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Abstract

Decision trees, owing to their interpretability, are attractive as
control policies for (dynamical) systems. Unfortunately, con-
structing, or synthesising, such policies is a challenging task.
Previous approaches do so by imitating a neural-network pol-
icy, approximating a tabular policy obtained via formal syn-
thesis, employing reinforcement learning, or modelling the
problem as a mixed-integer linear program. However, these
works may require access to a hard-to-obtain accurate policy
or a formal model of the environment (within reach of for-
mal synthesis), and may not provide guarantees on the qual-
ity or size of the final tree policy. In contrast, we present an
approach to synthesise optimal decision-tree policies given a
deterministic black-box environment and specification, a dis-
cretisation of the tree predicates, and an initial set of states,
where optimality is defined with respect to the number of
steps to achieve the goal. Our approach is a specialised search
algorithm which systematically explores the (exponentially
large) space of decision trees under the given discretisation.
The key component is a novel trace-based pruning mech-
anism that significantly reduces the search space. Our ap-
proach represents a conceptually novel way of synthesising
small decision-tree policies with optimality guarantees even
for black-box environments with black-box specifications.

Code — https://doi.org/10.5281/zenodo.14601859

Extended version —
https://doi.org/10.48550/arXiv.2409.03260

1 Introduction

Designing controllers for complex systems with the guar-
antee of specified behaviour remains an important chal-
lenge. Classical control synthesis can provide such guaran-
tees given a (precise) model of the system (Belta and Sadrad-
dini 2019). This requirement may in some cases be infea-
sible, which gave rise to black-box and approximate ap-
proaches, e.g., based on machine learning. As systems grow
larger, interpretability is an increasingly desired specifica-
tion for machine-learned policies to achieve alignment with
human specifications (Rudin 2019). With the success of de-
cision trees as interpretable machine-learning models, poli-
cies represented as decision trees have gained considerable
traction (Du, Liu, and Hu 2020; Glanois et al. 2024).

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
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Figure 1: Problem illustration. For the pendulum environ-
ment F (right), each tree (left) with predicates 0 > ¢;, i =
1, 2, 3, coupled with the black-boxed F, produces a trace for
0 plotted along the time axis (middle) together with its eval-
uation with respect to the black-box specification (reaching
6 = 0). The middle trace is deemed best since it reaches the
goal faster (¢ = 50 < 60). The bottom trace is inferior.

There are diverse approaches to synthesising, or learning,
decision-tree policies. Stratego (David et al. 2015) employs
reinforcement learning dedicated to decision trees. Modify-
ing the reinforcement learning process to produce decision
trees has also been proposed (Topin et al. 2021). An alterna-
tive is to apply imitation learning to distil a neural-network
policy into a decision tree (Bastani, Pu, and Solar-Lezama
2018). After using formal synthesis to construct a policy in
tabular form, decision trees may be induced via specialised
algorithms akin to algorithms used for solving standard clas-
sification problems (Ashok et al. 2021).

While previous approaches have their strengths, none
of the discussed methods provide guarantees in terms of
decision-tree policy performance or size and/or require an
existing expert policy or effective reinforcement learning al-
gorithm. Policy synthesis may be posed as a mixed-integer



linear programming problem (Vos and Verwer 2023), which
can provide guarantees. However, this approach assumes
that a model of the environment is given. When the above re-
quirements are not met, decision-tree policy cannot be con-
structed using existing methods.

In contrast, we consider a unique setting: derive 1) small
decision-tree policies when 2) the model and specification of
the environment is a deterministic black-box whilst 3) pro-
viding optimality guarantees of performance, under the dis-
cretisation of tree predicates and initial states. Every work
we are aware of will violate at least one of these three points.

Our work is for deterministic black-box systems, which
pose a challenging controllability problem, as exact guaran-
tees imply searching in an exponentially large space.

Our approach is based on search. Briefly, our algorithm
systematically enumerates all possible decision trees that
may be constructed using a given set of predicates, and then
selects the tree that optimises the specification evaluated by
the black-box environment for each tree, e.g., minimises
(maximises) the time to reach (maintain) a target state.

