-
lap but differ more in shape and central tendency. The
scatter plots confirm that inverse TTC from the model
aligns less consistently with individual human-measured
values (Figure 7D), with lower R2 scores than observed
for the time gap. These differences are likely due to the
model’s assumption of constant desired velocity. In the
human data, the speed of surrounding vehicles is influ-
enced by other vehicles in the traffic stream, leading to
occasional under- or overestimates of how quickly a gap
is closing. Nevertheless, even with these discrepancies in
inverse TTC, the model generally reproduces the range of
values drivers accept at lane-change onset, suggesting that
the overall gaps for lane-changing are similar to human
behaviour despite the simplified velocity assumptions.

4.4.3. Speed Adjustments During Lane Changes. After
accepting a gap, drivers proceed with the execution of the
lane change manoeuvre. Empirical evidence shows that
when overtaking a slower lead vehicle, drivers often decel-
erate gradually before the lane change to avoid colliding
with the slower vehicle in front [30, 39]. After the lane
change onset, drivers accelerate to the passing speed to
adopt a speed according to the speed of the vehicles in



Figure 7: An overview of the accepted gaps at lane change initiation. The blue distributions denote the human behaviour and the orange distributions
represent the model behaviour. A) Estimated distributions of time gap at the moment of lane change initiation to the lead, left-following, and left-
leading vehicle. Dashed lines indicate the medians of each distribution. B) The relationships between the human and model behaviour for all data
points corresponding to the time gap distributions. C) Estimated distributions of inverse TTC at the moment of lane change initiation to the lead,
left-following, and left-leading vehicle. The inverse TTC axis is capped between -0.05 and 0.3 to exclude extremely high values (i.e., TTC close to
zero), preventing dominance by the broad distribution, especially for the ego-left lead vehicle. D) The relationships between the human and model
behaviour for all data points corresponding to the inverse TTC distributions. Dashed lines indicate the medians of each distribution.



Figure 8: An overview of the control inputs performed by the human drivers and by the model for the ego vehicle performing the lane change and the
left-following vehicle. A) All velocity traces where the ego performed a lane change for the human driver (first column) and the model (second column).
All velocities are indexed based on their initial velocity. Twelve random pairs are highlighted to facilitate a clear comparison of individual samples.
B) The change in velocity from lane change initiation to crossing the lane boundary for the ego vehicle and the left-following vehicle responding to
the ego’s lane change. Dashed lines indicate the medians of each distribution. C) The relationship between human and model behaviour for both the
ego and left-following vehicle, corresponding to B).

the target lane [30, 39]. This results in considerable speed
adjustments throughout the manoeuvre.

This pattern is also visible in the human data (Figure
8A - Ego vehicle), where drivers undertake substantial
speed changes by gradually reducing speed before com-
mitting to the lane change and then accelerating once
it is underway. For the most part, the model reproduces
these observed patterns, exhibiting a ”deceleration-then-
acceleration” sequence that is qualitatively similar to hu-
man behaviour. Additionally, both the human and model
data also show that a substantial number of samples involve
drivers accelerating immediately and changing lanes with-
out a prior deceleration phase, suggesting an alternative
approach to executing the manoeuvre to prevent any speed
loss.

Nonetheless, the model occasionally displays a more
pronounced or prolonged deceleration than humans. Since

both positive and negative deviations from a desired speed
are penalized equally, the model sometimes chooses to
keep slowing down until it becomes clear that this lower
speed is no longer optimal. Only then does it switch to
accelerating and complete the lane change. This happens
partly because the model does not continuously optimize
its plan. It first lowers its speed to reduce risk, then waits
until it sees that staying slow is also risky or inefficient,
prompting the lane change and a switch to a higher speed.
In contrast, observations from naturalistic data indicate that
human drivers typically blend these steps and move sooner
into the faster lane.

Another discrepancy arises with the response of the
left-following vehicle (Figure 8A - Left-following vehicle).
Human drivers anticipate lane changes of other vehicles
using subtle implicit cues, like slight lateral movements or
speed changes, and explicit communication, such as indi-



Figure 9: An overview of the velocity contributions to preserve or enlarge the gap of the ego (x-axis) and left-following (y-axis) vehicles after lane
change initiation, with velocities indexed at zero at the initiation. The dashed diagonal line indicates contributions (∆vfollower = −∆vego), where
both vehicles’ adjustments equally impact the distance gap. The figure is divided into quadrants that indicate whether each vehicle contributes positively
or negatively to maintaining a safe gap. Quadrant IV represents positive contributions to preserving or enlarging the gap (ego accelerates, left-following
decelerates), while quadrant II shows both vehicles’ negative contributions (reducing the space gap).

cator lights [41]. By contrast, the model’s left-following
vehicle only reacts once it has detected a more definitive
start to the lateral manoeuvre. Its beliefs rest on extrapo-
lating current positions, velocities, and accelerations rather
than inferring intent early on. As a result, the model un-
derestimates how forcefully or courteously other drivers re-
spond to an upcoming lane change, contributing to smaller
velocity deviations compared to human behaviour (Figure
8A - Left-following vehicle).

The estimated distributions of change in velocity from
lane change initiation to lane centre crossing (Figure
8B) further support these observations. The ego vehi-
cle’s distribution aligns well between human and model
data, indicating that the model reproduces the expected
speed changes during lane changes. However, the left-
following vehicle in the model exhibits a more constrained
distribution, with smaller velocity adjustments compared
to human drivers, who demonstrate a broader range of
speed adaptations. This discrepancy likely stems from the
model’s simplified belief, as the speed adjustments of the
left-following vehicle remain minimal until the moment
the ego vehicle crosses into its lane. This difference is
also reflected in the regression analysis (Figure 8C). The
correlation between modelled and human relative velocity
is moderate (R2 = 0.5), suggesting that while the model
captures the general trend, it underestimates the extent of
speed adaptations.

Through their individual control inputs, the ego and
left-following vehicle collectively contribute to maintain-
ing a safe gap, which can be viewed as gap-keeping:
maintaining or adjusting the distance to the newly leading
or newly following vehicle. Figure 9 shows how the ego
and the left-following vehicles adjust their speeds from the
start to the end of the lane-change manoeuvre, showing
each relative contribution to preserving or enlarging the
accepted gap after the lane change initiation.

Based on observed human behaviour, the ego vehicle
promptly accelerates to a passing speed for most sam-
ples (quadrant I and IV in Figure 9 - Human). The left-

following vehicle decelerates most of the time to a lower
speed (quadrant III and IV in Figure 9 - Human), fur-
ther contributing to maintaining a safe gap. For the ego’s
behaviour in the model, the vehicle tends to increase its
velocity most of the time, thereby contributing to preserv-
ing or enlarging the gap (quadrant I and IV in Figure
9 - Model). However, as noted earlier, the model under-
estimates how much the left-following driver anticipates
and reacts to the lane change. As a result, the model’s
left-following vehicle contributes less to maintaining or
enlarging the gap compared to the ego vehicle.

Despite these slight underestimations in the left fol-
lower’s braking, the model’s overall gap-keeping behaviour
aligns reasonably well with human patterns. Both human
drivers and the model exhibit the “accelerate-decelerate”
pattern for the ego and left-following vehicle. Minor an-
ticipatory discrepancies arise from the model’s simplified
belief and risk components.

