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Investigating the use of markerless pose estimators for capturing
the adaptive biodynamic feedthrough characteristics in

touchscreen operations

Alexandru Iancu∗

Delft University of Technology, Delft The Netherlands

Given the expected increase of automation in the vehicles of the future, touchscreens are
expected to be used in a wide variety of scenarios, including the ones that can become safety-
critical. One disadvantage of the direct interaction approach that characterizes touchscreen
operation is the feedthrough of accelerations through the human body that can induce unwanted
activations, leading to unsafe situations. The current paper investigates the feasibility of
applying a method that can track the biodynamic responses of the elbow, wrist and index finger
using cameras in a stereo configuration and an open-source pose estimator (OpenPose). An
experiment with six participants was performed to understand whether different neuromuscular
settings, task instructions or degrees of arm extension induce an adaptive behavior of the
biodynamic feedthrough to the recorded joints. The outcomes of the experiments showed that
the finger is the body part that exhibits the most adaptive behavior in terms of feedthrough, being
dependent on whether it is interacting with the screen with no velocity, moving on the screen or
not touching the screen. Moreover, the difference between keeping the upper limb relaxed or stiff
would need to be taken into account for the specified body part when the finger is not touching
the screen, showing a decrease of 29% in the mean RMS of the vertical feedthrough component
when the stiff condition is exhibited. The adaptive nature of the biodynamic feedthrough was
also demonstrated concerning two different cases of arm extension (close and far from the
body). This study proved the feasibility of using a linear mass-spring-damper model to the
data gathered with the camera-based system to describe the feedthrough effects for all the body
parts, neuromuscular settings and tasks, being able to explain on average at least 75% of the
variance of the raw signals. The approach presented in this study can be further refined toward
reaching real-time capabilities, which is a key step in accurately identifying the highly adaptive
and subjective nature of the feedthrough of the accelerations.

I. Introduction
Touchscreens have become an invaluable part of society’s day-to-day life. From smartphones, laptops, tablets and

store checkouts, the interaction between humans and the environment that surrounds them has slowly transitioned to
touch-based approaches. The conventional buttons have also been replaced by touchscreens in cars, with more than 97%
of the road vehicles produced in 2023 having at least one touchscreen in their cabin [1]. The touchscreen transition
did not only resort to road vehicles, the aviation domain being another example where important advancements were
made towards new cockpit designs that use this technology. Nowadays, touchscreens are mainly used in the general
aviation domain, examples being the avionics designed by Garmin [2] which use touch interaction for data entry and
flight information retrieval [3]. Since the future vehicles are expected to become more and more autonomous, the role
of humans will transition from actively controlling the vehicles to passively monitoring and commanding them through
interfaces that most likely will rely strongly on touch technology.

The ability of the users to engage directly with the system is one of the touchscreens’ key benefits [4]. Moreover, as
Rouwhorst et al. [5] conclude, under some circumstances and with carefully designed user interfaces, touchscreens can
decrease the workload and speed up tasks in the cockpit. From an operational point of view, the contents presented on
the screens and their configurations can be rapidly exchanged by changing the interface with the user without the need to
reconfigure any hardware [6]. On the other hand, the usability of touchscreen displays decreases when the user obscures
parts of the display or when the dimensions of the targets are much smaller than the finger width [7]. Another possible

∗MSc Student Control and Simulation Profile part of Control and Operations Section, Faculty of Aerospace Engineering Kluyverweg 1, 2629 HS,
Delft, The Netherlands.
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disadvantage is that a reduced interaction accuracy might be encountered in the use of touchscreens if tactile feedback is
missing [8]. However, one of the most important issues with touchscreen interaction is represented by the accidental
inputs that are indirectly caused by the unsteady conditions (air turbulence, rough parts of a road or sea) through which
the vehicle travels [9].

Involuntary inputs that are caused by the transmission of disturbances through the human body are defined as
biodynamic feedthrough (BDFT). Cockburn et al. [10] concluded that the induced disturbances negatively affected the
error rates and the time to perform the task when operating a touchscreen. The first study that explicitly analyzed and
quantified the influence of touchscreen BDFT from a cybernetic perspective was the one published by Mobertz et al. [11].
The fact that the influence of BDFT on the touchscreen input could be identified and modeled inspired Khoshnewiszadeh
& Pool [12] to implement model-based cancellation techniques for mitigating biodynamic feedthrough in continuous
dragging tasks. Although successful, it was pointed out that disturbances affect different people in different ways, based
on their individual strategies for performing the task at hand. Similar conclusions were observed by Venrooĳ et al. [13],
who analyzed the same idea of cancellation when using control inceptors. An additional insight provided by the same
research group is that a relationship exists between the dynamics of the feedthrough of accelerations and how stiff the
neuromuscular dynamics are [14]. Venrooĳ et al. [14] and Khoshnewiszadeh & Pool [12] suggested that for the signal
cancellation to be effective, the model describing the BDFT would need to be adapted to the individual subject and to
the task at hand.

Given the novelty of this topic, the research on BDFT modeling for touchscreen applications still has some unexplored
areas. Previous studies have only focused on analysing the movement of the finger through signals that were obtained
from the touchscreen. In this way, the BDFT analysis was limited only to tasks that required continuous interaction
between the finger and the screen (dragging tasks). One example where recording only the signal on the screen is not
sufficient is in pointing tasks, since most of the unwanted movement happens before the finger touches the screen. In
this way, for analysing more realistic tasks, it is important not only to investigate the movement of the finger through
an alternative source but also the movement of the other parts of the upper limb that would help to better understand
how unwanted disturbances feed through the human body. Moreover, an explicit dependency of the BDFT on the
neuromuscular settings was not explored in touchscreen operation. Lastly, the effects of BDFT on the whole limb when
the nominal velocity of the finger on the screen is zero or when the finger is on the verge of touching the screen were not
analysed.

Image-based markerless pose estimation methods that make use of artificial neural networks to automatically detect
features on the human body [15–17] represent a rapidly growing research area in the era of Artificial Intelligence (AI)
[18]. One particular advantage of these methods is that they are not intrusive, since no markers or devices are mounted
on the human body. Moreover, since only normal cameras are required makes these approaches feasible to be used
for tracking human motion in constrained spaces such as cockpits and cabins [19]. On the other hand, studies such
as [19–21] proved that markerless methods are less reliable when compared to the less flexible and more expensive
state-of-the-art marker-based systems. Nevertheless, the previous studies compared markerless and marker-based
systems in highly dynamic situations such as walking, throwing or jumping while focusing on tracking the whole
body. The existing literature did not investigate the accuracy of markerless pose estimation methods in the context of
disturbance transmission through the human body, especially for the upper limb.

The current paper has two main goals. The first goal is to investigate whether camera-based pose reconstruction is
feasible to be reliably used for capturing the biodynamic characteristics of humans while operating a touchscreen in
turbulence. The second goal is to investigate the adaptability of BDFT to the task that is presented, to the stiffness of the
upper limb and to the recorded joints of the right arm. To reach the goals, a human-in-the-loop experiment with six
participants was performed in TU Delft’s SIMONA Research Simulator (SRS) that simulated turbulence in the vertical
direction. The experiment concerned the analysis of the upper limb movement of the subjects through camera-based
markerless pose estimation methods (OpenPose [15]) and two cameras. In the first part of the experiment, the elbow,
wrist and finger movement was investigated while varying the required neuromuscular settings (either compliant or stiff)
that the subjects exhibited. In the same time, three different interaction methods with the screen were tested: finger
touching the screen and moving with zero nominal velocity, finger touching the screen and moving circularly with a
nominal velocity of 50 𝑚𝑚/𝑠 and finger not touching the screen and moving with zero nominal velocity. This part also
investigated the feasibility of extracting a BDFT model using the information from the pose estimator and the cameras.
The second part of the experiment focused on the effect of the degree of limb extension (from close to the body to fully
extended) on the feedthrough susceptibility. This second part of the experiment had the goal of closing the gap toward
more realistic target-reaching tasks.

In Section II, an overview of the steps that were taken to estimate the location of the landmarks of interest from
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the cameras and pose estimator will be given. The third section will present an overview of the experimental setup,
conditions, independent and dependent variables of the study. The fourth section will first present the time domain
analysis of the outcomes from the two parts of the experiment, followed by the results of the model fit and the comparison
with the estimated frequency response functions from the first part of the experiment. Lastly, Sections V and VI will
comment on the work and conclude it.

II. Method
Photogrammetry is the science that aims to reconstruct the geometrical characteristics of an environment, such as

distances or 3D representations, based on the interpretation of 2D images that capture that environment [22]. In general,
only analysing one perspective of the environment is not enough to reconstruct its contents. In this way, based on the
analogy with human vision, at least two perspectives of the same scene are needed to estimate the depth of any visible
object [22]. The method used in this study is based on the use of stereoscopic vision in order to reconstruct the 3D
locations of the elbow, wrist and index finger landmarks identified with an image-based pose estimator. If the pixel
locations of the landmarks are identified from multiple perspectives (two in this case), then it is possible to make an
inference that uses pixels from the two-dimensional perspectives to estimate the 3D locations of the points of interest on
the limb. This approach is considered promising since the movement of the limbs can be tracked without mounting
any marker or device on the limbs, therefore making it feasible for future real-life applications. These principles have
been previously tested in the literature, especially in the movement analysis/rehabilitation domains [16, 19, 21, 23–25],
showing an increased potential of capturing human’s biomechanics under various scenarios similar to the state-of-the-art
marker-based systems.

The triangulation is performed by assuming a mathematical model that can describe the working principle of the
cameras. In the field of photogrammetry, the cameras are most often idealised using the pinhole model [26]. For one
camera, this model can describe how a point in the 3D space is projected on a 2D image. Equation (1) presents the
pinhole camera model for one camera. This model maps a 3D point [𝑋𝑤 , 𝑌𝑤 , 𝑍𝑤]𝑇 expressed in a world coordinate
frame (𝑤), to the pixel locations [𝑥𝑠, 𝑧𝑠]𝑇 expressed in the sensor coordinate frame (𝑠). The pinhole camera model
uses coordinates that are defined in a projective space to facilitate linear operations (such as matrix multiplication). A
vector [𝑥, 𝑦]𝑇 ⊂ IR2 is equivalent with its counterpart expressed in a projective space [𝑥, 𝑦, 1]𝑇 ⊂ IR3 which, in turn,
is equivalent to any multiple 𝑚 of the projective space vector [𝑚𝑥, 𝑚𝑦, 𝑚]𝑇 . The interested reader is encouraged to
consult MSc Thesis Appendices: Appendix C for a more in-depth explanation of the model. As can be observed in
equation (1), the total camera matrix that maps from 3D to 2D is made of extrinsic parameters, which describe the pose
of the camera in the world, and intrinsic parameters, which describe the internal characteristics of the camera such as
the focal length, optical center and image dimensions. The terms 𝑟𝑥𝑥 in the extrinsic camera matrix describe a rotation
matrix between the camera-fixed reference frame and the world reference frame. Similarly, the terms 𝑡𝑥 represent the
translation between the origin of the world reference frame and the camera’s center of projection. The terms 𝑎𝑥 and 𝑎𝑧
in the intrinsic camera matrix represent the focal length expressed in the dimension of the pixels, and 𝑢0, 𝑣0 represent
the location of the principal point (the position of the projection center expressed in the sensor frame) expressed in
pixel dimensions [26]. The constant term 𝑚 in this equation indicates that if one would like to extrapolate from 2D
to 3D (i.e. the opposite transformation), it is not possible to reconstruct the 3D point since it will lie on a ray at an
unknown distance from the camera. In this way, only one perspective cannot be used to reconstruct a 3D location and
two cameras are needed.

𝑚


𝑥𝑠

𝑧𝑠

1

 𝑠 =

𝑎𝑥 0 𝑢0

0 𝑎𝑧 𝑣0

0 0 1

︸            ︷︷            ︸
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︸                    ︷︷                    ︸
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𝑋𝑤
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1
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To obtain the 3D locations of the features of interest, a number of steps were proposed that were based on previous
work which focused on the use of OpenPose for the analysis of the whole-body motion [20, 24], as presented in Figure 1.

1. Step 1: Intrinsic and extrinsic camera calibration
The first step of the methodology is the intrinsic and extrinsic calibration of the two cameras. In other words, the

parameters corresponding to equation (1) (including the distortion coefficients presented in MSc Thesis Appendices:
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Appendix C) need to be estimated for both cameras that are being used in the experiment. The calibration method that
was chosen for this experiment is the one developed by Zhang [27], which is implemented in MATLAB’s Computer
Vision Toolbox (v2023b, Mathworks Inc., Natwick, USA) ∗. The reason for choosing this method is that it is one of the
most used methods for image processing/robotics applications and for estimating the camera parameters. This approach
requires the use of a checkerboard pattern that is photographed at different locations and orientations in the image plane.
For each frame that includes the checkerboard, a world reference frame is defined at the top left of the checkerboard
pattern (Figure 1a, the reference frame has the subscript w and is presented at an offset with respect to its real location)
and, by knowing the physical dimensions of the checkerboard’s squares (in this case being 45 𝑚𝑚), observations in the
world reference frame are created (since the checkerboard is planar, the observations in the world reference frame have
only 𝑋𝑤 and 𝑌𝑤 components). Moreover, edge detectors in the sensor (i.e. camera) planes (Figure 1a, subscript 𝑠1
or 𝑠2) create observations from two perspectives. By having observations in the world coordinate frame and in the
sensor coordinate frame, inferences can be made regarding the intrinsic and extrinsic parameters of both cameras. First,
the intrinsic parameters are estimated independently for each camera, by using sets of images with the checkerboard
that span different locations and orientations. It needs to be mentioned that since the location and position of the
checkerboard is different in each image, the extrinsic parameters also change per image; only the intrinsic ones remain
constant for each of the cameras. Zhang’s method is able to find a closed-form solution of the intrinsic matrix (per
camera) given multiple observations of the checkerboard [27].

After the intrinsic matrix is obtained, it is also possible to obtain the extrinsics for each frame independently
(although they do not seem helpful in this application). Once the intrinsic parameters were independently obtained for
each of the cameras, it is of interest to obtain the general extrinsic matrices that relate both cameras (the rotation and
translation between both cameras). Unlike the previous case where the estimations were performed independently, the
rotation and translation between two cameras (R and t in Figure 1a) is obtained by observing the pose of the checkerboard
simultaneously from the two perspectives. If the orientations and translations between the checkerboard and the first
and second cameras can be obtained for each frame that contains the checkerboard then, since both cameras observe the
same frames, it is possible to obtain an estimation of the rotation and translation between both cameras.

Step 1: Intrinsic and extrinsic camera calibrationa) b)

c) d)Step 4: Coordinate system change

e) Step 5: Error analysis of the method

Scientific Paper Appendices
Appendix B

Section IV
  Results

Step 2: Camera synchronization

Step 3: Pose estimation and triangulation
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Fig. 1 Overview of the steps that were performed in order to estimate the 3D locations of the limb landmarks.
∗https://nl.mathworks.com/help/vision/index.html?s_tid=CRUX_lftnav (Accessed on: 19.03.2024)
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2. Step 2: Camera synchronization
Application of this approach requires continuous videos from both camera perspectives. Each frame of the videos is

extracted creating a continuous list of frames that, at a first glance, do not possess any information regarding when
a trial starts or ends. Before inputting the frames in the pose estimator, individual trials need to be isolated, and
frames from both perspectives need to be synchronised. The synchronization of the frames is a crucial aspect since
the photogrammetric approach assumes that the pixels identified in both perspectives correspond as much as possible.
Inspired by [20] who used a light source to synchronize the cameras, this study used a visual cue in the form of four
squares that was presented on the screen (Figure 1b) at a discrete time indicating the beginning and the end of each trial.
In the post-processing stage, the synchronization was performed by manually selecting the common frames between two
consecutive cues for both cameras (representing the start and the end of the trial). For each trial, it was verified that the
number of frames between the starting cue and the ending cue was constant.

3. Step 3: Pose estimation and triangulation
After obtaining the camera matrices for both cameras and the frames of each trial were extracted, synchronized

and undistorted, the pose estimation and triangulation step is performed. The OpenPose † software [15] was used to
automatically obtain the pixel values of the points of interest (elbow, wrist, finger) from the recorded images. The reason
for choosing this estimator is that the stereo applications implemented using OpenPose were investigated in previous
validation experiments against the state-of-the-art marker-based estimation methods [19–21], proving its feasibility for
estimating the body landmarks in 3D.

OpenPose is a markerless pose estimator that is based on a bottom-up approach [15] for estimating the body’s key
points. Bottom-up approaches first provide inferences of the discrete body landmarks, and then the inferences are
assembled in a skeleton-type detection. These types of approaches can prove to be more efficient computationally when
compared to other approaches (such as top-down methods). The architecture of OpenPose is based on Convolutional
Neural Networks (CNNs) in combination with a pre-defined model (VGG-19 [28]) which is used in the early stages of
the architecture to create an initial set of feature maps. Its architecture is based on two main principles: the creation of a
mapping that can encode the orientation of the limbs (partial affinity fields as defined in [15]) and a mapping that can
encode confidence maps of the body parts that describe a limb (two body parts can describe a limb). At inference time,
the pose is created by using the information from the partial affinity fields and from the confidence maps that define the
graph/tree-like structure of the skeleton.

Although OpenPose can record key points of multiple body parts, in this study only the information from the right
elbow, wrist and index finger will be used. As observed in Figure 1c), if the pose estimator is applied for the synchronised
images from both perspectives, the pixel locations corresponding to identical body parts can be triangulated to obtain
the 3D location of the features of interest. The triangulation is performed using MATLAB’s Computer Vision Toolbox
(v2023b, Mathworks Inc., Natwick, USA), which uses the Direct Linear Transform method (DLT) [26, p. 593] to
estimate the 3D position of extracted pixel values from two or more perspectives.

4. Step 4: Coordinate system change
In order to make sure that the measurements between experiment sessions were repeatable, and an accurate

comparison between the signals obtained from this measurement method and the ones recorded by the touchscreen could
be made, the reference frame in which the triangulated points are expressed needed to be changed from a camera-fixed
reference frame to a reference frame that is not changing between different experiment sessions. From the calibration
step, matrices corresponding to the intrinsic parameters of both cameras and the rotation and translation information
between the two cameras (𝑅 and 𝑡) were obtained. The triangulation was performed assuming that the perspective of the
first camera was the center of the world. In other words, the extrinsic parameters of the first camera were set to unity,
while the extrinsic parameters of the second one were set to the relative rotation and translation between the cameras.
To be able to perform comparisons between experiment sessions (given the fact that the cameras were moved), the
triangulated points would most effectively be expressed in a coordinate frame attached to the touchscreen (subscript 𝑠𝑐
in Figure 1d).

To perform the coordinate system change, a checkerboard pattern was presented on the screen, and frames from both
perspectives were recorded. An edge detector was then used to identify the edges of the checkerboard. Four edges of
the checkerboard were triangulated, defining the plane of orientation between the screen reference frame (denoted as

†https://github.com/CMU-Perceptual-Computing-Lab
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𝑠𝑐) and the camera-fixed reference frame (denoted as 𝑘1). It needs to be mentioned that the screen reference frame
was fixed to the top left point that was identified on the checkerboard, and the camera fixed reference frame was fixed
on the optical axis of the camera (not shown in Figure 1d). The approach of moving from the camera-fixed reference
frame to the screen reference frame was to first subtract from the triangulated data of the four edges of the checkerboard
the triangulated position of the top left checkerboard point. In this way, the triangulated points are still in the camera
reference frame, but the top left point is the null vector. Additionally, by knowing the physical distances on the screen
between the four points, the same four points were defined in the screen’s reference frame, having coordinates only in the
𝑍𝑠𝑐 and 𝑋𝑠𝑐 directions. Now, since the points of interest were obtained in both coordinate systems, Horn’s algorithm can
be applied ‡ to obtain the rotation matrix that relates the two sets of points. In this way, for the upper limb triangulated
data, a translation was applied and then a rotation transformed the data in the screen reference frame. It needs to be
noted that in this study, the "vertical" axis in which the data is expressed is in fact the 𝑍𝑠𝑐 axis and not the vertical as
defined by the gravity direction since the orientation of the screen with respect to the vertical direction is only 18◦.

5. Step 5: Error analysis of the proposed method
Figure 2 (a, b, c, d) shows the possible sources of error for the chosen measurement system. Starting from the

camera calibration, errors in the intrinsic and extrinsic calibrations might translate into erroneous camera parameters a).
A factor that can contribute to erroneous intrinsics estimation is the checkerboard pattern [29]. Firstly, the checkerboard
pattern might neither be perfectly manufactured nor perfectly planar. Secondly, the camera may imperfectly detect the
edges of the checkerboard due to its limited resolution, edge detection algorithm, or motion blur. The estimation of the
extrinsic parameters can also be affected by the previously mentioned checkerboard-related aspects, but also by the fact
that synchronised pictures of the checkerboard need to be taken. Errors in the intrinsic and extrinsic parameters affect
directly the triangulation since this step requires the use of camera parameters to estimate the 3D location of the pixels
observed from both cameras.

In extreme scenarios, any movement of the cameras, b), will invalidate the camera calibration since the estimated
rotation and translation matrices no longer have the same values as the ones estimated in the calibration step. As
previously described, erroneous camera parameters translate into erroneous triangulation outcomes.

The imperfect synchronization of the cameras, c), can affect the triangulated outcomes through the lost correspondence
between the pixel locations observed from the two perspectives. It is known that if two cameras observe the same scene,
a correspondence between the pixels from the first perspective and the second one exists, through epipolar geometry [26].
Moreover, an accurate triangulation assumes that the points that are being triangulated correspond in both perspectives.
In practice, if both cameras are imperfectly synchronized, one feature that is observed from one perspective might not
align with the correct correspondence in the second image, introducing errors that can be quantified by the reprojection
error [24]. The reprojection error is defined as the Euclidean distance in pixels between the identified point in the sensor
frame and the projected point using the perspective projection approach (from 3D to 2D).

A pose estimator might interpret the same feature slightly differently in the two perspectives d). This aspect can
be caused by the data that the pose estimator is trained on. This can create a mismatch between the corresponding
pixels in the two perspectives and therefore will induce errors in the triangulation that can also be traced back using the
reprojection error. A more detailed description and discussion of the method’s accuracy will be given in the Scientific
Paper Appendices: Appendix B.

b) Movement of the cameras

c) Imperfect synchronization of the cameras

 d) Pose estimation mismatch in the two perspectives

a) Camera calibration errors

Intrinsic calibration

Extrinsic calibration

Focal lengths, 
camera centers, 
distortion 
coefficients

Method accuracy

Rotation matrix 
and translation 
vector

Fig. 2 Overview of the possible sources of error of the stereo pose estimation system.
‡https://nl.mathworks.com/matlabcentral/fileexchange/26186-absolute-orientation-horn-s-method (Accessed on: 19.03.2024)
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III. Experiment

A. Apparatus

Fig. 3 The proposed set-up, con-
sisting of the touchscreen (a), the
two cameras positioned to the left
of the subject (b) and the light (c).

TU Delft’s SIMONA Research Simulator was used for the experiment. The
simulator is hydraulically actuated using six actuators in a hexapod configuration,
allowing for a movement in six degrees-of-freedom [30]. In this research,
movement was implemented only in the vertical (heave) direction, simulating
vertical turbulence encountered in an aircraft. Turbulence in the heave direction
can be considered one of the principal contributors to unwanted movements in
aircraft and therefore attracted special attention in academic research [10, 11, 31].
Figure 3 presents an overview of the hardware setup in the simulator. For this
experiment, a 15-inch Iiyama Pro-Lite TF1534MC-B1X touchscreen (TSC) was
used (Figure 3a), having a width of 304 𝑚𝑚, a height of 228 𝑚𝑚 and a resolution
of 1024 𝑝𝑥 x 768 𝑝𝑥. The touchscreen was positioned on the right-hand side of
the simulator, mimicking the location of the primary flight display, and measuring
the inputs of the users at 100 𝐻𝑧. The study [32] found that the touchscreen
latency is dependent on the input speed suggesting that for this study (nominal
input speed between 0 𝑚𝑚/𝑠 and 50 𝑚𝑚/𝑠) a latency of around 80 𝑚𝑠 is to be
expected.

Two GoPro (model Hero 11 GoPro, Inc.) cameras recorded the subjects at 30 𝐻𝑧, with a shutter speed 1/120 𝑠 and
were firmly placed on the left side of the participants (Figure 3b). The positioning of the cameras was determined via
preliminary tests, requiring that the elbow, wrist, finger and touchscreen could be observed from both perspectives
while operating the touchscreen throughout the experiment procedure. MSc Thesis Appendices: Appendix C provides
an overview of the relative distances and orientations between the two cameras (on average, the Euclidean distance
between the two cameras is 40 𝑐𝑚). Lastly, additional light was introduced on the left-hand side of the participant to
enhance the quality and contrast of the images of the upper limb in the low-light simulator environment (Figure 3c).

B. Experiment Design

1. Independent variables
The experiment was split into two main parts. The first part had the goal of identifying how the upper limb behaves

in turbulent conditions when altering the neuromuscular setting and when performing a set of distinct tasks on the
screen, while the second one had the goal of investigating the effect of the different levels of arm extension on the
feedthrough observed at the finger level, in a simulated reaching task.

In the first part of the experiment, two independent variables were introduced. The first one (NMS) is the
neuromuscular setting, with two levels: Stiff (𝑆) and Compliant (𝐶). The reason for introducing this independent
variable was the absence of relevant literature that could explicitly relate the biodynamic feedthrough to the neuromuscular
setting attained by the person operating the touchscreen. Moreover, the investigations performed in the field of biodynamic
feedthrough for physical side-sticks ([14, 33, 34]) demonstrated a clear influence of the neuromuscular settings in the
way the accelerations are fed-through the human body to the inceptor. Nevertheless, it is expected that the subjects will
interpret subjectively what "stiff" and "compliant" means.

The second independent variable (Task) is the task, with three levels: Finger fixed on the screen at one location (𝐹),
Finger moving on the screen (𝑀) and Finger not touching the screen (𝑁). In the preliminary report of this MSc thesis
[35], it was found that the most common interaction methods between the user and the touchscreen were based on either
pointing actions (which implies that the interaction between the user and the screen is very brief) and dragging actions
(concerning a longer interaction period) [36]. The author recognises that during the pointing actions, two separate states
of the finger can be identified, namely a state where the finger is close to the screen, but not touching it (the N condition)
and a state where the finger is on the screen (the F condition). To identify the particularities of each of the states, the
pointing task action was split up into the two levels as presented above.

For each combination of 𝑁𝑀𝑆 and 𝑇𝑎𝑠𝑘 , three points on the upper limb (Body Part) are measured, namely the
elbow (𝐸𝑙), wrist (𝑊𝑟) and index finger (𝐹𝑖) (Figure 4). To this date, no study which analysed the feedthrough of
accelerations of such features on the upper limb in the context of touchscreen operation was found.
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1: NMS

2: Task

3: Limb position

El Wr Fi

Experiment part 1

Experiment part 2

SC

F

Cl Fa Tr

M N

Fig. 4 Overview of the experiment conditions concerning the first and second parts of the experiment.

The second part of the experiment introduced a third independent variable (Limb position), namely the position
of the limb having three levels, Close (𝐶𝑙), Far (𝐹𝑎) and Transition (Tr). The purpose of introducing this additional
independent variable was to investigate the behavior of the limb in a simulated "reaching" task where it is expected that
the turbulence will affect the limb more, the further (more extended) it is. It needs to be mentioned that in this scenario,
the subject never touched the screen..

Through the presented independent variables, the goal was to cover most of the interaction methods that the user can
face while operating a touchscreen. The analysis of each independent variable can represent a "detail" of the complex
picture that describes the effects of turbulence in touchscreen operation.

C. Tasks, subjects and experimental procedure

1. Tasks

Stiff

zsc

xsc
ysc

(a) Finger fixed on the screen + Stiff condition

Compliant

zsc

xsc
ysc

(b) Finger moving on the screen + Compliant condition

Fig. 5 Overview of the possible display representations. For presentation purposes, the screen reference frame
is shown at an offset with respect to its real location.
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The design of the tasks was based on the independent variables that were included in the study. First, the interface
that the user interacted with contained a colour-based text description (top left of the screen) indicating the required
neuromuscular settings that should be attained (Figure 5). The description is relevant for the first part of the experiment
since the second part required the subjects to be always compliant.

A cross was projected on the screen, representing the target that the subjects would need to follow with their finger.
The cross-shape was used due to its minimal interference with the finger detection from the camera-based pose estimator.
Depending on the level of Task, the cross either remained still on the screen (Figure 5a), or moved in a circular pattern
(Figure 5b). Even though previous studies which analyzed BDFT in touchscreen operations ([11, 12, 37]) have proposed
a more complex moving pattern, it was considered that a simpler one would encourage the subject to keep a constant
finger velocity, time-invariant neuromuscular settings and would prevent fatigue throughout a trial, aspects that could
help in avoiding any possible confounds in the analysis of the data.

It was considered that the combination of the previously mentioned representations (target not moving, target moving
and stiff, compliant) would be enough to cover all the cases represented by the independent variables of the study. In
this way, for Task: F the subjects were required to keep their finger in the region of the cross marker which was not
moving (to ensure a consistent neutral steady-state position of the limb which the simulated turbulence would perturb).
The condition Task: M required the subjects to follow the circular pattern described by the cross as well as possible. In
contrast, Task: N required the subjects to raise their finger off the screen (in the negative 𝑌𝑠𝑐 direction), trying to point
to the indicated (static) cross presented on the screen (similar to Task: F).

As will be explained in Section III.C.3, the subjects did not need to interact with the screen during the second part
of the experiment, and therefore what was present on the screen did not have an influence on the task evolution.

2. Subjects
The participants were recruited from TU Delft’s student population, consisting of 3 males and 3 females (6

participants). The mean age of the participants lies between 20 - 25 years, the dominant arm was right and all of them
had extensive experience in touchscreen operation. The experiment was approved by TU Delft’s Human Research Ethics
Committee (HREC), application number 3648 and was performed according to its guidelines.

3. Experiment Description
The first part of the experiment consisted of the first two independent variables (NMS, Task), while simultaneously

measuring the positions of the elbow, wrist and index finger, resulting in 2 (NMS levels) × 3 (Task levels) = 6 (conditions).
For each participant, the order of conditions was randomized based on a Latin square design, while three repetitions were
performed for each condition. The selected number of repetitions was based on the observation that the within-subject
variability of a specific condition was low and on constraints regarding the time it would require to perform the data
extraction and analysis. The second part of the experiment was performed immediately after the completion of the
first part, consisting of one independent variable (Limb position) resulting in 3 conditions. The same randomization
approach and number of repetitions were applied for this part of the experiment. Before the start of the measurements
used for data analysis, the subjects performed a set of six training runs (F, M, N, Cl, Fa, Tr) for familiarisation purposes.
Each trial had a length of 36 𝑠, with a 30 𝑠 window of measurement and 3 𝑠 of fade-in and 3 𝑠 of fade-out. The total
experiment duration (including the breaks) was 1.5 ℎ𝑟 .

Before the participants were invited into the simulator, they were given a set of indications concerning the suggested
approach toward the tasks. For the first part of the experiment, the subjects were kindly asked to arrange their seat
such that they could reach the touchscreen comfortably with their right arm in an extended position (Figures 6a/6b).
Moreover, a rather peculiar positioning of the hand was required, namely the operation of the touchscreen was instructed
to be performed with the index finger while keeping the other fingers in the camera’s sight. The reason for the previously
mentioned aspects is the desire to maximize the identification performance of the pose estimator (in preliminary tests,
difficulties were found to occur when not all the fingers were in the camera’s sight with the chosen perspectives).
Moreover, imposing a specific positioning of the hand implied that the subjects performed the task with a consistent
pose, minimizing the confounds introduced by the possible differences in the reference limb positions that could have
been attained by each subject [38].
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(a) Task: F/M (b) Task: N

(c) Limb position: Cl (d) Limb position: Fa

Fig. 6 Overview of the suggested poses identified from the second perspective.

Part 1 of the experiment: For Task: F, the subjects were instructed to touch the screen without applying too much
pressure, such that the finger could "glide" on the screen’s surface under the influence of disturbances. In this case, the
target on the screen represented more of a "reference" for the subject, around which he/she is disturbed. It is important
to introduce such a reference to avoid the possibility of the subject actively changing the "trimmed" or "steady-state"
position of the limb throughout a trial, affecting the BDFT identification results. The only instruction required for the
Task: M was that the subjects would need to follow the target as accurately as possible. The condition Task: N can be
considered similar to Task: F with the sole difference being in the fact that the finger did not touch the screen. The
subjects were instructed to imagine that they point on the cross marker, but raise their finger away from the screen 2 − 3
𝑐𝑚 such that they would not touch the screen throughout the trial. The goal of the instruction was again to induce a
steady-state position of the limb that is influenced as much as possible by the disturbance and, in the same time, to
minimize the cognitive movement. Moreover, for each level of Task, the participants were required to keep either a
Compliant neuromuscular setting or a Stiff one as consistent as possible throughout one trial. For the Compliant setting,
the subjects were instructed to keep their limb relaxed while performing the trials. Similarly, for the Stiff setting, the
subjects were instructed to comfortably activate their arm muscles throughout the task duration to resist the motion
perturbations.

Part 2 of the experiment: For Limb position: Cl, the subjects were instructed to keep their arm relaxed while keeping
their elbow and hand close to their body in a steady manner (Figure 6c) for the whole duration of the trial. Moreover, it
was recommended that the elbow would be positioned slightly in front of the trunk and above the feet to provide a good
perspective for the camera and to avoid any possible interference with any body parts during the application of the
disturbance. Similar to Task: N, Limb position: Fa required the subject to keep their hand steady, and the arm fully
extended (Figure 6d) with the only difference being that the palm was facing the cameras since no interaction with
the screen was required. Lastly, for Limb position: Tr, the subjects were requested to transition between Cl and Fa
continuously throughout the trial at their own discretion with pauses of 2 − 3 𝑠 at both the Cl and Fa positions. It needs
to be mentioned that for all the conditions of the second part of the experiment, the subjects were required to keep their
arm relaxed.

D. Forcing functions

1. Disturbance forcing function
The disturbance signal was constructed from a sum of sinusoidal signals in order to create a quasi-random simulator

movement. Quasi-random disturbances were used in earlier touchscreen BDFT experiments ([11, 12, 37]), due to the
possibility of identifying the components in the touchscreen signal that were correlated with the disturbance. This is
to facilitate the creation of Linear-Time-Invariant (LTI) models that could describe the feedthrough contribution in
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the touchscreen’s signal. This study approached the design of the disturbance forcing functions characteristics in a
similar manner to the one that was used in the previous studies. The biggest difference was in the adaptation of the
measurement time, from 𝑇𝑚 = 81.92 𝑠 to 𝑇𝑚 = 30 𝑠 with implications that the number of times that a sinusoidal "fits" in
the measurement time, 𝑛𝑑 was adapted to create "peaks" in the frequency domain at the frequency values (𝜔𝑑) that
matched previous research. A reduced measurement time was introduced due to the requirement that the subjects would
need to keep their neuromuscular setting constant throughout the trials.

Disturbance Target
𝑘 𝜔𝑑 𝑛𝑑 𝐴𝑑 𝜙𝑑 𝑛𝑡𝑧 𝜔𝑡𝑧 𝐴𝑡𝑧 𝜙𝑡𝑧 𝑛𝑡𝑥 𝜔𝑡𝑥 𝐴𝑡𝑥 𝜙𝑡𝑥

− 𝑟𝑎𝑑/𝑠 − 𝑚 𝑟𝑎𝑑 − 𝑟𝑎𝑑/𝑠 𝑚𝑚 𝑟𝑎𝑑 − 𝑟𝑎𝑑/𝑠 𝑚𝑚 𝑟𝑎𝑑

1 0.4189 2 1.047 · 10−1 3.3250 5 1.0472 47.7465 0 5 1.0472 47.7465 1.5707
2 0.8378 4 8.076 · 10−2 0.3014
3 1.6755 8 4.272 · 10−2 6.0868
4 2.9322 14 1.941 · 10−2 5.4549
5 3.9794 19 1.209 · 10−2 5.4447
6 5.4454 26 7.543 · 10−3 0.3780
7 7.7493 37 4.717 · 10−3 3.9063
8 10.4720 50 3.423 · 10−3 0.2617
9 13.1947 63 2.834 · 10−3 1.4124
10 17.3835 83 2.405 · 10−3 2.2162

Table 1 Overview of the variables describing the disturbance and target signals.

The choice of the amplitudes (𝐴𝑑) was based on a desired Root-Mean-Square (or Power) of the signal. Based on
[37], the amplitudes were selected such that the acceleration of the simulator had an RMS of 0.75 𝑚/𝑠2. Lastly, the
phases (𝜙𝑑) were optimised by using a cresting technique as described in [39], in order to avoid simulator movements
outside of the acceptable margins. A summary of the disturbance signal characteristics can be found in Table 1 (left
side).

2. Target forcing functions
Consistent with the design of the disturbance forcing functions, the same studies have proposed a set of target forcing

functions made of sum of sinusoidal signals [11]. The reason for introducing also sinusoidal forcing functions was to
"isolate" the power of the screen input corresponding to the following task at discrete frequency values (peaks in the
frequency domain), with the goal of obtaining an accurate biodynamic feedthrough identification. In the current study,
forcing functions present in the target signal were designed only for Task: M condition where the number of sinusoidal
signals decreased from three (previous research [11]) to one. The target forcing function being constructed from only
one sinusoidal ensured that the subjects could keep a rather constant finger velocity and would limit the effects of fatigue
during a trial while facilitating a time-invariant behavior from the subjects in terms of the required neuromuscular
setting. The screen inputs two coordinates for the position of the target (vertical 𝑧 and horizontal 𝑥). As it can be
observed in Table 1 (right side), the 𝑧 and 𝑥 characteristics of the target signals differ only in the phase (a 𝜋

2 difference),
therefore creating a target which moves in a circular pattern. The amplitude of the signal was scaled such that a nominal
screen (and finger) velocity of 50 𝑚𝑚/𝑠 was induced. Lastly, to accurately estimate the BDFT estimate in the frequency
domain, the target signal frequency was designed not to overlap with the frequencies of the disturbed signal.

E. Hypotheses
For each task, the subjects are required to attain a "compliant" and a "stiff" NMS setting. Intuitively, a stiffer

condition of the arm rejects the applied disturbances in a more effective way, resulting in a smaller movement of the limb.
With this in mind, the aim was to investigate whether a difference in the biodynamic behavior of a subject originates
from a different way of approaching a task [33]. It is hypothesised that:

H-1: The feedthrough component for all three recorded joints (elbow, wrist, finger) is expected to be more pronounced
for the compliant NMS setting compared to the stiff NMS setting for all tasks. (This hypothesis is linked to NMS)

Extensive research has been performed in the area of physical inceptors (i.e. sidesticks), relating BDFT and the
NMS setting [34]. For lateral disturbances, it has been observed that by keeping the limb stiff, a better attenuation of the
low-frequency accelerations (≤ 9.5 𝑟𝑎𝑑/𝑠) is present, while the tight coupling between the limb and the body can induce
a higher transmission of higher frequency components (> 9.5 𝑟𝑎𝑑/𝑠) when compared to a compliant setting [34]. It
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needs to be mentioned that the outcomes from the stick-based studies can be fundamentally different from the case when
the hand is not in contact with any inceptor since the BDFT dynamics computed in stick-based operations also include
the dynamics of the stick [14]. This can affect the frequency range at which certain effects can take place and therefore
the following hypothesis will not mention explicit frequency values. In this way, the following hypothesis can be posed:

H-2: The transfer-function representation of the BDFT of all three recorded joints is expected to have a higher gain
in the low-frequency range, and a better attenuation of the higher frequencies in the compliant NMS compared to the
stiff NMS for all tasks. (This hypothesis is linked to NMS)

During the experiment, the subjects were asked to perform three types of tasks: finger kept on the screen at a fixed
location, finger moving on the screen according to a predefined trajectory, and finger away from the screen. Due to the
effects of friction between the finger and the screen and due to the assumed differences in the ways the muscles of the
upper limb are activated for each level of the task, it is expected that:

H-3: The behavior of the recorded joints under the influence of disturbances is different for all three tasks (F, M, N),
with the case when the finger is away from the screen showing the largest variation in the behavior and when the finger
is moving actively, the lowest. (This hypothesis is linked to Task)

In [12], it has been pointed out that in certain scenarios when the subjects kept their finger in one location, feedthrough
was observed in low amounts since the subjects exerted large forces on the screen, or their finger just pivoted in a
discrete location. In this study, it is expected that even in static situations, the finger will be affected by the disturbances,
because the subjects were instructed to touch the screen gently to avoid pivoting, facilitating the observation of the
feedthrough to the finger location. Moreover, based on the intuition that the subject might be required to use an overall
stiffer neuromuscular setting when he/she is moving along the screen, compared to the case when the finger is not
moving, it is expected that:

H-4: The finger moving on the screen increases the equivalent stiffness of the limb compared to the case when the
finger is kept stationary. (This hypothesis is linked to the interaction between NMS and Task)

Intuitively, it is expected that when the arm is located closer to the body, it will be more directly coupled to it, and
the disturbances will affect the finger position less, whereas a larger distance between the body and the finger will
have a more negative effect (the finger will move more) due to different equivalent inertia properties of the upper limb,
suggesting that:

H-5: The BDFT effects on the finger when the arm is close to the body replicate a "stiff" condition whereas the
effects on the finger when the arm is far from the body replicate a "compliant" condition. (This hypothesis is linked to
Limb position)

Besides the previously mentioned hypotheses, this study can also take several steps towards understanding the
differences within or between subjects. Although not a primary goal (due to the relatively small sample size of 6
participants), [12] found a limited impact of the limb lengths and masses on the feedthrough of accelerations suggesting
the hypothesis that the differences in BDFT effects between subjects could be less pronounced than the differences in
BDFT within subjects (induced by the change in the neuromuscular settings).

F. Dependent Variables
For the experiment, the following dependent measures were selected:
• General measures:

– The triangulated time-traces of the elbow (𝑦𝑇𝐸𝑙
), wrist (𝑦𝑇𝑊𝑟

) and index finger (𝑦𝑇𝐹𝑖
) landmarks, as identified

by the pose estimator. Since disturbances were applied only in the heave direction, the analysis of the
landmarks was made in the vertical (𝑍𝑠𝑐) direction.

– The time-traces of the finger touchscreen signal (𝑦𝑇𝑆𝐶𝐹𝑖
). This quantity can be used for verification

purposes, where the signals provided by the screen and by the camera can be compared.
– The power spectral densities (PSD) of the triangulated elbow, wrist and index finger landmarks that are

expressed in the vertical direction. These measures are computed using the Fast Fourier Transform. For
example, the cross-spectral density between the disturbance signal, 𝑓𝑑 and the 𝑦𝑇𝐹𝑖

is denoted as 𝑆 𝑓𝑑 ,𝑦𝑇𝐹𝑖
.

– The estimation of the biodynamic feedthrough of the triangulated elbow, wrist and index finger landmarks
that are expressed in the heave direction. The computation of the biodynamic feedthrough at the finger
joint consisting of a disturbance acceleration 𝑓𝑑 , a signal 𝑦𝑇𝐹𝑖

(for example) is defined for the disturbance
frequencies 𝜔𝑑 as:

�̂�𝑏𝑑 𝑓 𝑡 𝐹𝑖𝑛𝑔𝑒𝑟 ( 𝑗𝜔𝑑) =
𝑆 𝑓𝑑 ,𝑦𝑇𝐹𝑖

( 𝑗𝜔𝑑)
𝑆 𝑓𝑑 , 𝑓𝑑 ( 𝑗𝜔𝑑)

(2)
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For each subject and condition described by NMS, Task and for every body part, the Fourier transforms
of each of the three repetitions are averaged and then divided by the Fourier transform of the disturbance
signal to obtain an averaged BDFT estimate.

• Quantitative measures used for data analysis:
– The Root-Mean-Square of the feedthrough component of the time-domain positions of the limbs expressed

in the heave direction. For all conditions described by the NMS, Task and for each recorded body part,
the disturbance component of the signals in the time domain (𝑦𝑇𝐸𝑙 𝑓

, 𝑦𝑇𝑊𝑟𝑓
, 𝑦𝑇𝐹𝑖 𝑓

) is extracted by first
interpolating the time-trace (from a 30 𝐻𝑧 sampling frequency to 100 𝐻𝑧), Fourier transforming the signal,
isolating only the frequencies at which the disturbance signal acts, and computing the root mean square
of the signal that is transformed back to the time-domain. This approach follows the intuition from [34],
which assumes that the total signal has a component coming from the disturbance, from the noise and
optionally from the intentional movements. For each condition of the experiment, the average RMS of the
three repetitions is used as a data point.

– The linear regression parameters and coefficient of determination (𝑎, 𝑏, 𝑅2) describing the relationship
between the moving average of the finger’s normal distance from the screen ( 𝜇𝑦𝑇𝐹𝑖

𝑌𝑆𝑐) and the moving
RMS of the first derivative of the finger’s position in the vertical direction (𝑅𝑀𝑆 ¤𝑦𝑇𝐹𝑖

𝑍𝑠𝑐). For each data
point, i:

(𝑅𝑀𝑆 ¤𝑦𝑇𝐹𝑖
𝑍𝑠𝑐)𝑖 = 𝑎 · (𝜇𝑦𝑇𝐹𝑖

𝑌𝑆𝑐)𝑖 + 𝑏 (3)
These parameters are estimated for each subject, by combining the data from each trial of the Limb position:
Tr condition. This analysis has the goal of investigating whether a trend is present between the normal
distance of the finger from the screen and the amount of feedthrough that occurs.

