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Prediction of gas leakage and dispersion in utility tunnels based on 

CFD-EnKF coupling model: a 3D full-scale application 

Abstract: Natural gas compartment accommodated in utility tunnels is beneficial in 

meeting the pressing demand of energy supply and sustainable urban environment. 

However, the leaking gas characterized by flammable and explosive can pose a huge 

threat to the safe operation of the utility tunnel. When an unexpected gas leakage 

accident happens in the actual situation, the prior information associated with the 

leakage source is commonly unclear or unknown. Therefore, the absence of an available 

tool for reasonable leakage and dispersion prediction in the above scenario precludes 

the timely and appropriate emergency response treatment. In this study, a three-

dimensional source term estimation (3D-STE) model with the combination of the 

computational fluid dynamics (CFD) and ensemble Kalman filter (EnKF) algorithm is 

proposed to achieve spatiotemporal gas concentration prediction and gas emission 

source estimation. In the proposed approach, the observation data can be incorporated 

into the gas dispersion simulations continuously, thus the simulation results can be 

revised by the observation data and the source term estimation of gas leakage can be 

achieved by employing the EnKF algorithm. A twin experiment is employed to validate 

the effectiveness and practicability of the proposed model. The results show that the 
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proposed model can revise the prior errors in the gas leakage rate significantly and 

obtain an accurate prediction of gas concentration distribution as well as gas leakage 

rate. A feasible framework is also proposed serving as a good paradigm for the 3D-STE 

model application. This study helps for consequence assessment and emergency 

response of gas leakage accidents in utility tunnels. 

Keywords 

Utility tunnel; Gas leakage; Computational fluid dynamics; Ensemble Kalman 

filter; OpenFOAM 

1. Introduction 

With the worldwide trend of rapid urbanization, there are increased demands for 

sustainable cities development (Broere, 2016; Marzouk and Othman, 2020). The 

construction of utility tunnels leads to an upsurge of interest because it shows a great 

advantage in the clean energy supply and urban planning (Wang et al., 2018; Yang et 

al., 2019; Yin et al., 2020). However, many types of municipal pipelines (e.g., gas 

pipelines, sewage pipelines, heating pipelines, and water supply pipelines) are housed 

in utility tunnels, which causes a spatial concentration of multiple hazards (Bai et al., 

2020). As one of the most threatening hazards in utility tunnels, natural gas pipelines 

have attracted a most widespread concern because the leakage of gas may cause fire, 
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explosion, and other cascading accidents. Meanwhile, the leakage of natural gas is also 

an environmental concern since methane is an extremely environment-harmful 

greenhouse gas that can speed up global warming (Cai et al., 2021). Therefore, gas 

leakage in utility tunnels can cause unexpected and severe consequences in the context 

of casualties, economic losses, and environmental problems, which should be given 

sufficient attention from the perspective of consequence assessment and emergency 

response. 

Natural gas pipeline leakage in utility tunnel scenarios was mainly investigated 

by previous studies through CFD simulations as well as some reduced-scale 

experiments. Wang et al. (2020) first employed a two-dimensional numerical model to 

investigate the effect of leakage size, pipeline pressure, and mechanical ventilation on 

gas dispersion in utility tunnels. However, the complex environment in utility tunnels 

caused by mechanical ventilation and the obstruction from facilities brings huge 

difficulties to gas dispersion simulation. Such tricky situations may not be well resolved 

by a simplified two-dimensional model (Lu et al., 2018; Li et al., 2019). Therefore, the 

three-dimensional numerical model for simulating the gas leakage accidents in utility 

tunnel scenarios has attracted more and more attention in recent years (Tan et al., 2017; 

Lu et al., 2018; Li et al., 2019; Zhang et al., 2020; Zhou et al., 2021; Bu et al., 2021). 
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Tan et al. (2017) compared dispersion characteristics of two kinds of gravity gases 

considering whether there is an available ventilation mode. The results indicated that 

ventilation can disrupt the concentration stratification and reduce gas accumulation. Liu 

et al. (2019) employed the realizable k-epsilon model to study the gas diffusion taking 

into account ambient temperature and humidity. It revealed that the kinetic energy of 

methane molecular motion was proportional to temperature, which subsequently caused 

a larger diffusion coefficient and more rapid spread of natural gas. Zhang et al. (2020) 

investigated the effect of ventilation velocities and sizes on the gas dispersion behaviors 

in the utility tunnels. Meanwhile, the optimal ventilation configurations were proposed 

from the aspect of economy, efficiency, and safety. Zhou et al. (2021; 2022) built a 

utility tunnel mockup and the accuracy of the random opening air supply model and 

standard k-epsilon turbulence model was confirmed through numerical and 

experimental comparison. Moreover, gas monitoring sensor networks are optimized 

through the CFD-adjoint-based method. Bu et al. (2021) conducted a multi-factor 

analysis to study the gas dispersion characteristics in utility tunnels. The methane 

invasion distance (MID) equation was also concluded, which helps to provide a 

reference for the installation of gas alarm devices. Except for investigating the gas 

dispersion process influenced by multiple factors, Lu et al. (2018) presented a 
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numerical analysis with an emphasis on rush repairs, such as optimizing the 

configurations of block valves and ventilation fans. As shown in the above studies, the 

CFD simulations have great advantages in evaluating the consequence of specific gas 

leakage scenarios without initial parameters uncertainty. However, there are still 

varying degrees of errors in the prediction of gas leakage and dispersion by using CFD 

techniques when an unexpected leakage accident occurs in the actual situation. These 

errors primarily stem from the lack of source term information and wind field 

perturbation induced by mechanical ventilation and complex facility layouts. Such an 

ill-posed problem can deviate the simulation results from actual situations significantly, 

which prohibits real-time consequence assessment and reasonable emergency response 

treatment.  