5. Discussion

In this work, I have presented a computational model
for discretionary lane change interactions, integrating
decision-making and low-level control into a unified model
based on the CEI framework [25]. The extension of
this framework to a two-dimensional lane change model
demonstrates its ability to reproduce both tactical (i.e.,
which manoeuvres are executed) and operational (i.e., how
the manoeuvres are executed) aspects of driving.

The model reproduces realistic human-like tactical
variability in response to a typical discretionary lane
change scenario, where drivers either keep their lane or
change lanes to overtake a slower lead vehicle. It success-
fully captures variability in operational behaviour, showing
that different tactical choices lead to distinct, physically
meaningful execution characteristics. Furthermore, it quan-
titatively and qualitatively reproduces lane-changing char-
acteristics and reveals lane-keeping behaviour consistent
with empirical observations. Notably, these effects emerged



despite the cost function not having an explicit time gap
or distance gap term.

Based on communication-based belief and risk- and
benefit-based replanning, the model can dynamically bal-
ance multiple driving objectives (e.g., maintaining safety
margins or achieving a desired speed) while adapting its
behaviour in response to interactions with multiple sur-
rounding vehicles. These findings demonstrate that the pro-
posed unified model offers a promising and novel approach
for modelling reciprocal multi-agent interactions.

5.1. Relation to the Existing Literature

One of the most prevalent approaches for modelling
lane change interactions is game theory (e.g., [10, 11]).
Similar to game theory, the findings suggest that incor-
porating multiple drivers within a single model (as op-
posed to modelling individual drivers) is important, as
collective behaviours emerge from the combined actions
of individual drivers. In contrast with game theory, the
results demonstrate that the proposed model is not limited
to a discrete set of actions (e.g. accelerating change lane,
decelerating change lane, or doing nothing [10]). Instead,
it models variability in tactical and operational behaviours
in response to interactions with surrounding traffic.

Several existing single-agent models for drivers’ lane-
changing motivations rely on instantaneous decision-
making processes (e.g., [4, 5, 12, 13]), thus overlooking
how humans dynamically process information over time.
Although these models are useful for large-scale micro-
scopic traffic analyses, they do not reflect how drivers
interpret and accumulate evidence before changing lanes.
In contrast, the proposed model integrates implicit commu-
nication and beliefs about other’s intentions to accumulate
evidence and make decisions more human-like. Nonethe-
less, this study adopts a simplified incentive, assuming that
drivers primarily change lanes to gain a speed advantage
based on relative speed and distance to surrounding traffic.
A more sophisticated approach could also consider factors
such as traffic density or travel times in adjacent lanes
[19, 42].

Furthermore, most microscopic simulation models rely
on the same gap acceptance theory (e.g., [5, 12, 13]),
which states that drivers accept any gap larger than a
critical threshold. However, empirical research reported
that drivers sometimes reject gaps exceeding this threshold
or accept gaps lower than the critical gap [43, 44], indicat-
ing inconsistencies in the theory. Unlike gap acceptance
theory, the proposed approach is not assumed to have
a binary decision (accept/reject) when a driver commits
to a lane change. The proposed approach models gap
acceptance through the risk of a probability of a colli-
sion, using probabilistic beliefs about other drivers’ future
actions derived from implicit communication. Hence, gap
acceptance is based on the reciprocal interactions between
drivers, and there is no fixed critical gap; drivers adapt
to each situation based on contextual risk. This enables
the model to represent failed lane change attempts, a
frequent real-world occurrence that existing lane-changing
decision models fail to consider. These failed lane change

attempts are not explicitly modelled, but they occur due to
combinations in changing communication and subsequent
belief and risk perception. This study is among the first
to report failed lane change attempts in discretionary lane
change manoeuvres, and there is a need for further research
to explore the underlying mechanisms leading to these
changes in decision-making.

Finally, the presented model builds upon the risk-based
replanning of the CEI framework, a mechanism introduced
previously by Kolekar et al. [45]. In Kolekar’s model,
the perceived risk is derived by multiplying the cost of
an event (e.g., overtaking, going off-road, or encountering
obstacles) by its associated Driver Risk Field. I adopted
a simplified definition of these risk fields, focusing on
maintaining a safe distance within lane boundaries and
preventing off-road travel. A key distinction shared by
both approaches is that neither searches for an optimal
solution continuously. Instead, each model seeks to achieve
a specific objective (such as maintaining a desired speed)
while keeping the risk below a personal threshold. Humans,
for instance, do not optimise to drive perfectly in the centre
of a lane but rather stay within acceptable lateral limits.
The model reproduces this variability by using perceived
risk to maintain position within these limits, similar to
Kolekar’s Driver Risk Field.

5.2. Implications

The proposed model and the broader CEI framework
have several implications for the development and valida-
tion of AVs. Human-like reference models are essential
for the virtual testing of AVs. Yet, current human driver
reference models often lack sophisticated interactive ele-
ments and diverge significantly from real driver behaviours
[15]. The proposed lane change model did not result in any
crashes during the validation. This outcome highlights the
limitation of current reference models, which, as noted by
Olleja et al. [15], tend to overestimate crash occurrences
in cases where human drivers would not have collided.
However, it is important to note that the model is primarily
validated on typical interactive behaviours with moderate
to low severity rather than exceptional behaviours such
as those leading to crashes and/or serious conflicts (see
[46] for the definition of safety-related behaviour). Future
research should assess whether the model can prevent near-
crash events.

For a CEI-based model to serve as a benchmark for AV
testing, it must also capture driver reaction times and the
associated stimuli [15, 47]. While previous work with CEI
has demonstrated the framework’s ability to reproduce the
time required for drivers to achieve safe outcomes [26],
the current implementation is not explicitly validated on
reaction time and stimulus perception as it is not possible
to unambiguously define stimuli from the used naturalistic
driving data. Engström et al. [47] addressed this issue by
proposing the Non-Impaired Eyes ON reference model,
which accounts for situational dependence in response tim-
ing. Integrating conceptual insights from this model could
enhance belief construction within a CEI-based model,
enabling both the dynamic definition of stimuli and more



realistic belief updates leading to evasive responses. The
main advantage over existing benchmark models could
be that the CEI-based model is developed specifically for
interactive scenarios and thus might produce more realistic
interactive behaviour.

Beyond describing individual driver behaviour charac-
teristics in AV validation, the model also shows promise
to enhance virtual validation environments for AVs or in
microscopic traffic simulations. The results indicate that
this model can reproduce realistic manoeuvres and failures.
As in real life, traffic flow characteristics are strongly
influenced by how lane changes are executed [18]. There-
fore, incorporating delayed or failed lane change attempts
can impact traffic flow efficiency and safety. Accounting
for these execution processes could improve the realism
of microscopic simulations. It is worth noting that the
validation I conducted in the previous section involved at
most four vehicles. In reality, more vehicles can interact
during lane changes. Extending this model to large-scale
simulations raises questions about how beliefs, risk, and
communication cues scale when dozens or even hundreds
of vehicles are involved. The question of how this model
performs in large-scale simulations is left for future work.
Despite these challenges, the promise of a unified frame-
work for multi-agent traffic interactions holds considerable
appeal for industrial applications and further academic
exploration.

5.3. Limitations, Recommendation, and Future
Work

While the current study demonstrates the potential of
an integrated CEI-based approach, further refinements are
needed. Both the model implementation and the validation
method have important limitations.