– The rate at which the finger moves toward or away from the screen ( ¤𝑦𝑇𝐹𝑖
𝑌𝑠𝑐). This quantity is computed by

taking the numerical derivative of the signal 𝑦𝑇𝐹𝑖
expressed in the direction that is normal to the screen

surface, 𝑌𝑠𝑐. The role of this quantity is to provide a better understanding of the behavior of the subjects in
the second part of the experiment, in the transitioning condition.

– The estimated coherences (Γ2
𝑏𝑑 𝑓 𝑡

) for each subject, each level of the NMS, Task and measured body part.
The computation of the coherences follows from [37].

– The subject-level parameters of a fitted BDFT model. This paper opted for a mass-spring-damper model
(parameters: 𝜔𝑏𝑑 𝑓 𝑡 , 𝜁𝑏𝑑 𝑓 𝑡 ) in combination with a gain (parameter: 𝐺𝑏𝑑 𝑓 𝑡 ). A time-domain identification
method [40] (initial values for 𝐺𝑏𝑑 𝑓 𝑡 , 𝜔𝑏𝑑 𝑓 𝑡 and 𝜁𝑏𝑑 𝑓 𝑡 are [20, 6, 0.5], based on [12]) was applied to obtain
the averaged BDFT parameters (from the three repetitions) corresponding to each subject and each level of
NMS, Task and recorded body part. The current study is the first one to try to investigate the suitability of
using LTI BDFT models for describing the feedthrough component at three locations (elbow, wrist, finger)
on the limb using camera-based signals. The model has the following structure:

𝐻𝑏𝑑 𝑓 𝑡 ( 𝑗𝜔) = 𝐺𝑏𝑑 𝑓 𝑡

𝜔2
𝑏𝑑 𝑓 𝑡

( 𝑗𝜔)2 + 2𝜁𝑏𝑑 𝑓 𝑡𝜔𝑏𝑑 𝑓 𝑡 · 𝑗𝜔 + 𝜔2
𝑏𝑑 𝑓 𝑡

(4)

The model structure presented in Equation (4) was chosen out of other linear models (such as a first-order
lag or a second-order overdamped system) due to its ability to capture the variable BDFT behavior of the
subjects. A comparison between the performance of multiple model structures is present in the MSc Thesis
Appendices: Appendix G. Moreover, this model in combination with a delay was selected in other studies
[12, 37] that investigated BDFT using touchscreen data. Since in Scientific Paper Appendices: Appendix B
it is shown that this camera-based approach is able to capture the delay occurring in the touchscreen, the
delay term included in the previous studies was omitted.

– The Variance Accounted For (VAF) corresponding to each 𝑁𝑀𝑆, 𝑇𝑎𝑠𝑘 , and body part. The role of this
measure is to quantify how well can a model explain the feedthrough component of each signal. The
calculation of the VAF follows from [37], while the final value that is presented for each subject, task
neuromuscular setting and body part is the averaged VAF of the three trials that are performed per condition.

– The distribution of the finger’s signal variance across frequency (𝜎2 𝐹𝑖). This measure is obtained by
computing the auto PSD using 𝐻𝑏𝑑 𝑓 𝑡 and/or �̂�𝑏𝑑 𝑓 𝑡 at frequency points 𝜔𝑑 , and cumulatively integrating
the power spectral density. The role of this measure is to give a better intuition about the frequencies that
contribute the most to the variance of the time-domain signal.
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IV. Results

Section II
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Fig. 7 Overview of the topics analysed in Section IV - Results.

Figure 7 presents a summary of the topics presented in Section IV - Results. The validation of the camera-based
approach is presented in Scientific Paper Appendices: Appendix B. The Results section begins with the time-domain
analysis of the first part of the experiment, investigating the effects of NMS, Task and of the recorded upper limb
landmark on the RMS of the feedthrough component. The second part of the time-domain analysis focuses on the
Limb position effects, covering separately the Cl, Fa conditions and the Tr condition. The frequency-domain analysis
investigates the feasibility of fitting a second-order system to the feedthrough components of the recorded joints while
showcasing different types of behaviors exhibited by the subjects.

A. Time domain analysis - Experiment (F, M, N)

Mean

Fig. 8 Overview of the RMS values of the feedthrough component for the elbow, wrist and finger.
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Dependent variable NMS Task Body Part NMS x Task NMS x Body Part Task x Body Part NMS x Task x Body Part
𝐹 (1) 𝑝 𝐹 (2) 𝑝 𝐹 (2) 𝑝 𝐹 (2) 𝑝 𝐹 (2) 𝑝 𝐹 (4) 𝑝 𝐹 (4) 𝑝

𝑅𝑀𝑆 𝑍𝑠𝑐 7.845 0.038 15.056 <0.01 35.527 <0.01 2.682 0.651 5.480 0.025 39.199 <0.01 2.240 0.101

p < 0.05 (significant) p > 0.05 (not significant)

Table 2 Repeated measures ANOVA outcomes for the movement of the limbs for all the conditions described by
NMS, Task and the measured body parts.

1. Effects of the NMS setting on the feedthrough for all different joints.
Figure 8 summarizes the amount of movement that is exhibited as a consequence of the vertical motion disturbance

with the RMS of the time-domain feedthrough component of the limb’s landmarks (elbow, wrist and index finger)
expressed in the vertical direction (screen’s 𝑍𝑠𝑐 direction). The validity of using only the components that are correlated
with the disturbance for the RMS calculation is demonstrated in Scientific Paper Appendices: Appendix A. The
outcomes suggest that an important part of the limb’s movement is due to the applied disturbances (up to 85% of the
total signal variance can be represented by the feedthrough component).

Based on Figure 8, it can be observed that on average the stiff condition exhibits consistently a lower mean RMS
compared to the compliant one. At the same time, on average, the difference between the two neuromuscular settings
depends on the body part that is being examined and on the task that is performed (especially at the finger level). The
smallest difference on average between the stiff and compliant scenarios was observed for the N task at the elbow
joint (3% difference in the mean RMS between the stiff and compliant scenarios). In contrast, the biggest difference
was observed for the F task at the finger location (30% difference in the mean RMS between the stiff and compliant
scenarios) followed closely by the condition N at the finger location (29% difference in the mean RMS between the stiff
and compliant scenarios).

Despite the relatively low number of samples (six per condition), a Repeated-measures ANOVA was used for the
statistical analysis of the data (Table 2). Kolmogorov-Smirnov normality tests proved the normality for 16 out of 18
datasets (2 NMS × 3 Task × 3 Body Part). The main effect of the neuromuscular is consistent with the observation made
that the mean RMS for the stiff setting is on average less than the mean RMS for the compliant one. A post-hoc analysis
in the form of a Paired-Samples T Test/Wilcoxon Test was performed for all 18 conditions separately, showing only
one significant result for the N task at the finger (𝑝 = 0.03). The significant difference between the stiff and compliant
conditions, in this case, may be attributed to the fact that the finger does not make any contact with the screen while
having a nominal finger velocity of zero 𝑚𝑚/𝑠 and therefore it is possible to better control and alter the characteristics
of the upper limb (i.e. reject the disturbances).

Table 2 suggests that an interaction is present between the effects of the neuromuscular settings and the examined
arm joint. Figure 8 supports this interpretation showing that on average, the relative differences between the stiff and
compliant scenarios increase with the analyzed joint (when starting from the elbow). One intuition of this interaction
(while omitting pooling across all tasks) can be observed for the N task, where the mean of the compliant condition was
3% (elbow), 14% (wrist) and 29% (finger) higher than the stiff condition. This result indicates that for the condition
where the subject is not touching the screen, the neuromuscular settings have a larger influence on the joint locations
that are further along the kinematic chain (kinematic chain described by the shoulder, elbow, wrist, and finger parts).
The task F shows a similar increasing pattern in the effect of the neuromuscular settings on the different body parts. A
possible explanation for this behavior is the instruction to apply a low pressure on the screen in order to allow the finger
to move under the influence of disturbances (and not to pivot around a static location). Nevertheless, given the large
spread in the RMS values for the C neuromuscular setting, it is likely that the subjects interpreted the task in different
ways, therefore pressing on the screen with different force amounts.

On the contrary, the mean difference between the neuromuscular settings for the finger was less than the mean
difference for the wrist landmark (9% vs 14% increase between stiff and compliant settings) for the M task. One possible
reason for this behavior is the fact that the finger is moving with a certain velocity along the screen while also pivoting
on it which makes the influence of the neuromuscular setting at the finger level less visible.

At the finger, the same M task showed slightly different effects between neuromuscular settings compared to the
tasks F and N (9% vs 30% vs 29% increase between the stiff and compliant cases). The fact that the subjects would
need to already have a "baseline" activation of the muscles to perform the M task, makes the differences between the
stiff and compliant conditions less evident. Despite this observation, no significant interaction between the NMS and
the task was present, since the rest of the joints may balance out the overall effect of the interaction.
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2. Effects of different finger interactions with the screen on the feedthrough component
The same results (Figure 8) are used to analyse the effect of the task on the biodynamic feedthrough component of

the arm joints. For example, at the finger level, the most feedthrough occurred during N, with mean RMS values of 18.1
𝑚𝑚 and 14.1 𝑚𝑚 for the compliant and stiff conditions respectively. The smallest amount of movement was exhibited
for M with a mean RMS of 8.2 𝑚𝑚 and 7.4 𝑚𝑚 for the same conditions. Additionally, by pooling the data across NMS
and Body Part, the mean RMS values for Task F, M and N are 9.1 𝑚𝑚, 9.1 𝑚𝑚 and 12.2 𝑚𝑚, respectively. This aspect,
confirmed by the significant effect of Task in Table 2, indicates that by being in contact with the screen, the upper limb
moves less on average (in certain parts) than the case when the upper limb is not touching the screen. This outcome is
likely to be caused by the effects of pressure that the subjects apply on the screen (friction and pivoting that occur when
the tasks are performed).

It can be observed that while the RMS of the finger decreased on average for F and M when compared to N, the
same is not found for the wrist. This aspect is supported by the significant interaction between the task and body part
from Table 2. By pooling the data across the levels of NMS, the mean RMS at the finger for M is approximately 15%
lower than for the F condition. In contrast, for the wrist, the mean RMS for M is approximately 3% higher than for F.
Additionally, the interaction effect is more pronounced for the wrist and finger in M and N conditions, where an increase
of approximately 100% is observed for the pooled data at the finger and 11% for the wrist. The cause of this effect may
be the elimination of contact with the screen that was used for F and M as a pivot for the finger.

3. Effects of BDFT on different locations of the limb
The last insight that can be seen from Figure 8 is how the effects of BDFT vary between the different joints. Pooling

the data across all the levels of NMS and Task, shows that the elbow is moving on average less than the wrist (7.1 𝑚𝑚 vs
12.3 𝑚𝑚) while the wrist moves slightly more than the finger (12.3 𝑚𝑚 vs 11 𝑚𝑚). The fact that on average the finger
moves less than the wrist, might be caused by the conditions F and M which decrease the average finger movement
since they involve direct screen contact.

By re-analysing the interaction between the Task and Body Part, it can be observed that on average, the BDFT at the
elbow and wrist is less influenced by the task compared to the finger. Another perspective of this interaction can suggest
that for the conditions F and M, the wrist moves the most on average (mean RMS of 11.7 𝑚𝑚 and 12 𝑚𝑚) while for the
condition N the finger moves the most (mean RMS of 16.1 𝑚𝑚). This aspect reinforces the intuition that when the
finger is touching the screen, the wrist is the most affected joint that is measured on the upper limb. On the other hand,
when the finger is not touching the screen, the point furthest away from the shoulder moves the most as an effect of the
overall inertia of the upper limb.

B. Time domain analysis - Experiment (Cl, Fa, Tr)

1. Understanding the effects of Close vs Far
The simplified analysis presented in this section covers two cases, namely when the limb is close to the body

(Figure 6c) and when the limb is far from the body (Figure 6d) and is trying to investigate whether the vertical feedthrough
component of the finger changes in the two conditions. Possible scenarios that might require different extensions of
the limb are when the touchscreen is not positioned far from the body, or when the user is reaching for the screen in a
pointing task.

Figure 9 presents the RMS of the feedthrough component at the finger joint for the Cl and Fa conditions corresponding
to the second experiment. The reliability of the results can be firstly demonstrated by comparing the mean RMS for the
condition Fa (Part 2 of the experiment) and NMS: C + Task: N (Part 1 of the experiment). The mean RMS for the finger
in the former condition is 20.8 𝑚𝑚 while for the latter is 18.1 𝑚𝑚. One possible reason for the differences is that the Fa
case enables a slightly relaxed approach (the palms were facing the cameras - Figure 6d) when compared to the less
natural pose attained in the N condition (Figure 6b).

Comparing the Cl and Fa conditions from the second experiment, it can be observed that a difference between the
two arm extensions exists (mean RMS of 12.5 𝑚𝑚 vs 20.8 𝑚𝑚). The outcomes suggest that when the arm is close to the
body, the influence of the disturbances is reduced. This confirms the interpretation that the closer the arm is to the body,
the more rigid it is, therefore mitigating the effects of BDFT at the finger level.
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Fig. 9 Overview of the RMS values of the feedthrough
component of the finger for the two different levels of
arm extension (close to the body and far from the body).

Table 3 Regression parameters for
Limb position: Tr.

Regression parameters
𝑆𝑢𝑏 𝑗 . # 𝑎 𝑏 𝑅2

1/𝑠 𝑚𝑚/𝑠
S1 0.14 241.3 0.13
S2 0.15 182.4 0.18
S3 0.06 146.9 0.01
S4 0.13 144.1 0.72
S5 0.20 203.8 0.57
S6 0.12 134.6 0.45

2. Understanding the effects of Transition.
To analyse more realistic tasks, it was of interest to understand what happens with the finger landmark when the

subjects slowly transition from a position when the limb is located close to the body (similar to Cl) to a position when
the limb is fully extended (similar to Fa). In this way, the subjects were required to continuously transition between
these positions.

For the analysis of the Tr condition, only the finger joint is considered. To eliminate any trends in the data, the finger
position (expressed in 𝑍𝑠𝑐) was numerically differentiated. A moving time window of three seconds was used to first
obtain an average value of the finger position in the normal direction from the screen (𝑌𝑠𝑐) to quantify the degree of arm
extension and secondly to compute the RMS of the vertical finger velocity.

(a) Subject 4 (high 𝑅2). (b) Subject 3 (low 𝑅2).

Fig. 10 The relationship between the arm extension and RMS of the vertical finger velocity.

Table 3 presents the results of a linear model fit to the data of each subject. Weak linear fits were detected between
the two variables for 𝑆1 - 𝑆3 (suggested by low 𝑅2 values). On the other hand, for 𝑆4 − 𝑆6 possible signs of linear
trends could be observed. An example of a linear trend and a trend that shows no correlation can be observed in
Figure 10a and 10b. One possible reason for these results is presented in Figure 11, showing that people approached the
task differently regarding the speed and also the frequency at which they moved toward or away from the screen (𝑌𝑠𝑐)
direction. The high change in velocity (essentially acceleration) showed in Figure 11b eliminates the linear relationship
between arm extension and feedthrough since, in the window of 3 𝑠 (used for the computations), the arm changes its
state (extends/retracts) more rapidly. Additionally, the amplification of noise in the differentiated signals could also
affect the regression analysis.

17



(a) Subject 4 (b) Subject 3

Fig. 11 The evolution in time of the arm extension and retraction velocity.

C. Frequency domain analysis - Experiment (F, M, N)

1. Joint linearity evaluation

Fig. 12 Overview of the estimated coherence for the two levels of NMS and three levels of Task of the vertical
finger and wrist positions. The medians of the datasets are represented by the continuous lines, while the 0.25
and 0.75 quantiles are represented by the shaded areas.

Figure 12 shows that the coherence values increase with frequency, and a higher coherence is observed on average for
the conditions where the subjects are exhibiting a "stiffer" behavior (due to a better "coupling" between the disturbance
and the upper limb). The cause for the increase in coherence with frequency might be attributed to the design of the
forcing functions and to the rather short measurement time (the lowest frequency sinusoidal occurs only two times in the
measurement period). Another point of view is that at low frequencies, the subjects might not respond purely to the
induced disturbances, enabling the possibility of other intentional cognitive effects to take place.
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An interesting outcome that can also be extracted from Figure 12 is the difference in coherence across the three tasks.
When the finger is not touching the screen, a more linear response is measured compared to the case when the finger is
touching the screen (either moving or not moving on the screen). The nonlinearities that occur can be caused by the
combined effects of friction and pressure that the subject applies on the touchscreen. Lastly, it can be observed that on
average, the coherence of the wrist for each task and neuromuscular setting is more consistent than the one of the finger
confirming the fact that the BDFT at the wrist joint is not affected by the interaction between the finger and the screen.

2. Model quality-of-fit
In this paper, the VAF is used to quantify how much of the feedthrough in the signals is accounted for by the fitted

mass-spring damper BDFT model. Figure 13 presents the VAF for all subjects and all levels of NMS, Task and each
Body Part. Overall, it can be observed that, in all scenarios mean VAF values of at least 70% were obtained, confirming
the feasibility of modeling the feedthrough in the upper limb using the proposed model. The study of [12] presented
average VAF values of 90% in the condition that required the finger to move across the screen for the BDFT measured
with the touchscreen. The lower performance of the model for the finger joint in 𝑀 presented here can be caused by the
elimination of two sinusoidal components in the target signal, the instruction to perform the tasks with the arm close to
fully extended (Figure 6a, which was not the case in [12]) or by the elimination of the anti-static gloves that were used to
reduce the non-linear friction effects in [12].

Mean

Fig. 13 Overview of the VAF for all measured conditions.

The trends in Figure 13 show that, on average, the VAF values for the stiff conditions are higher than for the
compliant case. This result can be explained by the more consistent coherence values for the stiff condition (Figure 12).
Additionally, at the finger level, the 𝑁 condition showed slightly higher VAF values compared to the others. The reason
for this behavior can also be attributed to how linear the subjects were while operating the tasks. Nevertheless, despite
the fact that the interaction with the screen induces nonlinearities, it is still possible to model the feedthrough of the
finger with a linear model with sufficient accuracy (e.g. for BDFT cancellation) using the approach proposed in this
study.

3. BDFT model parameters

Mean

Mean [12]
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Fig. 14 Overview of the BDFT parameter for all measured conditions.

Figure 14 shows all BDFT parameters that were identified for each condition of Experiment 1. It can be observed
that despite the reasonable VAF values obtained in Figure 13, in some cases unrealistic values of the parameters occur,
especially for the natural frequency 𝜔𝑏𝑑 𝑓 𝑡 and damping ratio 𝜁𝑏𝑑 𝑓 𝑡 of the elbow. One cause of this behavior can be that
the model proposed in this study is not always compatible with elbow’s response in the frequency range that the BDFT
is measured. Another possible reason is the fact that the disturbances do not "excite" the elbow landmark significantly to
facilitate identification. The highly unrealistic values tend to decrease when analyzing the wrist and the finger. It also
needs to be pointed out that the erroneous values mainly occur for the NMS: S condition for which the effects of the
BDFT are expected to occur in the higher frequency range. Since no clear conclusion can be taken from only observing
the patterns in the data, the author has decided to provide examples that can explain the reason for obtaining these sets
of parameters.

-1

Fig. 15 Elbow BDFT estimation (circles) and model fit (full lines) for two subjects (NMS: S, Task: F).
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Figure 15 presents two overdamped examples corresponding to two subjects that resulted in large estimated values
of 𝜔𝑏𝑑 𝑓 𝑡 and 𝜁𝑏𝑑 𝑓 𝑡 , but also in different performance estimates (quantified by the VAF). It can be observed that the
response of some subjects allows for an accurate use of conventional model structures (such as the one presented in
Section III.F) while for others does not. Large estimated values for the two pairs of parameters suggest that two poles
on the real axis exist, where one of them has a large negative value (more negative than the largest frequency that is
measured). This aspect implies that instead of fitting a second-order system, a first-order lag is describing the data in the
frequency range analysed in this study (as can be observed by the phase of almost -90 𝑑𝑒𝑔 of Subject 3). When analysing
the rather poor fit of the model on the data from the first subject, it can be observed that at the higher frequencies, the
magnitude of the transfer function does not show yet any decreasing pattern. This aspect can indicate that the complete
behavior of the elbow, in this case, can not be determined given the rather limited frequency range at which the BDFT is
recorded. The BDFT fit is affected by the limited frequency range at which the phenomena are measured and therefore
the parameters can not be trusted 100%.

Fig. 16 Examples of finger frequency responses and model fits corresponding to Task: N for Subject 4 (left),
Subject 5 (middle) and Subject 6 (right).

When analyzing the gain, 𝐺𝑏𝑑 𝑓 𝑡 corresponding to all conditions from Figure 14 it can be observed that, on average,
the stiff condition exhibits a higher gain compared to the compliant condition. This may seem counter-intuitive especially
when taking into consideration the outcomes of Figure 8. In order to better understand the effect of the gain parameter,
three individual responses of the subjects are shown in Figure 16. These responses correspond to the body part that
exhibits the most adaptive behavior (finger) and the task that has not been investigated in any other study (finger not
touching the screen).

Figure 16 (left), shows the largest differences between the compliant and stiff settings in the raw frequency response
function (circular markers) toward the higher frequencies. It can be observed that at around 1-5 𝑟𝑎𝑑/𝑠 the compliant
setting has a slightly lower magnitude than the stiff case, while at higher frequencies (10 𝑟𝑎𝑑/𝑠) the compliant setting
has a larger magnitude. The modeled BDFT of the compliant setting (blue) was not able to describe these complex
effects, managing only to replicate the fact that at the higher frequencies, there is more BDFT than the stiff setting.
In this scenario, the gain of the model for the stiff setting is larger than the gain of the model of the compliant one,
while the mean RMS for the stiff condition is 15.9 𝑚𝑚 and for the compliant one is 17.04 𝑚𝑚 (also suggesting that the
overall differences between NMS settings are not that high for this subject). At the same time, the break frequency of
the compliant model was higher than the stiff one.

Figure 16 (middle) shows a considerable difference between the stiff and compliant settings, where the effects are
larger compared to the previous case. At around 10 𝑟𝑎𝑑/𝑠, an underdamped peak is present suggesting that by being
compliant, more BDFT occurs around this frequency when compared to the stiff case. It is also interesting to observe
that at the highest frequency (17 𝑟𝑎𝑑/𝑠), both conditions seem to cross, but due to the limited frequency range, the
behavior after the highest frequency can not be observed. The outcomes of the raw frequency response functions are
exactly the opposite compared to the outcomes presented by [14], where it was shown that a stiffer condition exhibited
higher BDFT compared to a compliant one around 10 𝑟𝑎𝑑/𝑠.

Figure 16 (right) shows another type of response, where the gain of the fitted model corresponding to the compliant
setting is indeed larger than the gain for the stiff setting. Unlike the previous two cases, the magnitudes of the BDFT for
the stiff and compliant settings do not intersect. In this case, despite the apparent small differences between the stiff and
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compliant frequency responses, the difference in the RMS between the two conditions in time-domain is 5 𝑚𝑚. In the
frequency-domain, the difference between the gain parameter of the two conditions is 26 𝑚𝑚 𝑠2/𝑚.

The goal of these three examples was to convey that the gain parameter does not solely define the amount of BDFT
that occurs. It is expected that for a full understanding of the frequency-domain effects, all three model parameters
would have to be analysed together while also making sure that the fit describes well the frequency response functions.
Moreover, if model-based cancellation is desired and if the identified parameters are able to describe well the effects
of the original signal (through a high VAF), the model can be used as a "black box" without seeking for a physical
interpretation of the parameter values.

The author finds it important to also discuss what frequency values are the most important when fitting a model to
the estimated frequency response functions. One example that supports this statement is the fit in Figure 16 (middle)
where, despite the fact that only the last 5 frequency values are described well by the model in the compliant case, a
VAF of 85.4% is obtained.

Fig. 17 Example distribution of the finger’s signal variance across the frequency, corresponding to NMS: C,
Task: N, finger and Subject 5.

Figure 17 presents the incremental distribution of the signal variance across the frequency spectrum corresponding
to the modeled signal and the identified BDFT estimate for Subject 5. This figure shows the frequency values that
contribute the most to the variance of the signal. It can be observed that the last five disturbance frequency values
(stars) have the biggest contribution to the signal’s variance; the increase is the largest there. In this way, if a model is
capable of replicating well the high-frequency contents of a frequency response function, it would be able to describe
most of the variance of the signal. This result is related to the outcomes of the coherence calculations which also
emphasized that the behavior at the higher frequencies is more important for fitting a BDFT model (showing a higher
coherence compared to the lower frequencies). Nevertheless, it is expected that this behavior would be highly related to
the distribution of the power of the disturbance signal across the frequency spectrum.

V. Discussion
The current study proposed an experiment that evaluated the suitability of using pose estimators for analysing the

biodynamic behavior of humans under different scenarios while operating a touchscreen in a turbulent environment.
The turbulent environment was replicated by using TU Delft’s SIMONA Research Simulator, with a multisine motion
disturbance in the heave direction. Additionally, two GoPro cameras and the OpenPose software were used for pose
estimation and triangulation. The first part of the experiment (Experiment 1) investigated the effects of the arm stiffness,
type of finger interaction with the screen and body part on the observed feedthrough of accelerations. The second
part of the experiment (Experiment 2) focused on investigating the effect of the arm extension on the feedthrough of
accelerations. The goal of the experiments was to obtain a holistic image of how the upper limb is affected by BDFT in
most of the scenarios that concern the user’s interaction with the screen. By understanding where the upper limb is most
influenced, future adaptive models will be able to counteract the negative effects of disturbances in the most sensitive
scenarios. One of the most clear limitations of the study is the rather limited number of participants that took part in the
experiment session. The decision on the number of participants was directly related to the amount of time would take to
post-process the data. A more efficient data processing/analysis pipeline would allow for larger-scale tests, impacting
the scientific value of the conclusions that can be obtained.
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A. Discussion of the results
The comparison between the stiff and compliant neuromuscular settings showed a smaller RMS value occurring for

the stiff condition at the wrist, elbow and finger and for all tasks (𝐹, 𝑀, 𝑁). The less than 10% differences between
the stiff and compliant conditions at the elbow joint might originate from the fact that either the elbow doesn’t move
significantly as a consequence of the disturbances, the upper limb muscles are not strong enough to be able to influence
significantly the elbow movement or the markerless pose estimation system can not reliably capture the precise (small)
movement of the elbow (MSc Thesis Appendices: Appendix H). Overall, it is expected that for a potential adaptive
model that can take into consideration the neuromuscular settings, the elbow landmark could be ignored.

The effects of the changes in neuromuscular settings at the wrist were larger than for the elbow (between 14%
and 20% increase in mean RMS for the compliant setting). Since the way the finger interacted with the screen did
not alter significantly the differences in neuromuscular settings observed at the wrist, the biodynamic information
from the wrist could be used in the future for investigating whether the differences in BDFT are a consequence of
the anthropometric characteristics (limb length, mass) of the subject or from the task instruction (imposing different
neuromuscular characteristics).

The finger exhibited the most different types of responses between the stiff and compliant cases when performing
the different tasks (𝐹, 𝑀, 𝑁). The clearest differences between these two conditions were in the scenario where the
finger was away from the screen (N). It is assumed that since the friction/pressure effects from the interaction with the
screen were non-existent, the subjects could control better their limb in order to show a difference between the stiff and
compliant cases. The author certainly considers that neuromuscular-adaptive models would need to be researched for
this case since more realistic tasks such as discrete pointing tasks [41] on a screen are mostly affected by the disturbances
at the instance in time when the finger transitions from the condition of not touching the screen to the point where
the screen is activated at the wrong location. The smallest differences were observed at the finger joint for the 𝑀

condition (10% difference) due to the fact that the task required the subjects to actively move their finger on the screen.
This finding can imply that for continuous (close to constant finger velocity) dragging tasks, neurmouscular-adaptive
BDFT models would not be necessary. The results presented above suggest that Hypothesis 1 which assumes that the
feedthrough in the compliant setting is more pronounced for all tasks and upper limb locations, cannot be accepted.

The outcomes of the first experiment showed that an interaction between the tasks (𝐹, 𝑀, 𝑁) and the recorded arm
joint occurred. By pooling across the compliant and stiff cases, the RMS values for the elbow and the wrist did not
change significantly between the tasks (i.e. for the wrist the mean RMS of F was 11.68 𝑚𝑚, M was 11.97 𝑚𝑚, and N
was 13.31 𝑚𝑚). This suggests that the movement of these body parts is not significantly affected by the way the finger
interacts with the screen. On the other hand, the finger joint exhibited the most adaptive behavior (i.e. the RMS of
F was 9.18 𝑚𝑚, M was 7.80 𝑚𝑚 and N was 16 𝑚𝑚). For F and M the average RMS of the finger was less than the
average RMS of the wrist indicating that the finger is pivoting on the screen when it is in contact with it, and the joint
that is affected the most by the feedhtrough is the wrist (being at the middle of the kinematic chain described by the
elbow and the finger). The implication of this outcome is that future applications that will track the upper limb, can
investigate also the wrist for a complete understanding of the effects between this joint, the finger and the screen.

The finger is most affected by disturbances when it is not touching the screen. This implies that it is important to
take into consideration the way the finger interacts with the screen when BDFT mitigation is desired, especially in the
case when the finger is on the verge of touching the screen (N). Based on the guidelines specified in [42], the large
feedthrough encountered at the finger in the N condition (average RMS of 18.1 𝑚𝑚 in the compliant case), would imply
that a touchscreen key of size 13 𝑚𝑚 × 13 𝑚𝑚 would be missed, impacting the typing and pointing performance. Given
the previously-mentioned considerations, Hypothesis 3 which indicates that the behavior of the recorded joints under
the influence of disturbances is different for all three considered tasks cannot be accepted since only the finger joint
shows the most adaptive behavior.

The current study analysed two different types of finger interactions with the screen (𝐹, having a nominal finger
velocity of zero 𝑚𝑚/𝑠 and 𝑀 having a nominal finger velocity of 50 𝑚𝑚/𝑠). The outcomes from the time-domain
analysis showed that the relative differences between the RMS in the stiff and compliant cases for the finger were larger
for 𝐹 than for 𝑀 (30% increase and 9% increase in the mean RMS of the feedthrough at the finger between the stiff and
compliant case). The author considers that F was performed with a high degree of subjectivity (given the large spread in
the RMS values for the compliant condition) regarding how much pressure would be applied on the screen. Saying this,
it is considered that the effect of finger velocity cannot be decoupled from the between-subject differences in the current
experiment and therefore Hypothesis 4 which indicates that the finger moving on the screen increases the equivalent
stiffness of the limb compared to the case when the finger is kept stationary is rejected. For a better understanding of
the effect of finger speed on the BDFT, it is recommended that future studies will make use of pressure sensors for
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performing the task at predefined pressure levels.
This study also investigated the effects of the extension of the arm on the BDFT and whether these can be measured

with pose estimators. For two discrete locations (𝐶𝑙𝑜𝑠𝑒 and 𝐹𝑎𝑟 from the body, Experiment 2), lower RMS values were
obtained in the condition where the arm was close to the body compared to when the arm is retracted. It is expected
that the lumped inertial properties of the upper limb better resist disturbances compared to the case when the arm is
fully extended (RMS of the disturbance component at the finger of 12.5 𝑚𝑚 vs 20.8 𝑚𝑚). Another perspective of these
effects can be suggested by the larger moment arm between the root of the upper limb (shoulder) and the tip (finger)
when the limb is extended, shifting the center of mass and altering the moment of inertia of the limb, being more
susceptible to disturbances. These aspects confirm Hypothesis 5, which states that more movement is to be expected at
the finger level when the arm is extended compared to when the arm is retracted, indicating that adaptive models could
be introduced as a function of arm extension.

The analysis of the time-varying effects of BDFT during arm Transition (Experiment 2) did not result in any clear
conclusions. For some subjects, no correlation was present (𝑅2 values < 0.2) between the mean distance from the
screen and the finger velocity, while for others slight correlation was observed (𝑅2 values > 0.5). Since numerical
differentiation is performed to obtain the vertical velocity of the finger, the amplification of the noise can be considered a
limiting factor. Moreover, since the applied disturbance was a quasi-random signal, erroneous conclusions can be taken
if, at a moment in time, a larger acceleration is exhibited in the period where the finger is away from the screen (where
the smallest movement was expected). This analysis can be further improved by testing the effects of disturbances
at different discrete positions away from the screen (instead of only two). In this way, by keeping the arm setting
stationary for the duration of one trial, it is possible to clearly compare between the movement exhibited at different
limb configurations, and frequency response functions could be estimated for each intermediate position.

When analysing the frequency-domain results, the computed coherences for the wrist were higher than for the finger
due to nonlinearities induced by the screen friction. Moreover, the linearity of the dynamics of the joints increased with
frequency since it is hypothesized that the response of the limb at the higher frequencies is mainly due to the involuntary
effects of the disturbances. The rather poor linear behavior at low frequencies can be attributed, at least partly, to the
design of the forcing function and limited measurement time (30 𝑠 vs 81.92 𝑠 [11, 12, 37]). Additional studies are
needed to investigate what is the effect of the limited measurement time on the linearity of the system. The fact that the
lower frequencies exhibit low coherence can have a negative impact on the reliability of the estimates of the frequency
response functions at low frequencies.

The data from Experiment 1 was used for fitting a BDFT model, in the form of a linear second-order system in
time-domain. The obtained VAF values showed for the first time that it is possible to use such simple linear systems
for modeling, with an acceptable degree of accuracy, the feedthrough component of the limb movement extracted
from camera-based pose estimators. This result indicates that using simple linear models, BDFT cancellation using
model-based approaches is feasible for a wide range of tasks. The author considers it a remarkable result that the
condition with the highest overall feedthrough in the time domain (𝑁 at the finger joint) could be modeled with such
degree of accuracy (average VAF > 80%). Since a large part of the variance of the feedthrough can be explained by a
linear model, then it is also expected that model-based cancellation in this realistic pointing scenario to be effective.

The results section also showed some extreme values for the estimated parameters 𝜔𝑏𝑑 𝑓 𝑡 and 𝜁𝑏𝑑 𝑓 𝑡 especially for
the elbow and wrist landmarks. The results suggest that either some parts of the limb can behave like a first-order lag, or
that the frequency range of the disturbance signal was not large enough to capture the full BDFT dynamics of the limb.
The possibility that the limited frequency range is not capturing the whole dynamics of the limb is also reinforced by
Figure 16, where the BDFT estimates of the stiff and compliant cases tend to intersect at the highest frequency that is
measured. It is recommended that future studies investigate the effects of BDFT on a larger frequency range, such as the
one defined in [14], which covers frequencies from (0.94 𝑟𝑎𝑑/ 𝑠 to 157 𝑟𝑎𝑑/ 𝑠) using the SRS. The increase of the
highest measured frequency has a clear impact on the frequency at which the signals are sampled.

The author could not find any relevant patterns in the estimated BDFT parameters for the finger landmark. The MSc
Thesis Appendices: Appendix E shows that the averaging of the parameters (as used in this study) can produce erroneous
outcomes if the parameter values identified for one of the runs are not consistent with the other runs. Additionally, in
some cases, the choice of the initial parameter values influenced significantly the identified parameters (for example,
Subject 1, NMS: C, Task: N). Future research can investigate the use of Genetic Algorithms for the definition of the
initial values. One additional reason for the absence of patterns is the rather complex and subject-dependent behavior
of the BDFT as observed from the raw frequency estimates in Figure 16. This indicates (as in [12]) that the BDFT
parameters need to be adapted to the subject and to his/her subjective approach to the task. One possible option for
identifying the time-varying parameters of such a model would be to research regressive BDFT model parameter
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estimations.
The behavior of the subjects especially for some of the examples given in Figure 16, could not be compared with

existing literature. For example, one of the responses (of Subject 5) shows that for a very compliant approach, the BDFT
at the higher frequencies (10 𝑟𝑎𝑑/𝑠) shows an underdamped peak, where the BDFT for the compliant setting is more
pronounced compared to the stiff one (which is exactly the opposite to what [14] found). Given the complexity and
variability of the BDFT responses, Hypothesis 2 which mentions that the transfer-function representation of the BDFT is
expected to have a higher gain and a better attenuation of the higher frequencies in the compliant NMS compared to the
stiff NMS is rejected.

By analysing the complete identified and fitted BDFT frequency-response functions for one particular Task and
Body Part (MSc Thesis Appendices: Appendix F), it is not exactly known whether the differences between persons
come from the subjective interpretation of the 𝑁𝑀𝑆, limitations in attaining a certain neuromuscular setting, or from
factors that are linked to the physical characteristics of the limb. The author suggests that in order to better decouple the
subjective effects from the anthropometric effects, tests that better measure the quantities of interest such as the limb
lengths, masses and muscle activations need to be made.

B. Discussion of experimental setup
The author strongly considers that the proposed approach is feasible to be used in future projects with the condition

that several refinements will be made in certain parts of the setup. First, it should be emphasized that markerless pose
estimation methods represent the best choice when taking into consideration the limited space that a cockpit or car cabin
can provide. Moreover, other alternatives such as marker-based systems [43] or inertial measurement units [44] are
more intrusive for the human, making them impractical to use in a real-life setting. The use of markerless systems is
also facilitated by the fact that usually the movement of the limb is recorded while the user is seated in the vehicle of
interest and the distance between the assumed cameras and the limb does not fluctuate significantly throughout the
interaction with the vehicle.

The rather lengthy data analysis pipeline impacted the frame rate and the resolution at which the videos could be
analysed. In this study, the videos were recorded at 30 𝑓 𝑝𝑠 and 1080p due to limitations in the number of frames (900
per trial) that would have needed to be analysed in the post-processing stages. The study performed by [20] suggests
that the performance of pose estimations can increase with the 𝑓 𝑝𝑠 and image quality, therefore the next step would be
to investigate the performance of the pose estimation at higher 𝑓 𝑝𝑠 (i.e. 60, 120) and with increased image quality. A
higher frame rate and image quality can increase the precision of detecting the joints of interest. Additionally, recording
the videos at a higher frame rate can provide a better alignment in time of the cameras if the current method of alignment
is chosen.

In order to decrease the post-processing time of the data, automatic synchronization of the stereo system and having
a close to real-time feed of the camera images on a computer is needed. This can be done by either feeding the GoPro
cameras’ recording directly to a computer or replacing the GoPro cameras with an off-the-shelf stereo camera (i.e. Leap
Motion Controller [45]). Having a stereo camera will further simplify the setup since it can synchronise the videos from
two perspectives without additional steps. Moreover, in this study, a rather naive approach was used to feed the data in
the OpenPose software. The author suggests that if the OpenPose software is to be used in future projects, a better data
pipeline shall be investigated by using OpenPose’s Python implementation to feed the images/videos automatically to
the pose estimator. The triangulation of the pixel values from two or more perspectives is based on a Singular Value
Decomposition (SVD), and therefore it is considered to be computationally inexpensive to be used for close to real-time
implementations.

The OpenPose software [15] provides the feasibility of performing the pose estimation in real-time (the authors
report a runtime of 36 ms for an NVIDIA 1080Ti GPU). Since this study was testing the feasibility of using such a
pose estimator, not all the features (including real-time inference) were investigated. The author finds it important to
report several observations regarding the use of OpenPose as a pose estimator. Firstly, this pose estimator is prone to
false-positive occurrences due to imperfect lighting conditions that can induce shades on the upper limb (MSc Thesis
Appendices: Appendix H). A common false-positive detection was the inaccurate estimation of the wrist landmark
due to the shade produced by the upper sleeve of the shirts that the subjects wore during the experiments. It was
observed that a better model such as the one defined in [46] was able to reduce drastically the false positive occurrences.
Moreover, given the method that OpenPose uses for inferring the pose detection (using tree/graph structures), both
ends of a specific body part need to be seen in the image in order to obtain the pixel positions of either of the two
landmarks. For example, in order to be able to obtain the wrist position, at least the elbow would need to be observed in

25



the frame. Moreover, it was found that if the wrist/elbow position was wrongly identified, also the hand detection was
not performed. This behavior is explained in [47], suggesting that the bounding box of the hand location (which is the
first step in the key point estimation of the hand) is approximated using the elbow and wrist positions. Therefore, if the
wrist/elbow positions are wrongly identified, no identification of the hand landmarks is available. It is therefore implied
that for this method to be reliably applied, careful positioning of the cameras is required, making sure that the upper
limb is continuously visible.

OpenPose was designed to efficiently detect the pose of multiple persons in an image. Its authors suggest in [15] that
a possible trade-off can exist between speed and accuracy, mentioning the possibility of obtaining higher accuracy from
other pose-estimation techniques (top-down approaches) at the cost of lower speed. Nevertheless, it is assumed that in
the current applications, only one person would need to be tracked, OpenPose may not be the most optimal choice for
the case of one-person estimation. Other pose estimators such as AlphaPose [17] or DeepLabCut [16] could also be
viable solutions for future investigations. One possible advantage of DeepLabCut is the flexibility of using transfer
learning for tracking key points defined by the researcher depending on their purpose. In this light, if only the finger and
wrist joints are to be tracked, a hand pose estimator is worth investigating. Hence, methods/APIs used in Virtual Reality
(VR) headsets could be viable alternatives to be used for hand tracking, such as those developed by Apple §.

Lastly, the author considers that it is possible to improve the accuracy of the 3D estimation. In their book, [26]
mention the possibility of using more optimal methods for the triangulation of the pixel values from two perspectives.
Moreover, [19, 25] make use of filters such as a Kalman-smoother or Butterworth filter to suppress the jitter that was
observed in the temporal OpenPose pose estimations. Additionally, to mitigate the inaccuracies caused by the different
detection of the same feature from two perspectives, a Random Sample Consensus (RANSAC) approach can be used for
the identified pixel locations by the pose estimator [25, 47].

VI. Conclusion
This study investigated the feasibility of capturing the adaptive biodynamic behavior of six subjects while operating

a touchscreen in turbulence. In order to capture the movement of the upper limb (elbow, wrist and finger), a markerless
pose estimation technique using the OpenPose estimator in combination with a stereo camera system was proposed.
Comparison results against the data recorded from the touchscreen showed that mean errors of at most 1.6 𝑚𝑚 and
correlation coefficients of at least 0.94 could be obtained for the finger signals when using the proposed approach,
proving the feasibility of using such a method for future applications. When analysing the time-domain data of the
recorded joints, it was shown that the finger exhibited the most adaptive behavior to the imposed stiff and compliant
neuromuscular settings and to the performed tasks. When comparing the differences between the stiff and compliant
cases, the task M (finger moving on the screen) showed only a 9% increase in the mean RMS of the vertical finger
position, whereas the condition N (finger away from the screen) showed an increase of 29%. This aspect indicates that if
a potential neuromuscular-adaptive BDFT model would be applied to the finger, it would need to take into account the
type of task that is performed. Moreover, when pooling the data across the two neuromuscular settings, the mean RMS
of the finger decreased by 15% from F (finger fixed on the screen) to M and increased by 100% from N to M. These
aspects show that the type of contact between the finger and the screen induces an adaptive behavior for the feedthrough
at the finger joint. Moreover, another adaptive aspect that needs to be taken into account is the extension of the arm,
where the condition of the arm being retracted showed a mean RMS of 12.5 𝑚𝑚 whereas the condition of the arm being
extended showed a mean RMS of 20.8 𝑚𝑚. A remarkable result of this study is that a simple linear mass-spring-damper
system could be fitted for all conditions investigated, showing mean Variance Accounted For values of at least 75%.
This result is favourable especially when analysing the task that was not analysed in previous studies and that exhibits
the largest feedthrough, N, contributing towards the possible cancellation of the disturbance effects in the more realistic
pointing tasks. With our findings, we provide a starting point toward future real-time implementations of adaptive
BDFT models that are based on markerless pose estimation methods that can track the wrist and finger joints, to be used
for facilitating a smarter and safer interaction with the vehicles.
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Scientific Paper Appendices

A. Standard deviations of the disturbance and remnant signal components
The validity of the approach that is being used to extract the feedthrough component from the total signal is

conditioned by the fact that the imposed acceleration "excites" enough the limb [11]. Figures 18a and 18b present the
averaged (over all subjects) variance percentages of feedthrough and remanant from the total signal variance components
present in the triangulated signals (𝑦𝑇𝐸𝑙

, 𝑦𝑇𝑊𝑟
, 𝑦𝑇𝐹𝑖

) expressed in the 𝑍𝑠𝑐 direction.

(a) Overview of the percent amount of vari-
ance of the feedthrough component with
respect to the total signal.

(b) Overview of the percent amount of vari-
ance of the remnant component with re-
spect to the total signal.

Fig. 18 Overview of percentage feedthrough/remnant with respect to the total signal variance.
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Figure 18 shows that on average, most of the variance of the total signal comes from the disturbance components.
Moreover, for the M condition, a large part of the variance is due to the intentional movement (not shown). At least
4.8% of total signal variance is represented by the feedthrough component, indicating that it can be used reliably for
BDFT analysis [11].

B. Method validation

1. Time-domain analysis

Task: M a) Task: F b)

Fig. 19 Overview of the differences between the signals provided by the touchscreen and the camera for a
particular subject.

The time-domain verification of the signals obtained using the cameras has the goal of identifying whether this
new approach can replicate the effects of the applied disturbances oreviously measured from the touchscreen data
[11, 12]. For verification, the signals measured by the touchscreen were considered a relevant baseline that can be used
for comparison against the proposed setup. It needs to be mentioned that the verification is restricted only to the finger
movement (since an alternative measurement of the wrist and elbow movement was not feasible in this study) and to
the Task: F and M. The comparison between the screen and camera signals was done first by extracting the common
touchscreen and camera signal parts where the subjects had no losses of signal from losing the contact with the screen.
The time-domain accuracy was quantified by the mean and standard deviation of the absolute error between the two
signal sources, and the Pearson correlation coefficient.