Source term estimation (STE) methods are developed to identify the unknown 

source information based on limited and noisy observation data, which has great 

potentials in leakage source estimation and error suppression. As the two most attractive 

and dominant approaches of STE methods (Xue et al., 2018; Wu et al., 2020), many 

optimization-based and probabilistic-based methods have been used to accomplish the 

inverse problem of gas dispersion, such as the ensemble Kalman filter method (Zhang 

et al., 2015a; Zhang et al., 2015b; Zhang and Huang, 2017; Wang et al., 2019; Wu et 
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al., 2021) and Bayesian inference method (Wang et al., 2017; Xue et al., 2017; Xue et 

al., 2018 ). Moreover, data-driven methods were also adopted to achieve source term 

estimation with the rapid development of machine learning and deep learning (Ma and 

Zhang, 2016; Kim et al., 2019; Ma et al., 2021). However, the current researches 

associated with source term estimation are mainly restricted to atmospheric 

environment scenarios. Utility tunnels characterized by confined and ventilated space 

poses great difficulties for source term estimation and accurate gas dispersion 

prediction, which needs to be further investigated. Yuan et al. (2019) and Wu et al. 

(2020) have proposed an EnKF-based model and Bayesian inference-based model 

respectively for predicting the gas dispersion process and reconstructing the leakage 

source in utility tunnels. However, the gas transport process is determined on the basis 

of the one-dimensional advection-diffusion equation, which has significant difficulties 

in handling the three-dimensional facilities layout, turbulent diffusion, and gravity-

driven multicomponent transportation. Therefore, the further endeavor could be the 

development of the high confidence three-dimensional gas dispersion model and 

combining it with the source term estimation method. This can help to reproduce a more 

realistic gas dispersion scenario as well as the estimation of the leakage source. 

Moreover, dynamic ventilation conditions adopted in the operation of utility tunnels in 
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real leakage situations have not been fully considered. This may lead to some 

inaccuracy in the prediction of gas leakage and dispersion process, which represents a 

practical issue that needs to be addressed. 

In this study, a three-dimensional source term estimation model is proposed to 

improve the prediction accuracy of gas leakage and dispersion in utility tunnels. Firstly, 

the three-dimensional CFD-based gas dispersion model is developed based on the 

OpenFOAM platform and validated by experimental data. Then, the 3D-STE model 

can be built by combining the gas dispersion model and the EnKF algorithm. 

Furthermore, a twin experiment is employed to validate the proposed model 

considering the dynamic ventilation condition of utility tunnels. The effectiveness of 

the proposed model is evaluated qualitatively and quantitatively in the twin experiment 

in terms of gas concentration distribution and source term (leakage velocity) estimation. 

This study can provide effective technical supports for safety control and emergency 

response of gas leakage accidents in utility tunnels. 

2. Methodology  

The proposed 3D-STE model consists of the CFD-based gas dispersion model and 

the EnKF algorithm. In this section, the basic equations related to the gas dispersion 

model and the EnKF algorithm are introduced respectively. Furthermore, the specific 
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procedure for conducting the proposed model is elaborated.  

2.1 Governing equation of CFD model 

In this study, a three-dimensional compressible CFD solver based on the 

OpenFOAM platform is developed for the simulation of gas leakage and dispersion in 

the utility tunnel (Mack and Spruijt, 2013; Fiates and Vianna, 2016; Wu et al., 2021). 

The OpenFOAM platform allows the integration of the EnKF algorithm and the gas 

dispersion simulation expediently due to its high extensibility. The governing equations 

adopted from OpenFOAM are presented as follows: 

(i) Continuity equation 

 
𝜕𝜌

𝜕𝑡
+ 𝛻 · (𝜌𝒖) = 0 (1) 

(ii) Momentum equation 

 
𝜕(𝜌𝑢)

𝜕𝑡
+ 𝛻 · (𝜌𝑢𝒖) = −

𝜕𝑝

𝜕𝑥
+ 𝛻 · (𝜇𝛻𝑢) + 𝐹𝑥 (2) 

 
𝜕(𝜌𝑣)

𝜕𝑡
+ 𝛻 · (𝜌𝑣𝒖) = −

𝜕𝑝

𝜕𝑦
+ 𝛻 · (𝜇𝛻𝑣) + 𝐹𝑦 (3) 

 
𝜕(𝜌𝑤)

𝜕𝑡
+ 𝛻 · (𝜌𝑤𝒖) = −

𝜕𝑝

𝜕𝑧
+ 𝛻 · (𝜇𝛻𝑤) + 𝐹𝑧 (4) 

(iii) Energy equation 

 
𝜕(𝜌𝑖)

𝜕𝑡
+ 𝛻 ·(𝜌𝑖𝒖) = −𝑝𝛻 · 𝒖 + 𝛻 · (𝑘𝛻𝑇) + 𝛷 + 𝑆ℎ (5) 

(iv) Multi-component transport equation 

 
𝜕

𝜕𝑡
(𝜌𝐶𝑖) + 𝛻 ⋅ (𝜌𝐶𝑖𝒖) = 𝛻 ⋅ (𝐷𝛻𝐶𝑖) + 𝑆𝑖 (6) 
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(v) Gas state equation 

