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Abstract
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mechanized by the introduction of Separation Logic and computer assisted verification
tools. However, the tools fail to achieve the readability and convenience of manual paper
proof outlines. This is a pity, because getting ideas and proofs across is essential for sci-
entific research. I introduce a mechanization for proof outlines of imperative programs
to interactively write human readable outlines in the dependently typed programming
language and proof assistant Agda. I achieve this by introducing practical syntax and
proof automation to write concise proof outlines for a simple imperative programming
language based on λ-calculus. The proposed solution results in proof outlines that com-
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Chapter 1

Introduction

The cost of poor software quality in 2020 was estimated to be $2.08 trillion in the US alone
(Krasner 2021). This estimate is composed of multiple types of failures in software quality,
but operational software failures are the largest contributor estimated to be $1.56 trillion in
losses. This cost has increased by 22% over the last two years (Krasner 2018). Most codebases
were found to use imperative programming languages, such as Java, C and C++ (Krasner
2021). Imperative languages use a sequence of statementswith side effects to change the state
of the program. In low-level imperative programming languages, failures often originate
from unsafe use of pointers. An infamous example is Heartbleed, a major vulnerability in
the openSSL cryptographic library, caused by buffer overflow, which is a consequence of
unsafe pointer handling (Carvalho et al. 2014).

Software failures arise from mistakes in programs made by programmers. A way of
mitigating mistakes is software testing. Programmers write tests that aim to find bugs in
a program by running the program on some input and verifying if the result is equal to the
expected result. However, tests only provide evidence that the program does not go wrong
for a particular set of inputs. Tests are not an exhaustive proof that the program under test re-
turns the correct result for every possible input or circumstance. There are always test cases
a software tester has not thought of. A quote by Dijkstra sums it up well: “Testing shows the
presence, not the absence of bugs” (Buxton and Randell 1970). This is whymistakes still slip
through in programs and potentially cause a software failure when the program is run on
unexpected input. This is especially true for imperative programming languages where the
state space can become huge if not carefully designed. In order to show the absence of bugs,
we turn to formal software verification.

Formal verification is the act of formally verifying properties of software. For example,
we can verify that a program does not try to read a null pointer or that a program correctly
sorts a list. We achieve these results by an exhaustive mathematical proof that a program
follows a specification. In general, formal verification tries to answer the question: “Have we
constructed a program that follows its specifications?”. Consequently, given a correct specifi-
cation of a program, formal verification shows the absence of bugs. Formal verification is an
established method for proving correctness of programs as illustrated by CompCert (Leroy
2021), a verified correct C compiler, or the proof of correctness of the HMAC algorithm in
openSSL (Beringer et al. 2015).

An approach to formal verification is deductive reasoning. We interpret programs as
mathematical objects andusemathematics and logic to reason about programs. Hoare (1969)
described a formal system for proving properties of programs. Based on the work of Dijkstra
(1968) and Floyd (1967), Hoare also showed how to construct readable proofs of programs,
known as proof outlines. A program is annotated by formal specifications of the program
state at every step of the program to realize the outline of a proof. Proof outlines are an excel-
lent way of introducing formal verification of programs to students and programmers. Proof
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1. INTRODUCTION

outlines are still used in research to convey reproducible readable proofs to peers (O’Hearn
2019).

A long unsolved problem in formal verification of imperative programswas the handling
of pointers. It was difficult to create an intuitive axiomatic treatment for the problem of
pointer aliasing (Bornat 2000), where two seemingly different pointers point to the exact
same location. Modifying the value at a location had the chance to change value that other
pointers point to. It was not until the turn of the millennium that the joint work of O’Hearn,
Reynolds, and Yang (2001) and Reynolds (2002) presented a breakthrough solution known
as Separation Logic, an extension of the system of Hoare that allowed for reasoning about
programs using separated state. Separation Logic elegantly solves the problem of pointer
aliasing by building state from smaller separate pieces of state. Because of this separation,
pointers are guaranteed to be separate locations and, therefore, not alias. Another reason
why separation logic is so successful is by the introduction of the frame rule by O’Hearn,
Reynolds, and Yang (2001) that makes the logic scalable (Pym, Spring, and O’Hearn 2019).
Furthermore, the frame rule guarantees that programs do not touch any locations outside of
their specification. Nowadays, Separation Logic is used as a basis for many formal program
verification tools (O’Hearn 2019).

Reasoning about programs can quickly become complex and tedious, so we use proof
assistants, such as Coq or Isabelle/HOL, to allow for interactive theorem proving. An imple-
mentation of a formal system of reasoning in a proof assistant is known as a mechanization.
This method of verification is detailed and precise and, therefore, requires extensive knowl-
edge on formal reasoning and program semantics. Currently, there exist mechanizations in
the proof assistant Coq, such as Iris (Jung et al. 2018) and VST-Floyd (Cao et al. 2018), to
interactively write proofs of program specifications by deductive reasoning based on Sepa-
ration Logic. However, a readable proof in the style of Hoare is lost through complex au-
tomation and proof scripts. The steps of reasoning are not directly clear to a reader and an
understanding of the framework is necessary in order to read the proofs.

In this thesis I present a mechanization of proof outlines that combine the readability of
Hoare style proof outlines and the precision of mechanizations in proof assistants. I present
an implementation of this mechanization in the dependently typed programming language
Agda (Norell 2007; 2008; AgdaDevelopment Team 2021). Agda is a functional programming
language based on Martin-Löf type theory (Martin-Löf 1982). Through the Curry-Howard
correspondence, which shows the correspondence between propositions and types, we can
write formal proofs as purely functional programs (Wadler 2015). So, Agda also functions
as a proof assistant to interactively write proofs. This results in writing interactive proof
outlines in the style of Hoare that are automatically verified by Agda.

1.1 Goal
Below follows the goal for this Master’s thesis:

Write readable proof outlines for imperative programs in Agda.

1.2 Contributions
The contributions of this thesis can be summarized by the following:

1. We define a syntax for axioms and rules to write mechanized proof outlines for imper-
ative programs in the style of Hoare and demonstrate an implementation in Agda (See
Chapter 4).

2



1.2. Contributions

2. We define proof automation by reflection to hide tedious proofs and demonstrate in
Agda that this results in shorter and more concise proof outlines (See Chapter 5).

3. We show that the previous contributions produce a mechanization of readable Hoare
style proof outlines in a case study on an imperative program that copies a list structure
(See Chapter 6).

See Appendix A for a reference of the implementation in Agda.
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Chapter 2

Separation Logic

Before we can define a mechanization for reasoning about an imperative programming lan-
guage, we have to define a formalmethod of reasoning aboutmutable state. Separation Logic
(SL) achieves this by separating state into disjoint shapes of state and only reasoning about
the minimal state necessary in order to assert that the rest of the state remains unaffected.
In this chapter we will explore and define the core specifications and how to combine them
into more practical specifications.

2.1 High-Level Overview
The idea of SL builds on early work by Burstall (1972) and the logic of Bunched Implica-
tions (O’Hearn and Pym 1999). SL is a formal system for reasoning about programs that
mutate data structures (O’Hearn, Reynolds, and Yang 2001; Reynolds 2002). SL is also an
assertion language for describing state as separated parts. In this chapter we will focus on
using SL for specifying mutable state of imperative programs. In Chapter 3 we will focus on
defining the formal reasoning method.

In SL we reason about specifications of state, in contrast to exact instances of state. We
call such a state a store or heap that contain locations that point to stored values, referring to
the dynamically allocated heap in programming languages. The abstract notion of memory
proves useful in formal reasoning, since we do not have to mention the details of the imple-
mentation of the underlying store and we can use the same line of reasoning for all instances
of stores.

Specifications are built up from combining singleton stores. A singleton is specified by
the points-to relation, written as l 7→ v, where l is a location and v the value l points to.
Singletons can be combined with the separating conjunction, written as H1 ∗H2, where H1

andH2 are store specifications. The separating conjunctionH1 ∗H2 describes a store that can
be separated into the two disjoint specifications H1 and H2. Larger stores can be described
from these simple core specifications. For example, the specification l 7→ 3 ∗ k 7→ 5 describes
a store that contains two values 3 and 5 at locations l and k respectively. Following from the
definition of the separating conjunction, we also have that l and k are two unique locations.
Therefore, l 7→ v ∗ l 7→ w is not a valid specification: a store can never be separated into two
equal locations.

The separation addresses the problem of pointer aliasing. Pointer aliasing occurs when
two or more pointers map to the same location and, therefore, updating the value that one
of the pointers map to also changes the values that other pointers map to. Furthermore,
deallocating an aliased pointer results in dangling pointers, which are pointers that map to
no valid value. Reading from dangling pointers can lead to memory safety violations. So, in
SL we eliminate these issues by using the separating conjunction to assert that locations are
unique and the points-to relation to assert that pointers map to a valid object.
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2. SEPARATION LOGIC

How canwe use Separation Logic to reason about imperative programs? We can formally
reason about programs through symbolic execution (Dijkstra 1968; Hoare 1969). We start by
writing down the program and the properties of the program that we would like to show.
The idea is to annotate the program with the properties at each step of the execution. At the
beginning of the program, we write down the specification of the state that we assume to
result in a valid execution of the program. At the very end of the program, we write down
the specification of the store that should be valid after the program has finished execution.
We write down the state in SL in between the lines enclosed by curly braces. Then, we sym-
bolically step through the program while updating our specification of the state after each
step. To illustrate this process, take a program that copies a pointer:

1 {l 7→ 2}
2 k := ref 0 ;
3 {l 7→ 2 ∗ k 7→ 0}
4 k := ! l
5 {l 7→ 2 ∗ k 7→ 2}

In this example, we use a made-up language where ref creates a new pointer from a value,
assigns it by := and reads from a pointer with ! sequenced by the ; operator. We start with
our precondition that a location l exists. Then we create a new location k with value 0. The
specification after this allocation reflects the updated state, which is now also separated by
the freshly allocated location. Then, we update the value that k points to with the value
that l points to and update the specification accordingly. Finally, we arrive at a specification
with a separate location k that maps to the same value of 2. SL is unambiguous in its final
specification, the program creates a new location k different from l and not just an aliased
pointer. In Chapter 3 we will formalize this process of reasoning further.

We have shown in the example that the program copies a pointer when it is assumed that
a single location exists. However, when this program is embedded in larger programs, then
the state may not be exactly l 7→ 2. This would mean we have to redo this proof for every
possible state that l 7→ 2 is embedded in. For this reason, SL has the frame rule to solve this
problem. The frame rule states that any proof also holds within any given frame separated
by ∗. So, with the frame rule we can derive a proof of this program which satisfies the state
of l 7→ 2 ∗H , where H is the frame.

The frame rule is also the key to local reasoning. We can interpret the frame rule as rea-
soning about a separated part of a store while other separated parts of the store remain un-
changed. Aprogram that adheres to a certain specificationwill never access locations outside
of its specification.

The “output” of a step in a proof outline might not be in the exact shape for the “input”
of the next step in the outline. Therefore, we should be able to reshape our state specifications
into other specifications that are not the same but carry the same meaning. In Separation
Logic this concept is also known as predicate entailment.

2.2 Predicate Entailment
A predicate entailment is a recipe for reshaping one store specification into another. For two
predicatesH1 andH2 wewrite down predicate entailment asH1 ` H2, which says that every
store that satisfies H1 also satisfies H2.

Store specifications in proof outlines are rarely in the correct shape for the next step of
a proof outline. So, we use predicate entailment to reshape our specifications in order to
advance in our proof outline. Take the following snippet of a proof outline where we have
arrived at a state of two locations l and k and our next step is to swap the values of the two
locations:

6



2.2. Predicate Entailment

1 {k 7→ 1 ∗ l 7→ 0}
2 ?
3 {l 7→ 0 ∗ k 7→ 1}
4 swap l k

Swap takes a state in the shape of l 7→ v ∗ k 7→ w and outputs a state of shape l 7→ w ∗ k 7→ v,
but our state at the start of the outline is of shape k 7→ 1 ∗ l 7→ 0. Now these shapes are not
equal, so, we cannot execute our call to swap. The question mark symbolizes this gap in our
reasoning. However, these two shapes clearly describe the same set of states. A state that
separates l from k is the same as one that separates k from l. So, we use entailment to show
that k 7→ 1 ∗ l 7→ 0 follows from l 7→ 0 ∗ k 7→ 1. In other words, we can reshape our state
into one that fits the specification of the swap function. Now we can fill in our gap with this
entailment and complete the outline. Finally, we arrive at the state where the values of l and
k have been swapped.

1 {k 7→ 1 ∗ l 7→ 0}
2 {l 7→ 0 ∗ k 7→ 1} # using entailment
3 swap l k
4 {l 7→ 1 ∗ k 7→ 0}

The previous example actually demonstrates one of the laws of ∗, namely commutativity.
The separating conjunction is also associative, which means that the order of application of
∗ does not matter. Furthermore, there exists an identity predicate emp, which describes the
empty state. The identity emp can be added to and removed from every separation, since
any specification can be separated into itself and an empty state. We can generalize these
laws in the following lemma.

Lemma 2.2.1 (Separating conjunction laws form a commutative monoid (emp, ∗)).

(H1 ∗H2) ∗H3 a` H1 ∗ (H2 ∗H3) ∗-ASSOCIATIVITY
H1 ∗H2 a` H2 ∗H1 ∗-COMMUTATIVITY
emp ∗H a` H ∗-LEFT-IDENTITY
H ∗ emp a` H ∗-RIGHT-IDENTITY

Weuse bi-entailmenta` as a shorthand for entailment in twodirections. The bi-entailment
H1 a` H2 says that any state that satisfies H1 also satisfies H2 and the other way around.
Bi-entailment also defines an equivalence on predicates that is reflexive, symmetric and tran-
sitive.

Lemma 2.2.2 (a` is an equivalence).

a`-REFLEXIVE

H a` H

a`-SYMMETRIC
H1 a` H2

H2 a` H1

a`-TRANSITIVE
H1 a` H2 H2 a` H3

H1 a` H3

The laws of ∗ show howwe can reshape a full specification in SL. However, we cannot yet
reason about shapes separately. We would like to reason with the minimal state necessary.
This not only results in a simpler specification, but it also assures that we do not access or
mutate any other resources outside of our specification. The previous outline for swap is
an excellent example of this. The swap function only takes the minimal state necessary: two
locations l and k. However, we have a problemwhenwe have a state that contains more than
just two locations, because swap is only defined for two locations. So, we need a rule to only
reshape a separate part without changing other separate parts. In SL this is formalized as
the monotonicity of the separating conjunction.

7



2. SEPARATION LOGIC

Lemma 2.2.3 (Monotonicity of separating conjunction with respect to entailment).
∗-LEFT-MONO

H2 ` H ′
2

H1 ∗H2 ` H1 ∗H ′
2

∗-RIGHT-MONO
H1 ` H ′

1

H1 ∗H2 ` H ′
1 ∗H2

∗-MONO
H1 ` H ′

1 H2 ` H ′
2

H1 ∗H2 ` H ′
1 ∗H ′

2

Monotonicity allows us to reshape a separate part of a specification while leaving the
other part unchanged. This is formalized as left monotonicity, where the left part of a sep-
arating conjunction remains unchanged, and right monotonicity, where the right part of a
separating conjunction remains unchanged. We can also combine them into general mono-
tonicity, where we reshape both parts of a separation.

In order to see how we can use these rules in proof outlines, we take the swap example
again, but now we start in a state that contains one more location:

1 {(l 7→ 0 ∗ k 7→ 1) ∗m 7→ 2}
2 {l 7→ 0 ∗ k 7→ 1} # Right monotonicity
3 swap l k
4 {l 7→ 1 ∗ k 7→ 0}
5 {(l 7→ 1 ∗ k 7→ 0) ∗m 7→ 2} # Restore

We apply right monotonicity to temporarily forget the separated m 7→ 2. Then, the indented
part proceeds the line of reasoning but now with only the minimal state necessary. We swap
the values andwe restore the part thatwe had temporarily forgotten about. We know for sure
that the location m remains unchanged, because it is not included in the actual swapping.
This also introduces the frame rule, which we will formally define in Chapter 3.

2.3 Store Predicates
So far, we have only seen predicates that describe state of separated locations and the empty
state, using the separating conjunction ∗, points-to relation 7→ and empty predicate emp.
However, with just these predicates we cannot describe more complex states. What if we
want to, for example, describe a state that does not contain an odd number? This is simply
not possible. So, usually in SL we define more predicates and combine them into more com-
plex specifications. In Table 2.1 we list the predicates we will be using and the sets of stores
describe.

Most notable and useful is the pure predicate. With a pure predicate we can embed
statements from propositional logic into our specifications. They are called pure because
they are independent of the store. This will be very useful in our mechanization, since we can
say something about the locations and values in our specification. We define pure predicates
to specify the empty store, since we can easily combine the empty store with the separating
conjunction using the left and right identity of emp. For example, we can now describe a
state that contains a single value that is greater than 10 with Jv > 10K ∗ l 7→ v, which can
be read as: the empty store and v is greater than 10 and separately a location l that maps to
v. For convenience, we define some rules for reasoning with pure predicates that introduce,
eliminate and map a proposition in a separation.

Lemma 2.3.1 (Rules for pure predicates).
PURE-INTRO

P

H ` JP K ∗H
PURE-ELIM

JP K ∗H ` H

PURE-MAP
P ⇒ QJP K ` JQK

8



2.3. Store Predicates

Name Notation Set of Stores

Separating conjunction H1 ∗H2 Stores that can be separated into two disjoint
stores such that one satisfiesH1 and the other
satisfies H2.

Points-to relation l 7→ v Stores that contain exactly one location l that
maps to the value v.

Empty predicate emp Stores that are empty.

Pure predicate JP K Set of stores that are empty and where the
proposition P holds independent from the
store.

Top > All stores.

Bottom ⊥ No store.

Conjunction H1 ∧∧∧H2 Stores that are described by H1 and H2.

Disjunction H1 ∨∨∨H2 Stores that are either described by H1 or H2.

Complement ¬¬¬H Stores that are not described by H .

Existential quantifier ∃∃∃x. H Stores described by H for which there exists
an x.

Universal quantifier ∀∀∀x. H Stores that are described by H for any x.

