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Abstract

Consensus problem has been a topic of interest for many research areas allowing multiple agents to reach an agreement

through local information exchange. The explicit share of the state variables, however, may cause privacy issues

due to the confidentiality of the initial values. In this work, asynchronous privacy-preserving consensus average

algorithms are proposed which enables the agents to reach the exact average of their initial values while preserving

the privacy of them. The research aims to reduce the convergence time and computational complexity compared to the

cryptographic solutions. Three methods are proposed and compared. The state decomposition and noise-obfuscation

methods preserve the privacy of the initial values given that the semi-honest adversary is not able to listen to one of the

neighboring nodes of the targeted node. The hybrid state decomposition approach proposes a way to overcome this

assumption by using a minimum number of encryption operations. The initial values are shown to be private against

an eavesdropper who is able to tap all communication channels as well as a semi-honest adversary in the system. It

has been shown in all proposed approaches that as the noise variance goes to infinity, the adversary does not have any

range to estimate the initial value. The noise obfuscation technique futures the same convergence rate as the standard

averaging approach while providing a linear increase in the variance of the adversary’s estimate with the increasing

noise variance. On the other hand, the state decomposition technique futures a lower convergence rate compared to

the standard averaging approach while providing an exponential increase in the variance of the adversary’s estimate

with the increasing noise variance. By optimizing the algorithm, it has been shown that the same convergence rate as

the standard randomized gossip can be obtained. The state decomposition approach requires the addition of noise for

a bounded amount whereas, the noise obfuscation method requires the addition of noise at each iteration. All three

approaches, converges faster than a fully cryptographic approach while promising statistical security guarantees.

Keywords: Distributed average consensus, privacy-preserving, noise-obfuscation, state decomposition, asynchronous

average consensus.
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Chapter 1

Introduction

Consensus problem in dynamic systems has been a topic of interest that has found usage in many research areas allow-

ing multiple agents to reach an agreement through local information exchange between the agent and its neighbors[1].

Some of these research areas are sensor fusion [2][3][4], control of swarms and flocks [5][6], alignment problem [7]

and asynchronous consensus [8]. In the consensus averaging problem, N nodes in an undirected graph reach to the

average of their initial values,

1

N

N∑

i=1

xi[0]

where x represent the nodes state variables and i represent the ith node. There has been many distributed algorithms

such as gossip algorithms [9], alternating direction method of multipliers(ADMM)[10], augmented Lagrangian meth-

ods (ALM) [11], primal-dual method of multipliers (PDMM)[12] that were proposed to solve the averaging problem

in a distributed manner.

The traditional consensus algorithms explicitly exchange their state variables to solve a common function. How-

ever, for some consensus problems such as the multi-rendezvous problem [13] or energy management in smart grids

[14], the initial states can be confidential. In the former, the agents might not want to reveal their initial locations

while in the latter, the energy companies might not want to reveal their individual generation rates. The challenge to

solve the consensus problem while giving individual nodes a privacy guarantee initiated the new privacy-preserving

distributed optimization research area.

The privacy addressed to the nodes can be in a few different forms. In the multi-rendezvous problem, the initial

states are considered to be the secret. Whereas, in projection based source localization problems, the intermediate

states can be considered as the secret as three intermediate states would help any node to infer the position of the

neighboring node which could be undesirable[15][16]. In the regression problem[17], the objective functions and the

gradients can be considered confidential since they can include private information such as salary. In the differential

privacy based approaches[18], the state variables and the final average are protected from the adversaries[19]. This

line of work provides formal confidentiality guarantees using the privacy notion proposed for statistical databases.

According to the problem at hand, the confidentiality requirement is defined and a respective algorithm is designed.
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In this thesis, the averaging problem is considered with an emphasis on the privacy of the initial values. The

second chapter introduces the related work regarding the privacy-preserving distributed optimization and formulates

the research question that complies with the state-of-art. The third chapter gives the preliminary information that is

used in the following chapters; the distributed averaging problem, the implemented gossip algorithm, privacy and

the used tools are explained in detail. The following three chapters future the algorithms which are proposed to

solve the privacy-preserving asynchronous distributed averaging problem. The fourth chapter is about the privacy-

preserving state decomposition algorithm which transforms the consensus averaging problem into a constrained multi-

agent distributed problem[20] and solves it instead. The fifth chapter is an extension of the state decomposition

algorithm where the scope of the privacy guarantee is improved. The sixth chapter presents how adding correlated and

decaying noise to the state variables can solve the investigated problem. Both of the three chapters include the same

format which covers the methodology, privacy and numerical analysis attributes. The final chapter concludes with a

comparison of the proposed algorithms and recommendations for future work.
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Chapter 2

Related Work

The research directed towards solving the consensus averaging problem while preserving the privacy of initial values

can be categorized into two approaches: cryptographic[21][22] and non-cryptographic methods[23][24][25][26]. Most

of the cryptographic methods use homomorphic encryption to encrypt the states that are being transferred. Due to

the redundancy and randomness introduced in the ciphertext, the cryptographic algorithms provide high dimensional

security at the expense of computational complexity. Another technique is to use garbled circuits[27] to implement the

consensus function using a privacy-preserving manner. Although many optimization techniques[28][29] are proposed,

the garbled circuits are also computationally complex and slow compared to their non-cryptographic counterparts.

In control and real-time dynamic systems where processing time is limited, or distributed solvers which solve opti-

mization problems iteratively, cryptographic methods are not suitable due to the time the encryption and the decryption

takes. To reduce the time and complexity, privacy-preserving non-cryptographic consensus methods are proposed.

The methods to solve this problem can be categorized into three parts: differential privacy [23][19], noise-obfuscation

[24][26] and transformation methods[25]. Differential privacy based approaches trade accuracy for privacy. The nodes

add noise to the transmitted states and provide a differential privacy guarantee as defined in [18] or in [30] for con-

tinuous data observations. However, as proven by [23] differential privacy and exact consensus cannot be achieved

simultaneously. The noise-obfuscation methods, on the other hand, add correlated noise to the transmitted states. As

the added noise is zero-sum and decaying in magnitude, the exact average can be achieved. The privacy is analyzed by

examining the covariance matrix of the maximum likelihood estimate [26] and extended to (ε, δ) privacy [24] where

ε and δ represent the range and estimation confidence respectively. The transformation method [25] solves a con-

strained optimization problem as a variant of the averaging problem. The initial value of each node is decomposed

into two states where one of them is used to interact with the other nodes and the other is used internally affecting

the evaluation of the former indirectly. Through a one-shot perturbation of the states with additive noise, the authors

achieve a synchronous privacy-preserving algorithm with the assumption that one of the update weight is hidden from

the adversary.

Some networks are constrained by few characteristics which prevent an application of a synchronous algorithm.

The network might lack a centralized entity which processes all the information and synchronizes the time, the power
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resources and compute power may be limited or the network topology can be varying. For this reason, asynchronous

distributed optimization techniques such as gossip algorithms [9] and convex optimization based algorithms [10][12]

were proposed. To the best of our knowledge only [31] examines the privacy of initial values in a randomized gossip

setting using noise-obfuscation techniques. The authors analyze the convergence conditions and rate of convergence

without quantifying the provided privacy. In this thesis, the aim is to examine the asynchronous privacy-preserving

averaging methods that are faster than cryptographic approaches. The provided privacy is analyzed and a comparison

is provided. In summary, this thesis tackles the following challenges:

• The nodes will reach to the average of their initial values, xave =
∑N
j=1 xj [0] through asynchronous updates.

• Each nodes initial value will be hidden from the adversaries throughout the process.

• The convergence time and computational complexity should be reduced compared to cryptographic solutions.
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Chapter 3

Background Information

3.1 Distributed Averaging Problem

The undirected graph G is represented as G = (V,E) with nodes being represented as V = {v1, v2, ..., vN} and the

edge set as E ⊂ V × V . The ith component of the vector x[k] = [x1[k], x2[k], ..., xN [k]] represent the state of node

vi at the iteration k. The set of neighbors of node vi is Ni = {vj ∈ V : (vi, vj) ∈ E} and its cardinality is shown as

|Ni|. The nodes aim to reach to the average of their initial values, xave =
∑N
j=1 xj [0], through communicating only

with their neighbors.

There have been several methods proposed to do distributed consensus averaging such as distributed linear aver-

aging algorithms [32], gossip algorithms [9] and convex optimization based algorithms [10][12]. According to the

number of the node states updated at each round, the averaging methods can be categorized into two: synchronous

and asynchronous algorithms. The distributed linear algorithms are synchronous algorithms, the gossip algorithms are

asynchronous whereas, the convex optimization based methods can be both.

In synchronous distributed averaging algorithms, all the nodes update their state variable via a weighted average

of their neighbors’ state variables at each iteration. The synchronous updates require a shared clock and are sensitive

to changes in topology. However, synchronous algorithms promise convergence to the average in fewer iterations

compared to the asynchronous algorithms. In asynchronous algorithms, only two nodes update their states at each

iteration while the rest keep their state variables for the next iteration. The asynchronous algorithms do not require a

shared clock and more robust against changes in the network topology.

3.2 Randomized Gossip

Some networks are constrained by few characteristics which prevent an application of a synchronous algorithm. The

network might lack a centralized entity which processes all the information and synchronizes the time, the power

resources and the computing power may be limited or the network topology can be varying. Gossip algorithms[9]

are proposed to overcome this problem. In gossip algorithms, only two nodes update their state variables at a time.
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This reduces the computational burden that would otherwise be on the central node which communicates with all its

neighbors. There are several gossip algorithms such as randomized gossip, geographic gossip, greedy gossip with

eavesdropping and weighted gossip. The update of randomized gossip algorithm is given by the following.

x(k) = W (k)x(k − 1)

As the iterations continue, it is expected for the x(k) to converge to the average of the initial values. The structure of

the W (k) can be given as

lim
k→∞

φ(k) = lim
k→∞

W (k) . . .W (1) =
11T

n
.

Let the expected value of the matrix be denoted as E{φ(k)} be

E{φ(k)} =

k∏

i=1

E{W (k)} = W̄ k

such that the iterations converge to 11T

n if W̄ k converges to 11T

n . Three conditions[9] are given for the system to

converge. These are

1T W̄ = 1T

W̄1 = 1

ρ(W̄ − 11T

n
) < 1

Let the weight matrix at the iteration k to be selected with probability Pij/N as

Wij = I − 1

2
(ei − ej)(ei − ej)T

where Pij is the probability that node vi contacts node vj , ei is the i standard basis vector in Rn. The expected value

of the matrix W̄ = E{W (k)} is

W̄ =
1

N

∑

i,j∈E
PijWij

It can be seen that W̄ is doubly stochastic, i.e. the rows and the columns all add up to 1. Doubly stochasticity suggests

that (1,1) is an eigenpair of the matrix and |λ(W̄ )| ≤ 1. Since Wij is a projection matrix, W k
ij = Wij , and a positive

semi definite matrix, it can be deduced that λ(W̄ ) ∈ [0, 1]. W̄ is non-negative, irreducible and has a nonzero diagonal

element. Perron-Frobenius theorem suggests one is a simple eigenvalue of the matrix and the rest are strictly less than

zero. Thus, ρ(W̄ − 11T

n ) < 1 and the randomized gossip will converge to the average of the initial values.

3.3 Privacy

The notion of preserving privacy in the secure signal processing domain informally means the privacy of the data and

the privacy of the algorithm[33]. Throughout the literature, the privacy of the data is more commonly investigated
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although there can be situations where the service provider is also concerned about the privacy of the algorithm.

At many of the secure signal processing algorithms, there are interactive protocols which leak knowledge about the

underlying functions. In that case, the choice of secure signal processing schemes which enable more homomorphic

operations on the encrypted data becomes more reasonable.

The privacy of the data can be achieved using two different methods: a trusted third party and secure signal

processing. For the case of trusted third parties, the service provider takes the input from the parties and the algorithm

from the service provider to compute the function and return the result to the parties. The inclusion of a third party

is found to be risky and expensive[33]. Secure signal processing, on the other hand, promotes the involved parties to

work directly on the data.

According to the application type, the definition of privacy of the data alters. The privacy of the data may not be

only the objective function but also the intermediate states and subgradients[34]. Confidentiality of these values can

be as important as the objective function as they are dependent on each other. The intermediate states may expose

sensitive information about the hidden state variables. Throughout this thesis study, the privacy of the data has been

examined. The main goal of the nodes is to reach to the consensus while hiding initial values from the other nodes

throughout the execution. The methods that promote the privacy of the initial values can be broadly classified into two

categories: cryptographic approaches and non-cryptographic approaches[35].

3.3.1 Non-cryptographic Approaches

The non-cryptographic approaches have lower complexity and computational overhead compared to cryptographic

approaches. There is no formal definition of privacy agreed by the research community for non-cryptographic ap-

proaches. Some authors observe the covariance of a general unbiased estimator of the initial values to prove privacy[26],

some show the indistinguishability of the information output of the adversary under an arbitrary change of the initial

values[25][36] whereas, some use a privacy definition called ε− differential privacy[23][19].

ε−differential privacy

Differential privacy is a statistical technique which prevents uncovering of individual records out from a database

through means of random perturbations[35][18]. How much noise is added is dependent upon how private the algo-

rithm is designed to be. The magnitude of the noise depends on the largest change a single entry can do on the output.

This is defined as sensitivity of the algorithm and noise is selected such that ε differential privacy is guaranteed. This

way of hiding data, however, trades off accuracy for privacy which leads to problems at the domains where small

errors are meaningful such as medical diagnosis.

The concept of differential privacy on average consensus problem has been proposed by Huang et. al.[19] which

lays its foundation on the concept of differential privacy for continuous bit streams [30]. The work has been extended

to have an asymptotically unbiased algorithm which has an almost sure convergence guarantee and an explicitly

characterized convergence rate. In this method, the agents add non-zero sum and decaying Laplacian noise to the
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messages that they transmit. As the iterations continue, the noise becomes considerably small which enables nodes to

converge.

The differential privacy[23] is defined as the following. Given δ ∈ R>0, the initial network states x1[0] and x2[0]

are δ − adjacent if for some node vm ∈ N ,

|x2i [0]− x1i [0]| ≤




δ , if i = m

0 , if .i 6= m

for all nodes vi ∈ N . Given δ, ε ∈ R≥0, an algorithm is said to be ε−differentially private if, for any pair x(1)[0] and

x(2)[0] of δ adhjacent initial states and any set O ∈ BBB((RN )K,

P{η ∈ Ω|Xx(1)[0](η) ∈ O} ≤ eεP{η ∈ Ω|Xx(2)[0](η) ∈ O} .

where BBB represent the borel set, K represents the total iteration number, Xx(2)[0] : (RN )K → (RN )K represent the

function that takes an initial value set x[0] and a noise set η ∈ (RN )K which is the horizontally stacked noise samples

for K iterations and returns the horizontally stacked state variables x ∈ (RN )K. In non-formal words, δ adjacent

initial values represent two initial value vectors whose one element is different by δ and the rest the same. The ε

differential privacy mean for δ adjacent initial states, the N ×K vector of state variables that occurs by to the addition

of the noise set will have a similar probability of existing among the borel set of N ×K vectors. In other words, the

possibility of observing a δ difference in the initial set is considerably small by observing the state variables that are

released at each iteration.

3.3.2 Cryptoraphic Approaches

The data privacy of the cryptographic approaches is commonly investigated using cryptographic security definitions.

There are two types of encryption schemes: the information-theoretic and the complexity-based. The security of these

schemes is modeled using ideal world adversaries which imitate the attacks on the real world. If the system is proven

to be secure only with the hard-problem assumption, standard oracle model (SOM) is used. Whereas, if involved

primitives such as hash functions are assumed to be truly random in addition to the hard-problems, random oracle

model is used.

Information-theoretic encryption

The first information-theoretic encryption scheme is suggested by Shannon [37]. The main premise of information-

theoretic encryption schemes is that even a computationally unbounded adversary cannot break the ciphertext. The

reason behind this is that the security of information-theoretic encryption schemes do not rely on hard problems

like complexity-based versions. The information-theoretic secure encryption scheme (perfect secrecy/unconditional

security) will have the property that the revelation of ciphertext does not leak any information about the message itself.

For a message m and ciphertext c = Enc(m), information-theoretic security means

p(m|c) = p(m).
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To use this encryption scheme however, the key length should be as long as the message to be encrypted which

makes this scheme practically infeasible to encrypt long messages. The other encryption scheme is complexity-based

encryption schemes which rely on a problem that is assumed to be hard.

Complexity-based encryption schemes

The one-way trapdoor functions are functions that are easy to solve if the key is known however fairly hard to solve

without the knowledge of the keys. Some examples of this are the factorization problem and the discrete log problem.

The security of an encryption scheme is established if the cryptographic technique can be reduced in polynomial time

to solving the problem that is assumed to be hard. In addition to this, just like advanced encryption standard(AES),

the nature of the encryption can on itself be a hard problem.

The security of these techniques is examined through using adversaries with capabilities and attacks they can

perform. There are many adversaries but the most commonly used ones are the semi-honest, covert and malicious

adversary. The properties of adversaries are: computationally bounded and unbounded, static or adaptive where the

behaviour of adversary can change any time, eavesdropping where passive listening occurs or Byzantine where active

manipulation occurs[38].

• Semi-Honest Adversary: In the semi-honest adversarial model, the adversary doesn’t manipulate the protocol

or the data but rather tries to get information by observing and keeping the records of the data.

• Covert Adversary: A protocol is said to be ε deterrent safe against a covert adversary if for any party that is

cheating can be caught with probability ε.

• Malicious Adversary: The malicious adversary can modify the protocol to gain more information. Any party

that is participating in the protocol can change their inputs and outputs any time they want.

The level of security under any given adversary is defined by the possible attacks that the adversaries may perform.

The most basic one among the semantic securities is the indistinguishable passive attack(IND-PASS). The level of

security increases as the capabilities of attacks that the adversaries may do. Starting from the lowest security level to

the highest, the cryptographic security definitions are as follows.