 𝑝𝑉 = 𝑛𝑍𝑅𝑇 (7) 

Where 𝜌 is the mixed gas density, 𝒖 is the gas velocity vector. 𝑝 is the pressure, 𝜇 

is the viscosity, 𝐹𝑥 , 𝐹𝑦 and 𝐹𝑧 are the momentum source term in three directions. 𝑖 

and 𝑇  are internal thermal energy and temperature respectively.  𝑘  is the thermal 

conductivity coefficient, 𝑆ℎ  is the internal heat source, and  𝛷  is the dissipation 

function. 𝐶𝑖  represents the gas volume fraction of every species,  𝐷  is diffusion 

capacity coefficient and 𝑆𝑖 is mass source term. 𝑉, 𝑛, 𝑍, 𝑅 are gas volume, amount 

of substance, compressibility, and the gas constant respectively. 

As a robust two-equation eddy-viscosity turbulence model, the shear stress 

transport (SST) turbulence model was employed to simulate the turbulent flow 

(Sklavounos and Rigas, 2004). And the corresponding equations are listed: 

 
𝜕(𝜌𝑘)

𝜕𝑡
+ 𝛻 ·(𝜌𝑘𝒖) = 𝛻 ⋅ ((𝜇 + 𝑘𝜇𝑡)𝛻𝑘) + 𝑃 − 𝜌𝛽∗𝜔𝑘 (8) 

 
𝜕(𝜌𝜔)

𝜕𝑡
+ 𝛻(𝜌𝜔𝒖) = 𝛻 ⋅ ((𝜇 + 𝜔𝜇𝑡)𝛻𝜔) +

𝛾

𝜈𝑡
𝑃 − 𝜌𝛽𝜔2 

+2(1 − 𝐹1)
𝜌𝜔2

𝜔
𝛻𝑘𝛻𝜔 

(9) 

Where 𝑘 and 𝜔 represent turbulence kinetic energy and turbulence dissipation rate. 

𝑃 is the production rate of turbulence, 𝜇t is turbulence viscosity. The SST turbulence 

model combines the k-epsilon and k-omega model through a blending factor 𝐹1. The 
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k-omega model is utilized in the region close to the boundary layer and switches to the 

k-epsilon model in the vicinity of the free shear flow. The detailed description and 

specific values of model parameters are summarized in Menter’s study (Menter et al., 

2003).  

2.2 Ensemble Kalman filter algorithm 

Due to the implicit assumption of linear Gaussian state-space, the Ensemble 

Kalman filter algorithm has a great advantage in avoiding the degeneracy problem of 

reweighting-based data assimilation algorithms (Katzfuss et al., 2016). It promotes the 

wide application of the EnKF algorithm in various scenarios because of its remarkable 

robustness, such as river pollution scenarios (Zhang and Huang, 2017; Wang et al., 

2019), nuclear disasters scenarios (Zhang et al., 2015a; Zhang et al., 2015b), indoor 

pollution scenario (Lin and Wang, 2013;

 
Sharma et al., 2019), chemical plant scenario 

(Wu et al., 2021), and confined space scenarios (Wu et al., 2018; Ji et al., 2018; Yuan 

et al., 2019). 

In this section, the basic equations of the EnKF algorithm are presented as follows: 

(i) Forcast step: 

 𝑋𝑡
𝑓

= 𝑀(𝑋𝑡−1
𝑓

), 𝑋𝑡
𝑓

∈ 𝑅𝑛∗𝑁 (10) 

(ii) Analysis step: 
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 𝑋𝑡
𝑎 = 𝑋𝑡−1

𝑓
+ 𝐾(𝑌𝑡

∗ − 𝐻 ∗ 𝑋𝑡
𝑓

) (11) 

Where Eq. (10) and Eq. (11) represent the main procedure of the EnKF algorithm, 𝑋𝑡
𝑓
 

is the state matrix at time 𝑡 , it usually has  𝑛  rows and 𝑁  columns, 𝑛  and 𝑁 

represent the parameters of interest and ensemble sizes respectively,  𝑋𝑡
𝑎 is analytical 

value revised by observation data. The 𝑀 stands for the nonlinear dynamic model 

propagating state matrix over time, and 𝐻  is a nonlinear observation operator 

transforming the state matrix to the corresponding observation sites. 𝐾 represents the 

Kalman gain. 

The forecast error covariance matrix can be calculated by Eq. (12). 

  𝑃 =
1

𝑁 − 1
(𝑋𝑡

𝑓
− 𝑋𝑡

𝑓̅̅ ̅̅
)(𝑋𝑡

𝑓
− 𝑋𝑡

𝑓̅̅ ̅̅
)𝑇 (12) 

Where 𝑃 is the forecast error covariance matrix, 𝑋𝑡
𝑓̅̅ ̅̅
 can be obtained by multiplying 

an average factor 1𝑁 with 𝑁 rows and 𝑁 columns and every factor in 1𝑁 is 1/𝑁. 

The Kalman gain 𝐾 serves as a weighted factor between the gas dispersion CFD 

model prediction and observation data. It can be obtained by Eq. (13). 

 𝐾 = 𝑃𝐻𝑇(𝐻𝑃𝐻𝑇 + 𝑅𝑒)−1 (13) 

Where 𝑅𝑒 is the observation error covariance matrix and can be calculated as follows: 

 𝐸𝑜𝑏𝑠 = (1, 2, 3, 4 … 𝑘) (14) 

 𝑅𝑒 = 𝐸𝑜𝑏𝑠 ∗ (𝐸𝑜𝑏𝑠)𝑇 (15) 
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Where 𝐸𝑜𝑏𝑠 is the observation error vector and  represents the perturbation added 

to observation data.   