Example 1 As an illustrative example, consider the pendu-
lum environment in Fig. 1. The pendulum is attached at one
end to a fixed point, and available control actions are to
apply force to push the free end left (a1 = —1) or right
(as = 1) (Anderson 1989). Our aim is to construct a small
decision-tree policy that swings the pendulum to an upward
angle (0 = 0) from a given initial state, and does so as
quickly as possible. The environment is available as a black
box, i.e., the dynamics are hidden, but given an initial state
and a policy, we may compute the trajectory and obtain its
evaluation with respect to the black-box specification.

We start using the first tree (with predicate [0 > c1] and
leaf nodes corresponding to actions) as a policy for the
black-box environment E, and obtain a trace that reaches
the goal angle within 60 time steps. Next, the predicate is
modified to [0 > ca] (where ca > c1), and the new tree
produces a trace that reaches the goal within 50 time steps,
which is considered better. For the next tree with predi-
cate [0 > c3] (where c3 > c3), the (partially) produced trace
is considered inferior: it surely does not reach the goal faster
than the best tree (50 steps).

A key component is our novel trace-based pruning mech-
anism that discards a large portion of the search space by
runtime analysis. It exploits the decision-tree structure by
considering the execution of the tree policy: even though the
environment is black-box, examining the trace allows us to
understand how the decision tree is used, and discard trees
that are guaranteed to not lead to a better trace. This allows
us to reduce the search space without sacrificing optimal-
ity even though our model and specification are given as a
black box. In the previous example, depending on the con-
crete trace, our trace-based pruning might be able to deter-
mine that it is possible to discard the third tree from consid-
eration without missing a better tree only by observing the
trace produced by the first and second tree. In practice this
can lead to order-of-magnitude reductions in runtime.

We implemented our approach and evaluate it on classical
control benchmarks. The experiments demonstrate signifi-
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cant reductions obtained with our trace-based pruning, and
illustrate that small and optimal decision trees may be con-
structed within reasonable time. We further analyse the scal-
ability of our algorithm in terms of the number of predicates
(granularity) and the size of the tree, both of which have an
exponential influence on the runtime. The experiments show
the runtime is within practical use.

To summarise, we consider a unique setting and provide
a conceptually novel approach to construct optimal small
decision-tree policies with respect to black-box systems.
While not all environments are controllable by small trees,
when the environment does admit a small tree policy, our
approach provides an effective way to compute an optimal
tree only requiring black-box access to the system.

We organise the paper as follows. In the next section, we
discuss related work and highlight our unique setting. We
outline preliminaries in Section 3, define the problem in Sec-
tion 4, present our approach in Section 5, experimentally
evaluate our approach in Section 6, provide further discus-
sion in Section 7, and conclude in Section 8.

2 Related Work

Our work covers a unique setting: constructing decision
trees given a deterministic black-box system whilst provid-
ing optimal performance guarantees. There are no directly
applicable works that we are aware of in this setting. To il-
lustrate the challenges, we discuss works for synthesising
decision-tree policies, albeit not fitting into our setting.

Reinforcement learning. A tree policy can be obtained via
reinforcement learning, either by using dedicated tree algo-
rithms (David et al. 2015) or by modifying reinforcement
learning to output tree policies (Topin et al. 2021). Alterna-
tive approaches allow linear functions on the leaves (Gupta,
Talvitie, and Bowling 2015), consider multiple predicates,
branches and actions at a time, or fix the structure using ex-
pert knowledge (Likmeta et al. 2020) and then employ pol-
icy gradient updates (Silva et al. 2020; Paleja et al. 2022).
These approaches perform exceptionally well, when an ex-
isting reinforcement-learning approach is available that is
effective for the given system (Topin et al. 2021), and/or the
model (Gupta, Talvitie, and Bowling 2015) of the environ-
ment is known. A tree policy may be derived by imitating an
expert policy, e.g., a neural network (Bastani, Pu, and Solar-
Lezama 2018). In contrast, we require neither model nor
expert policy and provide optimality guarantees. In case of
sparse rewards, reinforcement learning might struggle, while
our framework by design has no such problem.

Learning from tabular data. When the policy is given in
tabular form, dedicated tree-learning algorithms for control
policies can be employed (Ashok et al. 2020, 2021), which
extend classical tree-learning algorithms (Breiman et al.
1984; Quinlan 1996). Recent advancements in optimal tree
induction could potentially also be employed (Demirovié
et al. 2022; van der Linden, de Weerdt, and Demirovic
2023). However, obtaining the tabular policy requires an ex-
plicit model, which is not required in our setting.