Figure 19 presents a comparison between the touchscreen data and the data obtained from the camera and pose
estimator. Initially, it was observed that the signals from the camera were leading the signals measured on the touchscreen.
The reason for the observed lag in the signals from the touchscreen is represented by the inherent delay between the
actual time that the screen is pressed and the time the signal is recorded. The time-domain signals were aligned based
on the criterion of maximum correlation. Based on the two plots, it can be observed that the camera is able to follow the
general trends that are present in the touchscreen signal, both when the finger is moving on the screen (Figure 19a) and
when the finger is stationary on the screen (Figure 19b). Clear differences between the screen and camera signals can be
observed when the finger is stationary on the screen, where the tendency of the camera is to slightly overshoot the signal
observed at the screen level. Moreover, in Figure 19b between the sample 500 and 1000, the signals obtained from
the camera exhibit some high-frequency oscillations. These high-frequency oscillations can be caused either by the
slight inaccuracies or jitter of the pose estimator (the finger can be detected in slightly different locations in consecutive
frames) or by the filtering techniques used by the touchscreen. The overshoot of the camera signal can be caused by the
inaccuracies of the pose estimator in detecting the tip of the finger (from both perspectives), the slightly inaccurate
transformation to the screen coordinates or the movement of the cameras throughout the experiment.

Three new measures that numerically quantify the validity of the measurements are defined: 𝜌 - The Pearson
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correlation coefficient between the signal observed at the screen and the one given by the cameras which is averaged
over the three trials; 𝜇 | 𝜖𝑡−𝑐 | - The mean of the absolute sample-wise difference between the signal observed at the screen
and the signal extracted from the cameras, averaged over the three trials; 𝜎 | 𝜖𝑡−𝑐 | - The standard deviation of the absolute
sample-wise difference between the signal observed at the screen and the signal extracted from the cameras, averaged
over the three trials.

NMS: C and Task: F NMS: S and Task: F NMS: C and Task: M NMS: S and Task: M
𝜌 𝜇 | 𝜖𝑡−𝑐 | 𝜎 | 𝜖𝑡−𝑐 | 𝜌 𝜇 | 𝜖𝑡−𝑐 | 𝜎 | 𝜖𝑡−𝑐 | 𝜌 𝜇 | 𝜖𝑡−𝑐 | 𝜎 | 𝜖𝑡−𝑐 | 𝜌 𝜇 | 𝜖𝑡−𝑐 | 𝜎| 𝜖𝑡−𝑐 |

𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑚𝑚 𝑚𝑚

S 1 0.9826 1.2708 0.9733 0.9482 1.0533 1.0057 0.9991 1.1484 0.9036 0.9995 0.9857 0.7388
S 2 0.9874 1.6221 1.3882 0.9862 1.3111 1.0066 0.9988 1.3463 1.0553 0.9990 1.3039 1.0273
S 3 0.9829 1.3159 1.2597 0.9810 1.1538 0.9643 0.9988 1.1822 1.1509 0.9989 1.2078 1.0660
S 4 0.9797 1.2932 1.1874 0.9809 1.3492 1.1108 0.9988 1.5033 1.1699 0.9990 1.3426 1.0524
S 5 0.9966 1.4352 1.1513 0.9857 1.3665 1.0046 0.9990 1.2615 0.9641 0.9991 1.3574 0.9857
S 6 0.9810 1.2257 1.0493 0.9752 1.6100 1.3146 0.9992 1.6051 1.1623 0.9993 1.3514 1.0522

Table 4 Summary of the correlation coefficients, mean and standard deviation of the absolute errors between
the screen and the camera.

Table 4 presents a summary of the previously mentioned variables, indicating high correlation coefficients for all
subjects and tasks (minimum 0.9482 for S4, NMS: C, Task: F and maximum 0.9995 for S1, NMS: C, Task: M). It
needs to be observed that an "inflation" of the correlation coefficient is present in the case of Task: M due to the high
amplitude of the target sinusoidal signal which dominates over the smaller amplitude disturbance components. On the
other hand, the correlation coefficient for Task: F represents solely the effects of the disturbance, since the finger is
not actively moving on the screen. When focusing on the mean of the absolute errors between the screen and camera
signals, errors in the range of 1 - 2 𝑚𝑚 are obtained.

2. Frequency-domain analysis
Another perspective regarding the analysis of the differences between the signals obtained from the touchscreen and

cameras can be approached in the frequency domain. Of interest is to identify whether the frequency-dependent BDFT
estimations are not different when using the screen signals and the signals from the cameras. With this in mind, the
BDFT estimations using the two finger movement signal sources were compared and analysed.

Figure 20a presents the outcomes of the ratio between the BDFT computed using the touchscreen signals and the
BDFT computed using the camera signals. The signals recorded using the touchscreen were interpolated using 𝑠𝑝𝑙𝑖𝑛𝑒𝑠

in order to mitigate the effects of losses of contact between the screen and the finger. Ideally, the presented quantity
represents the transfer function that directly relates the camera signals to the screen signals. Intuitively, for consistent
measurements from both sources, it is expected that the magnitude ratio to be unity. It can be observed that for low
frequencies, the median of the computed relationship almost reaches unity. For higher frequencies, the behavior seems
to replicate the one of a low-pass filter. This outcome tends to be consistent with the high-frequency attenuation of the
screen signals presented in the time-domain analysis. Nevertheless, currently, it is not known whether the differences
arise from camera measurement limitations, or from a possible filter implemented in the screen’s processing hardware.

A complementary perspective that also needs to be analysed is behavior of the ratio of the phases. This quantity
describes the lead/lag between the signals recorded on the screen and the signals coming from the cameras. Since an
estimation of the delay between the two signal sources was of interest, they were not aligned in time (as in the time-domain
analysis section). For reference, an experimentally-computed delay of 80 𝑚𝑠 corresponding to a finger movement of
50 𝑚𝑚/𝑠 is expected from [32]. A pure delay fit (not shown in the picture) of 100 𝑚𝑠 was able instead to describe
well the phase characteristics of Figure 15. The reason for this difference might be caused by the imperfect/inaccurate
synchronization of the cameras that is based on a visual cue compared to the very rigorous laser-based computation of
the delay presented in [32] and the additional "lag" that might be introduced by the screen filtering.

3. Reprojection errors
The investigation of the reprojection errors can provide additional insights regarding the strengths or weaknesses of

the markerless pose estimation method. The reprojection error is obtained by projecting the triangulated point back on
the image of the two cameras and then comparing it with the original pixel locations from which the triangulation was
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Part 1 Part 2

(a) Summary of the mean reprojection errors of the elbow,
wrist and finger for the conditions corresponding to the first
and second part of the experiment.

(b) Frequency-domain verification. Picture de-
picting the outcomes of NMS: S and Task: M.
Medians of the dataset are represented by the
continuous lines, while the 0.25 and 0.75 quan-
tiles are represented by the shaded area.

Fig. 20 Overview of the reprojection errors a), and frequency-domain bdft ratio between the camrea and
touchscreen signals b).

performed. For perfectly-calibrated cameras, and for perfectly corresponding pixel values, the reprojection error should
to be close to zero pixels.

The path of the reprojection error starts from the intrinsic calibration of the cameras. Firstly, each of the cameras
are calibrated independently in order to obtain the intrinsic parameters (focal lengths, optical centres and distortion
coefficients). The resulting estimated parameters lead to a reprojection error of approximately 0.27 𝑝𝑥. Secondary
to the intrinsic parameters, the cameras are calibrated also extrinsically in order to obtain the rotation and translation
between the two cameras. An independent extrinsic calibration was performed for each subject, resulting in an average
reprojection error for each subject of around 0.4 𝑝𝑥 (the baseline value from the intrinsic calibration increased). Saying
this, according to [24], there is a high chance that reprojection errors that are higher than the indicated mean values are
caused by mismatches in correspondences between pixels observed in the two images.

Figure 20b presents the mean reprojection error for each condition of parts one and two of the experiment. It can be
observed that from all the recorded limb features, the finger possesses a lower reprojection error on average compared to
the wrist and elbow (maximum 2 𝑝𝑥). The reason for this behavior can be explained by the fact that the finger occupies a
smaller area in the image when compared to larger body parts such as the wrist and the elbow. In this way, it is expected
that there is more uncertainty in the pose estimator correctly detecting the exact correspondence of these features in both
images. The presented reprojection errors can be considered acceptable due to the fact that most often, the reprojected
points lie on the areas of the image corresponding to the finger, wrist and elbow.

Besides the slight mismatch in the detection of the features in both images, additional factors that can contribute to
the reprojection error are the inaccurate synchronisation of the cameras and the movement of the cameras throughout the
experiment. In this study, the two cameras were not synchronized electronically, but with a visual cue that it is presented
on the screen. In this way, since the frame rate of both cameras is constant, the synchronisation is dependent on the time
the recordings were started, allowing for a maximum offset that is dependent on the frame rate of the cameras (in this
case, a maximum offset of 30 𝑚𝑠 is expected). The movement speed of the limb, in combination with the possible offset
in the synchronization of the cameras can also induce the effect of mismatch between identical features that are present
in both images (even though the pose estimator manages to detect the features consistently in the two perspectives).

4. Movement of the camera
A factor that can also influence the accuracy of the camera-based measurements is represented by the movement of

the cameras with respect to the position for which the extrinsic calibration took place. Section II explained that the
intrinsic calibration has the role of estimating the rotation matrix and translation vector between the two cameras. These
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two quantities are pivotal for a correct triangulation of the pixel positions that are present in both perspectives. Due to
the nature of the environment where the cameras are being used, a certain amount of movement is expected, especially
in the vertical direction (since a disturbance in the heave direction is applied).

zs1
xs1

Top left 

Botto
m rig

ht 

Fig. 21 Visual representation of
the checkerboard observed from
the first perspective.

To investigate to what extent the cameras moved throughout an experiment
session, frames of a known object were extracted before and after the experiment
and further analysed. The selected object is a checkerboard pattern that was
projected on the touchscreen. The checkerboard pattern represents a convenient
representation that can be used for the evaluation since the pixel positions of
its edges can be simply detected with pre-existing edge detectors. Since the
screen and displayed checkerboard are firmly fixed in the cockpit, changes in
the identified pixel values for consistent locations on the checkerboard before
and after the experiment can be used to quantify the degree of movement of the
cameras.

Figure 21 shows the checkerboard observed from the perspective of the first
camera. This analysis was performed only for the first camera since the fixing
method implied that it was more prone to movement than the second one. The
analysis focused on investigating the change in pixel locations of two "extreme"
edges (Figure 21 - Top left and Bottom right). For each situation (before and after
the experiment), 50 frames were analysed and the average of the pixel locations
corresponding to each of the two positions was computed, in order to avoid
any effects linked to the stochastic nature of the edge detector. Lastly, a direct
comparison between the average pixel values before and after the experiment was
performed, by computing their absolute difference per direction.

Δ𝑥𝑠1 Δ𝑧𝑠1

Top Left Bottom Right Top Left Bottom Right
𝑝𝑥 𝑝𝑥 𝑝𝑥 𝑝𝑥

S 1 0.2408 0.0308 0.6694 0.3318
S 3 0.1832 0.0304 0.6095 0.4249
S 4 0.0305 0.0752 0.3606 0.1407
S 5 0.1178 0.1768 0.7838 0.8048
S 6 0.0430 0.0318 0.3978 0.4549

Table 5 Summary of the change in detected pixel values of the checkerboard before and after the experiment
sessions.

Table 5 presents the absolute difference between the detected pixels for the two locations on the checkerboard. At
a first glance, it can be observed that bigger differences in the pixel values are present for the vertical (𝑧𝑠1) direction
compared to the horizontal (𝑥𝑠1) direction (caused by the disturbance in the heave direction). Overall, it needs to be
mentioned that the obtained differences seem acceptable, for all conditions differences of less than one pixel being
achieved meaning that minimal camera movement existed between the start and the end of the experiment.

5. Method accuracy discussion
The validation steps compared the triangulated signals obtained using the camera setup and the pose estimator,

with the signals recorded by the touchscreen in order to validate, for the first time, the accuracy of using camera-based
markerless pose estimation techniques for the evaluation of the upper limb movement under turbulence. The overshoot
of the camera-based signals and the high frequency oscillations could have been caused by the stochastic effects of the
pose estimator where, depending on the position of the finger in the image, slight inconsistencies in the estimations
of the fingertip point. The time-domain validation showed maximum mean absolute errors of approximately 1.6 𝑚𝑚

and standard deviations of 1.3 𝑚𝑚 for the tip of the finger. The obtained mean errors and standard deviations can
be considered acceptable, taking into consideration the ambiguity of several millimetres/a couple of centimetres that
can be present due to the physical dimensions of the tip of the finger, the study researched by [48] mentioning an
average index finger width for an adult to be 20 𝑚𝑚. The literature [49, 50] evaluated the accuracy of a commercially
available device that can be used for tracking the user’s hands without markers (Leap Motion Controller) in discrete
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pointing tasks, reporting mean errors of 4 − 5 𝑚𝑚 [50] and RMS errors of 17.30 𝑚𝑚 when compared to a marker-based
system [49] (which seems sligtly worse than the current method). For a complete evaluation of the required accuracy,
the touch-based target size guidelines need to be taken into consideration. For example, the guidelines provided by
MIL-STD1472G (2012) [42], suggest that the optimal touchscreen key size should be 13 𝑚𝑚 x 13 𝑚𝑚 with a separation
of 6 𝑚𝑚 ¶, suggesting that the errors present in this study are most likely 10% - 20% of the required target size. A
limitation of this analysis is that only the finger position was validated, while the wrist and elbow landmarks could not
be evaluated by a separate measurement technique. For a more accurate validation procedure, the author suggests the
comparison of the markerless system with the state-of-the-art Vicon/Qualisys marker-based systems [19].

¶https://www.esa-automation.com/wp-content/uploads/2017/10/04_Guidelines-for-designing-touch-screen-user-interfaces-.pdf
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1
Introduction

The technological evolution in the past several decades has led to an increase in automation
of the flight deck (Parasuraman & Manzey, 2010). If in the early times of aviation, the num-
ber of mechanical dials was in the hundreds, the introduction of the so-called ”glass cockpit”
diminished the complexity of the cockpit and facilitated a reduction in workload leading to a
decrease of pilots necessary to be present in the flight deck (Avsar et al., 2016b). Currently,
most commercial aircraft make use of touchscreens only in very limited situations, such as
data entry in the Electronic Flight Bags (EFB) (Rouwhorst et al., 2017). Nevertheless, touch
screen technology for avionics operation is gradually being introduced in the cockpits of future
business and civil transport aircraft.

Biodynamic Feedthrough (BDFT) can be defined as ”the transfer of accelerations through
the human body [..] causing involuntary forces being applied to the control device” (Venrooij
et al., 2016b). In a less restricted formulation, it can be mentioned that disturbances caused
by turbulence and wind gusts are ”transmitted” through the human body into involuntary inputs
on a touchscreen. Cockburn et al. (2017) investigated touchscreen-specific tasks in a moving
base simulator. It has been concluded that the induced disturbances affected negatively the
error rates, the subjective workload, and the time to perform the task. The first study which
explicitly analyzed and quantified the influence of BDFT from a cybernetic perspective in touch-
screens was Mobertz et al. (2018). The fact that the influence of BDFT on the touchscreen
input could be identified in the frequency domain inspired Khoshnewiszadeh and Pool (2021)
to use it in a beneficial way. The study investigated the performance of model-based signal
cancellation techniques for mitigating biodynamic feedthrough in dragging tasks. Moreover, it
was pointed out that disturbances affect different people in different ways, based on their indi-
vidual biodynamic properties and on their individual interpretation of the task which affects their
neuromuscular settings. The same conclusion was observed in an earlier study researched
by Venrooij et al. (2011a) which analyzed the same idea of model-based cancellation when
using control inceptors. Moreover, an additional insight provided by the same research group
is that a relationship exists between the dynamics of the feedthrough of accelerations and
how stiff the neuromuscular system is (induced by the task that is being performed). Both
studies suggested that in order for the signal cancellation to be effective, the model describing
the BDFT would need to be adapted to the individual subject and to the task at hand due to
inherent within and between-subject variability.

From the above-mentioned considerations, it can be concluded that BDFT is an ongoing
issue related to the use of touchscreens in environments characterized by disturbances. Find-
ing ways of reducing its impact can be an important factor in deciding whether the technology
could be more widely used in safety-critical domains such as aerospace, automotive, or naval.
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40 Chapter 1. Introduction

One step towardsmitigating BDFT is to gain a better understanding of how the limbs of different
individuals are affected by the task that needs to be performed, inducing different character-
istics of the neuromuscular system. Having this understanding would allow the development
of models which describe more accurately the adaptive character of BDFT. At the same time,
adaptive models could be used for a more effective model-based cancellation.

The objective of this work is to investigate the feasibility of creating adaptive BDFT models
for touchscreen operation by using motion analysis techniques. The studies researched by
Mobertz et al. (2018) and Khoshnewiszadeh and Pool (2021) investigated effects of BDFT
starting from the disturbance (model input) that lead to an unwanted effect in the input of the
screen (model output). Saying this, all the effects between the input and the output were
being lumped together in a form of a general mass-spring-damper system, making it hard to
gain a physical interpretation regarding what actually happens with the limb in a disturbed
environment. Moreover, the same mass-spring-damper system does not allow grouping the
individual differences between and within subjects. This work tries to gain a better intuition
regarding what happens between the input and the output of the ”BDFT system” by carefully
analyzing the movement of the upper limb. The study will focus on investigating less-intrusive
methods and set-ups for motion analysis such as markerless techniques based on image
recognition or body-mounted accelerometers. To the best of the author’s knowledge, no study
has used motion recording techniques to quantify and understand the effects of disturbances
and their interaction with the different settings of the neuromuscular system in the study of
BDFT in touchscreens and therefore tries to bring a new perspective to the research of this
problem.

Figure 1.1: Graphical representation of the research goal.

Figure 1.1 presents a graphical representation of the research goal. As previously de-
scribed, a relationship has been found between how stiff the neuromuscular system is and the
resulting biodynamic feedthrough in stick-based systems. This research aims to investigate
whether by capturing the motion of several features of the limb, it is possible to obtain any infor-
mation regarding the variable nature of the stiffness of the neuromuscular system (NMS1 and
NMS2) and how it induces a different (adaptive) behavior for the feedthrough of accelerations
observed at the screen input (BDFT1 and BDFT2). In this way, the feasibility of constructing
BDFT models which adapt to the subject’s task interpretation can be investigated.

The report will start with a brief investigation of the use of touchscreens in cockpits and in
disturbed environments. Furthermore, an overview of different modeling techniques for BDFT
will be given in the third chapter along with information regarding the most recent studies that
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covered the topic of feedthrough of accelerations through the human body in the aerospace
domain. Chapter four will present the advantages and disadvantages of the most common
motion recording techniques and will explain a series of applications and validation studies.
Chapters five and six will present preliminary implementations linked to multibody systems
and stereo reconstruction which can help in capturing the motion of limb features in the three-
dimensional space. Lastly, chapter seven will present the research questions, the experiment
design, and the hypotheses.





2
Touchscreens

This chapter aims to give the reader an overview of the advantages and disadvantages of using
touchscreens as a user interface. Additionally, the types of tasks which are most suitable to
be performed with touchscreens will be presented. Lastly, the performance of touchscreens
in disturbed environments will be described in both subjective and objective manners.

2.1. Background information
Although the biggest technological advancements in aviation were made just one century ago,
today’s industry differs greatly in some areas, compared to how its pioneers envisioned it. As
the aircraft could fly at faster speeds, at higher altitudes, and could reach farther destinations,
more information was needed by the pilots in order to check the state of the aircraft, com-
municate, and to navigate within an airspace (Avsar et al., 2016b). The cockpits of the first
commercial airplanes consisted of hundreds of mechanical gauges and instruments, while
each one of them presented one type of information (i.e. airspeed, altitude). Given this, early
airplanes required a crew ranging from three to five people to fly the aircraft safely (Avsar et al.,
2016b).

The first milestone towards a more automated flight deck was the introduction of the Cath-
ode Ray Tube (CRT) displays and of the Flight Management System (FMS), leading to the
first generation of the so-called ”glass cockpit”. One of the first commercial aircraft produced
with a ”glass cockpit” is the Airbus A310 (Sweet, 1995). The introduction of this type of cockpit
facilitated new ways of displaying and integrating information allowing for a decrease in work-
load followed by a decrease in the number of people required to operate the aircraft to only
two (Rudisill, 2000).

With a more automated flight deck, the role of the pilot gradually switched from ”controller”
to ”supervisor” or, if one would like to follow the taxonomy proposed by Rasmussen (1983),
from ”Skill-Based Behavior” to ”Knowledge-Based Behavior”. In a more extended discussion,
Norman (1989) recognizes that despite the apparent advantages of automation, a crucial as-
pect that needs to be taken into account is the interaction of the human operator (HO) with
automation. The previously-mentioned aspect needs to be taken into account especially when
focusing on the limited feedback from the automation to the user. Moreover, the increased
automation in the ”glass cockpits” has led to the introduction of the so-called ”automation para-
dox” (Wiener, 1989), indicating that the workload is reduced in the flight phases requiring a low
workload and is increased in the flight phases requiring a high workload, due to difficulties in
the interaction with the automation through the cockpit interfaces (Rudisill, 2000). Another in-
teresting point recognized by Rudisill (2000) suggests that one needs to differentiate between
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manual and mental workload when analyzing the impact of automation. Automation, in this
case, decreases the manual workload but can increase the mental workload, due to the fact
that the pilots also need to manage the interfaces that they interact with (Rudisill, 2000).

Given the increased supervisory role of the pilots and the need for a more transparent in-
teraction between the automation and the user, the following generations of the ”glass cockpit”
have adapted to fulfill these new requirements. The more economical Liquid Crystal Displays
(LCD) replaced the older CRTs, in some aircraft a new type of input device was introduced
in the form of a touchpad (Abbott, 2017). Moreover, Electronic Flight Bags (EFB) possessing
touchscreen technology have been introduced for a more compact way of accessing docu-
ments, checklists, and charts (Avsar et al., 2016b).

Touchscreens have become an integral part of people’s day-to-day life and found their
place in many industries. When focussing on the aeronautical domain, touchscreens were
first introduced in the military sector (Lockheed Martin’s F-35 (Fletcher & Huffman, 2010)).
Moreover, advancements made in touchscreen technology have enabled it to slowly transition
toward the highly regulated civil aviation domain. In the business jet sector, Gulfstream 1 has
proposed a novel flight deck with 10 touchscreens that can be used for flight plan alterations,
selection of the desired displayed contents, and overhead panel interaction (Watkins et al.,
2018). Companies in the commercial aviation sector such as Boeing and Airbus follow certain
standards which dictate the requirements for cockpit systems (Cockburn et al., 2017). One
example of such a standard is ARINC661 (2016), which mentioned for the first time in 2016
the guidelines for the inclusion of touch inputs in cockpit display systems (Cockburn et al.,
2017). Recently, “Boeing” (2016) (being the first one) and “Airbus” (2019) have announced
the introduction of touchscreens in their newest long-haul products Boeing 777X and Airbus
A350 XWB for data-entry tasks and chart and map navigation.

Looking back, it can be observed that the cockpits of commercial airliners have evolved
from a very complex and workload-intensive environment with a large number of physical
switches and buttons to a more automated and supervisory-focussed one. The switches are
being slowly replaced by large screens with high information density content which, as pre-
sented, in the future cockpit designs will make more and more use of touch technology. One
important question that needs to be answered is regarding to the advantages that touch tech-
nology would bring to the cockpit environment but also the drawbacks of this technology.

The ability of users to engage directly with the system they are interacting with is one of
the touchscreens’ key benefits (Lee, 2010). In other words, it is possible to interact with a sys-
tem without the need for an intermediate element such as a touchpad or physical keyboard.
Moreover, as Rouwhorst et al. (2017) concludes, under some circumstances, with carefully
designed user interfaces, touchscreens can decrease the physical workload and speed up
tasks in the cockpit. Touchscreens can be considered an intuitive interface to use since this
type of interface has been present around the user in the form of smartphones or tablets for
the last two decades (Watkins et al., 2018). From an operational point of view, the contents
presented on the screens and the configurations can be rapidly exchanged by changing the
interface with the user without the need of reconfiguring the cockpit’s hardware (Cockburn
et al., 2019). User’s interaction with changing menus is accounted for by the interface design,
without the need of including physical buttons for each type of command and menu available.
On the other hand, the use of touchscreen displays might be influenced when the user’s limb
obscures parts of the display or when the dimensions of the targets are much smaller than the
finger width (Albinsson & Zhai, 2003). Another possible disadvantage mentioned by van Zon
et al. (2020) is that a reduced accuracy might be encountered in the use of touchscreens if
tactile feedback is missing. Adding to this, without an additional source of feedback that can

1Gulfstream is an American business jet manufacturer.
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provide information regarding the finger’s location on the screen, the user would need to ob-
tain this information from the visual system by alternatively focusing his/her eyesight from the
task at hand to the touchscreen and vice-versa. In this way, it is possible that the apparent
mental workload would increase and the user can be more prone to performing errors, due
to multiple sources that would need attention from the user. Another possible disadvantage
is represented by muscle fatigue which can increase in case the arm of the user needs to
be held unsupported and in contact with the screen for a prolonged amount of time (Wang
& Trasbot, 2011). Addressing the topic of this literature study, one of the most important dis-
advantages when discussing touchscreen interaction is represented by the accidental inputs
(Degani et al., 1992) which are influenced by the environment through which the aircraft flies.
Due to the direct input/output mapping of the touchscreen technology, a disturbance would
lead to an accidental input. This drawback needs to be extensively researched before apply-
ing the technology to a wider scale in such a regulated, carefully designed, and safety-critical
environment as the cockpit of an airplane.

This section presented information regarding the future of touchscreen technology which
is slowly being introduced in the cockpits of the new airliners. It is still interesting to investi-
gate whether this is the most suitable technology to be used in this case, and if not, in which
scenarios can this technology perform better compared to other alternatives. The answer
to these questions will try to be answered in the next section, which investigates the use of
touchscreens as an alternative for being a user interface in cockpits.

2.2. Using touchscreens as user interface
One of the first scientific reports which compared the touch input with other devices for flight-
deck applications is Jones (1990). The study analyzed three input methods: trackball, touch-
screen, and a speech recognition system for discrete-pointing tasks such as subsystem dis-
play, warning or caution message clearing, and numerical entry. The experiments were per-
formed in a static scenario using a cockpit from a fixed-base simulator. For each experimental
task, objectivemeasures such as task completion time and the number of errors were recorded
while the questionnaires represented the subjective measures. The results have shown that
the touchscreen possessed the lowest mean completion time across all tasks. The reason
for this is the straightforward way of operating the system and performing the task. When
focussing on the interaction between the pilot and the input concept, it can be mentioned
that most of the pilots performed the best (the fastest) with the touchscreen concept. Nev-
ertheless, not all the pilots performed the best with the touchscreens, the reasons being the
acceptance/preference or the individual characteristics of the subjects. For the interaction be-
tween the input concept and the task, it was concluded that the touchscreen concept was well
suited for tasks that involved ”on-off” operations such as selecting a subsystem. The results
regarding the input error data have shown that the touchscreen concept resulted in the most
recorded input errors, especially in the case of entering a reference altitude. It was hypoth-
esized that the errors were due to the size and spacing between the available touch zones.
Nevertheless, it is important to point out that subjectively, the preferred input method was
dependent on the type of task being performed with the touchscreens representing the best
solution for tasks involving ”on/off operations” (Jones, 1990). Taking a step back, it needs to be
mentioned that not a single concept performed the best for all the tasks and all the dependent
measures. When comparing different input methods, the student considers the task design
a very important factor since for some input methods the task design can provide ”shortcuts”
which can alter the conclusions.

The above-mentioned study suggests two main points that the student considers important
and that might be recurrently encountered throughout the report. Firstly, it has been observed
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that the touchscreens have been able to complete the tasks in the lowest average duration,
but with many errors. It is expected that this phenomenon is not a coincidence, the literature
describing it as the ”speed-accuracy tradeoff” (Norman, 1991). Saying this, the lower accuracy
with a faster movement in combination with cluttered touch areas might be the reason for the
increased error metric. Secondly, it was observed that no input method performed the best
in all the tasks. This aspect is along the lines of the conclusion made by Rogers et al. (2005)
mentioning that the selection of the input device is dependent on what specific task is required
from the operator.

Stanton et al. (2013) recognized (based on Harris (2011)) that in the cockpit of an airplane,
not only the cognitive aspects need to be taken into account when analyzing HO’s interaction
with different input devices, but also the physical ones. Moreover, since the flight deck is an
environment where multiple tasks need to be performed at the same time, a ”holistic” approach
which contains both subjective and objective measures is recommended for the analysis in or-
der to get a complete view on performance. Compared to the initially presented study, Stanton
et al. (2013) analyzed four different input devices, namely: trackball, rotary controller, touch-
pad, and touchscreen. As previously mentioned, the study used objective measures such as
interaction time and error rates and subjective measures such as workload (NASA-TLX ques-
tionnaire NASA (1986)), usability (System Usability Scale, Brooke et al. (1996)) and comfort
(Cornell University Questionnaire for Ergonomic Comfort, Hedge et al. (1999)). A hypothesis
of this study stated that the best performance over all the measures in discrete target acquisi-
tion tasks would be obtained by the touchscreens. The results showed that the touchscreens
performed the best in terms of task times, whereas the rotary controller exhibited the least
amount of errors. As previously mentioned, there is a possibility for a trade-off between the
time the task is performed and the thoroughness of the task (amount of errors). Moreover,
the touchscreens exhibited high evaluations for physical workload and effort, high total body
discomfort but high evaluations for usability. For the attentive reader, these outcomes might
contradict the statements of the first section, where it was mentioned that automation can de-
crease the physical workload. In this case, one reason for the increased physical workload and
body discomfort is the necessity of the user to stay in contact with the screen for a prolonged
duration (in the case of long tasks). Nevertheless, it needs to be mentioned that this outcome
(physical workload) highly depends on how the touchscreen is positioned with respect to the
users. The study concluded that even though the touchscreens have performed the best ac-
cording to most of the measures, no input device performed consistently well across all the
variables (in line with the previous study). When analyzing HO’s interactions in the cockpit, it
has been recommended that a combination of interaction methods might represent the best
solution. For example, touchscreens could be used for short tasks with high time pressure
(tasks performed quickly while minimizing discomfort). Given this, it was highlighted that it
is crucial to understand where and how the interface will be used in order to evaluate and
understand its suitability.

The study researched by Eichinger and Kellerer (2014) tries to fill the body of knowledge
not specifically accounted for by the previous two studies, that is analyzing different interaction
methods in more realistic contexts. Even though previous studies recognized the importance
of taking into account the context in which an interface is used when analyzing its suitability,
none of them has explicitly accounted for additional informatory circumstances that the pilot
can encounter. In a real scenario, the HO might need to perform several tasks at the same
time, which can alter his/her performance when interacting with the elements in the cockpit.
This study has introduced additional visual, cognitive, or motor tasks to be performed concur-
rently with the main discrete pointing task (possessing two levels of difficulty) when comparing
touchscreen and trackball interaction. Even though the results of the study were in line with the
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previous ones (in terms of completion time and workload), it has been shown that different per-
formance and workload outcomes were obtained for each additional task that was introduced.
If the focus is put on performance, it can be mentioned that an additional task stimulating cog-
nitive load has the least effect on this measure when compared to visual or motor tasks. On
the other hand, if the focus is put on workload, an additional task stimulating motor load has
the most detrimental effect. Moreover, when directly comparing the two methods, it was men-
tioned that additional motor tasks affect consistently in a negative way the performance of the
trackball input. In the case of the touchscreen interaction, it was observed that in some of the
cases, the performance was affected by the additional visual task. This behavior can be due
to the need of the user to re-direct his/her eyesight towards the additional task. One possible
limitation of this study is that it has not presented the additional tasks jointly, but separately.
An interesting next step would be to combine the cognitive, visual, and motor demands in a
single ”additional” task.

As part of the new generation of cockpits, manufacturers have envisioned a new concept
for the Multi-Function Control and Display Unit (MCDU) using touch input (Wang et al., 2015).
With this regard, the mentioned study analyzed the effects of the touch-key shape and size on
MCDU usability. The subjects were faced with typical data-entry tasks (discrete screen inputs),
being evaluated on the time-to-complete, errors, and also on a Likert scale which indicated the
subjective usability. Concerning time, it was observed that the increase in key size facilitated
a more rapid task completion. This is possibly due to the fact that a lower accuracy is needed
for a larger key and therefore the speed of the task is increased. Moreover, as expected, an
inverse trend was obtained for the error rate, where the larger key sizes had the smallest errors
when compared to the smaller keys. Lastly, when comparing different key shapes (square
and rectangle), it was observed that the square keys gave consistently lower error rates (with
changing size) compared to the rectangle ones. The reason for this might be the decrease
in the surface area of the square keys compared to the rectangle ones. Nevertheless, it is
important to recognize that despite the advantages given by an increase in key size, this
design choice might clutter the interface and might be susceptible to accidental touches to
neighboring keys since the distance between two keys might decrease for a constant screen
size (Wang et al., 2015).

Studies such as Thomas (2018), van Zon et al. (2020), or Xie et al. (2023) have analyzed
the performance of touchscreens using Fitts’ law. Thomas (2018) analyzed the performance
of touchscreens using discrete pointing tasks in multiple directions (ISO 9241-9 (2000)). It
was observed that on average the throughput obtained by the touchscreen was the highest
out of all input devices (3.7[bits/s]). Moreover, it was observed that the touchscreen had a
wide spread for the average error rate metric. This behavior was explained by the accuracy
reduction when interacting with small targets. Xie et al. (2023) and van Zon et al. (2020) have
included more realistic tasks such as heading selection, CDU data insertion, and touch-based
navigation for the analysis of accuracy and throughput models. The conclusions of these
studies confirm the findings of the previous ones concerning the direct interaction capabilities
of touchscreens. Moreover, confirming what was previously mentioned, the size of the target
is a relevant factor for the accuracy obtained in the touchscreen operation (smaller targets,
poorer accuracy).

Most of the studies presented in this section analyzed and compared the use of touch-
screens in static situations. Nevertheless, in a real-life scenario, airplanes/helicopters fly
through disturbed environments, presumably affecting the HO’s interaction with the elements
inside the cockpit. Therefore, it is interesting to investigate, how disturbances affect the touch-
screen operation, and which tasks are the most or the least affected in this case. These topics
will be investigated in the next section.
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2.3. Touchscreens in disturbed environments
As previously mentioned, the role of the HO has slowly transitioned from controller to supervi-
sor. If, in the previous section, the accent was put mainly on airplane cockpits, it needs to be
mentioned that a similar trend can be observed also in other scenarios such as automotive or
maritime. All these application domains have in common one aspect namely, they are all char-
acterized by disturbances (similar to when a car drives on a bumpy road). Saying this, given
the increased interaction with advanced interfaces using touch technology, it is important to
study how these interfaces perform in comparison with the classical interaction methods in
disturbed environments and in which cases their use would be suitable.

One of the first studies which compared the use of multiple input devices such as touch-
screen, mouse and trackball in vibration environments is Lin et al. (2010). The study focussed
on the analysis of these devices using discrete pointing tasks (Fitts (1954)) under realistic
filtered sea-wave vibrations with a Root-Mean-Square (RMS) acceleration of 0.22[m/s2] and
0.34[m/s2]. The discrete Fitts’ tasks concerned squares with different sizes, different distances
between each other, and different angles with respect to each other (Figure 2.1).

Figure 2.1: Discrete pointing task (Lin
et al., 2010).

When analyzing movement time, it was observed that in
general, it increased with increasing levels of vibration, with
increasing distance between the targets, and with decreas-
ing target size (Lin et al., 2010). Nevertheless, it was ob-
served that touchscreens exhibited the fastest movement
time under all vibration conditions due to their direct inter-
action capability. On the other hand, the error rate was
significantly affected by the interaction effects between the
pointing device and the vibration level. Based on this, it
was shown that the error rate metric in the case of vibration
for touchscreen interaction increased at a higher rate than
for the other devices. Additionally, the error rate was sig-
nificantly affected by the interaction between the pointing
device and the target size. In line with the previous studies,

the error rate decreases with increasing target size. One interesting measure that was ana-
lyzed in this study but not specifically reported in the others is the standard deviation of the
endpoint location. It was reported that the standard deviation of the endpoint location for the
touchscreens was the highest out of all other input methods, and it increased with the vibration
level. The study suggested that a closer look at how the devices are operated is needed in
order to understand their differences in performance under vibrational environments. It was
reported that the trackball had better resistance to vibrations due to the forearm being rested
on a hard surface, which attenuates part of the whole-body vibrations. On the other hand, the
touchscreen was operated by moving the upper arm and the forearm (there is no mention of
the wrist) which are being affected by the whole-body vibration in the case that no additional
support is used. The understanding of which body parts are used to perform tasks using touch-
screens can be used in the later stages of the report when several modeling approaches for
the interaction between the arm and the disturbances will be investigated.

Compared to the previous study, the research performed by Dodd et al. (2014) introduced
a more realistic task, namely a data-entry task similar to a waypoint entry task in an EFB. In the
same time, the subject was instructed to keep the controlled aircraft in the simulated scenario
at a steady velocity and altitude. The objective of the study was to investigate subjective work-
load, subjective fatigue, and the muscle activation of the subjects when faced with turbulence
in touchscreen operation. As in the previous study, it was observed that the tasks took longer
to complete in simulated turbulent conditions, and turbulence had a more negative impact on
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the smaller key sizes. When subjectively evaluating fatigue, it was reported that the smaller
key sizes induced more fatigue throughout the arm. Electromyography (EMG) measurements
of the forearm were used to quantify the muscle activation of the subjects, being observed that
smaller key sizes and turbulence increased the muscle activity. Unfortunately, since the study
does not report details regarding the turbulence signal (reporting only ”none” or ”moderate”)
and/or RMS/peak acceleration values, it is difficult to interpret the realism of the scenario that
was researched.

Taking a step back, besides the inherent response of the human body to external accel-
erations, human performance in disturbed environments can be affected by an impairment of
human vision, proprioception, or vestibular reflexes (Dodd et al., 2014). Even though this re-
port focuses on only one cause, namely vibration feedthrough, McLeod and Griffin (1989) pro-
pose two additional mechanisms which may influence the performance of the operator. One
of them is ”visual impairment” (caused by the relative movement between the eyes and the dis-
play). Regarding the second one, ”neuromuscular interference”, it is hypothesized that ”such
interference [between the vibration and neuromuscular processes] may reduce the signal-to-
noise ratio between the intentional, task-related muscle activity and unintentional or random
activity and may lead to perceptual confusion about the forces generated in the controlling
limb” (McLeod and Griffin (1989) p.p. 80). Saying this, it can be the case that when the sub-
jects need to perform intentional movements (exhibited by the Central Nervous System (CNS))
it can sometimes be difficult to differentiate between the response inherently caused by the
feedthrough of accelerations and the response caused by the other factors which also affect
HO’s performance in disturbed environments.

The study performed by Avsar et al. (2016a) investigated the HO’s performance when
operating touchscreens under conditions of increased G-force in the vertical direction. Fig-
ure 2.2 presents a simplified schematic regarding the biomechanics of the arm movement.
This representation was used by the researchers in order to indicate the possibility of replicat-
ing prolonged g-forces in static conditions.

Figure 2.2:
Biomechanics of
touchscreen users,
(Avsar et al., 2016a).

The same figure can be used to gain an intuition regarding possible
solutions for modeling and understanding the biomechanics of the upper
arm. In order to keep the arm fixed at a specific configuration (without
any support), the muscles of the arm complex would need to create a
torque (around a certain joint) that is used to counteract the weight of the
limb. Moreover, two parameters in this figure can be subject-dependent,
namely the moment arm (induced by different lengths of the limb) and
the effective mass of de limbs (induced by the specific body type of the
subject). With this in mind, it is expected that the biomechanics of each
individual to be slightly different. A limitation of the figure presented by
this study is that, depending on the situation, a torque would need to be
applied at all the arm joints in order to reach the desired movement of the
arm, since each segment has its own weight.

The researchers haven’t used Figure 2.2 to highlight possible differ-
ences in biomechanics due to individual differences in body characteristics, but to suggest a
way of simulating increased g loads of the limb in static conditions. They used a weighted
wristband in order to increase the moment that needed to be applied to the arm of the subject,
and therefore simulating the effects of an increased g-force. The results for the discrete tap-
ping tasks (Fitts (1954)) experiments showed an increase in movement time and a decrease
in throughput with an increase in weight applied on the wrist. Moreover, one surprising result
was an increase in aiming performance possibly due to a decrease in movement time. It needs
to be recognized that the realism of this experimental set-up is limited, since in a real scenario,
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all the parts of the limb and body would exhibit an increase in weight due to an increase in g
force.

Cockburn et al. (2017) is the first study that included an analysis of more realistic tasks
when comparing the performance of the touchscreens with other input methods (such as track-
balls) in simulated turbulent environments. The newly introduced tasks required a longer inter-
action time between the user’s finger and the touchscreen and introduced two additional inter-
action possibilities, namely dragging and ’pinch and zoom’. For the slider tasks, large errors
were recorded due to the difficulty of keeping prolonged contact with the touchscreen during
the movement. Moreover, the prolonged contact with the screen increased the chances for
the disturbances to negatively affect the task performance. Compared to the dragging tasks,
the discrete selection tasks require rapid interaction with the touchscreen which decreases
the time interval for the disturbance to negatively affect the task (Cockburn et al., 2017). In
this study, two types of discrete target selection tasks were investigated, namely discrete ac-
quisition of circular targets and numerical keypad entry tasks. The results of the study for the
discrete pointing task showed that the trackball input exhibited fewer errors compared to the
touchscreen input. It needs to be pointed out that, if a low accuracy for the task is required (i.e.
keypad entry with wide keys), the touch input was on average the fastest in a disturbed setting.
This study has shown that it can be the case that different tasks exhibit different performance
and behavior characteristics when analyzing them in disturbed conditions. In general, the fast-
discrete movement tasks show better suitability to this type of environment due to their limited
interaction time with the screen. The study reported the motion consisting of ”non-periodic
vertical displacements” (Cockburn et al. (2017) p.p. 6747) and acknowledged the limitation
of the motion’s platform maximum displacement which limited the attainable vibration profiles.
One question that still remains unanswered is how realistic are the introduced motion profiles
compared to a real-life scenario.

Similarly, Alapetite et al. (2018) investigated tap, zoom, and drag and drop tasks in a dis-
turbed environment. The study recognized some of the limitations of Stewart platforms not
being able to produce long and sustained accelerations due to their limited motion profile.
One of the peculiarities of this study is that the researchers also assessed the tasks in terms
of the jerk (the first derivative of the acceleration) facilitated by their unusual experimental set-
ting (using a rollercoaster to simulate a disturbed environment). In line with the previous study,
the ”dragging” task faced worse performance during turbulence when taking into account the
time to complete the task and errors. Moreover, jerk affected the least the discrete action (tap),
while the dragging task was slightly more sensitive to jerk compared to the zoom task.

Coutts et al. (2019) performed a study based on the same type of tasks as Cockburn et al.
(2017), but introduced three touchscreen locations (overhead, center, and side) and a more
complete disturbance profile including vertical, roll, and pitch movement. Confirming the pre-
vious studies, it was reported that the disturbance level affected negatively the error rate, task
time, and accuracy for all the conditions. Moreover, the increase in key size for the discrete
pointing task did not manage to eliminate completely the errors, the authors suggesting a
need for confirmation when critical tasks are being performed. It is recommended that touch-
screens shall be used for quick tasks, due to the acceptable accuracy of interacting using
short presses. Slower types of interaction such as dragging are more prone to increase dis-
comfort and require continuous interaction with the screen, which can affect the accuracy of
the task in turbulent conditions. Consequently, quick actions using larger button sizes should
be preferred over small ones or with a lengthy contact time.

Wynne et al. (2021) extended the work performed by Coutts et al. (2019), by investigating
the performance of touchscreen gestures (swipe, tap, tap-and-hold, and drag) when perform-
ing the same type of task (number entry and pan). The drag gesture was the best in terms of
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completion time in a static scenario for the panning task when compared to the tapping ges-
ture. Nevertheless, an increased level of turbulence had a negative impact on the dragging
gesture, confirming the intuition from the previous studies. Moreover, it was pointed out that a
more horizontal screen position exhibited less workload and discomfort ratings compared to a
vertically oriented one. The reason for this is the possibility of keeping the hand and the wrist
in a more neutral way compared to continuously extending the specific body parts. Single
tap gestures were preferred over more complex ones such as swiping or sliding in turbulent
scenarios when focusing on number entry tasks. Interestingly, this study mentions that for
the dragging gesture, the increased contact time with the touchscreen might prevent the in-
fluence of disturbances. This fact disagrees with the previous two studies possibly because
the previous studies analyzed tasks with different goals, each one using a different gesture
while this one tries to investigate the best gesture for a common goal. In the end, it needs to
be recognized that with different types of tasks, each can have different gestures that fit the
specific task the best, while there is not one gesture that fits well for all the tasks.