• Indistinguishablity under passive attack(IND-PASS): There is a key generated and a selection bit bwhich is used

to define the messages, mb. There are two messages m0,m1 ∈ mb where the challenger encrypts one and gives

it to the adversary. If the advantage of the adversary is zero, i.e. the only thing that she can do is guess b with

0.5 probability, it is said that the encryption is IND-PASS secure.

• Indistinguishablity under chosen plaintext attack(IND-CPA): The same key and bit selection like IND-PASS

is designed. However, now the adversary has the encryption oracle where she can ask the encryption of any

message. Under this assumption, if she can guess b with 0.5 probability, it is said to be IND-CPA secure.

• Indistinguishablity under non adaptive ciphertext attack(IND-CCA1): The same key and bit selection like IND-

PASS is designed. The adversary has the encryption oracle and the decryption oracle. Different to its IND-
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CCA2 variant, in this one, the adversary can use both of the oracles arbitrary times before getting the challenge

ciphertext. Under this assumption, if she can guess b with 0.5 probability, it is said to be IND-CCA1 secure.

• Indistinguishablity under adaptive ciphertext attack(IND-CCA2): The only difference between IND-CCA2 and

IND-CCA1 is that the adversary can continue to use both encryption and decryption oracles after getting the

challenge ciphertext. For the decryption oracle, she can ask for any message but the challenge ciphertext.

For the semi-honest adversary, the IND-CPA encryption scheme will suffice however for the malicious adversary,

IND-CCA secure schemes are needed. This is due to the requirement of authentication schemes which prevent the

manipulation of the data. According to the application domain and whether the parties are trusted to follow the

procedure, the adversarial type will be defined. According to the adversarial type, an encryption scheme that satisfies

the security requirement will be selected.

3.4 Additively Homomorphic Encryption

Homomorphic encryption enables the parties to operate on encrypted messages. There are four possible types of

homomorphism. First one is additively homomorphic, second is multiplicatively homomorphic, the third one is some-

what homomorphic and the last one is fully homomorphic encryption. Each type defines the operations that can be

done on the ciphertexts.

In the additively homomorphic encryption, multiplication of two ciphertexts results in the addition of the underly-

ing texts given that they are generated using the same public key.

Dsk(Epk(m1)× Epk(m2)) = m1 +m2 (3.1)

In addition to this if the multiplicative inverse of the second message is taken, the result is the subtraction of two

messages.

Dsk(Epk(m1)× Epk(m2)−1) = m1 −m2

It can also be seen that any ciphertext raised to the power of k results in the encryption of k ·m.

Dsk(Epk(m)k) = k.m

Paillier encryption [39] is one of the most commonly used additively homomorphic encryption scheme in multi-party

computation(MPC) algorithms[40][41]. The generation of the keys, encryption and the decryption algorithms can be

seen below.

• Key generation: the key owner computes N = pq and λ = lcm(p − 1, q − 1) and selects a random integer

g ∈ Z∗N2 such that N divides the order of g. The public encryption key is (N, g) and the private decryption key

is λ.
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• Encryption:the encryption of the message m ∈ ZN is c with

c = gmrN mod N2,

where r ∈R ZN .

• Decryption: given the encryption c ∈ Z2
N , underlying text can be obtained by

m = L(cλ mod N2)µ mod Nwhere µ = (L(gλ mod N2))−1 mod Nand L(u) =
u− 1

N

The messages lie in the domain of N whereas the ciphertexts lie in the domain of N2. N is chosen as the multipli-

cation of two large prime numbers such as 1024 bit p and q. Thus with a choice of large N , the constraint that the

message needs to lie in the domain becomes feasible. Randomization is done by the random value r which destroys

the deterministic nature of the encrypting same messages to the same ciphertext. The same r is not needed in the

decryption which makes Paillier encryption an IND-CPA secure encryption scheme. The homomorphic property of

this scheme can be shown using two messages m1 and m2 along with two random values r1 and r2

Epk(m1, r1).Epk(m2, r2) = gm1 .rn1 .g
m2 .rn2 mod n

2,

= gm1+m2 .(r1.r2)n mod n2,

= Epk(m1 +m2, r1.r2).

Homomorphic encryption cannot be IND-CCA2 secure due to the nature of possible operations that can be done to

obtain the challenge ciphertext. The best security that can be achieved is IND-CCA1 security[42]. Through using

possible transformations such as Fujiyaka-Okomoto transform[43] or limiting the users who can do homomorphic

operations[44], it is possible to achieve IND-CCA secure schemes from IND-CPA secure encryptions. According to

the application type, the security level and the computational overhead is traded.

3.5 Non Parametric Mutual Information Estimator

In information theory, mutual information has been a measure of independence and it plays an important role to un-

derstand the amount of information shared between the random variables. There have been several methods proposed

to do non-parametric mutual information estimation such as binning and k-nearest neighbor estimation[45][46]. For

the analysis of conditional mutual information, k-nearest neighbor mutual information estimator is used as it is shown

to be a powerful estimator that is data-efficient and adaptive with minimal bias. Typically, there are zi = (xi, yi),

i = {1, ..., N} independent identically distributed (iid) realizations of a random variable Z=(X,Y) with density µ(x, y).

Assuming that the integral exists and 0 log 0 = 0, the mutual information can be defined as,

I(X,Y ) =

∫ ∫
dxdyµ(x, y) log

µ(x, y)

µx(x)µy(x, y)
.

The shannon entropy in classical sense is defined as,

H(X) = −
∫
dxµ(x) logµ(x)
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The mutual information and conditional mutual information are based on the definition of Kozachenko-Leonenko

estimate for the Shannon entropy[47]. A brief introduction to Kozachenko-Leonenko is as following. The entropy can

be thought as the averages of logµ(x) up to the minus sign. Thus, given an unbiased estimate of logµ(x)i the entropy

can be written as,

Ĥ(X) = − 1

N

N∑

i=1

ˆlogµ(xi)

Let the distance from zi = (xi, yi) to another neighbour zj 6= zi be represented as the following.

||z − z′|| = max||x− x′||, ||y − y′||,

where the distance operator is defined to be the maximum norm. Denote ε(i)/2 to be the distance from zi to its

kth neighbour and εx(i)/2 and εy(i)/2 be the distances that are projected into the X and Y subspaces. To estimate

the logµ(xi), the probability distribution Pk(ε) that represents the distance between xi and kth nearest neighbor is

considered. Probability Pk(ε)dε gives the chance that there is one other xi in approximately at a ε/2 distance, k − 1

other points at smaller distances than ε/2 and N − k − 1 points at a larger distance than ε/2. Denote pi(ε) =

inf ||ξ−xi||<ε/2 dξ the mass of the ε ball centered at xi. Using the trinomial formula,

Pk(ε)dε = k

(
N − 1

k

)
dpi(ε)

dε
pk−1i (1− pi)N−k−1.

The expected value of log pi is then given by,

E(log pi) = Ψ(k)−Ψ(N),

where Ψ(x) is the digamma function. Assuming that µ(x) is constant in the ε sphere, the entropy can be written as,

Ĥ(X) = −Ψ(k) + Ψ(N) +
d

N

N∑

i=1

log ε(i) (3.2)

If this entropy definition is extended to the joint entropy cases, the only part that changes is dimension of the last term

in eq. (3.2).

Ĥ(X,Y ) = −Ψ(k) + Ψ(N) +
dx + dy
N

N∑

i=1

log ε(i) (3.3)

The k-nearest distance for the joint entropy and the marginal entropy changes since given that same k is used, the

distance in the joint entropy would always be greater than the distance in the marginal entropy. To overcome this issue

[45] uses a varied k as eq. (3.2) holds for any k. The new updated equation is given by,

Ĥ(X) = −−1

N

N∑

i=1

Ψ[nx(i) + 1] + Ψ(N) +
d

N

N∑

i=1

log ε(i), (3.4)

where nx(i) represents the number of points within the vertical lines x = xi ± ε(i)/2. The same approach is used to

estimate H(Y ) which is biased compared to H(X). The reason is that ε(i) is not exactly equal to twice the distance
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to the (ny(i) + 1)st neighbour. However, the authors claim that this is still a good approximation and this bias goes to

zero as N →∞. The mutual information has the following relation with the entropy.

I(X;Y ) = H(X) +H(Y )−H(X;Y ) (3.5)

If the estimates of eq. (3.2) and eq. (3.3) are plugged into eq. (3.5), the following estimate is obtained.

I(X;Y ) = Ψ(k) + Ψ(N)−Ψ(nx + 1)−Ψ(ny + 1) (3.6)

where Ψ(x) is the digamma function. This estimate is shown in paper as I(1)(X,Y ). Using the Kozachenko-Leonenko

Estimate for Shannon entropy and a similar approach to using different k scales like [45], the authors of [46] found

out that conditional mutual information I(X;Y |Z) can be estimated as the following.

I(X;Y |Z) = Ψ(k)−Ψ(nxz + 1)−Ψ(nyz + 1) + Ψ(nz + 1) (3.7)

where nyz represents the k-nearest number of points in the ε(i) distance using the joint entropy H(Y ;Z). The toolbox

[48] which implements eq. (3.7) is used during the information theoretic analysis of privacy.
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Chapter 4

Privacy-Preserving Asynchronous Averaging

using State Decomposition Method

4.1 Introduction

The aim of this algorithm is for N agents to reach to the exact average of their initial values while preserving the

privacy of them through decomposing the initial values to two states called the alpha and beta states such that their

sum is twice the initial value. Alpha states are used for communicating with the other nodes while beta states are used

internally. Although the beta states are never shared in the system, they are used in the update of the alpha states at

each iteration. Since the initial alpha states which will be released in the first iteration are selected randomly from the

set of all real numbers, initial values will not be disclosed. The beta value, on the other hand, can be considered as

the secret that relates the alpha states directly to the initial value. Since beta states are also included in the update of

the alpha states, some information is leaked into the system about the initial values at each iteration. For this reason,

a privacy analysis against the attacks of the semi-honest adversary and the eavesdropper is done that analyses this

information leakage in addition to the analysis of the final privacy of the system. It has been found that if there is one

hidden coupling weight between the target node and its neighbor, the adversaries do not have any range to estimate

the initial values.

The state decomposition approach is proposed by [25] for the synchronous distributed averaging problem. In this

chapter, the state decomposition approach is applied for the randomized gossip framework where the consensus is

achieved asynchronously. The structure of the chapter is as follows. In section 4.2, the methodology of the state

decomposition is explained via the initialization phase and the consensus phase. In section 4.3, two privacy proofs are

done: indistinguishability of an arbitrary change of the initial value on the information gathered by the adversaries and

information-theoretic analysis. The first privacy proof is similar to the privacy proof done at [25][36] which proves

privacy by analyzing the information output of the adversary. The information that is available to estimate the initial

value changes according to the capabilities of the adversary. Main idea is to show that the information the adversaries

see can be kept the same when the initial value of the target node changes arbitrarily. The second privacy analysis
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starts by defining how much information is leaked to the system at each release of an alpha state. Then, by analyzing

the estimator’s performance and using the results found in [26], the final privacy of the system is examined. The last

chapter gives numerical examples on the convergence and the estimation performance of the proposed approach.

4.2 Methodology

Each node decomposes its state value, say xi[0] ∈ R into two substates xαi [0] ∈ R and xβi [0] = 2xi[0]−xαi [0] resulting

in an increase in the number of nodes from N to 2N . xα[k] is used in the interaction with the other nodes, while xβ [k]

is used as an internal update. Although xβ [k] is never shared, it is used in the evaluation of xα[k]. The randomized

gossip update can be written as following.

xi[k + 1] = xi[k] +
1

2
(xj [k]− xi[k]) (4.1)

Using the state decomposition approach [25], eq. (4.1) becomes

xαi [k + 1] = xαi [k] +
1

3
(xαj [k]− xαi [k])

+
1

3
(xβi [k]− xαi [k]) ,

xβi [k + 1] = xβi [k] +
1

3
(xαi [k]− xβi [k])

(4.2)

subject to xαi [0] + xβi [0] = 2xi[0].

Forcing the update weights to be between (0, 1) limits the privacy that can be provided. For this reason, two phases

are introduced: the initialization phase and the consensus phase. In the initialization phase, the update weights are

selected from the set of all real numbers with the condition that the sum of all state variables never changes. Selecting

the coupling weights from the set of all real numbers introduce randomness to the system that will provide the privacy

of the initial values. The convergence rate does not get affected but the initial errors get bigger. Compared to the

randomized gossip, the convergence rate is lower because of the increase in the number of nodes. As the sum of the

state variables does not change, the exact consensus can still be achieved.

At consensus phase the update equations are the same as eq. (4.2). As privacy is already established in the ini-

tialization phase, the motivation is to let nodes reach the average of their state values in finite time. When vi goes

through the initialization update once with all its neighbors, it proceeds to the consensus phase. Throughout the paper

the following assumption holds.

Assumption 1. The graph is connected and there are no channel encryptions in the network.

4.2.1 Initialization Phase

The purpose of this phase is to introduce randomness to the system to preserve the privacy of the initial values. The

coupling weights which are fixed to 1/3 in the eq. (4.2) are selected from the set of all real numbers instead. The
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update equations for this phase becomes

xαi [k + 1] = xαi [k] + aij [k](xαj [k]− xαi [k]) + ai,αβ [k](xβi [k]− xαi [k]) ,

xβi [k + 1] = xβi [k] + ai,αβ [k](xαi [k]− xβi [k])
(4.3)

under the constraint that xαi [0] + xβi [0] = 2xi[0]. The coupling weights, ai,αβ [k] ∈ R and aij [k] ∈ R, are drawn

independently at each round. In addition to this, they are symmetric at each iteration, i.e. aij [k] = aji[k]. To achieve

this equality, vi picks ai→j ∈ R randomly and sends it to vj . The multiplication aij = ai→jaj→i is the shared

coupling weight that will be used by vi and vj . This choice of design, keeps the sum of all the substates at each

iteration the same.

The initialization stage is active unless both nodes have gone through an initialization update and there isn’t any

neighbor left that the node has not talked to. This choice depends on two reasons. First one is to make sure that the

coupling weight that is hidden from the adversary is communicated. If all the neighbors are traversed, it is guaranteed

that the coupling weight that the adversary cannot listen to is communicated. The second one is to make the system

suitable for the topological way of hiding one of the coupling weight from the adversary. A topological assumption is

made in [26][24] which puts the following constraint on the network.

Ni ∪ vi 6⊂ Nj ∪ vj (4.4)

This enables at least one of the coupling weight to be hidden from the adversary however, in the state decomposition the

coupling weight needs to be hidden from the adversary only during the initialization phase. Although this assumption

would give the desired condition to prove privacy, it can be relaxed to hold only during the initialization phase. For

this reason, a theoretical proof is done in the privacy analysis part that assumes one of the coupling weight to be hidden

from the adversary. At chapter 5, a cryptographic method that minimizes the number of encryptions is proposed which

bases its result on the theoretical privacy proof done at this chapter.

c© Delft University of Technology



Algorithm 1 Asynchronous State Decomposition Averaging
Let Si to define the set of neighbors that vi has selected before.

Let Fi be the set of neighbors of vi that have finished initialization.

1: Each node decomposes its state variable into xi[0] ∈ R and xβi [0] = 2xi[0]− xαi [0]

2: for k=1,...,K do

3: Select vi with probability pi = 1
N

4: if Si 6= Ni then

5: Select vj ∈ Ni \Si with pj|i = 1
|Ni\Si|

6: Add vj to Si

7: Select ai→j ∈ R and broadcast xαi [k], ai→j

8: Calculate aij = ai→jaj→i

9: Select ai,αβ ∈ R
10: Update using eq. (4.3)

11: Broadcast if Si = Ni

12: else if Fi 6= ∅ then

13: Select vj ∈ Fi with probability pj|i = 1
|Fi|

14: Broadcast xαi [k]

15: Update using eq. (4.2)

16: else

17: Skip the iteration

18: end if

19: end for

4.2.2 Consensus Phase

During the consensus phase, the nodes update their state variables to reach the average of their state variables at the

start of the process. During the convergence analysis, the sum is shown to be preserved throughout the algorithm which

means that the nodes will reach to the average of their initial variables. The node vi is selected with equal probability

pi = 1/N . If vi has gone through the initialization update with all its neighbors once, it selects a neighboring node

vj with equal probability pj|i = 1
|Fi| where Fi is defined to be the set of neighbors of vi that have finished the

initialization. Given that Fi is not empty, nodes vi and vj go through the consensus update defined in eq. (4.2). If there

is no neighbor that has finished the initialization, the update is skipped.

As the nodes communicate with each other asynchronously and the selection of nodes are random, the time when

the nodes finish the initialization process is not deterministic. The node is said to finish the initialization process when

it has gone through initialization update once it all its neighbors. Once it has finished the initialization, the node is

ready to go through the consensus update with the neighbors that also have finished the initialization. This is done to

reduce the idle time and start the consensus process as fast as possible.
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4.2.3 Convergence Analysis

Since the coupling weights are symmetric, the sum of the network does not change at each iteration. It can be shown

that for each update during initialization,
1

2N

N∑

j=1

(xαj [k] + xβj [k]) =
1

2N

N∑

j=1

(xαj [k + 1] + xβj [k + 1]).

After the initialization, the convergence analysis is based on the paper [20] on constrained consensus and optimization

in multi-agent networks and privacy-preserving state decomposition[25]. Four requirements are given in [20] for the

exact consensus to be achieved. These properties are shown to hold as follows.

• Weight Rule: There exists a scalar η with 0 < η < 1 such that for every iteration after the initialization, all

nonzero aij [k] satisfy η ≤ aij [k] < 1 and all nonzero ai,αβ [k] satisfy η ≤ ai,αβ [k] < 1. In fact, both aij [k] and

ai,αβ [k] are fixed to 1/3 which is between (0, 1). The rest of the coupling weights are set to zero.