Optimal policy synthesis. The problem of constructing
a tree policy may be posed as a mixed-integer linear pro-
gram (Vos and Verwer 2023), after which off-the-shelf



solvers may be used to obtain optimal policies. However,
not all environments may be feasible to model with such an
approach (e.g., differential equations or trigonometric func-
tions), and in our setting we consider black-box environ-
ments, which are not amendable to linear programming.

Verification. There has been recent work to provide guar-
antees for decision-tree policies (Schilling et al. 2023), pos-
sibly for infinitely many traces (we consider finitely many
traces). However, the tree policy and the model must be
given explicitly, which makes this work orthogonal to ours.

We do note that we consider deterministic systems with
discrete actions. Some of the methods above are also ap-
plicable to stochastic environments and continuous actions,
which we consider as future work.

To summarise, while there has been considerable work on
decision-tree policies, synthesising such policies when the
environment is black-box whilst also providing optimality
guarantees is an open challenge.

3 Preliminaries

A state S = (s1,52,...,84) € S is a d-dimensional real-
valued vector from a bounded state space S C R4, where
each state dimension s; belongs to an interval s; € [€;, u;].
An action ¢ € A comes from a finite set A C Z of integer-
valued actions. An environment is a function £:S x A — S
that takes as input a state S and an action a and com-
putes a trajectory until asked to output the next observable
state S" = E(.5, a). In our setting, the environment is treated
as a black box, i.e., we are agnostic to its dynamics.

A policy is a function m: S — A that chooses an action
based on an input state. We write C 4 for the set of all policies
over action set A. We are concerned with the special case of
a decision-tree policy, which is given in the form of a binary
tree where each inner node is called a predicate node and
each leaf node is called an action node. Each predicate node
is associated with a function S — B, where B is the Boolean
domain. Each action node is associated with one of the avail-
able actions @ € A. Given a state S and a node of the tree, a
decision-tree policy 7 computes the action a = 7(.S) using
the following recursive procedure, starting at the root node.
If the current node is an action node, the associated action is
returned. Otherwise, the current node is a predicate node. If
the state S makes the predicate evaluate to true (false), the
procedure continues with the left (right) child node.

Given an environment I, a decision-tree policy 7, an ini-
tial state Sp, and a bound k£ € N, the trace with k steps
is the sequence of observed states 7 = Sy, Sq,..., Sk,
obtained by applying the sequence of actions given by 7:
Si = E(S;—1,m(Si—1)), fori = 1,..., k. We write T for
the set of all traces.

4 Optimal Decision-Tree Policies

We focus on the case of a single initial state Sy, and gener-
alise the problem to multiple initial states in Section 5.4.

4.1 Discretised Decision-Tree Predicates

The space of all decision trees is infinitely large. By dis-
cretising the tree predicates, we obtain a finite (but exponen-
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tially large) space. We restrict our attention to (axis-aligned)
predicates of the form [s; > vg + m - v4], where s; is the
i-th state dimension, vy, vy € R are real-valued constants,
and m € N is a positive integer. Since our state space is
bounded, we obtain a finite number of nonequivalent predi-
cates. We write P for the set of all (tree) predicates.

For instance, given a state space with s; € [0, 3] and vy =
vy = 1, we consider the predicates [s; > 1], [s; > 2], and
[s; > 3]. Note that predicate [s; > 0] is excluded since it is
a tautology by s;’s domain, i.e., always evaluates to frue.

Considering a finer discretisation yields more predicates,
which increases the space of considered decision trees, but
allows potentially finding better trees. The algorithm’s run-
time is sensitive to the size of the search space, and hence
a practical balance is needed. Experimentally we show that
our approach can handle reasonably small increments.

4.2 Specification

Given a deterministic environment E, decision-tree policy
7, and initial state S, we consider a specification to deter-
mine whether 7 satisfies the specification. We assume that
the specification is given in terms of traces, again in the
form of a black-box specification function P:T — B. In
order to effectively determine whether 7 satisfies the speci-
fication, we restrict the class of specifications we consider. A
bounded-time prefix-closed specification with a bound k €
N has the property that every trace 7 of length k either
satisfies or violates the specification (“bounded-time”), and
whenever a trace 7 yields either of these verdicts, then
any longer trace with the prefix 7 yields the same verdict
(“prefix-closed”). As a consequence, we are guaranteed to
obtain a Boolean verdict from a trace of length at most k.
We call the (unique) trace of length k the witness trace.