First, this study used simplified components (plan,
communication, belief, and risk) to demonstrate the CEI
framework for a two-dimensional lane change model. The
plan is defined by desired velocity, acceleration, heading,
and steering input. The weighting factors for these param-
eters (λ1 − λ5) strongly influence both the incentive of
gaining speed and subsequent lane change decision once
perceived risk surpasses the upper threshold. At present,
precisely tuning these weights is essential to achieve de-
sirable tactical and operational behaviour. Although this
approach has been validated for straight highway segments
and shown to be robust to changes in these parameters,
its performance in other scenarios remains unknown. For
example, extending the model to account for road curva-
tures does not differentiate between the steering demands
of following a curved road and those of executing a lane
change.

A possible solution to account for this is adding ad-
ditional penalties in the cost function for deviating from
the current lane, which could help distinguish between
necessary steering adjustments for road curvature and in-
tentional lane-changing behaviour. Alternatively, because
risk is enforced through an optimization constraint in the
model’s planning process, one could expand perceived risk
to include event costs, as suggested by Kolekar et al.

[45]. Doing so would enable a CEI-based model to handle
discretionary lane changes and potentially other manoeu-
vres (e.g., road curvatures or obstacle avoidance) without
requiring separate plans for distinct driving objectives. In
this setup, the benefit-based trigger could be incorporated
by assigning a minimal cost to the perceived risk function
for the current lane rather than treating it as a separate plan
parameter.

Using a more sophisticated definition of perceived
risk (e.g., [45]), factors like curvature, lane endings, and
on-/off-ramps would be accounted for, supporting discre-
tionary and mandatory lane changes. A unified CEI-based
framework that covers these manoeuvres would be an
exciting step, revealing how reciprocal interactions vary by
lane change type. Since this study already shows that risk-
based replanning works for discretionary lane changes, it
can also be adapted to other lane change motives, each
involving different levels of risk-taking. Current litera-
ture acknowledges that mandatory and discretionary lane
changes often involve distinct risk thresholds [48, 49].
Accounting for these differences would allow a single
framework to handle various lane change types within a
unified interactive model.

Another limitation of the current model implementation
is the simplified beliefs, where driver state estimates are
treated as independent Gaussian distributions based on
extrapolating observed position, velocity, and heading. The
results show that this approach restricts the model’s ability
to anticipate courtesy manoeuvres, such as yielding space
for other vehicles to change lanes. Moreover, while drivers
are modelled as a joint interactive system, beliefs are still
treated as isolated per agent. In practice, seeing a fast-
approaching vehicle behind another vehicle in the next lane
might prompt drivers to anticipate a lane change and adjust
their speed. In contrast, the model only accounts for the
lane change once the manoeuvre has already begun or even
later. The communication used to construct these beliefs
relies solely on implicit cues, whereas human drivers also
depend on explicit communication, such as turn indicators,
to anticipate and adapt to a lane-changing vehicle [41].

Incorporating more realistic, multimodal belief con-
structions, such as trajectory prediction models like Tra-
jectron++ [50], or extending the model with explicit com-
munication could enable the model to account for more
reciprocal behaviours (e.g., courtesy lane changes or pre-
maturely braking). Another possibility could be to repre-
sent lateral behaviours using motion primitives, reflecting a
more human-like way of reasoning and anticipating the be-
haviour of others. Rather than expecting a lane change by
extrapolating position, velocity, and acceleration, a driver
could infer lateral intentions through predefined motion
primitives from the moment a behavioural shift is detected.

Finally, the highD dataset constrained the validation
process in three ways. Because the highD dataset recon-
structs velocity and acceleration from positions, insights
into control inputs are limited. Therefore, this study was
limited to comparing the relative velocities during lane
change execution to prove the plausibility of the model’s
operational behaviour. In addition, the highD highway
segments are short (420m), which restricts observation of



long-term behaviour and includes lane changes that start
before or end after the dataset’s boundaries. Moreover,
each driver contributes only one trajectory in all extracted
samples used for this study, with considerable variability
in initial positions and speeds between samples, making
it challenging to validate operational behaviour fully. Re-
lating the initial kinematics of vehicles to specific lane
change decisions (e.g., choosing to merge in front of or
behind another vehicle) becomes difficult without direct
measurements or repeated observations of the same driver’s
actions.

Nevertheless, these constraints did not undermine the
main conclusions of this work. Even though highD’s short
segments and reconstructed velocity data limited direct
comparisons of control inputs and long-term gap-keeping
behaviour, they still captured the lane change phases neces-
sary to evaluate whether the model can reproduce realistic
characteristics. The model’s demonstrated ability to pro-
duce plausible tactical decisions and operational character-
istics that are both acknowledged in empirical research, as
seen in the data, remained valid within highD’s scope. For
future studies, however, collecting a highD-like dataset that
covers longer stretches of road (e.g., multiple kilometres)
would improve validation. Such data could include full
lane change trajectories, from the first indication of intent
through completion, allowing insights into long-term gap-
keeping behaviour and repeated observations of the same
drivers. A possible intermediate step could be test-track
experiments, where control inputs and repeated measure-
ments of driver behaviour are recorded. This would allow
the validation of the variability between drivers and the
variability within a single human’s behaviour.

6. Conclusion

In conclusion, this research tries to overcome the gap
in discretionary lane change models by simulating recipro-
cal interactions and integrating decision-making and low-
level control actions within a unified model. The pro-
posed model for discretionary lane change interactions is
based on the Communication-Enabled Interaction frame-
work [25]. The findings demonstrate that the model suc-
cessfully reproduces quantitatively and qualitatively indi-
vidual behaviours and collective contributions while also
demonstrating how varied tactical choices yield distinct,
human-like operational outcomes. Subsequent research can
build on my findings to refine human behaviour models
further and strengthen the validation of automated vehicles
in dynamic, reciprocal traffic contexts, thereby supporting
safer, more efficient mobility systems.
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Model and Simulation Parameters
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Table A.1: Model Parameters

Description Parameter Value

Simulation Parameters

Simulation time step dt 0.05s

Time horizon T 8s

Belief frequency fb 4Hz

Communication Parameters

Longitudinal velocity noise scaling βlong 0.5

Lateral velocity noise scaling βlat 0.05

Perception update rate αc 0.1s

Belief Parameters

Longitudinal comfortable acceleration ac,long 1m/s2

Lateral comfortable acceleration ac,lat 0.1m/s2

Belief scaling factor ϕ 3

Memory length Tm 2s

Heading convergence factor ηconv 0.8

Risk Parameters

Risk bounds

ρl

ρu

 U(0.2, 0.3)

U(0.4, 0.5)



Risk incentives


λu,dx

λu,dv

λl,dx

λl,dv




0.002

−0.02

0.002

−0.02


Risk steepness η 5

Middle risk heading std σheading 0.01rad

Plan Parameters

Weight longitudinal velocity λ1 4e−1

Weight lateral velocity λ2 1e1

Weight for heading deviation λ3 1e3

Weight for steering input λ4 1e3

Weight acceleration input λ5 5

Saturation time τ 3s

Evidence Accumulation Parameters

Drift rate αb U(0.02, 0.04)

Critical value for speed difference θcrit U(3.0, 4.0)m/s

Boundary B 1



B
Preliminary Controlled Simulations

This appendix presents preliminary checks to ensure the model behaves consistently in various traffic
scenarios and generates plausible tactical and operational behaviour.

In the preliminary simulations, I systematically vary the number of considered agents and the initial
positions and speed of these vehicles to observe how all agents interact and adapt their behaviours
based on surrounding vehicles. All simulations follow the parameter settings in Appendix A but use a
constant critical value of 4.0 for the benefit-based trigger. This ensures the trigger is primarily activated
at higher velocity differences from the lead vehicle, allowing a focused evaluation of the risk-based
trigger at lower relative speeds. Additionally, each agent’s desired velocity is set to its initial velocity.
Each simulation is performed on a two-lane highway of 800m length and 3.5m lane width. All simulations
are performed with CEI agents.