In this study, the state matrix consists of 𝑁 ensembles, and every vector contains 

gas concentrations and leakage velocity: 

 𝑋 = (𝑥1, 𝑥2, 𝑥3 … 𝑥𝑁) ∈ 𝑅𝑛∗𝑁 (16) 

 𝑥𝑁 = (𝑐1, 𝑐2, 𝑐3 … 𝑐𝑚 , 𝑢1 … 𝑢𝑙 , )𝑇 ∈ 𝑅𝑛=𝑖+𝑙 (17) 

Where  𝑥  is the state vector, 𝑐  is the leaked gas concentration. and 𝑢  means the 

leakage velocity at the leakage hole. Moreover, 𝑚 represents the total grid number 

including concentration data, 𝑙 is the number of data assimilation steps. 𝑢1 represent 

the initial-guess leakage velocity, which should be prescribed by users. Then, a new 

leakage velocity will be updated and added in the state vector 𝑥  once a data 

assimilation step is completed. 

 
𝑢𝑙

𝑏 = ∑ 𝑢𝑙−1
𝑎 (𝑖)

𝑁

𝑖=1

/𝑁 (18) 

 𝑢𝑙
𝑓(𝑖) = 𝑢𝑙

𝑏 +  𝑢𝑙
𝑏(𝑖) (19) 

Where 𝑢𝑙−1
𝑎 (𝑖) is the revised leakage velocity of the latest time step at corresponding 

ensemble 𝑖, the ensemble average leakage velocity 𝑢𝑙
𝑏 is used to generate the new 

leakage velocity ensemble for the next time step by adding noise  𝑢𝑙
𝑏(𝑖), which can 

be calculated by Eq. (20). 
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  𝑢𝑙
𝑏(𝑖) = 𝛼𝑢𝑙−1

𝑎 (𝑖) + √1 − 𝛼2 𝑟𝑙−1(𝑖) (20) 

Where 𝛼 represents the influence of the latest leakage velocity on the determination 

of the leakage velocity at the next time steps and is set as 0.99 in this study.  𝑟𝑙−1(𝑖) is 

a random number following Gaussian distribution 𝑁~(0,1). And  is the standard 

deviation of the latest leakage velocity ensemble 𝑢𝑙−1
𝑎 . 

2.3 Three-dimensional STE model 

With the combination of the CFD-based gas dispersion mode and EnKF algorithm, 

the three-dimension STE model can be developed. The EnKF algorithm allows 

integrating the observation data into the three-dimensional gas dispersion model and 

helps to suppress errors resulting from the numerical simulation and the observation 

sensors/sites. It helps to improve the prediction accuracy of the spatial-temporal 

distribution of leaked gas and further achieves a reasonable leakage source estimation 

in utility tunnels. The complex scenarios in utility tunnels are characterized by confined 

underground space equipped with various facilities and forced ventilation. Such 

complex scenarios bring huge difficulties to the inversion models. The inverse 

problems in utility tunnels have not been resolved well by previous studies in the aspect 

of both source term estimation and three-dimensional gas concentration prediction. The 

specific implementation of the three-dimensional STE model is presented in Fig. 1.  
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Generally, the leakage source term is unknown when an unexpected leakage 

accident happened in real situations. The leakage source distribution with inevitable 

prior errors should be initialed by users in the CFD model to conduct gas leakage and 

dispersion simulations. The prior leakage source term and corresponding gas 

concentration distribution results will be revised by the EnKF algorithm whenever the 

observation data is available. Finally, the revised leakage source and gas concentration 

distribution are utilized to reconstruct the revised state matrix for the next iteration. As 

the data assimilation process goes on, the revised predictions of gas concentration 

distribution and gas leakage source term can be obtained. 

 

Fig. 1 Specific implementation of three-dimensional STE model. 
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3. Model validations 

3.1 Validation of gas dispersion model 

Generally, the unsatisfactory performance of the gas dispersion model will greatly 

weaken the accuracy of the estimation method (Ma et al., 2016; Ma et al., 2021). In 

order to illustrate the gas dispersion model can capture the detailed flow field when an 

accidental leakage occurs. It is common practice that the experimental data are used to 

be compared with the prediction results of the gas dispersion model. Most existing 

experiments, also numerical model validation, associated with gas leakage in the utility 

tunnel use alternative gases such as CO2 and neon due to the potential fire/explosion 

risk by using methane (Bu et al., 2021; Zhou et al., 2020; Wang et al., 2020). 

Considering both the feasibility for model validation and the availability of the 

experiment data, the experimental data obtained from Fang et al. (2006) are employed 

to validate the feasibility and accuracy of the gas dispersion model. 

3.1.1 Numerical configurations 

In Fang’s study, a reduced-scale utility tunnel system was designed to investigate 

the gas dispersion process in the confined space, and the quantitative comparison by 

using numerical simulation was also involved. The investigated utility tunnel has a 

dimension of 10 m × 0.15 m × 0.15 m, which is displayed in Fig. 2. A rectangular 
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window with a dimension of 0.01 m × 0.01 m was set as the gas vent. Carbon dioxide 

was utilized as an alternative gas to methane considering safety requirements. The CO2 

gas was released from a circular hole with a diameter of 0.02 m. Meanwhile, a total of 

49 gas sensors were employed to detect the CO2 concentration along the centerline of 

the utility tunnel mode. The distance between two gas sensors is set as 0.2 m. The 

specific parameters related to this experiment are listed in Table 1. 