This class of specifications includes common reach-avoid
problems where a goal needs to be reached while undesired
states need to be avoided. For instance, for the pendulum en-
vironment, the specification is to reach the vertical position
within a step bound k. A trace satisfies the specification if
and only if a prefix of length less than k satisfies the specifi-
cation function. Conversely, any trace not reaching the goal
withing k steps violates the specification.

4.3 Optimality

So far, we were only interested in finding any policy that
satisfies a given specification. In general, there may exist
multiple solutions. We are interested in identifying an op-
timal policy. For that, we assume a fitness function, which is
a partial order >: 7 x T to compare two traces. A trace that
satisfies the specification always precedes a trace that vio-
lates the specification. The fitness function induces another
partial order >=:C4 x C4 to compare two policies. We say
that 7y is strictly better than 7o, written 7m; > 7s, if one of
the following conditions holds: 1) The witness 77 has strictly
better fitness than the witness 75 (i.e., 71 > 72). 2) Both wit-
nesses have the same fitness, and 71 is a strictly smaller tree.

We wrap the black-box environment £ and the black-box
specification function P into a black-box system B:C4 X
S — B x T. This system takes as input a policy 7 and an
initial state Sy and outputs both the (Boolean) verdict and



the trace 7. We say that a policy 7 satisfies the specification
for initial state Sy if B yields a positive verdict. We note
that B can be implemented from £ and P by simply gener-
ating the witness 7 and querying the specification function.

Problem 1 Given a black-box system B over a set of ac-
tions A, an initial state Sy, a limit on the depth and number
of predicate nodes, a discrete set of predicates, and a fit-
ness function =, find a decision-tree policy m € C4 within
the defined size that satisfies the specification optimally with
respect to the fitness function = and the witness trace T pro-
duced by the black-box system B.

For instance, for environment E in Fig. 1, the black-box
specification (reaching the vertical position) is satisfied for
two out of three decision trees. However, we are looking for
those trees that satisfy the specification within the smallest
number of time steps (in this example, 50).

5 Synthesis of Optimal Decision-Tree Policies

For computing an optimal decision-tree policy that solves
Problem 1, a naive procedure is to enumerate all possible
decision trees and evaluate them. By fixing an upper limit of
the number of nodes and considering a discrete set of pred-
icates, this procedure terminates. However, the number of
trees is exponential, rendering this procedure infeasible. Our
contribution is an efficient instantiation of this procedure.

5.1 Searching In the Space of Decision Trees

Our algorithm to enumerate decision trees is based on back-
tracking search. We represent the search space using back-
tracking variables b;, where each variable is associated with
anode in the tree. The possible values that can be assigned to
a variable depend on the node type which the variable is as-
sociated with: predicate nodes may be assigned a predicate
from the set of discretised predicates, whereas action nodes
may be assigned an action from the set of available actions.
Backtracking variables are considered in a predefined or-
der, i.e., variable b; goes before variable b; ;1. As is standard
in backtracking, all combinations for variable b;,; are ex-
hausted before taking the next value for variable b;.
Assigning all backtracking variables results in a decision-
tree policy. Consequently, enumerating all possible assign-
ments to the backtracking variables corresponds to all pos-
sible policies in our available space. When enumerating a
policy, it is used in combination with the black-box environ-
ment to compute the witness trace and evaluate the quality
of the policy. Finally, the best policy is returned as the result.
For a tree with a fixed shape and n predicate nodes, |A|
number of actions, and |P| number of discretised predicates,
the size of the total search space is O(|P|™ - |A|"*1). Our
contribution reduces this large search space in practice.

5.2 Intuition Behind Trace-based Pruning

The idea of pruning is to limit the exploration by avoiding to
explicitly enumerate trees that are guaranteed to be subop-
timal, i.e., do not satisfy the desired property with a higher
fitness. We define sufficient conditions for pruning.