Table 2.1: List of predicates in separation Logic and the sets of stores they describe.

Then, we define top and bottom in SL.We can interpret them as true and false. > is true for
every store, whereas⊥ is false for every store. Weuse> in a separation to specify that a part is
contained in a store. For example, l 7→ v∗> reads as a location l that maps to v and separately
any store. So, any store that contains at least one location satisfies this specification. On the
contrary, using ⊥ in a separation is not very useful, since that would always imply no store.
Instead, we use⊥ to define contradictions. Remember that ∗ separates two disjoint parts, so,
whenever we have a state that separates two equal locations, we should get a contradiction.
In other words, an equal separation entails false. Now we can fully define this statement in
SL using entailment.

Lemma 2.3.2 (Single conflict).
l 7→ v ∗ l 7→ w ` ⊥

We also define the logical connectives and quantifiers from first order logic in SL. The
conjunction combines two specifications and states that they must both be satisfied for the
same store. This is very different from the separating conjunction, which states that both
specifications must be satisfied for separate parts of the store. So, l 7→ v ∗ k 7→ w describes a
store that contains two locations, whereas l 7→ v ∧∧∧ k 7→ w describes a store that contains one
location, where l and k must be the same location. The disjunction describes a store that is
specified by either of the specifications. We can use this operator to define data types that
have alternatives, such as an optional location: emp ∨∨∨ l 7→ v, a store that either contains
no location or one location. The existential quantifier describes a store that is satisfied by
a specification for some value of any type. The variable that represents this value can be
referenced in the specification. For example, the specification ∃∃∃v. l 7→ v describes a store

9



2. SEPARATION LOGIC

l 7→ v ∧∧∧ emp The set of stores that is empty and contains a single location.
There exists no store that is empty and not empty, so this
statement describes the empty set of stores.

Jv 6= 2K ∗ l 7→ v ∗ > The set of stores that contains a location l that points to a
value v that is not equal to 2. The set of stores separated
by > can be any set of stores as long as the store does not
contain the location l.

(emp ∗ l 7→ v) ∗ ¬¬¬(l 7→ v ∗ emp) A store described by this statement must be separated into
a location l that points to value v and a store that does not
contain the location l. The emp can be left out, since any
store can be separated into the empty store and something
else. So, this statement describes the set of stores that con-
tain at least the location l.

∀∀∀l. ∃∃∃v. l 7→ 2v The universal quantifier does not specify that every location
in the storemust be an even number, but rather that the loca-
tion of the store may be any location. Actually, the universal
quantifier for l is not necessary here, sincewe already implic-
itly universally quantify over the variables that we use. The
existential quantifier says that there exists some number v
such that any value l points to twice v. The store that this
specification describes must also have exactly one location.
So, it describes the set of stores that consist of a single loca-
tion l that points to an even number.

Table 2.2: Examples of statements in Separation Logic and the sets they describe.

that has one location with some value v. The universal quantifier can be used in the same
way, but any possible value of v satisfies the specification. Finally, we define laws to reshape
separations of quantifiers.

Lemma 2.3.3 (Rules for separating conjunction and quantifiers).

(∃∃∃x. H1) ∗H2 a` ∃∃∃x. (H1 ∗H2) (if x is not free in H2) ∗-EXISTS
(∀∀∀x. H1) ∗H2 ` ∀∀∀x. (H1 ∗H2) (if x is not free in H2) ∗-FORALL

For more examples of specifications see Table 2.2.

2.4 Definitions
Now that we have seen how to combine store specifications and interpret them, wewill move
on to finding correct definitions that reflect their meaning. Remember that we are creating a
mechanization of proof outlines in Agda, so, we will define the operators in the type theory
of Agda. In this section we will follow the definitions from Charguéraud (2020).

Store specifications in SL define some proposition about stores. So, specifications are
predicates over stores, or, as we already seen, sets of stores. We define the type of a store
predicate as follows:

10
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Definition 2.4.1 (Store predicate). A store predicate has type Pred : Store → Set.

The Set type is the type of types, which corresponds to a any logic proposition. Furthermore,
we write definitions using A ≜ B, which means “A is defined as B”.

2.4.1 Entailment and Equivalence
Similar to howwe started this chapter, we will begin by defining entailment and equivalence
of store predicates.

Definition 2.4.2 (Store predicate entailment). Astore predicateH1 entails another store pred-
icate H2, written H1 ` H2, if every store σ that satisfies H1 also satisfies H2.

H1 ` H2 ≜ ∀σ. H1 σ ⇒ H2 σ

Definition 2.4.3 (Store predicate bi-entailment). Astore predicateH1 is equivalent to another
predicate H2, written H1 a` H2, when H1 entails H2 and H2 entails H1.

H1 a` H2 ≜ (H1 ` H2) ∧ (H2 ` H1)

In the definition of entailment, we apply the store of type Store to the predicates of type
Pred, to get a Set type, therefore, entailment is not a predicate but a proposition. The thick
right arrow (⇒) is implication from the host logic, which corresponds to the function type ac-
cording to the Curry-Howard correspondence. The definition reads as: every store σ that sat-
isfiesH1 also satisfiesH2. Bi-entailment is simply defined in terms of entailment in both direc-
tions. From these definitions it becomes clear that a` is an equivalence (see Lemma 2.2.2).

2.4.2 Separation Algebra
Now we move on to predicates that specify what a store contains. These include the sepa-
rating conjunction (∗), points-to relation ( 7→) and empty predicate (emp). We will define
these predicates in a low-level separation algebra that relates stores directly. This creates an
generic interface for stores to implement and from this minimal algebra we can derive more
complex predicates without having to implement all the predicates for every type of store.
The predicates in SL can be seen as a high-level composable method of writing specifications
defined in the less usable low-level algebra.

The separation algebra has four components. The first is what it means to separate a store.
We define this separation by a ternary relation on stores that relates two disjoint stores to a
store that is the union of the stores. This relation is ternary, because it relates three objects. We
write this relation as σ1 ] σ2

.
= σ, which says that σ can be separated into two disjoint stores

σ1 and σ2. The ternary relation is not defined for two overlapping stores σ1 and σ2. Besides
the relation, we need two specific instances of stores, namely a singleton store and an empty
store instance. In essence, we require a store to have an empty instance, singleton instance
and a relation to combine these two into larger stores. The last component is an equivalence
on stores that we use to relate stores to each other. The ternary relation and predicates should
respect the equivalence on stores. We formally define our separation algebra as:

Definition 2.4.4 (Separation algebra). A store has a separation algebra defined by the follow-
ing components:

1. A disjoint ternary relation: σ1 ] σ2
.
= σ, where the union of two disjoint stores σ1 and

σ2 is equivalent to σ.

2. An equivalence on stores: σ1 ' σ2.

11
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3. An empty store instance: ∅.

4. A singleton store instance: {l → v}, where the location l maps to a value v.

Nowwe can define the separating conjunction, points-to relation and the empty predicate
in our new separation algebra.

Definition 2.4.5 (Separating conjunction).
H1 ∗H2 ≜ λσ. ∃σ1∃σ2. (σ1 ] σ2

.
= σ) ∧H1 σ1 ∧H2 σ2

Definition 2.4.6 (Points-to relation). The points-to relation, written l 7→ v, asserts a store
contains a single location l that maps to value v.

l 7→ v ≜ λσ. σ ' {l → v}

Definition 2.4.7 (Empty predicate). The empty predicate, written emp, asserts a store is
empty.

emp ≜ λσ. σ ' ∅

Wedefine the separating conjunction by existentially quantifying over two stores that sep-
arate the store into two disjoint stores and satisfy the two predicates. The definition reads
as follows: a store satisfies the conjunction if the store can be separated into two disjoint
stores where one satisfies the first and the other the second specification. This definition is
also suited to show monotonicity of the separating conjunction (see Lemma 2.2.3) with re-
spect to entailment. However, in order to show the other laws of separating conjunction (see
Lemma 2.2.1) we also require that the disjoint ternary relation is associative, commutative
and ∅ is the identity. We express these laws formally as follows:

Lemma 2.4.8 (Separation algebra laws).
σ1 ] σ23

.
= σ123 ∧ σ2 ] σ3

.
= σ23 ⇒ ∃σ12. σ1 ] σ2

.
= σ12 ∧ σ12 ] σ3

.
= σ123 ]-LEFT-ASSOCIATIVITY

σ1 ] σ2
.
= σ12 ∧ σ12 ] σ3

.
= σ123 ⇒ ∃σ23. σ1 ] σ23

.
= σ123 ∧ σ2 ] σ3

.
= σ23 ]-RIGHT-ASSOCIATIVITY

σ1 ] σ2
.
= σ ⇔ σ2 ] σ1

.
= σ ]-COMMUTATIVITY

∅ ] σ1
.
= σ2 ⇔ σ1 ' σ2 ]-LEFT-IDENTITY

σ1 ]∅ .
= σ2 ⇔ σ1 ' σ2 ]-RIGHT-IDENTITY

2.4.3 Other Definitions
Finally, we give definitions for the remaining predicates.

Definition 2.4.9 (Pure predicate). The pure predicate, written JP K, asserts a proposition P
and the empty store. JP K ≜ λσ. σ ' ∅ ∧ P

Definition 2.4.10 (Logical connectives and constants).
> ≜ λσ. true
⊥ ≜ λσ. false

H1 ∧∧∧H2 ≜ λσ. H1 σ ∧H2 σ

H1 ∨∨∨H2 ≜ λσ. H1 σ ∨H2 σ

¬¬¬H ≜ λσ. ¬(H σ)

Definition 2.4.11 (Quantifier predicates). Quantifier predicates existentially and universally
quantify over variables in a store predicate H .

∃∃∃x. H ≜ λσ. ∃x. H σ

∀∀∀x. H ≜ λσ. ∀x. H σ
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Chapter 3

Hoare Logic

In the previous chapterwe have seen an intuition of proof outlines and how to use Separation
Logic to describe state. In this chapter we will define a formal system for reasoning about
programs by combining Separation Logic with Hoare Logic. This formal system will lay a
foundation for writing mechanized proof outlines for imperative programs.

3.1 Hoare Triples
We define the properties of a program using Hoare triples (Hoare 1969). A triple consists of
a precondition, a program and a postcondition that we write down as follows:

{H} t {Q}

where H is the condition that should be satisfied before execution of program t and Q the
condition that is satisfied after the execution of the program. We express the conditions using
Separation Logic. H describes the state at the start of the program andQ the state at the end
of the program. So, given a state of shape H then the program t will successfully execute
and terminate to a state of shape Q. Furthermore, we can mention the return value of the
program in the postcondition to assert some proposition about what the program evaluates
to. We can conciselywrite down the specification of a program in aHoare triple. For example,
a function add that adds the values at two locations together can be specified by the following
triple:

{l 7→ n ∗ k 7→ m} add l k {w. Jw = n+mK ∗ l 7→ n ∗ k 7→ m}

Assuming that two locations that map to numbers exist, the program add l k evaluates to a
value that is equal to the sum of the numbers at the two locations and does not alter the state
in any further way. We bind the return value of the program to the variablew and add a pure
predicate that states that the program does in fact return a sum. Then, given a definition of
add, we should be able to prove that the triple is satisfied by a proof outline.

In the programwe reference the locations that correspond to locations in the store as l and
k. However, in the body of add function, the values are referenced by their argument names.
So, we need a way to transfer the information that the arguments correspond to the locations.
We could define a substitution algorithm to substitute the arguments with the locations, but
this changes the structure of the program we are reasoning about and it becomes difficult to
reason about programs that have free variables. Instead, we treat variables as a resource by
extending our notion ofHoare tripleswith an environment (Parkinson, Bornat, andCalcagno
2006). We lookup the values that variablesmap to aswewrite our outline. We express triples
extended with an environment as:

{η ` H} t {Q}
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where η is an environment thatmaps variables to values. Themeaning of this triple extended
with an environment becomes: given an environment η and a state of shape H then the pro-
gram t will successfully execute and terminate to a state of shape Q. The difference between
an environment and a store is that values in the environment are immutable and not persis-
tent throughout a program, whereas the values in the store are mutable and are persistent
in a program. For example, binding a variable in a function body does not make it accessible
outside of the function body after application of the function. Once a variable is bound no
other value can be assigned to it. Whereas a value allocated in the store in a function body
will still exist after the application of the function, given that the locationwas not deallocated.
This extension of Hoare triples allows us to define program specifications for programs with
variables and easily specify what the variables should represent. Nowwe can specify a triple
for the body of add, where the arguments are named x and y as:

{{x → l, y → k} ` l 7→ n ∗ k 7→ m} add-body {w. Jw = n+mK ∗ l 7→ n ∗ k 7→ m}

We write down the environment as a map that maps the variables to their corresponding
values. For the add-body to evaluate correctly, there have to be two variables that represent
two locations on the heap.

Ultimately, our goal is to write proof outlines for Hoare triples. Proof outlines can be seen
as a recipe to construct a Hoare triple and, therefore, verify their correctness. Until now we
have seen proof outlines without strict rules on how to construct them. However, a mecha-
nization requires a precise definition of Hoare triples and inference rules, independent of the
proof assistant used, which in our case is Agda. Therefore, we will define Hoare triples ex-
tendedwith Separation Logic as a precise formal system. As any formal system, we construct
Hoare triples with inference rules to derive new triples from axioms. The inference rules are
split into two types: structural rules and language construct rules. The structural rules are
valid for any programming language, whereas the language rules are specific to constructs
of the programming language. An example of a language construct rule would be to derive
a triple for an if-then-else branching construct. The axioms are triples of the core expressions
of the programming language, for example, assigning a value to a location. Since a program
in any programming language is just a combination of the core constructs of the language,
we can use the inference rules to construct Hoare triples for larger programs. In the remain-
der of this chapter we will define the structural rules for Hoare triples and see how they can
be used to write proof outlines independent of a subject programming language.

3.2 Structural Rules
The structural rules forHoare triples are inference rules that can be used to derive new triples.
These rules can be used for triples of any programming language: they are structural to
triples. In this section we will define the structural rules that are necessary for writing proof
outlines for imperative programs.

3.2.1 Rule of Consequence
The first rule is the rule of consequence introduced byHoare (1969) in his paper on triples. If
we have a program that satisfies a preconditionH , then the program is also satisfied by every
precondition that entails H . Furthermore, if a program satisfies a postcondition Q, then the
program also satisfies any postcondition that is entailed by Q. The consequence rule allows
us to reshape a precondition and a postcondition by entailment. We separate the inference
rule into pre- and post-consequence, which can be used to derive the rule of consequence for
both pre- and postconditions. We express the inference rules formally as:
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Lemma 3.2.1 (Rule of consequence).

PRE-CONSEQUENCE
H ` H ′ {η ` H ′} t {Q}

{η ` H} t {Q}

POST-CONSEQUENCE
{η ` H} t {Q′} Q′ ˙̀ Q

{η ` H} t {Q}

CONSEQUENCE
H ` H ′ {η ` H ′} t {Q′} Q′ ˙̀ Q

{η ` H} t {Q}

Since postconditions are predicates over a store and a return value, we define a version
of entailment that works for postconditions. A postconditionQ1 entailsQ2, if every possible
return value and store that satisfy Q1 also satisfy Q2. We define this version of entailment
using the operator ˙̀ , which is usual operator for entailment with a dot above. The same
laws of entailment also apply to postcondition entailment. Postcondition entailment can be
expressed in terms of normal predicate entailment:

Definition 3.2.2 (Postcondition entailment).

Q1
˙̀ Q2 ≜ ∀v. (Q1 v) ` (Q2 v)

We can now create a derivation of a triple using the rule of consequence. For example,
we can show a triple for alternative conditions than their original definition:

emp ∗ l 7→ v ` l 7→ v {l 7→ v} dref l {k 7→ l ∗ l 7→ v} k 7→ l ∗ l 7→ v ` l 7→ v ∗ k 7→ l

{emp ∗ l 7→ v} dref l {l 7→ v ∗ k 7→ l}

Here we derive a new triple for dref l using the rule of consequence in a tree derivation. The
definition of dref that wemight have defined is on top of the rule, whereas the new triple we
would like to have is at the bottom of the rule. The function takes a location and allocates a
new location that maps to the given one. We leave out the environment and return value for
simplicity. Left of the triple is the entailment that entails the precondition by left identity of
emp and to the right is the entailment of the postcondition by commutativity of ∗. We can
also write the derivation in a linear style to get a proof outline:

1 {emp ∗ l 7→ v}
2 {l 7→ v} # by left identity of emp
3 dref l
4 {k 7→ l ∗ l 7→ v}
5 {l 7→ v ∗ k 7→ l} # by commutativity of ∗

A proof outline is just a more readable version of a tree derivation. We name the rules that
we apply in comments on the line that they are applied. The outline has a more natural flow
to it, since you can read it from top to bottom.

The separation of the rule of consequence into a pre and post version is useful for proof
outlines. If we only used the complete rule of consequence, we have to match the number of
entailments for the pre- and postcondition. So, if we want to use more steps to reshape the
preconditionwe have to give the identity entailment for postcondition. We can nowusemore
steps to provide intermediate states of a proof for clarity without having to enter identity
consequences to balance the rule of consequence. If we separate the rule of consequence, we
can asymmetrically reshape the pre- and postcondition.
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3.2.2 Frame Rule
The frame rule defines the notion of local reasoning. The rule was introduced by Ishtiaq
and O’Hearn (2001) after Reynold’s first paper on Separation Logic. If a program satisfies a
condition, then that programalso satisfies the condition separated by a frame. We can specify
triples for a minimal state, which only include the necessary locations, and later embed it
into any state. We can be certain that the frame is not mutated, since it is not included in the
original triple. Therefore, the frame is the same for the pre- and postcondition. We define
the frame rule formally as:

Lemma 3.2.3 (Frame rule).
FRAME

{η ` H} t {Q}
{η ` H ∗H ′} t {Q ∗·H ′}

Since Q is a postcondition and the frame H ′ a store predicate, we define a new heteroge-
neous separating conjunction which separates a postcondition and a store predicate, written
as ∗·, where the dot represents that the store predicate on the right hand side is quantified
over a return value. We define the postcondition separating conjunction in terms of the sep-
arating conjunction:

Definition 3.2.4 (Postcondition separating conjunction).