• Doubly Stochasticity: For every update, three out of all the coupling weights are 1/3 where the rest is zero.

Since all the coupling weights are also symmetric, the sum is preserved and (1,1) is an eigenpair of the weight

matrix.

• Connectivity: The graph G=(V,E) before decomposition consists of a connected network because of the As-

sumption 1. State decomposition creates a connected graph since each node decomposes itself into two substates

which are also connected. Thus, the graph is connected.

• Bounded Intercommunication Interval: If Algorithm 1 is followed, the nodes go through the initialization unless

they have completed initialization with all its neighbors. As the selection of nodes are with equal probability

and they select neighbor nodes that they have not connected, it is expected that all nodes will finish initialization

in finite iterations. During the consensus phase, the nodes go through the update with the neighbors that they

know who has finished initialization. Since the selection of nodes is at random, in a bounded time B, each node

is expected to be contacted at least once.

As four of the requirements hold, all substates will converge to the mean of the 1
2N

∑N
j=1(xαj [k] + xβj [k]) which is

equivalent to 1
N

∑
j=1 xj [0] due to the initial constraint xαi [0] + xβi [0] = 2xi[0].

lim
k→∞

xαi [k] = lim
k→∞

xβi [k] =
1

N

∑

j=1

xj [0]

4.3 Privacy

The privacy of the initial value xj [0] of node vj will be examined according to two adversaries. First one is a semi-

honest adversary who follows the protocol and has knowledge of the communication happening in its range. The

second one is the eavesdropper who has the power of intercepting communications happening arbitrarily in the net-

work. The aim of both the adversary is to try to guess the initial value of node vj with the information that they

have.
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Definition 4.1. The initial value xi[0] of the node vi is said to be private if an adversary does not have any range to

estimate the initial value.

With this definition, the privacy claim can be made as follows.

Claim 1. If algorithm 1 is followed, the initial value of node vj is private to semi-honest node vi given that there is at

least one coupling weight hidden from the adversary during the initialization.

4.3.1 Initial Value Indistinguishability Analysis for Semi-Honest Adversary

The semi-honest adversary is defined to be the node vi that listens to all the communication of the node vj , the

neighbors of node vi and has knowledge of the private information that node vi never shares. This can be represented

with the information output of node vi at the iteration k as,

Ii[k] = {amp[k]|vp∈Ni,vm∈Ni,m6=p, xαp [k]|vp∈Ni , xi[k], xαi [k], xβi [k], ai,αβ [k]} (4.5)

The accumulated information that the node vi can know about node vj is Ii = ∪∞k=0Ii[k]. Using this information,

claim 1 can be proven.

Proof. The way to prove this statement is to show that the information output of node vi is indifferent to any different

initial value of node vj . Let the new initial values to be represented with the barred versions of their notations. Thus,

the aim is to prove that Ii = Īi given that xj [0] 6= x̄j [0]. Since the exact convergence is to be achieved, it is assumed

that the sum of the all nodes initial values have not changed. In other words without loss of generality, the difference

c = xj [0] − x̄j [0] is assumed to be the difference of c = x̄m[0] − xm[0] where node vm is the neighbour of node vj

that node vi can’t listen to. Let the initial values be the following.
x̄m[0] = xj [0] + xm[0]− x̄j [0]

x̄αj [0] = xαj [0], x̄βj [0] = 2x̄j [0]− xαj [0]

x̄αm[0] = xαm[0], x̄βm[0] = 2x̄m[0]− xαm[0]

x̄q[0] = xq[0], x̄αq [0] = xαq [0], x̄βq [0] = xβq [0],∀vq ∈ V \{vj , vm}

(4.6)

As the proposed algorithm includes asynchronous updates, different information outputs are created that are dependent

upon the selection of the nodes. Under the condition that all the edges are traversed during the initialization process,

it can be said that node vj will talk to the node vm that can’t be listened by node vi. Let the coupling weights of node

vj to be the following when it is communicating with the vq ∈ Nj\vm.

āj,αβ [k] = aj,αβ [k]
xβj [k]− xαj [k]

x̄βj [k]− xαj [k]

ājq[k] = ajq[k], vq ∈ Nj\m
(4.7)

The resulting information output that node vi will observe could be kept the same with the initial values given in

eq. (4.6) and the coupling weights given in eq. (4.7). Although the initial value of nodes vm and vj have changed, the

α states that they reveal will be the same. The effect of the change will accumulate in the β states of these two nodes.
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The updates of the nodes other than m and j are trivial and they are the same since all the coupling weights are kept

the same. The updates of node vj will create the same α states in Ii with the given update weights.

x̄αj [k] = xαj [k − 1] + ajq(x
α
q [k − 1]− xαj [k − 1]) + āj,αβ [k − 1](x̄βj [k − 1]− xαj [k − 1])

= xαj [k − 1] + ajq(x
α
q [k − 1]− xαj [k − 1]) + aj,αβ [k − 1]

xβj [k − 1]− xαj [k − 1]

x̄βj [k − 1]− xαj [k − 1]
(x̄βj [k − 1]− xαj [k − 1])

= xαj [k − 1] + ajq(x
α
q [k − 1]− xαj [k − 1]) + aj,αβ [k − 1](xβj [k − 1]− xαj [k − 1])

= xαj [k]

The β states that are never released will be different with the new initial values. This difference will be compensated

when the node vj is talking to the neighbor node vm that the semi-honest adversary node vi can’t listen to.

x̄βj [k] = x̄βj [k − 1] + āj,αβ [k − 1](xαj [k − 1]− x̄βj [k − 1])

= x̄βj [k − 1] + aj,αβ [k − 1]
xβj [k − 1]− xαj [k − 1]

x̄βj [k − 1]− xαj [k − 1]
(xαj [k − 1]− x̄βj [k − 1])

= x̄βj [k − 1] + aj,αβ [k − 1](xαj [k − 1]− xβj [k − 1])

Let the coupling weights of node vj to be the following when it is communicating with the node vm that node vi can’t

listen to.

āj,αβ [k] =
xβj [k]− x̄βj [k] + aj,αβ [k](xαj [k]− xβj [k])

(xαj [k]− x̄βj [k])

ājm[k] =
xβj [k]− x̄βj [k] + ajm[k](xαm[k]− xαj [k])

(xαm[k]− xαj [k])

(4.8)

With the given weights and the initial values, Īi that the semi-honest adversary will observe until the k + 1th iteration

will be the same as Ii regardless of xj [0] or x̄j [0].

x̄αj [k + 1] = xαj [k] + ājm(xαm[k]− xαj [k]) + āj,αβ [k](x̄βj [k]− xαj [k])

= xαj [k] +
xβj [k]− x̄βj [k] + ajm[k](xαm[k]− xαj [k])

xαm[k]− xαj [k]
(xαm[k]− xαj [k])

+
xβj [k]− x̄βj [k] + aj,αβ [k](xαj [k]− xβj [k])

(xαj [k]− x̄βj [k])
(x̄βj [k]− xαj [k])

= xαj [k] + xβj [k]− x̄βj [k] + ajm[k](xαm[k]− xαj [k]) + xβj [k]− x̄βj [k] + aj,αβ [k](xαj [k]− xβj [k])

= xαj [k + 1]

In addition to this, all the sub-states of the nodes that the adversary can listen to will be also the same.

x̄βj [k + 1] = x̄βj [k] + āj,αβ [k](xαj [k]− x̄βj [k])

= x̄βj [k] +
xβj [k]− x̄βj [k] + aj,αβ [k](xαj [k]− xβj [k])

(xαj [k]− x̄βj [k])
(xαj [k]− x̄βj [k])

= x̄βj [k] + xβj [k]− x̄βj [k] + aj,αβ [k](xαj [k]− xβj [k])

= xβj [k + 1]
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It is necessary at this point that the symmetric update weight ajm is the same for both j and m. This demands the

following condition to be true.
ajm[k] = amj [k]

xβj [k]− x̄βj [k] + ajm[k](xαm[k]− xαj [k])

(xαm[k]− xαj [k])
=
xβm[k]− x̄βm[k] + amj [k](xαj [k]− xαm[k])

(xαj [k]− xαm[k])

xβj [k]− x̄βj [k] + ajm[k](xαm[k]− xαj [k]) = x̄βm[k]− xβm[k]− amj [k](xαj [k]− xαm[k])

xβj [k]− x̄βj [k] = x̄βm[k]− xβm[k]

(4.9)

However, the initialization of the nodes depends on the order of the selection of the nodes. This requires eq. (4.9) to

hold regardless of how the nodes are initiated. An example case can be the following sequence of initialization: vj

talks to vq which can be eavesdropped by vi first. Then, vj talks to vm which vi can’t eavesdrop. Firstly, the resulting

state will be the following using the update weights eq. (4.7).
x̄αj [1] = xαj [1]

x̄βj [1] = x̄βj [0] + āj,αβ [0](xαj [0]− x̄βj [0])

= x̄βj [0] + aj,αβ [0]
xβj [0]− xαj [0]

x̄βj [0]− xαj [0]
(xαj [0]− x̄βj [0])

= x̄βj [0] + aj,αβ [0](xαj [0]− xβj [0])

(4.10)

Secondly, vj will be communicating with vm. The requirement for the symmetric update weight ajm to be the same,

the following condition needs to hold.

xβj [1]− x̄βj [1] = x̄βm[0]− xβm[0] (4.11)

This is the same result that was obtained in eq. (4.9). When the nodes are not talking to each other, they keep their

states for the next iteration. As vj has gone through the update once and vm has not, the condition in eq. (4.9) transfer

to the equation above. Using the eq. (4.10) and plugging it into eq. (4.11),
xβj [0] + aj,αβ [0](xαj [0]− xβj [0])− (x̄βj [0] + aj,αβ [0](xαj [0]− xβj [0])) = x̄βm[0]− xβm[0]

xβj [0]− x̄βj [0] = x̄βm[0]− xβm[0]
(4.12)

It can be seen that the first equation at eq. (4.6) proves that the result in eq. (4.12) will make ajm symmetric. Irre-

spective of the way the nodes are selected, the result would be the same. Using the aj,αβ [k] at eq. (4.8), the difference

xβj [k]− x̄βj [k] can be kept the same. The k + 1th iteration where vj talks with vq will be,

x̄βj [k + 1] = x̄βj [k] + āj,αβ [k](xαj [k]− x̄βj [k])

= x̄βj [k] + aj,αβ [k]
xβj [k]− xαj [k]

x̄βj [k]− xαj [k]
(xαj [k]− x̄βj [k])

= x̄βj [k] + aj,αβ [k](xαj [k]− xβj [k])

The difference xβj [k + 1]− x̄βj [k + 1] will be the same as xβj [k]− x̄βj [k].

xβj [k + 1]− x̄βj [k + 1] = xβj [k] + aj,αβ [k](xαj [k]− xβj [k])− x̄βj [k]− aj,αβ [k](xαj [k]− xβj [k])

= xβj [k]− x̄βj [k]
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The same can be told for vm. As the difference stays the same, the first condition of eq. (4.6) would suffice to make

the ajm[k] symmetric when they are communicating with each other regardless of the earlier updates.

xβj [k + 1]− x̄βj [k + 1] = x̄βj [k]− xβj [k]

= x̄βj [0]− xβj [0] = xβm[0]− x̄βm[0]

As the α and β states of all the nodes in the network can be kept the same after the initialization phase, the consensus

phase will create the same Ii[k]. This proves that if there is at least one neighbor of vj that semi-honest adversary vi

can’t listen to, the adversary can’t estimate the initial value of vj with any range as the information outputs Ii and Īi

will be the same.

4.3.2 Information-theoretic Privacy Analysis for the Semi-Honest Adversary

In information theory, mutual information has been widely used as a way to describe the dependency between two

random variables. Higher mutual information means that there is a great correlation between the two random variables

whereas lower mutual information means there is less dependency between the two random variables. The estimation

of mutual information via the realizations of random variables has been a topic of interest and methods such as

histogram binning or non-parametric estimation using k-nearest neighbor statistics have been proposed[49]. It has

been found that if there are enough samples, the non-parametric estimates of mutual information give low bias results.

In addition to this, the histogram binning is very sensitive to the bin sizes that are used. For these reasons, non-

parametric estimation is used to estimate the mutual information. More information on this method can be found in

section 3.5.

Contrary to indistinguishability analysis of section 4.3.1, information theory analyzes privacy through the correlation

of random variables. The main motivation is to show that there is no correlation between the information output of

the adversary and the initial value of the observed node. Let the semi-honest adversary to be denoted as vi and the

observed node to be denoted as vj . The information output of vi is the same eq. (4.5). Given that the adversary

can listen to vj and all its neighbors, it can estimate the initial value exactly as following. Let s[k] denote the sum
∑T
k=1 aj,αβ [k](xβj [k]− xαj [k]) that can be obtained by

s[k + 1] = s[k] + xαj [k + 1]− ajp[k](xαp [k]− xαj [k]) (4.13)

where s[0] = xαj [0], T is the iteration that vj has finished the initialization phase and ajp[k] is the coupling weight

between vj and vp ∈ Nj . The initial value can be found by the following relation

x̂j [0] =
1

2
(s[T ] + xβj [T ]) (4.14)

as the first consensus update after the initialization discloses xβj [T ] due to the fixed coupling weights. This disclosure

can be shown by observing the first alpha state variable consensus update.

xαj [T + 1] = xαj [T ] +
1

3
(xαp [T ]− xαj [T ]) +

1

3
(xβj [T ]− xαj [T ])

xβj [T ] = 3xαj [T + 1]− xαj [T ]− xαp [T ]

The assumption that there is at least one coupling weight hidden from the adversary, enables one of the aj,αβ [k](xβj [k]−
xαj [k]) to be blinded by ajp[k](xαp [k]− xαj [k]), vp ∈ Nj , disrupting the deterministic property of the estimator update
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given in eq. (4.14). This is a necessary condition to prove the privacy. It is important to notice that if (xβj [k]− xαj [k])

is 0, the adversary will know exactly what aj,αβ [k](xβj [k]− xαj [k]) is. In this case, the adversary will know the initial

value exactly and there will be no privacy. However, as α states variables are selected from the set of all real numbers,

possibility of this happening is negligibly small.

To satisfy the privacy given in definition 4.1, two cases need to be investigated. First one is the information leakage

when node vj is communicating a neighboring node that can be listened by the adversary and the second one is when

vj is communicating the neighboring node that cannot be listened by the adversary. There will be at most Nj − 1

updates within the neighborhood of the adversary and there will be at least one update outside the neighborhood of

the adversary. Due to the asynchronous nature of the algorithm, the order at which these updates will be done is not

fixed. However, if algorithm 1 is followed, it is guaranteed that vj will go through the initialization update with all

its neighbors including the one outside the neighborhood of the adversary. For the first case, the aim is to hide the

initial value from the adversary while for the second case, the aim is to hide aj,αβ [k](xβj [k] − xαj [k]) to break the

deterministic nature of the estimator eq. (4.14).

The first case is when vj is contacting the nodes that can be listened by the adversary. The goal is to hide the

initial value from the adversary. As xαj [0] is released and known, xβi [0] is the only information required to get to xj [0]

through the relation 2xj [0] = xαj [0] + xβj [0]. It can be said that the secrecy of xj [0] is equivalent to the secrecy of

xβj [0]. In addition to xαj [0], the variables xαp [0] and ajp[0] are also known. For this case, the information leakage can

be defined as following.

I(xαj [1];xβj [0]|xαj [0], ajp[0], xαp [0])

Using the eq. (4.3) expression becomes,

I(xαj [1];xβj [0]|xαj [0], ajp[0], xαp [0]) = I(aj,αβ [0](xβj [0]− xαj [0]);xβj [0]|xαj [0])

The internal coupling weight aj,αβ [0] acts like a multiplicative noise whereas, the xαj [0] acts as an additive noise. A nu-

merical analysis is done to investigate the effect of various input distributions and their variances on I(xαj [1];xβj [0]|xαj [0]).

This is an analysis of the mutual information regarding the first case where

The estimation of conditional mutual information is based on the papers [49], [50] and the non-parametric entropy

estimator toolbox [48]. Assuming that the input distribution, xαj [0] distribution and the coupling weights are sampled

from a continuous uniform distribution, the effect of increasing the variance of the coupling weight aj,αβ [0] and xαj [0]

can be seen in fig. 4.1. The initial values are selected from a unit variance uniform distribution, U [−
√

3,
√

3], and

the estimates have been done using N = 105 realizations. The non-monotonic nature of the estimates is due to the

bias errors introduced by estimating the mutual information. However, it can be seen that as the variance increases,

the conditional mutual information gets closer to zero. Although xαj [0] is a constant, it still introduces randomness

to the multiplication aj,αβ [0](xβj [0] − xαj [0]). It is necessary to include the effect of xαi [0] to the conditional mutual

information calculation as it is multiplied by aj,αβ [0] and added to the weighted secret xβj [0].
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Figure 4.1: Conditional Mutual Information I(xαi [1];xβi [0]|xαi [0]) for increasing ai,αβ [0] and xαi [0] variance where

all random variables are sampled from uniform distributions

Input Distribution

Uniform Laplacian Gaussian

ai,αβ [0] Laplacian Laplacian Laplacian

xαi [0] Laplacian Uniform -

Table 4.1: The distributions that minimize the conditional mutual information for various input distributions

The effect of choosing different distributions for xαj [0] and coupling weights have been examined to find the one

that minimizes the I(xαj [1];xβj [0]|xαj [0]). For this reason three possible input value distributions are selected namely

laplacian, gaussian and uniform distributions. xαj [0] and xj [0] is selected to be unit variance and the variance ratio

σ2
aj,αβ

/σ2
x is increased to understand which distribution combination results in the least conditional mutual informa-

tion.