To provide the intuition behind our approach, consider
an environment with only one state dimension s;, and the
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Figure 2: Three decision-tree policies of fixed structure (top)
and corresponding black-box traces (bottom). The decision
boundary (blue) splits the state space into two regions (light
blue and red). Predicate s; > 2 can be skipped as the trace
lies above the decision boundary.

process of enumerating all trees with exactly one predicate
node, three possible predicates [s1 > 1], [s1 > 2], [s1 > 3],
and having the left and right child nodes fixed to actions a,
and as, respectively (cf. Figure 2). To find the best tree of
the given description, we generally need to consider all three
trees, with each tree differing only in the root node.
Assume the algorithm starts with predicate [s; > 1] and
computes the first trace depicted in Figure 2. We could
consider the two remaining trees with predicates [s; > 2]
and [s1 > 3]. However, from the first trace we see that the
second tree with predicate [s; > 2] would result in the exact
same trace. Indeed, there is no state in the trace where the
policy would decide differently regardless of whether the
predicate is [s;7 > 1] or [s; > 2], so the trace would not
change. As a result, we do not have to evaluate the tree with
predicate [s; > 2], and can directly go to the last tree.

5.3 Trace-Based Pruning

The intuition discussed above can be generalised to prune
a potentially exponential number of trees that do not result
in a different trace, which significantly speeds up the search
process. In the following, we discuss incorporating a general
version within a backtracking algorithm with more than one
predicate node. We will consider predicates in increasing or-
der, i.e., [s; > v;] before [s; > vo] if v1 < vs.

Given a backtracking variable b; associated with a pred-
icate node, the algorithm needs to select the next predicate
to assign to the variable. A naive approach would be to sim-
ply select the next larger threshold, e.g., from the example
in Section 5.2, assign predicate [s; > 2] after considering
[s1 > 1]. However, we can leverage information about pre-
vious traces to avoid explicitly considering predicates that
are guaranteed to not result in a trace that has not been pre-
viously observed.

After assigning a predicate [s; > v] to a backtracking
variable b;, the idea is to track the values of state dimen-
sion s; that have been observed during environment runs
such that the predicate evaluated to true. In particular, we
are interested in the smallest such value, which we refer to
as the distance value d; € R. Note that a tree policy is only
run after having all backtracking variables assigned.

The key idea is that, when selecting the next predicate for



backtracking variable b;, its threshold value (v in the exam-
ple above) should exceed the distance value d;. Otherwise,
the trace would be identical.

To reiterate, for each backtracking variable b; associated
with a predicate node with current predicate [s; > v], we
store a value d; € R, which tracks the minimum value of
state dimension s; for which the predicate was evaluated to
true amongst all traces that were considered since the pred-
icate [s; > v] has been assigned. Note that selecting a new
threshold value for the predicate that is smaller or equal
than d; is guaranteed to result in traces already observed.
Note that it is not necessary to track the values where the
predicate evaluates to false, since the predicates are explored
in increasing order of the thresholds and as such the future
predicates would also evaluate to false on those values.

Initially, the distance value d; is set to undefined each time
a new predicate [s; > v] is assigned as part of the search.
The first time the node observes a state where its predicate
is satisfied in a trace, the distance value d; is set to the corre-
sponding value of state dimension s;. Each subsequent time
the predicate is satisfied, d; is updated to the smallest value
for which the predicate still evaluates to true.

After considering predicate [s; > v] for node 4, our algo-
rithm does not consider the next predicate, but instead uses
the predicate [s; > o] where v’ is the smallest available
value such that v/ > d;. If the distance value d; is unde-
fined, all predicates may be discarded for that backtracking
variable for the currently considered state dimension s;.

For the example in Section 5.2,the distance value d; is
initially undefined, and upon completing the first trace, it is
set to d; = 2.3. When selecting the next predicate, [s1 > 2]
is discarded since its threshold 2 does not exceed distance
value d; = 2.3; so the next selected predicate is [s; > 3].

The above idea is applied to every backtracking variable
associated with a predicate.

Our pruning strategy is computationally inexpensive: it
amounts to tracking a single value for each backtracking
variable, and updating this value as the tree is queried during
trace computation. The algorithm retains completeness, as it
is guaranteed to not discard optimal trees. Our trace-based
pruning is the key component in the practical efficiency.