Q ∗·H ≜ λv. (Q v) ∗H

Similar to the rule of consequence we can create a derivation tree of a triple. Let us take
the dref example again, but now we frame the triple with a location:

{l 7→ v} dref l {k 7→ l ∗ l 7→ v}
{l 7→ v ∗m 7→ w} dref l {(k 7→ l ∗ l 7→ v) ∗m 7→ w}

We leave out the return value of the program, since we are not interested in it at the moment.
Therefore, we can specify the postcondition as a store predicate. We implicitly bind the return
value to nothing. Again, we can also write the derivation as a more readable proof outline:

1 {l 7→ v ∗m 7→ w}
2 {l 7→ v} # frame with m 7→ w
3 dref l
4 {k 7→ l ∗ l 7→ v}
5 {(k 7→ l ∗ l 7→ v) ∗m 7→ w} # restore frame

3.2.3 Combined Consequence-Frame Rule
The previous two rules are used in proof outlines to reshape pre- and postconditions and
forget a frame temporarily to reason with minimal state. However, when using the frame
rule, the conditions are rarely of shape where the desired minimal shape is separated by the
frame. Before applying the frame rule we often apply the rule of consequence first to get the
desired shape. Therefore, we combine the rule of consequence and the frame rule into the
consequence-frame rule.

We define the combined rule as follows. If we have a program that satisfies the precondi-
tion H and postcondition Q, then the program also satisfies every precondition that entails
H and separately a frame and every postcondition that is entailed by Q and separately the
same frame. We express the combined consequence-frame rule formally as:
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Lemma 3.2.5 (Combined consequence-frame rule).
CONSEQUENCE-FRAME
H ` H1 ∗H2 {η ` H1} t {Q1} Q1 ∗·H2

˙̀ Q

{η ` H} t {Q}

We do not separate the combined consequence-frame rule into a pre and post version,
because we want to make it visually explicit in the outline where we reason with a smaller
state. It should be clear to the reader where we temporarily leave a frame out and where we
restore the frame again.

To illustrate how the rule creates a shorter outline, take the following triple of dref:

{m 7→ w ∗ l 7→ v} dref l {k 7→ l ∗ (l 7→ v ∗m 7→ w)}

We want to derive this triple from the following triple:

{l 7→ v} dref l {k 7→ l ∗ l 7→ v}

We first have to reshape the precondition into correct shape before we can apply the frame
rule. Without using the combined consequence-frame rule, the outline for this derivation
looks like this:

1 {m 7→ w ∗ l 7→ v}
2 {l 7→ v ∗m 7→ w} # pre consequence by commutativity of *
3 {l 7→ v} # frame with m 7→ w
4 dref l
5 {k 7→ l ∗ l 7→ v}
6 {(k 7→ l ∗ l 7→ v) ∗m 7→ w} # restore frame
7 {k 7→ l ∗ (l 7→ v ∗m 7→ w)} # post consequence by associativity of *

However, if we use the combined consequence-frame rule, we can combine the steps on line
2 and 3 and the steps on line 6 and 7. The outline would then look like this:

1 {m 7→ w ∗ l 7→ v}
2 {l 7→ v} # frame m 7→ w by commutativity of *
3 dref l
4 {k 7→ l ∗ l 7→ v}
5 {k 7→ l ∗ (l 7→ v ∗m 7→ w)} # restore frame by associativity of *

3.2.4 Embedding Rules
Finally, we define derivation rules to embed terms of our meta theory into SL. The first is a
rule to embed a proposition into a precondition. If we have a triple that is satisfied if some
proposition holds, then we also have a triple where that proposition is a pure predicate in
the precondition. The second rule is used to embed variables that we universally quantify
over in our meta theory into a precondition with an existential quantifier. If we have a triple
that is satisfied for every x, then we can derive a triple where there exists an x such that the
precondition of the triple is satisfied. We formally express these inference rules as follows:

Lemma 3.2.6 (Structural rules of triples).
PURE
P ⇒ {η ` H} t {Q}
{η ` JP K ∗H} t {Q}

EXISTS
∀x. {η ` H} t {Q}
{η ` ∃∃∃x. H} t {Q}
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3.3 Definition of Hoare Triples
Now that we have defined the inference rules for triples, we need a suitable definition of
Hoare triples that adhere to these rules. A triple is satisfied if an environment and a state
that satisfies the precondition make a program correctly evaluate to a state that satisfies the
postcondition.

In order to create this definition, we need a notion of program evaluation. We define this
as a relation on program terms, environment and state, which we write down as:

(t, η, σ ⇓ v, σ′)

The relationmeans that a program t executes correctly in environment η and state σ to a value
v and state σ′. This relation is also known as the semantics of a programming language.

Now we can define a total correctness Hoare triple by the following definition:

Definition 3.3.1 (Total correctness Hoare triple).

HOARE{η ` H} t {Q} ≜ ∀η. ∀σ. H σ ⇒ ∃v. ∃σ′. (t, η, σ ⇓ v, σ′) ∧ (Q v σ′)

Total correctness means that the program does not error or loop indefinitely. So, this defini-
tion is only used to reason about correct and terminating programs. A Hoare triple specifies
evaluation in a whole state, whereas we want to use SL to reason about fragments of state.
Therefore, we create a definition of Separation Logic triples where for every frame of shape
H ′ a program satisfies the Hoare triple HOARE{η ` H ∗H ′} t {Q ∗·H ′}. This essentially “bakes
in” the frame rule (Birkedal, Torp-Smith, and Yang 2005; 2006). We achieve this by quantify-
ing over a frame (Charguéraud 2020):

Definition 3.3.2 (Total correctness Separation Logic triple).

{η ` H} t {Q} ≜ ∀H ′. HOARE{η ` H ∗H ′} t {Q ∗·H ′}
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Chapter 4

Hoare Style Reasoning

In the previous chapters we have defined a formal system for reasoning about programs.
However, the programs have been abstract and independent of any actual imperative pro-
gramming language. In order to write proof outlines for a concrete program, we require an
imperative programming language. In this chapter we will define such a language and de-
sign Hoare triples to write mechanized Hoare style proof outlines for this specific language.

4.1 Imperative Programming Language
Wewill define an imperative language based on λ-calculus. The languagewill have the usual
function abstraction and application that define a λ-calculus. In order to make it imperative,
we will add a sequence operator and add operators to allocate, deallocate, read and write to
locations on the heap. Furthermore, to keep our language simple and only focus on defining
triples, the language will not be typed. We also want to easily encode algebraic data types
such as lists and trees. So, we will also extend the language with sums and products to
represent algebraic data as sums of products1.

First, we will define a syntax that covers these features. Then, we will define semantics
to show how the language should be evaluated. Finally, from the semantics we can derive
suitable Hoare triples that specify the properties of every construct in the language.

By deriving the Hoare triples from the semantics of the language, we can easily define
triples for a language that already has semantics.

4.1.1 Syntax
The language is divided into values v, variables x and terms t. The values serve two purposes:
terms evaluate to values and values are stored on the heap. Variables are represented by
names that are not keywords. Programs are constructed with terms. Since this is a language
with a heap, we can also reference locations l on the heap as values. We express the syntax
as a context-free grammar in Backus-Naur Form:

1See for example in Haskell: https://wiki.haskell.org/Algebraic_data_type
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Definition 4.1.1 (Syntax of the language). BNF grammar of the imperative language based
on λ-calculus.

v ::= () unit
| l location
| ( v , v ) product
| left v | right v sum
| clos η x => t closure
| fix η f x => t recursive closure

t ::= x variables
| v values
| ( t ) parentheses
| ( t , t ) create product
| fst t | snd t deconstruct product
| left t | right t create sum
| switch t |left x => t |right x => t deconstruct sum
| t ; t sequence
| t t function application
| fun x => t function
| rec f x => t recursive function
| let x = t in t let binding
| ref t allocate
| free t deallocate
| ! t dereference
| t := t assign

The syntax makes a distinction between non-recursive functions fun and recursive func-
tions rec. The difference being that a recursive function also gets itself as an argument named
f to be recursively called inside the body, since the functions are not named. Multi argument
functions can be constructed by currying functions. Functions also have a value counterpart:
the closure. A closure is a function that should be evaluated in its captured environment.
Representing evaluated functions as closuresmakes it possible to store functions on the heap.

We bind new immutable variables with the let construct. The variable we assign to can
be referenced in the body of the construct, which is the term after in. A variable cannot be
written to again. The assignment construct is only used for assigning values to locations.
Naturally, let can be nested to bind more variables. Also note that let x = t1 in t2 is just
syntactic sugar for (fun x => t2) t1.

In the language we define algebraic data types using sums of products. With this feature
we can write programs that mutate data structures such as linked lists and binary trees. The
sum and product constructs are terms and values. We use left and right to construct a sum.
The switch construct allows us to deconstruct a sum value and branch into each case of the
sum. Together with the unit value we can construct, for example, a boolean data type that
is either true or false as left () and right (). We can also construct data types with more
options by right nesting sums. For example, the second option out of data type with three
optionswould be right (left ()). We use (t, t) to construct a product or tuple of two terms
and use fst and snd to deconstruct a tuple into the first and second term respectively. Again,
we can right nest tuples to construct products of any size. Now we can construct the Maybe
type in our language, which is either none or some value. We can define none as left () and
some as fun x => right x. By defining some as a function we have created a generic Maybe
data type for any value of x.

The interesting parts of an imperative language are the constructs that change state. To
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best explain what they represent, let us take an example that changes state.

1 let l = ref () in
2 l := !k ;
3 free l ;
4 free k

On the first line, we allocate a unit value and bind its location to l. Then, we create a sequence
of operations with ; by first dereferencing k and assigning its value to the location l and then
deallocating the two locations. We indent the body of a let to indicate what is part of the
body and what is not. Now that we have defined how to construct programs, we can define
what they mean.

4.1.2 Big Step Semantics
The semantics of the imperative language are defined by the inductive relation (t, η, σ ⇓ v, σ′),
whichwas introduced in the previous chapter in the definition ofHoare triples. But to refresh
our memory, the relation says that a term t evaluates in environment η and state σ to value v
and resulting state σ′. The stateless evaluation rules are defined in Figure 4.1 as substitution-
free big step semantics. This means that the evaluation rules fully evaluate a term to a value
without performing explicit substitution of variables in terms. Instead, we lookup a variable
in an environment (see EVAL-VAR) and extend the environment when binding a new variable
(see EVAL-LET). The relation η[x] = v states that the variable x in environment η maps to value
v. We extend an environment ηwith a variable x that maps to a value v by {x → v}∪η, which
is a new environment with the original variables from η but also where x maps to v.

We prefer big step over small step, because our Hoare triples are defined over terms that
evaluate to a value, so we do not care about the intermediate steps of evaluation. Big step is
also easier for implementing substitution-free evaluation, since we do not have to state the
updated variable environment after the evaluation.

The language is call-by-value, which means that every term is fully evaluated before it
is applied to a function. The language is also evaluated from left to right. This is important
information when using state, since we pass the state from the left term to the right term. For
example, we can use locations in the right term of a product that were allocated in the left
term but not vice versa.

So far, we have only defined the semantics of terms that do not mutate the state. In order
to define the semantics that mutate state, we could define functions that mutate the state and
use them in the inductive relation. For example, to define the semantics of free, we could
define a function that deallocates a location from a heap, which would look something like
the following.

EVAL-FREE
t, η, σ ⇓ l, σ1

free t, η, σ ⇓ (),deallocate(l, σ1)

We first evaluate the term to a location and then update the state to remove the location.
However, if we wanted to derive a Hoare triple from this rule we would have to extrinsically
show some relation to Separation Logic and this function. Instead, we will use Separation
Logic directly in our evaluation rules. We use the points-to relation to assert that the state of
the result of evaluating the location should be separated by the location it wants to deallocate
and some other state. Since we use the separating conjunction, the state separated from the
points-to will no longer contain the location to be freed. See Figure 4.2 for the evaluation
rules of allocation, deallocation, assignment and dereferencing.

The notation σ ∈ H means that the store σ can be described by the specification H . The
evaluation rules EVAL-REF and EVAL-FREE use the singleton predicate {σ}, which is defined
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EVAL-VAR
η[x] = v

x, η, σ ⇓ v, σ

EVAL-VAL

v, η, σ ⇓ v, σ

EVAL-PRODUCT
t1, η, σ ⇓ v1, σ1 t2, η, σ1 ⇓ v2, σ2

( t1 , t2 ), η, σ ⇓ ( v1 , v2 ), σ2

EVAL-FST
t, η, σ ⇓ ( v1 , v2 ), σ1
fst t, η, σ ⇓ v1, σ1

EVAL-SND
t, η, σ ⇓ ( v1 , v2 ), σ1
snd t, η, σ ⇓ v2, σ1

EVAL-LEFT
t, η, σ ⇓ v, σ1

left t, η, σ ⇓ left v, σ1

EVAL-RIGHT
t, η, σ ⇓ v, σ1

right t, η, σ ⇓ right v, σ1

EVAL-SWITCH-LEFT
t, η, σ ⇓ left v, σ1 t1, {x → v} ∪ η, σ1 ⇓ v1, σ2

(switch t |left x => t1 |right x => t2), η, σ ⇓ v1, σ2

EVAL-SWITCH-RIGHT
t, η, σ ⇓ right v, σ1 t2, {x → v} ∪ η, σ1 ⇓ v2, σ2

(switch t |left x => t1 |right x => t2), η, σ ⇓ v2, σ2

EVAL-SEQ
t1, η, σ ⇓ v1, σ1 t2, η, σ1 ⇓ v2, σ2

(t1 ; t2), η, σ ⇓ v2, σ2

EVAL-LET
t1, η, σ ⇓ v1, σ1 t2, {x → v1} ∪ η, σ1 ⇓ v2, σ2

(let x = t1 in t2), η, σ ⇓ v2, σ2

EVAL-FUN

(fun x => t), η, σ ⇓ (clos η x => t), σ

EVAL-REC

(rec f x => t), η, σ ⇓ (fix η f x => t), σ

EVAL-FUN-APP
t1, η, σ ⇓ (clos η′ x => t), σ1 t2, η, σ1 ⇓ v1, σ2 t, {x → v1} ∪ η′, σ2 ⇓ v2, σ3

t1 t2, η, σ ⇓ v2, σ3

EVAL-REC-APP
t1, η, σ ⇓ (fix η′ f x => t), σ1

t2, η, σ1 ⇓ v1, σ2 t, {x → v1, f → (fix η′ f x => t)} ∪ η′, σ2 ⇓ v2, σ3

t1 t2, η, σ ⇓ v2, σ3

Figure 4.1: Substitution-free big step semantics of imperative λ-calculus that do not mutate
state.
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EVAL-REF
t, η, σ ⇓ v, σ1 σ2 ∈ l 7→ v ∗ {σ1}

ref t, η, σ ⇓ l, σ2

EVAL-FREE
t, η, σ ⇓ l, σ1 σ1 ∈ l 7→ v ∗ {σ2}

free t, η, σ ⇓ (), σ2

EVAL-DEREF
t, η, σ ⇓ l, σ1 σ1 ∈ l 7→ v ∗ >

! t, η, σ ⇓ v, σ1

EVAL-ASSIGN
t1, η, σ ⇓ l, σ1 t2, η, σ1 ⇓ v2, σ2 σ2 ∈ l 7→ v1 ∗H σ3 ∈ l 7→ v2 ∗H

t1 := t2, η, σ ⇓ (), σ3

Figure 4.2: Substitution-free big step semantics of imperative λ-calculus that mutate state.

as the set of stores that are equivalent to σ. This predicate is necessary for separating the
eventual evaluated state by a location in EVAL-FREE and for separating the evaluated state of
EVAL-REF by a new location.

The evaluation rule EVAL-DEREF does not mutate the state and only requires that the loca-
tion to be dereferenced is contained in the current store.

The evaluation rule EVAL-ASSIGN is defined over a specification that is separated by the
location to be updated, where the old state is separated by the old value of the location and
the new state is separated by location pointing to the new value. Assignment returns the
unit value.

4.2 Language Triples
Now thatwe have defined a syntax and semantics for our imperative language, we can define
triples that are specific to the constructs of the language. As already mentioned, we derive
the triples from the semantics of our language, where every evaluation rule corresponds to
a triple.

If we look at our definition of triples (see Definition 3.3.2), we see that, in order to define
a triple for a term, we need evidence of a value and a state to which the term evaluates and
satisfy the postcondition. So, for every term we look at the evaluation rule and choose a
suitable pre- and postcondition that could be satisfied by the state and return value.

4.2.1 Writing Linear Programs
There are many possibilities for conditions of a triple. A problem in defining triples is how to
define triples for language constructs that have subterms. Ifwedefine triples to have arbitrary
subterms, we get proof outlines that are not linear and become hard to read. Because the
outlines are written down from top to bottom, reading the proof from top to bottom becomes
difficult, since the steps first fully go down one branch before the next branch can be proven.
A term that fits onto one line in the program might span multiple lines in the mechanized
outline. This is a downside of mechanization where every step has to be explicitly stated.

A solution to this problem is to restrict the triples to be for terms in Administrative Nor-
mal Form (ANF) (Sabry and Felleisen 1992). In ANF every subterm is a variable, except for
the let constructs which binds evaluated terms to new variables. This way we only have to
define sequencing for the let construct and use it to evaluate terms to values before using
them in other terms. To illustrate ANF and how it influences proof outlines, we take a look at
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the following program that swaps the values of a product allocated at location l in the store
and stores the result at location k:

1 k := ref (snd (! l) , fst (! l))

This program is not in ANF, since the assignment to k, dereferencing l and deconstructing
the product all have terms as subterms and not variables. If we wanted to write a proof
outline for this program, then it would become hard to read, since there is no nice way to
structure this proof and keep the program structure. It would have a tree structure that
quickly becomes difficult to read based on the complexity of subterms. So, we transform the
program to ANF to create a more linear program that can be read from top to bottom. In
order to transform it to ANF, we create let bindings that first evaluate the terms to values
and bind them to variables before use:

1 let p = ! l in
2 let p1 = fst p in
3 let p2 = snd p in
4 let np = (p2 , p1) in
5 let kv = ref np in
6 k := kv

Now if we wanted to write a proof outline of this program we can step through the program
one operation at a time and write the state in between the let bindings.