For the uniformly distributed initial values, fig. 4.2 shows that laplacian distributed aj,αβ [0] and xαj [0] gives the
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least conditional mutual information. For gaussian distributed initial values, fig. 4.3 shows that laplacian distributed

aj,αβ [0] regardless of the distribution of xαj [0] gives the least conditional mutual information. For laplacian distributed

initial values fig. 4.4 shows that laplacian distributed aj,αβ [0] and uniformly distributed xαj [0] give the best results.

Overall it has been observed that the laplacian aj,αβ [0] results in the best blinding of xj [0]. The summary of the best

results can be seen in table 4.1. With a priory knowledge of the input distribution, the coupling weights and alpha

states can be selected from the distributions that would minimize the mutual information.
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Figure 4.2: I(xαj [1];xβj [0]|xαj [0]) for different distributions given a unit variance uniformly distributed xj [0]
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Figure 4.3: I(xαj [1];xβj [0]|xαj [0]) for different distributions given a unit variance gaussian distributed xj [0]
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Figure 4.4: I(xαj [1];xβj [0]|xαj [0]) for different distributions given a unit variance laplacian distributed xj [0]

An additional test has been made which compares the effect of choosing the sample size N . The xαj [0] and xj [0]

is selected to be unit variance and the variance ratio σ2
aj,αβ

/σ2
x is again increased to understand the effect of it in the

estimation of mutual information. Two plots are presented in ?? where the left one represent the results for N = 104

and right represent the results for N = 105. Each plot contains the expression of I(xαj [1];xβj [0]|xαj [0]) for three
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distributions that xαj [0], xj [0] and σ2
aj,αβ

/σ2
x share. The first one includes all three distributions to be sampled from

laplacian, second to be sampled from gaussian and third from uniform distributions. The results suggest that the

sample size effects how fast the mutual information decreases.

Numerical experiments suggest that there is a decrease in the mutual information with an increasing coupling

weight variance. A theoretical analysis will be done to prove this case and the privacy claim given in claim 1.
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Figure 4.5: Plot of I(xαj [1];xβj [0]|xαj [0]) for increasing σ2
aj,αβ

/σ2
x where all three distributions are sampled from

laplacian, gaussian and uniform. The left represent the mutual information for N = 104 samples and right represent

the mutual information for N = 105.

Proof of claim 1. For the privacy to be established, xβj [k] should be obfuscated at each iteration and aj,αβ [k](xβj [k]−
xαj [k]) should be blinded by aji[k](xαi [k]− xαj [k]). First, it will be shown that for a fixed bounded variance xαj [0], the

conditional mutual information I(xαj [k+1]);xβj [k]|xαj [k]) goes to zero as the variance of aj,αβ [k] goes to infinity. Let

xαj [0] be a continuous random variable with σ2
xαj [0]

<∞. Define γ = 1
σ2
aj,αβ [k]

and define W̄αβ = γaj,αβ [k](xβj [k]−
xαj [k]) with unit variance. The conditional mutual information can be written as the following. The iteration [k] is

omitted for clearer notations. Whenever the α and β states, the coupling weights aji[k] and ai,αβ [k] are shown without

the iteration number, it means the kth iteration. If it is any other iteration than kth iteration, it is explicitly written.

I(xαj [k + 1];xβj |xαj , aji, xαj ) = I(Wαβ ;xβj |xαj )
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The mutual information is invariant to scaling.

I(γWαβ ; γxβj |γxαj ) = I(W̄αβ ; γxβj |γxαj )

As the variance of aj,αβ [k] goes to infinity, the conditional mutual information will go to zero.

lim
σ2
aj,αβ

→∞
I(W̄αβ ; γxβj |γxαj ) = lim

γ→0
I(W̄αβ ; γxβj |γxαj )

= I(W̄αβ ; 0) = 0

Second case is the update when the node that cannot be listened to is contacted. The requirement that there is a one

hidden coupling weight, lets aj,αβ [k](xβj [k]− xαj [k]) to be obfuscated by aji[k](xαi [k]− xαj [k]). For this case, aji[k]

and xαj [k] is unknown. This prevents the corrupted nodes from learning one of the aj,αβ [k](xβj [k] − xαj [k]) which

would have been used to estimate xβj [0]. Define β = 1
σ2
aji[k]

and W̄ij = βaji[k](xβj [k]− xαj [k]). Mutual information

is invariant to scaling.

I(xαj [k + 1];Wαβ |xαj ) = I(γβxαj [k + 1]; γβWαβ |γβxαj )

= I(βW̄αβ + γW̄ij ;βW̄αβ |γβxαj )

When the variances of both coupling weights go to infinity, the conditional mutual information will go to zero.

lim
σ2
aji
→∞

σ2
aj,αβ

→∞

I(βW̄αβ + γW̄ij ;βW̄αβ |γβxαj ) = lim
γ→∞
β→∞

I(βW̄αβ + γW̄ij ;βW̄αβ |γβxαj )

= I(0; 0) = 0

Let T be the iteration at which the initialization has ended. xα[T ] represents the vector of alpha values obtained

starting from x[0]. During the consensus phase let W k denote the information obtained at each iteration to deduce

x[0] with k = {1, 2, ...K} where K is the total iteration number. The total mutual information thus be represented

as I(x[0];W k). Fixing the update weights enables to find a function F k(xα[T ]) = W k that will take the xα[T ] as

input and will create the output W k. The random variables will create a Markov chain x[0] → xα[T ] → W k for

k = {1, 2, ...K}. Thus, data processing inequality suggests that,

I(x[0];xα[T ]) ≥ I(x[0];W k) for k = 1, ...,K

I(x[0];xα[T ]) is shown to be going to zero earlier. Any clever manipulation of data can’t increase mutual information.

Thus, given that there is at least one neighbor of node vj whose shared coupling weight is hidden from the adversary,

it can’t estimate the initial value of node vj with any guaranteed accuracy.

4.3.3 Eavesdropper

The privacy proof against a semi-honest adversary shows that if one of the coupling weight is hidden between the

adversary and its neighbor, there is no range to estimate the initial values. The eavesdropper is a stronger adversary

as it can also tap messages that are sent arbitrarily anywhere in the network. Although the information that the

eavesdropper has is greater than the semi-honest adversary, the provided privacy is the same under the constraint that

one of the coupling weight is unknown. The privacy is provided with this constraint and no more additional information

c© Delft University of Technology



can be gained if eavesdropper knows any other shared data. Let the information output of the eavesdropper who is

capable of tapping every communication channel be the following.

Ie[k] = {aji[k]|vj∈N,vi∈N,j 6=i, xαj [k]|vj∈N} (4.15)

If an eavesdropper intercepts all the communication happening between node vj and its neighbors, it can estimate the

initial value of the node vj . Let the variable s be defined as the following.

s[k + 1] = s[k] + xαj [k + 1]− aij(xαi [k]− xαj [k])

With s[0] defined to be xαj [0], the estimator for the initial value of node vj , xj [0], will be the following.

x̂j [0] =
1

2
(s[k] + xαj [k])

The system isn’t private against an eavesdropper who taps all the communications. Given that there is one coupling

weight hidden from it, the same privacy analysis which is done in the section 4.3 can be done also for this case hence,

the algorithm will preserve privacy.

4.4 Numerical Examples

The proposed algorithm reaches the exact average consensus of the network while preventing estimation of the initial

values with any range. The performance of the asynchronous state decomposition is examined using 5 nodes connected

as a circular graph which can be seen in fig. 4.6. This graph is selected such that a comparison can be done with the

noise-obfuscation methods which require the topological assumption given at eq. (4.4) to be made on the graph.

Circular graph satisfies this property for each node. Geometric graphs can also be used as they have found to represent

the wireless sensor networks better[51]. The distance
√

2 log n/n that guarantees connectivity with high probability

however, creates topological connections which fails the condition given eq. (4.4). For these reasons, the analysis

is done on the circular graph. First, the system is shown to converge to the exact average of the initial values. The

1

2

34

5

Figure 4.6: Network topology
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adjacency matrix of the proposed network is the following.

A =




0 1 0 0 1

1 0 1 0 0

0 1 0 1 0

0 0 1 0 1

1 0 0 1 0




The initial values of the nodes are selected from [1, 20]. The coupling weights and the initial alpha state variables are

selected from [−5, 5] during the initialization. It can be seen in fig. 4.7 that the exact consensus can be achieved. The

plot on the left shows the convergence of the alpha state variables whereas, the plot on the right show the mean squared

error, plotted on a logarithmic scale. Next, the convergence rate of the proposed algorithm compared with the standard
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Figure 4.7: The convergence plot for the 5 node circular graph

randomized gossip is examined. It can be seen in fig. 4.8, the proposed approach has a lower rate of convergence. This

is due to the increase in the number of nodes fromN to 2N because of the state decomposition. Finally, an experiment

regarding the performance of the estimator is done. The estimator follows the update given in eq. (4.14). One of the

coupling weight ajp[k] is assumed to be unknown to the semi-honest adversary. This prevents the adversary from

finding one of the aj,αβ [k](xβj [k] − xαj [k]) using eq. (4.13). The adversary guesses aj,αβ [k](xβj [k] − xαj [k]) to be 0

for this case as it has been observed that it has the highest probability to be around 0 if uniform random variables are

used for the initialization. The performance of the semi-honest adversary is observed by examining the variance of its

estimations. The network topology is the same circular graph given in fig. 4.6. The initial values are selected randomly
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Figure 4.8: Convergence rate plot for the proposed approach and the standard randomized gossip.

from a uniform distribution, U(0, 1). The coupling weights, ajp[k] and ajαβ [k], are selected randomly from a uniform

distribution U(0, σ2
r) where σ2

r is selected to be (1, 4, 9, ..., 400) consecutively. The semi-honest adversary is assumed

to be v2 that observes and guesses the initial value of v1. There has been 104 different initializations for each σ2
r .

For each initialization, the discrepancy between the final estimate and the actual initial value of v1 is recorded. The

variance of these discrepancies is calculated to see if an increase in the coupling weight variance indeed makes the

variance of the estimator increase. To estimate the variance from the 104 iid initializations, the following unbiased

estimator with bessel correction[52] is used.

s2 =
1

n− 1

n∑

i=1

(xi − x̄)2 (4.16)

If the difference between the estimate and the actual initial value of v1 is plugged into section 6.4, the following

equation is obtained.

∑104

i=1(xi1[0]− x̂i1[0])2

104 − 1
− (
∑104

i=1(xi1[0]− x̂i1[0]))2

(104 − 1)104
(4.17)

where the superscript i at xi1[0] and x̂i1[0] represent the ith independent initialization and ith independent estimate

of the initial value respectively. The result can be seen in fig. 4.9. A linear increase in the estimator’s variance is

observed as the variances of both coupling weight increases. If the slope is observed, it can be seen that there is an

approximate 2 : 1 ratio between the estimator variance and σ2
r . The reason is due to the following properties[53] about
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the arithmetic operations of two independent random variables with mean 0:
V ar(XY ) = V ar(X)V ar(Y ) ,

V ar(X + Y ) = V ar(X) + V ar(Y ) ,

V ar(c ∗X) = c2V ar(X) .

(4.18)

Theα state variables are sampled from a uniform distribution with variance 1 and ajαβ [k] is sampled with an increasing

variance σ2
r . The sum (xβj [0]−xαj [0]) can also be written as 2∗(xj [0]−xαj [0]) using the initial state variable constraint.

As there is 1/2 in the eq. (4.14), there will be no increase due to the multiplication with 2. The sum of (xj [0]− xαj [0])

will have a variance of 2. This is multiplied by ajαβ [k] which makes the variance 2 ∗ σ2
r where σ2

r represent the

variance of ajαβ [k]. For this reason, 2 : 1 slope is visible in fig. 4.9.
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Figure 4.9: The variance of the difference between the estimate and the actual x1[0] for an increasing σ2
r representing

the variance of the coupling weights.

The performance of the estimator is examined when the variance of xαi [0] is increased as well as the coupling

weights. The increase of the variance of the alpha state is the same as the coupling weights which is (1, 4, 9, ..., 400).

The variance is calculated with eq. (4.17) under the assumption that adversary guesses 0 again for one of the aj,αβ [k](xβj [k]−
xαj [k]) because under uniform distribution assumption, around 0 is where this quantity exists with highest probability.

The results can be seen in the fig. 4.10. The increase in the variance is exponential since xαi [0] also has an increasing

variance. The variance of the coupling weight is multiplied by the initial value which has a linear order in terms of σ2
r .

On the other hand, the multiplication of ajαβ [k]xαj [k] has an exponential order in terms of σ2
r due to the multiplicative
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property given in eq. (4.18). The sum of ajαβ [0]xαj [0] and ajαβ [0]xj [0] terms will result in an exponential order in

terms of σ2
r due to the former term. Thus, the estimator’s variance is dominated by (σ2

r)2 which is seen in the fig. 4.10.
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Figure 4.10: The variance of the difference between the estimate and the actual x1[0] for an increasing σ2
r representing

the variance of the coupling weights and xα1 [0].
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Chapter 5

Privacy-Preserving Asynchronous Averaging

using State Decomposition and Confidential

Interaction Protocol

5.1 Introduction

The hybrid approach of state decomposition along with the confidential interaction protocol(CIP) proposes a way to

deal with the coupling weight assumptions of the Chapter 4. It extends the scope of the privacy to handle the eaves-

dropper case with the information output given in eq. (4.15). This is done by introducing a minimum number of

homomorphic encryption to the system. An eavesdropper who taps all the communication will be able to infer the

initial state of the nodes if all the information shared in the system is used as is without any tricks. To achieve privacy

against eavesdroppers, [24] uses secret continuous functions that are privately shared between each node. These secret

functions are never exposed during the consensus process. This prevents the estimation of the initial values uniquely

by an eavesdropper as there is an additional layer of security that is introduced by the functions that couple nodes. This

approach, however, disrupts the scalability of the system. Every time a new node joins the system, it has to agree upon

a secret function with all its neighbors using a secure channel. Instead, a fully distributed algorithm which minimizes

the number of homomorphic encryptions is proposed.

CIP is a cryptographic algorithm which hides the coupling weights aij from an eavesdropper through means of addi-

tively homomorphic encryption [36]. In addition to this, it also hides the coupling weights from the nodes talking to

each other as well. It is a good candidate for distributed usage as the encryption and decryption do not require any

third party or an aggregator.
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5.2 Methodology

The proposed algorithm lays its foundation on the methodology given in section 4.2. The consensus phase will be the

same whereas, the initialization phase will be modified slightly to incorporate CIP. During the initialization phase, a

node, say vi is selected randomly to start the update. If vi is selected for the first time, the node will decompose its

state into alpha and beta states with the condition that xαi [0]+xβi [0] = 2xi[0]. The node vi will select node vj from the

set of neighbors that have not yet gone through the CIP update. In addition to this, node vi selects a neighboring node

different from the previous node that it has gone through the initialization update, eq. (5.3), if it exists. The reason

behind this choice is explained in the privacy breach in section 5.3. If node vj is also selected for the first time, it also

decomposes its state into alpha and beta states with the condition that xαj [0]+xβj [0] = 2xj [0]. The nodes keep track of

which node that they have gone through the CIP update and the initialization update whichever has happened before.

If the node has finished the CIP update first, it goes through the initialization update next with the node that it has not

communicated during the CIP update. If it has gone through the initialization update earlier, it goes through the CIP

update with a different node than the one that it has communicated earlier.

A node is said to finish the initialization process if it has gone through the CIP update, eq. (5.4), and initialization

update, eq. (5.3), once. It is required, however, that these two updates are done with two different nodes to prevent the

privacy breach given in section 5.3. If node vi has only one neighboring node, it goes through the CIP update with its

only neighboring node and finishes the initialization. Since there is a requirement that there are at least three nodes in

the network, the other node will go through the CIP update and the initialization update once preventing the possible

privacy breach that could happen.

The minimum number of encryptions in a network with N nodes is N/2 if N is even and N/2 + 1 if N is odd.

The reason is that there should be at least one coupling weight hidden for each node. If there are even number of

nodes in the network, the N/2 distinct pairings of these nodes will result in the minimum number of pairings. The

worst case is that there will be N − 1 number of encryptions. The algorithm 2 is designed to minimize the number of

possible encryptions by forcing the nodes to select the neighboring nodes that have not gone through the CIP update

already. However, there can be situations where all the neighbors of the selected node have already gone through the

CIP update. In this case, the selected node has no other choice but to select one of its neighbors that have already gone

through the CIP update since CIP update is a necessary condition for privacy against eavesdropper. This will increase

the number of CIP updates in the system. As nodes do not know the whole network topology, forcing the number of

encryptions to the minimum is not possible. It is possible, however, to minimize the number of encryptions by forcing

the nodes not to select the neighboring nodes that have gone through CIP update again whenever possible.

The nodes start the consensus process if they have finished the initialization and another node in their neighborhood

also finished the initialization. By starting the consensus early, it is aimed to reduce the idle time and hasten the

convergence. However, this also suggests that there can be a situation where there are, say 100 nodes in the network

that has started the consensus process but there are 2 nodes that still have not gone through the initialization. This

can happen due to the equal probability of selecting a node that will update its state variable. The asynchronous

time model lets each node to be selected in bounded time thus, all the nodes will finish initialization in bounded time
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and convergence can be achieved. First, CIP will be explained before going further in details about the modified

initialization phase.

5.2.1 Confidential Interaction Protocol

CIP[36] is a decentralized cryptographic method which uses additively homomorphic encryption to obtain the scaled

difference of two nodes’ state variables. In particular, two nodes aim to obtain the following.
∆xij [k] = aij [k](xj [k]− xi[k])

∆xji[k] = aji[k](xi[k]− xj [k])

subject to aij [k] = aji[k] 6= 0

(5.1)

Let there be two nodes vi and vj going through CIP. Their respective states xi and xj are assumed to be scalar. Each

node have their own public and private key pair kpm and ksm , m ∈ {i, j}. The symmetric update weights aij and aji

are created by the multiplication of two random numbers where one is generated by node vi, ai→j and the other is

generated by node vj , aj→i. The flow of how node vi obtains the difference is the following.