B.1. Two Agents: Lead Vehicle Interactions

Scenario description:

This scenario demonstrates how the initial gap and speed difference between an ego vehicle and a
lead vehicle influence the ego’s lane-change decisions and timing. In these scenarios (Figure B.1), I
consider two vehicles on a two-lane road, where an orange ego vehicle approaches a slower green
lead vehicle. In each sub-scenario (Figure B.1a-f), I vary two parameters: the initial gap between the
ego and the lead (80m, 50m, or 30m) and the lead vehicle’s speed at (25m/s, 27m/s, or 29m/s). The
ego vehicle always starts at 30m/s.

In scenarios a) and b), the gap is 80m; in scenarios c) and d), the gap is 50m; and in scenarios e) and
f), the gap is 30m. The only difference for each pair is that the lead vehicle’s initial speed is 25m/s in
the first case and 27 or 29m/s in the second.

In each sub-scenario, both vehicles are initially in the same lane. The ego vehicle’s faster speed
eventually causes it to close in on the leading vehicle, prompting a decision to either stay behind and
slow down or change lanes to maintain the desired speed.
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Figure B.1: Two-vehicle scenarios involving an orange ego vehicle and a slower green lead vehicle. The scenarios vary the
initial gap between the vehicles (80m, 50m, or 30m) and the lead vehicle’s speed (25m/s, 27m/s, or 29m/s).

Expected behaviour:

It is expected that as the initial gap between the ego and the lead vehicle decreases, the urgency of
deciding whether to brake or overtake will increase. When the gap is large (80m), the ego vehicle should
have sufficient time to react, allowing it to plan a gradual response, such as slowing down or making an
early lane change to maintain the desired speed. At a medium gap (50m), the ego will likely encounter
the lead vehicle sooner, requiring a faster decision to either brake or overtake before excessive speed
loss occurs. At the smallest gap (30m), any speed difference should immediately prompt action of the
ego vehicle, such as braking or a lane change, to prevent tailgating.

Similarly, changing the lead vehicle’s speed from 25m/s to 27 or 29m/s reduces the speed difference
with the ego, which is constant at 30m/s. A large speed difference (e.g., 30m/s ego vs 25m/s lead)
means the gap closes quickly, prompting the ego to brake earlier or plan an overtake. When the lead’s
speed is closer to the ego’s speed (e.g., 29m/s vs 30m/s), the gap closesmore slowly or even stabilizes,
so the incentive to overtake the lead vehicle is less. In practice, it is expected that a shorter initial gap
and a slower lead together lead to a more decisive and earlier replan. In contrast, a more significant
gap or a faster lead is expected to require only moderate adjustments from the ego vehicle.

Observed behaviour:

Across all six sub-scenarios (Figure B.2-B.7), the observed outcomes match the expected patterns of
ego vehicle behaviour. Larger initial gaps and higher lead speeds induce slower closure rates, so the
ego has more time to evaluate potential manoeuvres, often changing lanes later. Smaller gaps and
greater speed differences, by contrast, trigger earlier decisions, with the ego either switching lanes
almost immediately to avoid braking (as in sub-scenario c Figure B.4 and e Figure B.6) or moderating
its speed quickly once the risk threshold is reached (as in sub-scenario b Figure B.3 and d Figure B.5).
In sub-scenario f) (Figure B.7), the ego remains in the current lane and drops its speed below that of
the lead vehicle to keep a safe following distance, then slightly accelerates to maintain the desired gap,
demonstrating typical car-following behaviour.

This consistent interplay between the gap and speed difference demonstrates that the model behaves
as expected. It balances the benefit of maintaining speed against the rising risk of tailgating and re-
sponds earlier when the threat is greater or the closure rate is high. Consequently, these simulations
demonstrate that the ego vehicle’s decision-making mechanisms function as designed.
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Figure B.2: Sub-scenario a). Initial conditions: the ego vehicle starts at v(t0) = 30m/s, with a gap of 80m to the lead vehicle,
which has an initial speed of v(t0) = 25m/s. This large gap and speed difference creates a scenario where the ego vehicle has
sufficient time to evaluate and execute its manoeuvre as it closes in on the lead vehicle. After 80m of travel, the benefit-based
trigger initiates an early lane change.

Figure B.3: Sub-scenario b). Initial conditions: the ego vehicle starts at v(t0) = 30m/s, with a gap of 80m to the lead vehicle,
which has an initial speed of v(t0) = 27m/s. The smaller speed difference relative to sub-scenario a) allows the gap to close at
a slower rate, reducing the urgency of the ego vehicle’s response. The speed difference is not high enough to trigger a benefit-
based lane change; however, at a gap of 40m, the upper-risk threshold is exceeded, and a lane change is initiated.
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Figure B.4: Sub-scenario c). Initial conditions: the ego vehicle starts at v(t0) = 30m/s, with a gap of 50m to the lead vehicle,
which has an initial speed of v(t0) = 25m/s. With the smaller gap, the ego vehicle encounters the lead vehicle sooner, ne-
cessitating an earlier decision to either brake or overtake. The ego vehicle immediately plans a lane change at initialisation to
prevent speed loss and reduce the perceived risk. During the manoeuvre, the risk remains high for the ego vehicle due to the
lane proximity risk and insufficient heading adjustment, but it is resolved once the lane is crossed.

Figure B.5: Sub-scenario d). Initial conditions: the ego vehicle starts at v(t0) = 30m/s, with a gap of 50m to the lead vehicle,
which has an initial speed of v(t0) = 27m/s. The moderate gap and smaller speed difference provide the ego vehicle with less
time to react than sub-scenario b) but more time than sub-scenario c). After 100m of travel, the upper-risk threshold of the ego
vehicle is exceeded and replans with a lane change.
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Figure B.6: Sub-scenario e). Initial conditions: the ego vehicle starts at v(t0) = 30m/s, with a gap of 30m to the lead vehicle,
which has an initial speed of v(t0) = 25m/s. Both vehicles are initialized in a high-risk scenario, characterized by close proximity
and a significant relative speed. As a result, the ego vehicle immediately plans a lane change, while the lead vehicle creates
more space by swerving to the right.

Figure B.7: Sub-scenario f). Initial conditions: The ego vehicle starts at v(t0) = 30m/s, with a gap of 30m to the lead vehicle,
which has an initial speed of v(t0) = 29m/s. The small gap and minor speed difference lead to a gradual closure, reducing the
immediate incentive for the ego vehicle to overtake. As the relative speed remains low, the ego vehicle decreases its speed after
surpassing the upper-risk threshold and aligns its speed with that of the lead vehicle after a lower-risk replan. Due to the risk
incentive function, the risk threshold of the ego vehicle is lower, allowing the ego vehicle to plan first and avoid a collision.
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B.2. Three Agents: Left-Following Vehicle Interactions
Scenario description:

This scenario demonstrates how the presence of a left-following vehicle impacts the ego vehicle’s
decision to overtake a slower lead vehicle, considering variations in relative distances and speeds to
the left-following vehicle. In these scenarios (Figure B.8), I consider three vehicles on a two-lane road:
the ego (orange) approaches a slower lead vehicle (green) on the right lane, while a left-following
vehicle (blue) travels behind the ego on the left lane.