By defining triples in this form, we also restrict the set of programs that we can write
outlines for. Still, it is possible to prove specifications for programs not in ANF. Since every
programhas anAdministrativeNormal Form, we can transform a non-ANFprogram toANF
, write a proof outline for the program in ANF and then derive a triple for the non-ANF
version. If we do not change the semantics during the transformation, we can derive a triple
for the original program with the following inference rule:

Lemma 4.2.1 (Coerce triple).
COERCE-TRIPLE
{η ` H} t′ {Q} ∀v∀σ∀σ′. (t′, η, σ ⇓ v, σ′) ⇒ (t, η, σ ⇓ v, σ′)

{η ` H} t {Q}

We can derive a triple for a non-ANF program by applying COERCE-TRIPLE and showing that
the semantics of the ANF program imply the semantics of the target non-ANF program. To
see why this rule is valid, we unfold the definition of triples. We have to show that the
program t satisfies postcondition Q assuming precondition H . We know that t′ correctly
evaluates to a value and a store that satisfies Q. Since we have the implication of evaluation,
we know that if t′ evaluates to a value and store, then t evaluates to that same value and store.
Therefore, t also satisfies the postcondition Q and thus forms a triple with the precondition
H .

Using ANF also allows us to define triples with a minimal footprint. Triples can be spec-
ified with the minimum state necessary to correctly evaluate. Since the subterm of every
construct is a variable that does not change the state, we can specify the triple with mini-
mum required state to evaluate the construct without having to worry about subterms. We
can then extend the specification of these triples by the frame rule. With this design we can
reuse the same triple in every outline.
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VAR-TRIPLE
η[x] = v

{η ` emp}x {w. Jw = vK}
VAL-TRIPLE

{η ` emp} v {w. Jw = vK}
PRODUCT-TRIPLE

η[x1] = v1 η[x2] = v2

{η ` emp} ( x1 , x2 ) {w. Jw = ( v1 , v2 )K}
FST-TRIPLE

η[x] = ( v1 , v2 )

{η ` emp} fst x {w. Jw = v1K}
SND-TRIPLE

η[x] = ( v1 , v2 )

{η ` emp} snd x {w. Jw = v2K}
LEFT-TRIPLE

η[x] = v

{η ` emp} left x {w. Jw = left vK}
RIGHT-TRIPLE

η[x] = v

{η ` emp} right x {w. Jw = right vK}
SWITCH-TRIPLE

η[x] = v
∀v1. (v = left v1) ⇒ {{x1 → v1} ∪ η ` H} t1 {Q}
∀v2. (v = right v2) ⇒ {{x2 → v2} ∪ η ` H} t2 {Q}
{η ` H} switch x |left x1 => t1 |right x2 => t2 {Q}

SEQ-TRIPLE
{η ` H} t1 {w. H1} {η ` H1} t2 {Q}

{η ` H} t1 ; t2 {Q}

LET-TRIPLE
{η ` H} t1 {Q1} v ⇒ {{x → v} ∪ η ` Q1 v} t2 {Q}

{η ` H} let x = t1 in t2 {Q}

FUN-TRIPLE

{η ` emp} fun x => t {w. Jw = (clos η x => t)K}
REC-TRIPLE

{η ` emp} rec f x => t {w. Jw = (fix η f x => t)K}
CLOS-APP-TRIPLE
η[x1] = (clos η′ x => t) η[x2] = v {{x → v} ∪ η′ ` H} t {Q}

{η ` H}x1 x2 {Q}

FIX-APP-TRIPLE
η[x1] = (fix η′ f x => t) η[x2] = v {{x → v, f → (fix η′ f x => t)} ∪ η′ ` H} t {Q}

{η ` H}x1 x2 {Q}

Figure 4.3: Hoare triples for imperative λ-calculus without substitution that do not mutate
state.
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4.2.2 First Triples
We define the triples for our language in Figure 4.3, which are derived from the evaluation
rules in Figure 4.1. The triples for values all have a minimal footprint of emp, whereas the
other rules have a precondition that depends on the subterm. We observe a similarity be-
tween the semantics and the triples. The state remains the same in the pre- and postcon-
dition, because these are the triples that do not change state, similar to the semantics. The
triples that return values mention their respective return value in an equality on the return
value of the term, which are equal to the values in the semantics.

The one construct that stands out is let. The triple LET-TRIPLE is very similar to SEQ-TRIPLE,
the only difference is that the return value of the first term can be referenced in the second
term. This sequencing is implemented by passing the postcondition of the first term to the
precondition of the second term. Since a postcondition is also defined over a value, we quan-
tify over the values that satisfy the postcondition to obtain a valid precondition. We can
specify what the bound value should be by using an equality in a pure predicate in the post-
condition of the first term. Then we can use PURE (see Lemma 3.2.6) to extract the equality
and use it in our proof to reason about the bound value. Take this simple example ANF
program:

1 let x = () in
2 right x

When writing a proof outline for this program we must first apply LET-TRIPLE where the post-
condition of the first term is w. Jw = ()K. Then, when this postcondition is used in the triple
of the second term, w is substituted for v, which is the value that x maps to in the environ-
ment. Then by applying PURE we can extract the equality of v = (), which implies that x
maps to (), which we need in order to prove that the let body returns right ().

4.2.3 Mutating State
The triples that remain are the triples for the constructs that operate on state. We define the
triples in Figure 4.4. Again, the triples are defined for terms in ANF and have a minimal
footprint.

The DEREF-TRIPLE is straightforward, since it only reads from a location and does not mu-
tate the state specified by a points-to relation in the pre- and postcondition. If we unfold the
definition of the triple, we get the formula we have to prove:

(l 7→ v ∗H ′) σ ⇒ ∃v′. ∃σ′. (! x, η, σ ⇓ v′, σ′) ∧ (((Jv = v′K ∗ l 7→ v) ∗H ′) σ′)

If we eliminate the precondition we arrive at a goal of:

∃v′. ∃σ′. (! x, η, σ ⇓ v′, σ′) ∧ (((Jv = vK ∗ l 7→ v) ∗H ′) σ′)

If we choose the value of v′ to be equal to v and σ′ to be equal to σ, we are left with:

(! x, η, σ ⇓ v, σ) ∧ (((Jv = vK ∗ l 7→ v) ∗H ′) σ)

The left hand side of the conjunction can be constructed by applying the EVAL-DEREF rule
together with EVAL-VAR and the evidence that x is contained in the environment and that σ
satisfies l 7→ v ∗ >. Since we have assumed that σ satisfies l 7→ v ∗H ′, for some frame H ′, σ
also satisfies l 7→ v ∗ >. Finally, the postcondition is satisfied by σ, because we can insert a
pure fact of v = v into our precondition.

The rule FREE-TRIPLE is another that is trivial. It follows the same line of reasoning as DEREF-
TRIPLE. Our precondition is the same as DEREF-TRIPLE and we also use EVAL-VAR to evaluate
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REF-TRIPLE
η[x] = v

{η ` emp} ref x {w. ∃∃∃l. (Jw = lK ∗ l 7→ v)}

FREE-TRIPLE
η[x] = l

{η ` l 7→ v} free x {w. Jw = ()K}
DEREF-TRIPLE

η[x] = l

{η ` l 7→ v} ! x {w. Jw = vK ∗ l 7→ v}

ASSIGN-TRIPLE
η[x1] = l η[x2] = v′

{η ` l 7→ v}x1 := x2 {w. Jw = ()K ∗ l 7→ v′}

Figure 4.4: Triples of imperative λ-calculus without substitution that mutate state.

the variable. The evaluation rule that we apply is EVAL-FREE, which requires a separate state
without the location l. Since we have defined our SL triples over a frame, we can use the
frame store for this instance. Then, the postcondition becomes a specification that is satisfied
by the frame store, which is precisely our frame specification. Due to thewaywehave defined
triples and our semantics, deriving this rule becomes trivial.

The triples that require some extra attention are REF-TRIPLE and ASSIGN-TRIPLE. The rule for
allocation creates a new location and assignment updates a value at a location. We do not yet
know how to perform these mutating operations generically for any type of store. We have
seen how to reshape a store specification into another with entailment. However, we cannot
use entailment to add or update locations, otherwise we could add locations at any point to
any specification. Instead we need an operation to mutate a store that satisfies a specification
to another that satisfies another specification. We define a new operator that instructs how
to update a state to another.

Definition 4.2.2 (Update state). A specification H1 can be updated to specification H2, writ-
ten as H1 Z⇒ H2, if for every store σ that satisfies H1 there exists a store σ′ that satisfies H2.

H1 Z⇒ H2 ≜ ∀σ. H1 σ ⇒ ∃σ′. H2 σ
′

With this definition we can concisely write downwhat it means for a store to insert or update
a location. In order to derive the triples for our language and write outlines, we require that
a store has these operations that we express as:

Lemma 4.2.3 (Store operations).

H Z⇒ ∃∃∃l. l 7→ v ∗H ∗-INSERT
l 7→ v ∗H Z⇒ l 7→ v′ ∗H ∗-UPDATE

We define the operations on a frame to make them easy to use with REF-TRIPLE and ASSIGN-
TRIPLE. The operation ∗-INSERT says there always exists a new location that can be separated
with a store. ∗-UPDATE says that in any specification with a location the value can be updated.
When the store operations are written down like this they neatly coincide with the pre- and
postconditions of REF-TRIPLE and ASSIGN-TRIPLE. We use the frame of the Separation Logic
triple to denote the frame that we perform the update operations in. Only the pure fact of
equality has to added, which can be done in the same way as we did for DEREF-TRIPLE.
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4.2.4 Triple to Syntax
You may have already noticed that the structure of the syntax of the imperative language
arises from the triples. The triple for the product has two arguments, one for each variable,
the triple for sequencing has two arguments, one triple for each subterm, and so on. The
amount of arguments of the triples correspond to the amount of subterms in our syntax, ex-
cept the arguments are either other triples or some evidence that the variable is contained in
the environment. Our final step in writing mechanized proof outlines in the style of Hoare
is to transform the triples to the same syntax as our language. So, the triple LEFT-TRIPLE be-
comes left (η[x] = v) and ASSIGN-TRIPLE becomes (η[x1] = l) := (η[x2] = v) and so on for
each triple. I will not repeat the entire syntax here. The syntax remains the same, except
now they represent triples instead of language constructs. With this syntax we can write
programs and proof outlines with the same syntax. For programs we derive a program from
the core constructs of the language and for a proof outline we derive a triple from the core
triples of the language together with the structural rules of triples. Unfortunately, there is
one imperfection in our syntax. Because we have defined function application by applying a
variable to a variable, the triples CLOS-APP-TRIPLE and FIX-APP-TRIPLE require three arguments,
one for each variable and a triple of the body applied to its argument. This can be solved
by creating a new syntax for function application that accepts a third argument, namely the
triple of the body.

4.3 Hoare Style Reasoning in Agda
Now we have defined all the rules and syntax for constructing a mechanized proof outline
in our proof assistant Agda. There already exists a library2 for defining ternary relations
on algebraic structures and laws on ternary relations (Rouvoet 2021). This ternary library
also defines the separating conjunction on top of the low level algebra. However, definitions
for Hoare triples and its inference rules were not readily available in Agda. So, I have im-
plemented a shallow embedding of Hoare triples with environment in Agda, together with
a syntax for writing Hoare style proof outlines, which can be found in the Relation.Hoare
module of the implementation (see Appendix A). The syntax is defined as mixfix opera-
tors using syntax declarations3 in Agda. This mechanization of Hoare Logic needs to be
instantiated with a language and its semantics and an instance of a store type. I have de-
fined a deep embedding of the imperative language presented and its semantics in this
chapter, which can be found in Data.Lang.Lang and Data.Lang.Semantics. In the module
Relation.Ternary.Constructs and Relation.Hoare.Constructs you can find two instances of
the store type: A functional map and a fresh list, which are shown to follow the definition
and laws of the separation algebra from Section 2.4.2. I was able to derive the triples for every
construct of the language, which are implemented in Data.Lang.Hoare, andwrite Hoare style
proof outlines verified by Agda’s dependent type system.

To illustrate what this would look like in Agda, we will write an outline for a function
swap, that takes two locations, swaps the values of those locations and returns the unit value.
The function can be specified by the following triple:

{l 7→ v1 ∗ k 7→ v2} swap l k {w. Jw = ()K ∗ l 7→ v2 ∗ k 7→ v1}

We can now write a function that can be described by the triple. An implementation of this
function in ANF can be constructed as follows:

2https://github.com/ajrouvoet/ternary.agda
3https://agda.readthedocs.io/en/latest/language/syntax-declarations.html
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1 fun l => fun k =>
2 let t = !k in
3 let s = !l in
4 k := s ;
5 l := t

First, the function dereferences the two locations and binds them to two variables. Then, the
value that l maps to is assigned to k and vice versa. This function clearly satisfies the triple,
but we are set out to verify this in a readable outline in Agda. This example nicely demon-
strates mechanized outlines. In Chapter 6 we will perform a case study on a more complex
example. The outline we would write by hand is listed in Listing 4.1 and the mechanized
version in Agda is listed in Listing 4.2.

None of the syntax used in the outline is standard syntax inAgda, except for the λ w → ...
syntax, which is used to define lambda abstractions. All other names and syntax are defined
by the library.

First of all, let us point out the syntactical differences in our outline, because it does not
seem to reflect our paper outline exactly. The delimiters for state are square braces instead
of curly braces, because Agda restricts the use of curly braces in custom syntax, since they
are part of Agda. Furthermore, the syntax of the language triples are enclosed by angles,
because they would otherwise conflict with the syntax of the imperative language defined in
Agda. Finally, the let construct is terminated by end to disambiguate in parsing what is part
of the let body and what is not.

The first and last line of the outline specify the pre- and postcondition we have to prove.
These are defined as identity functions and only serve to state the beginning and end of the
outline. The arguments to the rules frameby and restoreby are given directly after the state
instead of in comments, since they are now part of the proof instead of just annotations in the
manual proof outline. Due to restrictions inAgda declared syntax, the names and arguments
of the rules cannot be detached from the state.

The most obvious difference between the two outlines is that the mechanized outline is
three times as long. In order for our proof assistant to verify our outline, we have to specify
every single step. we explicitly have to state the consequence-frame rule and how to reshape
the conditions, which we leave out in our manual outline, since the outline is easier to read
that way.

Another difference is the handling of variables. In Agda I have implemented variables in
the language with De Bruijn index (de Bruijn 1972), since it is easy to implement, but leads
to difficult to read variable names. So, in the outline I use there and here as proof at what
position the variable is contained in the environment. For example, on line 4 we give a proof
of here to inform Agda that k is the first argument of the function and at line 15, where we
assign to k again, the location has shifted to the third position, due to the two let bindings,
which is shown by there (there here).
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1 fun l => fun k =>
2 {l 7→ v1 ∗ k 7→ v2}
3 let s = !k in # s = v2
4 let t = !l in # t = v1
5 k := t ;
6 {l 7→ v1 ∗ k 7→ v1} # by assignment and equality on t
7 l := s
8 {w. Jw = ()K ∗ l 7→ v2 ∗ k 7→ v1} # by assignment and equality on s

Listing 4.1: Hoare style proof outline of swap function.

1 [ l ↦ v₁ ✴ k ↦ v₂ ]begin
2 ⟨let s =⟩
3 [ k ↦ v₂ ]frameby⟨ ✴-swap ⟩
4 ⟨!⟩ here
5 [ (λ w → ⟦ w ≡ v₂ ⟧ ✴ l ↦ v₁ ✴ k ↦ v₂) ]restoreby⟨ ✴-monoₗ ✴-swap ∘ ✴-assocᵣ ⟩
6 ⟨in⟩
7 [ l ↦ v₁ ✴ k ↦ v₂ ]pure⟨ s≡v₂ ⟩
8 ⟨let t =⟩
9 [ l ↦ v₁ ]frameby⟨ id ⟩

10 ⟨!⟩ there (there here)
11 [ (λ w → ⟦ w ≡ v₁ ⟧ ✴ l ↦ v₁ ✴ k ↦ v₂) ]restoreby⟨ ✴-assocᵣ ⟩
12 ⟨in⟩
13 [ l ↦ v₁ ✴ k ↦ v₂ ]pure⟨ t≡v₁ ⟩
14 [ k ↦ v₂ ]frameby⟨ ✴-swap ⟩
15 (there (there here) ⟨:=⟩ here≡ t≡v₁)
16 [ (λ _ → k ↦ v₁) ]by⟨ ✴-pure⁻ˡ ⟩
17 [ (λ _ → l ↦ v₁ ✴ k ↦ v₁) ]restoreby⟨ ✴-swap ⟩
18 ⟨;⟩
19 [ l ↦ v₁ ]frameby⟨ id ⟩
20 there (there (there here)) ⟨:=⟩ there (here≡ s≡v₂)
21 [ (λ w → ⟦ w ≡ unit ⟧ ✴ l ↦ v₂ ✴ k ↦ v₁) ]restoreby⟨ ✴-assocᵣ ⟩
22 ⟨end⟩
23 ⟨end⟩
24 [ (λ w → ⟦ w ≡ unit ⟧ ✴ l ↦ v₂ ✴ k ↦ v₁) ]∎

Listing 4.2: Mechanized Hoare style proof outline of swap in Agda.
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Chapter 5

Proof Automation

So far, the mechanized proof outlines can be used to prove properties of programs. However,
the programmer has towrite every stepmanually in the proof, whichmakes the processmore
cumbersome thanwriting down an outline on paper. Furthermore, it reduces the readability
of proof outlines, since it adds unnecessary clutter. In this chapter we will clean up the
outlines by proof automation in Agda.