• vi sends Enc(−xi), kpi to vj

• vj encrypts xj with kpi: Enc(xj)

• vj calculates Enc(xj − xi) = Enc(xj)Enc(−xi)

• vj computes Enc(aj→i(xj − xi)) = Enc(xj − xi)aj→i and sends it to vi

• vi decrypts the result: Dec(Enc(aj→i(xj − xi))) = aj→i(xj − xi)

• vi multiplies the result with ai→j to get the difference ∆xij = ai→jaj→i(xj − xi)

By following the same logic, vj also gets ∆xji. There are four transmissions per round. During CIP, each node com-

municates with the other one twice which make the total transmission per round four. The computational bandwidth is

increased because of the introduction of cryptographic operations. The encryption process requires two exponentiation

which takes O(l + logm) where m is the integer value of the state variable and l is the bit length of the public key.

The multiplication and the modulo operations that are followed by the encryptions do not include extra computational

burden compared with the exponentiation operation. In addition to this, the bit length of the public key is greater than

the message m. The encryption has complexity O(l). The decryption has one exponentiation which is followed by

arithmetic operations. Thus, decryption has complexity O(l). During the CIP protocol, each node vi goes through

encryption and decryption once. Assuming that bit length of the coupling weight is smaller than the bit length of the

public key, the overall computational complexity of each CIP update is O(l).

5.2.2 Initialization Phase

Each node decomposes its state value into two substates xαi [0] ∈ R and xβi [0] = 2xi[0] − xαi [0]. The xαi [k] states

are used for the communication with the other nodes while xβi [k] states are used internally. There are two updates

c© Delft University of Technology



happening during the initialization phase: CIP update and the initialization update. The CIP update equations for the

initialization phase is

xαi [k + 1] = xαi [k] + ∆xij [k] + ai,αβ [k](xβi [k]− xαi [k]) ,

xβi [k + 1] = xβi [k] + ai,αβ [k](xαi [k]− xβi [k])
(5.2)

The initialization update is the non-encrypted version of the CIP update which is used in the state decomposition

approach in chapter 4 and it is given as the following.
xαi [k + 1] = xαi [k] + aij [k](xαj [k]− xαi [k]) + ai,αβ [k](xβi [k]− xαi [k]) ,

xβi [k + 1] = xβi [k] + ai,αβ [k](xαi [k]− xβi [k])
(5.3)

A node is said to be initialized when it has gone through the CIP update given in eq. (5.2) and initialization update

given in eq. (5.3) with two different nodes. However, there can be a situation when there is only one node in the

neighborhood of the selected node. In this case, that node is said to finish initialization when it has gone through the

CIP update with its only neighbor. The node is also said to finish the initialization if it has gone through two CIP

updates with two different neighbors. The requirement that there is at least one CIP update is because of the protection

against eavesdropper. The necessity that there is either one more CIP update or an initialization update is to prevent

the privacy breach given in section 5.3.

The node vi is selected with probability pi = 1/N . It selects the node vj from the set of neighbors that have not

gone through the CIP update and different from the node that it has gone through initialization update if it exists. Since

this is not a synchronous algorithm, there can be a situation where a node has gone through the initialization update

before it has gone through the CIP update. As the main motivation for each node is to go through these two updates

with two different nodes, they keep a track of the nodes that they have communicated for either the CIP update or the

initialization update. Whenever node vi is selected to update its state variable, it checks which nodes have not done a

CIP update in its neighborhood. If it is clashing with the node that it has communicated before for the initialization

update, node vi selects that neighboring node to start a CIP update while erasing the node that it has communicated

before from its memory. Minimizing the encrypted operations is given priority since one of the challenges of this

thesis is to achieve the average consensus as fast as possible.

The node vi and the node vj start the CIP process given in section 5.2.1 and go through the update given in

eq. (5.2). Node vi writes the node vj into memory and vice versa to prevent the selection of this node to go through

the initialization update. If in this state they have already gone through the initialization update with another neighbor

before, they broadcast that they have finished the initialization.

When node vi is selected for the second time, it selects a neighboring node vm 6= vj with equal probability. Two

nodes start the initialization update given in eq. (5.3). After updating their state variables, node vi broadcasts that it

has finished the initialization. If vm has gone through the CIP update before, it also broadcasts that it has finished the

initialization.

There are at minimum N/2 initialization updates for even N and (N + 1)/2 initialization update for odd N .

For odd N , there will be (N + 1)/2 number of O(l) operations and for even N , there will be N/2 number of O(l)

operations until the initialization phase ends. At maximum, there will be N − 1 number of O(l) operations. Thus, the
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overall complexity level for the initialization phase isO(N · l). The computational complexity for each node, however,

does not increase with the network size and it is only dependent on the bit length of the public key, O(l).

Algorithm 2 Asynchronous Averaging with State Decomposition and CIP
Let encrypt_update(vi) to return 1 if the node vi has not gone through a CIP update and 0 otherwise.

Let initialization_update(vi) to return 1 if the node vi has not finished initialization and 0 otherwise.

Let Fi be the set of neighbors of vi that have finished initialization.

1: The initial values are decomposed into x[0] ∈ R and xβ [0] = 2x[0]− xα[0]

2: for k=1,...,K do

3: Select vi with probability pi = 1
N

4: if encrypt_update(vi) then

5: if Ni \ Fi 6= ∅ then

6: Select vj ∈ Ni \ Fi with pj|i = 1
|Ni\Fi|

7: veav ← Vj

8: else

9: Select vj ∈ Ni
10: end if

11: Get ∆xαij [k] using CIP

12: Update using eq. (5.2)

13: else if initialization_update(vi) and |Ni| 6= 1 then

14: Select vj ∈ Ni \ veav
15: Update using eq. (5.3)

16: Broadcast initialization finished

17: else if |Fi| 6= ∅ then

18: Select vj ∈ Fi with probability pj|i = 1
|Fi|

19: Send xαi [k]

20: Update using eq. (5.4)

21: else

22: Skip the iteration

23: end if

24: end for

5.2.3 Consensus Phase

The nodes start the consensus phase when they have gone through initialization update and CIP update once with two

different nodes and there is another node in the neighborhood that also has finished the initialization. If the node has

only one neighboring node, the consensus process starts when it has gone through CIP once and the neighboring node
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has finished the initialization. The update equations for the consensus process is the following.

xαi [k + 1] = xαi [k] +
1

3
(xαj [k]− xαi [k])

+
1

3
(xβi [k]− xαi [k]) ,

xβi [k + 1] = xβi [k] +
1

3
(xαi [k]− xβi [k])

(5.4)

Node vi that has finished initialization selects another node vj ∈ Fi with probability pj|i = 1/|Fi| where Fi represent

the set of the neighboring nodes of vi that has finished the initialization. If there are no neighbors that have finished

the initialization, the selected node skips updating its value. Selected nodes go through the consensus update given in

eq. (5.4) unless the stopping criterion is met.

5.3 Privacy Analysis

The privacy analysis made in section 4.3, shows that if one of the coupling weight is hidden from the adversaries,

there is no range to estimate the initial values. The privacy analyses here extends this result to incorporate a way to

hide the coupling weight from the adversaries using CIP. The algorithm proposed in algorithm 2, forces each node

to go through at least one CIP update. The additively homomorphic encryption provides indistinguishability under

chosen-plaintext attack(IND-CPA) security as explained in section 3.3.2. This means that the value which is encrypted

with Paillier encryption provides IND-CPA security against the semi-honest adversaries who follow the protocol that

do not maliciously change their state values. The coupling weight, say aij is hidden from all the semi-honest nodes in

the system including the nodes vi and vj . For this reason, even though all the neighbors of the node vj are colluding

to estimate its initial value, they will not have any range to estimate it.

To show how CIP promotes a way to hide the coupling weight hidden from the nodes going through the update

itself, consider the following update between node vi and node vj that is given in eq. (5.3). Only the part of the node

vi is given and all the values that node vj knows is presented with an underline.

xαi [k + 1] = xαi [k] + ∆xij [k] + ai,αβ [k](xβi [k]− xαi [k])

= xαi [k] + ai→jaj→i(x
α
j [k]− xαi [k]) + ai,αβ [k](xβi [k]− xαi [k])

Even if node vj knows ∆xji[k], there is no way that it can deduce xαi [k] since ai→j is only known to node vi. As there

are two unknowns and one equation, there are infinitely many solutions. For this reason, the coupling weight aij and

the xαi values will be hidden for node vj with IND-CPA security. The same applies for node vi and all the other nodes

going through the CIP update. The required condition that there is one coupling weight hidden from the adversaries is

satisfied with one CIP update.

The next update after the CIP update has to be an initialization update with a different node. The reason is to make

sure that there are more than two nodes that have communicated with each other before starting the consensus process.

The update equations preserve the sum and if two nodes start the consensus process after going through CIP update

once, they will know each other’s xβi [k] and xβj [k] values. Since the average is a deterministic function of the α and

β states and they know their initial value, the other one’s initial state will be disclosed. A better explanation of this
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privacy breach can be explained with an example.

Privacy Breach

Each node needs to go through one CIP update and one initialization update with two different nodes unless for any vi,

|Ni| = 1. In this case, the initialization ends when that node goes through CIP update once. As there are always more

than 2 nodes in the network and the network is connected, at least one of the nodes in the network will go through the

two updates specified earlier which will prevent the privacy breach from happening.

During the consensus phase, the average of two nodes in the network is a deterministic function of the α and β

states as the consensus update given in eq. (5.3) converges to the average of the initial values as shown in section 4.2.3.

Let’s assume that the semi-honest adversary node vi and the node vj has gone through CIP update once with each

other. Only the iterations of node vj will be shown.

xαj [1] = xαj [0] + ∆xji[0] + aj,αβ [0](xβj [0]− xαj [0])

xβj [1] = xβj [0] + aj,αβ [0](xαj [0]− xβj [0])

In this case the sum of the α and β states of nodes vj and vi will not change.∑

v=i,j

(xαv [0] + xβv [0]) =
∑

v=i,j

(xαv [1] + xβv [1]) (5.5)

Given that the next update is with node vm that is in the neighborhood of the adversary and it is a consensus update,

xβj [1] will be disclosed. The update of node vj with vm is

xαj [2] = xαj [1] +
1

3
(xαm[1]− xαj [1]) +

1

3
(xβj [1]− xαj [1]) ,

xβj [2] = xβj [1] +
1

3
(xαj [1]− xβj [1]) .

With the information output of consecutive α states

Ii = {xαm[1], xαj [1], xαm[2], xαj [2], am,αβ [1] = 1/3, aj,αβ [1] = 1/3}

the semi-honest adversary node vi can simply revert the consensus update that the node vj and vm went through to

reach to the vβj [1].

xβj [1] = 3xαj [2]− xαj [1]− xαm[1]

The average between nodes vi and vj are a deterministic function of the inputs: xβj [1], xαj [1], xβi [1] and xαi [1] which

are obtained by the semi-honest adversary in this case. Let the function returning the average of two nodes using their

α and β states be defined as the following.

f(xβj [1], xαj [1], xβi [1], xαi [1]) =

xαj [1]+x
β
j [1]

2 +
xαi [1]+x

β
i [1]

2

2

Using the eq. (5.5) and the function defined above,

f(xβj [1], xαj [1], xβi [1], xαi [1]) = f(xβj [0], xαj [0], xβi [0], xαi [0]) .

Since the initial state variable, xi[0] = (xβi [0]+xαi [0])/2 is known by the semi-honest adversary and the average value

between nodes vj and vi is disclosed, the semi-honest adversary can find the initial value of node vj exactly.
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This situation can be prevented by not fixing the coupling weights, aj,αβ [k] and ajm[k] for one more iteration

after the CIP update. This will prevent the preservation of the sum of α and β states between any pair of nodes that

have gone through a CIP update. Given that there is one more initialization update with a different node, say vm, the

summation between the nodes vi and vj will not be preserved.∑

v=i,j

(xαv [0] + xβv [0]) =
∑

v=i,j

(xαv [1] + xβv [1]) 6=
∑

v=i,j

(xαv [2] + xβv [2])

Even though the xβj [2] state is disclosed, the average that the node vi can get will not be the average of their initial

values.

5.4 Numerical Analysis

The proposed algorithm reaches the exact average of the initial values of an arbitrary graph with more than two nodes.

To be able to compare with the findings of the other chapters with this approach, a 5 node circular graph is chosen.

In addition to this, a random geometric graph with 100 nodes and a radius of
√

2 logN
N is chosen where log is in the

natural base.

The random geometric graphs are commonly used in modeling wireless sensor networks[54]. The radius is chosen

such that the probability of not having an isolated vertex is sufficient and given approximately byP (isolated_vertices) =

1− 1
N2 [55].

First, the convergence properties of the estimator are examined. The initial values of the nodes are selected from

[1, 20]. The coupling weights and the initial alpha state variables are selected from [−5, 5] during the initialization.

The convergence of the alpha state variables can be seen in fig. 5.1. The stopping criterion which is the average squared

distance from the true average of the initial values and the estimated average is chosen to be 10−9. For both of the

graph types, the proposed algorithm reaches the exact average of the initial values. The initial increase in the mean

squared error is due to the initialization phase where noise is introduced to the system. The convergence rate of the

consensus phase can be observed to be the same for both graphs. The overall convergence time will be different due to

encrypted updates and the privacy conditions that need to be satisfied, however, the convergence rate will be the same

due to its independence from the magnitude of the initial discrepancy.
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Figure 5.1: The convergence plots of the alpha states for the circular graph and the random geometric graph. The (a)

and (b) represent the convergence of the alpha states and the mean squared error for the 5 node circular graph where

as (c) and (d) represent the same properties for the 100 node random geometric graph

Second, an analysis on the number of the encrypted updates and the skipped iterations are done. The number of

encryptions is designed to be minimized as one of the main objectives of this thesis study is to have fast and low

complexity convergence. 100 simulations have been made to capture the number of encryptions and skips. Each

number of the encryptions and the skips are represented as a circle in the graph. Their mean values are represented

as a flat line. The findings can be seen in fig. 5.2. The mean value of the number of encryptions is found to be the

minimum, 3 with a standard deviation of 0. The topological structure of the cyclic graph forces the encryptions to be

the minimum as there are always 2 distinct pairings of the 5 nodes. There is an extra 1 encryption which is due to the

even number of total nodes. The number of average skipped iterations is found to be 0.2 with a standard deviation of

0.6. This suggests that the uniform selection procedure of the nodes at each iteration enables enough nodes to finish

initialization preventing them from skipping updates most of the time. The random geometric graph has an average

of 51.51 CIP updates with a standard deviation of 0.67. For 100 nodes, the theoretical minimum of CIP updates

required to preserve the privacy is given by N/2 = 50 encryptions. It can be seen that the algorithm tends to minimize
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the number of encryption operations towards the theoretical minimum with a small deviation. The number of skipped

updates are found to be similar to the cyclic graph. The average of the number of skipped updates is 0.4 with a standard

deviation of 0.67. There are enough initialized nodes in the system which prevents the requirement of skipping the

iterations.

Skips Encrypted Updates
(a)     Cyclic Graph

0

1

2

3

4 0.2
3.0

Skips Encrypted Updates
(b)     Random Geometric Graph
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42

48

54 0.4
51.51

Figure 5.2: The number of CIP updates and skips repeated for 100 simulations. The (a) represent the results for the

cyclic graph and the (b) represent the random geometric graph

Lastly, a convergence speed comparison is done that shows the convergence speed of the randomized gossip and the

hybrid state decomposition approach. The results can be seen in fig. 5.3. The convergence rate is the same as the state

decomposition approach without the CIP updates as the convergence rate is defined by the convergence phase which

involves the same updates. For both of the graphs, the proposed approach has a lower convergence rate compared to

the randomized gossip because of the increase in the number of nodes from N to 2N .
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Figure 5.3: Plots of the convergence speed comparing the randomized gossip and the privacy-preserving hybrid state

decomposition approach. The (a) represent the convergence speed plot for the cyclic graph and the (b) represent the

convergence speed plot for the random geometric graph
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Chapter 6

Privacy-Preserving Asynchronous Averaging

using Noise-Obfuscation

6.1 Introduction

This algorithm aims to let N agents reach the exact average of their initial values while preserving the privacy of them

from the semi-honest adversary through the addition of correlated and decaying noise. At each iteration, the nodes

add noise to its state variable and average using the obfuscated values. The noise added at one iteration is subtracted

in the next one and a new noise sample is added which decays by a geometric factor defined as γ. As the added noises

add up to zero and decay as the iterations continue, convergence is guaranteed.

A synchronous privacy-preserving noise-obfuscation is proposed and its convergence and privacy conditions are

analyzed[26]. It has been found that for each pair of nodes vi and node vj the following condition should hold.

Ni ∪ vi 6⊂ Nj ∪ vj (6.1)

This guarantees that at each synchronous update, there will be at least one unknown variable that prevents the added

noises to lie in the observable space of the adversary. If all the neighbors of, say node vi are listened by the adversary,

she can find the exact initial value of the node vi by reverting the updates that it has been going through. If there are k

colluding adversaries, the condition in eq. (6.1) extends to cover all the combinations of them. For v1, v2 . . . vk 6= vi

Ni ∪ vi 6⊂ N1 ∪ v1 ∪ . . . ∪Nk ∪ v1, v2, . . . vk

The asynchronous privacy-preserving noise-obfuscation method [31] analyzes the convergence rate and presents

the thresholds of the maximum decay that is required for the convergence rate to be unaffected by the noise. The

results suggest that if the following condition on the decay rate is satisfied, the convergence rate is not driven by noise.

γi ≤
√

1− α(G)

2di

Since the algebraic connectivity, α(G) might be unknown, by using the inequality α(G) ≤ n
n−1dmin, the authors

c© Delft University of Technology



suggest the following condition on the noise decay.