 

Fig. 2 Geometric and mesh schematic of the utility tunnel system. 

Table 1 Specific configurations of the gas release experiment 

Parameter Value 

Length of the utility tunnel system (m) 10 

Width of the utility tunnel system (m) 0.15 

Height of the utility tunnel system (m) 0.15 

Location of leakage hole (m) (0.28, 0, 0) 

Location of the sampling centerline (m) (0, 0.075, 0.075) to (10, 0.075, 0.075) 

Location of NO.16 gas sensor (m) (3.1, 0.075, 0.075) 
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Release flow rate (L/min) 4 

Environmental temperature (K) 293 

Total experiment time (s) 300 

As shown in Fig. 2, the computational domain of the utility tunnel model is 

discretized by using a hexahedral cell scheme (Duan et al., 2015). To avoid the sharp 

aspect ratio of cells, the computational domain is divided into two sub-parts for 

hexahedral discretization. Such operation will cause a misaligned mesh interface but 

can be handled by the arbitrary mesh interface (AMI) technique (Carneiro et al., 2019).  

By referring to the experimental configuration in Fang’s study, the specific 

boundary conditions applied in this study are summarized as follows: 

(i) Inlet: flowRateInletVelocity condition is employed to provide a stable 

volumetric flow rate, which is set as 4 L/min. 

(ii) Outlet: pressureInletOutletVelocity condition is used to serve as a pressure 

outlet, and the pressure value is prescribed as 101325 Pa. 

(iii) Mesh interface: cyclicAMI condition is introduced to handle the data 

exchange by interpolation calculation. 

(iv) Walls: All the walls are defined as the no-slip condition. 

3.1.2 Results analysis 

Firstly, mesh independence analysis was conducted to ensure the mesh-
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independent results. The CO2 concentration along the sampling centerline (mentioned 

in Table 1) at 120 s was utilized to evaluate the differences between four mesh schemes. 

The comparison of the simulation results obtained by using four different mesh schemes 

with grid numbers of 100 thousand, 200 thousand, 300 thousand, and 400 thousand is 

presented in Fig. 3. As shown in Fig. 3, although the simulation results of four mesh 

schemes have a similar tendency, Mesh_1 and Mesh_2 schemes have a relatively large 

deviation in both CO2 concentration and dispersion distance compared to the Mesh_3 

scheme. As the stepwise refinement of grids, there is a reasonable difference between 

Mesh_3 and Mesh_4 schemes (the max relative error and average relative error are 8.79% 

and 1.55% respectively). Therefore, Mesh_3 is considered suitable for the following 

simulations and analysis with both acceptable accuracy and low computational load. 
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Fig. 3 Mesh independence analysis. 
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In order to validate the gas dispersion model quantitatively, CO2 monitoring data 

obtained from Fang et al. (2006) were adopted for further comparison. Fig. 4 presents 

the CO2 concentration comparison between simulation results and experimental data at 

the location of the No.16 gas sensor (mentioned in Table 1). As shown in Fig. 4, There 

is one relatively large deviation between simulation results and experimental data at 60 

s with a 34 % relative error, which can be seen in Fang’study similarly. The reason for 

this may be the uncontrollable error induced by measurement equipment and the 

ambient environment. Overall, the simulation results of the gas dispersion model 

achieved a reasonable agreement with the experimental data. Most of the relative errors 

between the simulation results and experimental data are less than 10.00 %. And the 

average relative errors between simulations and experimental data is 9.73 %. It 

indicates that the gas dispersion model can well capture the dispersion behaviors of 

gravity-driven gas flow in the confined space scenario (Wang et al., 2020; Zhang et al., 

2020). Therefore, it can be used for the prediction of gas leakage and dispersion in 

utility tunnel scenarios with good accuracy. 
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Fig. 4 CO2 concentration comparison at the No.16 gas sensor. 

3.2 3D-STE model validation 

After the validation of the gas dispersion model, it can be integrated with the EnKF 

algorithm to achieve the gas dispersion prediction and leakage source estimation in the 

utility tunnel. A twin experiment, which was already been applied for evaluating the 

data assimilation models (Zhang et al., 2014; Yuan et al., 2019), was employed to 

validate the effectiveness and practicability of the proposed 3D-STE model.  

3.2.1 Configurations  

In this section, the computational domain is built and discretized by using the 

blockMesh and snappyHexMesh tools, which are involved in the OpenFOAM platform 

for the hexahedral mesh generation. The configuration of the computational domain 

was determined by referring to the underground utility tunnel of Changbin Road in 
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Haikou City. The geometric layout and boundary conditions of the computational 

domain are shown in Fig. 5. Moreover, Table 2 summarizes the configuration 

parameters related to the calculations.  

  

Fig. 5 Geometric and boundary conditions of the utility tunnel. 

Table 2 Configuration parameters of the utility tunnel. 

Parameter Value 

Length of the utility tunnel (m) 200 

Width of the utility tunnel (m) 2 

Height of the utility tunnel (m) 2.4 

Location of leakage hole (m) (45, 0.9, 0.6) 

Diameter of leakage hole (mm) 100 

Diameter of the gas pipeline (mm) 500 

Normal air exchange frequency (h-1) 6 

Accidental air exchange frequency (h-1) 12 

Environmental temperature (K) 293 

The determination of the adopted boundary conditions and the corresponding 
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parameter values is presented as follows: 

(1) Inlet: The user-defined codedFixedValue condition is used to provide a time-

dependent ventilation condition considering the dynamic transformation of air 

exchange frequency when an unexpected leakage accident occurs in the utility tunnel. 