5.1 Problems fromMechanization
A problem we have with our current mechanization is that we have to manually supply a
proof for every step of the reasoningwhenwriting a proof outline. Inmany outlines there are
steps that reshape the SL specifications to be able to use them in, for example, the frame rule.
Furthermore, since we have defined the triples for our languages for terms in Administrative
Normal Form,wehave to supply a proof that our variablemaps to a value in our environment.
Recall the rules for assignment and combined consequence frame:

ASSIGN-TRIPLE
η[x1] = l η[x2] = v′

{η ` l 7→ v}x1 := x2 {w. Jw = ()K ∗ l 7→ v′}

CONSEQUENCE-FRAME
H ` H1 ∗H2 {η ` H1} t {Q1} Q1 ∗·H2

˙̀ Q

{η ` H} t {Q}

In order to show a triple for assignment, we have to supply a proof that the variable x1 maps
to a location and the variable x2 maps to a value. For the combined consequence frame rule,
we have to give a proof of entailment for the pre- and postcondition. Both of these proof
obligations add clutter to an outline that we do not write down when writing outlines on
paper.

In order to illustrate how this makes outlines less readable, we take a look at an outline
of the following triple:

{{x → k, y → 2} ` l 7→ 0 ∗ k 7→ 0}x := y {w. Jw = ()K ∗ l 7→ 0 ∗ k 7→ 2}

The triple specifies that assignment of the variable y to variable x updates the value at lo-
cation k and returns the unit value. The specification also includes a location l. In order to
write an outline for this triple, we have to apply the consequence-frame rule first, since we
have defined the triple for assignment with a minimal footprint where the precondition only
contains the location to be updated. The outline in our mechanization would be written as:
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1 {l 7→ 0 ∗ k 7→ 0}
2 {k 7→ 0} # frame by commutativity of *
3 x := y
4 {w. Jw = ()K ∗ k 7→ 2} # assignment with x and y in environment
5 {w. Jw = ()K ∗ l 7→ 0 ∗ k 7→ 2} # restore frame by commutativity of *
6 {w. Jw = ()K ∗ l 7→ 0 ∗ k 7→ 2}

Because our mechanization is precise we have to state every rule that we use and their proof
obligations. We start by applying the consequence-frame rule on line 2 and supply an en-
tailment using commutativity of ∗, because the frame must be at the right hand side of the
separation. Now we have reshaped the precondition into the correct shape to apply our as-
signment axiom and update the value of k. We leave the proof that x and y are contained
in our environment abstract, in Agda we would have to give a term that shows this fact.
The value that k points to is updated to reflect the assignment. Finally, we can restore our
frame again using commutativity of ∗. The highlighted lines show the difference between
our mechanization and outlines on paper. So, the outline on paper would be half the length
of the outline in our mechanization. We would rather remove these lines to make the proof
shorter and easier to read.

The difference between our mechanization and outlines on paper can be summarized by
the following two points:

1. We have to give a proof for every entailment that we use to reshape our pre- and post-
conditions.

2. We have to give a proof that a variable maps to a value in our environment.

These differences cause our proof outlines to be longer and less readable. However, these
proofs are necessary to make our outline complete and verifiable by Agda. The differences
can be greatly reduced by use of proof automation. We take advantage of the fact that we are
working in a proof assistant and instructAgda to find a correct proof for us. Proof automation
will allow us to write concise verified outlines of programs.

In the remainder of this chapter we will define proof automation to reduce the two dif-
ferences that make our mechanization less readable. We will solve the first by introducing
proof automation for entailment in Section 5.2 and then extending it in Section 5.3 towork for
the combined consequence-frame rule. The second difference will be relieved in Section 5.4
by proof automation that finds a variable in an environment.

5.2 Automating Entailment
In this section we will design a decision procedure to decide if an entailment is valid and,
when it is valid, also to automatically construct a proof. However, entailment is not decidable
when allowing for all possible predicates in SL (Calcagno, Yang, and O’hearn 2001). The
mechanization of SL in Agda was presented in Chapter 4 by a shallow embedding and, thus,
allows for any possible predicate in set theory. This means we will have to restrict the use
of proof automation in outlines to a subset of SL where entailment can be decided. We can
then use this decision procedure to design a solver for a subset of SL. So, we will not be able
to solve every entailment. We will see that this subset is large enough to still be very useful
in proof outlines.

The subset of expressionswewill be using is the separating conjunction (∗) and the empty
predicate (emp). We will treat all other predicates as atomic variables, which we cannot re-
shape. This reduces the decision problem to solving equivalences in a commutative monoid
by Lemma 2.2.1. This process has been described extensively by Boutin (1997) and later by
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l 7→ v ∗ (k 7→ w ∗ JP K) ∗ emp

JP K ∗ (l 7→ v ∗ (k 7→ w ∗ emp))

(k 7→ w ∗ l 7→ v) ∗ JP K

JP K ∗ (l 7→ v ∗ (k 7→ w ∗ emp))

a` a`

Figure 5.1: This diagram illustrates how we will solve an equivalence between two predi-
cates. The two predicates in the bottom are equivalent because they have the same normal
form at the top and they are equivalent to their normal form.

Grégoire and Mahboubi (2005) for the proof assistant Coq. Bove, Dybjer, and Norell (2009)
have shown how to implement a solver for commutative monoids in Agda. Currently, Agda
has an implementation of a noncommutative monoid solver1 and a ring solver2 in the stan-
dard library. We will use these ideas to implement a solver for SL in Agda.

We will not directly define a decision procedure on restricted expressions. Instead, we
will create a decision procedure via a normal form of expressions. A normal form is a form
of an expression such that any two expressions are equivalent when they have the same
normal form. It is easier to decide whether two normal forms are equivalent. If we pick a
sound normal form transform, such that every expression is equivalent to their normal form,
we can decide whether two expressions are equivalent via their normal forms. See Figure 5.1
for an example of an equivalence that we can solve with this procedure.

The consequence of using normal forms is that we will actually create a decision pro-
cedure for equivalences of predicates in the form H1 a` H2. So, we will show a stronger
relation than is actually necessary for the consequence rule, which requires only one part of
the equivalence: H1 ` H2.

5.2.1 Restricted Expressions
The subset of expressions that we use can be represented by the following syntax:

Pred↓ ::= Pred↓ ∗′ Pred↓ | emp′ | x

Predicates will be restricted to expressions that consist of ∗, emp and atomic variables. Any
predicate that is not one of ∗ or emp will be represented as atomic variables. The type of
variables x will be the set of natural numbers N and the predicates they represent will be
stored in an environment of type Env, which is a map of N to Pred. This will make it more
convenient to compare two expressions that have the same environment and create an order
on variables. This allows us to still solve entailment for expressions with arbitrary predicates,
but we will handle them as atomic expressions that cannot be reshaped.

In order to convert between an expression and their restricted form, we define a macro
parse to parse an expression to its restricted form and an environment that maps the atomic
variables back to their original predicates. This macro serves as an oracle that can quote a
predicate into its restricted expression. Later in Section 5.5 we will see how to define such
a macro in Agda, but for now we will define it as an oracle. Let us look at an example of
parsing an expression to better illustrate how this macro works:

parse(JP K ∗ l 7→ v ∗ emp) = 0 ∗′ (1 ∗′ emp′) , {0 → JP K, 1 → (l 7→ v)}
1https://agda.github.io/agda-stdlib/Tactic.MonoidSolver.html
2https://agda.github.io/agda-stdlib/Tactic.RingSolver.html
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The parsed expression hides the points-to and pure predicate and treats them as unknown
predicates that we cannot unfold. The separation and empty predicate are parsed to their re-
spective quoted forms. The environment maps the variables back to their original predicate.

We also define an evaluation function eval to convert an expression and an environment
back to a predicate. Converting back to a predicate can be done by induction on the ex-
pression and looking up predicates in the environment. Furthermore, we have to require
that evaluation is the inverse of parsing, in order to ensure that we can use the restricted ex-
pressions to decide entailment. If we do not have this requirement, then we can still decide
whether expressions are equivalent, but never relate them to their original predicates.

Definition 5.2.1 (Evaluation of expression). The function eval evaluates an expression and
environment to a predicate.

eval(H↓
1 ∗′ H↓

2 , ρ) = eval(H↓
1 , ρ) ∗ eval(H↓

2 , ρ)

eval(emp′, ρ) = emp
eval(x, ρ) = lookup(x, ρ)

Lemma 5.2.2 (Evaluation is inverse of parsing). Parsing and evaluating a predicate H is
equal to H .

eval(parse(H)) = H

5.2.2 Normal Forms
As stated before, we decide whether two expressions are equivalent via a normal form. A
normal form of an expression is a sorted list of the variables in the expression. For example,
the normal form of (1∗′0)∗′ (emp′∗′2) is (0, 1, 2). We define a normal formNF as an algebraic
data type in the same structure as a list:

NF ::= nil | cons x NF

We also define a function norm for normalizing an expression. We can normalize an
expression by traversing it in a left recursive manner and collecting all the variables in a list
and skipping emp′ and then sorting the list in ascending order. In essence, we flatten the tree
structure of the expression to a flat list structure. We sort the list to ensure that two normal
forms with equal variables, but in a different order, also have the same normal form. We can
easily decide whether two normal forms are equivalent by comparing every variable in the
list from left to right. Finally, we also define an evaluation function evaln to evaluate a normal
form and environment to a predicate.

Definition 5.2.3 (Normalization of expression). The function norm normalizes a quoted ex-
pression to a sorted list of variables and can be defined as follows:

norm(H↓) = sort(flatten(H↓))

flatten(H↓
1 ∗′ H↓

2 ) = concat(flatten(H↓
1 ),flatten(H

↓
2 ))

flatten(emp′) = nil
flatten(x) = cons x nil

concat(nil, n2) = n2

concat(cons x n1, n2) = cons x concat(n1, n2)
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Definition 5.2.4 (Evaluation of normal form). The function evaln evaluates a normal form
and environment to a predicate.

evaln(nil, ρ) = emp
evaln(cons x n, ρ) = lookup(x, ρ) ∗ evaln(n, ρ)

5.2.3 Soundness of Normalization
In order to use the normalization in the decision procedure, the transformationmust be sound.
All evaluated normal forms of an expression should be equivalent to the evaluation of the
expression. In other words, the normalization of a predicate should not change the meaning
of the predicate. We can show that the normalization is sound if we also show that sorting a
normal form and flattening an expression are sound. Proving that flattening is sound can be
done by induction on the first argument. A sorted list can be seen as a permutation of a list
and, thus, also a permutation of our expression. So, with commutativity, associativity and
identity of ∗ we can show that sorting a normal form is sound. See Appendix B for the full
proofs of these lemmas.

Lemma 5.2.5 (Flattening of expression to normal form is sound). Evaluating a flattening of
an expression H↓ to a normal form is equivalent to evaluating the expression.

evaln(flatten(H↓), ρ) a` eval(H↓, ρ)

Lemma 5.2.6 (Sorting of normal form is sound). Evaluating a sorted normal form n is equiv-
alent to evaluating the normal form.

evaln(sort(n), ρ) a` evaln(n, ρ)

Lemma 5.2.7 (Normal form soundness). All evaluated restricted expressionsH↓ in environ-
ment ρ are equivalent to their evaluated normal form in environment ρ.

evaln(norm(H↓), ρ) a` eval(H↓, ρ)

Proof. In order to show the equivalence wewill start with the normalization and reason from
there to the expression by equivalence of a` (see Lemma 2.2.2). First, we unfold norm to get:

evaln(sort(flatten(H↓)), ρ)

Now, using the fact that sorting a normal form is sound by Lemma 5.2.6, we can transform
this to:

evaln(flatten(H↓), ρ)

Next we apply the soundness of flattening an expression by Lemma 5.2.5 to get:

eval(H↓, ρ)

which is the goal we needed to show to prove the equivalence. Therefore, evaluating a nor-
malized expression is equivalent to evaluating the expression.

5.2.4 Alignment of Environments
Two expressions may not have the same environment, so we cannot relate the evaluated
predicates to each other. A normal form will evaluate to a different predicate under differ-
ent environments. In order to decide equivalence of predicates we have to use the same
environment for both sides. We can do so by aligning the right hand side of the equivalence
to the environment of the left hand side of the equivalence. We define another macro align to
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rename variables from an expression in one environment to another environment. For every
variable in the expressionwe take the predicate that it maps to in its environment and find its
index in the other environment by syntactically comparing the predicates and renaming the
variable to map to that predicate. See this example of aligning an expression to a different
environment:

align(0 ∗′ 1, {0 → (l 7→ v), 1 → Jv 6= 0K}, {0 → Jv 6= 0K, 1 → (l 7→ v)}) = 1 ∗′ 0

We assume that every predicate in an environment is syntactically unique, otherwise we
might remap a variable to an incorrect predicate. This should not be an issue, since equal
predicates separated by ∗ are usually false or completely useless.

We must also have that every evaluated expression in ρ1 evaluates to the same predicate
in ρ2 when it has been aligned to ρ2.

Lemma 5.2.8. Evaluating an expressionH↓ in ρ1 is equal to aligning to ρ2 and evaluating the
expression in ρ2.

eval(H↓, ρ1) = eval(align(H↓, ρ1, ρ2), ρ2)

5.2.5 Decision Procedure
We have all ingredients to design a weak decision procedure for entailment of predicates. At
the start of this section I showed that we were going to solve entailment via normal forms
of predicate expressions. Now that we have defined a method of obtaining a normalization
of an expression we can flesh out the design of Figure 5.1 with these steps into the diagram
of Figure 5.2. The center design of proving equivalence via normal forms is expanded with
how to obtain these normal forms.

The solving procedure is as follows. For an equivalence of two predicates, we parse both
predicates to their expressions and normalize them. Then we try to align one expression to
the environment of the other, to make sure they have the same atomic predicates. If this fails,
then we cannot solve the entailment. But, if the normal forms are indeed equal, then we can
prove the equivalence by the soundness of their normal forms. The entire proof then looks
like this:

H1 a` evaln(norm(H↓
1 ), ρ1) = evaln(norm(align(H↓

2 , ρ2, ρ1)), ρ1) a` H2

Finally, we can incorporate our decision procedure into our proof outlines. Since we can
solve entailment of typeH1 ` H2, we can use the solver to construct proofs for entailment of
the pre- and postcondition in the consequence rule instead of having to supply the proof of
entailment ourselves. Although the solver is restricted in what it can solve, it is still useful in
constructing proofs that would be tedious to solve by hand. Take the following outline for
example:

1 {l 7→ 0 ∗m 7→ 7 ∗ (JP K ∗ k 7→ 2)}
2 {k 7→ 2 ∗ (JP K ∗ l 7→ 0 ∗m 7→ 7)} # consequence with solve
3 {k 7→ 2} # frame
4 free k
5 {emp} # free axiom
6 {JP K ∗ l 7→ 0 ∗m 7→ 7} # restore frame

In the consequence rule of line 2 we can now just apply solve and let the solver find a proof
for us, because we know that they both separate the same predicates. So, the solver finds a
proof for the entailment:

l 7→ 0 ∗m 7→ 7 ∗ (JP K ∗ k 7→ 2) ` k 7→ 2 ∗ (JP K ∗ l 7→ 0 ∗m 7→ 7)
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H1

H↓
1 , ρ1

H ′
1

H2 H↓
2 , ρ2

H ′
2

H↓
2→1, ρ1

soundness

parse

norm

soundness

parse

norm

align to ρ1

decidable normal
form equivalence

Figure 5.2: This diagram illustrates how to solve an equivalence between two predicates
depicted at the bottom. You can read the diagram by starting at H1 in the bottom left, then,
by the soundness of normal forms, move up to arrive at the normal form of H1. From here,
you go right to the equal normal formofH2 and use the soundness of normal forms in reverse
to arrive at the equivalent predicate H2. The other paths show how to obtain the equivalent
normal forms.

This is a huge improvement over having to supply this proof ourselves. The proof for this
entailment would be significantly larger than using the solver and we would also have to
give a proof of restoring the frame, resulting in two large tedious proofs.

Unfortunately, we still have to separate the consequence and the frame, because our solver
is not capable of solving the entailment necessary for the combined consequence frame rule:
H ` H1 ∗H2 for an unknown H2. The solver would not be able to find a proof, because the
left hand side of the entailment does not contain the predicate H2. We could just supply the
necessary frame and invoke the solver, but we can do better by extending our solver to find
this frame for us.

5.3 Automating Framing
In this section we will extend our solver to first find the unknown frame and then do the
usual process of solving we have defined previously. So, reusing the previous example, our
goal is to write down a proof outline like this:

1 {l 7→ 0 ∗m 7→ 7 ∗ (JP K ∗ k 7→ 2)}
2 {k 7→ 2} # frame with solve
3 free k
4 {emp} # free axiom
5 {JP K ∗ l 7→ 0 ∗m 7→ 7} # restore frame with solve

On line 2 we use the consequence frame rule without supplying a frame and use the solver
to find a proof for the entailment. This would require our solver to find an entailment of:

l 7→ 0 ∗m 7→ 7 ∗ (JP K ∗ k 7→ 2) ` k 7→ 2 ∗H

where H is an unknown frame that the extended frame solver will figure out automatically,
before it can do the actual solving. In restoring the frame on line 5 we no longer need to find
the frame, since it is the same as the one we found on line 2. So, we can restore the frame
using the regular solver.
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We will derive the unknown frame from the known predicates. The fragment k 7→ 2 we
want to use is contained in the separation we started with. So, in order to get the frame, we
remove k 7→ 2 from the separation and set this to the frame H to get the entailment:

l 7→ 0 ∗m 7→ 7 ∗ (JP K ∗ k 7→ 2) ` k 7→ 2 ∗ (l 7→ 0 ∗m 7→ 7 ∗ JP K)
which we can solve with our solver. So, in general for an entailment H ` H1 ∗H2, we substi-
tuteH2 withH1 subtracted fromH and then solve the resulting entailment. We have already
defined a solver that was able to find a proof for entailment given that the normal formswere
equal. For solving with an unknown frame, we will define a solver that finds a proof given
that the fragment H1 is contained in H .

5.3.1 Finding a Frame
The first step is finding the right frame. Wewill define the frame as the difference between the
specification we start with and the smaller specification we want to use. We define this oper-
ation on the normal forms of expressions, since these are sorted lists, where the expressions
are represented by easy to compare natural numbers. We define the function subtract, which
subtracts a normal form from another normal form. The following example demonstrates
how the function operates:

subtract(cons 0 (cons 1 (cons 2 nil)), cons 1 nil) = cons 0 (cons 2 nil)

The second normal form is subtracted from the first and we are left with the first normal
form where the variable 1 has been removed.