Additional Techniques: Trees explored in increasing
size. The algorithm partitions the search space in terms of
tree shapes, which are ordered by size. For example, after
considering trees with exactly one predicate node, the algo-
rithm considers trees which have a root node with one left
predicate child, then trees which have a root node with one
right predicate child, then complete trees with three predi-
cate nodes, and so on until the size budget is reached.
Early stopping due to the objective. During the search,
the best tree found so far is tracked. When evaluating a new
candidate tree, its evaluation is preemptively stopped when
it is determined that the trace cannot be extended to a trace
that is better than the one obtained from the best tree so far.
For example, consider a setting where the policy should
reach a goal state as quickly as possible. If the best policy
so far reaches the goal state in k trace steps, and the partial
trace associated with the current candidate policy has not
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Algorithm 1: Construction of an optimal decision-tree policy

Require: An initial state Sy, black-box system B, predi-
cates P, fitness >, tree-size bound
Ensure: Policy 7 that produces the trace with the best fit-
ness function
: bvar <— NextBacktrackingVariable()

Ju—

2: val < NextValue(bvar)  // use trace-based pruning if
predicate node
3: Assign(bvar, val)
4: if assignment failed, all values exhausted then
5. Backtrack()
6:  if not possible to backtrack then
7 return 7y pal
8: endif
9: end if
10: if all backtracking variables assigned then
11:  Tocar < ConstructTreePolicy(bvars)
12: Tlocal < B(W,So)
13: if Tjocal > Tglobal then
14: Tglobal <~ Tlocal
15: Tglobal €~ Tlocal
16:  end if
17:  for bvar in bvars do
18: N < Toeqr-NOdes[bvar.index]
19: bvar.distance < min(n.distance, bvar.distance)
20:  end for
21: end if

22: Goto Line 1.

reached the goal state in k — 1 steps, we may safely dis-
card the candidate policy from further consideration, since
it cannot result in a better trace. Note that, since we explore
trees in increasing size, this results in the algorithm comput-
ing the smallest tree with the optimal performance across the
considered maximum tree-size budget.

Early stopping has two advantages: 1) it saves compu-
tational time, and 2) it results in traces of shorter length,
which allows for more aggressive trace-based pruning ow-
ing to fewer distance updates being made.

Symmetries. Trees that have identical left and right sub-
trees are discarded from consideration. In these cases, the
root node of such a tree is redundant and its predicate has
no influence on the trace. A smaller tree, consisting of the
subtree, would result in the same trace, and since the algo-
rithm explores trees in increasing size, it is safe to discard
the larger symmetric tree without further consideration. The
main use of this technique is to discard trees that contain
predicate nodes with identical left and right action nodes,
and otherwise plays a minor role.

Summary. Algorithm 1 provides a high-level view on us-
ing backtracking variables. If available, the next unassigned
backtracking variable is selected, or the last assigned vari-
able otherwise. The next value is selected either as the next
action for variables representing action nodes, and otherwise
trace-based pruning is used to determine the threshold. Once
a predicate has been exhausted on one state dimension, pred-
icates for the next state dimension are selected.



Once all backtracking variables are assigned, the algo-
rithm constructs a decision-tree policy, and uses the black-
box system to produce the trace 7. If 7 is better than the
globally best trace (initially null), that trace is updated to 7.
The distance values of the nodes of the policy are used to up-
date the distance values of the backtracking variables. After
all policies have been (implicitly) considered, the algorithm
returns the best policy (Line 7).

5.4 Extensions

Multiple initial states. The previous discussion was based
on constructing a tree policy from a single initial state. How-
ever, we may be interested in finding a single tree policy that
works well across multiple initial states. The algorithm re-
mains similar, with impact on two components: 1) the ob-
jective function, and 2) trace-based pruning.

When evaluating a tree with respect to multiple initial
states, we generalise the fitness function. For example, if the
goal is to minimise the trace length, then the generalisation
aims to minimise the maximum trace length. This influences
early stopping: the initial states are evaluated with respect to
the tree policy one at a time, and as soon as a trace is en-
countered that is considered violating, the evaluation stops,
i.e., the remaining initial states are not considered further.

The above idea interacts with trace-based pruning. In case
the tree evaluation is stopped early, meaning the tree is
deemed not better than the best tree found so far, only the
last trace is used to update the distance values. The intuition
is that, if we wish to find a better tree, it must lead to a trace
different from the last trace, and we can ignore the distance-
value updates of the other traces.