2.4. Conclusions
The analysis of how humans interact with touchscreens in disturbed scenarios represents
currently an interesting and value-adding topic given their potential to contribute toward a
more intuitive Human-Machine Interaction (HMI) approach. Besides their intuitiveness, touch-
screens were described to be a faster interaction method and they could save money due to
their capabilities of efficiently displaying information. An area which has not been given great
attention in the previously-mentioned studies is the analysis of the mechanisms regarding the
decrease of performance in touchscreen operation, and the corresponding solutions and mit-
igation methods. It needs to be recognised that the decrease of performance in touchscreen
operation has complex roots which can be tackled from multiple directions (purely cognitive,
physical or an interaction between those two). In this report, the focus will be centered around
the purely physical aspect of the interaction between the human, disturbance and the envi-
ronment (touchscreen), that is the analysis of how the disturbances affect the human’s body
which in turn, cause involuntary inputs on the screen. It could be observed that most of the
tasks that were analyzed in the presented studies were based on either pointing interaction
methods, where the interaction between the finger of the user and the screen was very brief,
and dragging interaction methods, which required a longer interaction time. Moreover, despite
the fact that the dragging tasks were more affected by the disturbances, the discrete-pointing
tasks also exhibited errors which could affect the performance of the tasks in safety-critical
scenarios. In this way, the author would propose to further analyse two types of interaction
methods, a discrete (fast) one and a continuous type of task, where the finger o the subject
is kept in contact with a screen for an increased amount of time. In this way, the conclusions
of the project can be applied and transferred to the most common touchscreen interaction
methods.





3
Feedthrough of accelerations

This chapter aims to give an overview of the studies which investigated the effects and impact
of the Biodynamic Feedthrough (BDFT) in the aerospace domain. Firstly, a general explana-
tion regarding the effects of BDFT on HO’s performance will be given. In addition, this chapter
will present the modeling techniques that were proposed for predicting BDFT. It is important
to mention that the focus will be on the methods the studies have used for constructing the
models. Lastly, a short description of the studies that investigated the BDFT problem in the
aerospace context will be given.

3.1. Effects of vibration on the performance of the Human Operator
The previous chapter showed that the performance of touchscreen use is affected in a negative
way by the introduction of disturbances. However, most of the studies have investigated the
effects of the parameters concerning the touchscreen’s operation such as different types of
tasks, interaction techniques, or screen positions (e.g. the studies presented by Cockburn
et al. (2017) or Coutts et al. (2019)). In order to better understand how the performance of the
touchscreen use is affected by vibrations, it is crucial to take a step back and understand what
are the effects of several disturbance parameters such as frequency content or amplitude, on
the performance of the HO when interacting with such a system.

It needs to be recognized that the body of knowledge concerning the effects of disturbance
parameters on the performance of the HO when operating a touchscreen is limited. A field that
received great attention in the past decades is the investigation of the effects of vibration on
manual control performance using physical inceptors. Since this type of interaction method is
currently found in every airplane, it is expected that some of the conclusions taken from these
studies can be applicable to the newer interaction method.

McLeod and Griffin (1989) provide an exhaustive review of studies that investigated the
effects of disturbances on the manual control performance with physical inceptors. The per-
formance is analyzed in the context of changing the vibration variables (magnitude, frequency,
axis), control system variables (controlled element dynamics, system dynamics), and the vi-
bration exposure duration.

3.1.1. Effects of vibration frequency
The first investigated effects were linked to vibration in the vertical direction. When analyz-
ing zero-order tasks and higher-order tasks under different vibration frequencies and equal
acceleration magnitudes it was observed that the performance, or the feedthrough was af-
fected in a non-monotonic fashion under varying frequencies. Lewis (1981) introduced vi-
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brations between 2.5[Hz] and 12.5[Hz], specifying that the disruption in performance was the
biggest at the frequency of 5[Hz]while at neighboring frequencies, the disruption was reduced
(McLeod & Griffin, 1989). Similarly, when testing frequencies from 2[Hz] and 10[Hz], Allen
et al. (1973) observed a maximum in control feedthrough at 4[Hz]. It needs to be mentioned
that the feedthrough of accelerations to the inceptor is not a straightforward phenomenon.
McLeod and Griffin (1989) (based on Levison (1976)) mentioned that when analyzing the
control feedthrough, interactions were present between the acceleration magnitude, control
type, and vibration frequency. McLeod and Griffin (1989) concluded that the main frequency
range in which the tasks are the most sensitive to the vertical vibration is from 3[Hz] to 8[Hz].
Moreover, it has been pointed out that, in the same range of frequencies there is a maxi-
mum transmission of the vibration to the shoulders or head. Another very important aspect
that will become recurrent in this report is the fact that the frequency that has the highest
transmissibility depends on the biodynamic characteristics of the subjects (and therefore is
subject-dependent) (McLeod & Griffin, 1989).

When discussing effects linked to vibrations in horizontal directions, McLeod and Griffin
(1989) based on (Allen et al., 1973) reported a dependency of the feedthrough on the type of
controlled element (CE) dynamics in the longitudinal direction. It was reported that the ”spring”
control (more permissive) exhibited maximum feedthrough at 3[Hz] whereas the ”stiff” control
at 1.3[Hz] and 4.5[Hz]. In the lateral (y) direction, the maximum feedthrough was observed
on average at the same frequencies for both types of CE’s, at 1.3[Hz] (with the ”spring” stick
exhibiting more feedthrough at the lower frequencies (Allen et al., 1973)). As in the vertical
direction, it was mentioned that the frequencies of maximum transmissibility are related to the
frequencies of maximum transmission to the head and shoulders which are subject-dependent
(McLeod & Griffin, 1989).

The effects presented in the previous two paragraphs were investigated using purely sinu-
soidal vibration profiles. The review study also presented a comparison between sinusoidal
and non-sinusoidal vibration profiles. The study investigated by Lewis (1981) compared si-
nusoidal and random vibration representing amplitude-modulated sine-waves in zero-order
tasks. It was reported that the random vibration produced less feedthrough compared to the
sinusoidal vibration, although the reason for this aspect was not identified. When analyz-
ing first-order tasks, no significant differences were present between the types of vibration.
Nevertheless, the results suggested complex interactions between task difficulty, the type of
vibration, and the duration of the task.

3.1.2. Effects of vibration axis
McLeod and Griffin (1989) mentions that the effects of the vibration axis on the feedthrough
or performance depend on the axis that the task is performed. Usually, it is expected that the
effects to be greatest if the task is performed on the same axis as the disturbance direction
(i.e. roll task combined with lateral, y, vibration). Moreover, it has been also shown that in
zero-order tasks, a disturbance in two simultaneous directions will produce a larger impact
than any other disturbance in one single direction.

3.1.3. Effects of vibration magnitude
When analyzing the effects of vibration magnitude on the performance of zero-order tasks,
the review has presented that both the minimum magnitude of vibration required to affect the
tracking performance and the rate of increase in tracking error with increasing acceleration
depend on the frequency of vibration. Lastly, it was recognized that a linear relationship exists
between the magnitude of vibration and the tracking error. This relationship is dependent on
the controlled device dynamics, the vibration frequency, and the system dynamics McLeod
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and Griffin (1989).

3.1.4. General effects
The study mentions additional effects that affect the feedthrough of vibrations to the control
device. It was reported that the location of the control inceptor does not affect the feedthrough
in a significant manner. On the other hand, when the upper limb is supported, the effect of the
vibration can be diminished (reported under 10[Hz]) in McLeod and Griffin (1989)).

There have also been reported effects of the mechanical characteristics of the manipulator
and of the system dynamics on the vibration feedthrough. The dependence of the feedthrough
on the manipulator characteristics might give the intuition that when being in contact with a
surface/screen, the vibrations will feed through in a different manner compared to the hand
not being in contact with any surface. This is an important aspect when modeling the limb
when it is in contact with the screen.

Lastly, there have been mentioned possible effects of the workload and exposure duration
on performance in disturbed environments. While an increase in workload can reduce the
bandwidth of the tracking performance (which limits the frequency range at which the HO
performs with small errors), the studies have not agreed on whether prolonged exposure to
vibrations affects or not the performance. Nevertheless, it is expected that the increase in
vibration exposure can affect cognitive processes such as (mental) fatigue or attention McLeod
and Griffin (1989).

3.2. BDFT Modeling Techniques
3.2.1. Modeling techniques for physical manipulators
Early research performed in the field of feedthrough of accelerations through the human body
focussed on extending the remarkable work performed by McRuer et al. (1967) regarding
manual control.

One of the first studies which tried to model the effects of vibrational feedthrough to the
control deflections is Allen et al. (1973). The study analyzed and partitioned the manual control
behavior in three main elements: an element related to the HO’s visual-motor response which
is coherent with the target input, a portion linked to vibration input, and a remnant contribution
that is not correlated either with the target input or vibration inputs. A novelty of the report
is that it was one of the first reports that modeled the impact of vibrations in all three axes
(fore-aft, lateral, vertical) separately.

Figure 3.1: Feedthrough model for vertical motion
(Allen et al., 1973).

Before the elaboration of the models, back-
ground information was given regarding the pos-
sible differences in the biodynamic response
based on the direction of the disturbance. In the
vertical direction, the response can be charac-
terized by a complex mass-spring-damper sys-
tem having the contribution from the following
components: thorax-abdomen torso (resonant
frequency range from 3[Hz] and 11[Hz]), move-
ments of the visceral organs (between 4[Hz] and
8[Hz]), head-to-shoulder resonance (between
20[Hz] and 30[Hz]). Moreover, it was mentioned
that the overall head-to-seat impedance effects depend on the size of the subject and the
posture, with a resonance interval between 4[Hz] and 6[Hz]. In the horizontal plane, the bio-
dynamic response is affected by the articulation of the hip joint and the spine which is being
bent. Moreover, it was mentioned that lower resonance peaks (between 1[Hz] and 11[Hz]
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and 3[Hz] and 11[Hz]) are present compared to the vertical case.
The study made use of accelerometers which were positioned at key locations of the sub-

ject’s body. The accelerometers were positioned on the shoulder, elbow, head and on the
sternum. The reason for introducing these devices is to understand the transmissibility of
vibrations but also to help in making several modeling decisions.

When focusing on the vertical (z axis) direction, the feedthrough data was recorded sepa-
rately at increments of 1[Hz] starting from 2[Hz] up to 10[Hz]. Moreover, in order to observe
the feedthrough of the accelerations, the subjects had only to stabilize a pitch control task
(without any target forcing function).

Figure 3.1 presents the proposed model which describes the feedthrough of platform ac-
celerations in the vertical direction. Despite the complex whole-body and internal organ vibra-
tional interactions (described by Von Gierke (1965) with multiple Degrees Of Freedom (DOF)),
this study has opted for a simple 1 DOF mass-spring-damper model for the relative motion be-
tween the shoulder and the platform. The reason for this choice was the good agreement of
the simple mass-spring-damper system with the experimental data for the sitting impedance.

Figure 3.2: Feedthrough model for
horizontal motion (Allen et al., 1973).

When focusing on the upper limbs, it was assumed that
the upper and the lower limb are represented by a rigid link
with no equivalent mass. The rigid link assumption was
backed up by the observation that the recorded accelera-
tions of the shoulder and elbow were in phase across the
frequency plateau. On the other hand, it was expected that
inertia forces would be applied at the hand, due to the ap-
plied disturbance. It is hypothesized that the authors did opt
for the massless rigid link, due to the fact that the rigid con-
nection with the stick prohibits any inertial interactions from
the vertical disturbance. In this way, it is assumed that the
disturbances from the shoulder are directly fed through the
stick. The resulting model describes the transfer function
between the vertical acceleration and the stick deflection,
being represented by a second-order system that is scaled
by the (assumed) constant angles that the arm’s subject
makes with the vertical direction. This scaling term can be
considered to represent changes in the model based on
individual characteristics. Compared to the experimental
results, this model successfully predicted the second-order
nature of the feedthrough dynamics, giving a good approximation of the resonant peak. It
needs to be mentioned that in the conditions of touchscreen operation, if the screen is not
positioned horizontally, it is expected that inertia effects would be present throughout the arm
due to it not being constrained vertically compared to the above-mentioned example.

When analyzing the feedthrough of the horizontal motion, it needs to be mentioned that in
this case the limb and body system performs both rotational and translational motion. Starting
from the bottom, it is assumed that the hips perform only translational motion being connected
to an equivalent mass-spring-damper system representing possible lower limb and seat inter-
action. The torso is assumed only to rotate with respect to the hip, being connected with an
equivalent rotational spring and damper system. Lastly, the arm s assumed to move relative
to the shoulder, by using a combination of agonist and antagonist muscle pairs. When dis-
cussing the equivalent effects of the closed loop neuromuscular system (NMS) on the upper
limb’s response, it can be considered that these effects can be described by an equivalent
spring and damper system. It was observed that the lateral feedthrough could be explained
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mainly by the inertial effects present due to the arm’s and stick’s masses and inertias.
Thework performed by Jex andMagdaleno (1978) continued the analysis of the feedthrough

of disturbances in a manual control scenario using physical inceptors.

Figure 3.3: Biomechanical features used for
describing the feedthrough (Jex & Magdaleno,

1978).

The model includes the torso, upper and lower
arm links which are influenced by the neuromuscular
system. Since the focus of the model is the analysis
of the feedthrough of the accelerations to the stick,
simplifications were made to the elements describ-
ing the lower body and the torso. The interaction of
the model with the seats was modeled through a set
of linear springs and dampers, as in Figure 3.3. It is
interesting to observe the modeling choices made by
this study, in comparison with the one made by Allen
et al. (1973). Compared to the previous study, this
model includes a neuromuscular component driving
the limbs and, possibly the biggest difference is that
in this case, the limbs include inertia parameters.

When taking a closer look at the neuromuscular
system modeling adopted in Jex and Magdaleno (1978), several considerations can be made.
It was proposed that only the lumped effects of the agonist/antagonist muscle pairs would be
taken into account due to the complexity of modeling each individual muscle. The authors
have chosen a linearized representation of the neuromuscular system consisting of tendon
elements and a Hill-type muscle model (Hill, 1938). The linearized Hill-type muscle model
consists of a force generator, and damping properties along with a series-elastic component
representing the elasticity in the tendons and in the muscle and a parallel-elastic component
representing the damping and spring characteristics of the inactive muscle (Van Paassen,
1994).

Figure 3.4: Neuromuscular system description
(Jex & Magdaleno, 1978).

Based on Figure 3.4 and on the considera-
tions made above, it is interesting to observe Jex
&Magdaleno’s choice of introducing both a series-
elastic component and a tendon compliance and
damping element separately. Moreover, it is inter-
esting to understand why a linearized version of
the Hill-type muscle model is used in this particu-
lar case. In Van Paassen (2021), it is mentioned
that the force generated by the muscle depends
on certain relationships, namely the force-velocity
and the force-stretch/force-length relationships. It
is important to recognize that these relationships
are dependent on the activation levels of the mus-
cle. Saying this, when the authors mention that
a linearized neuromuscular system description is

used, it means that these equivalent constants that describe the damping and elastic compo-
nents correspond to a constant activation level of the muscle around which the linearization
was made.

In a critical analysis, Venrooij et al. (2016b) pointed out a possible disadvantage of such
complex models. It has been mentioned that the research community would rather apply sim-
pler and more practical models, with a lower complexity which are elaborated to an intended
purpose. Moreover, another possible disadvantage is a large number of parameters, which
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can be difficult to identify from data, as the study does not mention explicitly the approach
used for parameter fitting.

Figure 3.5: Resulting models, describing
the feedthrough of accelerations to the

collective input (Mayo, 1989).

The model developed by Mayo (1989) is one of the
very few models to this date that tackles the problem
of within-subject variability in the analysis of the bio-
dynamic response of the HO. The study focussed on
the acceleration transmissibility on the collective incep-
tor during helicopter’s vertical motions. When analyzing
possible factors linked to the HO which can affect the
stability of the system, the study differentiates between
two phenomena: Pilot-Induced Oscillations (PIO) and
Pilot-Assisted Oscillations (PAO). Of more interest in this
context are the PAOs since they result from the passive
control activations due to the response of the body to
vibrations. Mayo (1989) pointed out that when analyz-
ing the feedthrough of vibrations to the physical inceptor,
the response depends on the individual characteristics
of the subjects. Some examples of such characteristics
are: experience, body type, and neuromuscular system
(Mayo, 1989). Taking a step back, these components
have also been introduced in the previous two studies.

The goal of the study was to create a model which
lumped the characteristics of the seat, limb, torso, and
stick. In order to do this, accelerometers were positioned
on the collective inceptor and on the pilot’s seat. At the
same time, a moving-base simulator was mimicking si-
nusoidal motions ranging from 1[Hz] and 5[Hz]. In the
trial phases of the experiment, it was observed that the
acceleration feedthrough depended on the collective po-
sition. For example, it was mentioned that the shoul-
der accelerations were transmitted directly to the col-
lective in the case of low angles of the stick. On the
other hand, at higher angles, the neuromuscular sys-
tem is contracted and it was hypothesized that some
components of accelerations transmitted through the tor-
so/shoulder are absorbed before interacting with the col-
lective.

In order to capture individual differences between the
subjects, the authors proposed two different models depending on the anthropometric differ-
ences between the subjects Figure 3.5 (Mesomorphic and Ectomorphic body types). One
interesting aspect highlighted by the authors is the slightly lower lumped resonance frequency
when compared to the whole-body resonance frequency reported in other studies (such as
Allen et al. (1973) in between 4[Hz] and 6[Hz]). The reason for this phenomenon was ex-
plained by the fact that the obtained transfer functions also included the neuromuscular reflex
which tries to counteract the disturbances. In this way, the subjects varied the stiffness of
their limbs in order to account for the whole-body vibration effects. This fact can have great
implications regarding the identification of the biodynamic characteristics of the arm possibly
from images. With this, the identification problem becomes more complex since it can be
difficult to identify and also when the time-varying changes in the apparent stiffness of the
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limb occur. One possibility is that these time changes are affected by the disturbance signal
characteristics (a greater disturbance possibly induces a stiffer setting of the arm).

A qualitative observation based on the videotape measurements confirmed that a more
contracted arm leads to a less sensitive stick motion to the feedthrough of accelerations. The
limitation of this qualitative analysis is whether this phenomenon occurs along the whole fre-
quency range or whether it occurs only at a certain range of frequencies. Moreover, it is still
unclear how the researchers evaluated the amount of contraction of the neuromuscular sys-
tem.

Biomechanical pilot models were also constructed for understanding and predicting aircraft-
pilot couplings (APC). Koehler (1997) and Höhne (2000) focussed on extending the existing
models for the analysis of roll ratcheting (RR). As mentioned in Höhne (2000), roll ratcheting
represents a low amplitude and high-frequency aircraft-pilot coupling that occurs in the pitch
axis. Usually, this behavior occurs in the frequency range between 1[Hz] and 3[Hz], due to
inertial forces interacting with HO’s limbs/body.

Figure 3.6: Biomechanical model used for
predicting roll ratcheting (Koehler, 1997).

The model proposed by Koehler (1997) to predict
the roll ratcheting behavior was based on the one from
Allen et al. (1973), with slight modifications. The el-
ements were interconnected using either linear or ro-
tational mass-spring-damper systems that idealize the
visco-elasticity of the body and of the muscular system.
Each of the elements is assumed to have one DOF. The
hip is assumed to be translating with respect to the air-
plane, the torso rotates with respect to the hip around
an inclined axis, the arm rotates with respect to the torso
and the inceptor rotates with respect to the aircraft. The
model defined by Koehler (1997) has as its input the lat-
eral acceleration of the HO, the acceleration in the roll
direction, and the desired moment applied at the pilot’s
arm. The output is the stick control force.

In his study, Höhne (2000) recognized the shortcomings of the previous study, mention-
ing that the model developed by Koehler (1997) has no available information regarding the
quality of the identified parameters and attained unrealistic values for stiffness and damping
coefficients. Taking this into account, Höhne (2000) proposed a re-derivation of the equations
of motion (EOM) and a re-identification of the parameters. The study considered approaching
the problem as a multibody system. A possible way of solving such a problem is by deter-
mining its equations of motion using Lagrange’s equation. One possible disadvantage of this
formulation is that complex systems might contain lengthy equations for the velocities/accel-
erations of the center of mass of the components. Saying this, the study used a multibody
simulation software, namely SIMPACK 1 to define the multibody model. The elastic and vis-
cous parameters were obtained following a maximum-likelihood approach, and the standard
deviations of the parameters were computed as a measure of reliability.

Since high standard deviations for the identified parameters were obtained when fitting
the previously-defined model, the study proposed and tested additional models with different
topologies. Four main groups of models have been defined as in Figure 3.7. Starting from the
top-left to the bottom-right these models are defined as (Höhne, 2000): three-body models,
wrist joint models, elbow joint models, and angle arm models. While performing the same
fitting procedure as the original model, the authors made a couple of observations that can
be used in the further stages of the report. It was observed that high standard deviations and

1https://www.3ds.com/products-services/simulia/products/simpack/
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Figure 3.7: Additional biomechanical models for predicting roll ratcheting (Höhne, 2000).

correlations between the parameters were obtained with the models which consisted of two
or more joints that had parallel rotation axes (i.e. Figure 3.7 c)). Moreover, if the experimental
conditions show that the subjects do not move their upper limb with respect to the lower limb,
the addition of an elbow joint in the model might seem redundant (since the whole upper limb
can be considered one rigid body).

The takeaways of these two studies indicated the suitability of using a multibody approach
for the biomechanical analysis of the human body in disturbed scenarios. Moreover, the im-
portance of deciding the topology of the model based on the analysis of the ergonomics of
the subject’s movement while he/she is performing the task was highlighted. On the other
hand, it needs to be mentioned that this parametrization consisted of spring and damping
coefficients which were constant in time while it is known that the HO might change his/her
equivalent spring and damping characteristics throughout the task. The study does not report
any indication regarding this phenomenon or any possible solution to account for this.

Researchers from Politecnico di Milano (PoliMi) focussed on the research of BDFT in the
context of rotorcraft. Mattaboni et al. (2008) and Mattaboni et al. (2009) are the first preliminary
studies performed in this area that tried to model using a multibody approach the dependence
of HO’s biomechanical properties on the anthropometric characteristics and posture. The con-
text of this research is based on the authors’ insight that the transfer of accelerations is a highly
variable phenomenon across, being dependent on the following factors: anthropometrics of
the HO, cockpit’s configuration, workload, and the ergonomics of performing the task. The
main goal of the work of the two studies was to create an identification procedure that could
be used for estimating the equivalent impedance for the upper limb’s muscles.

Figure 3.8: Multibody model describing HO’s upper limb and collective (Mattaboni et al., 2008).

Figure 3.8 presents the defined multibody model used for the analysis of the interaction
between the subject and the collective. The equivalent impedance of the muscles was defined
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with a viscoelastic constitutive law with parameters describing the coefficients of rotational
springs and dampers. Since the scenario implied that the limbs kept a constant value for
the collective deflection, the need for introducing more accurate muscle models which could
include the actuation of the muscle was not deemed necessary. In this way, the simpler linear
constitutive laws could create an equivalent mechanical model for the human body in this
static-task scenario.

In order to identify the impedance characteristics of the upper arm, the motion of the limb
had to be reconstructed. Since no optical techniques were available which could measure
the motion due to the limitations of the moving-base simulator, the study used information
from: accelerometers positioned on the seat of the subject, the collective rotation, and ac-
celerometers positioned on the wrist and upper limb. It was observed that all the sources of
information created an overdetermined system. The study proposed a least-squares prob-
lem to solve for the joint motions along with the corresponding velocities and accelerations.
A power balance approach was used to obtain the parameters of the equivalent spring and
damping coefficients by means of a least-squares formulation. The power-balance approach
was tested using simulated measurements of accelerometers and collective positions. It was
concluded that if simulated noisy measurements are to be used, the quality of the identification
decreased considerably, providing unrealistic results for the parameters. This fact prohibited
the application of this method to real measured data and questioned the robustness of the
approach.

Critically analyzing the outcomes of the studies, it can be observed that both tried to obtain
certain characteristics of the response of the body, based on external measurements. The
multiple indirect sources of information caused an overdetermined system for the kinematics
of the upper limb, and therefore a kineto-static problem had to be solved to obtain the motion
of the model. It is not known how this approach would perform if direct measurements of
the relevant points of the limb could be measured by using markerless motion techniques.
Saying this, the present approach might represent an interesting solution that solves for the
parameters of an assumed model for the constitutive laws of the joints by using movement
information.

In a later study, Masarati et al. (2013a) extended the model defined in the previous studies,
in order to model the dependence of the equivalent stiffness of the neuromuscular system on
the muscular activation patterns.

Figure 3.9: Biomechanical model of the
upper limb including linking muscles

(Masarati et al., 2013a).

The model possesses 7 degrees-of-freedom model-
ing all the 4 segments of the upper limb (humerus, ra-
dius, ulna, and hand) and 25 muscles. The numerous
pairs of muscles were introduced such that the modeled
7 DOF system could be actuated. The study proposed
a 3 DOF model for the shoulder complex, 1DOF for the
humeroulnar joint, 1 DOF for the combination between
the humeroradial and radioulnar joints, and 2 DOF for
the wrist. Compared to the previous studies, in this case
only the position of the end-effector of the limb is given
while performing a maneuver at the collective level. In
this conditions, the authors proposed an analysis based
on multiple steps. Firstly, given the position on the end
effector, an inverse kinematical analysis was be used
to obtain the most plausible configuration of the whole
upper limb (along with the velocities and accelerations
of the points of interest). The kinematic analysis was
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performed based on the study researched by Pennestri et al. (2007) which introduced an
optimization approach based on an ergonomic cost function that leads to realistic configura-
tions for the upper arm. It needs to be mentioned that this step is performed due to the fact
that only one position in the kinematic chain is known, the problem being kinematically un-
derdetermined. It is hypothesized that if motion-capturing techniques would be applied, the
previously-mentioned step would not be necessary. On the other hand, it is still unknown how
the velocity and acceleration of the coordinates will be affected if a numerical differentiation
scheme would be applied to noisy measurements.

After the coordinates of the upper limb were derived, along with their first and second
derivatives, an inverse dynamic analysis is performed in order to define the joint torques
needed to perform the specific task. The study goes one step further, by defining a set of
25 muscles along with their properties, including the reference length and insertion locations.
It has been mentioned that the defined insertion locations were not defined in an anatomically
correct manner, the goal being only to replicate a realistic torque configuration about the joints
of the system. In a real-life scenario, this modeling approach can be considered very complex
since it is hypothesized that there can be individual differences regarding the muscle char-
acteristics of each person. (that are hardly measurable). The force induced by the muscles
is assumed to be acting in a straight line between the corresponding insertion points. For
defining the force applied by each muscle, Hill’s model which describes the dependence of
the muscle force on the elongation rate, peak force, elongation, and activation was defined.
It has been recognized that computing the corresponding activation patterns which result in
the obtained torque, is an undetermined problem since there can be multiple combinations of
activations that lead to the same torque. The study has chosen an optimization approach that
could minimize the square norm of the activations.

The resulting activation patterns represent the minimum activation patterns required to
produce the required torques (Zanoni et al., 2021). In addition to this, the study recognized
the importance of introducing the effects of the reflexive activity of the muscle model, since the
reflexive activity is expected to occur in a perturbed environment, accounting for a considerable
increase in stiffness, up to 120% (Masarati et al., 2013a). The reflexive activity was modeled
by assuming a certain behavior for the perturbation activation patterns (being proportional to
the perturbed muscle velocity and length). An additional activation contribution is present in
terms of torque-less activation modes (TLAMs), which represent additional activations (from
the baseline minimum activation patterns) that do not alter the computed toques. All these
contributions add to the total activation of the muscles, which, in turn, were used to simulate
time-varying changes in equivalent stiffness and damping properties of the neuromuscular
system during the desired task.

The above-mentioned study researched a rather complex approach for simulating how
the changes in muscle activation during the task affect the lumped stiffness and damping
characteristics of a biomechanical system. The approach required the definition of pairs of
muscles that were used to apply torques on the joints. The combination of inverse kinematics
and dynamics showed that during a task, the biomechanical properties of the neuromuscular
system change due to different mechanisms (intrinsic and reflexive) which are explained by
changing the activation patterns of the muscles. Nevertheless, this modeling approach might
deem complex since precise properties of the muscles need to be obtained (which can differ
from person to person). On the other hand, this study reinforced the suitability of using a
multibody model for biomechanical analysis.

In one of their recent studies, the researchers from PoliMi, extended the previous model
of the upper limb with a multibody description of the spine (Zanoni et al., 2020). Inspired from
(Kitazaki &Griffin, 1997), the authors have proposed a torsomodel consisting of 34 rigid bodies



3.2. BDFT Modeling Techniques 63

replicating the vertebrae and the visceral parts connected to them. It was assumed that each
vertebra would be represented by a rigid body with rotational and translational DOF Figure 3.10.
Each rigid body is assumed to be interconnected to its neighboring vertebras/visceral nodes
by rotational and translational springs. Compared to the previous studies, the authors have
decided not to include detailed modeling of the muscles, limiting the range of validity of the
model.

Figure 3.10:
Overview of the

connections between
the vertebrae and
visceral elements.

(Zanoni et al., 2020).

A novelty of this study is that a parametrization of the model geometry,
masses, and parameters was introduced. The goal of the parametriza-
tion was to produce the most plausible subject (not subject-specific) pos-
sessing a certain combination of age, body mass index, height, and gen-
der. The position of the nodes of a particular parametrization represents
a scaled version from a set of reference dimensions. The mass of the
limbs is defined from a regression equation having as input the mass of
the body. The intervertebral stiffness and damping coefficients are deter-
mined also as second-order polynomials as a function of the body mass
index.

Similar to the previous study, the analysis was performed using a cas-
caded approach starting from the inverse kinematics, inverse dynamics,
and computation of the muscular activations. In this scenario, the inverse
kinematics was performed by enforcing the movement at the end effector
of the hand and at the head. In this study, amore intuitive explanation was
made regarding the torque-less activation modes, representing a way of
modulating the impedance of the HO based on psychological character-
istics (i.e. workload or fatigue). The authors mentioned that in general
the results were in concordance with the experimental results of other

studies when focusing on the seat-to-head transmissibility of accelerations. One clear dis-
crepancy that the authors will investigate further, is the difference in the longitudinal response
of the head to a vertical acceleration input.

One of the main advantages of using multibody approaches is the possibility of using
physics-based principles in order to account for sources of variability between persons. In
other words, by correctly defining the parameters of the models, the equations of motion can
account for and describe changes in the human response due to changes in inertias, masses,
lengths and configurations of the limbs. The complete model consists of 103 DOFs which
might represent a slight disadvantage in terms of the computational effort that takes to perform
the analysis. The authors mentioned that the dynamical problem was solved in the multibody
solver MBDyn 2, but did not bring into the discussion any performance results. Moreover,
since the generation of the nodes representing the spine is based on a ”general” model, it can
be difficult to obtain and use spine configurations from a particular subject.

3.2.2. Modeling techniques for touchscreens
As previously described, the body of knowledge regarding modeling the BDFT in touchscreen
operation is limited. Two studies from the same group from TU Delft were the only ones
found by the author which focused on the cybernetic analysis and modeling of the BDFT in
touchscreens. Mobertz et al. (2018) and Khoshnewiszadeh and Pool (2021) investigated the
relationship between the disturbance signal applied on a 6 DOF simulator and the input ob-
served on the touchscreen. In this way, a lumped-parameter model which could describe
the contribution of the disturbance to the input of the screen was constructed. The model is
presented in the following equation:

2http://www.mbdyn.org/
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ĤBDFT = GBDFT
ω2
BDFT

s2 + 2ζBDFTωBDFT s+ ωBDFT
e−sτBDFT (3.1)

Equation (3.1) shows that the proposed BDFT model contains a set of four parameters:
GBDFT , ωBDFT , ζBDFT , τBDFT lumping the effects between the disturbance and the finger
location on the screen (Khoshnewiszadeh & Pool, 2021). Khoshnewiszadeh and Pool (2021)
mentions that the previously-mentioned model lumps the feedthrough contributions from the
seat, spine, and upper limbs. One particular disadvantage of this approach is the inability to
understand which body part has the biggest contribution towards the feedthrough of acceler-
ations. Moreover, as it will be shown in a later section, it is difficult to understand and clearly
point out the differences between and within the subjects only by analyzing/comparing the
model parameters.

3.3. Biodynamic feedthrough studies
3.3.1. Biodynamic feedthrough studies with physical manipulators
As previously mentioned in the previous sections, BDFT is a complex phenomenon that can
be affected by both internal factors (related to the human operator) but also by external ones
(disturbance characteristics in terms of frequency, amplitude, etc.). Even though significant
efforts were made in the 20th century to understand and characterize the implication of these
factors in the manual control performance (i.e. Allen et al. (1973), Jex and Magdaleno (1978),
Idan and Merhav (1990)), a commonly accepted framework that could be used to understand
BDFT was still missing. In the 21st century, several research groups from PoliMi and TU Delft
have made efforts to investigate further different aspects linked to BDFT in the use of physical
inceptors.

A series of studies starting from Venrooij et al. (2009) further investigated the effects of
BDFT on stick-based inceptors with the goal of creating a unified framework for analyzing this
phenomenon. This initial study was one of the first ones which tried to relate neuromuscular
admittance to BDFT. Neuromuscular admittance can be considered a measure that character-
izes the arm dynamics in relationship with the control inceptor. A more intuitive explanation of
the neuromuscular admittance was made by Van Paassen (2021) which describes it as how
much the limb moves in response to the force that is exerted on it. It needs to be recognized
that neuromuscular admittance is an adaptive quality, being dependent on ”the intrinsic and
reflexive feedback, the level of co-contraction and task instruction” (Venrooij et al. (2009) p.p.
1668). In order to enforce different settings of the neuromuscular system, the study proposed
three disturbance rejection tasks that needed to be performed by the subjects. These tasks
are: Position Task (PT) - requiring to resist the force perturbations (stiff neuromuscular setting);
Force Task (FT) - requiring to minimize the force applied to the stick (compliant neuromuscular
setting). It was observed that at low frequencies (< 1.5[Hz]), a low admittance is translated
into a low BDFT, whereas for higher frequencies the effects of BDFT increased when the
neuromuscular was in a stiff setting.

In other words, based on Figure 3.11 it can be mentioned that a stiff setting of the neu-
romuscular system can actually increase the feedthrough of disturbances to the control stick
at higher frequencies, compared to a more compliant setting. Since it was hypothesized that
during the experiment runs, the only adaptations were due to changing the neuromuscular
admittance, it was assumed that a relationship between admittance and BDFT existed. Alter-
natively, the different tasks imposed different settings of the neuromuscular system (due to
HO’s adaptation) which, in turn, induced different BDFT properties.

In other to better understand the mechanisms in the relationships between neuromuscular
admittance (task interpretation) and BDFT, Venrooij et al. (2010a) split up the BDFT in two
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parts (Figure 3.12).

Figure 3.12: Overview of BDFT consisting of a motion disturbance part and force disturbance part (Venrooij
et al., 2010a).

Figure 3.11: Overview of the biodynamic
feedthrough measured during the PT and FT

(Venrooij et al., 2009).

Figure 3.12 presents how BDFT is consid-
ered as a combination between Motion Distur-
bance Feedthrough (MDFT) and Force Disturbance
Feedthrough (FDFT). MDFT represents the feedthrough
of the motion disturbance on the forces on the inceptor,
while FDFT represents the feedthrough of the result-
ing forces on the controlled element deflections. By
exploring the Frequency Response Functions (FRF)
of both components, a better understanding can be
made regarding the behavior of Figure 3.11. It was ob-
served that the FRF of the MDFT had the highest mag-
nitude across almost all frequencies for the PT com-
pared to the other tasks. This means that a stiff set-
ting of the NMS transmits the contact forces the most.
On the other hand, it was hypothesized that also due
to the stiff setting these contact forces are not trans-

ferred back to deflections in the controlled element (being absorbed by the upper limb). In this
way, the combination of a high MDFT and low FDFT, results in a low BDFT at low frequencies.
Saying this, it is expected that the change in behavior at the higher frequencies to be due to
changes in the behavior of the FDFT. The conclusion that the BDFT depends on the task that
is being performed can lead to an additional point of interest.

A possibility for mitigating BDFT is by using a model-based approach that predicts the
effects of BDFT and subtracts these effects from the total contribution on the manipulator
(Venrooij et al., 2010b). For a good cancellation performance, it is, therefore, crucial to take
into account the changes in the BDFT dynamics on the basis of the task at hand.

A continuation of the previous studies is the research performed by Venrooij et al. (2011b)
in the field of BDFT and stick inceptors. The study proposed a frequency decomposition tech-
nique based on the assumption that the measured variables (the angle of the stick and the
force applied on the stick) consist of contributions from the disturbance force applied on the
stick (used for the identification of admittance), the motion disturbance, the cognitive action of
the HO and a residual which accounts for other dependencies besides the ones mentioned.
This assumption results in the possibility of decomposing the power of the total signal as a
sum of the powers from each contribution variable that affects the signal. An example of such
decomposition is Figure 3.13. Moreover, the frequency decomposition technique can deem
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helpful in identifying the relative contribution of each variable to the measurement quantity.
This can be of interest when a frequency-based technique is used for identifying the BDFT dy-
namics. If the contribution from the motion disturbance to the output variable is not significant,
then it can be expected that the power of the signal at the frequencies corresponding to the
motion disturbance to be low, maybe so low that it can not be distinguished from the residual
contributions. In this way, the confidence of the identified FRF is low since it can’t be decided
whether the contribution comes from the disturbance or is it just noise. One advantage of this
technique is that the individual contributions can also be transformed into the time domain for
quantitative analyses.

Figure 3.13: Overview of the frequency
decomposition technique used for obtaining the
relative contribution of each disturbance to a
measured signal (Venrooij et al., 2011b).

If the motion disturbance excites the mea-
sured variable enough, the identification of BDFT
dynamics can be performed. In this way, the con-
tribution of the motion disturbance to the mea-
sured signal can be estimated and used for the
previously indicatedmodel-based cancellation ap-
proach. Venrooij et al. (2011a) investigated the
performance of different generality levels on the
signal cancellation method. The different gener-
ality levels are represented through the way the
estimated FRFs of BDFT are being used. The low-
est level of generality is represented by the FRFs
identified in the individual runs for each subject.
One level of generality higher is represented by
the FRF obtained by averaging all the estimated

BDFT functions for one subject. The largest generality level is represented by averaging the
previously defined subject-average models. In this way, the study estimated the percentage
of BDFT that could be canceled using each type level of generality. It was observed that the
global-level models performed worse compared to subject-average-level models in terms of
how much percentage of the BDFT was canceled. This fact implies that if a model-based
cancellation method is desired, the model would have to match the subject at hand. This as-
pect confirms the complexity of modeling the BDFT effects being subject-dependent and also
task-dependent. One possible limitation of this study is that the results were obtained using
optimal signal cancellation, or, in other words, the model was applied to the same runs that
it was identified from. In this way, the validity of results outside the training domain are not
known (for example testing on a person the model was not trained with). The reader should not
forget that this study also tested the performance of model-based cancellation for the different
tasks inducing different neuromuscular settings (tasks similar to the ones proposed in Venrooij
et al. (2009)). It needs to be pointed out that worse cancellation results were obtained for mod-
els identified for tasks requiring different neuromuscular settings. This fact can suggest that
within-subject variability might affect more BDFT behavior compared to the between-subject
variability.

In line with the previous studies, Masarati et al. (2013b) recognized the importance of
a BDFT model to account for variabilities due to the ” physiological dynamics of the pilot’s
neuromuscular system” (Masarati et al. (2013b) p.p. 127), being dependent on anthropometric
data, the cockpit layout and interfaces, the posture of the HO, the strategy of the pilot and
his/her skills, and the cognitive activity of the HO (Masarati et al., 2013b). The study analyzed
the transfer of disturbances in pilots with different physical characteristics and with different
reference limb positions using body-mounted accelerometers. It has been observed that the
differences between pilots appear especially in the accelerations of the elbow and the wrist.
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Moreover, it has been pointed out again that the muscular activation state can affect the BDFT
even within a subject. For example, Figure 3.14 presents the feedthrough of accelerations to
the collective for two different subjects and three different reference collective positions. The
figure shows the within and between-subject characteristics of BDFT, implying that the FRFs
of the two pilots are rather different and also depending on the reference limb position, the
feedthrough is different within a subject (more clear results presented for Subject 1). The
authors hypothesize that the differences might be due to the activation of the muscles rather
than due to the different positions of the limbs.

Figure 3.14: Overview of the differences in the
feedthrough of accelerations of two subjects and

three different values of the control inceptor
location (Masarati et al., 2013b).

In a similar field, Venrooij et al. (2013) empha-
sized that between and within-subject variability
are important aspects to take into consideration
when analyzing and modeling BDFT. The study
investigated subjects with different somatotypes
(between-subject variability) and tasks requiring
changing the stiffness of the neuromuscular sys-
tem (within-subject variability). The authors sug-
gest that the results do not show a clear effect of
the body type, whereas, the different neuromus-
cular settings influence the dynamics of BDFT.

In the review of the open issues regarding
BDFT, Venrooij et al. (2016b) pointed out that until
then, BDFT was identified only using linear-time-
invariant situations. In order to analyze BDFT in
more realistic settings, time-varying or adaptive
techniques would need to be developed. In this
way, the time-varying behavior of the HO could be
accounted for in the model-based cancellation.

One of the first studies which investigated
adaptive models in the context of model-based
cancellation of BDFT in stick-based operation is
Venrooij et al. (2016a). This study can be consid-
ered a continuation of the previous studies which
investigated the change of BDFT dynamics and
its effect on the cancellation performance when
the task that the operator performed changed
(force, position or relax tasks). A novelty of the
study is that it proposed a two-step procedure for
the evaluation of the cancellation performance: Firstly, two different models for the BDFT
effects were identified using the ”classical” position and relax tasks for each subject; Sec-
ondly, a more realistic task was introduced (Highway-in-the-Sky) which, by varying some of
the parameters of the outside visual cues, induced the same adaptive neuromuscular settings
corresponding to a force and position task. In order to investigate the adaptive nature of the
neuromuscular settings, the visual cues changed within a run at a particular time stamp. The
cancelation performance was evaluated in the consistent conditions (PT/RT model applied
to PT/RT segment of the second task) and in the incongruent conditions (PT/RT model ap-
plied to RT/PT segment of the second task). One important finding of the study was that for
some subjects in the incongruent cancellation scenario, the performance of the cancellation
was better than the performance of the consistent conditions (particularly in the RT condition).
This aspect can give the indication that some subjects behaved differently in the identification
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runs compared to the runs of the validation session. For example, after examining the BDFT
frequency response function for some of the subjects, it was observed that even though the
second task imposed a relax task, the subjects behaved in such a way that their neuromuscu-
lar system was stiff (more similar to a position task), therefore inducing a better cancellation in
the incongruent condition. This fact can lead to the conclusion that better cancellation results
are obtained with a model that matches the current BDFT dynamics. Moreover, since it was
shown that the BDFT dynamics depend on the neuromuscular settings, it can be concluded
that for an ”accurate” cancellation, the models would need to be adapted to the current state
of the neuromuscular settings.

One of the takeaways of the previously-mentioned study is the fact that even though the
second task was designed to impose different neuromuscular settings, the way a particular
subject approaches the task can vary from person to person. In other words, if one subject
performs the task with a relaxed neuromuscular setting, one subject can perform the same
task with a stiff setting. Moreover, it needs to be pointed out that in a real-life scenario, it
is hard to clearly identify which type of task imposes which type of neuromuscular setting.
In this way, the author considers that there is a need for an external perspective that can
recognize the neuromuscular setting used by the subject independently from the task that is
being performed.

3.3.2. Biodynamic feedthrough studies with touchscreens
One of the first studies which quantified the effects of BDFT in touchscreens was performed
by (Mobertz et al., 2018). The subjects performed a continuous dragging task, with three dif-
ferent multisine perturbation directions (surge, sway, and heave) on two separate displays.
The results demonstrated that the effects of feedthrough are the strongest when the distur-
bances act in the same direction as the inputs on the touchscreen. Moreover, by using the
previously-mentioned frequency decomposition technique, the contribution of the motion dis-
turbance signal on the touchscreen input could be evaluated for the different conditions. In
this way, the feasibility of BDFT estimation using frequency response methods could be eval-
uated. For the cases where motion disturbance contribution on the touchscreen input was
large enough, a mass-spring-damper model was fitted in the frequency domain which ideal-
ized the relationship between the motion disturbance and the feedthrough in the screen input
(as described in the previous section).

The fact that the influence of BDFT on the touchscreen input could be identified in the fre-
quency domain inspired Khoshnewiszadeh and Pool (2021) to use it in a beneficial way. The
study investigated the performance of model-based signal cancellation techniques in dragging
tasks which consisted of continuous multisine 2-D target following tasks and 2-D step inputs
replicating a waypoint relocation. A mass-spring-damper model suggested by the previous
study was fitted on the individual runs in order to model the effects of BDFT, and global-level
models were constructed by averaging the parameters accordingly. Even though the cancel-
lation performance was acceptable, it was concluded that models more tailored to particular
individuals would allow a better cancellation performance in the case of model-based signal
cancellation (similar conclusion as Venrooij et al. (2011a)). When discussing the individualiza-
tion of the models, the study tried to understand the roots of the variation between and within
the subject’s BDFT dynamics. Similar to previous research performed in inceptor-based sys-
tems, Khoshnewiszadeh and Pool (2021) agrees that there is a modest contribution from the
anthropometric characteristics to the differences in BDFT behavior. On the other hand, he
also hypothesizes as in other studies that differences might appear from different strategies
that can be used to perform the task and differences in muscle activity. Moreover, it was also
shown that not all the tasks were suitable for the model-based cancellation approach since
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sometimes an amplification of the BDFT was obtained by applying the model to the step task.
One possible explanation for the degraded performance in the latter case is the possibility
of nonlinear effects appearing due to the low velocity and static friction present at the finger
interaction at the end of each step movement.