But what if the second normal contained a variable that is not contained in the first? The
functionwould fail, since the solver cannot solve an entailmentwhere a variable is in the right
hand side but not in the left hand side. Therefore, the entire solving process will fail. This
function only succeeds if the second normal form is contained in the first. So, we define a
decidable relation on normal forms that defines when a normal form is contained in another.

Definition 5.3.1 (Normal form subset). An normal form n1 is a subset of normal form n2,
written as n1 ⊆ n2, when all variables of n1 are contained in n2 in order.

Lemma 5.3.2 (Subset decidable). n1 ⊆ n2 is decidable, for any two normal forms n1 and n2.

Definition 5.3.3 (Subtract normal forms). Given two normal forms n1 and n2, where n2 ⊆ n1,
then subtract(n1, n2) subtracts all variables of n2 from n1.

subtract(n1,nil) = n1

subtract(cons x1 n1, cons x2 n2) = cons x1 (subtract n1 (cons x2 n2)) if x1 6= x2

subtract(cons x1 n1, cons x2 n2) = subtract(n1, n2) if x1 = x2

We define the subtract function only on two normal forms, where the second is a subset
of the first. If n2 is empty, subtract is defined as n1. If n2 contains a variable, then n1 must
also contain a variable, otherwise n2 would not be a subset of n1. If the variables are not
equal then the variable from n2, must be contained somewhere later in n1, so, we leave in
the variable from n1 and subtract n2 from the tail of n1. If the variables are equal then we
remove the variable and subtract the tails.

5.3.2 Frame Soundness
Now that we have defined how to subtract two normal forms, we can define the soundness
property. We are still workingwith normal forms, so, soundness is defined as an equivalence
on evaluated normal forms:
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Lemma 5.3.4 (Frame soundness). If n2 ⊆ n1, then evaluating n1 is equivalent to evaluating
n2 and separately subtract(n1, n2).

evaln(n1, ρ) a` evaln(n2, ρ) ∗ evaln(subtract(n1, n2), ρ)

Proof. We will prove soundness of frame equivalence by induction on n2.

The base case is when n2 equals nil. The equivalence becomes:

evaln(n1, ρ) a` evaln(nil, ρ) ∗ evaln(subtract(n1,nil), ρ)

If we simplify from the definitions of eval and subtract we get a right hand side of:

emp ∗ evaln(n1, ρ)

Then by left identity of ∗ the right hand side becomes:

evaln(n1, ρ)

which is equivalent to the left hand side of the equivalence. Therefore, if n2 equals nil then
subtract is sound.

The first inductive case is when n2 equals cons x2 n2 and n1 equals cons x1 n1, where x1 6= x2.
The equivalence then becomes:

evaln(cons x1 n1, ρ) a` evaln(cons x2 n2, ρ) ∗ evaln(subtract(cons x1 n1, cons x2 n2), ρ)

By definition of evaln we can simplify the left hand side to:

lookup(x1, ρ) ∗ evaln(n1, ρ)

Now we can apply the induction hypothesis on evaln(n1, ρ) by monotonicity of ∗ to arrive at:

lookup(x1, ρ) ∗ evaln(cons x2 n2, ρ) ∗ evaln(subtract(n1, cons x2 n2), ρ)

Then we reorder the separation to:

evaln(cons x2 n2, ρ) ∗ lookup(x1, ρ) ∗ evaln(subtract(n1, cons x2 n2), ρ)

which we can fold by definition of evaln back to:

evaln(cons x2 n2, ρ) ∗ evaln(subtract(cons x1 n1, cons x2 n2), ρ)

which is equal to the right hand side, thus showing the first inductive case.

The second inductive case is when x1 = x2. The equivalence becomes the same as previous
case:

evaln(cons x1 n1, ρ) a` evaln(cons x2 n2, ρ) ∗ evaln(subtract(cons x1 n1, cons x2 n2), ρ)

Again we simplify the left hand side and apply the induction hypothesis to get:

lookup(x1, ρ) ∗ evaln(n2, ρ) ∗ evaln(subtract(n1, n2), ρ)

Then we re-associate the separation to:

(lookup(x1, ρ) ∗ evaln(n2, ρ)) ∗ evaln(subtract(n1, n2), ρ)

And since x1 = x2, we can simplify to:

evaln(cons x2 n2, ρ) ∗ evaln(subtract(cons x1 n1, cons x2 n2), ρ)

Which is equal to the right hand side of the equivalence. Therefore, since we have shown
the equivalence for the base case and two inductive cases, subtraction of normal forms is
sound.
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5.3.3 Decision Procedure
Armed with frame soundness we can design a weak decision procedure for solving entail-
ment with unknown frame. For an equivalence of two predicates and an unknown frame, we
parse both predicates to their expressions and normalize them. We cannot parse the frame,
since it is not yet known what it should be. Then, we try to align one expression to the envi-
ronment of the other, to make sure they evaluate in the same environment. If this fails, then
we cannot solve the entailment. Next, we check if the normal form of the predicate on the
right hand side is a subset of the left hand side. If not we fail the procedure and cannot find a
solution. But, if it is a subset, thenwe set the unknown frame to the difference of the left hand
and right hand side by subtract and use the soundness property to prove the equivalence.

We canuse this decisionprocedure to automatically solve entailments for the consequence-
frame rule without giving an explicit frame. Now we can write outlines like the one from
the beginning of the section:

1 {l 7→ 0 ∗m 7→ 7 ∗ (JP K ∗ k 7→ 2)}
2 {k 7→ 2} # frame with solve
3 free k
4 {emp} # free axiom
5 {JP K ∗ l 7→ 0 ∗m 7→ 7} # restore frame with solve

Since we know that k 7→ 2 is contained in l 7→ 0 ∗ m 7→ 7 ∗ (JP K ∗ k 7→ 2), we can use the
frame solver to find an entailment for an unknown frame. This reduces the amount of proofs
that are necessary for writing the proof outline, since it is no longer required to explicitly
show how to obtain the fragment from the complete specification. Furthermore, the outline
becomes more readable, since tedious details are left out.

5.4 Automating Variable Lookup
Another problem we set out to solve was the inconvenience of manually providing evidence
that a variable is contained in an environment. Solving this problem is specific to the repre-
sentation of variables in a language. Aswas alreadymentioned in Section 4.3, themechaniza-
tion in Agda uses De Bruijn index for representing variables and a list for the environment.
So, variables are represented by their index in the environment. For example, an index of
zero indicates the value of the last variable added to the environment. In Agda, a triple with
variables looks like:

{cons l (cons v (cons k nil)) ` l 7→ v} var 0 := var 2 {l 7→ k}

The environment is represented as a list in the same structure as a normal form and variables
are represented as var n, where n is the index in the environment. In this example triple,
we assign the variable with index 2 to the location represented by index 0, which results in
updating the location l to the value k. This triple can be proven using the ASSIGN-TRIPLE rule:

ASSIGN-TRIPLE
η[x1] = l η[x2] = v′

{η ` l 7→ v}x1 := x2 {l 7→ v′}

If we apply the rule, the proof obligation becomes:

cons l (cons v (cons k nil))[0] = l and cons l (cons v (cons k nil))[2] = k

To prove these two statements, we use two inference rules: either the value is at location zero
or the value is at a larger index in the list. These rules can be formalized as follows:
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Definition 5.4.1 (Rules for indexing value in environment).

HERE

(cons v η)[0] = v

THERE
η[n] = v

(cons v′ η)[1 + n] = v

Now we can fill in the proof obligations. The first can be solved directly by HERE and for the
value k at position 2, we have to apply THERE twice and then HERE.

This process of giving these proofs can be very tedious and it is not clear to a reader what
is meant by the THERE and HERE rules. We can automate these proofs by looking at the index
n of the variable and applying the THERE rule n times and then apply the HERE rule.

5.5 Proof Automation in Agda
Wehave seen how to introduce proof automation tomechanized proof outlines in an abstract
way. Nowwewill see how to achieve proof automation in the case ofAgda. Proof automation
in Agda can be implemented by reflection (van der Walt and Swierstra 2012). Reflection is
the representation of Agda terms as data structures in Agda. This allows the programmer to
write programs that write programs. Because programs correspond to proofs in Agda, we
can use reflection to construct proofs. Reflection is achieved through quoting and unquoting
of terms. Quoting is parsing a term in Agda to a data structure in Agda, and unquoting is
the inverse of quoting.

A program writing a program is known as a macro3 in Agda. When a macro is encoun-
tered during type-checking in a program, then Agdawill call themacrowith the goal type as
argument and other arguments that were given to the macro. Then, the macro will construct
a term to satisfy the goal. Type-checking succeeds when all goals have been solved, but can
also fail when there are unsolved goals or other user specified errors.

I have implemented the functions, data structures and soundness lemmas from the pre-
vious sections in Agda to achieve proof automation. See Appendix A for a reference of the
implementation in Agda. All implementation details of proof automation with respect to en-
tailment can be found in the Relation.Ternary.Tactic module. The implementation details
of automating variable lookup can be found in the Data.Lang.Tactic module. The parse and
align macros have been implemented as macros in Agda, which can be found in the module
Expression, and the final decision procedure for solving entailment and framing is also a
macro, which can be found in Core. The lemmas for proving soundness are implemented in
the Expression.Properties and CommutativeMonoidSolver modules. Finally, I declared new
syntax for using the macros in proof outlines, which can be found in Relation.Hoare.

To see what the proof outlines look like with this new syntax, we take another look at the
swap example from the previous chapter Section 4.3, but now with proof automation. The
new outline is listed in Listing 5.2 and, for reference, the outline without proof automation
is listed again in Listing 5.1. Now we can use auto, which is defined by the library, to inform
Agda to find a frame and solve the entailment for us, using the combined consequence-frame
rule. The only manual entailment that is still necessary is removing the pure fact on the
return value of assigning to k on line 8. Furthermore, we use the var! macro, which is also
defined by the library, to tell Agda to look for a variable in the environment that points to
the given value. For example, on line 2 we require a variable that maps to k. On line 6 we
see how Agda uses the equality we extracted on line 5 to find the variable that maps to the
value that l points to.

3https://agda.readthedocs.io/en/v2.6.2.1/language/reflection.html#macros
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1 [ l ↦ v₁ ✴ k ↦ v₂ ]begin
2 ⟨let x =⟩
3 [ k ↦ v₂ ]frameby⟨ ✴-swap ⟩
4 ⟨!⟩ here
5 [ (λ w → ⟦ w ≡ v₂ ⟧ ✴ l ↦ v₁ ✴ k ↦ v₂) ]restoreby⟨ ✴-monoₗ ✴-swap ∘ ✴-assocᵣ ⟩
6 ⟨in⟩
7 [ l ↦ v₁ ✴ k ↦ v₂ ]pure⟨ x≡v₂ ⟩
8 ⟨let y =⟩
9 [ l ↦ v₁ ]frameby⟨ id ⟩

10 ⟨!⟩ there (there here)
11 [ (λ w → ⟦ w ≡ v₁ ⟧ ✴ l ↦ v₁ ✴ k ↦ v₂) ]restoreby⟨ ✴-assocᵣ ⟩
12 ⟨in⟩
13 [ l ↦ v₁ ✴ k ↦ v₂ ]pure⟨ y≡v₁ ⟩
14 [ k ↦ v₂ ]frameby⟨ ✴-swap ⟩
15 (there (there here) ⟨:=⟩ here≡ y≡v₁)
16 [ (λ _ → k ↦ v₁) ]by⟨ ✴-pure⁻ˡ ⟩
17 [ (λ _ → l ↦ v₁ ✴ k ↦ v₁) ]restoreby⟨ ✴-swap ⟩
18 ⟨;⟩
19 [ l ↦ v₁ ]frameby⟨ id ⟩
20 there (there (there here)) ⟨:=⟩ there (here≡ x≡v₂)
21 [ (λ w → ⟦ w ≡ unit ⟧ ✴ l ↦ v₂ ✴ k ↦ v₁) ]restoreby⟨ ✴-assocᵣ ⟩
22 ⟨end⟩
23 ⟨end⟩
24 [ (λ w → ⟦ w ≡ unit ⟧ ✴ l ↦ v₂ ✴ k ↦ v₁) ]∎

Listing 5.1: Hoare style proof outline of swap in Agda without proof automation.

1 [ l ↦ v₁ ✴ k ↦ v₂ ]begin
2 ⟨let x =⟩ auto (⟨!⟩ var! (loc k)) ⟨in⟩
3 [ l ↦ v₁ ✴ k ↦ v₂ ]pure⟨ x≡v₂ ⟩
4 ⟨let y =⟩ auto (⟨!⟩ var! (loc l)) ⟨in⟩
5 [ l ↦ v₁ ✴ k ↦ v₂ ]pure⟨ y≡v₁ ⟩
6 auto (var! (loc k) ⟨:=⟩ var! v₁)
7 [ (λ w → ⟦ w ≡ unit ⟧ ✴ l ↦ v₁ ✴ k ↦ v₁) ]by⟨⟩
8 [ (λ _ → l ↦ v₁ ✴ k ↦ v₁) ]by⟨ ✴-pure⁻ˡ ⟩
9 ⟨;⟩

10 [ l ↦ v₁ ✴ k ↦ v₁ ]by⟨⟩
11 auto (var! (loc l) ⟨:=⟩ var! v₂)
12 ⟨end⟩
13 ⟨end⟩
14 [ (λ w → ⟦ w ≡ unit ⟧ ✴ l ↦ v₂ ✴ k ↦ v₁) ]∎

Listing 5.2: Hoare style proof outline of swap in Agda with proof automation.
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Chapter 6

Case Study

The mechanization for writing Hoare style proof outlines in the proof assistant Agda is com-
plete. In Section 4.3 we have already looked at a simple example in our imperative language.
In this chapter we will study a more complex example of copying a list structure in memory
and see if the outline is still readable.

6.1 Copy List Implementation
Before we can start constructing a program that copies a list, we need a data structure to
represent a list. We will represent the list structure as an algebraic data type with two con-
structors: nil for the empty list and cons for an element prepended to a list. In our imperative
language (see Section 4.1) we can create two new definitions:

1 nil = left ()
2 cons = fun x => fun xs => right (x, xs)

Since our language does not support new type definitions, we bind the definitions in our
metatheory. We define nil as the left sum of the unit value, since the empty list does not
carry any value. cons is defined as a function with two arguments, where the first argument
is the value at the head of the list and the second argument the tail of the list. In order to
construct a list in the store, we pass a value as the first argument and a location pointing
to another list in the store as the second argument to cons. This creates a single linked list
structure in the store. For example, a list of three values can be specified by:

l1 7→ (cons v1 l2) ∗ l2 7→ (cons v2 l3) ∗ l3 7→ (cons v3 l4) ∗ l4 7→ nil

Naturally, we can define newHoare triples for these constructors, which can be derived from
existing triples of product, sum and function application (see Figure 4.3):

Lemma 6.1.1 (List constructor Hoare triples).

NIL-TRIPLE

{η ` emp} nil {w. Jw = left ()K}
CONS-TRIPLE

η[x1] = v1 η[x2] = v2

{η ` emp} cons x1 x2 {w. Jw = right ( v1 , v2 )K}
Nowwe can construct a program that takes a list data structure allocated in the store and

copies it by allocating a new list data structure. We implement the program as a recursive
function in Listing 6.1. We write the program in ANF to ease the process of writing outlines
as discussed in Section 4.2. The function takes one value of a list, which is not the location
of a list. Since the list is a sum, we can match to create two branches: copying the empty
list and copying a value and a list. If the list is empty then it is not allocated and we can
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1 copy-list = rec f v =>
2 switch v
3 | left v1 => nil
4 | right v1 =>
5 let l1 = snd v1 in
6 let u1 = ! t in
7 let u2 = f t in
8 let l2 = ref u2 in
9 let v2 = fst v1 in

10 cons v2 l2

Listing 6.1: Copy list function.

return nil. If the list is a value and a tail, we dereference the location of the tail and call the
recursive function to copy the tail. Finally, the function allocates a new location that points to
the copied list and constructs a new list of the original value and the freshly allocated copied
list.

6.2 Copy List Specification
The next step in writing a proof outline for this program is to specify a triple for the applica-
tion of the copy-list function. We need a store predicate that specifies what a list structure
looks like in the store. We design a new store predicate IsList(v, x) which specifies that a
list value v in our language is represented by the mathematical list x, which is a list structure
from our metatheory. In order to differentiate between the list from the language and the list
from the metatheory, we define two newmeta list constructors: [] for the empty list and v :: x
for constructing a list from a value v and list x. We can derive IsList from already existing
store predicates. An allocated list is a separated chain of locations, where each location points
to a value and the next location. For example, the specification of the list v1 :: v2 :: v3 :: []
would look like:

IsList(cons v1 l2, v1 :: v2 :: v3 :: []) = l2 7→ (cons v2 l3) ∗ l3 7→ (cons v3 l4) ∗ l4 7→ nil

We define the IsList predicate inductively on the list from the language. If the list is nil then
the store is empty and the meta list is equal to []. If the list is cons then the store contains a
location that points to the next list and the meta list is equal to the current value and the tail,
which is again specified by IsList.

Lemma 6.2.1 (IsList predicate). The IsList(v, x) predicate inductively relates value v in the
language to a meta list structure x with constructors [] and x :: y.