In sub-scenarios a) and b), both the ego and left-following vehicle start 50m apart, and the ego, in
turn, is 50m behind the lead. The left-following vehicle’s speed is either the same as the ego (30m/s)
for a) or slightly higher (32m/s) for b), while the lead vehicle consistently travels at 26m/s across all
sub-scenarios.

In sub-scenarios c) and d), the only difference is that the left-following vehicle is now only 20m behind
the ego instead of 50m. Finally, in sub-scenarios e) and f), the ego and left-following start at the same
initial position at different lanes, with a distance of 50m to the leading vehicle. Again, the left-following
vehicle’s speed alternates between matching the ego’s 30m/s or exceeding it at 32m/s.

Across these configurations, the ego’s decision to overtake the slower lead depends on whether there
is sufficient space in the left lane, mainly if the left-following vehicle is drawing close or travelling faster,
and on the benefit of passing a slower lead (at 26m/s).

Figure B.8: Three-vehicle scenarios on a two-lane road involving an orange ego vehicle following a slower green lead vehicle
and a blue left-following vehicle on the adjacent left lane. The scenarios examine variations in the left-following vehicle’s distance
to the ego (50m, 20m, or 0m) and its speed (30m/s or 32m/s), along with the ego’s interaction with the slower lead vehicle.

Expected behaviour:

In sub-scenarios a) and b), where the ego and the left-following vehicle each start 50m from one another,
it is expected that the ego can change lanes without cutting off the left-following vehicle. In these cases,
the left-following vehicle either travels at the same speed (30m/s) or slightly faster (32m/s). Hence, the
ego vehicle is expected to change in front of the left-following vehicle if there is enough time to complete
the manoeuvre before the left-following vehicle closes the gap.

In scenarios c) and d), the left-following vehicle starts only 20m behind the ego, making it more difficult
to merge in front without potentially creating a risky gap. Suppose the ego still wishes to pass the
slower lead vehicle (26m/s). In that case, it must decide whether to accelerate sufficiently to enter
the left lane ahead of the left-following vehicle or to wait until the left-following vehicle has passed and
change lanes behind.

Similarly, in sub-scenarios e) and f), the ego and left-following vehicle start at the same longitudinal
distance. In these cases, the ego vehicle is expected to change lanes behind the left-following vehicle.
Essentially, as the left-following closes more rapidly or the initial spacing decreases, it is expected that
the ego finds it riskier to merge in front and may delay a lane change or accept remaining behind the
lead until the adjacent gap is more favourable. Hence, it is expected that a delayed lane change leads
to a better situation for the ego vehicle.
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Observed behaviour:

Across all six sub-scenarios (Figure B.9-B.14), the observed outcomes align with the expected be-
haviour of lane-changing benefits and risks when a third vehicle is present.

In sub-scenarios a) (Figure B.9) and b) (Figure B.10), where the left-following vehicle starts 50m behind,
the ego completes a lane change manoeuvre without undue conflict. However, in b), the slightly faster
left-following vehicle forces a speed adjustment when the ego merges in front. By contrast, in sub-
scenarios c) (Figure B.11) and d) (Figure B.12), a reduced initial gap of 20m makes changing lanes
ahead of the left-following vehicle riskier, prompting the ego to slow and delay its lane change until the
left-following vehicle passes.

A similar strategy emerges in sub-scenarios e) (Figure B.13) and f) (Figure B.14), where the ego and
left-following vehicle start side by side with only 50m to the slower lead: the ego initially remains behind
the left-following vehicle, waiting for the moment to overtake the lead. In f), the higher speed of the
left-following vehicle (32m/s) further eases the ego’s decision to merge in behind.

These results confirm that larger gaps or matched speeds (sub-scenarios a and b) allowmerges in front.
In contrast, closer spacing or faster left-following speeds (sub-scenarios c, d, e, and f) drive the ego to
merge behind or temporarily reduce its speed. Overall, the ego’s decisions reflect the expected balance
between overtaking the slower lead and avoiding conflicts with the adjacent lane, demonstrating that
the model consistently responds to the distance and relative speed of surrounding traffic.

Figure B.9: Sub-scenario a). Initial conditions: The ego vehicle starts at v(t0) = 30m/s, with a gap of 50m to the lead vehicle,
which has an initial speed of v(t0) = 26m/s. The left-following vehicle starts 50m behind the ego at v(t0) = 30m/s. The ego
initially reduces its speed slightly, then exceeds the upper-risk threshold and successfully performs a lane change, maintaining
sufficient space ahead of the left-following vehicle.
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Figure B.10: Sub-scenario b). Initial conditions: The ego vehicle starts at v(t0) = 30m/s, with a gap of 50m to the lead vehicle,
which has an initial speed of v(t0) = 26m/s. The left-following vehicle starts 50m behind the ego at v(t0) = 32m/s. The ego
initiates a lane change but fails to accelerate to match the speed of the left-following vehicle, forcing the left-following vehicle to
brake and align with the ego’s speed.

Figure B.11: Sub-scenario c). Initial conditions: The ego vehicle starts at v(t0) = 30m/s, with a gap of 50m to the lead vehicle,
which has an initial speed of v(t0) = 26m/s. The left-following vehicle starts 20m behind the ego at v(t0) = 30m/s. Due to the
small gap, the ego delays its lane change, slows down to let the left-following vehicle pass, and then accelerates to its desired
speed.



B.2. Three Agents: Left-Following Vehicle Interactions 31

Figure B.12: Sub-scenario d). Initial conditions: The ego vehicle starts at v(t0) = 30m/s, with a gap of 50m to the lead vehicle,
which has an initial speed of 26m/s. The left-following vehicle starts 20m behind the ego at v(t0) = 32m/s. The same scenario as
in c) occurs, with the ego delaying its lane change until the left-following vehicle passes and then merging behind it. However, the
higher speed of the left-following allows the ego to brake less aggressively and stay closer to its original speed before merging.

Figure B.13: Sub-scenario e). Initial conditions: The ego and left-following vehicles both start at v(t0) = 30m/s, at the same
longitudinal position but in different lanes, with a gap of 50m to the lead vehicle travelling at v(t0) = 26m/s. The ego vehicle
slightly reduces its speed, changes lanes immediately after the left-following vehicle, and then accelerates to its desired speed.
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Figure B.14: Sub-scenario f). Initial conditions: The ego and left-following vehicles both start at the same longitudinal position
but with different speeds: v(t0) = 30m/s for the ego and v(t0) = 32m/s for the left-following vehicle. The lead vehicle travels at
v(t0) = 26m/s with a gap of 50m to the ego. The same scenario as in e occurs; however, due to the speed difference between
the ego and the left-following vehicle, the ego does not need to reduce its speed and changes lanes immediately after the left-
following vehicle.
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B.3. Four Agents: Complex Multi-Vehicle Interactions

Scenario description:

This scenario (Figure B.15) demonstrates the ego vehicle’s behaviour inmore complex traffic conditions,
involving interactions with a lead vehicle (green), a left-following vehicle (blue), and a left-lead vehicle
(purple), to assess how varying gaps and speeds influence lane-change strategies.

The orange ego vehicle follows a slower green lead vehicle (26m/s) in the right lane, initially separated
by 50m. Meanwhile, two more vehicles drive on the left lane: a purple left-lead vehicle ahead and a
blue left-following vehicle behind.

In sub-scenarios a) and b), all vehicles except the green lead vehicle start with an initial speed of 30m/s,
and the distance between each vehicle is 50m. The only difference between these two scenarios is
that in scenario b), the left-following and left-leading vehicle speeds are increased to 32m/s.