It is important to realize that the model used to characterize and cancel BDFT in touch-
screens lumps together all the contributions starting from the motion disturbance signals and
ending at the screen input. In this way, the impact of the disturbances on particular body parts
can not be straightforwardly identified. In other words, it is difficult to know what effect is at-
tributed to what part of the body, and what part of the body is most susceptible to disturbances.
Moreover, as it was previously described, by using this kind of lumped-parameter models, one
can only hypothesize the cause of the differences in the BDFT behavior between and within
subjects. One particular research direction that could help towards the understanding of how
certain body parts respond to disturbances would be to investigate the use of motion-capturing
techniques that can track the evolution in time of some pre-defined features (for example on
the upper limb). In this way, the author considers that a better understanding can be obtained
regarding how the body behaves in a disturbed environment and the investigation of the exis-
tence of possible patterns which could provide information regarding within/between-subject
variability can be performed.

3.4. Conclusions
The limited body of knowledge in modeling the BDFT effects in touchscreen operations made
it an interesting topic for further research. Moreover, models which can capture either within-
subject variability or between-subject variability have been scarcely analyzed in the previous
literature. It is of interest to further explore methods that can possibly capture, quantify and
adapt to these types of variabilities in touchscreen operation for the application of cancellation
of the BDFT effects.

Efforts have been made in the 21st century to create a unified framework to describe BDFT.
It was observed that a relationship between the feedthrough of accelerations and the neuro-
muscular setting existed. As a consequence, the hypothesized dependence of BDFT on the
HO’s interpretation of the task, and on the reference limb positions was demonstrated, being a
source of within-subject variability. Along with this, the between-subject variability of the BDFT
was also investigated when models with different generality levels were used for model-based
cancellation of BDFT effects (Venrooij et al. (2011a) and Khoshnewiszadeh and Pool (2021)).
In this way, the importance of capturing in a model both the variations within a subject and
between subjects was brought to attention. It is important to mention that the between-subject
variability can have two causes, one originating from different anthropometric characteristics
(which was shown to have little impact), and the second one originating from the different
approach of performing the task (different neuromuscular characteristics).

A clear dependence of BDFT on the settings of the neuromuscular system was demon-
strated in stick-based operations. Moreover, it was shown that for a ”good” cancellation per-
formance the BDFTmodels in inceptor-based systems would need to be adapted to the current
setting of the neuromuscular system. It needs to be recognized that one way of detecting the
setting of the neuromuscular system is by using motion-capturing approaches. Since previous
studies which investigated the BDFT in stick-based operations focussed on two distinct neuro-
muscular settings, namely ”stiff” and ”compliant”, a value-adding first step toward the creation
of adaptive BDFT models for touchscreen operation would be to investigate whether these
two distinct settings can be identified by using data from a certain motion-capturing approach
and related to the input signal observed at the screen level.





4
Motion recording techniques

This chapter aims to give an overview of the most widely known techniques that have been
used to record the motion of the body or limb of the humans. The chapter will start with a
short description of the marker-basedmotion-capturing techniques, which currently is the most
widely used approach in this field. Continuing, the use of accelerometers for recording the
motion of the limbs will be investigated. Lastly, the performance and applications of markerless
motion recording techniques will be investigated and compared with the previous methods.

4.1. Background information
The goal of the motion-capturing techniques is to provide a kinematic analysis of the different
body segments by using information from a multitude of landmarks positioned on or recorded
from the limbs. In this way, an idealized configuration of the segments of the body can be
obtained, along with the positioning of the individual landmarks in the physical space. More-
over, if the positioning of the landmarks is obtained, the relative locations between the bodily
segments can be resolved along the measurement period.

Motion-capturing techniques have been used in a wide range of applications. Clinical appli-
cations have made the most use of these techniques in areas such as: postural analysis and
control, stroke rehabilitation, and range of motion analysis for rehabilitation purposes (Yahya
et al., 2019). Other applications such as movement analysis in sports, used for the analysis
of movement ergonomics, and in movies used for realistic movement replication are also two
important fields that made use of these techniques (Chen et al., 2020).

Figure 4.1: Overview of the most widely-used motion capturing techniques (Mugge, 2022).

Figure 4.1 presents a brief summary of the techniques that will be discussed in this report.
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It needs to be mentioned that additional techniques which were not included in this represen-
tation exist and were not included since they were considered far from the scope of the current
research topic. Saying this, the state-of-the-art in motion capturing (which is not included in
the previous representation) is bi-planar videoradiography (fluoroscopy) (Wade et al., 2022).
This method is based on bone movement analysis from continuous X-ray recordings. In this
way, computer-aided software can be used for identifying the 3D centers of the joints and joint
angles. This method has not been taken into consideration for further analysis since it can
only capture one joint at a time (limited capture volume) and has potential drawbacks from the
exposure to radiation (Wade et al., 2022).

4.1.1. Marker-based systems
The limitations of the previously-mentioned method have led to the marker-based techniques
being the most commonly accepted method that has been used for capturing the motion.
These systems make use of makers which are positioned on key locations of the human body.
The two types of markers that can be used are passive (reflect infrared light) and active (emit
light) (Cahill-Rowley & Rose, 2017). Special cameras (i.e infrared) depending on the marker
type are used to record the position of the markers with a sub-millimeter accuracy (Buckley
et al., 2019). In order to obtain the 3D location of the markers, triangulation methods are
applied (i.e. Direct Linear Transform (DLT)) which combine the information (pixel locations)
from multiple calibrated cameras. The combination of specially tailored cameras and markers
allows for the precise identification of markers from the camera images. The 3D location of
the markers is used to infer particular joint locations and joint angles. A possible disadvantage
of the optoelectronic systems is represented by the need for careful positioning of the mark-
ers on the relevant parts of the limbs. In addition to this, the positioning of the markers is a
time-intensive process and the repeatability of the measurements within the population study
can be questionable (Wade et al., 2022). Moreover, optoelectronic systems are costly, and
their use is restricted to special laboratory environments requiring multiple camera systems
(D’Antonio et al., 2021) and specially trained people. Moreover, since the markers are applied
on the skin, artefacts linked to the relative motion between the skin and the bones can be
introduced which can create errors in the interpretation of the joint rotations (Schmidt et al.,
1999). Lastly, the 3D position of the markers is facilitated by the fact that each marker is seen
by at least two cameras (such that the triangulation procedure can be performed). In the case
of movements that require large excursions, the occlusion of the markers can occur which can
disrupt the measurement flow.

4.1.2. Inertial-baseds systems
A cheaper and less-restrictive alternative for capturing the motion is the use of Inertial Mea-
surement Units (IMUs) (Palermo et al., 2014). The IMUs can indicate the linear acceleration of
the device along with the angular velocity and, if also a magnetometer is introduced, the orien-
tation with respect to the local magnetic field (Yahya et al., 2019). In this way, the positions and
orientations of the analyzed limb segments can be obtained with respect to a non-moving ref-
erence frame. Usually, these can be obtained by combining the accelerometer measurements
which can be integrated in time with kinematical models (Zhou & Hu, 2007). The principle of
obtaining the orientation of the limbs with respect to a global frame is based on a series of 3D
rotations and on the assumption that the IMUs are positioned on rigid segments represented
by the limbs. In this way, an important step in obtaining an anatomically correct joint rotation,
a sensor-to-segment calibration procedure needs to be performed where the orientation of
the IMU with respect to a consistently-chosen anatomical axis is obtained (Roetenberg et al.,
2009). It is important to realize that accelerometers do not provide perfect measurements of
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the quantities of interest. Most often, the obtained quantities are noisy and contain inherent
biases which affect in turn the estimation of the desired measures. A common way to cor-
rect these problems is by using Kalman Filters (Roetenberg et al., 2007). A possible issue
in some environments can be also represented by the inability of using the magnetometer
due to ferromagnetic disturbances. In this condition, the reference yaw position can not be
obtained reliably anymore. Studies such as Baldi et al. (2019) or Ligorio et al. (2020) have
developed methods, and calibration techniques in order to overcome the limitation of not using
the magnetometer information. One possible advantage of using accelerometers as a motion-
capturing technique is the fact that they don’t need specialized laboratories for performing the
experiments. Moreover, the occlusion of the body parts does not need to be taken into ac-
count since this method does not rely on cameras. One possible disadvantage is the need for
a calibration procedure, which can affect the outcomes of the measurements if not performed
correctly Ligorio et al. (2020). Moreover, it is important to investigate the repeatability of the
measurements within a subject and between the subjects (Öhberg et al., 2019). Lastly, it
needs to be mentioned that most of the studies that have used this method did not assess the
movement of the limbs in disturbed environments and therefore, the effects of disturbances
on the estimated limb kinematics is currently not widely known.

4.1.3. Markerless systems
Recent advancements in computer vision and machine learning techniques facilitated the in-
troduction of markerless motion-capture techniques. Markerless motion-capture techniques
are able to detect body-specific landmarks from images or videos. Based on the dimension-
ality of the output features, the markerless can be categorized into 2D pose estimators and
3D pose estimators. Two of the most popular open-source 2D pose estimation algorithms are
OpenPose (Cao et al., 2017) and DeepLabCut (Mathis et al., 2018). Moreover, based on the
number of persons that can be identified, the 2D pose estimators can be further split up into
single or multi-person pose estimators (Liu et al., 2022). Most of the techniques are based on
Convolutional Neural Networks, making use of an encoder (high-level feature extractor) and
decoder (estimation of the keypoint locations) (Liu et al., 2022). Again, two main approaches
of implementing the decoder is by having a detection-based approach where heatmaps of
the features are obtained (resulting in the features with the highest probability) or by having
a regression-based approach (directly obtaining the target parameters). When discussing the
problem of multi-person pose estimation, twomain approaches can be identified: the top-down
and bottom-up paradigms. Regarding the top-down approach, this framework identifies each
person separately and then extracts the ”bounding box” (Liu et al., 2022) features for each per-
son. On the other hand, the bottom-up approach detects the features for all persons together,
and then each feature is assigned to one person. Two of the most It needs to be mentioned
that one disadvantage of the markerless-based approaches is represented by a decreased
accuracy when compared to the other methods (especially the marker-based approaches).
One possible reason for this is that these approaches depend on a set of manually labeled
data which they are trained on. This, along with possibly limited scenarios in which the Neural
Networks (NN) might be some of the aspects which lead to inaccuracies in these methods.
Moreover, it is expected that their performance under occlusion situations and in poor lighting
conditions to decrease. One advantage of these approaches is that they are non-intrusive and
can be applied to videos/images captured by any camera available, making them a suitable
approach to be investigated in non-laboratory specific environments or in space-constrained
places.

The following sections will elaborate on the applications of the previously-mentioned meth-
ods in practical scenarios.
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4.2. Applications of the motion capturing techniques
4.2.1. Applications of the marker-based systems
As described in the previous section, marker-based motion recording systems have mostly
found applications in the clinical medicine domain. Their main goal is to provide a quantita-
tive indication of the Range-Of-Motion (ROM) for different parts of the human body (i.e. gait
analysis), with the goal of evaluating the potential implications of certain conditions or even to
early diagnose some of these. On the other hand, another possible application sector is the
sports domain (van der Kruk et al., 2018), where careful analysis of motion ergonomics can
be made in order to enhance athlete performance. Both areas have in common the fact that
most of the analyses are made by evaluating the joint angles (i.e. relative rotation between
two adjacent body segments) instead of analyzing specifically the 3D location of each marker.

Researchers have tried to evaluate the accuracy and applicability of marker-based sys-
tems against the state-of-the-art, fluoroscopy approach. One such example is presented
by Fiorentino et al. (2017) which compared the two approaches in the evaluation of the hip-
complex ROM. The study investigated static poses and dynamic walking scenarios with the
goal of analyzing the effects of soft tissue artifacts on the estimation of the pelvis, thigh, and
hip joint angles. It was reported that the soft skin artifacts associated with the relative move-
ment of the markers with respect to the skin were dependent on the subject and on the activity
that was performed. Moreover, a general conclusion made by the study was that the apparent
ROM was underestimated in the case of using the markers applied on the skin. Taking a step
back, it might be the case that the joint angles might not be a useful quantity when analyzing
the biodynamic response of the body under disturbed environments. Nevertheless, it can be
expected that if the logistical drawbacks would not make this method an infeasible one, indi-
vidual markers could be used for tracking in the 3D space particular limb landmarks. Saying
this, the same study analysed also the position error between the two methods, reporting an
error of at most 1[cm] in all directions.

One possible example of using marker-based systems for upper limb kinematic analysis is
the research proposed by Figueiredo et al. (2015) on the topic of analysis of joint movement
for subjects with cerebral palsy. It has been hypothesized that patients with cerebral palsy
exhibit certain movement patterns that reflect a necessary accommodation of the subject to
the task at hand due to limitations in the available movement space.

Figure 4.2: Overview of the set-up of
the markers used for the kinematic

analysis of the upper limbs (Figueiredo
et al., 2015).

Figure 4.2 presents the upper body marker distribution
that was used to track the upper limb kinematics. The three
investigated segments namely the upper arm, forearm, and
trunk were assumed to be rigid elements represented by
the single white markers positioned on the distal and proxi-
mal anatomical landmarks. In turn, each defined segment’s
orientation and position were tracked by the cluster sets of
three markers. The reason for using three-marker clusters
is the fact that three points are needed to define a plane
(orientation in space with respect to a reference system).
The positioning of the markers and computation of the joint
angles was defined in accordance with the guidelines pro-
posed by the international society of biomechanics (Wu et
al., 2005).

In a separate study, Rawal et al. (2018) investigated
the upper limb ROM for driving applications. It was men-
tioned that the joint angles were obtained by combining
the marker-based system with a rigid-body analysis and in-
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verse kinematics. Moreover, it was recognized that the assumption for the rigidity of the upper
limbs could be considered valid when the joint angles would need to be computed. The results
of the articles are out of the scope of the current study, and therefore they will not be further
investigated.

From the student’s knowledge, very few studies analyzed the use of marker-based systems
in the biomechanical analysis in disturbed environments. Jack et al. (2013) researched an ex-
perimental set-up consisting of a mechanical lever arm and reflective markers in a disturbed
environment. As previously indicated, the study recognized the importance of the complex in-
teraction effects of posture and muscle activation on the feedthrough of accelerations through
the human body. The goal of the study was to investigate whether an accurate acceleration
description could be obtained from the 3D tracking of a set of markers. The acceleration time
traces were obtained by double differentiation of the position signals obtained from the camera
tracking system. The study reported that the marker-based system could be used to feasibly
detect translational vibrations up to 10[Hz] and rotational vibrations up to 3[Hz]. Moreover,
when compared to accelerometer measurements, the system was able to replicate the RMS
linear and peak acceleration measurements with less than 5% difference suggesting that it
could be a viable option for obtaining acceleration measures for seat-to-head transmissibility
investigations. The authors recognized the sampling rate and the resolution of the cameras
as two important parameters that can affect the quality of the results. The sampling rate is an
important quantity since it dictates the frequency band that can be captured in the movement
analysis (a low sampling frequency can ”lose” some information from the movement). More-
over, another aspect that needs careful consideration is the differentiation of noisy unfiltered
position signals which can amplify the noise. Lastly, the six cameras used by the motion-
capturing system might present a great disadvantage in terms of the mobility of the equipment
and applicability to other scenarios such as motion platforms possessing greater dimensional
constraints. Given this aspect, the study recommends the investigation of the feasibility of
markerless systems for capturing motion.

4.2.2. Applications of the inertial-based systems
Most of the studies investigating the use of inertial-based systems for tracking motion focused
on obtaining either the joint angles from devices positioned on adjacent segments, and/or the
limb positions by combining the accelerometer, gyroscope, or magnetometer information with
kinematic models. It is important to distinguish the two main applications of inertial-based
systems that have been introduced in this report. If, in the previous sections accelerometers
were used to understand how the disturbances are transmitted through the human body, this
section describes the use of inertial systems for the kinematical analysis of the limbs.

One of the first studies which investigated the use of accelerometers in the estimation of
the upper limb kinematics is the report presented by Zhou and Hu (2005). The goal of the
research was to investigate methods of obtaining the joint kinematics of the upper limb with
the help of one accelerometer mounted on the wrist and a kinematical chain model. The
study used the intuition that the upper limb motion can be considered as a motion of rigid
body segments in order to create a kinematic chain model which linked the shoulder to the
wrist position. Since the only source of information was the wrist position (from integrating the
accelerometer outputs), the kinematical model was used for an inverse kinematical analysis
which was used to derive the elbow inertial position from a known wrist position. Due to the fact
that the inertial sensors possess noise and biases, it can be expected that by integrating the
raw values, the obtained wrist position would drift in time. In order to solve this problem, the
researchers proposed an optimization approach based on the constraint that the length of the
segment is constant. When comparing the method with a marker-based approach, deviations
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in the inertial coordinates were at most 3.5[cm]. Part of the discrepancies were hypothesized
to be present due to non-rigid behavior and tremors/vibrations of the upper limb.

The study performed by Cutti et al. (2008) proposed a methodology based on four ac-
celerometers to investigate humerothoracic, elbow, and scapulothoracic kinematics in ambu-
latory conditions. Four accelerometers were positioned on the sternum, scapula, humerus
and wrist in order to be able to record the relative rotation between the adjacent segments
(segments assumed rigid). The methodology consisted in the positioning of the sensing units,
a definition of a set of anatomically meaningful reference systems which are used for the
joint angle computations, and their evaluation with respect to the set of axes defined by the
sensing units. The definition of the anatomical axis system with respect to the sensor axis
system was performed during a static trial, where the subject was instructed to stay still with
the hands oriented downwards. In order to compute the joint angles, the axes of the anatomi-
cal reference frames were continuously updated based on the orientation of the sensing units
and on the relation between the two axes, and individual angles were obtained by selecting
a certain Euler-angle sequence. The comparison of the previously-mentioned approach with
a marker-based system provided satisfactory results. It needs to be mentioned that similar to
the marker-based systems, the approach of using accelerometers can also suffer from soft-
tissue artifacts. Taking a step back, the relevance of obtaining the relative joint angles in the
analysis of the feedthrough of disturbances is questionable. On the other hand, it is expected
that the time traces of joint angles could possess some information regarding the stiffness of
the neuromuscular system.

Similar to the marker-based systems, an approach based on IMUs requires careful posi-
tioning of the sensors on the subject’s limbs. Moreover, it can be considered rather difficult
to be able to replicate the same positioning across all the participants. In this way, it can be
expected that the repeatability of the results would be affected which can introduce potential
confounding factors. Saying this, Höglund et al. (2021) recognizes that a large between-study
variability exists when it comes to the kinematical analysis of the upper limb, possibly being
caused by a lack of standardization of sensor placements, procedures used for calibration,
and biomechanical models. In this way, the study had the goal of investigating how upper
limb kinematics are affected by different placement of IMUs. In order to investigate concur-
rently the different placement of IMUs, two pairs of IMUs were simultaneously mounted on
the scapula, humerus, and lower arm. The results have shown that the between-sensor vari-
ability is lower for tasks performed on a single plane compared to more complex, compound
tasks. Moreover, it was also observed that the different positioning of the sensors affected in
a different way the kinematic results for the different segments of the upper limb. The sensor
placement had a bigger influence on the kinematic behavior of the scapula (abduction and
flexion) and of the elbow (prono-supination). One possible reason for these differences is the
activation of the muscles which can disturb the positioning of the IMUs.

In order to be able to derive the relative rotations between two segments, a calibration
procedure is needed for the measurement units. In this way, the relative rotation between the
IMU axis and the defined anatomical axis is obtained. Ligorio et al. (2017) recognized that
there are two main ways in which a calibration can be made. The anatomical method requires
a static pose to be performed in a short time, and the sensor-to-segment calibration is made
by imposing some assumptions about the position of the limbs in the static pose. A second
calibration method is called the ”functional” method, which requires the subject to perform pla-
nar motions in order to estimate the anatomical rotational axes. The functional method made
use of an eigenvector analysis in order to estimate the elbow flexion axis, and the longitudinal
axes of the lower arm and of the upper arm (again by assuming a kinematic chain model for
the upper arm and lower arm segments). One of the main advantages of functional calibra-
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tion methods is that they don’t need an accurate placement of the sensors. Moreover, it has
been reported that it can be possible to obtain more accurate elbow joint angles with functional
calibration methods, compared to methods relying on an anatomical definition. Lastly, when
compared to a marker-based system, the kinematical analysis provided by the sensors had a
deviation of maximum 4[deg].

As previously presented, the IMUs consist of a set of accelerometers, gyroscopes, and
magnetometers. The fact that the individual measurements from each sub-sensor can not
provide directly the orientation of the IMU in inertial space and some of the quantities can
be affected by noise, bias, and magnetic disturbances has inspired researchers to come up
with novel solutions to solve for these shortcomings. One example is the study proposed by
(Ligorio et al., 2016) which investigates a method consisting of an Extended Kalman Filter
and the TRIAD method, in order to accurately obtain the orientation of the sensor. It needs to
be recognized that under some circumstances, magnetic disturbances can be present in the
environment in which the IMUs operate. Saying this, in those situations, the magnetometer in-
formation can not be reliably used anymore. Studies such as Truppa et al. (2021), Ligorio et al.
(2020) or Truppa et al. (2022) investigated methods that have bypassed the use of the magne-
tometer for computing the orientation of the IMU using Kalman Filters or time propagation of
fictitious axes based on initial measurements. One very important consideration was made in
the study proposed by Truppa et al. (2022) referring to the fact that the Kalman Filter Algorithm
was tested with either quasi-static or slow movements implying that the gravity vector was eas-
ily obtained. The study acknowledges that the algorithm’s accuracy was not investigated in
fast dynamic situations, which are certainly encountered in disturbed environments. Taking
a step back, it has been observed that most of the studies that were investigated analyzed
rather slow movements under static situations. In this way, it is difficult to hypothesize what
are the effects of disturbances on the quality of the kinematical analysis when using IMUs.

4.2.3. Applications of the markerless systems
Both of the previously-described methods relied on either physical markers or inertial measure-
ment units to be positioned on the limbs of the subjects. Moreover, both systems require a
careful calibration procedure in order to make sure that anatomically meaningful quantities are
obtained from the movement analysis. In recent years, researchers have focussed on alterna-
tive methods for identifying certain features of the human body without the need of mounting
any device. One possible method for solving this problem is the use of pose estimation algo-
rithms based on deep-learning techniques applied on pictures or videos.

Figure 4.3: Timeline of the publication of the most well-known 2D and 3D pose estimation algorithms (Liu et al.,
2022).
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Figure 4.3 presents an overview of the published works and datasets linked to 2D and 3D
pose estimation techniques. As can be observed, the body of knowledge in this field is large,
and a thorough analysis of all its details can represent a literature study in itself. Saying this,
the following section will only present a short description of some of the characteristics and
applications of these methods.

Markerless methods can be split-up in two main categories based on the number of cam-
eras that are being used, namely single-camera (monocular) andmulti-camera systems (Wade
et al., 2022). Furthermore, monocular systems can be used for both 2D and 3D detection of
the features of the human body, whereas multi-camera systems are used for the 3D detection
of these features. Two main approaches have been used for the representation of the human
body in these approaches. The ”keypoint-based representation” (Liu et al. (2022) p.p. 80:6)
provides a simple overview of the keypoints of the body representing joint centers such as the
elbow or shoulder. On the other hand, a richer description is provided by the ”model-based
representation”, where models which replicate the structural characteristics of the human body
are exploited, such as volumetric models.

Figure 4.4: OpenPose features
extracted from a human subject. 1

When discussing monocular 2D keypoint approaches,
OpenPose (Cao et al., 2017) can be considered one of
the most intuitive and popular methods for the detection
of the keypoints. The algorithm provides options for detect-
ing up to 135 features ranging from different body parts to
hand features. As pointed out by Wade et al. (2022) and
observed in Figure 4.4, this algorithm can extract two fea-
tures per each defined segment, defining the joint center
locations in the proximal and distal areas. This aspect pro-
hibits the evaluation of the 6DOF of the segment due to the
fact that an additional point would have been needed to be

defined in order to create a plane that can describes the rotation about a particular axis (Wade
et al., 2022). One important aspect that needs to be recognized in the evaluation of features
extracted from one camera is that the depth information is non-existent. In other words, the
feature space is only present on one plane (the plane of the image). In this way, Wade et al.
(2022) suggests that in order to obtain relevant biomechanical information from a pure 2D
analysis, it needs to be assured that the camera plane is parallel to the plane of movement. If
the camera plane is not parallel to the plane of movement, the joint angles could be affected
by the projection error imposed by the monocular condition. Another example of depth loss is
the example of Figure 4.4, where the left/right wrist and elbow keypoints might appear on the
same plane on the image, but in reality there is a depth difference present.

An additional popular markerless motion recording algorithm is DeepLabCut developed by
Mathis et al. (2018). One particular novelty exploited by the previously-mentioned methods is
that it enables tracking user-annotated data or, in other words, features that are defined by the
user by using transfer learning. Although not very prominent in the literature, several studies
compared the planar 2D markerless estimation techniques with 3D marker-based solutions
when using DeepLabCut’s algorithm. Based on (Wade et al., 2022), several studies such as
Drazan et al. (2021) (jumping) or Moro et al. (2020) (gait analysis of stroke survivors) focussed
on the movement analysis of the lower-body limbs in the sagittal plane. The suitability of using
markerless systems was enforced by the reported difference of 10− 20[mm] compared to the
marker-based systems when identifying the joint centers (Wade et al., 2022). On the other
hand, the study performed by Stenum et al. (2021) which also investigated the human gait
during walking reported spatial errors of 1 to 20[cm]. Unfortunately, the authors have not

1https://github.com/CMU-Perceptual-Computing-Lab/openpose
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reported any explanation why the differences were so big. One hypothesis offered by Wade
et al. (2022) is the possibility of the estimation algorithm of wrongly labeling the limbs (i.e. left
limb instead of right limb). In this way, the recommendation made by Wade et al. (2022) is
that the positioning of the cameras shall be carefully analyzed such that the risk of occlusion
is low. Nevertheless, this fact implies that an analysis of the expected movement profiles shall
be made in order to eliminate potential factors which may influence the quality of the results.
Lastly, given the accuracy evaluations of the previously-mentioned studies, it is expected that
the overall performance of the system to be dependent on the type of movements that are
being performed and the characteristics of the camera such as resolution and sampling rate.

It needs to be mentioned that monocular sets of images/videos can also be used for ob-
taining 3D keypoint configurations. The problem that focuses on transforming 2D information
into 3D is a complex one, since information obtained from monocular systems induces depth
ambiguity (Liu et al., 2022). In order to obtain depth information, methods that exploit prior
geometric knowledge, statistical models for the limbs, and which use temporal information
have been developed (Liu et al., 2022). One example of such a method is presented in the
study researched by Chen et al. (2020), which uses neural networks which exploit both spa-
tial and also temporal features to resolve the 3D pose estimation problem. When evaluating
the methodology against a pre-labeled dataset with 3D features (thus not against any other
motion analysis technique), the method performed with an accuracy of 30 to 40[mm]. Another
representative study that can be considered is the research performed by Rempe et al. (2021)
which focuses on using already-labeled 2D data (i.e. from OpenPose) to estimate the motion
in 3D, the shape of the body, the ground plane, and the contact points. The method is based
on a generative and autoregressive model capturing the 3D motion dynamics. By training the
autoencoder, a model of a distribution of pose transitions is obtained. The autoencoder is
trained on a manually-labeled 3D dataset from motion capture experiments and is used as a
prior for the motions at a specific point in time, helping in obtaining the depth information for
the motion. One possible drawback of this method is the presence of rather large errors rang-
ing from 26 to 35[cm] when comparing the 3D keypoints obtained from inputting 2D keypoints
from OpenPose with manually-labeled 3D joint positions from a data-set. Besides the present
ambiguity in depth information encountered by the monocular 3D markerless techniques (Liu
et al., 2022), these methods were demonstrated to be slightly less accurate compared to their
multi-camera counterparts (Wade et al. (2022), Desmarais et al. (2021)). Moreover, as Liu
et al. (2022) points out, there is a lack of enough in-the-wild 3D datasets that are used to train
these methods, meaning that their generality may be low (when compared to 2D datasets)
or restricted to a certain camera set-up or perspective. Lastly, it was observed that validation
studies of themonocular 3Dmethods in biomechanical applications are very scarce (according
to the student’s knowledge).

The intuition that a set of multiple images can provide much more information than a single
one (Desmarais et al., 2021) inspired researchers to combinemarkerless systemswithmultiple
calibrated cameras with the goal of obtaining a 3D representation of the features of interest.
The principle behind this approach is to calibrate two or more cameras and in turn, obtain their
relative location with respect to a global frame. In this way, if the same landmark is seen by two
or more cameras, it can be triangulated, and its 3D location can be obtained in either a global
frame or coincident with one of the camera frames. Both OpenPose and DeepLabCut provide
information regarding using multiple cameras for triangulation. Usually, software is available
online which can help with camera calibration and triangulation. For example Python/OpenCV
(Bradski, 2000), MATLAB (“Computer Vision Toolbox Camera Calibration”, 2023) or separate
studies such as Theriault et al. (2014) (suggested by Mathis et al. (2018)) provide ready-to-use
protocols or software for camera calibration.
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The study performed by (Mathis et al., 2018) provides an intuition regarding how the labeled
2D data can be transformed in 3D. The study does not provide a detailed description of how
the camera calibration was made, but describes that a set of 6 cameras (90 Frames Per
Second and a resolution of 1080 pixels) were used in combination with the OpenCV library
(which performed camera calibration and triangulation) in order to obtain a 3D description of
a particular scene.

Figure 4.5: Oveview of the triangulation results for obtaining the 3D pose of a subject (Arac et al., 2019).

The study performed by Arac et al. (2019) (Figure 4.5) proposed a combination of Open-
Pose’s 2D keypoint detection algorithm with a two-camera set-up (170 Frames Per Second)
and MATLAB’s Camera Calibration toolbox. In order to obtain the intrinsic and extrinsic param-
eters of the cameras, the researchers used a checkerboard pattern (10x 7 with 11.5 x 11.5[cm]
squares) in combination with the previously-mentioned toolbox. Based on Figure 4.5, it could
be observed that besides the 3D trajectories, the keypoint velocities were computed during a
set of 10 reaches. The computed velocities need to be carefully analyzed due to the possibility
of noise amplification in case of noisy position signals. One possible disadvantage of the study
is that the approach was not validated using alternative motion capturing systems.

Nakano et al. (2020) performed a study where a multi-camera markerless system was com-
pared to a marker-based system. The study included both slower movements like walking and
faster tasks such as ball throwing. The 2D pose estimation with OpenPose was combined with
five cameras which ran at either 120[Hz] or 30[Hz]. The calibration procedure was performed
using a calibration pole whose global coordinates were known. The synchronization of the
videos from each camera was made with a bright light which represented the reference frame.
The 2D to 3D extrapolation was made with the DLT method (Miller et al., 1980). The study
reported a mean absolute position error between the time-series data (keypoints) recorded
with the two methods to be less than 30[mm] in 80% of the trials. The presence of errors can
be attributed to the not always correct manually-labeled training data used to train the marker-
less detection algorithm. There were also cases where the errors were slightly bigger, being
attributed to OpenPose failing to detect the pose of the subject or attributing wrong keypoint
positions. Other possible sources of error include the synchronization between the cameras or
occlusion of some body parts. It is also important to mention the contribution of the camera’s
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sampling rate and resolution to the accuracy of the results. In general, it can be expected
that a camera with a higher sampling rate would lead to a more detailed capture of the motion.
On the other hand, the accuracy results of the study which compared a camera with a better
resolution and lower framerate with a lower resolution and higher framerate are inconclusive
with a slight advantage over the camera with a higher framerate. The accuracy can be also
affected by the speed of the task. It was observed that on average, the joint centers during
slow movements were identified more accurately compared to the case of faster movements.

A similar study was performed by D’Antonio et al. (2021), which investigated the compar-
ison between markerless triangulation based on OpenPose and an IMU system when ana-
lyzing the lower limb movement joint angles during walking/running. Besides the previously-
mentioned comparison, the study also compared different sets of camera configurations.

Figure 4.6: Overview of the checkerboard
pattern used for calibration (D’Antonio

et al., 2021).

Themotions were recorded with two webcams which
operated at 60 frames per second, being placed 1[m]
apart. Moreover, the angle between the cameras was
between 40 and 50[deg.], the different camera configu-
rations preserving the relative positioning between each
other. The calibration of the cameras was performed
with the help of MATLAB’s Stereo Camera Calibration
app, using a checkerboard pattern (Figure 4.6) with 45
paired images. The study also proposed a manual vali-
dation of the calibration of the camera system based on
epipolar geometry, by computing the average reprojec-
tion error of a triangulated feature during one trial. As in
the previous study, the largest contribution to the errors
was represented by the occlusion phenomenon which
influenced the correspondence between two features in
the two image planes. Moreover, the kinematical accuracy was affected by the positioning
of the cameras, the activity that was performed, and also by the possible mismatch between
OpenPose’s predictions of the same real landmark on the separate picture planes. The study
suggested an increased number of cameras would be suitable for better accuracy and better
coverage of the body parts. The reason for this statement is that by usingmultiple cameras, the
influence of one possible inaccurate detection of a feature by one camera can be counterbal-
anced (less weight) by the assumed accurate features detected by the rest of them. Although
consistent angular trends were observed between the markerless system and the IMUs, the
proposedmethod was not entirely suitable for an accurate kinematic analysis of the lower body
flexion/extension during gait due to errors in joint angles larger than 5[deg]. Another source of
error that was not described by the authors might be represented by a mismatch between the
anatomical axes defined by the accelerometers and the ones used by the markerless systems.

In their review of markerless motion systems, Wade et al. (2022) included one of the
few studies which compared three open-source markerless systems with the state-of-the-art
marker-based system. Needham et al. (2021) compared markerless motion capturing sys-
tems such as OpenPose (Cao et al., 2017), DeepLabCut (Mathis et al., 2018) and AlphaPose
(Fang et al., 2017) against a marker-based system with 15 cameras. The markerless systems
consisted of 9 cameras which recorded data at 200[Hz]. The results showed that OpenPose
provided the closest results compared to the marker-based approach when using the stereo-
view system. It was reported that feature differences of 16 − 34[mm] (walking), 23 − 48[mm]
(running) and 14− 36[mm] (jumping) were obtained.

The previously-mentioned study presents a series of current challenges that apply to mark-
erless motion-capturing systems. Firstly, it is expected that the pose estimation algorithm can
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be affected by the clothing the subject uses. The ”apparent” change in the shape of the limbs
when using loose clothing might be a factor that affects the accuracy of the joint estimation.
Moreover, as mentioned in the 3D monocular systems, the performance of the estimations
depends highly on the datasets that the algorithms were trained on. Saying this, it can be
expected that the performance of the estimations to drop in situations/movements that were
not ”seen” during the training. At the same time, not all datasets were specifically elaborated
specifically for biomechanical applications. In other words, the annotated joint-center locations
could not always be anatomically correct.

Other validation studies such as Lim (2019) or Kosourikhina et al. (2022) have investi-
gated the accuracy of multi-camera 3D markerless systems. Lim (2019) used four cameras
in the evaluation of joint angles during functional movements. When compared to a marker-
based system, it was reported that the kinematic data under the form of joint angles obtained
at the elbow level was not significantly different for a markerless system using OpenPose.
Kosourikhina et al. (2022) reported a good agreement between two similar systems. The
study recognized that the camera calibration step was slightly sensitive (but crucial), with iter-
ations being needed in order to obtain accurate results for the stereo camera system. Another
point of attention was the necessity of video synchronization between the cameras. Lastly, the
report mentioned the possibility of obtaining ”excellent” kinematic information by using mark-
erless systems, with a relatively small accuracy tradeoff when compared to the use of the less
flexible state-of-the-art systems.

Lastly, the study researched by Zago et al. (2020), focussed on analyzing the effects of the
relative distance between the cameras, the movement direction of the subject, and the resolu-
tion of the cameras when comparing a multi-camera markerless system with a marker-based
one. The focus was directed toward the analysis of the 3D gait parameters (evolution in time
of the 3D landmarks on the lower limb) during walking. Intuitively, it was pointed out that if
the subject covers a large distance in the working volume, several features can not be tracked
accurately anymore due to the varying spatial resolution of the cameras. In other words, a
feature can be observed ”better” when it is positioned near a camera, compared to the case
when it is positioned at a large distance with respect to the same camera. Moreover, another
implication of this aspect is the fact that the pixel-to-distance conversion depends on the posi-
tion of the subject with respect to the cameras Zago et al. (2020). In this way, it is hypothesized
that not only it is difficult to track the desired features, but also the accuracy of the triangulation
can be affected. One other interesting aspect described by this study concerns the increase
in 3D reconstruction accuracy with the increase in relative camera distances (ranging from 1
[m] to 1.8[m]). It is proposed that by increasing the relative distance between the cameras,
the features are being observed from different perspectives (increased convergence) with the
tradeoff that the allowable volume of observation is decreased. This fact tends to agree with
the study researched by D’Antonio et al. (2021), which mentions the possibility of obtaining
a negligible triangulation error if the cameras are positioned at 90 [deg] relative to each other
with the risk of not being able to observe the desired feature from both of the cameras.

The advantage of markerless motion capture approaches is that they are non-invasive,
easily deployable (compared to the previous approaches), and relatively cheap. On the other
hand, they are less accurate than the golden standard and suffer from problems regarding
occlusion or false detections of the body features. However, this research will assume that
only one hand of the subject would need to be tracked while he/she is seated (the distance
from the subject to the camera does not fluctuate much) and the subject is required to perform
rather slow tasks, representing mostly a static scenario unlike the previously-mentioned stud-
ies (cameras can be positioned close to the subject for more accurate joint detection). Taking
this into consideration, it is assumed that the conditions imposed by the research will minimize
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the disadvantages portrayed by the markerless motion capture systems, making them a viable
solution for further investigation. On the other hand, it is important to take into account that the
performance of markerless systems in disturbed environments has not been analyzed before
and represents an important aspect that needs to be investigated.

4.3. Conclusions
Advancements made in machine learning and image processing techniques helped with the
introduction of markerless approaches for motion-capturing techniques. One of the most
promising approaches from the author’s perspective is represented by the 3Dmulti-camera ap-
proaches. These approaches make use of 2D markerless systems (i.e. OpenPose) combined
with at least two calibrated cameras which can be used to triangulate the 3D position of the
features. Special libraries in OpenCV or MATLAB have been constructed that can help with
automatic camera calibrations using a checkerboard pattern. Several studies tried to validate
these approaches, reporting a performance that is dependent on the speed of the performed
action, camera parameters (resolution and sampling frequency), and camera positioning (min-
imizing occlusion, the distance to the user, and triangulation errors). Studies reported a rather
acceptable accuracy of identifying body landmarks when compared to marker-based systems
(mostly in the order of 10 to 40[mm]. Even though one study has reported unacceptable joint-
angle computations (for clinical use), the overall trends in the movement were equivalent to
the ones obtained using accelerometers reinforcing the fact that even though in some cases
the accuracy might not be sufficient, the markerless techniques can replicate trends observed
in movement. It is considered that given the rather static scenario that the subject needs to
perform (operating a touchscreen while seated), the fact that the upper limb that operates the
screen would need to be tracked (minimizing occlusions), and the rather slow character of
the movement, this approach can represent a valid option for the 3D analysis of motion under
disturbed conditions.





5
Preliminary Biodynamic Model

Analysis

The goal of this chapter is to give the reader an overview of the theoretical background that has
been used for the preliminary analysis linked to the proposed biodynamic model of the upper
arm. Moreover, an overview of the assumptions and modeling choices for idealizing the upper
limb will be presented. The latter parts of the chapter will elaborate on the presentation of
several scenarios that were tested in order to gain an intuition of the behavior of the multibody
system in a disturbed environment when parameters linked to the geometry and the equivalent
stiffness are altered.

5.1. Multibody dynamics background
The contents of the sections concerningmultibody dynamics equations of motion andmodeling
approaches are tightly linked to the following sources: Moore (2022), Schwab (1998), and
Ross (2020). The information from these sources will be arbitrarily combined in order to obtain
a logical sequence of ideas.

5.1.1. Methods for obtaining the equations of motion

Figure 5.1: Representation of a multibody system with cartesian coordinates (Left) and with generalized
coordinates (Right).
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In order to better understand the differences between different methods that are being used to
obtain the equations of motion from multibody systems, a use-case consisting of two bodies
that can move in 2D has been proposed (Figure 5.1). Focussing on the left-most representa-
tion, each body has a particular mass m[kg], a length l [m], two coordinates that describe the
position of the center of mass with respect to the inertial frame nx/ny (COM) x[m] and y [m],
one angle which describe the orientation of the body with respect to the inertial frame ϕ[rad]
and rotational inertia with respect to the (not presented) inertial z-axis I [kg ·m2]. This classical
multibody problem assumes that the first body is fixed with respect to the point O in the inertial
coordinate frame, and is linked with the second body with a joint that enables a rotation with
respect to the (not shown) inertial z-axis.

If the classical Newtonian approach is considered, each body would have 3 equations of
motion linked to the change in linear momenta in the x and y axes and the change of angular
momentum around the z axis resulting in 6 total equations. Since the system is constrained in
two points, the total number of unknowns is 10 (the double derivatives of the x, y, θ quantities
and the four reaction forces which keep the first body coincident to the point O and the second
body linked to the first body). The other four equations are obtained with the help of the
constraint equations which are differentiated twice with respect to time being also a function
of the states of the bodies. [

M A
At 0

]
·
[
ẍ
Fr

]
=

[
Fext

c(x, ẋ)

]
(5.1)

Based on Schwab (1998), Equation (C.1) presents the matrix representation of the entire
system of equations for all the bodies. The matrix M is a 6x6 diagonal matrix containing the
masses and the inertia of the bodies. The matrix A is a 6x4 matrix which includes the contri-
bution from the reaction forces. It is not a coincidence that the contribution from the reaction
forces is exactly the transposed matrix/vector equation corresponding to the constraints. The
vector x corresponds to x = [x1, y1, θ1, x2, y2, θ2]. The vector Fr is represented by the reaction
forces, Fext by the external forces that are applied on the body (i.e. gravity) and the vector c
is represented by the terms in the constraint equations which are not dependent on the double
derivative of the states.

By using this approach, it can be observed that careful bookkeeping is needed in order to
correctly define the constraint equations and reaction forces. Moreover, it can be observed
that if the number of bodies or the number of constraints increases, the size of the matrices
that need to be evaluated increases considerably which can lead to computational problems.

Schwab (1998) proposes an alternative formulation of the previously-mentioned equations
of motion by using Lagrange multipliers. The method using Lagrange multipliers has the same
dimensionality as the previous one, but it does not require an explicit formulation of the reaction
forces, being directly accounted for by the multipliers applied to the constraint equations. In
this way, the system does not solve for the reaction forces, but for the Lagrange multipliers.

The observation that the Euclidean description of themass centers includes dependent and
redundant coordinates (i.e. x depends on y through the length of the segments), suggested
the introduction of an alternative parametrization method using generalized coordinates (Fig-
ure 5.1 - Right). The generalized coordinates can be considered a set of minimum coordinates
which can describe the system, that in the same time minimize the required constraint equa-
tions. It can be observed that by defining the two quantities q1 and q2, the rotational movement
is fully described without the need of enforcing any additional constraints. Moreover, the po-
sition of each body’s COM can be uniquely described by the two generalized coordinates.
The use of generalized coordinates would help in transitioning from Newton’s equations to the
definition of Lagrange’s equations, an alternative possibility of solving the EOM.
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Most of the multibody dynamical systems can include a series of constraints. According
to Moore (2022) and Ross (2020), the two main types of constraints are holonomic and non-
holonomic constraints. The holonomic constraints imply constraints on the configuration of the
system, or in other words, on the position of the bodies (the above-defined example is a holo-
nomic system since it is fixed in the inertial space and the two bodies are fixed with respect
to each other). On the other hand, a nonholonomic system is characterized by constraints
applied to the velocities of some points in the system (think about a shopping cart). in general,
for a holonomic system, it is always possible (but not always trivial) to find a minimum set of
independent generalized coordinates. For a nonholonomic system, the generalized speeds
(for example the first derivative of the generalized coordinates) are not independent anymore.
This aspect will introduce certain consequences which will be presented in the later stages of
the section.