By referring to Eq. (21) (CPS, 2015), the ventilation velocities of the Inlet are set as 1.6 

m/s and 3.2 m/s for normal ventilation and accidental ventilation scenarios respectively.   

𝑣𝐼𝑛𝑙𝑒𝑡 =
𝑛 × 𝑉

3600 × 𝐹
 (21) 

Where 𝑛 is the air exchange frequency, 𝐹 is the area of the ventilation vent, and 𝑉 

represents the volume of the utility tunnel. 

(2) Outlet: The pressureInletOutletVelocity condition is employed to define a 

pressure outlet, and the pressure value is set as 101325 Pa. 

(3) Leak: The fixedValue condition is selected to define a stable leakage velocity 

and the leakage velocity of the leakage hole is set as 15 m/s. 

(4) Walls: All the walls are defined as the noSlip condition. 

Moreover, in order to model a more real leakage scenario, the steady flow field 

without leakage is computed firstly to initialize the internal flow fields for the leakage 

scenario. 

The above-mentioned configuration parameters were utilized in the control group 
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of the twin experiment for representing an assumed real situation (using initial 

parameters without uncertainty). In the data assimilation (DA) group of the twin 

experiment, the initial-guess parameters are employed. Thus the effectiveness of the 

3D-STE model can be validated by comparing the difference between the control group 

and the DA group. In this study, the initial-guess leakage velocity ensemble is assumed 

to follow a uniform distribution, which can be observed in Fig. 6. Meanwhile, a normal 

distribution noise of 𝑁~(0, 0.1) is added to the airflow ensemble considering the 

uncertainty resulting from ventilation perturbation in the confined space. Fig. 7 presents 

84 observation sites in the control group. The corresponding collected observation data 

will be utilized to revise the concentration distribution and reconstruct the gas leakage 

rate of the DA group. And ensemble Inflation is used to modify the prior ensemble 

estimates of the state matrix to reduce filter error and avoid filter divergence (Anderson, 

2007). Finally, the detailed configuration parameters used in the three-dimensional STE 

model are listed in Table 3. 
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Fig. 6 Prior leakage velocity ensemble obtained by initial guess. 

 

Fig. 7 Specific layout of the observation sites. 

Table 3 Configuration parameters of the 3D-STE model. 

Parameter Value 

Ensemble size 120 

Ensemble inflation 1.0 

Observation site number 84 
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Data assimilation frequency (s-1) 0.5 

Total simulation time (s) 30 

Total data assimilation steps 60 

3.2.2 Prediction of gas spatiotemporal distribution 

According to the regulation of GB50838-2015 Technical Specification for Urban 

utility Tunnel Engineering, the air exchange frequency will shift from 3 to 6 when the 

gas alarm threshold (1% VOL) is reached. This dynamic transformation of ventilation 

conditions can bring perturbation to the flow field, especially for the confined space 

with facilities. In this section, such dynamic and complex scenarios will be used to test 

the effectiveness of the proposed model with both qualitative and quantitative 

comparisons. 

Fig. 8 and Fig. 9 present the horizontal (X=40 m cross-section) and vertical (Y=1 

m cross-section) comparisons of gas concentration distributions obtained from the 

control group, DA group, and reference group. The reference group was present here 

for demonstrating prediction results without the DA revision (i.e., activating the gas 

dispersion model only by initial-guess leakage velocity and no observation data is 

integrated). The leakage velocity of the reference group is set as the mean of the initial-

guess ensemble (5.09 m/s). Thus, the effectiveness of the proposed model can be 

observed directly by comparing the difference between the control group, DA group, 
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and reference group. As can be seen from Fig. 8, the gas concentration distribution 

between the DA group and the reference group has no apparent difference at the initial 

stage (T= 5s). There are two major reasons for this: (i) Although the prediction of the 

DA group is calculated by the mean of ensembles, there is a great similarity existing 

between the prior ensemble mean of the DA group and the leakage velocity of the 

reference group; (ii) At the initial stage of natural gas leakage, the DA algorithm can 

achieve negligible revision due to the limited observation data available. As time goes 

on, a phenomenon can be observed that the released gas was diluted rapidly in the 

reference group, which indicates a large deviation compared to the control group. This 

is because the reference group cannot be revised by the DA algorithm and the relatively 

low leakage velocity persist. Therefore, the gas concentration distribution shows a large 

difference between the reference group and the control group under the effect of 

dynamic ventilation. However, the gas concentration distribution of the DA group 

shows a comparable prediction compared to the control group. This is because the 

available observation data increased gradually, which were used to correct prior errors 

in the DA group and finally achieved a more accurate prediction of the gas 

concentration distribution. Similarly, the vertical concentration distribution of the DA 

group becomes more comparable to the real concentration distribution in the control 
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group, which can be observed in Fig. 9. However, a difference still exists between the 

control group and the reference group because the prior errors in the leakage source 

term and cannot be revised by data assimilation. Meanwhile, it can be seen that the data 

assimilation process in the horizontal and vertical sections is quite different in terms of 

time series. The reason for this may be that the vertical section is relatively small and 

narrow, in which the relatively steady condition can be achieved in a short time under 

the effect of dynamic ventilation. Overall, the 3D-STE model can realize the reasonable 

correction of the three-dimensional gas concentration distribution by assimilating 

observation data into the gas dispersion model.  
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Fig. 8 Comparison between the control group, the DA group, and the reference group at Y=1 m cross-section. 
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Fig. 9 Comparison between the control group, the DA group, and the reference group 

at X=40 m cross-section. 