ISLIST-NIL
emp

IsList(left (), [])

ISLIST-CONS
l 7→ v1 ∗ IsList(v1, y)

IsList(right (v, l), v :: y)

Now we can define the Hoare triple of the copy-list function. The precondition is a list
specification of the value passed to copy-list represented by some list x. After execution
the return value should be specified by the same list x and separately the original list. The
separating conjunction ensures that the freshly allocated list is completely separate from the
original list and the function does not just return the list immediately. Moreover, the copied
list has the same structure, since they are both specified by the same list of values. We express
the triple of copy-list as follows:

44
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1 copy-list = rec f v =>
2 {IsList(v, x)}
3 switch v
4 | left v1 =>
5 {IsList(left (), x)}
6 {emp} # unfold IsList with x = []
7 nil
8 {w. Jw = left ()K}
9 {w. IsList(w, [])} # by definition of IsList

10 {w. IsList(w, []) ∗ emp} # by right identity of *
11 {w. IsList(w, x) ∗ IsList(v, x)} # by definition of IsList and x = []
12 | right v1 =>
13 {IsList(right (v2, l1), x)}
14 {l1 7→ u1 ∗ IsList(u1, y)} # unfold list with x = v2 :: y
15 let l1 = snd v1 in
16 let u1 = ! l1 in
17 {IsList(u1, y)} # frame
18 let u2 = f t in
19 {IsList(u2, y) ∗ IsList(u1, y)} # induction hypothesis
20 {IsList(u2, y) ∗ l1 7→ u1 ∗ IsList(u1, y)} # restore frame
21 let l2 = ref u2 in
22 {l2 7→ u2 ∗ IsList(u2, y) ∗ l1 7→ u1 ∗ IsList(u1, y)}
23 let v2 = fst v1 in
24 cons v2 l2
25 {w. Jw = right (v2, l2)K ∗ l2 7→ u2 ∗ IsList(u2, y) ∗ l1 7→ u1 ∗ IsList(u1, y)}
26 {w. IsList(w, x) ∗ l1 7→ u1 ∗ IsList(u1, y)} # by definition of IsList
27 {w. IsList(w, x) ∗ IsList(v, x)} # by definition of IsList

Listing 6.2: Hoare style proof outline of copy list function.

Lemma 6.2.2 (Copy list Hoare triple).

COPY-LIST-TRIPLE

{η ` IsList(v, x)} copy-list v {w. IsList(w, x) ∗ IsList(v, x)}

6.3 Copy List Outline
The final step is writing the actual proof outline. Listing 6.2 lists the program annotated with
a proof outline and Listing 6.3 lists the mechanized proof outline in Agda. I implemented
the IsList predicate as an inductive data type in Agda together with some useful lemmas that
you see mentioned in the consequence rules. The full implementation details can be found
in the LangHoareOutlines.CopyList module in the examples directory (see Appendix A).

The outline begins by applying the rule for switch. The mechanization in Agda first re-
quires to deconstruct the value v into a sum, since it is not directly clear toAgda that the value
must be a sum. Since IsList is only defined for left and right it follows that v is a sum. First
we reason about the left branch. If the given value is left then it follows that the valuemust
be nil. Again, this line of reasoning is not directly clear to Agda, so we provide a lemma that
this is the case. Then, we unfold the definition of IsList into emp, from which follows that
the meta list x must also be empty. In Agda we carry this proof using pure predicates and
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then match on the equality using the PURE rule. In the mechanization on line 10 we match
on refl, which means that Agda will recognize that x equals the empty list. Then we can
apply the triple for nil (see Lemma 6.1.1), since the precondition of emp matches. To finish
this branch of reasoning, we reshape the postcondition into the required two separate lists.
Since, the lists are empty it follows from the definition of ISLIST-NIL that the return value is
nil, therefore, if the given list is empty then the copy is also empty. Next we show the other
branch, where the given list is a cons. Again, we need some extra lines in the mechanization
to show Agda that IsList of right implies that the list is a cons. This deconstruction intro-
duces some new variables into the proof. In Agda we introduce them through the existential
quantifier, whereas in the manual outline we just create them from thin air. This is not a
problem, because through the EXISTS rule we can lift them outside the specification. I imple-
mented an n-ary EXISTS rule in Agda to extract n existential quantifiers in one line, instead of
n lines, which can be found in the Relation.Hoaremodule. Then, similar to the branch of nil,
we unfold the definition of IsList into a location and another list. After the unfolding follows
a sequence of let bindings. In the mechanization we use a combination of solver calls and
the PURE rule to extract the substitution of the variable. We arrive at the recursive call, where
we first frame the location and apply the induction hypothesis to gain a copy of the tail of
the list. This is sub-structural recursion, so the proof is terminating, which is recognized by
the Agda termination checker. After the recursive call we restore the frame. Finally, we copy
the list by allocating a new location for the tail and combining it with the head value in a
product. By definition of ISLIST-CONS we can fold the location and IsList predicate back into a
single list. We have shown that both branches of the switch result in a copied list, therefore,
the function copy-list returns a copy of the given list.

The mechanization tries to make use of the solver where possible. However, at line 49,
57, 59 and 60 we have not used the solver. This is because Agda is not able to terminate
type checking in reasonable amount of time in these cases. Type checking does not terminate
within 10minutes, which is an unreasonable amount of timewhen interactivelywriting proof
outlines. This was tested on an Intel Core i7-11800H with 16GB of RAM with Agda version
2.6.2. Usually you type check the proof after every step. A type checked file is also necessary
in order to get assistance fromAgda onproof obligations. If the proofs are providedmanually
without solver calls, type checking takes an average of 15 seconds, which is still long, but
feasible. The reason that the type checker takes an unreasonable amount of time is because
of the size of the predicates. Solving an entailment of a separation of three atomic predicates
is reasonable for the solver as demonstrated by line 39. However, a separation of five or
more atomic variables exponentially increases to an infeasible amount of time for writing
interactive outlines. The final step of the solve macro, the unification of the produced proof
and the goal, takes themost amount of time and is also the stepwhich increases exponentially
in time by the size of the input. The other steps of parsing, alignment and finding the frame
are negligible on these input sizes. This is a limitation of reflection in Agda and it is not
certain what causes it.
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1 [ IsList v xs ]begin
2 [ ∃[ v′ ] (⟦ v ≡ sum v′ ⟧ ✴ IsList v xs) ]by⟨ list-is-sum ⟩
3 [ _ ]exists⟨ v′ ⟩
4 [ IsList v xs ]pure λ { refl →
5 [ IsList (sum v′) xs ]by⟨⟩
6 ⟨switch⟩ var! v
7 |left⇒ (λ { {v₁} v₁≡nil@refl →
8 [ IsList (sum (inj₁ v₁)) xs ]by⟨⟩
9 [ ⟦ v₁ ≡ unit × xs ≡ []ˡ ⟧ ]by⟨ unnil ⟩

10 []pure-emp (λ { (refl , refl) →
11 ⟨nil⟩
12 [ (λ w → ⟦ w ≡ nil-val ⟧) ]by⟨⟩
13 [ (λ w → IsList w []ˡ) ]by⟨ mknil ⟩
14 [ (λ w → IsList w []ˡ ✴ Emp) ]byauto
15 [ (λ w → IsList w []ˡ ✴ IsList nil-val []ˡ) ]by⟨ ✴-monoₗ emp-is-nil ⟩
16 [ (λ w → IsList w xs ✴ IsList v xs) ]∎ })})
17 |right⇒ (λ { {v₂} v₂≡cons@refl →
18 [ IsList (sum (inj₂ v₂)) xs ]by⟨⟩
19 [ ∃[ l₁ ] ∃[ x ] ∃[ t₁ ] ∃[ ys ] (⟦ v₂ ≡ prod (x , loc l₁) × xs ≡ x ∷ˡ ys ⟧ ✴ l₁ ↦ t₁ ✴ IsList t₁ ys) ]by⟨ uncons ⟩
20 [ _ ]existsₙ⟨ 4 ⟩ (λ { (l₁ , x , t₁ , ys) →
21 [ ⟦ v₂ ≡ prod (x , loc l₁) × xs ≡ x ∷ˡ ys ⟧ ✴ l₁ ↦ t₁ ✴ IsList t₁ ys ]by⟨⟩
22 [ l₁ ↦ t₁ ✴ IsList t₁ ys ]pure (λ { (refl , refl) →
23 ⟨let _ =⟩
24 [ Emp ]auto
25 (⟨snd⟩ var! v₂)
26 [ (λ w → ⟦ w ≡ loc l₁ ⟧ ✴ l₁ ↦ t₁ ✴ IsList t₁ ys) ]autorestore
27 ⟨in⟩
28 [ l₁ ↦ t₁ ✴ IsList t₁ ys ]pure⟨ l₁≡ ⟩
29 ⟨let _ =⟩
30 [ l₁ ↦ t₁ ]auto
31 (⟨!⟩ var! (loc l₁))
32 [ (λ w → ⟦ w ≡ t₁ ⟧ ✴ l₁ ↦ t₁ ✴ IsList t₁ ys) ]autorestore
33 ⟨in⟩
34 [ l₁ ↦ t₁ ✴ IsList t₁ ys ]pure⟨ t₁≡ ⟩
35 ⟨let t₂ =⟩
36 [ IsList t₁ ys ]auto
37 var! (fix η copy-body) ⟨∙⟩ var! t₁
38 ⟨rec-body⟩ copy-body-triple t₁ ys
39 [ (λ w → IsList w ys ✴ l₁ ↦ t₁ ✴ IsList t₁ ys) ]autorestore
40 ⟨in⟩
41 ⟨let a =⟩
42 [ Emp ]auto
43 (⟨ref⟩ var! t₂)
44 [ (λ w → ∃[ l₂ ] (⟦ w ≡ loc l₂ ⟧ ✴ l₂ ↦ t₂)) ]by⟨⟩
45 [ (λ w → ∃[ l₂ ] (⟦ w ≡ loc l₂ ⟧ ✴ l₂ ↦ t₂) ✴ IsList t₂ ys ✴ l₁ ↦ t₁ ✴ IsList t₁ ys) ]autorestore
46 [ (λ w → ∃[ l₂ ] ((⟦ w ≡ loc l₂ ⟧ ✴ l₂ ↦ t₂) ✴ IsList t₂ ys ✴ l₁ ↦ t₁ ✴ IsList t₁ ys)) ]by⟨ ✴-exists ⟩
47 ⟨in⟩
48 [ _ ]exists⟨ l₂ ⟩
49 [ ⟦ a ≡ loc l₂ ⟧ ✴ l₂ ↦ t₂ ✴ IsList t₂ ys ✴ l₁ ↦ t₁ ✴ IsList t₁ ys ]by⟨ ✴-assocᵣ ⟩
50 [ l₂ ↦ t₂ ✴ IsList t₂ ys ✴ l₁ ↦ t₁ ✴ IsList t₁ ys ]pure⟨ a≡l₂ ⟩
51 ⟨let _ =⟩
52 [ Emp ]frameby⟨ ✴-idˡ ⟩
53 (⟨fst⟩ var! v₂)
54 [ (λ w → ⟦ w ≡ x ⟧ ✴ l₂ ↦ t₂ ✴ IsList t₂ ys ✴ l₁ ↦ t₁ ✴ IsList t₁ ys) ]restoreby⟨ id ⟩
55 ⟨in⟩
56 [ l₂ ↦ t₂ ✴ IsList t₂ ys ✴ l₁ ↦ t₁ ✴ IsList t₁ ys ]pure⟨ x≡ ⟩
57 [ Emp ]frameby⟨ ✴-idˡ ⟩
58 (var! x ⟨cons⟩ var! (loc l₂))
59 [ (λ w → ((⟦ w ≡ cons-val x (loc l₂) ⟧ ✴ l₂ ↦ t₂) ✴ IsList t₂ ys) ✴ l₁ ↦ t₁ ✴ IsList t₁ ys) ]restoreby⟨ ✴-assocₗ ∘ ✴-assocₗ ⟩
60 [ (λ w → (⟦ w ≡ cons-val x (loc l₂) ⟧ ✴ l₂ ↦ t₂ ✴ IsList t₂ ys) ✴ (l₁ ↦ t₁ ✴ IsList t₁ ys)) ]by⟨ ✴-monoᵣ ✴-assocᵣ ⟩
61 [ (λ w → IsList w (x ∷ˡ ys) ✴ l₁ ↦ t₁ ✴ IsList t₁ ys) ]by⟨ ✴-monoᵣ (λ { x@(emp refl ∙⟨ _ ⟩ _) → mkcons (✴-pure⁻ˡ x) }) ⟩
62 [ (λ w → IsList w (x ∷ˡ ys) ✴ IsList (cons-val x (loc l₁)) (x ∷ˡ ys)) ]by⟨ ✴-monoₗ mkcons ⟩
63 [ (λ w → IsList w xs ✴ IsList v xs) ]∎
64 ⟨end⟩
65 ⟨end⟩
66 ⟨end⟩
67 ⟨end⟩
68 ⟨end⟩ })})})
69 ⟨end⟩
70 [ (λ w → IsList w xs ✴ IsList v xs) ]∎
71 }

Listing 6.3: Mechanized Hoare style proof outline of copy list function in Agda.
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Chapter 7

Discussion

The goal of this thesis is to write verified readable proof outlines for imperative programs in
Agda. In the previous chapters I have presented a method on how to achieve this in a mech-
anization independent of target language, store implementation, location type and meta lan-
guage. The meta language should be a higher order logic proof assistant or have support for
dependent types, in order to define a shallow embedding for Separation Logic and a deep
embedding of a target language. Furthermore, the meta language should support custom
declarable syntax to declare syntax for triples. Finally, if the meta language has support
for proof automation by reflection the outlines can be made more readable by implement-
ing solvers for entailment. I demonstrated the idea by an implementation in the functional
dependently typed programming language Agda for a simple imperative language. Agda
has support for all of the above listed features. However, the implementation suffers from
limitations of Agda and the mechanization itself. In this chapter we will discuss what the
limitations are and how we can improve in future work.

7.1 Agda Limitations
The mechanized proof outlines are limited to the syntax of Agda. I found that Agda has two
limitations in syntax when writing proof outlines with custom declared syntax.

Firstly, the declared syntax does not allow for pattern matching. So, a custom syntax for
a lambda abstraction cannot pattern match on the argument of the lambda. The declared
syntax for the EXISTS and PURE rule use this type. For example, using the PURE rule in an
outline in Agda looks like:

1 [ ... ]pure⟨ P ⟩
2 ...

Agda does not allow matching on the constructors of P declared syntax. For example, the
refl constructor of propositional equality. It is possible, but then the outline has to bewritten
with Agda pattern matching lambda:

1 [ ... ]pure (λ { refl →
2 ...
3 })

This introduces two sets of braces that the user needs to match and that should not be neces-
sary. If Agda had support for pattern matching inside declared syntax, some proof outlines
could become more readable.

The second problem is that names or syntax in Agda cannot coincide with other already
existing names or syntax. This is why the syntax of the language in the proof outlines is
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enclosed by angles. Otherwise, Agda will complain when writing programs and outlines
because it does not know which syntax to parse. However, the types of the two syntax is dif-
ferent. The syntax for outlines is a triple, whereas the syntax for programs is of the language
type. It seems that it might be possible to infer from the context in which the syntax is used
which syntax is meant to be parsed.

A completely different approach that would not suffer from the limitations of the meta
language is to design a Domain Specific Language (DSL) that extends the target language
with triples and inference rules for proving specifications. A parser and kind of type checker
can be implemented in a meta language that parses a program annotated with specifications
and checks if the program satisfies the specifications and possibly solve unsolved specifica-
tions. This allows for any type of custom syntax, without the meta language having support
for declared syntax. The interactivity of the proof assistant, however, is lost. Providing assis-
tance and feedback to the userwriting a proof is an essential part ofwriting complex proofs of
programs. Feedback could be implemented through an IDE for the target programming lan-
guage. A good example is Jahob by Zee, Kuncak, and Rinard (2009). Jahob is an integrated
proof language for Java that allows programmers to annotate programs with specifications
and dispatch proof obligations to an automated solver. The solution should also provide
predicates for common data structures or allow for writing custom predicates or even derive
predicates from data type declarations.

7.2 Features of the Language
The features of the example imperative language is not representative of modern impera-
tive languages. It does not have support for types, input/output, loops, control flow break-
ing operations such as continue and return, pointer arithmetic, nondeterminism, garbage
collection, exceptions, concurrency and more. While the example language demonstrates
how to construct proof outlines for imperative programs inside Agda, the programs are far
from practical. Writing proof outlines for these features would require designing new triples.
Hoare Logic for these kind of features have been implemented before, but it remains to be
seen how these would translate to readable proof outlines.

In this thesis we defined Hoare triples to be total, therefore, the proof outlines must be
total. Programs must cover every path and be terminating. However, in many imperative
programming languages this is not the case. Some programs are designed to not terminate,
such as web servers, and some functions are partial and may, therefore, fail. For example,
allocations may go wrong, because the requested amount of memory is not available. The
specification for allocation presented in Chapter 4 assumes that allocation always succeeds.
It is possible to make the total Hoare Logic partial through coinduction (Charguéraud 2020),
which is also possible in Agda1. Partial triples specify that a program either runs indefinitely
or correctly evaluates according to the specification. Failure can then be modeled as looping
indefinitely.

7.3 Outlines in ANF
In Chapter 4 we defined the triples only on terms in Administrative Normal Form (ANF),
therefore, the outlines are also in ANF. This greatly reduces the amount of programs we can
write outlines for. Usually, imperative programs are not written in ANF, since it requires
a lot of typing and thinking of new names to bind every expression to a name before you
can use it. ANF, however, can be used as an intermediate representation for compilation
of imperative programs. If a compiler already provides a transformation to ANF and it is

1https://agda.readthedocs.io/en/v2.6.2/language/coinduction.html
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semantics preserving, then a user could write a program not in ANF and have the compiler
transform it to a form that can have outlines. Because the transformation preserves semantics
the original program also satisfies the specification by Lemma 4.2.1 that coerces triples for a
term to another that has the same semantics. There is, however, still a disconnect from the
original program and the program the user writes an outline for.

Another solution would be to design usable triples for every construct with arbitrary
subexpressions, such that not only the triple for let has sequencing of state. The current
triples make it difficult to reference the return value of a subexpression in the postcondition
of the entire expression. This can either be solved by the same structure of the triple for let
or by adding a pure fact on the equivalence of the return value. The latter can be formally
stated as follows:

ALT-LET-TRIPLE
{η ` H} t1 {w. Jw = vK ∗Q1} {{x → v} ∪ η ` Q1 v} t2 {Q}

{η ` H} let x = t1 in t2 {Q}

This structure forces the user to include a pure fact on every triple of a subexpression. Fur-
thermore, you need a frame, which is not always there when reasoning with an empty state.
Essentially, the rule takes care of matching on the equality for us. However, the current rule
LET-TRIPLE is a more generic version and allows for any type of postcondition. In fact, ALT-
LET-TRIPLE can be derived from LET-TRIPLE. Further work is necessary to develop triples for
sequencing of subexpressions that can be used for writing mechanized proof outlines.