The derivation of Lagrange’s equations is based on D’Alembert’s principle, where the equa-
tions of motion are expressed along the directions of the available displacements (allowed by
the constraint forces). It needs to be mentioned that the location of each of the bodies’ COM
can now be expressed in terms of the generalized coordinates. In this way, the admissible
virtual displacements of each of the bodies can be defined as:

δrj =
n∑

i=1

δrj
δqi

δqi, j = 1, 2, ..., N (5.2)

Equation (C.2) presents the relationship between the virtual displacements δr of each of
the N bodies with respect to the n (number of generalized coordinates) admissible virtual
displacements of the generalized coordinates δq. Furthermore, Ross (2020) defines a new
set of parameters as:

δγji =
δrj
δqi

=
δvj
δq̇i

, j = 1, 2, ..., N ; i = 1, 2, ..., n; (5.3)

δβji =
δϕj

δqi
=

δωj

δq̇i
, j = 1, 2, ..., N ; i = 1, 2, ..., n; (5.4)

It can be observed that for example, Equation (C.2) can be written in terms of Equation
(C.3) where δγji and δβji represent ”projection vectors” Ross (2020). With this definition in
mind, the generalized forces and moments are elaborated as:

Qi =
N∑
j=1

(Fj · γji +Mj · βji) (5.5)

In the case of a holonomic system, it is possible to define the number of generalized coor-
dinates to be equal to the number of degrees of freedom. In this case, the admissible virtual
displacements of the generalized coordinates are independent of each other. This aspect
leads to the elaboration of Lagrange’s equations of a nonholonomic system:

d

dt

(
δL

δq̇i

)
− δL

δqi
= Qnc

i , i = 1, 2, ..., n; (5.6)

Equation (6.8) presents the Lagrange equations for a holonomic system in the case that n
(the number of generalized coordinates) is equal to the number of DOF of the system. The term
L represents the Lagrangian, which represents the difference between the total kinetic and po-
tential energy of the system. The termQnc

i is represented by the generalized non-conservative
forces and moments. One example of nonconservative force might be the force/moment in-
duced by a damper, or an input force/moment.
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A nonholonomic system implies that some of the generalized velocities become dependent
on each other. This means also that the number of DOF of the system becomes less than the
number of generalized coordinates. In this way, the admissible virtual displacements of the
generalized coordinates are not independent on each other anymore. The same case if for a
holonomic system, a minimum set of coordinates is not defined. In this case, all the constraints
can be described by the following general form (Ross, 2020):

N∑
i=1

ali(q)q̇i + alt(q) = 0, l = 1, 2, ..., S; (5.7)

The general form of constraints (Equation (5.7)) presents a set of S constraints which
always has a term linearly related to the generalized velocity, ali(q) and a term which is not a
coefficient of generalized velocities alt(q). This results in the Lagrange equations form for a
nonholonomic system:

d

dt

(
δL

δq̇i

)
− δL

δqi
= Qnc

i +
S∑
l=1

λlali, i = 1, 2, ..., n; (5.8)

One possible advantage of using the Lagrange formulation is the minimized number of
coordinates that need to be solved for. If the example from Figure 5.1 is observed, only two
unknowns are present in the form of q̈1 and q̈2. Moreover, the resulting system of equations
obtained from the Lagrange equations is linear in the second derivative of the generalized
coordinates vector, facilitating a rather straightforward computation. On the other hand, as it
can be observed in Equation (5.8), additional unknowns in the form of Lagrange multipliers
are introduced in the case of a nonholonomic system. This implies that the system needs to
encompass new unknowns that need to be solved for.

An alternative method that can be proposed such that the use of Lagrange multipliers is
not needed is the approach proposed by Kane and Levinson (1985). Both resources, Ross
(2020) and Moore (2022) have different views on the nomenclature of the elements used for
solving Kane’s equations. Kane’s equations are also an extension of D’Alembert’s principle
where new quantities such as ”generalized velocities” and ”partial velocities” are defined. For
the rest of the report, the used nomenclature will be the one based on Moore (2022).

If, in the previous paragraphs, the generalized velocity was defined as the first derivative
of the corresponding generalized coordinate, the more rigorous definition of the generalized
velocity is given as (Moore, 2022):

u = Yk(q, t)q̇ + zk(q, t) (5.9)

Based on Equation (5.9), the vector of generalized velocities u is dependent on a fac-
tor linearly related to the vector of the first derivative of the generalized coordinates q̇ and
a term which is not related to the first derivative of the generalized coordinates. It needs to
be observed that the number of generalized velocities is equal to the number of generalized
coordinates and a valid option for the matrix Yk is the identity matrix. In this case, the terms
defined in Equations Equation (C.5) and Equation (6.8) are defined as ”partial velocities” by
Moore (2022). With these definitions, the number of independent generalized velocities for a
nonholonomic system can be chosen to be n (the number of generalized coordinates) minus S
(the number of nonholonomic constraints). In this way, the system of equations can be solved
only in terms of the independent generalized speeds. The same approach is proposed also
with a system of holonomic constraints (now with independent and dependent generalized co-
ordinates) in the case where the number of selected generalized coordinates is not minimum
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(is not equal to the number of DOF). By following this approach to solving a constrained sys-
tem, there is no need for additional unknowns attributed to the introduction of the constraints
(previously defined as Lagrange multipliers). Due to space requirements, the final equations
of motion will not be described in this report. Nevertheless, the final form of the equations of
motion also solves for the unknown generalized velocities and the first derivative of the gener-
alized velocities with the goal of obtaining the evolution of the states (generalized coordinates
and generalized velocities) in time such as (Moore, 2022):

fd(u̇,u, q, t) = 0

fk(q̇,u, q, t) = 0 (5.10)

Equation (5.10) presents the general form of equations that are attained by solving Kane’s
equations. The function fd can be obtained by solving the dynamical problem (which includes
forces andmoments), and the function fk can be obtained from the definition of the kinematical
relationship between the first derivative of the generalized coordinates and the generalized
speeds (Equation (5.9))

This section tried to give an overview regarding the possible methods of solving amultibody
system. Starting from the Newton’s definitions and reaching to Kane’s equations, it can be
observed that the number of unknowns that the system needs to be solved for decreases, and
the need of additional terms which are due to the introduction of constraints is obsolete.

5.1.2. Problem set-up

Figure 5.2: Upper arm coordinate systems (Left), an overview of the forces and moments (Right).

The proposed model used for the biomechanical analysis of the upper arm can be observed
in Figure 5.2. It needs to be recognized that a model is a simplified representation of the
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real system which can replicate a bounded set of input-output relationships. As Van Paassen
(1994) mentions, in order to obtain a simplified representation of the reality, the focus needs
to be directed only towards a limited set of aspects that need to be modeled. In this case,
the intention is to replicate the biodynamic behavior of the upper limb during the operation of
a touchscreen. The constructed model will have two main uses: firstly, the goal would be to
gain an understanding regarding the possible patterns of the response of each of the parts
of the rigid body when subjected to disturbances; secondly, the goal would be to be able to
observe the differences in the response in different locations on the simulated model, based
on changes geometry, mass characteristics, and other parameters.

The implementations that will be presented in the following sections are based on Kane’s
equations and verified with the Lagrange approach. Moreover, the methodology used for
implementing the multibody problem is inspired by the guidelines given by Moore (2022). The
set-up of the problem is defined in Python with the help of the symbolic computation tool
SimPy, along with the mechanics toolbox SimPy − Physics−Mechanics.

5.1.3. Assumptions
The following assumptions can be introduced: Each segment has a fixed mass located as a
point mass at its center of mass, the location of the center of mass remains constant during
the movement, joints are considered hinge or ball and socket joints, the lengths and moments
of inertia of the segments are considered constant during the movements (Mugge, 2022), the
moments of inertia with respect to the local y axes are considered negligible.

Moreover, based on Figure 5.2, it is assumed that point O is coincident with the shoulder
joint and can be prescribed a vertical movement pattern with respect to the inertial frame N .
In other words, the point O does not have a translational degree of freedom, but, it can have
an imposed (by the user) position, velocity, and acceleration signal with respect to the inertial
reference frame.

Furthermore, it is assumed that the shoulder joint has 3 DOFs being able to rotate around
each axis of its reference frame. The elbow joint allows for a rotation around the local x-
axis. Lastly, the hand is assumed to have a fixed orientation with respect to the lower arm.
These conventions were based on careful monitoring of the ergonomics of the upper limb
when operating a touchscreen. It was observed that during the operation, the movement is
induced mainly from the shoulder joint while the elbow just flexes/extends to accommodate
for changes in distance with respect to the screen and the orientation of the hand is constant
with respect to the lower arm.

5.1.4. Coordinate systems
The multibody kinematic chain consists of four main coordinate systems. Starting from the top,
the first coordinate system, N is the inertial coordinate system. Every velocity/acceleration is
computed with respect to this inertial coordinate system. The second coordinate system is
the local coordinate system of the upper arm, A. This coordinate system is oriented with re-
spect to the inertial reference system with a series of three consecutive rotations following the
′x, y, z′ convention with the angles q1, q2, q3 expressed in radians. Similarly, the local coordi-
nate system of the lower arm, B follows a rotation with respect to the A coordinate system
of ′q4′ around the local ′x′ axis. It needs to be mentioned that q1, q2, q3, q4 are the defined
generalized coordinates for this system, resulting in a total of 4 DOF. The last reference frame
is represented by the rotation of the local C axis with respect to the B axis. In this case, the
rotation also follows the ′x, y, z′ convention but the angles of rotation are constant (unlike the
generalized coordinates that change during the simulation). In other words, the hand coor-
dinate system keeps a fixed orientation with respect to the local B frame during a simulation
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run. Moreover, it needs to be mentioned that the coordinate frames in Figure 5.2 are in fact
coincident with the root points of each segment (they were presented in the figure with a small
offset for clarity reasons), such that they represent a set of principal axes (the off-diagonal
inertia parameters is zero).

5.1.5. Forces
The modeled forces that are applied to the multibody system are introduced in Figure 5.2
(Right). As it can be observed, each of the bodies has a specific mass, inducing a force of
gravity at each mass center.

Figure 5.3: Block diagram describing neuromuscular system, adapted from Mugge (2022) and Lasschuit et al.
(2008).

The additional moments that are applied on the kinematical chain model are based on
Figure 5.3. The block diagram describes how the activation chain results in an applied force
and, in turn, in a moment applied on the multibody system. Since the focus of this research
is to describe the biodynamic characteristics of the upper limb, the focus of the model will be
only represented by the relationship between the applied moments and the resulting position
of the skeleton. It has been decided that an accurate representation of the muscles along with
their very accurate moment arms is difficult to obtain and lies outside the scope of the analysis.
Moreover, it can be observed that two main feedback loops are present in the loop, the first
one is the intrinsic feedback which can be represented by the constant passive stiffness and
damping of the muscle characteristics. On the other hand, the additional loop is the reflexive
feedback which is usually present if disturbances are present, and can alter the activation
levels of the muscles and, in turn, the lumped damping stiffness characteristics.

Following the above-mentioned considerations, the current model contains three applied
torques per each degree-of freedom (each joint direction that is not constrained). An active
component is represented by the lumped contributions from all the muscles acting on a specific
joint, resulting in the total muscle torque which has the goal to actuate the skeleton (TXA, TY A,
TZA, TXB). The rest of the torques represent the passive elements of the muscle components
(kept constant) representing the lumped stiffness (TXAk, TY Ak, TZAk, TXBk) and damping
characteristics of the muscles (TXAc, TY Ac, TZAc, TXBc). It needs to be mentioned that the
reflexive contribution of the muscles or the time-varying characteristics of the muscles have
not been modeled/analyzed in this stage of the work.

5.1.6. Parameters
Each segment of the elaborated multibody model of the upper arm has the following parame-
ters: mass, length, inertia, equivalent spring, and damping coefficients. Usually, the geomet-
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rical parameters of the limbs such as masses, inertias, and locations of centers of mass are
difficult to obtain in real scenarios. Some approaches make use of complex scanning tech-
niques providing an overview of the limb density across different locations. Other methods
have used interpolated/extrapolated data from cadavers in order to obtain the masses and
center of masses for the limbs. One possible solution to the problem of estimating these pa-
rameters is to use regression equations based on quantities that are easily measurable such
as height, and weight (Winter, 2009).

Table 5.1: Overview of the average anthropometric data based on Winter (2009).

Segment Mass/ Total Body Mass [-] Center of Mass/ Segment Length [-] Radius of Gyration/ Segment Length [-] Segment Length/ Height [m/kg]
Hand 0.006 0.506 0.297 0.108
Forearm 0.016 0.430 0.303 0.146
Upper arm 0.028 0.436 0.322 0.186

Table 5.1 presents a set of anthropometric characteristics, which have the goal of describ-
ing the average individual possessing a combination of height and mass. The Preliminary
Results section will present how an alteration of several parameters of the model, thus replicat-
ing how either between-subject variability or within-subject variability, would affect the overall
response of the upper-limb system when faced with disturbances.

5.2. Multibody simulations
This section presents a series of investigations centered around the variation of several param-
eters of the multibody model with the goal of obtaining an intuition regarding possible within or
between-subject variability characteristics that can be encountered in the real-life scenario of
acceleration feedthrough through the limbs. An overview of the selected cases is presented
in Table 5.2.

Table 5.2: Overview of the analyzed cases of the multibody simulations

Case 1 Effect of limb length and mass.
Case 2 Effect of lumped stiffness and damping parameters.
Case 3 Effect of limb configuration.
Case 4 Investigation of the acceleration feedthrough along the limb.

Figure 5.4 presents a possible arm configuration that can be used for the analysis. For
all the cases, an inverse dynamics problem is solved such that the active torques that are
necessary to keep an initially defined configuration are applied to the bodies. Moreover, in
this stage of the research, the interaction with the touchscreen has not been modeled. Never-
theless, some conclusions can be taken regarding possible differences between and within a
subject when analyzing an arm under the subject of gravity. The set-up of the simulation would
like to mimic the effect of disturbances on a ”trimmed” condition of the upper limb (the limb
configuration does not change within a simulation). Additionally, in a later section, a series
of verification steps which make use of the computed torques under the ”trimmed” condition
will be presented. The role of the verification steps is to ensure the corectness of the chosen
method that was used for solving the multibody equations of motion.
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Figure 5.4: Overview of a possible arm configuration that is used in the simulations.

5.2.1. Effect of limb length
When analyzing the effect of the limb length, two sets of ”artificial” limbs were created, as
presented in Table 5.3. As mentioned in the previous chapters, a parametrization for the
limb lengths, masses, mass centers, and moments of inertia was made based on two inputs,
namely the height and mass of the ”simulated” subject. The two sets of parameters were ob-
tained based on two ”simulated” subjects with the following characteristics: Subject 1 (Heav-
ier/Longer), Height - 190[cm], Weight - 80[kg]; Subject 2 (Lighter/Shorter), Height - 175[cm],
weight - 65[kg];

Table 5.3: Overview of the independent variables for the Case 1

m1 [kg] m2 [kg] m3 [kg] l1 [m] l2 [m] l3 [m]

Heavier/Longer 2.24 1.28 0.48 0.35 0.28 0.21
Lighter/Shorter 1.82 1.04 0.39 0.33 0.26 0.19

Constant active torques were applied to each segment (solved using an inverse dynamics
problem) such that a desired configuration of q1, q2, q3, q4 was kept in place, mimicking an upper
limb that was hanging in the air at a particular position. The equivalent spring and damping
coefficients of the available degrees-of-freedom were assumed to have constant values. A
disturbance signal in the form of linear inertial acceleration (similar to the one used by Mobertz
et al. (2018) and Khoshnewiszadeh and Pool (2021)) was applied at the shoulder level (point
O) in the vertical (Ny) direction. The dependent variables are selected to represent the inertial
acceleration at one location of the upper limb, namely points Af which is expressed along the
three directions of the inertial frame.
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Figure 5.5: Overview of the time traces of the linear acceleration of the point Af for the shorter and longer limbs
expressed in the Ny direction.

Figure 5.6: Non-parametric magnitude and phase representation for the estimated transfer function relating the
acceleration of the point O to the acceleration of the point Af in the vertical, Ny, direction.

Figure 5.7: Overview of linear accelerations of point Af for the shorter and longer limbs expressed in the Nx and
Nz directions.

Takeaways - Limb length variation
Figure 5.10 presents a comparison between the inertial accelerations obtained at the point
representing the elbow, Af expressed in the vertical Ny direction. Moreover, an open-loop
frequency response identification technique has been implemented in Figure 5.6 in order to
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gain more insight into the magnitude and phase of the transfer of accelerations between the
shoulder point (O), and the point of interest (Af ).

It can be observed that due to the fact that the differences in the anthropometric charac-
teristics are not very high, the responses do not exhibit significant changes. Nevertheless, a
closer look at the time-domain signals reveals that the longer limbs exhibit a response with
a slight attenuation of the high frequencies compared to the shorter limbs. Moreover, there
is a slight lag present in the evolution in time of the long limbs. The transfer-function repre-
sentation can suggest similar conclusions as observed in the time domain. The longer limbs
attenuate more the frequencies around 10[Hz] compared to the shorter limbs. Moreover, the
resonant peak is more pronounced and shifted to slightly lower frequencies for the long limbs.
It needs to be mentioned that the simulations were performed by replicating a ”stiff” setting
for the neuromuscular system. This fact has the implication that the magnitude of the transfer
function between the imposed acceleration and the computed acceleration at the target point
does not deviate much from the value of one (representing the perfect transmission of accel-
erations), and the differences in phase are not significant. Moreover, in a real-life scenario, it
is expected that the acceleration measurements (i.e. from an accelerometer) are not perfect
and are contaminated with noise. This fact can make the already ”small” differences seen in
the ”analytical” responses even harder to distinguish. Nevertheless, this analysis can provide
a qualitative conclusion and hypothesis that the shorter the mass/weight of the limb, slightly
higher frequencies will pass through it (in the vertical direction) providing that the stiffness char-
acteristics are the same. Due to space constraints, the analysis focussed on the comparison
of the accelerations obtained at the elbow location. A later section will present a comparison
between the acceleration feedthrough at different locations of the arm within one ”subject”.

Since a 3D upper limb model has been proposed, a vertical acceleration would also im-
pose accelerations in the other directions of the inertial reference frame. Figure 5.7 presents
the residual accelerations of the elbow point, obtained from imposing a vertical acceleration
at the shoulder. It can be observed that quantitatively, the accelerations obtained in the di-
rections orthogonal to the direction of the imposed signal are smaller. A separate analysis
(not presented) concluded that the transfer functions do not resemble the same ”low-pass” be-
havior as in the previous case. Nevertheless, it is important to mention that these orthogonal
accelerations can affect the interaction between the limb and the screen since the surface of
the screen constrains the motion normal to the screen plane.

5.2.2. Effect of passive stiffness - Position analysis
The goal of analyzing the effects of changing stiffness is to observe how possible changes in
neuromuscular settings within a participant would affect the behavior of the upper limb. In a
real-life scenario, a motion-capturing system will be used to identify the time traces of relevant
features on the upper limb. Saying this, before designing the real experiment, is interesting to
investigate whether some information regarding the neuromuscular stiffness can be extracted
from the resulting time traces of inertial positions of the simulated limb.

Table 5.4: Overview of the independent variables for the Case 2.

(kq1 [Nm/rad], cq1 [Nm/rad2]) (kq2 [Nm/rad], cq2 [Nm/rad2]) (kq3 [Nm/rad], cq3 [Nm/rad2]) (kq4 [Nm/rad], cq4 [Nm/rad2])
Stiffer (10, 10) (10, 10) (10, 10) (10, 10)
Less stiff (2, 3) (5, 5) (2, 3) (1, 2)

Table 5.4 presents two sets of passive stiffness characteristics that are used for the analy-
sis. The two sets of values would like to simulate two neuromuscular settings associated with
a position task (stiff setting) and a force task (less stiff setting). Similar to the previous case, a
disturbance in the form of vertical linear acceleration will be imposed at the shoulder level. On
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the other hand, the lengths and masses of the segments are kept constant in order to observe
the effects of changing just the ”real” stiffness characteristics. The dependent variables of this
scenario are the positions of the points Af , Bf , and Cf expressed in the inertial frame and
computed with respect to the shoulder position (since the shoulder position changes in the
inertial frame due to the imposed acceleration). Since an acceleration disturbance is imposed
in the Ny direction, the main effects are expected to be observed in the same direction.

Figure 5.8: Overview of the positions of the points Af , Bf , Cf expressed with respect to the point O along the y
direction of the inertial frame.

Takeaways - Passive stiffness variation - Position analysis
Several conclusions regarding this scenario can be taken based on Figure 5.8. The reason
for investigating the relative position of the landmarks with respect to the ”shoulder” (point
O), is based on the fact that in a real scenario, the camera will be fixed to the simulator, and
therefore it will move with it, with respect to an inertial frame. Saying this, the camera is
expected to observe only the relative movement between the limbs and not their absolute
displacements (as if the camera would be fixed in an inertial space). As expected, the position
of the landmarks in the y direction varies less with the stiffer system. Moreover, it can be
observed that the difference in position between the stiffer system and the less stiff system
increases with the location in the set of rigid bodies. In other words, the difference in the finger
location is the biggest, whereas the difference in the elbow position is the lowest. This behavior
can be explained by the set-up of the simulation where the arm is ”hanging” against gravity
without any end pivot point. It can be observed that the overall behavior across the analyzed
points is the same due to the fact the simulations enforce linear visco-elastic properties at the
joint locations. On the other hand, the overall differences in the behavior of the two systems
encourage the author to ask the question whether ”some” differences can be observed in
a real-life scenario between the time-traces of several landmarks of the upper hand for two
distinct neuromuscular settings (as described in the literature study part). Moreover, another
interesting aspect to consider is to investigate also whether in a real-life scenario it is possible
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to classify/predict the ”correct” neuromuscular setting by analyzing the outcomes of the motion
capturing approach (the evolution in time of the recorded landmarks).

Figure 5.9: Non-parametric transfer function between the acceleration imposed at the shoulder and the inertial
shoulder (Left) and finger (Right) positions.

A frequency-domain analysis was investigated in order to check whether any quantitative
information can be obtained regarding the observed position time traces. Saying this, in a
real-life scenario, a correlation between the movement of the arm (or of the recorded fea-
tures on the upper limb) and the disturbance signal is expected. In this way, the simulated
scenario estimated the transfer function which relates the acceleration imposed at the shoul-
der level and the positions of the shoulder and finger. The reader should remember that the
transfer functions were estimated for the inertial position of the landmarks (and not for the
relative positions). When focussing on Figure 5.9 (Left) it can be observed that the behavior
for both systems is similar, replicating a double integrator. These outcomes shouldn’t surprise
anybody, since all the cases are based on an imposed vertical acceleration at the shoulder
level. By integrating twice the inputted acceleration signal, the position signal is obtained.
Figure 5.9 (Right) presents a slightly different behavior compared to the leftmost figure. The
lower stiffness system shows an amplification area and an attenuation section (with respect
to the higher stiffness case). The reason for this behavior can be related to the outcomes
of the next section where it will be shown that the acceleration feedthrough in the lower stiff-
ness setting possesses a resonant peak and a sharp attenuation of higher frequencies when
compared to the higher stiffness setting. The previously-mentioned aspect in combination
with the double-integrator behavior which transforms accelerations to positions, imposes the
overall trend observed in the rightmost figure. It is important to mention that both differences
in the time-domain and frequency-domain signals are dependent on the parameters of the
system (lengths, masses, inertia). This example only portrayed a generic set of parameters,
corresponding to the Heavier/Longer case. Moreover, this simulation was not considering the
interaction with the touchscreen which can represent a pivot point in the system.
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Figure 5.10: Non-parametric transfer function between the acceleration imposed at the shoulder and the
position of the point Cf with respect to point O.

Figure 5.10 presents another perspective on the analysis of the landmark positions. This
representation can be directly compared with the time-domain signals presented in Figure 5.8,
representing the estimated transfer function which links the shoulder acceleration to the rela-
tive position of the point Cf with respect to the point O. It can be observed that the behavior of
the estimated transfer function is different when compared to the estimated transfer function
linked to the inertial positions (Figure 5.9). On one hand, it can be observed that the transfer
function corresponding to the higher stiffness case attenuates more all the frequencies which
were analyzed. This aspect can be confirmed by visually inspecting Figure 5.8 and observing
that the blue signal is varying ”less” when compared to the yellow one. An interesting behav-
ior observed in Figure 5.8 (between 35 and 36 [sec]) and not present in the transfer-function
representation is the impression that the lower stiffness signal attenuates more the higher
frequency contents when compared to the higher stiffness signal. The author would have
expected a trend in the frequency domain, similar to the one observed in Figure 5.9 (Right),
where at some point the lower stiffness case would attenuate more the higher frequencies
when compared to the higher stiffness scenario. The author hypothesizes that the expected
trends are not observed due to the method that is used for computing the relative positioning
between the landmarks which might cancel some of the parts of the frequency content (by
subtracting the inertial position signal of the shoulder point, O from the inertial position signals
of the landmarks). Nevertheless, this aspect needs to be further researched by the author in
the next phase of the thesis.

5.2.3. Effect of passive stiffness - Acceleration analysis
Another interesting aspect that can be investigated when varying the passive stiffness of the
system, is the feedthrough of linear accelerations through the limb. It needs to be mentioned
that the same conditions were simulated as in the previous section, where only the equivalent
spring and damping parameters (for all the degrees of freedom) are altered in order to simulate
a stiffer or less stiff neuromuscular system.
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Figure 5.11: Overview of the inertial accelerations of the points Af , Bf , Co expressed along the y direction of
the inertial frame.

Takeaways - Passive stiffness variation - Acceleration analysis
Figure 5.11 presents a comparison between the inertial acceleration of three points of the
limb (Af , Bf and Co) with two simulated neuromuscular system characteristics. It can be
observed that the effect of changing stiffness is more pronounced than the effect of different
limb masses/lengths (Figure 5.6 ) when comparing the point Af . Moreover, the effect is more
pronounced as the points further down in the kinematic chain are analyzed. As a general trend,
the acceleration corresponding to the lower stiffness system appears to be lagging behind the
acceleration of the higher stiffness system. Moreover, the lower stiffness system sees a larger
attenuation in the higher frequency contents of the signal.

Figure 5.12: Non-parametric magnitude and phase representation for the estimated transfer function relating the
acceleration of the point O to the acceleration of the point Co in the vertical, Ny, direction.

For a better understanding of the time-domain signals, a non-parametric identification of
the transfer function between the shoulder acceleration and the inertial linear acceleration
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of the point Co expressed in the Ny direction has been performed in Figure 5.12. Unlike to
the case where the effects of changing the limb lengths, a clearer difference in the phase
can be observed between the stiffer and compliant systems. Additionally, it can be observed
that the accelerations are feed-through more for the lower stiffness condition for frequencies
close to 7[Hz] whereas for higher frequencies, the higher stiffness scenario exhibits a larger
transmission of accelerations. A similar non-consistent behavior was also observed in Fig-
ure 3.11 where the BDFT for stick-based operations was identified in an experimental setting.
The attentive reader could observe a difference in magnitude between the simulated BDFT
transfer function (Figure 5.12) and the experimental BDFT transfer function (Figure 3.11). The
differences can be explained by the fact that the BDFT transfer function identified in the ex-
perimental setting describes the transfer of the accelerations from the motion platform to the
deflection [rad] of a controlled device. In this way, the feedthrough of accelerations has a
longer path, from the acceleration imposed to the moving base, to the feedthrough of the
limbs, to the interaction between the limbs and the control device, and to the control device dy-
namics. On the other hand, the simulated scenario investigates only the relationship between
the imposed acceleration of the shoulder, that feeds through to other locations on the limb.
This non-consistent behavior between the BDFT and neuromuscular settings accentuates the
complexity of the feedthrough phenomenon.

5.2.4. Effect of limb configuration
The goal of investigating the effects of different configurations of the limb is to observe how
the computed linear accelerations are affected by different positions of the upper arm. From
the presented literature, it is expected that an effect of limb position on the feedthrough of
accelerations would be observed, given the fact that in a real-life scenario, different limb po-
sitions would impose different activations of the neuromuscular system. The two selected
configurations can be seen in Figure 5.13.

Figure 5.13: Overview of the first limb configuration (Left) and of the second limb configuration (Right).

As in the previous investigations, the above-shown configurations will be kept constant
throughout one simulation, where a vertical acceleration will be imposed at the shoulder level,
and with the constant stiffness characteristics corresponding to the ”stiffer” scenario. The
exact value of the configuration angles is given by Table 5.5.
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Table 5.5: Overview of the independent variables for the Case 3

q1[deg] q2[deg] q3[deg] g4[deg]

Configuration 1 24 0 45 15
Configuration 2 24 0 75 15

The dependent variables in this scenario will be the inertial linear accelerations at the points
Af , Bf , and Co expressed along the directions of the global coordinate system.

Figure 5.14: Overview of the time traces and non-parametric transfer function of the linear acceleration of point
Bf for the two configurations expressed in the Ny direction.

Takeaways - Limb configuration

From Figure 5.14, it can be observed that the linear acceleration computed at the point Bf

is slightly different when comparing the two configurations. The acceleration of the second
configuration lags with respect to the first configuration. Moreover, based on the magnitude
of the transfer function (the phase representation was left out due to space restrictions) rep-
resenting the relationship between the vertical shoulder acceleration and elbow acceleration,
it can be mentioned that the magnitudes are different in the areas before and after the corner
frequency, with the first configuration having slightly attenuated components in those regions.
Nevertheless, as in the previous section, the differences can be considered hardly significant
if a real-life scenario would be analyzed. It is important to mention that the analysis was per-
formed using similar passive stiffness characteristics. It can be expected that in reality, the
second configuration would need a higher muscle activation to sustain the mass of the limbs,
inducing a stiffer upper-limb system.

5.2.5. Effect of different locations on the limb
The last case of the analysis consists of investigating how the inertial linear acceleration im-
posed at the shoulder is fed through different parts of the limb. The simulated scenario corre-
sponds to parameters from the Heavier/Longer, Less Stiff, and Configuration 1 scenario. Sim-
ilarly, the vertical acceleration was imposed at the shoulder level. The dependent variables
are represented by the computed linear accelerations at the points Af , Bf , and Co expressed
in the vertical direction.
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Figure 5.15: Overview of the time traces and non-parametric transfer function of the linear acceleration of points
Af , Bf , Co expressed in the Ny direction.

Figure 5.15 presents the feedthrough of vertical inertial acceleration for the previously-
mentioned points. It can be observed that the ”lag” in the acceleration signal increases with
the analyzed point which confirms the expectations based on physical phenomena. Moreover,
the high frequencies are more filtered when looking at the wrist and hand. The reason for
this phenomenon might be the fact that the wrist and hand are further in the kinematic chain
compared to the elbow, and lumped inertia effects simulate a ”filter” which is more effective at
higher frequencies. The same conclusion can be observed from the non-parametric transfer
function representation. As in previous cases, the frequencies below 7[Hz] are more fed
through at the wrist and hand locations compared to the elbow, and higher frequencies see a
higher attenuation compared to the same elbow landmark. Nevertheless, the overall behavior
of the analysed landmarks is expected to change depending on alterations in geometry or
passive stiffness/damping characteristics (the author presents here one used-case).

5.2.6. General conclusions of the analysis
The goal of this analysis was to discover and explain possible factors that have been reported
in the literature which affect the BDFT behavior. It is widely known that the HO is one of
the main sources in the BDFT variability (Venrooij et al., 2013). Saying this, the effects of
between-subject variability (different body characteristics) and within-subject variability (differ-
ent neuromuscular settings) need to be taken into consideration when analyzing the influence
of BDFT on the human body. The simulations tend to agree with the point of view provided by
Venrooij et al. (2013), which describes a modest influence of the body type on BDFT dynamics.
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As it was observed in the simulated limbs, the effect of the acceleration transmission through
limbs with different lengths and masses was limited. On the other hand, a larger effect was ob-
served when changing the ”simulated” neuromuscular settings. The same conclusions were
also observed in the previously-mentioned study recognizing a non-negligible impact of the
neuromuscular settings on the BDFT dynamics. Saying this, a possible research line would
be to focus on the more evident within-subject variability, that is, to closely investigate methods
that can detect the neuromuscular settings of a subject and which can relate these settings to
the feedthrough of accelerations.

5.2.7. Shortcommings of the analysis
It needs to be mentioned that this analysis has several shortcomings regarding modeling.

Firstly, it has been mentioned that an acceleration signal was applied directly to the shoul-
der point. Based on the presented literature, it can be expected that the shoulder acceleration
is different when compared to the acceleration of the moving base (through whole-body vi-
bration properties). A simple approach that can be used to solve this ”inaccuracy” is to link
the shoulder with the moving-base through a lumped-parameter mass-spring-damper system
with a resonant peak between 4 to 6[Hz] (the most common resonant peak location observed
in the whole-body transmissibility). Nevertheless, the current analysis can explain the fact
that several parameters such as linear/rotational inertia or limb lengths can affect the overall
response of a multibody system replicating the upper limb.

Another shortcoming is that, unlike a real-life scenario, constant effective stiffness and
damping parameters were used to simulate the neuromuscular system. Moreover, it is widely
known that the neuromuscular system consists of a reflexive loop (active) and an intrinsic part.
These simulations assumed only passive characteristics for the system.

Moreover, all the investigations were performed with the system fixed in a particular con-
figuration (torques set such as the configuration was set constant without any disturbance).
Similar to how a physical inceptor can affect the feedthrough characteristics of the upper limb,
it can be expected that the contact with a hard surface such as a touchscreen, can affect
the biodynamic properties of the upper limb. Efforts were made to simulate the interaction of
the upper limb with the screen, but none of them succeeded at this stage. Firstly a collision
model was proposed, but the next iterations included nonholonomic and finally holonomic con-
straints. The ”best” results were obtained with the introduction of a holonomic constraint that
fixed the endpoint of the kinematic chain to a plane (describing a screen). The difficulty of the
approach comes from the fact that in the case of a holonomic system with more generalized
coordinates than DOF, one of the generalized coordinates became dependent on the others
(i.e. the elbow rotation). With one generalized coordinate becoming dependent on the others,
also one of the torques became dependent on the rest of the torques, meaning that at each
time step of the simulation a new dependent torque needed to be computed which increased
the computational cost.

5.2.8. Verification procedures
Despite the fact that the above-mentioned results can be considered to be consistent with
the physical interpretation of the phenomena, it is also important to ensure that the model
outcomes and the code is correct. In order to do this, two different verification steps were
proposed.

The goal of the first verification step is to identify whether the equations of motion and com-
puted torques are correctly defined. A simplified scenario was selected, where no acceleration
was imposed at point O, all the kinematic chain has a straight line configuration between O
and Af , and no stiffness and damping of the joints is defined. Additionally, a rotation of 90
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[deg] is defined with respect to the Nx direction. In this way, the kinematic chain is oriented
horizontally, and the computation of the torques necessary to sustain gravity is trivial providing
the case that the torques necessary for the ”trim” condition need to be computed. The torques
necessary to sustain gravity are computed via the inverse kinematical analysis and compared
to their manual computation. The outcomes were similar in numerical value, indicating that a
torque would need to be applied around the local Bx direction in order to counteract the ef-
fects of gravity of the segments B and C. Moreover, another torque would need to be applied
around the local Ax direction in order to counteract the effects of gravity for the segments A,
B, C.

The goal of the second verification step is to identify whether the evolution in time of the
states is correct. In order to do this, an additional method that could solve the equations of
motion was proposed (by using the Lagrange equations). A simplified scenario was defined
with no acceleration at point O, and with no stiffness and damping parameters. An initially
defined configuration was ”let free” under the influence of the gravitational forces, and the
evolution in time of the states q1, q2, q3 and q4 was recorded for both methods.

Figure 5.16: Overview of the difference between the state q1 computed using Kane’s and Lagrange’s equations.

FromFigure 5.16, it can be considered that the differences in state q1 obtained using Kane’s
and Lagrange’s equation are negligible. A possible explanation for the behavior of the graph is
due to the influence of the numerical method that is used for solving the numerical differential
equations. Differences of the same order of magnitude were observed for the rest of the states
and the state derivatives, concluding to a successful verification procedure.

5.2.9. Additional implementations
An additional implementation was performed with the goal of defining a least-squares estima-
tor for the torque components which describe the active and passive stiffness characteristics of
the system. An initial simulation was performed with known active torque and passive stiffness
characteristics while the states (generalized coordinates), derivatives, and double derivatives
were stored. A separate program was then elaborated where new equations of motion were
constructed and included four general torque variables (lumping the contribution of the active
and passive components). By inputting all the stored information in Equation 5.10 (including
the same geometric properties as the ones used in the initial simulation), the only four un-
knowns were the lumped torques at each time step. Since four dynamical equations were
defined (four generalized coordinates), the unknown torques could be solved at each time
step. Then, a least-squares estimator was defined as such:
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1 q1(0) u1(0)
1 q1(1) u1(1)
1 q1(2) u1(2)
.. .. ..


T01

k1
c1

 =


Ttot1(0)
Ttot1(1)
Ttot1(2)

..

 (5.11)

Where q1 and u1 are the stored generalized coordinates and velocities from the initial simu-
lation, T01 is the unknown constant active torque for joint 1 around the direction corresponding
to q1 and u1 (i.e x) and k1 and c1 are the unknown damping and spring coefficients of the joint
1 around the same direction. Lastly, Ttot1 is the computed general torque around the same
direction (computed from the new program). Under ideal conditions, it was observed that by
solving the least squares equations, the estimated parameters were consistent with the pa-
rameters that were used to generate the data. This might represent an approach that can be
used in combination with motion recording techniques. Using the 3D position information from
the motion recording, the defined kinematical, dynamical model, and assumed limb lengths
and masses (from regression equations), a set of estimated torques that create the recorded
motion can be computed. With the computed torques, a certain model structure (like the one
above) can be defined and parameters can be estimated. At this stage of this research, it
is not known how noisy/imperfect the motion recording data is and in which way it will affect
the inverse kinematics and dynamics approach. Moreover, since the motion recording tech-
niques obtain the position of the limb features in a cartesian coordinate system, a methodology
needs to be defined to transform them in the generalized coordinates space. Nevertheless,
this method can be investigated in future stages of the research.





6
Preliminary Markerless Motion

Capture Analysis

The goal of this chapter is to give the reader an overview of the theoretical background that
has been used for the preliminary analysis linked to the camera model that is most widely used
for triangulation applications. Secondly, a description linked to camera calibration and stereo
reconstruction will be presented. Lastly, a series of validation steps are proposed and tested.

6.1. 3D reconstruction background
This section will arbitrarily use information from Stachniss (2021), Eisemann (2020), “Com-
puter Vision Toolbox Camera Calibration” (2023), and “Camera Calibration and 3D reconstruc-
tion” (2023) in order to provide information regarding the camera model that is used for 3D
reconstruction and the calibration techniques.

6.1.1. Camera model

Figure 6.1: Two equivalent representations of the pinhole camera model “Camera Calibration and 3D
reconstruction” (2023) (Left) and “Computer Vision Toolbox Camera Calibration” (2023) (Right).

One of the most often-used models used in photogrammetry applications is the pinhole cam-
era model (Figure 6.1). The pinhole camera model idealizes how a point in the 3D world is
projected on the 2D image plane. In other words, the pinhole camera model can provide a
perspective projection of the 3D world. The camera model is described by a certain set of
parameres such as: Fc/Oc camera center of projection, f - focal length (distance between the
center of projection to the image plane), uv/Op plane (image plane), and a point P in the 3D
world. Intuitively, it can be observed that a single camera can not solve for the 3D location of
a point since a pixel location corresponds to a ray of 3D locations when taking into consider-
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ation a perspective approach. In this way, at least two cameras are needed to obtain the 3D
location of a feature in the image plane.

In order to project a point in the 3D world on an image, three main steps need to be taken:
Firstly, the world coordinate system that the point of interest is expressed in is related to the
camera-fixed coordinat frame (3D to 3D transformation); Secondly, the ideal perspective pro-
jection is performed (3D to 2D transformation); Lastly, a metric-to-pixel transformation is per-
formed (2D to 2D). Saying this, the general formula that lumps all the previously-mentioned
steps is defined as:

m

uv
1

 = P


X
Y
Z
1


w

(6.1)

Equation (6.1) presents the relationship between a point in the 3D world described in the
X,Y, Z coordinates and the projected point u, v on the image plane. Since a perspective ap-
proach is used, both of the vectors are extended with one additional coordinate creating a
set of homogenous coordinates. The homogenous coordinates can help with using one linear
operation for both translation and rotation between reference frames. The constant m corre-
sponds with the fact that homogenous coordinates are used for the perspective projection (the
vector in homogenous coordinates of [mu,mv,m] is equivalent to the vector [um/m, vm/m, 1]
in R2. The matrix P is also called the camera matrix.

The first transformation expresses the world points (Xw) in the camera-centred coordinate
system (Xc), suggested by Equation (6.7) (Eisemann, 2020).
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The next step is represented by the (ideal) perspective projection where intermediate vari-
ables x′ and y′ are defined as:

x′ = f
Xc

Zc

y′ = f
Y c

Zc
(6.3)

The quantities x′ and y′ are usually expressed in the units of the focal length f which is
usually [mm]. The resulting image has pixel values, and therefore an additional transformation
is needed to reach the final (u, v) values:

u = kxx
′ + u0

v = kyy
′ + v0

(6.4)

By combining Equations (6.2), (C.7), (6.4), the resulting camera matrix is described by:

P =

ax 0 u0
0 ay v0
0 0 1


︸ ︷︷ ︸
Intrinsic parameters

r00 r01 r02 t0
r10 r11 r12 t1
r20 r21 r22 t2
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Extrinsic parameters

(6.5)
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The camera matrix presented in Equation (6.5) can be described by two matrices, an Intrin-
sic matrix that corresponds to the internal and specific parameters of the camera, namely focal
length or sensor-to-pixel mapping, and an Extrinsic matrix which only describes the orienta-
tion of the camera with respect to a fixed world coordinate frame. Based on “Computer Vision
Toolbox Camera Calibration” (2023), the Intrinsic matrix can be extended with other parame-
ters in order to correct for distorted images (radial and tangential). It is expected that once
the calibration was made, if the position of the camera is not changed and the focal length is
not affected by automatic zoom or focus, the parameters for both of the matrices are constant.
Moreover, if the camera is rotated with respect to the world frame, the intrinsic parameter
matrix is expected to remain constant. Other possible sources of error such as changing the
aperture due to different lighting conditions can be considered non-significant due to the fact
that the aperture does not affect the focal length 1. Saying this, in the description of “Computer
Vision Toolbox Camera Calibration” (2023), it is recommended that the camera settings are
set to ”manual” in order to avoid any factors that can introduce time-varying changes in the
intrinsic parameters.

6.1.2. Camera calibration
One of the most popular stereo calibration methods is the approach defined by Zhang (2000).
This method is also implemented in the ready-to-use toolboxes for camera calibration in MAT-
LAB and Python. This method makes use of a checkerboard pattern (Figure 6.2), in order to
estimate the intrinsic parameters of the camera.

Figure 6.2: Camera calibration using a
checkerboard pattern.

Figure 6.3: Multiple poses of the
checkerboad presented in different
images (“Computer Vision Toolbox

Camera Calibration”, 2023).

In order to estimate the camera parameters, a correspondence between the pixel loca-
tions and the world coordinate 3D point needs to be known. In this method, the fact that the
checkerboard lies on a plane and the physical distances between the checkerboard squares
is known simplifies the estimation problem. By defining a world coordinate frame woth the
origin at one of the edges of the checkerboard, and by applying an edge detection algorithm,
the 2D-3D pairs are found in a trivial manner. It needs to be mentioned that for each image
of the checkerboard, the world coordinate system is changing, therefore this method is used
only for estimating the intrinsic matrix for one camera. Since for every image, the global Z co-
ordinate is zero, the total number of degrees-of-freedom of the combined matrix P decreases
from 11 (12 − 1 since a projective space is assumed) to 8. In this way, each identified point
of the checkerboard gives 2 equations (one for x-X correspondence and one for y-Y corre-
spondence). Saying this, in order to obtain the reduced P matrix, at least four points need
to be identified for each checkerboard. It needs to be mentioned that the reduced P matrix

1https://stackoverflow.com/questions/24299872/does-the-varying-of-aperture-influence-the-camera-
calibration
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changes from picture to picture (different positions of the checkerboard imply different global
coordinate systems Figure 6.3). To derive the invariant part of the reduced matrix, a Singular
Value Decomposition (SVD) problem is solved by combining multiple images with at least 3
views of the checkerboard (Stachniss, 2021). The exact mathematical details of the computa-
tion of the intrinsic matrix are considered to be outside the scope of the report and therefore,
they will not be explained further.

It is highly reccomended that more than three images of the checkerboard pattern would
need to be taken for a good-quality camera calibration (due to the inherent noise in the obser-
vations and for robustness purposes). One example is Figure 6.3, which presents the same
checkerboard pattern in multiple images and poses. By displaying the checkerboard pattern
in multiple poses, a higher robustness of the calibration is obtained. For a checkerboard photo
collection obtained by using one camera, the intrinsic matrix is constant (assuming that the
camera settings do not change), and the extrinsicmatrix changes from picture to picture (due to
changing global coordinate system). For one camera, Zhang’s method estimates the (global)
intrinsic matrix and the extrinsic matrix for each view. This is performed using the previously-
mentioned SVD approach in combination with an optimization procedure which minimizes the
squared error between the projected 3D edges of the checkerboard on the image plane and the
ones identified in the image (by using for example Levenberg–Marquardt’s algorithm (Huang
et al., 2020)).

Figure 6.4: The
reprojection error.

A quantitative measure which can help in evaluating the performance
of the calibration is the so-called reprojection error. As presented in Fig-
ure 6.4, the reprojection error is defined as the difference in pixels be-
tween the edges identified on the checkerboard (green) and the projected
(3D to 2D) edges of the checkerboard from the global coordinate frame
(obtained by knowing the real dimensions of the squares on the board).
Despite the fact that the goal is to obtain a reprojection error as close to 0
as possible, contributions from the checkerboard manufacturing, image
processing errors and a poor image quality usually decrease the quality
of the calibration (Huang et al., 2020).

Besides the single-camera calibration feature, computer vision pro-
gramming tools provide ready-to-use methods for stereo-camera calibra-
tion (two or more cameras). If synchronized pictures of the checkerboard
are obtained for each of the cameras, by knowing the common world co-
ordinate frame, the relative orientation between the two cameras can be estimated from a set
of images. Usually, if a separate global reference frame is not defined, the triangulated loca-
tion of the common feature that is observed from two cameras is expressed with respect to
one of the cameras (which is set to be the global reference frame).