In sub-scenarios c) and d), the distance between the ego vehicle and the purple left-lead vehicle is
reduced to 20m, while all other distances remain unchanged. As in the previous cases, the left-following
and left-leading vehicle alternates between 30m/s (scenario c) and 32m/s (scenario d).

Across all four sub-scenarios, the ego vehicle, travelling at 30m/s, must decide how to overtake the
green lead vehicle. This decision depends not only on whether the left lane is clear behind it (i.e.,
whether the left-following vehicle is present) but also on whether the left-lead vehicle is moving fast
enough to make merging into the left lane a viable option.

Figure B.15: Four-vehicle scenarios with an orange ego vehicle approaching a slower green lead vehicle in the right lane, a
purple left-lead vehicle ahead, and a blue left-following vehicle behind in the adjacent left lane. Variations include distances
between vehicles (50m or 20m) and the left-following and left-lead vehicle’s speed (30m/s or 32m/s).

Expected behaviour:

It is expected that as the ego vehicle approaches the slower green lead vehicle, it will assess whether
a lane change to the left is feasible. When the purple left-lead vehicle is travelling at a similar speed to
the ego (30m/s) and the available gaps are large (50m), the ego should be able to merge into the left
lane ahead of the blue left-following vehicle without significant disruption. However, if the blue vehicle
is moving faster (32m/s), the ego may either accelerate quickly to merge in front or wait until the blue
vehicle passes to merge safely behind.

When the gap to the purple left-lead vehicle is small (20m), the ego is expected to evaluate whether
there is sufficient space to accelerate and avoid tailgating. A tighter available gap or a faster blue left-
following vehicle should increase the risk of merging into the left lane, potentially leading the ego to
delay overtaking and remain behind the green lead vehicle at 26m/s until a better opportunity arises.
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Observed behaviour:

Across all four sub-scenarios (Figure B.16-B.19), the observed results match the anticipated balance
between overtaking the slower green lead and avoiding conflicts in the left lane.

In sub-scenario a) (Figure B.16), where the blue left-following vehicle shares the same speed (30m/s),
the ego merges left with minimal disruption. In sub-scenario b) (Figure B.17), a faster blue left-following
vehicle (32m/s) forces a tighter merge; the ego still changes lanes but compels the left-following vehicle
to reduce speed slightly.

The pattern shifts in sub-scenario c) (Figure B.18), where the purple left-lead is only 20m behind, and
the blue left-following travels at 30m/s. The ego stays momentarily behind the green lead until the
left lane opens up, then merges between the left-leading and left-following vehicles. Finally, in sub-
scenario d) (Figure B.19), the combination of a tight gap ahead (20m to the purple left-lead) and a
faster left-following behind (32m/s) prompts the ego to wait longer; once the blue vehicle passes, it
merges behind both left-lane vehicles. These variations confirm that the ego’s lane change strategy,
whether to slip in front or merge behind, depends on the available gap to the left-lane vehicles and the
relative speed of the left-lane vehicles.

Figure B.16: Sub-scenario a). Initial conditions: The ego vehicle starts at v(t0) = 30m/s, with a gap of 50m to the green lead
vehicle (v(t0) = 26m/s). The purple left-lead vehicle is 50m ahead of the ego, and the blue left-following vehicle is 50m behind,
both at v(t0) = 30m/s. The ego vehicle slightly reduces its speed and changes lanes into the left lane. It aligns behind the purple
left-lead vehicle, maintaining a safe distance and avoiding disruption to the blue left-following vehicle. After completing the lane
change, the ego increases its speed to continue overtaking the green lead vehicle.
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Figure B.17: Sub-scenario b). Initial conditions: The ego vehicle starts at v(t0) = 30m/s, with a gap of 50m to the green
lead vehicle (v(t0) = 26m/s). The purple left-lead vehicle is 50m ahead, and the blue left-following vehicle is 50m behind at
v(t0) = 32m/s. The ego vehicle initiates a lane change in front of the blue left-following vehicle, which is travelling at a higher
speed. This forces the blue vehicle to slightly reduce its speed to accommodate the ego’s manoeuvre. After merging into the left
lane, the ego aligns behind the purple left-lead vehicle and maintains a safe distance while overtaking the green lead vehicle.

Figure B.18: Sub-scenario c). Initial conditions: The ego vehicle starts at v(t0) = 30m/s, with a gap of 50m to the green
lead vehicle (v(t0) = 26m/s). The purple left-lead vehicle is 20m ahead, and the blue left-following vehicle is 50m behind at
v(t0) = 30m/s. The ego vehicle reduces its speed and stays behind the green lead vehicle in the right lane. It delays the lane
change until the spacing in the left lane becomes more favourable. Once the purple left-lead has passed, the ego initiates a lane
change in front of the blue left-following vehicle and accelerates to overtake the green lead vehicle.
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Figure B.19: Sub-scenario d). Initial conditions: The ego vehicle starts at v(t0) = 30m/s, with a gap of 50m to the green
lead vehicle (v(t0) = 26m/s). The purple left-lead vehicle is 20m ahead, and the blue left-following vehicle is 50m behind at
v(t0) = 32m/s. The ego delays its lane change due to the faster blue left-following vehicle and the tight gap to the purple left-lead
vehicle. After the blue vehicle passes, the ego merges into the left lane behind both the blue left-following vehicle and the purple
left-lead vehicle. The ego maintains its position behind these vehicles while continuing to follow the flow of traffic.



C
Systematic Validation Against

Literature on Lane Change Behaviour

This chapter presents a systematic validation of the lane changemodel in controlled simulations against
literature on lane change behaviour. Research on discretionary lane changes consistently identifies that
drivers base their decisions on a combination of factors from their current and target lanes (see [1] for
a review). In the current lane, drivers typically consider their own speed, the spacing of the vehicle
ahead, and the difference in speed relative to that vehicle ([2]–[4]). In the target lane, common factors
for the decision to change lanes are the available gap in front of and behind vehicles in the adjacent
lane, as well as on the relative speeds of those vehicles [2], [5].

The primary aim of this validation is to evaluate how variations in relative speeds and the gaps between
vehicles influence the motivation to change lanes and determine whether a lane change is executed
with the presented model. I investigated two categories of factors:

• Factors related to the current lane: How the speed difference and gap between the ego vehicle
and a slower vehicle ahead affect the decision to initiate a lane change.

• Factors related to the target lane: How the size of the gap and the speed difference with a vehicle
following in the adjacent lane influence the accepted gap in front or behind that vehicle.

Following the literature, these validations focus on relative speeds and spatial gaps as the main deter-
minants of lane change decision-making behaviour. Although other factors, such as traffic density and
vehicle size, are recognised as important in lane change motivation [1], [3], [5], this validation is limited
to three agents: the ego vehicle, a lead vehicle, and a left following vehicle. This setup isolates the
effects of these specific interactions without additional traffic influences. As a result, the analysis only
considers the relative speed and distance to the lead vehicle in the current lane and the left following
vehicle in the target lane.