According to the specific layout of observation sites in Fig. 7, the above-

mentioned horizontal and vertical sections (Y=1 m and X=40 m) are distributed with 

28 and 12 observation sensors respectively. To evaluate the accuracy of the proposed 

model in handling the gas concentration correction where there is no observation sites 

distribution, the horizontal (Y=0.75 m) and vertical sections (X=52.5 m) are extracted 

for further comparison, which is shown in Fig. 10 and Fig. 11. It suggests that the gas 

concentration distribution of the DA group can obtain a good revision with the progress 
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of data assimilation. Therefore, the proposed model can be helpful to realize the 

reasonable prediction of the gas concentration distribution in the whole computational 

domain even in the section without available observation data.    
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Fig. 10 Comparison between the control group, the DA group, and the reference group at Y=0.75 m cross-section. 
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Fig. 11 Comparison between the control group, the DA group, and the reference group 

at X=52.5 m cross-section. 

Furthermore, in order to evaluate the prediction accuracy of the proposed model 

quantitatively, four statistical performance measures (SPMs), i.e., the fractional bias 

(FB), the normalized mean square error (NMSE), the correlation coefficient (R), and 

the fraction of predictions within a factor of two of observations (FAC2) (Chang and 

Hanna, 2004), are employed for the quantitative comparison of specific gas 

concentration values at the observation sites. And the calculation of statistical 
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performance measures, corresponding acceptable intervals, and ideal values are 

detailed in Table 4 (Zhang et al., 2014; He et al., 2021). Where 𝐶𝑝 and 𝐶𝑜 are gas 

concentration values obtained from the model prediction and observation data, overbar 

(𝐶̅) represents the average over the dataset,  is the standard deviation.  

Table 4 Calculation of statistical performance measures and corresponding acceptable 

intervals. 

Name Formula Acceptable intervals Ideal value 

FB 
(𝐶𝑜

̅̅ ̅ − 𝐶𝑝
̅̅ ̅)

0.5(𝐶𝑜
̅̅ ̅ + 𝐶𝑝

̅̅ ̅)
 -0.3≤FB≤0.3 0 

NMSE 
((𝐶𝑜 − 𝐶𝑝)2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )

𝐶𝑜
̅̅ ̅ 𝐶𝑝

̅̅ ̅  NMSE≤4 0 

R 
((𝐶𝑜 − 𝐶𝑜

̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ (𝐶𝑝 − 𝐶𝑝
̅̅ ̅)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅)

𝐶𝑝
𝐶𝑜

 / 1 

FAC2 
𝐶𝑝

𝐶𝑜
 0.5≤FAC2≤2 1 

Fig. 12 presents the scatter plots of gas concentration extracted from the control 

group and DA group at observation sites, in which all 84 data points used for data 

assimilation are taken into account. There is a quite difference between observation data 

and the model prediction at 5 s, Almost all statistical performance measures show an 

unacceptable deviation compared with the corresponding ideal values except for a 

relatively reasonable value of FAC2. However, such a reasonable value is attributed to 

the poor performance of the FAC2 because little concentration information can be 
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captured by observation sensors at the initial leakage stage, i.e., there are too many zero 

values in both observation data and model prediction. Therefore, the average value 

(0.8558) of the FAC2 cannot essentially reveal the model performance at T=5 s. With 

the processing of data assimilation, the model predictions are well consistent with the 

observation data, in which all four statistical performance measures gradually approach 

the ideal values. In this study, a reasonable prediction can be achieved at T= 20 s and 

very optimistic results at T=30 s, which means the errors resulting from initial-guess 

leakage velocity, dynamic ventilation, and complex facilities, can be successfully 

suppressed by the proposed model. Therefore, the proposed model has a significant 

effect on the improvement of gas leakage and dispersion prediction. 
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Fig. 12 Scatter plots of observation data and model prediction. 

3.2.3 Estimation of gas leakage rate 

Fig.13 presents the revision process of the gas leakage rate by using the proposed 

model and the quantitative comparison between the real leakage rate and model 

prediction. It can be seen that there is an apparent underestimation existing in the 

leakage rate with 42.67% relative errors at the initial stage of the accidental leakage. 

That is because the initial-guess leakage velocity can only obtain limited revision due 

to the lack of observation data. As a growing amount of observation data are integrated 

into the gas dispersion CFD model, the reconstructed leakage velocity shows a gradual 

trend of approaching the real value. Finally, the estimation of leakage velocity became 

stable at around 17 m/s after 25 s, in which the convergence results of the 3D-STE 

model prediction have been achieved. The max relative error between the model 
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prediction and the true value was 42.39 % at the initial stage, and the relative error of 

the model prediction approach around 13.33% from 25 s to the end due to the estimation 

of leakage velocity became stable gradually. Therefore, it can be concluded that the 

proposed 3D-STE model is an effective tool to provide a reasonable estimation of gas 

leakage velocity with high similarity to the actual leakage velocity despite huge errors 

existing in the initial-guess leakage velocity. 
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Fig. 13 Revision process of the leakage rate by the 3D-STE model. 