γi ≤
√

1− (n− 1)dmin
2ndi

(6.2)

Each node can select their decay rate, promoting a different privacy guarantee. Given that each node selects a decay

parameter γ according to the eq. (6.2), the convergence is shown to be achieved. It has also been observed the

convergence rate is not affected by the noise variance if the decay rate is in the given range. This information plays a

critical role in the privacy proof done in section 6.3.

The authors do not give an analysis of privacy. In this chapter, the scope of their analyzes is extended to cover the

privacy and numerical analysis is done.

6.2 Methodology

At every iteration a node vi ∈ N is selected with probability pi = 1/N . The selected node contacts another node in

its neighborhood, vj ∈ Ni with probability pj|i = 1/Ni. For the initial iteration, the nodes add the noise θm(0)m ∈
{i, j} independently of all the other nodes. If it is not the initial iteration, the nodes generate a new noise that is

generated according to the following formula.

wi(k) =




θi(0) , if k = 0

γkθi(k)− γk−1θi(k − 1) , otherwise
(6.3)

Each node adds wm(k),m ∈ {i, j} to their state variable and transmit it to the node they are contacting. The nodes

update their state variable using the randomized gossip framework. The only difference is that nodes use the obfuscated

state variables during the update.

xi(k + 1) = x+i (k) +
1

2
(x+j (k)− x+i (k)) (6.4)

The procedure is explained in algorithm 3.
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Algorithm 3 Privacy-Preserving Averaging using Noise-Obfuscation
1: Input: Private input values x[0] ∈ RN , noise variances σ2

i ∈ R+ and geometric decay rate γi where 0 ≤ γi ≤ 1

for all nodes.

2: for k=1,...,K do

3: Select vi with probability pi = 1
N

4: Select vj ∈ Ni pj|i = 1
|Ni|

5: Generate θi[k] ∼ U(−
√

3σi,
√

3σi) and θj [k] ∼ U(−
√

3σj ,
√

3σj)

6: Set for m ∈ {i, j}

wm(k) =




θm[0] , if k = 0

γkθm[k]− γk−1θm[k − 1] , otherwise
(6.5)

7: Transmit x+i [k] = xi[k] + wi[k] and x+j [k] = xj [k] + wj [k]

8: Update variables using eq. (6.4)

9: end for

6.3 Privacy Analysis

In the privacy analysis section, the motivation is to use mutual information to analyze how much information is leaked

to the system with each release of the obfuscated state variables. The mutual information has been widely used as a

measure of dependency between two random variables. Lower mutual information suggests independence whereas

higher mutual information suggests dependence between the two random variables. Let the adversary be node vi with

the following information output.

Ii[k] = {x+i [k], xi[k], θi(k), wi(k), x+j [k]|j∈Ni} (6.6)

The total information output of the adversary after K iterations is Ii[K] = ∪Kk=0Ii[k]. The adversary knows its

state variables, the noise that it adds at each iteration and the obfuscated state variables that are transmitted in its

neighborhood. By using Ii[K], the semi-honest adversary node vi tries to gain more information about a node’s initial

value that is in its neighborhood.

Let the targeted node be named as node vj ∈ Ni. The mutual information at each transmission of the node vj can

be written as the following.

I(x+j [k];xj [0]|Ii[K])

Using this notations, the claim about the privacy of the initial values can be done.

Claim 2. Given the information output Ii[K] and the topological condition given in eq. (6.1), the adversary will not

have any range to estimate the initial conditions as the noise variance goes to infinity.

Proof. Two cases need to be investigated. First one is the investigation of how much information is leaked into the

system when the targeted node, vj communicates with another node that can be intercepted by the adversary. During
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the initial iteration, the noise is added to the initial value which determines how much information is leaked to the

system about the initial value. Given that the noise variance goes to infinity, the release of the obfuscated state variable

x+j [0] will not have any correlation with the initial state variable, xj [0]. This correlation can be seen by the following

expression.

I(x+j [0];xj [0])

Define α = 1
σ2
j

and the noise added at 0th iteration scaled by α to be w̄j [0] = αθ(0) with unit variance. The mutual

information will be invariant if it is scaled by α.

I(x+j [0];xj [0]) = I(αx+j [0];αxj [0])

As the variance of the noise goes to infinity, the mutual information will go to zero. If

lim
σ2
j→∞

I(αx+j [0];αxj [0]) = lim
α→0

I(αx+j [0];αxj [0])

= I(w̄j [k]; 0) = 0

The second case is the investigation of how much information is leaked when the targeted node communicates with

node, say vm that is outside the neighborhood of the adversary. There must be one node that cannot be heard by the

adversary since otherwise, the adversary will use the following equation to find the initial value.

s[k + 1] = s[k] + x+j [k + 1]− (x+j [k] +
1

2
(x+m[k]− x+j [k])) (6.7)

The s[0] is initialized as s[0] = x+j [0] and x+m[k] represent the obfuscated state variables of all the neighboring nodes

vm ∈ Nj . Given that Nj ⊂ Ni, it can be shown that s[k] approaches to the xj [0] as the iterations go to infinity.

lim
k→∞

s[k] = xj [0] + θ(0) + γθ(1)− θ(0) + γ2θ(2)− γθ(1) + · · ·+ γkθ(k) + γk−1θ(k − 1)

Using 0 < γ < 1 and limk→∞ γk = 0,

lim
k→∞

s[k] = xj [0]

The adversary will not be able to go through the update given at eq. (6.7), given that there is at least one node that

cannot be listened by the adversary. The adversary will not know the value of x+m[k] /∈ Ni. This value will blind the

newly added noise to x+j [k], represented as wj(k) = γkθj(k)− γk−1θj(k − 1).

Let T (1) represent the iteration number where the node vj is going through initialization update with the neigh-

bor, say vm that the adversary cannot listen to, for the first time. At each update with the node vm, new unknown

information is embedded into the system. At T 1th iteration, the noise wj [k] is blinded by the random variable x+m[k].

The next time the node vj communicates vm, a new noise sample will be blinded by the state variable of node vm

at that iteration. The accuracy of estimator reduces at each iteration when vm is contacted and it is only depen-

dent on the earlier iteration at which node vm is contacted. Whenever all the other nodes are contacted, their state

variables can be overheard and they can be treated as constants. The unknown information that prevents the estima-

tor to use eq. (6.7) comes from the updates happening outside the adversary’s neighborhood and it is only depen-

dent on the earlier update. The accumulated unknown information embedded into the system forms a markov chain

xj [0]→ xj [T
(1)]→ xj [T

(2)]→ · · · → xj [T
(∞)]. By using data processing inequality, for any iteration T ′ > T (1) it
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can be said that

I(x+j [T ′];xj [0]|Ii[T′ − 1]) ≤ I(x+j [T (1)];xj [0]|Ii[T(1) − 1]) . (6.8)

To estimate the initial value of node vj , she has to estimate the added noises at each iteration. The information leakage

about the noise that the adversary tries to get at the iteration T (1) − 1 can be written as

I(x+j [T (1)];xj [0]|Ii[T(1) − 1]) = I(x+j [T (1)];wj [T
(1) − 1]|Ii[T(1) − 1])

= I
(
x+j [T (1)];x+j [T (1)]− (x+j [T (1) − 1] +

1

2
(x+m[T (1) − 1]− x+j [T (1) − 1])|Ii[T(1) − 1]

)

= I
(
x+j [T (1)];x+j [T (1)]− (

x+j [T (1) − 1]

2
+
x+m[T (1) − 1]

2
)|Ii[T(1) − 1]

)
.

Since this is a markov chain, the conditional information Ii[T(1) − 1] which is the accumulation of all the transmitted

states of node vj can be reduced to Ii[T (1) − 1] as the latest iteration’s information output is enough to represent all

the earlier iterations. In the contents of Ii[T (1) − 1], only x+j [T (1) − 1] affects the mutual information.

I(x+j [T (1)];xj [0]|Ii[T(1)]) = I
(
x+j [T (1)];x+j [T (1)]− (

x+j [T (1) − 1]

2
+
x+m[T (1) − 1]

2
)|Ii[T(1) − 1

)

= I
(
x+j [T (1)];x+j [T (1)]− (

x+j [T (1) − 1]

2
+
x+m[T (1) − 1]

2
)|x+j [T (1) − 1]

)

Define α = 1
σ2
j

where σ2
j and β = 1

σ2
m

where σ2
j represent the noise variance of the node vj and σ2

m represent the

noise variance of the node vm. Since x+j [T (1) − 1] is given, it can be treated as a constant and it will not change the

mutual information.

I
(
x+j [T (1)];x+j [T (1)]− (

x+j [T (1) − 1]

2
+
x+m[T (1) − 1]

2
)|x+j [T (1) − 1]

)
= I
(
x+j [T (1)];x+j [T (1)]− x+m[T (1) − 1]

2

)

Let w̄j(T ) = α(γT θj(T ) − γT−1θj(T − 1)) which creates a sum of scaled unit variance noise distributions, θj(T ).

Let w̄m(T ) = β(γT θj(T )− γT−1θj(T − 1)) which creates a sum of scaled unit variance noise distributions, θm(T ).

The mutual information is invariant to scaling. Using this property, the mutual information can be rewritten as,

I
(
x+j [T (1)];x+j [T (1)]− x+m[T (1) − 1]

2

)
= I
(
xj [T

(1)] + wj [T
(1)];xj [T

(1)] + wj [T
(1)]− xm[T (1) − 1] + wm[T (1) − 1]

2

)

= I
(
αβ(xj [T

(1)] + wj [T
(1)]);αβ(xj [T

(1)] + wj [T
(1)]−

xm[T (1) − 1] + wm[T (1) − 1]

2
)
)

= I
(
αβ(xj [T

(1)] + wj [T
(1)]);αβ(xj [T

(1)] + wj [T
(1)]−

xm[T (1) − 1] + wm[T (1) − 1]

2
)
)

= I
(
αβxj [T

(1)] + βw̄j [T
(1)]);αβxj [T

(1)] + βw̄j [T
(1)]−

αβxm[T (1) − 1] + αw̄m[T (1) − 1]

2

)

As the noise variances go to infinity, it can be shown that the mutual information given above will go to zero for a
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bounded geometric decay rate between 0 and 1.

lim
σ2
j→∞

σ2
m→∞

I
(
αβxj [T

(1)] + βw̄j [T
(1)];αβxj [T

(1)] + βw̄j [T
(1)]− αβxm[T (1) − 1] + αw̄m[T (1) − 1]

2

)
=

lim
α→0
β→0

I
(
αβxj [T

(1)] + βw̄j [T
(1)];αβxj [T

(1)] + βw̄j [T
(1)]− αβxm[T (1) − 1] + αw̄m[T (1) − 1]

2

)
= I(0; 0)

This mutual information is shown to be smaller than the mutual information in the next iterations as shown in eq. (6.8).

Using the fact that the mutual information between the release of the new obfuscated states and the noise variance at

the earlier state goes to zero with increasing variance, the following can be shown.

0 ≤ I(x+j [T ′];xj [0]|Ii[T′ − 1]) ≤ I(x+j [T (1)];xj [0]|Ii[T(1) − 1]) = 0

The release of the obfuscated state at the T (1)th iteration, will not reveal any information about the noise variance that

is added at T (1)−1st iteration with the information output Ii[T(1)−1]. This noise value is necessary for the adversary

to estimate the initial value of the targeted node vj . It has been shown that the release of the new obfuscated state does

not have any information about the noise variance at the earlier iteration if the noise variances go to infinity. In the first

case, it has been seen that there is no information leakage about the initial state if the noise variances go to infinity.

The first case makes sure that the initial value is blinded enough within the neighborhood of the adversary and second

case makes sure that the adversary can not estimate one of the noise values that would have been used in estimation.

Both cases are satisfied and there is no correlation with the obfuscated state variable at x+j [T (1)]th iteration and the

initial value x+j [0] of node vj . Any iteration afterwards can only reduce the information that can be gained to deduce

the initial value. Since there is no dependency between x+j [T (1)]th iteration and x+j [0], no information can be gained

afterwards.

6.4 Numerical Results

The proposed algorithm reaches to the exact average of the initial values of the nodes of the graph G with more than

2 nodes. For the privacy to be established it needs to be connected according to the topological assumption given in

eq. (6.1). The following graph topology is selected which guarantees that any pair of nodes do not share the same

neighboring nodes.

The convergence properties of the proposed algorithm can be seen in the fig. 6.2. The initial values are selected

to be between the range [1, 20] and the noise variance is selected to be 100. The geometric decay rate γ is selected

to be 0.9 < γ = 0.98 which guarantees the convergence rate not to be driven by the noise variance. The algorithm

converges to the exact mean of the initial values.

The convergence rate of the proposed algorithm for four different variances are plotted in the fig. 6.3. To have less

irregular results, the number of nodes in this analysis is increased from 5 to 20 while keeping the cyclic topology the

same. It can be seen that the convergence rate is the same as the standard randomized gossip approach regardless of

the noise variances. The overall convergence time, however, increases with the increased noise variance due to the
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Figure 6.1: The graph topology

addition of noise components.

An experiment is done to show the effect of increasing variance on mutual information. The initial state values

are sampled from a uniform distribution with unit variance. The noise variance θr which is fixed for all the nodes in

the system is sampled from uniform distribution with the variances of σ2
r = {1, 4, 9, 16, 25, 36, 49, · · · , 400}. The

geometric decay rate is chosen to be 0.9. Node vj is assumed to be the targeted node and node vm is assumed to be the

node that the adversary cannot listen to. It has been assumed that the first iteration that the node vj is going through

is with the node vm. The goal is to show that the following mutual information goes to zero with the increasing noise

variances.

I(x+j [1];x+j [1]− (
x+j [0]

2
+
x+m[0]

2
)|x+j [0])) = I(x+j [1];x+j [1]− x+m[0]

2
)

The topological assumption eq. (6.1) suggests that at each update that is happening with the node vm will improve

the privacy since each update inserts independent noise to the system. The data processing inequality as shown in

section 6.3 suggests that more information cannot be gained by the post-processing. The mutual information goes

to zero with increasing noise variance as shown in fig. 6.4. The iterations afterward will not increase the mutual

information thus, there will be no range to estimate the initial values. It can be seen that with even one update that can

not be heard by the adversary can force mutual information to be arbitrarily small. The other updates will improve the

privacy for a bounded noise variance however, the privacy can already be established with one-shot perturbation.

Lastly, an analysis of the estimator’s performance is done. The initial values are selected from a uniform distri-

bution with unit variance, U [−
√

3,
√

3]. The adversary is defined to be the semi-honest node vi eavesdropping on

the communications of node vj . The information output of the adversary is given in eq. (6.6). Whenever node vj is

communicating with the nodes that can be listened by the node vi, the adversary goes through the update given in

eq. (6.7) to accumulate the noises which cancel out each other as the iterations go to infinity. However, whenever the

node vj communicates the node that is not in the neighborhood of the adversary which can be called as node vm, the

adversary has to guess the noise. The noise is sampled from uniform distributions and it is in the form of

wm(k) =




θj [0] , if k = 0

γkθj [k]− γk−1θj [k − 1] , otherwise .

Since the adversary is assumed to be keeping track of all the communications of node vj , it can be assumed that it
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Figure 6.2: Convergence for 5 node cyclic graph

knows the iterations at which the node is currently at. This will reveal the decay rate γk which can be used to estimate

the noise. The nodes sample their noises, θ[k] from uniform distributions with variance σ2
r . The uniform distribution

has mean 0 and symmetric around 0. In terms of the variance σ2
r , the noise takes values in the range [−

√
3σr,
√

3σr]

with equal probability. If the node vj communicates with node vm that cannot be listened by the adversary at 0th

iteration, the adversary estimates the noise as a random number between [−
√

3σr and
√

3σr]. If the iteration is greater

than 0, it estimates a random number between −γkσr
√

3 and γkσr
√

3 because it is the maximum likelihood of the

noise distribution. The noise distribution for k > 0 is given by the expression γkθj [k] − γk−1θj [k − 1]. In terms of

the noise variance σ2
r , the probability distribution of this expression is given in fig. 6.5. The scaling with γk scales

the variance of the uniform distribution to be γ2kσ2
r . The sum of the two distributions scaled by γk−1 and γk will

result in the distribution given in fig. 6.5. For any k > 0, the adversary guesses a random number in the range

[−γkσr
√

3, γkσr
√

3] with equal probability since noise resides in this range with maximum probability.

There has been N = 104 simulations where the estimator guesses the initial value of node vj . At every talk with

the node vm that cannot be heard by the adversary, the adverserial node vi guesses the noise according to the following

rule.

ŵj [k] =




c ∼ U [−

√
3σr,
√

3σr] , if k = 0

c ∼ U [−γkσr
√

3, γkσr
√

3] , if k > 0 .

To estimate the variance of the adversary estimates, the unbiased estimator with bessel correction [52] is used.

s2 =
1

n− 1

n∑

i=1

(xj [0]− x̂j [0])2
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Figure 6.3: The convergence rate graphs for the noise-obfuscation method and standard randomized gossip. (a),(b

,(c) and (d) represent the noise variances σ2 = {1, 100, 500, 1000} respectively.

where s2 represent the variance of the estimates. The results can be seen in fig. 6.6. There is a linear relationship

between the variance of the estimator guesses and the increasing variance of the noise. The reason is the linearity

of the additive noise. Whenever the node vm that cannot be listened by the adversary is contacted, the estimator’s

performance worsens linearly with respect to the noise variance σ2
r because the obfuscated state variables are blinded

with the additive noise. The variance of the blinded state variables, x+j [k], is the sum of the noise variance and the

state variable. For this reason, the linearity can be observed at the variance of the adversary’s estimate.