7.4 Proof Automation
In Chapter 5 we discussed a sound solver for entailment in Separation Logic given that two
expressions had the same normal form. Furthermore, the solver was able to deduce an un-
known frame inside an entailment. This leads to more concise mechanized proof outlines.
However, the solver is limited in the set of entailments it can solve and the set of frames it
can find. For example, the solver treats pure predicates and existential quantifiers as atomic
expressions and can, therefore, not solve anything inside those predicates. Furthermore, the
solver cannot remove and insert pure predicates, as we have seen in the swap example in
Section 4.3, where we have to manually discard the return value of assignment. The prob-
lem with pure predicates in the solver is that the solver solves via a normal form. A pure
predicate should be included in the normal form, but if one side of equivalence does not
have the pure predicate then it has to be inserted. So, the solver should ask the user for an
instance of the pure predicates so it can construct a pure predicate in the normal form. The
existential quantifiers could also be treated as expressions to be able to solve expressions
within quantifiers and eliminate variables and introduce them to the meta language like we
do with the EXISTS rule. This would be useful since existential quantifiers are created when
allocating new resources as we have seen in the copy list case study in 6.

There exist other tools for verification with Separation Logic that include tactics in Coq
for rewriting expressions with pure predicates and existential quantifiers (McCreight 2009;
Chlipala 2011; Cao et al. 2018; Charguéraud 2020). The other solutions use rewrite rules to
simplify an expression, whereas the solver from this thesis uses a sound normal transform
to prove the equivalence given that the normal forms are equal. The rewrite rules may not
terminate, whereas the sound solver will always terminate. The rewrite rules, however, can
solve a larger set of expression in SL. I chose to implement a sound solver, because it provides
good feedback to the user why it is not possible to solve and it is safe. Rewriting is supported
byAgda2, but it is an unsafe feature ofAgda, since itmay break confluence of termination and
type preservation (Cockx 2020). Moreover, the feature in Agda only supports propositional

2https://agda.readthedocs.io/en/v2.6.2/language/rewriting.html
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equality, while we want to solve for entailment and equivalence of predicates. Further work
is necessary to extend the solver for these cases in readable mechanized proof outlines. The
solver from this thesis can be extended to support more expressions.

We can go even further with the amount of proof automation in proof outlines. Another
useful feature would be to automate folding and unfolding of predicates, such as the IsList
predicate from Chapter 6. This would require using propositions from the expression in
finding an entailment. An example is folding an empty list:

Jw = nilK ` IsList(w, [])

The solver should be able to use the facts that w is a value of the empty list and emp entails
IsList(nil, []). This is similar to how automatic proof search works in Agdawith Agsy3 (Lind-
blad and Benke 2006). I, however, have not succeeded in using Agsy for proof automation
for entailments in general. Smallfoot (Berdine, Calcagno, and O’Hearn 2005) is an example
of a verification tool that can handle folding and unfolding list and tree specifications. An-
other proposal is to use automation to write the skeleton of proofs of programs. Since the
outlines are based on an already existing program, the axioms and inference rules of the lan-
guage to apply are fixed. So, after a user has written a program, they then have to write the
program again but for the outline. It might be possible to write a macro that constructs an
outline of the triples and leaves holes for frame and consequence. The macro might also try
using the solver and only ask the user for proofs that it cannot solve by itself. This creates a
more automated tool that would still be able to output readable proof outlines in the style of
Hoare and also allow for interactive theorem proving.

Lastly, the proof automation implemented in Agda suffers from a performance issue.
As already discussed in the case study in Section 6.3 solving entailments with more than
five atomic variables consumes a lot of memory and does not terminate within a reasonable
amount of time for interactively writing proofs where it is normal to get feedback within
seconds and not minutes. The unification of the constructed terms and goal in the proof out-
line causes this performance issue. It is not certain what exactly causes it, but I was able to
improve the performance by making the predicates abstract in Agda. Agda will not unfold
abstract definitions. This improves performance, since Agda will not type check the defini-
tion of an abstract predicate during unification. However, this only increased performance
minimally. Without abstract definitions it is possible to solve expressions with up to three
atomic variables within reasonable time. When making the points-to relation abstract this
number goes up to five. In proof outlines for more complex programs an expression could
separate up to a dozen predicates. Further work is necessary to resolve these issues with
macros and reflection in Agda. Furthermore, debugging and profiling these performance
issues is tedious and incomplete in Agda and the errors are not always very helpful when
writing macros, which made it difficult to analyze the problem. Adding and improving de-
bug tools for Agda would make writing macros much easier.

If the above proposals could be implemented then the proof outline of copy-list from
Chapter 6 could be just as concise as the manual proof outline. The advantage over the man-
ual outline is that the mechanization also verifies the outline and assists the user in writing
a correct proof.

3See for documentation on how to use proof automation in Agda: https://agda.readthedocs.io/en/v2.6.2/
tools/auto.html
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Chapter 8

Related work

This chapter relates this thesis to other scientific work in literature. Software verification
tools can roughly be placed on a scale from interactive to fully automated. Interactive verifi-
cation can be tedious work, but precise and strong specifications can be proven. This is illus-
trated by the extensive correctness proof of the cryptographic HMAC algorithm in openSSL
by Beringer et al. (2015). On the other end we have automated tools that require minimal
annotations and sometimes even no input from the user at all, but are constrained in the set
of specifications they can assert. An example of which is the popular static analyzer Infer
by Calcagno, Distefano, et al. (2015) developed at Meta that can statically analyze Java and
C/C++ code for memory safety and more. However, proving more precise specifications,
for example, about the contents of generic data structures, is not possible in fully automated
tools. Most current verification tools are based on Separation Logic because the theory of-
fers scalability (Pym, Spring, and O’Hearn 2019). The solution from this thesis is entirely
interactive and leans a bit to automation. While there exist many tools that are more capa-
ble at verifying programs than the solution from this thesis, the mechanization structures
proofs as proof outlines in the style of Hoare in Agda, which has not been done before. For
a comprehensive survey of verification tools based on Separation Logic you may refer to the
CACM article by O’Hearn (2019), especially the appendix, which lists many automated and
semi-automated tools for program verification. In the remainder of this chapter we will look
at other work from literature that implement tools for interactive program verification and
compare them to the work from this thesis.

8.1 Interactive Verification in the style of Hoare
Thework that perhapsmost closely resembles thework from this thesis is the early tool called
Cocktail by Franssen (2000). Cocktail is an interactive editing environment that combines
programming and interactive Hoare style reasoning. The solution allowed programmers to
program in a simple While language that featured loops and mutable variables. However,
it did not allow for reasoning about pointers. Separation Logic had not been published yet
at that time. Furthermore, it provided automated theorem proving by rewriting rules to re-
duce the amount of theoremproving the programmer had to carry out. Since the automation
was carried out by rewrite rules, solving a theorem may not terminate, which is not the case
when using a sound solver such as the one presented in this thesis. Nevertheless, Cocktail
provided a usable interactive programming environment with support for holes, where the
programmer received feedback about proof obligations and could write readable proof out-
lines in the style of Hoare. Unfortunately, I was not able to find any further development of
Cocktail.

Another tool that comes close to reasoning about programs in the style of Hoare is Jahob
by Zee, Kuncak, and Rinard (2009). It was an extension of Java that allowed programmers
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to add annotations to specify properties of the code. The tool mostly eliminated interactive
theorem proving by dispatching proof obligations to solvers and using an integrated proof
language where necessary. Since they created Jahob in a programming environment the pro-
grammer does not have to leave their trusted environment and due to the proof automation
and custom interactive theorem proving the programmer does not have to have experience
in a proof assistant. Jahob can also prove properties about more complex programs with
object oriented programming in Java. However, Jahob is not based on Separation Logic and,
therefore, the specifications are not as concise as the ones described by SL.

To my knowledge, more tools that allow reasoning about programs in the style of Hoare
based on Separation Logic do not exist. Other mechanizations of Separation Logic for pro-
gram verification in Agda are also lacking. However, there do exist verification tools that fa-
cilitate interactive reasoning about programs with tactics in the Coq proof assistant. Tactics
are automated steps in a proof that reduce a goal to one or more smaller subgoals that need
to be proven in order to generate a complete proof1. This is different than proof construction
in Agda, because in our mechanization we have to explicitly construct a program—which
corresponds to a proof—in order to prove a theorem.

8.2 Tactic Based Interactive Verification
Iris (Jung et al. 2018) is a higher-order concurrent Separation Logic framework that supports
interactive program verification in the Coq proof assistant. The framework provides an “Iris
Proof Mode” for Coq, which allows a user to interactively write proofs of program specifica-
tions using tactics(Krebbers, Timany, and Birkedal 2017). Similar to the solution presented
in this thesis, Iris can be instantiated with a language defined by the user. Hoare triples in
Iris are defined in the form of weakest preconditions. For a program t and postcondition Q,
the weakest precondition of t and Q gives the weakest possible precondition for which t ter-
minates and satisfies Q. In this context, weakest refers to the order on entailment, so every
other precondition of a program can be shaped to the weakest. However, this style of specifi-
cation is difficult to understand and does not profit from the same intuition as Hoare triples.
Therefore, Iris also provides syntactic sugar towriteHoare triples in terms ofweakest precon-
ditions. Specifications for language constructs can then be defined in weakest precondition
style similar to the specification in Hoare triples. This style of specifications is believed to
be easier to automate than Hoare triples and is easier to use for sequencing specifications of
subterms, which we have as a current problem in this thesis as seen in Chapter 7. Perhaps
weakest precondition can be encoded in Agda and used as a backend of Hoare style proof
outlines for easier automation. It would be important that the user can still reason in the
layer of Hoare triples, since that more closely corresponds to program semantics.

Other excellent tools that mechanize Separation Logic in Coq are VST-Floyd presented
by Cao et al. (2018), a framework for reasoning about concurrent C programs, and Bedrock
by Chlipala (2011), a verification framework for reasoning about assembly level programs.

Finally, the verification for sequential programs byCharguéraud (2020) presents amecha-
nization of Separation Logic in Coq from the ground up for a simple sequential programming
language similar to the one from this thesis. It also shows how to encode non-deterministic
evaluation and partiality in a mechanization of Hoare Logic. The accompanying course by
Charguéraud has inspired much of the work from this thesis2. The related work section also
lists many mechanizations of Separation Logic in other proof assistants, except for Agda.

Although the tools presented in this section are very capable of proving complex diverse
program specifications through automation, the proofs are not in the style of Hoare where

1For more information about tactics in Coq see: https://coq.inria.fr/refman/proof-engine/tactics.html
2The course can be found at: https://softwarefoundations.cis.upenn.edu/slf-current/index.html
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the proof steps are clearly visible3,4,5. Progress is made in a proof through tactics and the
easiest way to read the proof is to execute it in Coq, which points out the steps and subgoals.
This is different from themechanization presented in this thesis. The proof of a program also
serves as a standalone proof that can be read without using or having knowledge of Agda.

3See the Iris example repository for proofs of programs: https://gitlab.mpi-sws.org/iris/examples
4See the VST repository for examples of proofs: https://github.com/PrincetonUniversity/VST/tree/master/

progs
5See the Bedrock2 repository for examples of proofs: https://github.com/mit-plv/bedrock2/tree/master/

bedrock2/src/bedrock2Examples
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Chapter 9

Conclusion

This thesis presents a mechanization of Hoare style proof outlines that combines the read-
ability of Hoare style proof outlines and the precision of mechanized tools. The solution is
based on Separation Logic and is by design independent of target language and store imple-
mentation, which makes it flexible to use with other languages and memory models. The
thesis also presents proof automation to simplify the process of writing mechanized proof
outlines and make them more concise and readable. The solver can automatically reshape
a restricted set of specifications in Separation Logic and automatically find a frame to tem-
porarily reason with the minimal amount of resources. I demonstrated the proof outlines in
the dependently typed programming language Agda on a simple imperative programming
language based on λ-calculus. In a case study on a program that copies a list in memory, I
showed that it is possible to write readable mechanized proof outlines in Agda.

Further research is necessary to explore readable mechanized proof outlines on more
complex language features and specifications. If writing outlines inside a proof assistant
becomes to restricted, we could design a DSL or IDE integration for languages to create an
interactive environment for writing proof outlines while programming. Another point for
further improvement is proof automation. The proof automation is not as advanced as other
tools that provide deductive reasoning about programs, nonetheless, it shows how proof au-
tomation can be incorporated into more readable outlines. The solver can easily be extended
to solve more complex steps in the outline and reduce the amount of details introduced by
mechanization that are implicit in manual proof outlines. Examples include automatic fold-
ing and unfolding of predicates and introducing new variables. Currently, the outlines can
only be written for programs in ANF, which is not usual for writing imperative programs.
Further research is necessary to design mechanized outlines that allow for usable reasoning
of programs not in ANF.

This thesis also serves as a case study for mechanization in Agda. The implementation
provides a new mechanization of Separation Logic, Hoare triples and concrete store imple-
mentations that follow the laws of Separation Logic. The demonstration advertises the ca-
pabilities of Agda: declarable syntax, interactive theorem proving and proof automation
through reflection. Although proof automation in Agda still shows room for improvement.
The type checking of reflections is slow and quickly consumes a lot of memory even on small
problem sizes. Furthermore, debugging and profiling macros is cumbersome and not auto-
mated. Nevertheless, the functional dependently typed programming language and proof
assistant provides an excellent basis for writing complex mechanizations. I hope this work
inspires more students, programmers and computer scientists to pursue formal verification
and perhaps even in Agda.
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Appendix A

Implementation

The mechanization in Agda can be found at:

https://github.com/Olavhaasie/hoare-proof-outlines

The implementation depends on and has been tested with the following:

• Agda v2.6.2:
https://github.com/agda/agda/tree/v2.6.2

• Agda standard library v2.0 (commit hash ae0702e):
https://github.com/agda/agda-stdlib/tree/ae0702e

• Ternary library (commit hash fe131ce):
https://github.com/ajrouvoet/ternary.agda/tree/fe131ce
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Appendix B

Proof Supplement

This appendix provides proof supplements of proofs that were left out for conciseness.

B.1 Soundness of Concatenation
Lemma B.1.1 (Concatenation of normal forms is sound). Evaluating a concatenation of two
normal forms n1 and n2 is equivalent to evaluating the normal forms separately.

evaln(concat(n1, n2), ρ) a` evaln(n1, ρ) ∗ evaln(n2, ρ)

Proof. We prove the equivalence by induction on the first normal form n1. This results in
showing the equivalence for a base case of nil and an induction case of cons x n′

1.
In the base case, when n1 is nil, then the equivalence becomes:

evaln(concat(nil, n2), ρ) a` evaln(nil, ρ) ∗ evaln(n2, ρ)

Then, by definition of concat and evaln we can simplify the equivalence to:

evaln(n2, ρ) a` emp ∗ evaln(n2, ρ)

This equivalence holds because emp is the identity of ∗ by Lemma 2.2.1, thus proving the
base case.
In the induction case, when n1 is cons x n′

1, then the equivalence becomes:

evaln(concat(cons x n′
1, n2), ρ) a` evaln(cons x n′

1, ρ) ∗ evaln(n2, ρ)

Then, by definition of concat and evaln we can simplify the left hand side of the equivalence
to:

(lookup(x, ρ) ∗ (evaln(concat(n′
1, n2), ρ))

Then we apply the induction hypothesis on evaln(concat(n′
1, n2), ρ) by monotonicity of ∗ to

arrive at:
lookup(x, ρ) ∗ (evaln(n′

1, ρ) ∗ evaln(n2, ρ))

By associativity of ∗ we can reorder to:

(lookup(x, ρ) ∗ evaln(n′
1, ρ)) ∗ evaln(n2, ρ)

Finally, we can fold the lookup and evaln by definition of evaln to get:

evaln(cons x n′
1, ρ)) ∗ evaln(n2, ρ)

which is equal to the right hand side of the equivalence and, thus, showing the IH.
Therefore, by the base case and IH, concatenation of normal forms is sound.
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B. PROOF SUPPLEMENT

B.2 Soundness of Flattening
This is a proof for Lemma 5.2.5.

Proof. We have to prove the following equivalence:

evaln(flatten(H↓), ρ) a` eval(H↓, ρ)

We will prove using induction on the expression H↓. We have to show that the equivalence
holds for the two base cases emp′ and x and the induction case of x ∗′ y.
First, for the base case of emp′, the equivalence becomes:

evaln(flatten(emp′), ρ) a` eval(emp′, ρ)

Then, by definition of flatten and eval we can simplify to:

emp a` emp

which is equivalent by reflection of a` (see Lemma 2.2.2). Therefore, proving the case for
emp.
Second, for the base case of x, the equivalence becomes:

evaln(flatten(x), ρ) a` eval(x, ρ)

Then, by definition of flatten and eval we can simplify to:

lookup(x, ρ) ∗ emp a` lookup(x, ρ)

which is equivalent, because emp is the identity of ∗ by Lemma 2.2.1. Therefore, proving the
case for x.
Finally, for the induction case of x ∗′ y, the equivalence becomes:

evaln(flatten(x ∗′ y), ρ) a` eval(x ∗′ y, ρ)

We can unfold the left hand side by definition of flatten to:

evaln(concat(flatten(x),flatten(y)), ρ)

By soundness of concatenation (see Lemma B.1.1) this is equivalent to:

evaln(flatten(x), ρ) ∗ evaln(flatten(y), ρ)

Now we can apply the IH using monotonicity of ∗ (see Lemma 2.2.3) on both parts of the
separation to arrive at:

eval(x, ρ) ∗ eval(y, ρ)

which we can fold by definition of eval into:

eval(x ∗′ y, ρ)

to arrive at our goal of showing the equivalence for the case x ∗′ y.
Therefore, by showing that flattening is sound for all cases, we have proven that flattening
an expression is sound.
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B.3. Soundness of Sorting

B.3 Soundness of Sorting
This is a proof for Lemma 5.2.6.

Proof. We will show that the following equivalence holds:

evaln(sort(n), ρ) a` evaln(n, ρ)

The sorted normal form sort(n) is a permutation of the normal form n, a reordering of the
variables in the normal form. We can show that a normal form is equivalent to its reordering
by ∗-commutativity, ∗-associativity and ∗-monotonicity. Therefore, evaluating a normal form
is equivalent to evaluating the sorted normal form.
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