As aresult, due to the interaction with pruning, finding an
optimal tree with respect to multiple initial states may lead
to sub-linear runtime with respect to the number of states.

Maximisation. Rather than satisfying the desired prop-
erty in the least number of steps, we may be interested in
maximising the number of steps. For example, the goal may
be to balance a pole for as long as possible. The algorithm
stays largely the same, with the only analogous changes
needed in the evaluation of the tree. For maximisation it is
important to specify an upper bound on the trace length; oth-
erwise, the algorithm may potentially run infinitely long.

6 Experimental Study

We aim to illustrate the effectiveness of our approach with
a proof-of-concept implementation. We show that our trace-
based pruning approach is a key factor in making the ap-
proach feasible. Furthermore, we consider scalability from
two perspectives: the granularity of the predicates, and the
number of predicate nodes in the tree. While both are ex-
pected to have an exponential impact on the runtime, we ob-
serve that the runtime is still within practical use.

We consider three classical control problems: CartPole,
MountainCar, and pendulum. The environment behaviour is
defined as in Gymnasium' , with the adjustment that we max-
imise (CartPole - at most 10k steps) or minimise (Moun-
tainCar and pendulum) the trace length rather than use their

"https://github.com/Farama-Foundation/Gymnasium
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Runtime (seconds) No. of trees
Environment [Sy| NotPrune  Prune  (Not) Prune
CartPole 1 3.13+1.79 0.22+0.20 (2.2m) 49k
MountainCar 1 4.72+0.49 0.21+0.04 (518k) 20k
Pendulum 1 13.75+11.07 3.19+3.03 (845k) 126k
CartPole 100 7.46+1.28 1.2840.35 (2.2m) 88k
MountainCar 100 6.55+0.68 0.40+0.08  (518k) 24k
Pendulum 100  131.4+9.41 23.93+2.46 (845k) 205k

Table 1: Runtime and variance with and without trace-based
pruning. Pruning substantially reduces runtime. Multiple
initial states demonstrate only a sub-linear runtime increase.

reward functions. The control actions are limited to two
choices, e.g., apply maximum force in one or the other di-
rection. Our implementation only queries the environment
in a black-box fashion. We generated the initial states ran-
domly within a specified range; see the Appendix of the ex-
tended version for details about the parameters, environment
description, and a sample of trees produced by our approach.

To reiterate, as discussed in Section 2, we work with a
unique setting where we 1) synthesise decision-tree poli-
cies, 2) only require black-box access to the deterministic
system, and 3) provide guarantees on performance under
the tree definition, e.g., the policy that minimises the time
taken, or prove that no such policy exists. Every work we
are aware of violates at least one of these points. Conse-
quently, while direct comparisons with other works may be
done by relaxing the requirements of our setting, this brings
considerable caveats that result in comparisons that we ar-
gue are not meaningful with respect to our contribution. For
these reasons, we focus on demonstrating the feasibility of
our approach and its scalability.

We implemented our approach ‘Broccoli’ in Rust 1.77.0.
The experiments were run on consumer-grade hardware
(Xeon(R) W-10855M @ 2.8 GHz). The code is public.

6.1 Experiment #1: Trace-Based Pruning

We run experiments with and without our trace-based prun-
ing (Table 1), both for one and 100 initial states, for trees
of depth two. Initial states are generated randomly, and the
results are averaged over ten runs.

Our trace-based pruning technique is clearly effective
in pruning the search space. For CartPole and Mountain-
Car, there is a one- to two-orders-of-magnitude difference,
whereas for pendulum, it leads to a 4x reduction.

The runtime is roughly proportional to the number of trees
explicitly considered, as expected, and is consistent based on
the standard deviation across different initial states. Interest-
ingly, we observe only a sub-linear increase in runtime with
more initial states, and the total number of trees considered
is roughly similar regardless of the number of initial states.