To understand the effect of varying decay rate, γ, the same experiment where the adversary estimates the initial

value of the node vj is done. The decay rate, γ takes the values between 0.5 and 0.9. The estimator’s performance

is shown in the fig. 6.7. It can be seen that there is a geometric rate of increase in the estimator variance with the

increasing γ. In the privacy section, it has been proved that for a bounded γ which prevents the convergence to be

unaffected by the noise variance, privacy improves with the increasing noise variance. In addition to this, it is shown

here that the increasing γ, also improves the privacy of the initial values. The reason is that at each iteration with the

node vm that cannot be heard by the adversary, new unknown information is embedded into the system whose variance

depends on the magnitude of the γ. With a high γ, the noise variance that blinds the state variables will be high and

that will cause an improvement in the noise variance.
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Figure 6.6: The variance of the adversary’s estimates for different noise variance
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Figure 6.7: The variance of the adversary’s estimate for different geometric decay rate γ
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Chapter 7

Results and Future Work

There have been three methods proposed to solve the problem of achieving the exact average consensus while preserv-

ing the privacy of the initial values. Each method tackles three main challenges which are also given in the chapter 2.

These are

• The nodes will reach to the average of their initial values, xave =
∑N
j=1 xj [0] through asynchronous updates.

• Each nodes initial value will be hidden from the adversaries throughout the process.

• The convergence time and computational complexity should be reduced compared to cryptographic solutions.

Firstly, an analysis of the proposed algorithms will be done with regards to the three challenges proposed earlier.

Secondly, an overall analysis of the limitations and challenges of the privacy-preserving average consensus task will

be done. Recommendations for future work are provided whenever a possible area of research is observed.

7.1 Analysis of Privacy-Preserving Consensus Averaging via State Decom-

position

The introduction, methodology and numerical examples regarding the privacy-preserving consensus averaging via

state decomposition is given in the chapter 4. The algorithm tackles the consensus averaging problem while giving a

privacy guarantee to the initial values through decomposing the state variable into two states namely, xαi [0] ∈ R and

xβi [0] = 2xi[0]− xαi [0]. Instead of solving the average consensus problem, the algorithm transforms the problem into

a constrained optimization problem with the constraints that xαi = xαj for every node vi 6= vj and xβi = xαi for all

nodes vi ∈ N .

Due to the state decomposition, the number of nodes in the network increases from N to 2N . This causes a

reduction in the convergence rate. However, it is possible to fix the convergence rate to be the same as the standard

randomized gossip approach. As the privacy is already established during the initialization phase and the β state

is disclosed during the consensus phase, the nodes who have finished initialization may merge their α and β states

c© Delft University of Technology



0 1000 2000 3000 4000 5000
Iteration

10−8

10−6

10−4

10−2

100

102

104

M
ea
n 
Sq

ua
re
d 
Er
ro
r

Optimized State Decomposition
Standard Randomized Gossip

Figure 7.1: Convergence rate for standard randomized gossip and the optimized state decomposition approach

according to the following formula, xi[k] = (xαi [k]+xβi [k])/2. Nodes who have finished initialization will merge their

state variables into one and start the consensus phase with the other nodes that also have finished the initialization. This

will improve the convergence rate to be the same as the standard randomized gossip algorithm. A convergence test

is done using a 20 node cyclic graph with x[0] ∈ [1, 20], xαi [0], ai,αβ , aij [0] ∈ [−5, 5] for vi ∈ N, vj ∈ N, vi 6= vj .

It can be seen in fig. 7.1 that the convergence rate can be optimized to be the same as the standard randomized

gossip algorithm if the nodes who have finished initialization fix their new state variable to be (xαi [k] + xβi [k])/2. In

the optimized version, whenever a new node joins the system, its neighboring nodes need to decompose their state

variables into two while keeping the mean of the α and β states to be its state variable at that iteration. The new node

has to go through the initialization update with the neighboring nodes before merging their nodes into one again. This

does not disrupt the scalability of the algorithm and can still preserve the privacy of the initial values.

The xαi [k] state variables are used for communicating with the other nodes while xβi [k] state variables are kept as

a secret. It has been found in the analysis that if one of the coupling weight is hidden from the semi-honest adversary

in the system, the adversary has no range to estimate the initial values with any accuracy as the variances of the

coupling weight go to infinity. It is found, however, if xαi [0] states are sampled from an infinitely large variance

random variable, the variance of the adversary’s estimate increases exponentially. If the assumption which is given

in eq. (4.4) is assumed, this will force also the xαj [k] to be hidden from the adversary. Using the same assumption,

it has been found that the variance of the adversary’s estimates in noise-obfuscation technique increases linearly with
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the noise variance. The reason why state decomposition promises an exponential increase in the adversary’s estimate

is because of the multiplications with the hidden coupling weights aj,αβ [k] and ajm[k]. These are sampled at each

iteration during the initialization and they are independent of the α and β state variables which result in a random

variable whose variance scales exponentially with the increasing variance of the α state variables and the coupling

weights.

The problem is analyzed at a graph G = (V,E) where the number of nodes, N > 2. In addition to this, it has

been assumed that there are no channel encryptions in the system which enables the nodes to capture the transmitted

messages in their neighborhood. This approach has been followed in the works [26][24][25][31] and it has been

followed also in this work. In all of the non-cryptographic methods that preserve the privacy of the initial values

except [24], it has been found that if the adversary listens to all the neighbors of the targeted node, the initial value

of the targeted node will be disclosed. There are several ways of handling this assumption which is discussed in the

section 7.5. In the state decomposition approach, a theoretical proof has been given without providing a way to hide

the initial value from the adversary. It has been shown however the topological assumption eq. (4.4) which is also used

in the noise obfuscation method can be used as a way to hide the one of the coupling weight ajm[k] and the alpha state

xαm[k].

The state decomposition approach provides security against a semi-honest adversary in the system given that one

of the coupling weight between the targeted node and its neighbor is hidden from the adversary. As the variances of

the coupling weight go to infinity, there is no range to estimate the initial value with any guaranteed accuracy. If the

adversary is defined to be an eavesdropper who is tapping all the communication channels in the network, the initial

value of the targeted node will be disclosed. He et. al.[24] provided a way to extend the scope of the privacy to

cover the eavesdropper case without using any encryptions through the inclusion of secret continuous function that is

predefined for each pair of node and different among the different pairs of nodes. These secret continuous functions

are arranged such that the sum of the states never change such that the exact consensus can be achieved. This, however,

disrupts the scalability of the system as each pair of node agrees on a secret function through a secure channel. This

secure channel can be impractical to be created when a new node wants to be included in the system. The new node

has to find a way to agree on a function with its neighboring nodes using a secure channel. Instead, a scalable and

distributed encryption technique[36] is used along with the state decomposition method to extend the scope of the

privacy to cover the eavesdropper case. The hybrid state decomposition approach is designed to use the minimum

number of encryptions to provide privacy against a semi-honest adversary and an eavesdropper.

7.2 Analysis of Privacy-Preserving Average Consensus via Hybrid State De-

composition

The hybrid state decomposition approach lays its foundation on the results given in chapter 4. The update equations

are pretty similar with only differences being the singular inclusion of an encrypted operation for each node and the

number of initialization updates. In the state decomposition approach, the algorithm is designed to incorporate |Ni|
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initialization updates for each node vi ∈ N to make sure that each node communicates with the node that cannot be

heard by the adversary. Although it has been assumed that one of the coupling weight is hidden from the adversary,

there is no assumption on which one it is. This creates the necessity to traverse all the nodes to make sure one

initialization update is done with each neighboring node before starting the consensus phase.

In the hybrid state decomposition’s privacy chapter given in section 5.3, it has been shown that two initialization

updates for each node are enough to achieve privacy. One of these initialization updates is an encrypted update which

achieves IND-CPA security. The other non-encrypted initialization update needs to be done with a different node than

the one before. Since the convergence phase releases the α and β state variables through fixing the coupling weights

and the convergence is a deterministic function of these state variables, two nodes will be able to learn the other one’s

initial value. For this reason, each node is forced to go through two initialization updates where at least one is a

cryptographic update.

The same optimization algorithm for state decomposition which resulted in the plot of fig. 7.1 can also be applied

here. The nodes who have finished initialization will merge their state variables into one and start the consensus

phase with the standard randomized gossip. Using this optimization, the convergence rate will be the same as the

convergence rate of the standard randomized gossip algorithm.

It has been shown that if one of the coupling weight is hidden from the adversary, privacy can be achieved. The

encrypted update CIP explained in section 5.2.1, enables the nodes going through the encrypted initialization update

to learn the scaled differences of each other’s α state variable. The semi-honest adversary or the eavesdropper will not

be able to learn the coupling weight ajm[k] or the α state variables. In addition to this, the nodes also can not learn

the α state variable and the coupling weight that they are sharing. With one CIP update, the coupling weight shown to

be hidden from the adversary for the nodes that are involved in the update.

The CIP update lets the algorithm to be private against an eavesdropper and the semi-honest adversary. In the

literature[24], secret continuous functions have been used to make the algorithm private against the eavesdropper.

The pre-defined functions which couple the nodes disrupt the scalability of the system. Each new node that joins the

network needs to agree on a function using a secure channel or a third party’s involvement. CIP, on the other hand,

is a distributed algorithm which lets the nodes to use homomorphic encryption to make the system private against

an eavesdropper. In graphs where the nodes are designed to be fixed, the nodes can agree on a pre-defined function,

computational power is scarce and there is no possibility to do a pre-processing, the secret continuous functions can be

put to use. On the other hand, if the system needs to be scaled and a fully distributed algorithm wants to be designed

without an assumption on third parties or secure channels, a single CIP operation can be incorporated. For each node,

only one CIP update needs to be done. This can be thought of as a pre-processing step which does not affect the

convergence rate but increases the overall convergence time.

7.3 Analysis of Privacy-Preserving Average Consensus via Noise-Obfuscation

The privacy-preserving noise-obfuscation method achieves privacy through the addition of correlated and decaying

noise. At each iteration, the state variable is blinded by the addition of a scaled new noise sample and the subtraction
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of the earlier iteration’s scaled sample. Since the algorithm is designed to converge as the scaling factor becomes

sufficiently large, a new noise has to be sampled at each iteration.

The privacy against the semi-honest adversary assumes the topological condition given in eq. (6.1) which enables

one of the noise samples to be hidden from the adversary. At each iteration happening with the node that cannot be

listened by the adversary, new unknown information is embedded into the system. During the privacy analysis, it has

been shown that for a bounded γ that makes the convergence to be unaffected by the noise variance, the privacy can be

established in one iteration. As the noise variance goes to infinity, the semi-honest adversary will not have any range

to estimate the initial value with any guaranteed accuracy with one-shot perturbation. If the adversary can listen to all

the communications happening between the target node and its neighbors, the initial value of the targeted node will be

disclosed. For this reason, the algorithm is not private against an eavesdropper.

If the variance of the adversary’s estimates is analyzed, it can be observed that the variance increases linearly with

the increasing noise variance. At each iteration happening with the node that cannot be listened by the adversary,

worsens the performance of the adversary in a linear fashion. The reason is the usage of the additive noise. The new

noise sample that is added at each iteration blinds the state variable using an additive noise. This causes the variance of

the adversary’s estimate affects linearly with respect to the noise variance. The noise decay rate γ, on the other hand,

has an exponential effect on the adversary’s performance. As γ increases, the variance of the adversary’s estimate

increases. The noise decay rate γ scales the variance of the noise to be scaled by γ2. For this reason, there is an

exponential relation with the γ whereas there is a linear relation with the noise variance. The results in the numerical

analysis suggest that for a bounded noise variance, a higher γ will result in a better privacy guarantee.

The work on asynchronous noise-obfuscation techniques [31] suggests that if the noise decay rate γ is chosen

according to the rule given in eq. (6.2), the convergence rate will be independent of the magnitude of the noise variance.

This enables the privacy proof given in section 6.3 to be valid which assumes analyzes the asymptotic properties of the

mutual information as the noise variance goes to infinity. As the convergence can still be achieved when the variance

of the noise goes to infinity, observing the mutual information in this setting does not disrupt the convergence property

of the algorithm.

7.4 Discussion on Privacy

The privacy-preserving average consensus algorithms that reach to the exact average of the initial values require

information of one of the neighboring nodes of the targeted node to be hidden from the adversary[26]. There have been

several methods in the literature proposed to hide this information from the adversary. One approach[26][24][25][31]

assumes that there are no channel encryptions in the network which make all the transmitted messages in the system

susceptible to eavesdropping. In this approach, the information between the node and one its neighbor is designed to

be protected via arranging the radius of communication. The following graph topology which is also presented in the

chapter 4 and chapter 6 is an example of this approach.

Ni ∪ vi 6⊂ Nj ∪ vj
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It is assumed that there is only one semi-honest adversary in the system and it targets one of its neighboring nodes. If

there are k colluding semi-honest adversaries in the system, the topological assumption is arranged such that it covers

all the k semi-honest adversaries.

Ni ∪ vi 6⊂ N1 ∪ v1 ∪ . . . ∪Nk ∪ v1, v2, . . . vk

The circular graph is an example that satisfies this graph topology. The radius of transmission can be arranged such

that there is always one neighboring node in the graph that any pair of nodes do not share.

Another approach is to assume the existence of channel encryptions. In this setup, the nodes are distributed into

honest and semi-honest nodes. The semi-honest nodes are assumed to be colluding which means that they share

information to find out the initial value of the targeted node. Assuming that one of the neighbors of the targeted node

is an honest node who does not collude with the semi-honest nodes, gives a way to hide the information of one of

the targeted node’s neighbors from the adversaries. The adversaries in this case, do not listen to the communications

happening in their neighborhood but share the information that is communicated with them to find out the initial value

of a node. Using this approach, secret sharing schemes such as Shamir’s secret sharing[56] can be used to mask the

initial value.

An eavesdropper with the capability of tapping all the channels violates the solutions presented formerly as the

two approaches. In the first approach, the eavesdropper who can tap all channel simply knows all the information

transmitted in the system thus, the initial value will be disclosed. In the second approach, an eavesdropper can be

considered as a single adversary with the information output of all the other nodes than the targeted node. This can be

considered as a graph with 2 nodes. In a graph with 2 nodes, the exact average will reveal the other one’s initial value.

Both cases are weak against an eavesdropper.

One way of extending the privacy to also cover the eavesdropper case is given by He et. al.[24]. They have

proposed a secret continuous function that each pair of nodes agree before starting the consensus. The nodes release

their first blinded state variable x+i [0] = xi[0] + θi[0] in the same way along with a variable zij ∈ R. The selection of

the noise in the other iterations changes slightly. The noise for the other iterations is given by the following formula.

wi(k) =




γθi[1]− θ̃i[0] , if k = 1

γkθi(k)− γk−1θi(k − 1) , k ≥ 2
(7.1)

where θ̃i[0] = θ[0] − (Fij(zij) − Fji(zji)), Fij represent the secret continuous function between nodes vi and vj .

Since the sum does not change and the secret continuous functions are only known by the nodes vi and vj , security

against an eavesdropper can be satisfied. The privacy of this algorithm has not been investigated and can be considered

as future work. The problem with this approach is the distribution of the secret continuous functions. There is either

a third party involved or a secure channel which can be impractical. A scalable and fully distributed way of agreeing

on a secret function can extend the privacy limitation of the exact privacy-preserving consensus average algorithms.

Intuitively speaking, an adversary will be able to revert the operations that any node goes through if it can capture all

the transmitted messages that it receives and transmits unless there is some randomness in the way these messages are

being used.

The differential privacy approach which lets the nodes reach the inexact average of the initial values, on the other
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hand, can preserve the privacy of the initial values against both the semi-honest adversary and the eavesdropper. In

one approach [23], it has been presented that the nodes will reach to an unbiased estimate of the initial value with

an expression for the accuracy versus privacy trade-off. In systems where the exact average is not a necessity, the

strongest privacy guarantee for non-cryptographic schemes is given by the differential privacy based methods.

7.5 Comparison to the Related Work

The research on solving the privacy-preserving consensus averaging problem mainly focuses on solving the problem

in a synchronous fashion where at each iteration each node communicates with all its neighbors and update their

state variables. Synchronous algorithms require clock synchronization and are sensitive to changes in the network

topology. Instead, asynchronous algorithms do not require clock synchronization, less sensitive to changes to the

network topology and have a reduced execution time per iteration. The research on privacy-preserving asynchronous

algorithms is fairly new and there has been one paper[31] investigating this problem in an asynchronous setting. The

authors investigate the noise-obfuscation technique and analyze the convergence properties of the algorithm without

exploring the provided privacy.

Three methods have been proposed to solve the consensus averaging problem while giving a privacy guarantee to

the initial values. The results are shown in section 7.5 comparing to the results in the literature. All three methods

reach the exact average of the initial values. The differential privacy based methods reach an unbiased estimate of

the average of the initial values. The accuracy of the estimates is traded off with the privacy guaranteed to the initial

values. The differential privacy method promises security against an eavesdropper or a semi-honest adversary without

any assumption on the topology or the number of honest nodes in the system. This lets the differential privacy based

methods to be useful when the security against an eavesdropper is required and cryptographic methods can not be

used. The third parties are costly and can be impractical in certain situations. The proposed approaches and differential

State Decomposition
Hybrid

State Decomposition
Noise Obfuscation[31] Differential Privacy[23] TTP[57]

Accuracy Exact Exact Exact Inexact Inexact

Computational Complexity Linear Exponential Linear Linear Linear

Communication Bandwidth O(1) O(β) O(1) O(1) O(1)

Adversary Model Passive Passive Passive Passive Passive

Assumption for Privacy Ni ∪ vi 6⊂ Nj ∪ vj — Ni ∪ vi 6⊂ Nj ∪ vj — —

Noise Insertion Bounded Bounded Unbounded Unbounded None

Trusted Third Party No Yes

Table 7.1: Table for the comparison of privacy-preserving consensus averaging algorithms

privacy approach do not require the existence of a trusted third party. In the last column of section 7.5, the authors
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use a trusted third party to apply the differential privacy using a cloud-based noise insertion process. Instead of the

nodes in the system blinding their state variable, they send it to the cloud where the noise insertion occurs. The cloud

obfuscates the received state variables according to the differential privacy requirements before sending it to the nodes

to solve the consensus problem. In this case, nodes do not sample a new noise at each iteration which would reduce

the complexity of the execution on nodes’ side.