In this way, after the monocular camera calibration is performed separately for each cam-
era, the intrinsic matrices are obtained. The extrinsics for one camera can be considered unity
(center of the world) and for the other, the information obtained from the stereo camera cali-
bration step can be used. By combining the intrinsic and extrinsic information of the cameras,
each camera matrix P can be constructed and used for 3D reconstruction.

6.1.3. 3D reconstruction
The goal of the camera calibration was to obtain the complete camera matrices for two cam-
eras. If, most commonly, these matrices are used separately to transform from a point in 3D
space to a 2D one, by using the information from both cameras, it is possible to triangulate a
common feature that is ”observed” by both cameras in the 3D space.
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Figure 6.5: Triangulation of a common feature (P1 and P2) observed by two cameras (I1 and I2) (Slabaugh
et al., 2001).

Figure 6.5 presents the intuition behind the triangulation. It might be the case that there
are slight errors in the detection of the features P1, P2 and in the parameters of the camera
matrices. In this way, the two lines (l1 and l2) will not intersect. One common method to solve
for this issue is to solve for a minimization problem which finds the closest point of intersection
between the two lines (here represented as P, not to be misunderstood with P , the camera
matrix). One method that can be applied (which is also implemented in MATLAB’s triangulate
function) is the Direct Linear Transform.

By focussing on only one camera (Camera 1 with subscript 1), by denoting the 3D world
point (expressed as a 4x1 column vector) Xi, and by defining generic variables for the multi-
plication between the intrinsic and intrinsic matrix, the following (ideal) relationship can hold:m1u1

m1v1
m1

 =

p111 p121 p131 p141
p211 p221 p231 p241
p311 p321 p331 p341

Xi (6.6)

By defining the three rows of the matrix as AT
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The resulting u1 and v1 pixels have the following form:

u1 =
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CT
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, v1 =
BT

1 Xi

CT
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, ; (6.8)

After further manipulations:

u1C
T
1 Xi −AT

1 Xi = 0

v1C
T
1 Xi −BT

1 Xi = 0

(6.9)

From Equation (6.9), it can be observed that the system is underdetermined. In other
words, there are three unknowns (the three coordinates of the unknown 3D pointXi), and only
two known quantities (the known pixel coordinates on the image, u1 and v1). The previously-
mentioned fact proves why at least two cameras that see the same feature are needed in order
to obtain the 3D location of the point. If a second camera (subscript 2) is introduced, then the
following matrix equation can be defined:
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Equation (6.10) presents the scenario of obtaining the triangulated 3D point in ideal sit-
uations. In a real-life scenario, the observations from each camera will be noisy and the
calibration of the cameras will not be perfect. This aspect imposes a non-zero value to the
right of Equation (6.10). A solution to this problem is to use a least-squares method in order to
solve for optimal intersection point. The solution for this least-squares approach is to use the
Singular Value Decomposition of the transpose of the matrix which the point is multiplied with
multiplied with the same matrix. Lastly, the eigenvector corresponding to the smallest eigen-
value of the resulting matrix can be considered the optimal point of intersection (the derivation
of why is it this case has been omitted for brevity considerations).

6.2. Stereo reconstruction implementations
This section will present the approach that was used to perform the stereo 3D reconstruction
using OpenPose and MATLAB’s Camera Calibration toolbox. The approach will be presented
in a step-by-step manner which will be concluded with several takeaways that can be used for
future implementations.

Figure 6.6: Overview of the stereo reconstruction process.

Figure 6.6 presents a short summary of how the author has decided to perform the stereo
reconstruction. The methodology consists of two steps, the first one representing the stereo
camera calibration (as presented in the previous section), while the second one represents
the actual feature extraction and triangulation. In short, the first step consists of taking videos
of the calibration pattern, extracting the frames from the videos, synchronizing the frames from
the two cameras, performing the monocular camera calibration in order to obtain the intrinsic
and distortion parameters for each camera and performing the stereo calibration for obtaining
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the relative rotation and translation between cameras. The second step also consists of video
realization and frame extraction, moreover, the pose detection step is introduced in order to
obtain the pixel coordinates for the features of interest, and lastly the 3D reconstruction uses
the pixel coordinates in combination with the stereo calibration to solve for the 3D location of
the landmarks. The following sections will present a preliminary experiment in which each of
the above-mentioned steps is explained in more detail.

6.2.1. Experiment set-up

Figure 6.7: Setup used for investigating the feasibility of the stereo reconstruction method.

Figure 6.7 presents the setup of the cameras that has been used for evaluating the feasibility
of the stereo reconstruction method. The angle of the cameras was chosen to be between
40 and 50[deg] as suggested by D’Antonio et al. (2021) in order to minimize the triangulation
errors while being able to observe the features of the right upper limb from both cameras.
Since OpenPose was used to extract the features from images, the goal for this analysis was
at least to have the elbow, shoulder, and wrist features captured in the videos from both of the
cameras.

6.2.2. Camera calibration
The stereo reconstruction step is dependent on the fact that both cameras need to be cali-
brated. This step extracts the intrinsic parameters and also estimates the relative rotation and
translation of the cameras between each other. As mentioned in the previous sections, a cali-
bration using a checkerboard pattern can be used and is supported by most of the toolboxes
that support camera calibration. The used checkerboard pattern was described by 45x45[mm]
rectangles. During the camera calibration procedure, it is very important that the photos of the
checkerboard pattern that are taken by both of the cameras are synchronized. Saying this,
the user should ensure that both cameras operate at the same sampling rate. The solution for
taking synchronized photos of the checkerboard pattern in different positions was to capture
videos of the checkerboard which was moved in the image plane. The videos were synchro-
nized by a light being turned on at a certain point in time or a ”clap” was performed. After the
videos were taken, the frames of the videos were extracted, and the frames until the event
(light on or clap) were deleted for both cameras. This ensured that the frames from both cam-
eras were aligned in time starting from the event. Based on the guidelines of using MATLAB’s
toolbox (“Computer Vision Toolbox Camera Calibration”, 2023), synchronized frames were ex-
tracted such that the calibration pattern was captured at different orientations relative to the
cameras. Moreover, the same source suggests that at least 10 to 20 images of the calibra-
tion pattern should be used and the angle of the pattern relative to the camera should be at
most 45[deg]. The paired frames are introduced in MATLAB’s Stereo Camera Calibrator App
(Figure 6.8).



114 Chapter 6. Preliminary Markerless Motion Capture Analysis

Figure 6.8: Outcomes of the camera calibration using MATLAB’s Stereo Camera Calibrator App.

Figure 6.8 presents the outcomes of MATLAB’s Stereo Camera Calibrator App. The box
on the left shows the reprojection error for each pair of images. The reprojection error is
the error in pixels between the point on the checkerboard which was identified by the edge
detection algorithm and the reprojected point (on the image plane) using the camera matrix
and the assumption that the global reference frame is at the top left of the pattern. Ideally,
the literature mentions an acceptable reprojection error of maximum 1.5[px]. The reprojection
error can be considered a quantitative measure of the accuracy of the camera calibration. The
box on the right shows the relative positioning between the cameras and the checkerboard in
a camera-centric perspective.

6.2.3. Feature Identification and Stereo Reconstruction
After the cameras were calibrated, two new paired videos are taken which are inputted into
the OpenPose feature extractor. The synchronization of the videos is performed in the same
way as in the previous step. OpenPose can read a set of frames and output .json files which
indicate the pixel position of the identified features. It needs to be mentioned that during the
preliminary tests, OpenPose could not be used to its highest accuracy setting due to limitations
in computational power. OpenPose’s user manual suggests using a computer fitted with a
powerful GPU for optimal performance.

A custom MATLAB program was created to read the paired .json files. With the paired
pixel values corresponding to a common feature observed from two images, and with the
parameters of the calibrated cameras, MATLAB’s function triangulate was used to compute
the 3D reconstruction of the feature.

Figure 6.9: Outcomes of of the 3D stereo reconstruction.

Figure 6.9 presents one frame from a video for which the 3D reconstruction was applied. It
can be observed that the global coordinate frame in which the 3D points are reconstructed is
centered around one of the two cameras. In this case, the global Y coordinate is pointing away
from the camera, the global Z coordinate is oriented vertically in the camera-fixed coordinate
frame, and the last coordinate is orthogonal to the previous two, pointing to the right. Based
on the comparison between the 3D reconstruction and the observed adjacent images, it can
be mentioned that qualitatively, the pose of the upper arm is accurately described.
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Figure 6.10: Triangulated Z position of the wrist landmark during a trial experiment.

Figure 6.10 presents one example of the Z position of the wrist landmark during a trial
movement experiment. The trial was performed in static conditions and included functional
movements of the arm in the image plane. Moreover, the author experimented with two neu-
romuscular settings (stiff and compliant) while performingmovements that replicated themove-
ment of the arm in disturbed conditions. The most prominent features can be observed in the
time range from 10 to 18 [sec] (in the rest of the time, other functional movements were per-
formed). The first, third, fourth, and fifth peaks replicated turbulent conditions with a compliant
setting while the second and the third were performed with a stiff setting. It can be observed
that the peaks obtained with a stiff setting end with a smaller displacement when compared
to the other scenario, and their transients are more pronounced when compared to the other
scenario. In other words, it can be considered that as expected from the simulated scenarios,
the compliant setting attenuates more the highest frequencies. This fact can give the indica-
tion that there can be some fundamental differences that could be observed when analyzing
the position signals when different settings of the neuromuscular system are induced in a dis-
turbed environment. Lastly, it is also important to mention that it is not always the case that the
Z position will coincide with the vertical position as perceived in reality. Since the coordinate
frame is camera-fixed, it corresponds to the vertical plane in the camera-body frame. The
following sections will provide a deeper understanding of the triangulation results.

Takeaways - Feature Identification and Stereo Reconstruction
Several takeaways can be noted from the different trials that were tested for the 3D recon-
struction.

Initially, it was observed that the performance of the calibration (reprojection error) varied
between different calibration trials. In some of the cases, the overall reprojection error for a
calibration session was 11[px] which was considered unacceptable. After further research, it
is hypothesized that the differences between the calibration sessions were due to changes in
camera settings, and due to incorrect synchronization of the frames (it is important that the
cameras record at the same framerates). As previously presented, the camera matrix consists
of an intrinsic matrix describing the internal camera parameters and an extrinsic matrix that
describes the positioning of the camera in the external world. New insights gained from MAT-
LAB’s guidelines mention that autofocus and changing zoom settings affect the focal length
and thus the internal parameters of the cameras. Saying this, it is preferred that the camera
settings are set to ”manual” in order to avoid any changes in the camera parameters. More-
over, it is expected that besides the focal length, no other parameter from the outside world
would affect the internal camera characteristics. It was mentioned that the aperture (affected
by outside lighting) theoretically does not affect the camera parameters. It is expected that
if the camera settings are set to manual and the intrinsic parameters are obtained, these pa-
rameters can be kept constant. If the relative positioning between the cameras also does not
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change, then it is hypothesized that once an initial calibration was performed, then additional
calibrations are not needed.

Additionally, as presented by the literature, some artifacts were induced by OpenPose
wrongly identifying the left hand to be the right hand due to similarities in the 2D perspec-
tive. Further research is needed to identify the optimal camera positioning that reduces these
artifacts.

Lastly, the accuracy of the obtained 3D positions during the current trials was not validated.
Other studies make use of marker-based camera systems in order to perform the validation
procedure. A possible qualitative validation is to check similarities between the movement
patterns in the videos with the movement patterns which are obtained in the 3D-reconstructed
scene. The following section will give an overview of other several validation approaches
which can prove/disprove the correctness of the method.

From a practical perspective, for each run, the videos that are taken need to be matched
in time. A clear methodology of how the synchronization in time needs to be made along with
a data analysis pipeline which starts from obtaining the videos to outputting the 3D locations
of the desired features.

6.2.4. Validation procedures

According to Huang et al. (2020) the 3D reconstruction error of a point can have contributions
from the error in the calibration (due to possible inaccuracies in the edge-detection algorithm or
slight deviation between the frames) and from the error in matching the same feature in the two
images (OpenPose might consider slightly different points to represent the joint centers based
on the perspective of the cameras). Saying this, it is important to get a feel for the accuracy
of the system and understand if its accuracy is sufficient for the current application. Unlike
the qualitative validation which can only point out clear inaccuracies, it can be considered
that a quantitative validation can provide a better understanding of the working principle and
weaknesses of the current system.

The literature study chapters presented one of the most common methods for validating a
markerless system, by using a more complex marker-based system. One possible disadvan-
tage of this approach at this stage of the project is that the validation can not be done in the
same environment as the experiment due to the physical constraints that a marker-based sys-
tem is facing. Moreover, it can be considered that various calibration steps would need to be
performed in order to get equivalent results from both of the systems. Two examples of such
calibrations would imply ensuring a similar global reference frame for both systems and ensur-
ing that the markers are placed in accordance to how the markerless system is able to detect
a particular landmark. The author proposes that it is worth investigating less constrained and
workload-intensive validation methods (with less accuracy) before taking into consideration a
validation step using a marker-based system.

Additional validation approaches proposed by the author would consist of simple experi-
ments where specially-designed movements are performed and the distances covered by the
limb are compared with a known physical object (whose dimensions are known). Nevertheless,
one last validation approach would be to use the samemetric as the one used in the calibration
step, namely the reprojection error of the triangulated point. The following section will focus
on a set of experiments linked to the first approach that was proposed, namely comparing the
limb movements with known distances in the real world.
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The first validation experiment

Figure 6.11: Overview of the first validation experiment.

Figure 6.11 presents a visual overview of the intuition behind the first validation experiment.
The author used the intuition that the checkerboard pattern squares have a fixed and known
geometry. It was proposed that the elbow would be always in contact with the table while it was
moving in a straight line along one of the checkerboard’s edges (the edge parallel to the edge
of the table). In this way, by evaluating the time traces of the elbow landmark, a first-order
approximation of the triangulation performance could be obtained.
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Figure 6.12: Triangulated position of the elbow in
the XY plane of the camera-fixed global reference.
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Figure 6.13: Euclidean distance in the XY plane
of the elbow feature expressed with respect to the

first frame of the recording.

Figure 6.12 presents the evolution of the (X,Y) pair of coordinates of the elbow during the
validation trial. Since the movement of the elbow was performed across one of the checker-
board pattern’s edges, the expectation would be to observe a linear trend between the two
”horizontal” coordinates. The trends in the previously-mentioned figure replicate well a linear
dependence between the X and Y coordinates. Since the raw data is used for the time traces,
the obtained trends possess several imperfections (they are noisy). The cause of the imper-
fections is also represented by the noisy identification of 2D features along the trial (the pixel
values of the identified elbow feature oscillate due to uncertainties in the landmark detection).
It needs to be mentioned that the nonlinear part of the graph (top left) corresponds with the
end of the trial when the subject took his elbow off the table.

In order to better quantify the accuracy of the method, another perspective on the problem
would need to be presented, such as the one shown in Figure 6.13. The figure presents the
Euclidean distance in the XY plane of the elbow feature, with respect to the initial frame of
the video. The initial frame of the video coincides with the elbow position being at the leftmost
edge of the checkerboard (seen from the camera perspective). As previously mentioned, the
subject performed a movement such that the elbow was always in contact with the surface of
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the checkerboard while following one of its edges. From Figure 6.13, it can be observed that
during the trial, the subject performed two excursions in a straight line to the other edge of
the checkerboard and back. Moreover, in the first excursion, the subject stopped briefly once
every two squares in length, besides the last stop which included three squares in length.
Additionally, the figure shows that the length of one excursion is close to the value of 400
[mm] which can be considered a good approximation of the value of 405 [mm] (representing
the length of the checkerboard with 9 (2+2+2+3) squares with one side having 45 [mm]). This
result can be interpreted as a first-order approximation of the accuracy of the system, since
the exact position of the elbow with respect to the checkerboard edges during the trial could
have faced human errors, and additional errors could have been introduced by (an assumed)
inaccurate detection of the elbow joint from the pose estimator.

An additional perspective that can be used to investigate the correctness of the approach
is to use the information that the elbow was always in contact with a hard surface. In this way,
it is expected that the vertical elbow position should not change during a trial.

Figure 6.14: Difference in elbow’s landmark Z position with respect to the initial frame.

Figure 6.14 presents the evolution in time of the elbow’s triangulated landmark in the Z di-
rection of the global reference frame during the same trial presented in the previous paragraph.
It can be observed that the vertical position of the elbow appears to change slightly throughout
the trial, with the biggest difference with respect to the initial frame of approximately 15 [mm].
Moreover, an interesting trend can be observed in the time frame between 25 and 35 [sec]
(which corresponds to the second excursion to the other edge of the pattern). The trend in the
observed signal shows that when the elbow landmark was moving towards the right from the
initial point (as seen from the camera’s perspective) the apparent ”vertical” position increased
(with respect to the starting point) while when the landmark was moving back, (towards the
left direction) the apparent vertical position decreased. The author hypothesizes that the rea-
son for this behavior is the positioning of the camera which is not perfectly aligned parallel
to the movement and more importantly exactly vertical (as perceived by the humans). This,
in combination with the fact that the coordinate frame that the landmarks are expressed in is
fixed to the camera, might be the cause for this observation. In order to further investigate this
behavior, the author has proposed a second validation experiment.
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The second validation experiment

Figure 6.15: Overview of the second validation experiment.

Figure 6.15 presents the setup of the second validation experiment. In order to investigate
whether the same linear trends can be observed in the Z component of the elbow landmark,
an additional experiment was proposed where larger excursions of the arm were performed.
In this scenario, the elbow was kept in contact with the edge of the table presented in the
image, while it was moved to the right (as seen by the camera) and back to the left parallel to
the edge.

Figure 6.16: Difference in elbow’s landmark Z position with respect to the initial frame (second validation
session).

Figure 6.16 presents the outcomes from the second validation session. The dependent
variable is similar to the one presented in Figure 6.14, namely the difference in the global
Z position of the triangulated elbow’s landmark with respect to the initial frame of the video.
The time traces of the figure suggest that three arm excursions from right to left (as observed
from the camera’s perspective) and two excursions from left to right were performed. More-
over, since the excursions were larger (in the XY plane) compared to the previous scenario,
a larger and clearer difference can be observed in the global Z component (up to 50 [mm]
when ignoring the signal losses) where in reality, if the camera is perfectly aligned vertically,
there shouldn’t be any differences (since the elbow was always tangent to the surface of the
table). Again, the author hypothesizes that this increase and decrease in the dependent vari-
able could have only one cause, namely that the camera-fixed coordinate system (at least in
the vertical direction) is not aligned with the vertical direction as perceived in the real world.
In other words, the camera is tilted to the left/right and up/down. One option to correct this
inaccuracy would be to change the coordinate system the points are expressed in. One option
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would be to follow the intuition based on D’Antonio et al. (2021), namely to take one picture of
the checkerboard pattern while it is perfectly oriented vertically and to obtain the rotation matrix
between the camera and the pattern (by using the Camera Calibration Toolbox). In this way,
all the points could be expressed with respect to the new coordinate frame (now with a bet-
ter ”true” vertical approximation) instead of having the points expressed in the camera frame.
Further experiments that investigate the previously-mentioned approach can be performed in
the thesis phase as a preparation for the main experiments.

The third validation experiment
The last validation experiment uses the intuition that the triangulated points are expressed
with respect to the fixed coordinate system of one camera. In this way, the author proposes to
alter the position of the second camera, while the position of the first one (and automatically
of the global coordinate system) is kept constant. One important aspect is represented by the
fact that the subject would need to keep his/her limb in a consistent position between the trials
in order to be able to accurately compare the triangulation outcomes of each of the positions
of the second camera. In this way, it is expected that by changing the position of the second
camera (thus keeping the global coordinate system constant), and by keeping the limb in a
consistent position, the triangulated landmarks shall be consistent between the trials.

Figure 6.17: Setup used for the third validation experiment.

Figure 6.17 presents an overview of the cases that were investigated during the third val-
idation trial. For this experiment, three main cases were selected, where the position of the
second camera was altered. It needs to be mentioned that the global coordinate system (em-
phasized in red) is kept constant since the position of the first camera does not change. In
order to keep the position of the features on the arm consistent between the trials, markings
were defined on a horizontal surface which indicated the recommended position of the wrist
and elbow (which are in contact with the horizontal surface of a table during one trial). When
calibrating the cameras, the reprojection error for each of the three cases was 0.48, 0.49, and
0.57 [px].

Figure 6.18: Overview of the third validation experiment observed from the perspective corresponding to Case 1.

Figure 6.18 presents an overview of the setup of the third validation experiment (camera
positioning corresponding to Case 1). It needs to be mentioned that slight inaccuracies be-
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tween the trials can be introduced by small differences in the subjective positioning of the
elbow and wrist on the table.
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Figure 6.19: Comparison between the X, Y, and Z positions of the elbow across the three proposed cases.

Figure 6.19 presents the comparison between the X, Y, and Z positions of the elbow land-
mark across the three cases. From all representations, it can be observed that the maximum
differences between the trials are in the order of magnitude of centimeters (more precisely, ap-
proximately 3 [cm] when observing the Y position of the elbow and ignoring the noisy peaks).
Nevertheless, it can be observed that the joint positions are noisy even though the limbs were
not moving. From the figure, it can be observed that the highest uncertainty in the joint location
(the signal with the highest spikes) is obtained when the camera is positioned directly in front
of the subject (Case 1). In this way, due to the perspective that the camera observes the 3D
world, the algorithm has difficulties in accurately describing the location of the limb features in
the first scenario.
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Figure 6.20: Comparison between the X, Y, and Z positions of the wrist across the three proposed cases.

The second feature which was kept in the same place across the trials was the wrist. Fig-
ure 6.20 presents the comparison between the X, Y, and Z positions of the wrist landmark
across the three cases. As presented in the investigation which concerned the elbow, the sig-
nals can be considered consistent between each case with maximum differences of 2-3 [cm].
As in the previous analysis, the noise in the time series is due to the way the pose estimation
algorithm detects the landmarks on the limb.

It can be observed that when analyzing both the elbow and wrist locations, small differ-
ences appear between the three cases. The author hypothesizes that the differences can be
due to: 1) The algorithm detecting the landmarks slightly differently based on the location of
the cameras, which affects in the end the triangulation outcome; 2) The subject slightly chang-
ing his pose between the trials. Nevertheless, the above-mentioned results can represent a
first-order approximation and demonstration of the consistency between the trials.

Takeaways - Validation procedures
The goal of the validation experiments was to give a first-order approximation of the accuracy
of the stereo system. The first two experiments showed that it is important to keep in mind
that the outcomes of the triangulation are relative to a coordinate system fixed to one of the
cameras. In this way, it is not always the case that the local vertical coordinate system fixed to
one of the cameras is aligned to the vertical direction as perceived in a real-life scenario. To
solve this ”problem”, an additional coordinate transformation would need to be performed.

The last experiment validated the consistency of the triangulation approach, by varying the
position of the second camera of the stereo system. Errors of at most 3 [cm] were observed
between the three test cases. The author hypothesizes that the origin of the errors stems from
a combination of the subjective positioning of the limbs and a possible difference in landmark
identification across the trials. An additional conclusion that can be taken is that not all the
camera positions are suitable for feature identification. As observed from Figure 6.18 (right),
slight inaccuracies in feature identification can appear when positioning a camera straight in
front of the user due to the perspective from which the camera observes the 3D world.

One last outcome which was not presented in the validation section is the comparison be-
tween two triangulation methods. MATLAB’s function triangulate was compared to the DLT
method. When comparing the two methods, exactly the same results were obtained conclud-
ing that the triangulate function uses the DLT approach for triangulation.

6.2.5. Additional implementations
Even though the last sections focussed on tracking three individual features of the limb, namely
the shoulder, elbow, and wrist, it is also interesting to explore the motion-tracking capabilities
of the hand. The intuition provided by the author’s supervisor, that by tracking the user’s finger
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in a disturbed environment a prediction/correction of the intended activation location can be
made, is certainly worth investigating for pointing tasks.

Figure 6.21: Overview of tracking the
hand’s features using OpenCV.

Figure 6.21 provides one example of extracting the
features of the hand by using OpenCV’s library. It needs
to be mentioned that OpenPose also has the feature of
extracting the features of the hands, but at the moment
of writing the report, it was not tested due to the more ad-
vanced hardware requirements. Nevertheless, it is ex-
pected that during the thesis phase, OpenPose’s hand-
feature extractor will be used in order to have a consis-
tent implementation with the feature tracker of the arm.

Once the finger position is tracked, the goal of the
analysis would be to investigate whether it is possible
to ”smooth out” the effects of disturbances on the fin-
ger position in pointing tasks. Ahmad et al. (2018) sug-
gests several methods for removing the perturbations of
a noisy hand trajectory, by using Kalman filters (assuming a linear motion) or Sequential Monte
Carlo particle filtering. Moreover, the same study also proposes a Bayesian predictor in which
given the finger’s location at a specific time point, the most probable selectable interface item
is computed (without needing a physical activation on the screen). The author also proposes
to investigate the intuition that the desired movements (e.g. reaching for the screen in point-
ing tasks) could be isolated/filtered in the frequency domain from the undesired movements,
given the assumption that the arm responds linearly to the applied disturbances. In this way,
it would be possible to ”filter out” the unwanted movements during the reaching tasks and cor-
rect the location on the screen that the user pointed at. In the thesis phase, a clearer analysis
of the possibilities for combining finger tracking and filtering techniques for obtaining a smooth
trajectory and target selection in pointing tasks will be elaborated.

6.2.6. Influence of the camera positioning on the pose estimation
The last part of the analysis for the 3D reconstruction part concerns the investigation of the po-
sitioning of the cameras that can provide a successful pose estimation. In the author’s opinion,
a successful pose estimation implies that the features of interest are observed simultaneously
from both cameras, and the pose recognition contains as few errors as possible while keep-
ing in mind the constraints posed by the environment in which the cameras will operate. In
order to investigate feasible camera positions, three cases were defined, while recognizing
that some of them are similar to the ones presented in Figure 6.17. Additionally, the author
will also comment on the setups presented in the earlier parts of the current section.

Figure 6.22: Setup used for investigating feasible camera positions.

Figure 6.22 presents the three cases that were initially proposed for the analysis. During
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the tests, the subject kept his arm horizontal and parallel to one of the table’s edges.

Figure 6.23: Overview of the pose estimation corresponding to Case 1.1.

Figure 6.23 presents one frame corresponding to the setup attributed to Case 1.1. This
case corresponds to one of the cameras facing directly the user. Despite the apparent ”com-
plete” feature detection, several aspects need to be pointed out. Firstly, it can be observed
that the wrist detection for Camera 1 (left) was not accurately performed. While the reason for
the inaccurate detection is not known, the author assumes that certain features on the sub-
ject’s arm allowed for such a detection. Moreover, if the attention is directed to the second
camera (right), it can be observed that due to the current perspective, several features of inter-
est (such as the elbow or the wrist) can be occluded by the hand. If the hand would have been
moved more toward the camera, it is assumed that it will cover most of the image, making
the detection of other features of the arm infeasible. Nevertheless, this case emphasizes a
possible trade-off that would need to be made between the feasibility of tracking the features
on the arm and tracking the features on the hand.

Figure 6.24: Overview of the pose estimation corresponding to Case 2.1.

Figure 6.24 presents one frame corresponding to the setup attributed to Case 2.1. The
following case corresponds to the cameras being positioned on one side of the subject, ob-
serving the dominant hand. One particular problem with this positioning can be observed in
Camera 1 (Left). In some frames, the algorithm combines the left shoulder landmark with the
landmarks of the right arm. This confusion might be due to the fact that the left arm was not
detected in the frame. Another reason for the confusion is the fact that the perspective of the
first camera observes the line describing the two shoulders being almost perpendicular to the
camera plane, and therefore it is assumed that the algorithm has difficulties in differentiating
between the right and the left shoulder.

Figure 6.25: Overview of the pose estimation corresponding to Case 3.1.
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Figure 6.25 presents one frame corresponding to the setup attributed to Case 3.1. This
setup has one camera which is positioned to the back of the subject and one which is posi-
tioned parallel to the right limb. By observing only the selected frame, this positioning can be
considered favorable for the stereo system, since it shows that all the features of the right up-
per limb are captured by both of the cameras. On the other hand, after further investigations,
it was observed that for Camera 1 (Left), it can be the case that the wrist feature is occluded
by the upper arm. Moreover, the location of the finger is hardly identifiable from the same
perspective. Saying this, the difficulty of finding a positioning that both captures the features
of the limb and hand needs to be emphasized.

Several other camera positionings can be considered valid to be used for the stereo system.
One example of such positioning is represented by Figure 6.9, where both cameras are in front
of the subject, facing him/her. In this way, the author assumes that it is possible to track not
only the features of the upper limb but also the features of the hand. Currently, it is not known
whether this positioning is permitted by the restricted space of the simulator.

Figure 6.26: Overview of the pose estimation corresponding to Case 3.

One last camera positioning that can be considered feasible is the one corresponding to
Case 3 of Figure 6.17, presented in Figure 6.26.

Takeaways - Camera positioning
The goal of the previous subsection was to investigate which camera positioning would suit
the best the current application. It is expected that during the experiment phase, two types
of tasks would be investigated, namely pointing tasks and prolonged interaction tasks. In this
way, not only the features of the upper arm would need to be tracked but also certain features
of the hand. One clear conclusion that can be taken is that it can be difficult to position the
cameras such that they can record well both types of features. Another conclusion that can be
taken is that the pose tracker is prone to erroneous outcomes such as inaccurate and incorrect
labeling of some features. As a first-order approximation, the poses from the Figure 6.9 and
Figure 6.26 can represent two feasible solutions for the positioning of the cameras. Never-
theless, it needs to be mentioned that multiple frames of a certain camera positioning would
need to be analyzed in order to suggest better conclusions (compared to only one frame per
positioning as presented in this subsection). The author recommends a further analysis of
the positioning of the cameras in the constrained space of the simulator. It is hypothesized
that by positioning the cameras higher than the subject and orienting them towards him/her,
would be a way of capturing all the necessary information while minimizing the effect of the
occlusions and of the false detections. Moreover, an environment with good lighting and con-
trast between the subject and the rest of the frame would ensure more reliable results from
the pose estimator.





7
Research Question(s) and Experiment

Description

The aim of this chapter is to propose the questions that will be answered during the thesis
phase. First, the research objective is reiterated, followed by the elaboration of the research
questions based on themain concepts identified in the research objective. Lastly, a description
of the experiments will be given and the hypotheses will be presented.

7.1. Project goal and research questions
The proposed research objective is defined in the following way:

Investigate the feasibility of creating adaptive BDFT models for touchscreen operation by
using motion analysis techniques.

Before continuing with the definition of the research questions, a brief recapitulation of the
previous chapters can be performed:

• Based on Chapter 2, it was concluded that two of the most common tasks that are
encountered in touchscreen operation are discrete-pointing tasks and dragging tasks;

• Chapter 3 showed that one important aspect that influences the BDFT in stick-based
operations is the adaptive nature of the NMS system. Saying this, for an accurate can-
cellation, the BDFT models would need to be adapted to the setting of the neuromuscu-
lar system that is imposed by the task or subjectively used by the HO. Moreover, it was
concluded that the problem of within-subject variability concerning the BDFT effects in
touchscreen operation was not yet tackled.

• Based onChapter 4, it was reported that one feasible solution for recording limb features
is to use markerless pose estimators. Moreover, by combining information from multiple
cameras, it is feasible to obtain the 3D location of the desired features.

The literature study emphasized the limited body of knowledge present in the area of quantify-
ing the effects of BDFT in touchscreen operation. Most of the presented models were devel-
oped focusing on the interaction of the HO with physical inceptors. As previously described,
BDFT modeling and mitigation needs an adaptive approach in order to be effective due to
inherent within and between-subject variability. From the author’s knowledge, no study ana-
lyzed the individual arm movements of the subjects during touchscreen operation in disturbed
environments. This study would like to investigate whether is feasible to use motion-capturing
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techniques to help model and predict the BDFT effects in an adaptive manner, by linking the
movement of the limbs to the signals observed at the screen level and to the setting of the
neuromuscular system selected by the subject.

The resulting research questions are the following:

a) In which manner is the subject’s arm movement affected by the introduction of disturbances
when interacting with a touchscreen?

• What parts of the arm move relative to each other when disturbances are added?
• What parts of the arm are most affected by the disturbances?
• Does a correlation between the recorded movement of the limbs and the motion distur-
bance exist?

b) In whichmanner do different neuromuscular settings affect the recordedmovement patterns
of the limb when interacting with a touchscreen?

• Is it possible to capture the changes in neuromuscular settings with the chosen motion-
recording technique?

• What landmarks of the arm aremost affected by a change in the neuromuscular settings?
• How do the time-traces of the recorded landmarks change with a change in the neuro-
muscular settings?

• Does a change in the neuromuscular setting have an effect on the BDFT observed at
the touchscreen input?

c) How do the recorded movement patterns of the arm in a disturbed environment change
when the hand is not in contact with a touchscreen?
d) What is the approach that the HO takes when performing a discrete-pointing task on a
touchscreen?

7.2. Experiment design
The experiment design will give an overview of the current plan of the experiments along with
a description of the hypotheses that will be tested. As a general rule, the previous section
brought to attention the possibility of investigating two types of tasks, namely dragging tasks
and discrete pointing tasks. The following section will be split up based on these two types of
tasks.

7.2.1. Dragging task experiment
Goal of the experiment
The goal of the first experiment is to better understand the insights of how the upper limb is
affected by the induced disturbances while the upper limb is in contact with the touchscreen
and while inducing different settings of the neuromuscular system. Despite the fact that the
title of the experiment includes the words ”dragging task”, the task will be designed such that
the subject would need to keep his/her hand continuously in contact with the screen at one
particular location. The reason for this choice will be given in the next parts of the subsection.

Experiment and task description
Since the experiment requires the investigation of the arm’s movement in a disturbed environ-
ment, TU Delft’s SIMONA Research Simulator will be used as the main resource.
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Figure 7.1: Outside representation of the SIMONA Research Simulator.

One possible representation of the simulator is given in Figure 7.1. It consists of a moving
hexapod facilitating movement in 6 degrees-of-freedom, a cockpit mock-up where a variety of
instruments (including the touchscreen) are mounted, and an outside-visual section.

The current study will focus on investigating the effects of BDFT when the disturbance
signal is applied in one direction, namely in the vertical one. The signal that will be used to
replicate a disturbed environment was selected to be the one used by Mobertz et al. (2018)
and Khoshnewiszadeh and Pool (2021). The reason for selecting this signal is due to the
possibility of extracting the frequency content from the signal recorded on the screen and
from the time traces of the limb landmarks which is linearly related to the frequency content of
the input signal (which is an acceleration signal). In this way, it would be possible to idealize
the relationship between the imposed accelerations and the recorded signals in the form of
transfer functions.

Figure 7.2: The variations of the task which has been proposed for the first experiment.

Figure 7.2 presents the two variations of the task which was proposed for the first ex-
periment. The subject would need to keep his/her finger pointed at the red/green dot while
encountering vertical disturbances. Moreover, two words can appear on the screen namely
”Stiff” and ”Compliant”. These words correspond to the two neuromuscular settings that the
subject is suggested to use during the task. In this way, a comparison between the BDFT
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which is observed in a stiff setting can be made with the BDFT observed in a compliant setting.
It needs to be pointed out that the two imposed neuromuscular settings are subjective and can
vary from person to person. On the other hand, the same subjectiveness of the task (or neuro-
muscular setting) was also encountered in the experiments concerning stick-based operations
(in position and force types of task). The reason for choosing a task that imposes a constant
position of the finger throughout the trial is the hypothesis that it would facilitate a much easier
context for keeping a constant neuromuscular setting. When taking into consideration the mul-
tisine task used by Mobertz et al. (2018) and Khoshnewiszadeh and Pool (2021), it can be the
case that it would be much harder for the subjects to keep a constant neuromuscular setting
due to the large excursions on the screen and to the task duration. When discussing the task
duration, it can be expected that the subjects would find it difficult to keep their neuromuscu-
lar setting in the stiffer condition for large periods of time. In this way, a shorter experiment
duration is suggested with the tradeoff that the BDFT dynamics at the low frequencies would
not be able to be computed anymore. A practical aspect that was pointed out is the possibility
of the subject to ”anchor” /”rest” his/her finger on the required point on the screen, making
the difference in BDFT between the two neuromuscular settings indistinguishable. While the
previously-mentioned aspect can be considered valid, it is expected that during the trial, the
subjects will wear an anti-friction glove, and to further reduce the confounding factors, the dis-
tance from the user to the screen can be adapted (to be interpreted as increased), in order to
decrease the probability of the user to ”rest” on the screen surface.

The first experiment will consist of two parts: a model training part and a validation part.
In the first part, each participant will be required to keep one particular neuromuscular set-
ting while continuously interacting with the screen for the whole trial duration. In the second
part, the constructed models will be validated, where the neuromuscular setting will be al-
tered throughout one trial (in order to investigate the robustness and the ”adaptability” of the
approach).

Measured variables
The first variable that will be measured is the signal observed at the screen level. As previously
mentioned, the subjects will be required to keep their fingers on a discrete point, but due to
the fact that disturbances will be induced, a variation of the signal around the target point will
be expected.

The second variable that will be measured covers the X, Y, and Z positions (as defined
by a simulator/camera fixed coordinate system) of the triangulated landmarks of the shoulder,
elbow, and wrist.

Data analysis approach
The data analysis approach is closely linked to the Experiment and task description. The data
from the first part of the experiment (model training) will be used to train machine-learning
models for distinguishing between a stiff and compliant neuromuscular setting. The previously-
mentioned machine learning models will be trained on the X, Y, and Z positions of the land-
marks (providing that significant differences in the landmark positions will be observed be-
tween the two neuromuscular settings) and on the signals observed at the screen level for
each subject. Moreover, by analyzing the signal observed at the screen level, and its correla-
tion with the disturbance signal, two models/transfer functions for the biodynamic feedthrough
(per subject) will be elaborated, one for the stiff setting and one for the compliant one (again,
providing that significant differences will be observed).

The data from the second part will be used to validate the constructed models and to
evaluate the signal-cancellation performance of the constructed transfer functions. Ideally, if
the user would keep his/her neuromuscular setting very stiff during the validation trials, the
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models constructed for categorizing the landmarks and the signal observed on the screen
would indicate a correct category. Ideally, the adaptiveness of the approach would be from
the fact that if the correct category would be identified, the correct model/transfer function
will be used for signal-based cancellation (the transfer function corresponding to the current
neuromuscular setting). The first experiment will answer the first two research questions.

7.2.2. Discrete pointing task experiment
Goal of the experiment
The goal of the second experiment is to better understand the insights of how the upper limb
is affected by the induced disturbances while it is pointing toward a discrete task on a touch-
screen and while inducing different settings of the neuromuscular system.

Experiment and task description
The details regarding the Research Simulator, disturbance signal, and disturbance direction
are similar to the ones presented in the previous experiment.

Figure 7.3: The intuition behind the task of the second experiment (Ahmad et al., 2018).

Figure 7.3 presents the intuition behind the task of the second experiment. Unlike the
task of the first experiment, in this case, one dot appearing on the screen at a particular time
would need to be pressed by the subject while keeping one of the two desired neuromuscular
settings (stiff or compliant). The main idea behind the second experiment would be to inves-
tigate whether it is possible to cancel the contribution from the disturbance but this time of
the triangulated finger landmark/trajectory (since the finger is interacting with the touchscreen
dynamically) while moving toward the screen and interacting with it.

The second experiment will consist of two parts: the identification part and the validation
part. In the first part of the experiment, the subject will be asked to keep his/her hand hanging
”in the air” (static) while being disturbed and while keeping one of the two neuromuscular
settings. The second part would consist of the actual discrete-pointing task where the user
is required to point successively at one of the predefined locations on the touchscreen while
keeping one of the two required neuromuscular settings.

Measured variables
The first variable that will be measured is the signal observed at the screen level. As previously
mentioned, in this scenario, discrete tasks will be tested.

The second variable that will be measured covers the X, Y, and Z positions (as defined by
a simulator/camera fixed coordinate system) of the triangulated landmarks of the finger.
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Data analysis approach
When focussing on the first part of the experiment, the triangulated position of the finger land-
mark will be used in order to construct a model (to be interpreted as a transfer function) de-
scribing the transfer of accelerations to the finger position (A2P) with respect to a chosen
coordinate system for each subject. The previously-mentioned aspect is linked with the hy-
pothesis that the disturbed finger position acts linearly to the induced disturbances. It needs
to be mentioned that the transfer function will be created in the direction that ”sees” the largest
contribution from the disturbance.

The second part of the experiment will use the intuition from the first part, and the hypoth-
esis that the frequency content of the ”reach” towards the screen will be different from the
frequency content of the disturbance. In other words, it can be considered that the reaching
task consists of a low-frequency movement (the reaching) in combination with movement cor-
related with the reaching action of the subject. In this way, it will be investigated whether by
using the identified model, it is possible to cancel the disturbance contribution to the reaching
task, and whether it is possible to correct the location of the screen the user pointed at. The
second experiment will answer the last two research questions.

7.3. Hypotheses
• H1: The BDFT for the dragging task is expected to bemore pronounced for the compliant
neuromuscular setting compared to the stiff neuromuscular setting.

• H2: The triangulated landmarks for the dragging task are expected to vary more and
to have a better attenuation of the higher frequencies in the compliant neuromuscular
setting when compared to the stiff neuromuscular setting.

• H3: It is expected that the differences in BDFT or in limb position signals between sub-
jects are less pronounced than the differences in BDFT when altering the neuromuscular
settings.

• H4: It is expected that when the arm ”is left hanging”, it will respond linearly to the
induced disturbance, facilitating a transfer-function definition.

• H5: It is expected that the behavior of the upper limb landmarks will be different when
being in contact with the screen compared to when the limb is ”left hanging”.

• H6: It is expected that a positive cancellation performance of the signal in the pointing
task will be obtained when using the model identified in a static limb scenario (describ-
ing the effects of the disturbance on the finger position) for consistent neuromuscular
settings.

Reasoning:

• H1 and H2: As presented in the simulations of Chapter 5, when varying the stiffness of
the multibody system, the position signals of the lower stiffness setting varied more (with
respect to the shoulder landmark) when compared to the higher stiffness setting. More-
over, it is expected that a more compliant neuromuscular setting would create a weaker
connection between the seat and the screen and therefore attenuating more the higher
frequency content of the disturbance signal when compared to the stiffer neuromuscular
setting.

• H3: The presented literature linked to stick-based operations has found a larger influ-
ence of the neuromuscular settings when analyzing BDFT in comparison to the anthro-
pometrics of the subject.
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• H4: It is expected that the movement of the arm will be correlated with the disturbance
signal since the only forces that are acting on the arm are the inertial ones (except the
forces that are necessary to keep the arm hanging against the gravity).

• H5: It is expected that the interaction forces between the finger and the screen will
affect the whole arm since it is possible that the user will use the screen as a pivot point,
minimizing the effects of the disturbances.

• H6: It is expected that while approaching the screen, the finger of the subject will be
affected in the same (linear) way by the disturbances as it is when it is not moving and
therefore making feasible the signal cancellation. In other words, it can be considered
that the reaching task consists of a low-frequency movement (the reaching) in combina-
tion with movement correlated with the reaching action of the subject.
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A
Experiment consent and briefing

forms

The following appendix provides an overview of the two main documents that the subjects
of the experiment received before performing it. Before the experiment session, the experi-
menter carefully explained the contents of the two documents and allowed the subjects to ask
questions, and to refuse participation at any moment in time.
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Figure 1: Cockpit with touchscreens.

Figure 2: Markerless pose es�ma�on technique.



Figure 3: Outside view of the
SIMONA Research Simulator.

Figure 4: Top view of the simulator.



Figure 5: Task 1 version 1. Figure 6: Task 1 version 2.

Figure 7: Requested posi�on of the hand version 1 - Task 1.
Figure 8: Requested posi�on of the hand version 2 – Task 1.



.

1) The subject is kindly asked to keep his/her finger pointed at the screen as if he/she is poin�ng 

at the imaginary cross. The reason for this is that on average the arm ideally shall stay in one 

steady posi�on throughout one trial.

Figure 9: Task 2 version 1. Figure 10: Task 2 version 2.

Figure 11: Requested posi�on of the hand - Task 3



Figure 9: Task 4 posi�on 1.
Figure 10: Task 4 posi�on 2.



Figure 12: Anonymized output from the pose es�mator.
Figure 11: The normal output of the pose es�mator.



Contact information
researcher:

Contact information research 
supervisor:



Please tick the appropriate boxes Yes No

Taking part in the study

I have read and understood the study information or it has been read to me. I have been able to ask 
questions about the study and my questions have been answered to my satisfaction.

� �

I consent voluntarily to be a participant in this study and understand that I can withdraw from the 
study at any time, without having to give a reason. 

� �

I understand that taking part in the study involves the recording of my arm movements when
providing control inputs on a touchscreen while being subjected to simulated aircraft turbulence in 
the SIMONA Research Simulator.

� �

I understand that taking part in the study involves the video recording of my movements 
throughout the experiment session. Moreover, through the experiment briefing I was made aware 
that the obtained videos and extracted frames are anonymized after processing and under no 
circumstances any personal identification can be derived from the anonymized video frames.

� �

I am aware that some basic identification information (name, email address, age, etc.) will be 
collected before the experiment, but will not be shared in identifiable form beyond the research 
team.

� �

Risks associated with participating in the study

I understand that taking part in the study involves the risk of physical discomfort such as mild 
motion sickness and that I should always report such discomfort to the experimenter.