By comparing the model outcomes with the expected behaviour reported in the literature, this valida-
tion demonstrates that the model reproduces the aspects of driver decision-making related to relative
speeds and gaps. All simulations follow the parameter settings of Appendix A. Each scenario is run 20
times to capture the variability introduced by the stochastic belief construction and uniformly distributed
parameters.
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C.1. Effect of Varying Lead Vehicle Gap and Speed

Scenario Description:

The goal of this scenario (Figure C.1) is to assess how the ego vehicle’s lane-change decisions are
influenced by the initial gap (∆x1) and speed difference (∆v1) relative to a lead vehicle while keeping
external influences minimal. By systematically varying∆x1 (30, 40, 50, or 60m) and∆v1 (0 to 4m/s), the
simulation isolates the impact of these two factors on the ego’s timing and likelihood of lane-changing.

The scenario consists of an ego vehicle (orange) travelling behind a slower lead vehicle (green) in
the same lane on a two-lane highway. A left-following vehicle (blue) is positioned ∆x2 = 50m behind
the ego in the adjacent lane and travelling at the same speed as the ego vehicle(∆v2 = 0m/s). This
ensures that the left-following vehicle never “catches up” to the ego, reducing its influence on the ego’s
decision to change lanes. The leading vehicle in each scenario drives at 26m/s, and the ego and
left-following vehicle speeds are adjusted based on the relative speed ∆v1.

Figure C.1: Overview of the simulation setup designed to validate the influence of the initial gap (∆x1) and speed difference
(∆v1) between the ego vehicle (orange) and the lead vehicle (blue) on lane-change decisions.

Expected Behaviour:

Empirical studies have shown that even moderate increases in the speed difference can lead to a shift
in driver behaviour, with drivers opting to change lanes to gain speed advantages [1], [2]. When the
ego vehicle has little or no speed advantage over the lead (e.g., ∆v1 ≈ 0), the incentive to overtake
is minimal, as there is no significant speed benefit. For small speed differences (approximately 0 to 2
m/s), a lane change offers limited advantages, and the ego vehicle is expected to stay in lane, matching
the lead vehicle’s speed and maintaining a safe following distance. However, as ∆v1 increases to 2–4
m/s, the ego vehicle becomes more motivated to overtake, given the greater speed discrepancy. In
this case, it is expected that the ego vehicle changes lanes more often.

Finally, studies of naturalistic driving also highlight variability in how drivers interpret and act upon these
factors [1], [5]. Differences in individual risk thresholds in the decision-making process lead to hetero-
geneity in the timing and likelihood of lane changes. Consequently, while larger speed differences
generally increase the frequency of lane changes, some drivers will remain in the current lane under
conditions where others would have already initiated an overtaking manoeuvre.

Observed Behaviour:

Figure C.2 shows how the fraction of simulations, including lane changes, increases with ∆v1. As
expected, at or near 0m/s difference, no lane changes occur since the vehicles travel at nearly the
same speed. At moderate∆v1 values (1−2m/s), the lane-change rate rises only for vehicles initialized
close to the lead vehicle (∆x1 = 30 m). At higher ∆v1 values (3− 4m/s), nearly all runs involve a lane
change.

Still, the repeated trials reveal variability in the ego vehicle’s decision-making: in some instances, the
ego remains in its current lane to avoid unnecessary manoeuvres, while in other simulations, it over-
takes more decisively, reflecting subtle differences in risk thresholds and the stochastic belief construc-
tion. This effect can be observed when ∆x1 = 30 m and ∆v1 is small (around 1 m/s), where a subset
of trials shows a lane change, and others do not.
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Figure C.3 presents the time headway to the lead vehicle at the moment when a lane change starts
as a function of ∆v1. Several observations stand out. Larger ∆v1 often coincides with a higher time
headway at the manoeuvre start. Because the ego recognizes a strong incentive to overtake, it plans
the manoeuvre before the headway grows dangerously small. Thus, although the lane change may
occur sooner in absolute time, it still happens at a more comfortable, i.e., larger, headway. Additionally,
there is greater variability at higher ∆x1. For initial distances of 50m or 60m, the ego can either wait or
pass relatively early, resulting in higher time headway values. There is less time to react with shorter
initial gaps, such as 30m, so most drivers initiate a swift pass. As a result, lane changes at this distance
are planned almost immediately, leading to values that are closely together.

Figure C.2: Fraction of simulations that result in a lane change as a function of the initial speed difference ∆v1 to the lead
vehicle, grouped by initial gap ∆x1. Error bars denote binomial proportion standard error of mean.

Figure C.3: Time headway to the lead vehicle at the start of a lane change versus ∆v1. The error bars represent interquartile
ranges.
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C.2. Effect of Varying Left-Following Vehicle Gap and Speed

Scenario Description:

The goal of this scenario is to assess how the gap (∆x2) and speed difference (∆v2) of a left-following
vehicle influence the ego vehicle’s decision to change lanes, particularly whether ego accepts the gap
ahead of or behind the left-following vehicle.

The simulation setup is similar to the one described in Section C.1, where an ego vehicle (orange)
follows a lead vehicle (green) in the same lane on a two-lane highway. A left-following vehicle (blue)
is included in the left adjacent lane, as illustrated in Figure C.1. However, unlike the previous setup,
the lead vehicle is positioned at a fixed distance of ∆x1 = 60m ahead of the ego vehicle and travels
4m/s slower than the ego vehicle (∆v1 = 4m/s). The ego vehicle maintains a constant initial velocity
of 30m/s, ensuring that a lane change is always prompted due to the velocity difference between the
ego and the lead vehicle.

The influence of the left-following vehicle, travelling in the adjacent lane, is studied by systematically
varying the relative distance ∆x2 with values of 0, 20, 40, and 60m, and the relative velocity ∆v2, which
ranges from −4 to 2m/s, meaning the left-following vehicle can be up to 4m/s faster or 2m/s slower.
This configuration isolates how the gap and speed of the left-following vehicle impact the ego vehicle’s
lane change decision. All simulations follow the parameter settings of Appendix A.

Expected Behaviour: Empirical research suggests that gap acceptance during lane changes de-
pends on both the spatial gap (∆x2) and the relative speed difference (∆v2) between the ego vehicle
and the left-following vehicle [2], [5].

When the approaching vehicle in the target lane is moving substantially faster (e.g., ∆v2 ≪ 0), drivers
typically delay the lane change until the faster vehicle passes, thereby reducing potential conflicts or
rear-end collision risks. Conversely, when the relative speed is similar or slightly in the ego vehicle’s
favour (i.e., ∆v2 ≈ 0 or positive), drivers may be more inclined to merge ahead, provided there is
sufficient space to accelerate and maintain a safe following distance once in the new lane [5].

Observed Behaviour: Figure C.4 shows how the fraction of simulations, including a lane change,
is performed either in front of or behind the left-following vehicle. As expected, the number of lane
changes performed in front increases with ∆v2. For large negative ∆v2 (e.g., −4m/s), lane changes
are most frequent behind the left-following vehicle when ∆x2 = 40m or 60m. This suggests that faster-
moving left-following vehicles create favourable conditions for the ego vehicle to merge behind them.
For smaller ∆v2 values (e.g., -1 m/s to 0 m/s), lane changes are increasingly performed ahead of the
left-following vehicle, particularly at larger ∆x2. This reflects the ego vehicle’s ability to change into the
adjacent lane without interfering with the left-following vehicle’s trajectory.