4. Application discussion 

In this section, we present an exploratory discussion with an emphasis on the 

practical application of the proposed model in actual utility tunnels. A feasible 
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framework is proposed to guide the application of this model for predicting gas leakage 

and dispersion and supporting emergency response treatment. Meanwhile, 

recommendations for future works are elaborated for improving the proposed model 

and facilitating the application of the proposed model.  

4.1 A framework for 3D-STE model application 

Compared to the previous studies on the source term estimation of gas leakage 

accidents in confined space scenarios, the proposed 3D-STE model integrated 

advantages of the three-dimensional CFD-based model and gas sensor networks while 

the EnKF algorithm helps to bridge the gap between simulation results and 

measurement data. Moreover, the dynamic ventilation pattern of utility tunnels is also 

involved. In summary, it obtains a good improvement in the following aspects:  

(i) Except for reconstructing the leakage source, the three-dimensional 

spatiotemporal gas concentration distribution can be obtained by the proposed model 

because the CFD-based gas dispersion model is integrated accounting for three-

dimensional facilities layout, turbulent diffusion, and gravity-driven multicomponent 

transportation. Such a precise gas concentration distribution can provide more risk-

related information for decision-makers such as dispersion distance and explosive area 

of leaking gas. 
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(ii) The dynamic ventilation pattern based on real-time alarm concentration allows 

a more realistic reproduction of the “two-stage” gas dispersion process dominated by 

normal and accidental ventilation conditions respectively. It can help to reduce the 

difference between simulation results and actual situations, which benefits a more 

accurate consequence assessment.  

Fig. 14 provides a feasible framework for the application of the 3D-STE model in 

actual utility tunnel scenarios. Firstly, the numerical model should be built according to 

the geometric characteristics of specific utility tunnels. In normal scenarios, i.e., no 

leakage occurrence, the available data collected by various sensors can be used to 

initialize the numerical model for simulating a steady flow field in advance. When an 

unexpected leakage accident happened, some theoretical and empirical methods can be 

employed to calculate the prior source term as possible as close to the real source term. 

Then the 3D-STE model can predict the three-dimensional gas concentration 

distribution and reconstruct the source term by integrating the measurement data into 

numerical simulations. The real-time display of the prediction results can be obtained 

as well as some risk-related information such as source term, dispersion distance, and 

explosive area can be collected to support decision-making. Finally, the proposed 3D-

STE model can be integrated into the digital system of utility tunnels. A smart platform 
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and a data warehouse can be developed for the whole process management and data 

exploits of the digital system. Hence, it helps to assist safety operations of utility tunnels 

by furnishing control recommendations to decision-makers in accidental situations, 

such as manual shutdown, rush repair, and dynamic ventilation strategy.  

 

Fig. 14 Framework of the digital utility tunnel. 

4.2 Recommendation for future works 

(1) Timely emergency response and risk treatment are urgent needs for accidental 

scenarios. Graphics Processor Units (GPUs) emerged as a major paradigm for resolving 

complicated computational tasks, making them more appealing for the solution of 

massive systems. Because both the algebraic matrix solving of the CFD model and the 

multi-ensemble structure of the EnKF model show good parallelism, the proposed 3D-
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STE model would achieve faster source term estimation and gas concentration 

distribution prediction by combining GPU speed-up techniques. 

(2) The emerging data-driven techniques have great potential to be served as the 

surrogate model for either the CFD-based gas dispersion prediction model or the source 

term estimation model. Given the high data volume requirements of data-driven 

techniques, the developed gas dispersion model can be used to expand the data volume 

and help develop a more efficient gas dispersion prediction model. As more and more 

high-confidence data (e.g., experimental data and field test data) are available, the 

accurate source term estimation model is possible to be developed by using data-driven 

techniques.  

(3) Moreover, the combination of the risk-based model can benefit the decision-

making more comprehensively. With the combination of quantitative gas concentration 

distribution provided by the proposed model, the risk-based model can consider more 

risk-related factors such as ignition probability and safety barriers, which provide more 

comprehensive recommendations to the emergency response and risk treatment.   

5. Conclusion 

This study proposed a three-dimensional source term estimation (3D-STE) model 

with the integration of the CFD-based gas dispersion model and ensemble Kalman filter 
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(EnKF) algorithm. It could be helpful to achieve improved three-dimensional gas 

concentration spatiotemporal distribution prediction and leakage source estimation 

based on available observation data.  

The CFD-based gas dispersion model was developed based on the 

rhoReactingBuoyantFoam embedded in the OpenFOAM platform. And it was 

validated by experimental data obtained from a gas release scenario of the confined 

utility tunnel system. The results demonstrated that the simulation results calculated by 

the gas dispersion model are in good agreement with the experimental data. Therefore, 

this model can be utilized as an effective tool to simulate the natural gas leakage and 

dispersion characteristics in tunnel-related scenarios. The 3D-STE model is built based 

on the validated gas dispersion model and EnKF algorithm. And the twin experiment 

was designed to validate the effectiveness of the proposed model qualitatively and 

quantitatively. The results showed that this proposed model is capable of addressing the 

practical leakage accidents of the utility tunnel in the presence of dynamic ventilation 

conditions. The revised gas concentration spatiotemporal distribution and reasonable 

leakage source information can be obtained after a period of data assimilation, which 

aids in timely emergency response in the event of an unexpected leakage accident. 

Finally, a practical framework is elaborated and thus can provide guidance for the 
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application of the 3D-STE model. 
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