6.2 Experiment #2: Granularity of Predicates

The granularity of predicates impacts the runtime: the finer
the discretisation, the larger the search space. Each state di-
mension in the environment has a predefined range of values



Runtime (seconds) and variance No. of trees
Environment X=5 X=10 X=15 X=20 X=5 X=10 X=15 X=20
CartPole 102+128 1420+2696 10.2+16.33 287+668 25m  334m 1m  46m
MountainCar 6.26+8.55 14.0+3.86 95.49+29.2 446+97 30k 1.3m 9.5m  45m
Pendulum 6.58+7.53 30.75+61.32 113+151 366+501 18k 1.2m 15m  51m

Table 2: Runtime increases as we increase the number of predicates per state dimension (X), with the exception of CartPole,
where finer discretisation sometimes finds a perfect tree faster. Variance remains similar as in Table 1 proportional to runtime.

Runtime (seconds) and variance No. of trees
Environment N=3 N=4 N=5 N=6 N=3 N=4 N=5 N=6
CartPole 0.1+0.01 1.16+0.11 11.85+7.26 39.92+38.45 27k 294k 2.9m 9.4m
MountainCar  0.12+0.02 0.74+0.16 5.37+1.16 14.1+3.39 9k 62k 484k 1.2m
Pendulum 0.3+0.21 0.56+0.23 2.17+0.41 5.36+0.83 Tk 44k 309k 826k

Table 3: Runtime and performance (not depicted) increase as we increase the number of nodes (N).

that it may take. We divide this interval into 5, 10, 15, and
20 values, and use these values as the predicate thresholds.

Table 2 summarises the results for trees of depth three
across randomly generated initial states (averaged over ten
runs). The general trend is that increasing the number of
predicates indeed increases the runtime.

However, in the case of CartPole, we observe an opposite
effect: finer predicates decrease the runtime. This is because
the finer discretisation resulted in the algorithm finding a tree
faster that balances the pole for 10,000 steps, which is the
maximum number of steps so the search can terminate.

The results indicate that the discretisation needs to be cho-
sen carefully to balance runtime and quality of the final tree.

6.3 Experiment #3: Number of Predicate Nodes

The number of predicate nodes influences the search space
size. We study the runtime for trees of depth three and vary-
ing the maximum number of nodes from three to six.

The results are summarised in Table 3. Note that the
search space of trees with at most k predicate nodes includes
trees with less than %k predicate nodes, meaning the search
space is strictly larger as we increase the number of nodes.
Consequently, there is a sharp increase in the runtime, which
is expected due to the exponential factor.

7 Further Discussion and Limitations

Our approach is effective at computing small and optimal
decision-tree policies given a discretisation of the predicates
and a set of initial states. There is an exponential runtime
dependency with respect to the size of the tree and the dis-
cretisation of the state space. It may be infeasible with our
approach to construct large tree policies or deal with high-
dimensional environments. It is also possible that not all en-
vironments may be controlled by small decision trees.

However, when it is applicable, we believe small trees are
valuable for interpretability reasons, and our approach pro-
vides the means to easily obtain such trees. The exponential
runtime factor in our approach is inherent to every approach
that aims to provide guarantees.
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Our approach is exceptionally flexible as it only requires
black-box access to the system. This entails that the black
box may be arbitrarily complex, as long as it can still be
practically computed. Furthermore our algorithm provides
performance guarantees, despite working with black boxes.

The optimality is important since it guarantees that we
obtain the best performing tree given our definition, which
may be relevant for some applications. It also allows us to
conclude in cases when no such tree exists, and in general
understand the limits of decision trees as control policies.

Given that our approach is a conceptually novel way to
synthesise decision-tree policies in a unique setting, it opens
many avenues for future work.

Parallelisation is promising as the search space can be nat-
urally partitioned, and further heuristic pruning may lead to
a principled trade-off between runtime and guarantees. Ex-
tending the approach to stochastic environments is another
interesting direction. In our work, continuous actions ought
to be discretised in a preferably smaller number of actions.
Synthesising optimal trees for continuous actions remains an
open challenge for decision-tree policies in general.

8 Conclusion

We presented a novel search-based method for computing an
optimal decision-tree policy given a black-box deterministic
system, a set of initial states, and a discretisation of the tree
predicates. To the best of our knowledge, our approach is
the first to consider such a setting. The key component is our
trace-based pruning technique, which discards large portions
of the search space at runtime. We illustrated the practicality
of the approach on classical control benchmarks. When the
environment is controllable by a small tree, our approach
provides a way to obtain a small and optimal tree despite
only requiring black-box access to the system.
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