In addition to these aggregate trends, the simulation data exhibit variability between each trial, highlight-
ing how differences in risk thresholds can alter the outcome. Even under similar initial conditions (e.g.,
a moderate negative ∆v2 and medium spacing), some ego vehicles will opt to merge behind, while
others will choose to merge in front if they judge the gap to be sufficient. This variability is most evident
at transitional values of ∆v2, where neither merging in front nor merging behind is preferred across
all trials. As the relative velocity approaches positive or near-zero values, the ego vehicle’s ability to
comfortably merge in front becomes more appealing, provided the spacing is sufficient. Conversely,
when the left-following vehicle is much faster (large negative ∆v2), merging behind offers a lower-risk
option.
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Figure C.4: Fraction of simulations that result in a lane change in front of the left-following vehicle as a function of the initial
speed difference ∆v2 to the left-following vehicle, grouped by initial gap ∆x2. Error bars denote binomial proportion standard
error of mean.



D
Grid Search

In order to reproduce observed tactical behaviours from the highD dataset, two parameters of the
benefit-based trigger, the drift rate α and the threshold θs, were calibrated via a grid search. By tuning
these parameters, I aimed to identify the settings under which simulated driver decisions most closely
resemble the real-world variability in lane-change decision and their timing.

D.1. Scenario and Dataset Extraction
A representative scenario from the highD dataset was selected to illustrate the decision-making process
and to serve as the basis for the grid search. In this scenario (see Figure D.1), the ego vehicle is
approaching a slower-moving truck. This situation frequently motivates an early lane change: the ego
driver anticipates slower traffic ahead and decides to switch lanes in advance to avoid being impeded
by the truck.

Figure D.1: Traffic scenario (highD dataset 20, frame 6103, ego vehicle id 318) used to extract similar samples using the
Hausdorff extraction method. The blue vehicle is the ego vehicle, with the red arrow indicating the driving direction. The green
vehicle denotes a slow-moving truck, all driving in the same direction on the two-lane highway.

To obtain variability in tactical behaviours under similar initial conditions, I applied the Hausdorff extrac-
tion method to the highD dataset [6]. This method identifies samples from the dataset most similar to
the representative scenario in terms of vehicle positions and velocities. As a result, 500 samples were
extracted, each reflecting comparable traffic conditions with variability in driver responses (Figure D.2).

Among these 500 extracted samples, the obtained tactical variability contains 136 samples containing a
lane change, and 164 samples remain in the initial lane (see Figure D.3). This distribution of responses
captures realistic, human-like decision-making in the presence of a slower-moving truck.
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Figure D.2: The spread of the blue points represents the samples obtained after the Hausdorff extraction. The top plot shows
the positions of surrounding vehicles relative to the ego vehicle, where the starts represent the scenario of interest. The bottom
plot shows the relative velocities of the surrounding vehicles (denoted by the stars) to the ego vehicle. The blue dots represent
the 500 closest context sets automatically extracted from the highD dataset.

Figure D.3: The variability in driver responses as they evolve from the 500 extracted samples.
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D.2. Grid Search Setup and Parameter Ranges
To systematically determine the influence of α and θs, I performed a grid search over a predefined set
of values. I used a 10 × 10 grid for every condition using the drift rate α in the range [0.005, 0.05]
and the threshold θs in the range [0.5, 5.0]. The boundary B was held constant at B = 1 to reduce
computational complexity, the numbers of simulations, and to isolate the effects of changing α and θs.

Thus, for each of the 10 α-values and 10 θs-values, a total of 10 × 10 = 100 parameter configurations
were evaluated. Under each configuration, 500 simulations were run using the extracted samples
(for a total of 50,000 simulations). In these simulations, all other parameters remained fixed, and lane
changes that risk considerations might trigger were limited by lowering the weight penalty on deviations
from desired velocity (λ1 = 0.1). This ensures that the observed lane-change decisions are driven
mainly by the benefit lane-change trigger being investigated.

D.3. Performance Metrics
To identify the best-fitting parameters, I evaluated each configuration against two performance metrics:

• F1-score: This metric measures how well the simulated lane-change decisions (lane-change vs.
no lane-change) match the responses observed in the dataset. It combines precision (the fraction
of correct positive predictions) and recall (the fraction of actual positive occurrences correctly
identified).

• Time headway at initiation: This refers to the time headway between the ego vehicle and the
slower-moving lead vehicle when a lane change is initiated.

• Combined metric: This metric integrates the F1-score and the time headway error into a single
performance indicator. It is calculated using the equation:

Combined Metric =
F1-score

1 + 1
max(THW error) × THW error

. (D.1)

D.4. Results
Based on the grid search results, the best-performing parameter range for the drift rate α lies between
0.02 and 0.04, and for the threshold θs, the range is between 3.0 and 4.0, as indicated by the high
combined metric values (blue regions) in the rightmost plot (Figure D.4). While the results are not
entirely convex, these regions exhibit the best performances.

Figure D.4: Results of the grid search on the drift rate α and threshold θs. The f1 score heatmap (left) shows how the simulated
lane change decisions align with the dataset’s observed responses. The mean time headway error heatmap (centre) evaluates
the timing/initiation of lane changes. The combined metric (right) integrates both metrics into a single performance indicator.
Higher values (blue regions) indicate better performance across all metrics.



E
Validation Without Benefit-Based

Trigger

When the benefit-based trigger is disabled, the model relies solely on risk-based replanning (by exceed-
ing the upper-risk threshold) to initiate lane changes. As shown in Table E.1, this approach reduces
the overall number of lane changes in scenario A from 36.2% to 29.0%. In Scenario B, it likewise lowers
the lane-change rate from 22.4% to 14.0%, bringing it closer to but not exactly matching the human rate
in that scenario (15%).

Figure E.1 presents the time-gap distributions at the moment of lane-change initiation for the lead, left-
following, and left-leading vehicles, aggregating data from both scenarios. Only samples in which both
the model and human drivers chose to change lanes are included. Each subplot indicates how the
model’s distribution (without the benefit trigger) shifts relative to the human distributions. Notably, the
median time gaps for the ego–lead and ego–left-following comparisons are smaller in the model. For
instance, the median ego–lead gap was 1.1s when the benefit-based trigger was active, dropping to
0.95s without it.

These smaller time gaps suggest a possible reason for the reduction in lane changes: the model does
not initiate a lane change when the lead vehicle is still relatively far away, whereas the benefit-based
trigger would have prompted an earlier lane change. Furthermore, the executed lane changes tend to
be initiated at smaller time gaps. As a result, relying solely on risk-based replanning often leads to later
or fewer lane changes than humans typically perform. Thus, incorporating both risk- and benefit-based
triggers allows the model to better reproduce human behaviour.

Table E.1: Tactical behaviour of the ego vehicle in scenarios A (high-speed-difference) and B (low-speed-difference), compar-
ing lane-change, lane-keeping, off-road events, and collision rates between the model with benefit-based replanning, ablation
without, and human drivers.

Scenario A: high-speed-difference Scenario B: low-speed-difference
Percentage Percentage Percentage Percentage Percentage Percentage

of model behaviour without benefit trigger of human behaviour of model behaviour without benefit trigger of human behaviour
Lane-change 36.2± 1.2 29.0 36.0 22.4± 2.7 14.0 15.0
Lane-keeping 63.7± 1.2 71.0 64.0 77.5± 2.8 86.0 85.0
Off-road 0.1± 0.2 0.0 0.0 0.1± 0.1 0.0 0.0
Collision 0.0± 0.0 0.0 0.0 0.0± 0.0 0.0 0.0
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Figure E.1: An overview of the accepted gaps at lane change initiation, without the benefit-based trigger. A) Estimated distribu-
tions of time gap at the moment of lane change initiation to the lead, left-following, and left-leading vehicle. Dashed lines indicate
the medians of each distribution. B) The relationships between the human and model behaviour for all data points corresponding
to the time gap distributions.
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