Safety

� �

I confirm that the researcher has provided me with detailed safety and operational instructions for 
the hardware used in the experiment. Furthermore, I confirm that I have understood the 
researcher’s instructions for guaranteeing that the experiment will be performed in line with 
current TU Delft COVID-19 guidelines and that this experiment shall at all times follow these 
guidelines.

� �

I understand that this research study has been reviewed and approved by the TU Delft Human 
Research Ethics Committee (HREC). I am aware that I can report any problems regarding my 
participation in the experiment to the researchers using the contact information below.

Use of the information in the study

� �

I understand that information collected (excluding information that can identify me) will be used 
for scientific reports and publications.

� �



I understand that personal information collected about me that can identify me, such as name and 
email address, will not be shared beyond the study team, and that my confidentiality as a 
participant in this study will remain secure. 

� �

Future use and reuse of the information by others

I give permission for the anonymised arm movement data that I provide to be archived on the 
4TU.ResearchData repository so it can be used for future research and learning.

� �

Signatures

________________________ __________________ ________
Name of participant: Signature Date

I have accurately read out the information sheet to the potential participant and, to the best of my ability, 
ensured that the participant understands to what they are freely consenting.

________________________ __________________ ________

Researcher name: Signature Date

Contact information 
researcher:

Contact information research 
supervisor:



Age range: 
o 18 – 19

o 20 – 24

o 25 – 29

o 30 – 34

o 35 – 39

o 40 – 44

o 45 – 49

o 50 – 55

o 55+

Gender: __________

Handedness: __________

Participant number: __________
(filled out by the researcher)





B
Coherence calculations

The following appendix proxides an overview of the coherence estimates for each subject,
body-part and combination of NMS and Task independent variables. The information cap-
tured by the estimated coherences can be crucial for understanding which frequency points
in the nonparametric estimates of the BDFT can be considered ”reliable” or not. Moreover,
the computed quantity will provide the reader an insight regarding the linearity of the behav-
ior corresponding to the three recorded body-parts in the context of the selected tasks and
neuromuscular conditions.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.1: Overview of the estimated coherence calculation for Subject 1, Task: F.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.2: Overview of the estimated coherence calculation for Subject 1, Task: M.
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(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.3: Overview of the estimated coherence calculation for Subject 1, Task: N.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.4: Overview of the estimated coherence calculation for Subject 2, Task: F.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.5: Overview of the estimated coherence calculation for Subject 2, Task: M.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.6: Overview of the estimated coherence calculation for Subject 2, Task: N.
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(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.7: Overview of the estimated coherence calculation for Subject 3, Task: F.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.8: Overview of the estimated coherence calculation for Subject 3, Task: M.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.9: Overview of the estimated coherence calculation for Subject 3, Task: N.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.10: Overview of the estimated coherence calculation for Subject 4, Task: F.
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(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.11: Overview of the estimated coherence calculation for Subject 4, Task: M.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.12: Overview of the estimated coherence calculation for Subject 4, Task: N.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.13: Overview of the estimated coherence calculation for Subject 5, Task: F.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.14: Overview of the estimated coherence calculation for Subject 5, Task: M.
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(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.15: Overview of the estimated coherence calculation for Subject 5, Task: N.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.16: Overview of the estimated coherence calculation for Subject 6, Task: F.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.17: Overview of the estimated coherence calculation for Subject 6, Task: M.

(a) Coherence of the elbow landmark (b) Coherence of the wrist landmark (c) Coherence of the finger landmark

Figure B.18: Overview of the estimated coherence calculation for Subject 6, Task: N.
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B.1. Discussion of the outcomes corresponding to Appendix B
The figures presented above showed that the linearity of the recorded landmarks depends on:
the landmark that is being analysed, the task, the neuromuscular settings and the subject that
was analysed.

When focusing on the recorded landmark, it can be observed that for some subjects, the
wrist landmark behaves more linearly compared to the finger landmark in the cases where the
finger is interacting with the screen (e.g. Figure B.14b and Figure B.14c). This behavior can
be caused by nonlinear effects such as finger slip or friction with the screen surface.

Another aspect that is influenced by the screen interaction is the change in coherence
between the cases where the subject is interacting with the screen and when it is not. An
example of such change is observed in Figure B.18b and Figure B.18c where the condition of
the finger not touching the screen exhibits a more linear behavior as expected.

In some scenarios, a stiffer approach toward a task induces a more linear behavior com-
pared to the case when the subject is more relaxed. This aspect can be explained by the
fact that being stiff creates a stronger dynamical coupling between the disturbances and the
movement of the limb (e.g. Figure B.15c).

Lastly, it can be observed that the linearity of the body parts depends on the subject that
is being analysed. For example, the response exhibited in Figure B.15c is different than the
response presented in Figure B.18c, especially for the compliant condition. These differences
can be caused by different interpretations regarding how ”compliant” one should be. It was
observed that the subject whose compliant response corresponds to Figure B.15c, was able
to relax the most (having the highest RMS value of the finger landmark), fact that reduced the
linearity of the system in the low-frequency range.



C
Pinhole camera model

The following appendix provides an overview regarding the pinhole camera model, estimated
intrisic parameters for both cameras, and the extrinsic parameters for each of the six experi-
ment sessions.

C.1. Perspective projection insights

Zk

f (focal length)
(center of projection)

C

Yk

zs

xs

xc

Zc

Xk

Xw

P = (Xw, Yw, Zw)w

p =
 (x

s, z
s)s

pc = (u0, v0)c

(principal point)

ZwYw

Figure C.1: Overview of the pinhole camera model.

The contents of this section (which are adapted from 1 and 2) have the goal of explaining the
steps that construct the pinhole camera model. Based on Figure C.1, the pinhole camera

1https://www.ipb.uni-bonn.de/html/teaching/photo12-2021/2021-pho1-20-camera-params.pptx.pdf
2https://docs.opencv.org/4.x/d9/d0c/group__calib3d.html
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model consists of three different coordinate frames: The world coordinate system (subscript
w), the camera-fixed coordinate system (subscript k), the image coordinate system (subscript
c) and the sensor coordinate system (subscript s).

In this way, the previously mentioned coordinate systems are linked to the generation of
the camera model through a series of coordinate transformations: A 3D to 3D transformation
which links the world coordinate system to the camera-based coordinate system, a 3D to 2D
transformation (described also as ideal perspective projection) which transforms a point from
the camera-based coordinate system to a point in the image coordinate system and a 2D to
2D transformation which transforms a point from the image coordinate system to a pixel value
in the sensor coordinate system.

The 3D to 3D transformation is represented by a matrix multiplication that relates the two
coordinate systems through a translation matrix and a rotation vector, as follows:

Xk

Yk
Zk

1


k

=


r00 r01 r02 t0
r10 r11 r12 t1
r20 r21 r22 t2
0 0 0 1



Xw

Yw
Zw

1


w

(C.1)

After point P was transformed to the camera-fixed coordinate frame, the ideal perspective
projection is performed to bring point P into the image coordinate system, using the trans-
formed 3D points in the camera-fixed reference frame (subscript s) and the focal length (f ):

xc =
Xk

Zk
f and zc =

Yk
Zk

f (C.2)

It needs to be mentioned that the units in which the values of Equation C.2 are expressed
are the units of the focal length which can be metric (ex. mm). To express these quantities in
pixels, a translation (by u0 and v0) and scaling (mx and mz) by the pixel dimensions needs to
be performed, in the following manner:

xs = mx · xc + u0 zs = mz · zc + v0 (C.3)

In this way, by combining Equation C.2 and Equation C.3:

xs = mx
Xk

Zk
f + u0 zs = mz

Yk
Zk

f + v0 (C.4)

Summarizing Equation C.4 in a matrix format:

mxs
mzs
m


s

=

mxf 0 u0 0
0 mzf v0 0
0 0 1 0



Xk

Yk
Zk

1


k

(C.5)

And combining Equation C.1 and Equation C.5, the following formula expresses the rela-
tionship between a given 3D point in space and a projected point in 2D:

m

xszs
1


s

=

ax 0 u0
0 az v0
0 0 1


︸ ︷︷ ︸
Intrinsic parameters

r00 r01 r02 t0
r10 r11 r12 t1
r20 r21 r22 t2


︸ ︷︷ ︸

Extrinsic parameters


Xw

Yw
Zw

1


w

(C.6)
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All the formulas that were presented above made use of the projective-space representa-
tion of a vector. A vector [x, y]T ⊂ IR2 is equivalent with its projective-space counterpart [x, y, 1]
⊂ IR3 which, in turn, is equivalent to any multiplem of the projective-space vector [mx,my,m].

In reality, cameras possess distortions. The pinhole camera model does not account for
the nonlinearities induced by them, and therefore a correction needs to be made in order to
either transform an undistorted image into a distorted one or vice-versa. The distorted (xsd , ysd)
pixels have the following formula:

xsd = xs + (xs − u0)[k1(x
2 + z2] + k2(x

2 + z2)2 + k3(x
2 + z2)3]

zsd = zs + (zs − v0)[k1(x
2 + z2) + k2(x

2 + z2)2 + k3(x
2 + z2)3]

(C.7)

Equation C.7 presents how the distorted pixel values (xsd , zsd) are modeled as a function
of the undistorted pixel values (xs, zs), the image centers (u0.v0), normalized image coordi-
nates (x = Xk

Zk
, z = Yk

Zk
), and the distorsion coefficients (k1.k2, k3). All these parameters are

estimated using Zhang’s method (Zhang, 2000).

C.2. Intrinsic parameters
As previously mentioned, the intrinsic parameters represent one part of the pinhole camera
model. This section introduces the estimated intrinsic parameters for each of the two cameras
(KC1 , KC2) and the two pairs of distorsion coefficients (DC1 , DC2).

C.2.1. Camera 1

KC1 =

916.39 0 961.77
0 914.04 538.99
0 0 1


DC1 = (0.0192,−0.0611, 0.0533)

Mean reprojection error - Camera 1: 0.27 [px]

C.2.2. Camera 2

KC2 =

917.62 0 960.97
0 915.35 536.86
0 0 1


DC2 = (0.0206,−0.0606, 0.0499)

Mean reprojection error - Camera 2: 0.29 [px]

C.3. Extrinsic parameters
This section introduces the estimated extrinsic parameters for every extrinsic calibration ses-
sion. The extrinsic parameters are represented by a translation (TS) and a rotation (RS).

C.3.1. Subject 1

RS1 =

 0.892 0.024 −0.452
−0.019 0.999 0.016
0.452 −0.006 0.892

 TS1 =

 336.088
−162.388
−21.329


Mean reprojection error - Subject 1: 0.40 [px]
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C.3.2. Subject 2

RS2 =

 0.890 0.016 −0.455
−0.029 0.999 −0.023
0.454 0.033 0.890

 TS2 =

 336.562
−161.573
−26.277


Mean reprojection error - Subject 2: 0.41 [px]

C.3.3. Subject 3

RS3 =

 0.904 0.026 −0.428
−0.026 0.999 −0.006
0.428 0.005 0.904

 TS3 =

 332.922
−152.299
−6.826


Mean reprojection error - Subject 3: 0.41 [px]

C.3.4. Subject 4

RS4 =

 0.897 0.038 −0.440
−0.022 0.999 0.042
0.442 −0.028 0.897

 TS4 =

 330.687
−161.494
−7.525


Mean reprojection error - Subject 4: 0.40 [px]

C.3.5. Subject 5

RS5 =

 0.893 −0.006 −0.451
−0.037 0.998 0.060
0.449 −0.070 0.891

 TS5 =

 334.724
−160.992
1.753


Mean reprojection error - Subject 5: 0.39 [px]

C.3.6. Subject 6

RS6 =

0.891 −0.001 −0.454
0.018 0.999 0.033
0.453 −0.037 0.891

 TS6 =

 333.552
−161.181
−1.852


Mean reprojection error - Subject 6: 0.41 [px]



D
Validation histograms

The following appendix provides an overview of the complete histograms that describe the
absolute errors between the signals obtained from the touchscreens and the signals obtained
from the stereo system.

This visualisation was performed by combining the data from the three repetitions and all
subjects in the four different conditions that concerned the interaction between the finger and
the screen. Moreover, this visualisation complements the information provided in the scientific
paper, since it provides a more complete understanding of the error distribution.

(a) Histogram of absolute errors for NMS: C and Task: F (b) Histogram of absolute errors for NMS: S and Task: F

(c) Histogram of absolute errors for NMS: C and Task: M (d) Histogram of absolute errors for NMS: S and Task: M
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E
Second-order system parameter

estimations

The following appendix provides an overview of the run-specific and averaged parameters of
the time-domain identification method using a mass-spring-damper model. The goal of this
appendix is to give the reader the understanding that in some cases, the averaging of the
parameters (the ones reported in the scientific article) might induce erroneous results due to
the spread in the values of the parameters identified using this method of identification.

Table E.1: Overview of the run-level and averaged parameters for Subject 1, NMS: Compliant, Task: F

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 18.68 14.65 5.01 3397.83 16.85 16.15 601.91 0.71 0.36
Run 2 7.48 11.96 4.49 13.86 13.67 14.48 0.48 0.45 0.23
Run 3 8.29 15.18 6.54 13.57 13.02 12.56 0.61 0.52 0.33

Average 11.48 13.93 5.35 1141.75 14.51 14.40 201.00 0.56 0.31

Table E.2: Overview of the run-level and averaged parameters for Subject 1, NMS: Stiff, Task: F

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 6.65 14.54 4.48 16.99 15.07 11.18 0.95 1.18 0.81
Run 2 27.65 33.50 11.93 50063.47 125685310.27 686.52 15443.64 28746786.93 183.72
Run 3 20.94 23.98 7.20 3247.25 23.17 12.54 735.23 3.74 2.17

Average 18.41 24.01 7.87 17775.90 41895116.17 236.75 5393.28 9582263.95 62.24

Table E.3: Overview of the run-level and averaged parameters for Subject 1, NMS: Compliant, Task: M

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 40.91 70.04 28.71 15.98 10.96 11.11 4.46 3.21 2.23
Run 2 43.98 76.73 15.70 8.37 7.70 10.46 2.76 2.58 0.99
Run 3 35.56 66.34 7.70 12.47 9.05 13.30 3.33 2.71 0.40

Average 40.15 71.03 17.37 12.27 9.24 11.62 3.52 2.83 1.21
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Table E.4: Overview of the run-level and averaged parameters for Subject 1, NMS: Stiff, Task: M

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 72.46 96.99 19.92 162.62 183.78 11.42 83.11 97.57 2.06
Run 2 87.03 109.80 36.43 8.00 6.01 4.97 4.80 3.19 1.65
Run 3 84.84 127.81 28.71 247.37 2133.55 6.41 187.76 1721.41 2.11

Average 81.45 111.53 28.35 139.33 774.45 7.60 91.89 607.39 1.94

Table E.5: Overview of the run-level and averaged parameters for Subject 1, NMS: Compliant, Task: N

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 52.78 106.97 85.01 417.08 26.06 15.48 152.43 11.48 3.89
Run 2 25.35 11.63 15.93 1688.60 14.12 14.02 394.52 0.29 0.26
Run 3 4.54 10.48 14.50 13.94 13.82 13.80 0.19 0.22 0.21

Average 27.56 43.03 38.48 706.54 18.00 14.43 182.38 4.00 1.46

Table E.6: Overview of the run-level and averaged parameters for Subject 1, NMS: Stiff, Task: N

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 46.34 90.21 61.71 853.07 27.86 17.08 289.65 10.92 3.33
Run 2 36.10 75.36 82.51 314.62 624.85 60.82 87.65 195.09 17.03
Run 3 29.50 40.85 42.44 11.79 10.42 10.78 2.50 1.82 1.45

Average 37.31 68.80 62.22 393.16 221.05 29.56 126.60 69.28 7.27

Table E.7: Overview of the run-level and averaged parameters for Subject 2, NMS: Compliant, Task: F

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 21.97 36.63 40.04 10.74 10.07 9.99 1.42 1.06 1.01
Run 2 29.85 53.85 42.50 7.97 7.80 8.37 1.76 1.33 1.01
Run 3 20.74 50.22 42.17 12.11 10.29 9.92 1.83 1.56 1.19

Average 24.19 46.90 41.57 10.27 9.38 9.43 1.67 1.32 1.07

Table E.8: Overview of the run-level and averaged parameters for Subject 2, NMS: Stiff, Task: F

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 32.44 67.16 45.40 11.11 8.91 8.96 2.45 2.00 1.57
Run 2 32.80 59.67 43.37 16.91 11.96 11.64 3.77 2.33 1.93
Run 3 28.14 54.28 34.13 11.18 9.20 8.44 2.13 1.71 1.35

Average 31.13 60.37 40.96 13.07 10.03 9.68 2.78 2.01 1.61
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Table E.9: Overview of the run-level and averaged parameters for Subject 2, NMS: Compliant, Task: M

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 41.30 75.71 55.48 7.99 7.06 6.86 1.90 1.55 1.27
Run 2 35.24 62.45 44.79 11.32 9.29 9.28 2.47 1.74 1.42
Run 3 46.26 97.45 59.28 6.92 6.08 5.85 2.08 1.72 1.18

Average 40.93 78.53 53.19 8.74 7.48 7.33 2.15 1.67 1.29

Table E.10: Overview of the run-level and averaged parameters for Subject 2, NMS: Stiff, Task: M

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 38.36 81.32 60.65 6.87 6.23 6.21 1.69 1.60 1.32
Run 2 36.45 78.14 60.12 8.31 7.04 5.79 2.12 1.76 1.31
Run 3 37.16 77.29 56.44 6.08 5.49 4.79 1.54 1.38 1.11

Average 37.32 78.92 59.07 7.09 6.25 5.60 1.78 1.58 1.25

Table E.11: Overview of the run-level and averaged parameters for Subject 2, NMS: Compliant, Task: N

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 38.13 61.42 60.03 11.91 9.63 10.18 2.88 1.99 1.46
Run 2 63.37 107.35 95.29 8.11 6.74 7.58 3.23 2.37 1.83
Run 3 43.32 83.85 70.40 6.93 6.27 7.61 2.11 1.84 1.46

Average 48.27 84.21 75.24 8.98 7.55 8.46 2.74 2.07 1.58

Table E.12: Overview of the run-level and averaged parameters for Subject 2, NMS: Stiff, Task: N

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 42.08 68.57 66.03 9.99 8.55 9.39 3.05 2.11 1.66
Run 2 39.50 68.19 69.82 9.44 8.40 9.28 2.61 2.04 1.71
Run 3 44.42 67.57 75.97 9.55 8.46 9.29 2.77 1.95 1.77

Average 42.00 68.11 70.60 9.66 8.47 9.32 2.81 2.03 1.71

Table E.13: Overview of the run-level and averaged parameters for Subject 3, NMS: Compliant, Task: F

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 24.43 47.70 24.70 6.81 6.89 9.08 0.88 0.88 0.62
Run 2 19.32 36.29 28.33 7.88 7.99 9.20 0.76 0.70 0.63
Run 3 36.03 74.96 35.39 5.70 5.78 8.13 1.31 1.23 0.82

Average 26.59 52.98 29.47 6.80 6.89 8.80 0.98 0.94 0.69
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Table E.14: Overview of the run-level and averaged parameters for Subject 3, NMS: Stiff, Task: F

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 26.39 45.60 25.78 13.93 10.31 12.27 2.76 1.77 1.31
Run 2 33.85 52.25 23.29 14.64 9.35 10.86 4.54 2.00 1.57
Run 3 17.37 55.47 25.29 33.81 15.08 17.50 5.33 3.21 2.47

Average 25.87 51.11 24.79 20.79 11.58 13.54 4.21 2.33 1.78

Table E.15: Overview of the run-level and averaged parameters for Subject 3, NMS: Compliant, Task: M

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 27.03 63.29 26.30 6.84 6.21 8.55 1.21 1.30 0.78
Run 2 34.83 61.29 29.91 6.50 6.64 8.79 1.37 1.21 0.88
Run 3 41.77 85.25 27.19 6.44 6.15 9.03 1.81 1.64 0.97

Average 34.54 69.94 27.80 6.59 6.33 8.79 1.47 1.38 0.88

Table E.16: Overview of the run-level and averaged parameters for Subject 3, NMS: Stiff, Task: M

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 59.34 88.85 26.20 5.41 5.42 8.48 2.03 1.64 1.15
Run 2 57.63 99.29 30.20 4.67 4.91 8.85 1.67 1.61 1.29
Run 3 38.03 83.02 25.04 5.56 5.47 9.52 1.44 1.56 1.09

Average 51.67 90.39 27.15 5.21 5.27 8.95 1.71 1.60 1.18

Table E.17: Overview of the run-level and averaged parameters for Subject 3, NMS: Compliant, Task: N

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 27.69 59.73 57.60 7.61 7.27 8.21 1.30 1.24 1.02
Run 2 35.57 53.03 45.53 16.76 11.83 12.89 3.87 1.87 1.26
Run 3 30.08 56.11 55.00 8.00 8.06 9.09 1.52 1.39 1.12

Average 31.11 56.29 52.71 10.79 9.05 10.06 2.23 1.50 1.13

Table E.18: Overview of the run-level and averaged parameters for Subject 3, NMS: Stiff, Task: N

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 35.81 76.28 48.13 7.39 7.50 10.83 1.84 1.86 1.50
Run 2 47.88 80.54 47.11 6.75 6.62 9.76 1.92 1.77 1.28
Run 3 39.57 76.11 45.16 7.16 6.97 9.52 1.73 1.57 1.13

Average 41.08 77.64 46.80 7.10 7.03 10.03 1.83 1.73 1.30
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Table E.19: Overview of the run-level and averaged parameters for Subject 4, NMS: Compliant, Task: F

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 12.12 52.74 23.18 10.77 8.66 10.06 0.92 1.65 0.85
Run 2 17.13 49.89 21.00 7.31 6.78 8.21 1.31 1.27 0.72
Run 3 14.39 32.93 14.66 10.62 10.11 11.20 1.23 1.02 0.48

Average 14.55 45.19 19.61 9.56 8.52 9.82 1.15 1.31 0.68

Table E.20: Overview of the run-level and averaged parameters for Subject 4, NMS: Stiff, Task: F

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 47.94 81.12 40.37 6.72 6.36 8.58 2.39 1.96 1.30
Run 2 52.86 94.20 38.92 7.80 6.59 8.15 3.06 2.41 1.34
Run 3 34.72 56.03 33.96 7.29 6.70 7.88 1.92 1.57 1.19

Average 45.17 77.12 37.75 7.27 6.55 8.20 2.46 1.98 1.28

Table E.21: Overview of the run-level and averaged parameters for Subject 4, NMS: Compliant, Task: M

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 52.75 90.34 21.30 7.12 6.77 9.63 3.24 2.60 0.98
Run 2 52.40 73.17 29.28 6.02 6.42 7.96 1.97 1.67 1.05
Run 3 48.10 59.92 22.04 6.73 7.28 9.12 2.64 1.73 0.80

Average 51.08 74.48 24.21 6.62 6.83 8.90 2.62 2.00 0.94

Table E.22: Overview of the run-level and averaged parameters for Subject 4, NMS: Stiff, Task: M

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 51.12 72.37 31.12 4.82 5.12 6.74 1.80 1.51 0.93
Run 2 55.99 85.38 30.96 7.25 6.83 8.43 3.02 2.35 1.15
Run 3 55.69 92.30 33.44 5.63 5.53 7.29 2.41 2.17 1.20

Average 54.26 83.35 31.84 5.90 5.82 7.49 2.41 2.01 1.09

Table E.23: Overview of the run-level and averaged parameters for Subject 4, NMS: Compliant, Task: N

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 20.09 49.14 50.10 9.19 8.56 9.10 1.28 1.29 1.06
Run 2 36.24 88.52 102.67 5.50 5.35 5.53 1.38 1.50 1.45
Run 3 26.83 51.76 54.93 8.22 8.12 8.47 1.38 1.16 1.04

Average 27.72 63.14 69.23 7.64 7.34 7.70 1.35 1.31 1.18
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Table E.24: Overview of the run-level and averaged parameters for Subject 4, NMS: Stiff, Task: N

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 65.53 106.50 109.63 5.96 5.47 6.14 2.37 1.93 1.77
Run 2 45.97 84.93 73.53 7.26 7.05 8.13 2.29 1.93 1.60
Run 3 59.13 109.08 87.37 4.91 4.86 6.35 1.84 1.80 1.65

Average 56.88 100.17 90.18 6.04 5.79 6.87 2.17 1.89 1.67

Table E.25: Overview of the run-level and averaged parameters for Subject 5, NMS: Compliant, Task: F

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 8.88 16.57 16.64 9.84 9.73 9.65 0.26 0.21 0.17
Run 2 7.30 16.22 17.32 9.17 9.23 9.23 0.14 0.14 0.10
Run 3 15.85 15.81 14.45 9.94 9.84 9.85 0.58 0.22 0.15

Average 10.68 16.20 16.14 9.65 9.60 9.58 0.33 0.19 0.14

Table E.26: Overview of the run-level and averaged parameters for Subject 5, NMS: Stiff, Task: F

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 55.80 39.82 15.48 10.75 9.60 11.62 4.69 1.98 0.72
Run 2 50.49 53.64 31.53 94310.34 11.42 11.32 41463.81 3.22 1.69
Run 3 43.20 66.02 13.55 10.20 9.39 13.15 3.26 2.82 0.67

Average 49.83 53.16 20.19 31443.76 10.14 12.03 13823.92 2.68 1.03

Table E.27: Overview of the run-level and averaged parameters for Subject 5, NMS: Compliant, Task: M

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 35.80 43.31 3.61 8.99 8.72 12.39 2.40 2.09 0.28
Run 2 56.67 64.60 12.76 6.00 6.02 7.66 2.30 1.99 1.00
Run 3 46.85 54.16 16.60 6.76 6.73 9.16 2.01 1.65 0.76

Average 46.44 54.03 10.99 7.25 7.15 9.74 2.24 1.91 0.68

Table E.28: Overview of the run-level and averaged parameters for Subject 5, NMS: Stiff, Task: M

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 47.76 44.01 17.15 70023313.47 12.71 11.53 24979493.42 3.26 1.17
Run 2 67.88 50.75 26.97 8.32 8.56 9.80 4.82 2.45 1.56
Run 3 53.64 53.85 23.47 12.50 10.48 13.07 4.70 2.89 1.53

Average 56.43 49.53 22.53 23341111.43 10.58 11.47 8326500.98 2.87 1.42
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Table E.29: Overview of the run-level and averaged parameters for Subject 5, NMS: Compliant, Task: N

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 8.08 15.09 20.38 10.47 10.45 10.49 0.21 0.20 0.19
Run 2 8.40 16.21 22.38 9.94 9.93 9.96 0.20 0.17 0.17
Run 3 7.40 16.80 23.04 9.77 9.84 9.86 0.18 0.17 0.17

Average 7.96 16.03 21.94 10.06 10.07 10.10 0.20 0.18 0.18

Table E.30: Overview of the run-level and averaged parameters for Subject 5, NMS: Stiff, Task: N

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 71.26 68.73 53.59 40327991.76 84.25 28.28 19293699.95 23.12 4.69
Run 2 27.61 53.07 54.32 12.87 11.77 12.29 2.92 2.34 1.97
Run 3 44.10 69.46 61.71 6.83 7.20 8.39 1.86 1.73 1.48

Average 47.65 63.75 56.54 13442670.49 34.40 16.32 6431234.91 9.06 2.71

Table E.31: Overview of the run-level and averaged parameters for Subject 6, NMS: Compliant, Task: F

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 67.31 82.51 7.16 6.62 6.25 9.67 2.96 2.03 0.52
Run 2 54.91 61.36 27.45 9.00 7.93 7.36 3.66 2.10 1.31
Run 3 86.89 101.60 17.54 6.36 6.25 6.80 3.33 2.45 0.95

Average 69.70 81.82 17.39 7.33 6.81 7.94 3.32 2.19 0.93

Table E.32: Overview of the run-level and averaged parameters for Subject 6, NMS: Stiff, Task: F

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 51.18 76.25 26.58 19.71 9.69 11.17 7.89 3.21 1.19
Run 2 124.62 90.28 47.28 5.25 6.13 7.70 5.80 2.10 1.22
Run 3 119.48 137.33 59.35 6.48 6.08 7.89 5.01 3.21 1.71

Average 98.43 101.29 44.40 10.48 7.30 8.92 6.23 2.84 1.38

Table E.33: Overview of the run-level and averaged parameters for Subject 6, NMS: Compliant, Task: M

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 75.90 112.50 41.39 3.51 4.38 7.56 1.10 1.62 1.85
Run 2 97.58 120.65 20.08 3.93 4.38 8.91 1.76 1.87 1.13
Run 3 67.92 105.86 25.70 3.53 3.81 6.29 1.08 1.31 1.12

Average 80.47 113.00 29.06 3.66 4.19 7.59 1.31 1.60 1.36
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Table E.34: Overview of the run-level and averaged parameters for Subject 6, NMS: Stiff, Task: M

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 76.69 107.05 37.02 7.95 7.13 10.00 4.45 4.01 2.80
Run 2 52.18 68.41 20.02 9.67 7.02 7.85 4.06 2.80 1.41
Run 3 55.30 81.80 21.08 6.98 6.08 6.80 2.49 2.77 1.46

Average 61.39 85.75 26.04 8.20 6.75 8.22 3.67 3.19 1.89

Table E.35: Overview of the run-level and averaged parameters for Subject 6, NMS: Compliant, Task: N

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 108.85 71.44 76.37 35.61 7.56 7.82 22.71 1.82 1.45
Run 2 59.07 77.65 83.67 6.56 5.77 6.12 2.97 1.63 1.37
Run 3 80.89 91.09 87.47 4.69 4.90 5.48 2.25 1.47 1.26

Average 82.93 80.06 82.51 15.62 6.07 6.47 9.31 1.64 1.36

Table E.36: Overview of the run-level and averaged parameters for Subject 6, NMS: Stiff, Task: N

Gbdft ωbdft ζbdft
Elbow Wrist Finger Elbow Wrist Finger Elbow Wrist Finger

Run 1 75.11 76.69 63.31 6.23 6.99 8.53 2.75 2.16 2.00
Run 2 71.46 72.77 58.42 6.29 7.08 8.85 2.67 2.10 1.85
Run 3 63.54 62.72 47.85 7.26 7.59 8.81 2.81 1.93 1.33

Average 70.03 70.73 56.53 6.59 7.22 8.73 2.74 2.07 1.73

E.1. Discussion of the outcomes corresponding to Appendix E

The final values that are being plotted in the scientific paper are the run-averaged BDFT param-
eters. It was observed that in several cases, the parameter averaging might induce erroneous
conclusions regarding the modeling outcomes and the biodynamic behavior of certain subject.
One example is Table E.5, where the damping ratio for the finger landmark corresponding to
the first trial is ten times higher compared to the value of the last two trials. Figure E.1 shows
the raw BDFT estimates along with the response using the run-level models. It can be ob-
served that for the last two trials, the model is capturing well the underdamped peak, whereas
the response of the first model is not. The rather poor fit corresponding to the first figure is
attributed to the initial values that are inputted in the maximum-likelihood estimator.
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(a) Raw and modelled BDFT for Subject 1,
NMS: Compliant, Task: N, Trial: 1

(b) Raw and modelled BDFT for Subject 1,
NMS: Compliant, Task: N, Trial: 2

(c) Raw and modelled BDFT for Subject 1,
NMS: Compliant, Task: N, Trial: 3

Figure E.1: Raw frequency-response-functions and modeled functions using the set of the initial values
corresponding to the scientific paper.

When the set of initial parameter values is changed, it was possible to attain a better fit to
the data corresponding to the first trial.

Figure E.2: Raw and modelled BDFT for Subject 1, NMS: Compliant, Task: N, Trial: 1 with the updated initial
values.

E.2. Overview of the unrealistic values of the second-order system
The highly unrealistic values for the elbow, wrist correspondingmainly to Subject 1 and Subject
5 can be attributed to the dynamic effects not being totally visible in the range of frequencies
that are being measured, as presented in the figure below. In this way, fitting a second-order
system might introduce artefacts in the parameter estimation process.
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(a) Raw and modelled BDFT for Subject 1,
NMS: Compliant, Task: F, Trial: 1

(b) Raw and modelled BDFT for Subject 1,
NMS: Compliant, Task: F, Trial: 2

(c) Raw and modelled BDFT for Subject 1,
NMS: Compliant, Task: F, Trial: 3

(a) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: F, Trial: 1

(b) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: F, Trial: 2

(c) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: F, Trial: 3
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(a) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: F, Trial: 1

(b) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: F, Trial: 2

(c) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: F, Trial: 3

(a) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: F, Trial: 1

(b) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: F, Trial: 2

(c) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: F, Trial: 3
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(a) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: M, Trial: 1

(b) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: M, Trial: 2

(c) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: M, Trial: 3

(a) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: M, Trial: 1

(b) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: M, Trial: 2

(c) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: M, Trial: 3
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(a) Raw and modelled BDFT for Subject 1,
NMS: Compliant, Task: N, Trial: 1

(b) Raw and modelled BDFT for Subject 1,
NMS: Compliant, Task: N, Trial: 2

(c) Raw and modelled BDFT for Subject 1,
NMS: Compliant, Task: N, Trial: 3

(a) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: N, Trial: 1

(b) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: N, Trial: 2

(c) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: N, Trial: 3
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(a) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: N, Trial: 1

(b) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: N, Trial: 2

(c) Raw and modelled BDFT for Subject 1,
NMS: Stiff, Task: N, Trial: 3

(a) Raw and modelled BDFT for Subject 5,
NMS: Stiff, Task: F, Trial: 1

(b) Raw and modelled BDFT for Subject 5,
NMS: Stiff, Task: F, Trial: 2

(c) Raw and modelled BDFT for Subject 5,
NMS: Stiff, Task: F, Trial: 3
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(a) Raw and modelled BDFT for Subject 5,
NMS: Stiff, Task: M, Trial: 1

(b) Raw and modelled BDFT for Subject 5,
NMS: Stiff, Task: M, Trial: 2

(c) Raw and modelled BDFT for Subject 5,
NMS: Stiff, Task: M, Trial: 3

(a) Raw and modelled BDFT for Subject 5,
NMS: Stiff, Task: N, Trial: 1

(b) Raw and modelled BDFT for Subject 5,
NMS: Stiff, Task: N, Trial: 2

(c) Raw and modelled BDFT for Subject 5,
NMS: Stiff, Task: N, Trial: 3

E.3. Parameter identificatio results using a new set of initial values
The following figures show the model parameters obtained using the initial parameter values
for Gbdft, ωbdft and ζbdft, [10, 14, 0.2] instead of [20, 6, 0.5] as used in the scientific paper.
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(a) Parameter identifications for the
elbow.

(b) Parameter identifications for the
wrist.

(c) Parameter identifications for the
finger.

(a) Parameter identifications for the
elbow.

(b) Parameter identifications for the
wrist.

(c) Parameter identifications for the
finger.

(a) Parameter identifications for the
elbow.

(b) Parameter identifications for the
wrist.

(c) Parameter identifications for the
finger.



F
Raw and modeled BDFT frequency

response functions

The following appendix provides an overview of the raw and modeled BDFT frequency re-
sponse functions for all the subjects, tasks, neuromuscular settings and body parts.

(a) Raw and modelled frequency
response functions - elbow landmark*.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark*.

Figure F.1: Frequency response functions for Subject 1, NMS: Stiff and Compliant, Task: F

(a) Raw and modelled frequency
response functions - elbow landmark*.

(b) Raw and modelled frequency
response functions - wrist landmark*.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.2: Frequency response functions for Subject 1, NMS: Stiff and Compliant, Task: M
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(a) Raw and modelled frequency
response functions - elbow landmark*.

(b) Raw and modelled frequency
response functions - wrist landmark*.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.3: Frequency response functions for Subject 1, NMS: Stiff and Compliant, Task: N

(a) Raw and modelled frequency
response functions - elbow landmark.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.4: Frequency response functions for Subject 2, NMS: Stiff and Compliant, Task: F

(a) Raw and modelled frequency
response functions - elbow landmark.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.5: Frequency response functions for Subject 2, NMS: Stiff and Compliant, Task: M
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(a) Raw and modelled frequency
response functions - elbow landmark.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.6: Frequency response functions for Subject 2, NMS: Stiff and Compliant, Task: N

(a) Raw and modelled frequency
response functions - elbow landmark.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.7: Frequency response functions for Subject 3, NMS: Stiff and Compliant, Task: F

(a) Raw and modelled frequency
response functions - elbow landmark.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.8: Frequency response functions for Subject 3, NMS: Stiff and Compliant, Task: M
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(a) Raw and modelled frequency
response functions - elbow landmark.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.9: Frequency response functions for Subject 3, NMS: Stiff and Compliant, Task: N

(a) Raw and modelled frequency
response functions - elbow landmark.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.10: Frequency response functions for Subject 4, NMS: Stiff and Compliant, Task: F

(a) Raw and modelled frequency
response functions - elbow landmark.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.11: Frequency response functions for Subject 4, NMS: Stiff and Compliant, Task: M
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(a) Raw and modelled frequency
response functions - elbow landmark.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.12: Frequency response functions for Subject 4, NMS: Stiff and Compliant, Task: N

(a) Raw and modelled frequency
response functions - elbow landmark*.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.13: Frequency response functions for Subject 5, NMS: Stiff and Compliant, Task: F

(a) Raw and modelled frequency
response functions - elbow landmark*.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.14: Frequency response functions for Subject 5, NMS: Stiff and Compliant, Task: M
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(a) Raw and modelled frequency
response functions - elbow landmark*.

(b) Raw and modelled frequency
response functions - wrist landmark*.

(c) Raw and modelled frequency
response functions - finger landmark*.

Figure F.15: Frequency response functions for Subject 5, NMS: Stiff and Compliant, Task: N

(a) Raw and modelled frequency
response functions - elbow landmark.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.16: Frequency response functions for Subject 6, NMS: Stiff and Compliant, Task: F

(a) Raw and modelled frequency
response functions - elbow landmark.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.17: Frequency response functions for Subject 6, NMS: Stiff and Compliant, Task: M
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(a) Raw and modelled frequency
response functions - elbow landmark.

(b) Raw and modelled frequency
response functions - wrist landmark.

(c) Raw and modelled frequency
response functions - finger landmark.

Figure F.18: Frequency response functions for Subject 6, NMS: Stiff and Compliant, Task: N





G
BDFT model choice analysis

The following appendix provides a comparison between different feasible BDFT model struc-
tures that could be used to describe the BDFT effects. The goal of this section is to reason
the choice of the model that is used in the scientific article:

G.1. Models used
In order to describe the BDFT effects, the following models were chosen:
”First order”

Model = Gbdft
ωbdft

(jω + ωbdft)
(G.1)

”First order + delay”

Model = Gbdft
ωbdft

(jω + ωbdft)
e−jωτbdft (G.2)

”Second order overdamped”

Model = Gbdft

ω2
bdft

(jω)2 + 2 · ωbdft · jω + ω2
bdft

(G.3)

”Second order + zeta”

Model = Gbdft

ω2
bdft

(jω)2 + 2 · ωbdft · ζbdft · jω + ω2
bdft

(G.4)

G.2. VAF calculations
For each of the model structures, the VAF was computed:
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First order

(a) VAF of the elbow landmark. (b) VAF of the wrist landmark. (c) VAF of the finger landmark.

Figure G.1: VAF of the ”first order” model.

First order + delay

(a) VAF of the elbow landmark. (b) VAF of the wrist landmark. (c) VAF of the finger landmark

Figure G.2: VAF of the ”first order + delay” model.

Second order

(a) VAF of the elbow landmark. (b) VAF of the wrist landmark. (c) VAF of the finger landmark

Figure G.3: VAF of the ”second model overdamped” model.
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Second order + zeta

(a) VAF of the elbow landmark. (b) VAF of the wrist landmark. (c) VAF of the finger landmark

Figure G.4: VAF of the ”second model + zeta” model.

The VAF results indicate that the two model structures that explain the best the variance of the
signals are ”first order + delay” and ”second order + zeta”. There are some scenarios where
the ”first order + delay” behaves slightly better than the ”second order + zeta”, one example
being:

(a) Raw and modelled BDFT for Subject 6, NMS:
Compliant, Task: N, VAF: 92.5%

(b) Raw and modelled BDFT for Subject 6, NMS:
Compliant, Task: N, VAF: 89.6%

Figure G.5: Comparison between ”first order + delay” and ”second order + zeta” models.

On the contrary, there are also some scenarios where the ”first order + delay” behaves
worse better than the ”second order + zeta”, one example being:
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(a) Raw and modelled BDFT for Subject 5, NMS:
Compliant, Task: N, VAF: 92.5%

(b) Raw and modelled BDFT for Subject 5, NMS:
Compliant, Task: N, VAF: 89.6%

Figure G.6: Comparison between ”first order + delay” and ”second order + zeta” models.

It was considered that the model ”second order + zeta” was able to describe the under-
damped behavior of certain subjects, providing more robust modelling capabilities for the dif-
ferent behaviors that the subjects were exhibiting. In this way, the previously mentioned model
structure was chosen in the scientific article.



H
Observations and limitations of the

stereo markerless tracking

The following appendix provides an overview of the limitations of the approach selected in this
study, based on the OpenPose markerless pose estimator and two stereo cameras.

H.1. OpenPose failure modes and solutions

(a) Pose estimation failure, model - Cao
et al., 2017.

(b) Pose estimation failure mitigation,
model - Cao et al., 2017.

(c) Pose estimation failure mitigation,
model - Hidalgo et al., 2019.

Figure H.1: OpenPose failure mode and mitigation procedures.

Figure H.1a presents one of the most common failure modes that were encountered during the
experiment session. The uneven lighting that was observed on the upper limb, accentuated
by the shade that was produced in the upper part of the limb due to the short-sleeved shirts
that were worn by the subjects increased the possibility of artefacts from the OpenPose model
proposed by Cao et al., 2017. The artefact consisted in a false-positive detection of the elbow,
followed by an absence of the detection of the wrist and hand features. If the model from Cao
et al., 2017 is to be used, a solution to mitigate the problem is to alter the original image, by
introducing colors that eliminate the shading effects as in Figure H.1b. The option that was
chosen in the current study is to mitigate the effects of the false-positive detections by using
an updated model, the one proposed by Hidalgo et al., 2019 which, as it can be observed
in Figure H.1c, is able to eliminate the false-positive detections without altering the original
image.
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(a) Elbow estimation at the beginning of
the movement, model - Hidalgo et al.,

2019.

(b) Elbow estimation in the second
frame of the movement, model - Hidalgo

et al., 2019.

(c) Elbow estimation in the second
frame of the movement, model - Hidalgo

et al., 2019.

Figure H.2: Possible sources of elbow measurement inaccuracies.

Figure H.2 presents three consecutive frames describing a ”downward” motion of the up-
per limb. It might be the case that in certain scenarios, the elbow detection and automatically
the triangulated landmark induce unreliable results. This aspect can be observed especially
when the elbow does not move significantly between two consecutive time-frames. It can
be observed that despite the fact the elbow in Figure H.2b moved slightly lower than in Fig-
ure H.2a, the detected landmark did not follow exactly the downward trend. This phenomenon
can be caused by the positioning of the camera with respect to the elbow, keeping in mind
that the elbow is a larger body keypoint when compared to the wrist and the finger.

Figure H.3: The low lighting impact on the pose estimation.

Figure H.3 shows how low lighting affects the estimation of the hand landmarks. Prelim-
inary tests were performed in order to analyse whether the simulator’s lighting good enough
in order to ensure an accurate detection of the landmarks of interest. The outcomes based
on the previously shown picture suggested the addition of an additional lighting source for the
official experiment session.

Figure H.4: Inaccuracies in the hand feature detection.

The subjects were instructed to keep their palm open during the experiment session, in
order to avoid any possible artefacts that might occur in the pose estimation. Figure H.4
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presents two of the possible artefacts if only the index finger would be shown to the camera.
The reason for these effects is the probably limited training data of the hand feature estimator.

H.2. Effect of the synchronization on the reprojection error
As presented in the scientific paper, the synchronization of the cameras was performed by
using a visual cue presented on the screen. Due to slightly different activation times of the
cameras, it is highly probable that the two cameras are not perfectly aligned in time.

(a) Inaccurate camera synchronization -
perspective 1.

(b) Inaccurate camera synchronization -
perspective 2.

(c) Accurate camera synchronization -
perspective 1.

(d) Accurate camera synchronization -
perspective 2.

Figure H.5: Examples of slightly inaccurate and accurate camera synchronizations.

Figure H.5 presents two examples, showing a case where the synchronization frame be-
tween the two cameras is less accurate (the cameras ”see” slightly different points in time)
and a case where the two perspectives capture the same time instance. It is expected that if
two cameras record the scene at a small offset, a larger reprojection error of the triangulated
points will be observed compared to the case where the cameras are perfectly in sync.



200 Appendix H. Observations and limitations of the stereo markerless tracking

Subject1 Subject2 Subject3 Subject4 Subject5 Subject6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

M
e
a
n
 R

e
p
ro

je
ct

io
n
 E

rr
o
r 

[p
x
.]

Figure H.6: Overview of the mean reprojection errors for Limb position: Fa.

To emphasize the effect of synchronization on the accuracy of results, the subject-level
reprojection errors were analysed for the independent variable Limb position: Fa (one of the
conditions that induces the largest speed of the hand). Figure H.6 shows that for subjects one
and five, there is a considerably lower reprojection error compared to the others. When taking
a closer look at the synchronizations for the two subjects, it was observed that the synchroniza-
tions were similar to the Figure H.5c and Figure H.5d indicating an accurate synchronization.
Nevertheless the differences between the accurate and inaccurate synchronizations seem to
be small in this scenario.
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