The convergence rate of the state decomposition and hybrid state decomposition reduces due to the increase in

the number of nodes in the network after the decomposition. However, assuming that the nodes merge their state

variables after the initialization, the convergence rate can be kept the same as the non-privacy preserving version. The

noise-obfuscation technique has the same convergence rate as the standard randomized gossip given that the noise

decay rate satisfies the constraint given in eq. (6.2). The differential privacy based methods[23] has the same or lower

convergence rate compared to the standard version where the bottleneck is the worst-case decay rate of the noise

sequence among the agents. An asynchronous differentially private consensus averaging algorithm which investigates

the bounds on the decay rate such that the convergence rate is not dominated by the decay rate can be investigated.

It can be seen in the section 7.5 that all the methods except the hybrid state decomposition approach have lower

computational complexity and communication bandwidth. The reason is the inclusion of the homomorphic encryption

to the consensus process. The hybrid state decomposition approach, however, has a bounded number of encryption

operations. It can be thought as a preprocessing step which handles the privacy. After the preprocessing step, the

standard algorithms that solve the consensus problem can be used. For this reason, there is a bounded amount of

operations that require high computational complexity and high communication bandwidth.
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Abstract—The average consensus algorithm is used in many
distributed systems such as distributed optimization, sensor
fusion and the control of dynamic systems. Consensus algorithms
converge through an explicit exchange of state variables. In some
cases however, the state variables can be confidential. In this
paper, a privacy-preserving asynchronous distributed average
consensus method is proposed which decomposes the initial
values into two states called the alpha and beta states such
that their sum is twice the initial value. The alpha states are
used to communicate with the other nodes while the beta states
are used internally. Although beta states are not shared, they
are used in the update of the alpha states. Unlike differential
privacy based methods, the proposed algorithm achieves the exact
average consensus while providing privacy to the initial values.
As the variances of coupling weights go to infinity, the semi-
honest adversary does not have any range to estimate the initial
value of node j given that there is at least one coupling weight
hidden from the adversary.

I. INTRODUCTION

Consensus problem in dynamic systems has been a topic
of interest that has found usage in many research areas
allowing multiple agents to reach an agreement through local
information exchange between the agent and its neighbors [1].
Some of these research areas are sensor fusion [2] [3] [4],
control of swarms and flocks [5] [6], alignment problem [7]
and asynchronous consensus [8]. The traditional consensus
algorithms explicitly exchange their state variables to solve
a common function. However, for some consensus problems
such as the multi-rendezvous problem [9] or energy manage-
ment in smart grids [10] the initial states can be confidential.
In the former, the agents might not want to reveal their
initial locations while in the latter, the energy companies
might not want to reveal their individual generation rates.
The challenge to solve the consensus problem while giving
individual nodes a privacy guarantee initiated the new privacy-
preserving distributed optimization research area.

The research directed towards solving the consensus prob-
lem while preserving the privacy of initial values can be
categorized into two approaches: cryptographic [11] [12]
and non-cryptographic methods [13] [14] [15] [16]. Most
of the cryptographic methods use homomorphic encryption
to encrypt the states that are being transferred. Due to the

Some parts of this paper has been presented in the Audio Anal-
ysis Workshop, 2019, Aalborg hosted by Aalborg University.

redundancy and randomness introduced in the ciphertext, the
cryptographic algorithms provide high dimensional security at
the expense of computational complexity. Another technique
is to use garbled circuits [17] to implement the consensus
function using a privacy-preserving manner. Although many
optimization techniques [18] [19] are proposed, the garbled
circuits are also computationally complex and slow compared
to their non-cryptographic counterparts.

In control and real-time dynamic systems where processing
time is limited, or distributed solvers which solve optimization
problems iteratively, cryptographic methods are not suitable
due to the time the encryption and the decryption takes.
To reduce the time and complexity, privacy-preserving non-
cryptographic consensus methods are proposed. The methods
to solve this problem can be categorized into three parts:
differential privacy [13] [20], noise-obfuscation [14] [16]
and transformation methods [15]. Differential privacy based
approaches trade accuracy for privacy. The nodes add noise
to the transmitted states and provide a differential privacy
guarantee as defined in [21] or in [22] for continuous data
observations. However, as proven by [13] differential privacy
and exact consensus cannot be achieved simultaneously. The
noise-obfuscation methods on the other hand, add correlated
noise to the transmitted states. As the added noise is zero-sum
and decaying in magnitude, the exact average can be achieved.
The privacy is analyzed by examining the covariance matrix of
the maximum likelihood estimate [16] and extended to (ε, δ)
privacy [14] where ε and δ represent the range and estimation
confidence respectively. In this paper, we will show that the
state decomposition method of [15] acts like a transformation
method where the individual states are transformed into an-
other domain via additive noise. In this case, privacy is defined
to be the lack of any guaranteed estimation accuracy of the
initial values which is also followed here.

Some networks are constrained by few characteristics which
prevent an application of a synchronous algorithm. The net-
work might lack a centralized entity which processes all the
information and synchronizes the time, the power resources
and compute power may be limited or the network topology
can be varying. For this reason, asynchronous distributed opti-
mization techniques such as gossip algorithms [23] and convex
optimization based algorithms [24] [25] were proposed. To
the best of our knowledge only [26] examines the privacy
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of initial values in a randomized gossip setting using noise-
obfuscation techniques. The authors analyze the convergence
conditions and rate of convergence without quantifying the
provided privacy.

In this paper, we introduce an asynchronous privacy-
preserving randomized gossip algorithm via the state decom-
position technique proposed by [15]. Information-theoretic
privacy analysis is done which shows that as the variances
of the coupling weights go to infinity, there is no range
to estimate the initial values with any guaranteed accuracy.
This guarantee is given with the assumption that there is at
least one node that the adversaries cannot listen to in the
neighborhood of the target node. This assumption is based on
the results found by [14] [16] and it is also followed in this
paper. The proposed approach does not need any centralized
entity or a trusted third party. Due to its asynchronous nature,
computational power and energy are distributed and it is
more robust to changes in the network topology. It has been
assumed that there are no channel encryptions which makes
the system suitable for wireless sensor networks where the
channel encryption is costly and computationally complex.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Average Consensus

The undirected graph G is represented as G = (V,E)
with nodes being represented as V = {v1, v2, ..., vN} and
the edge set as E ⊂ V × V . The ith component of the
vector x[k] = [x1[k], x2[k], ..., xN [k]] represent the state of
node i at the iteration k. The set of neighbors of node i is
Ni = {vj ∈ V : (vi, vj) ∈ E} and its cardinality is shown
as |Ni|. The goal is to compute xave =

∑N
j=1 xj [0] using an

asynchronous algorithm while hiding the initial states. The
privacy is analyzed against attacks by a passive adversary
and an eavesdropper. Throughout the paper the following
assumption holds.

Assumption 1: The graph is connected, undirected and there
are no channel encryptions in the network.

One way to solve the average consensus in an asynchronous
fashion is the randomized gossip algorithm [23] with the
iteration

xi[k + 1] = xi[k] +
1

2
(xj [k]− xi[k]). (1)

Under Assumption 1, it is proven that the state variables
converge to xave =

∑N
j=1 xj [0] in finite time.

B. Adverserial Model

Semi-honest adversary or passive adversary is defined to be
a node in the network who follows the protocol steps correctly
but tries to gain more information by collecting the data they
receive. The information that semi-honest adversary knows is
its own internal state variables and the broadcasted messages
within its neighborhood.

An eavesdropper is defined to be an adversary who is able
to tap all communication channels. The eavesdropper knows
all the shared data however it does not know the internal state
variables that are not shared in the system.

III. ASYNCHRONOUS STATE DECOMPOSITION APPROACH

Each node decomposes its state value, say xi[0] ∈ R into
two substates xαi [0] ∈ R and xβi [0] = 2xi[0]− xαi [0] resulting
in an increase in the number of nodes from N to 2N . xα[k]
is used in the interaction with the other nodes, while xβ [k] is
used as an internal update. Although xβ [k] is never shared, it is
used in the evaluation of xα[k]. Using the state decomposition
approach [15], the randomized gossip update (1) becomes

xαi [k + 1] = xαi [k] +
1

3
(xαj [k]− xαi [k])

+
1

3
(xβi [k]− xαi [k]) ,

xβi [k + 1] = xβi [k] +
1

3
(xαi [k]− xβi [k])

(2)

subject to xαi [0] + xβi [0] = 2xi[0].
Forcing the update weights to be between (0, 1) limits the

privacy that can be provided. For this reason, two phases are
introduced: the initialization phase and the consensus phase. In
the initialization phase, the update weights are selected from
the set of all real numbers with the condition that the sum of all
state variables never changes. Selecting the coupling weights
from the set of all real numbers introduce randomness to the
system that will provide the privacy of the initial values. The
convergence rate does not get affected but the initial errors get
bigger. As the sum of the state variables does not change, the
exact consensus can still be achieved.

At consensus phase the update equations are the same as (2).
As privacy is already established in the initialization phase, the
motivation is to let nodes reach to the average of their state
values in finite time. When vi goes through the initialization
update once with all its neighbors, it proceeds to the consensus
phase.

A. Initialization Phase

During the initialization phase, the coupling weights are
selected from the set of all real numbers. The update equations
become

xαi [k + 1] = xαi [k] + aij [k](xαj [k]− xαi [k])

+ ai,αβ [k](xβi [k]− xαi [k]) ,

xβi [k + 1] = xβi [k] + ai,αβ [k](xαi [k]− xβi [k])

(3)

where ai,αβ [k] ∈ R and aij [k] ∈ R. The node vi that will
update its state variable is selected with equal probability
pi = 1/N . The node vi selects a neighboring node vj with
probability pj|i = 1

|Ni\Si| where Ni is the set of neighbors of
vi, Si is the set of neighbors of vi that it has gone through
initialization update and \ is the set difference operator. The
selected nodes update their alpha and beta states using (3)
at iteration k while all the other nodes keep their states the
same. The initialization phase of vi ends only when it has gone
through the update (3) once with all vj ∈ Ni. If there are no
neighbors left to go through the initialization, vi selects from
the set of neighbors that also finished initialization to start the
consensus phase.



Remark 1: The coupling weights are symmetric at each
iteration, i.e. aij [k] = aji[k]. To achieve this equality, vi picks
ai→j ∈ R randomly and sends it to vj . The multiplication
aij = ai→jaj→i is the shared coupling weight that will be
used by vi and vj .

B. Consensus Phase
During the consensus phase, the nodes update their state

variables to reach to the average of their initial values. The
node vi is selected with equal probability pi = 1/N . If vi has
gone through the initialization update with all its neighbors
once, it selects a neighboring node vj with equal probability
pj|i = 1

|Fi| where Fi is defined to be the set of neighbors of
vi that have finished initialization. Given that Fi is not empty,
nodes vi and vj go through the consensus update defined in
(2). If there is no neighbor that has finished initialization, the
update is skipped.

Remark 2: Initialization is finished when a node updates its
state value using (3) once with all its neighbors. This is done
to make sure that the node that the adversary cannot listen to
is communicated.

Remark 3: The coupling weights are fixed to 1/3 which
means that after the initialization, the beta state values will
be disclosed. However as shown in Section IV, privacy has
already been established during the initialization phase.

Theorem 1: Under Algorithm 1 and Assumption 1, the
proposed algorithm converges to the exact average of the initial
values.
Proof. Since the coupling weights are symmetric, the sum of
the network does not change at each iteration. It can be shown
that for each update during initialization

1

2N

N∑

j=1

(xαj [k] + xβj [k]) =
1

2N

N∑

j=1

(xαj [k + 1] + xβj [k + 1]).

After the initialization, the convergence analysis is based on
[27] and [15]. Four requirements are given in [27] for the exact
consensus to be achieved. These properties are shown to hold
as follows.

1) Weight Rule: There exists a scalar η with 0 < η < 1
such that for every iteration after the initialization, all
nonzero aij [k] satisfy η ≤ aij [k] < 1 and all nonzero
ai,αβ [k] satisfy η ≤ ai,αβ [k] < 1. In fact, both aij [k]
and ai,αβ [k] are fixed to 1/3 which is between (0, 1).
The rest of the coupling weights are set to zero.

2) Doubly Stochasticity: For every update, three out of all
the coupling weights are 1/3 where the rest is zero.
Since all the coupling weights are also symmetric, the
sum is preserved and (1,1) is an eigenpair of the weight
matrix.

3) Connectivity: The graph is connected before state de-
composition because of the Assumption 1. State de-
composition creates a connected graph since each node
decomposes itself into two substates which are also
connected. Thus, the graph is connected.

4) Bounded Intercommunication Interval: If Algorithm 1 is
followed, the nodes go through the initialization unless

they have completed initialization with all its neighbors.
As the selection of nodes are with equal probability and
they select neighbor nodes that they haven’t connected,
it is expected that all nodes will finish initialization in
finite iterations. During the consensus phase, the nodes
go through the update with the neighbors that they know
who has finished initialization. Since the selection of
nodes is at random, in a bounded time B, each node is
expected to be contacted at least once.

As four of the requirements hold, all substates will converge
to the mean 1

2N

∑N
j=1(xαj [k] + xβj [k]) which is equivalent to

1
N

∑
j=1 xj [0] due to the initial constraint xαi [0] + xβi [0] =

2xi[0].

lim
k→∞

xαi [k] = lim
k→∞

xβi [k] =
1

N

∑

j=1

xj [0]

Algorithm 1 Asynchronous State Decomposition Consen-
sus

Let Si to define the set of neighbors that vi has selected
before.
Let Fi be the set of neighbors of vi that have finished
initialization.

1: The initial values are decomposed into x[0] ∈ R and
xβ [0] = 2x[0]− xα[0]

2: for k=1,...,K do
3: Select vi with probability pi = 1

N
4: if Si 6= Ni then
5: Select vj ∈ Ni \Si with pj|i = 1

|Ni\Si|
6: Add vj to Si
7: Select ai→j ∈ R and broadcast xαi [k], ai→j

8: Calculate aij = ai→jaj→i

9: Select ai,αβ ∈ R
10: Update using (3)
11: Broadcast if Si = Ni
12: else if Fi 6= ∅ then
13: Select vj ∈ Fi with probability pj|i = 1

|Fi|
14: Broadcast xαi [k]
15: Update using (2)
16: else
17: Skip the iteration
18: end if
19: end for

IV. PRIVACY ANALYSIS

Following the convention in [15], the privacy is defined as
the following.

Definition 1: The privacy of the initial value xi[0] is
preserved if an adversary cannot estimate the value of xi[0]
with any guaranteed accuracy.

A. Privacy Against Semi-Honest Adversary

The privacy breach is explained by [16] which shows that if
all the neighbors of vi can be listened by the passive adversary,
the privacy cannot be established. The following topological



assumption is made to prove privacy however, it is shown that
it only needs to hold during the initialization phase.

Assumption 2: For all vi 6= vj , there is at least one neighbor
of vi that is not the neighbor of vj .

Ni ∪ vi 6⊂ Nj ∪ vj
Theorem 2: Under Algorithm 1, Assumptions 1 and 2, the

privacy as defined in Definition 1 will be achieved asymptot-
ically as the variances of coupling weights go to infinity.
Proof. Let xi[0] be the initial value that the adversary tries
to estimate. The initial value can be found using the relation
2xi[0] = xαi [0] + xβi [0]. Since xαi [0] is released and known
by the adversary, estimating xi[0] is the same as estimating
xβi [0]. There are two cases which defines the privacy of the
initial value. First one is the updates happening within the
neighborhood of the adversary and the second one is the
update happening outside the neighborhood of the adversary.

If the selected nodes are inside the neighborhood of the
adversary, xαi [k], xαj [k] and aij [k] will be known by the
adversary and can be treated as a constant. The information
leakage for this case can be defined as the following.

I(xαi [k + 1];xβi [k]|xαi [k], aij [k], xαj [k])

Using (3), the conditional mutual information becomes

I(ai,αβ [k](xβi [k]− xαi [k]);xβi [k]|xαi [k]) .

There should be no information leakage regarding the xβi [k]
during this case since xβi [k] is directly related to xi[0] due to
the initial constraint. To establish the privacy, the following
should be shown.

lim
σ2
ai,αβ [k]

→∞
I(ai,αβ [k](xβi [k]− xαi [k]);xβi [k]|xαi [k]) = 0 (4)

The second case is when vi contacts vm that cannot
be listened by the adversary. Let s[k] denote the sum∑T
k=1 ai,αβ [k](xβi [k]− xαi [k]) that can be obtained by

s[k + 1] = s[k] + xαi [k + 1]− aij [k](xαj [k]− xαi [k]) (5)

where s[0] = xαi [0] and T is the iteration that vi has finished
the initialization phase. The initial value can be found by the
following relation

x̂i[0] =
1

2
(s[T ] + xβi [T ]) (6)

as the first consensus update after the initialization discloses
xβi [T ], due to the fixed coupling weights. The adversary cannot
go through the update (5) in this case, since only xαi [k] is
known. The Assumption 2 lets ai,αβ [k](xβi [k]− xαi [k]) to be
blinded by aij [k](xαj [k] − xαi [k]) at least once. For this case
the information leakage can be defined as the following.

I(xαi [k + 1]; ai,αβ [k](xβi [k]− xαi [k])|xαi [k])

Using (3), the conditional mutual information becomes

I(ai,αβ [k](xβi [k]− xαi [k]) + aij [k](xαj [k]− xαi [k]);

ai,αβ [k](xβi [k]− xαi [k])|xαi [k]).

For the privacy to be established, the following should be
shown.

lim
σ2
aij [k]

→∞
σ2
ai,αβ [k]→∞

I(ai,αβ [k](xβi [k]−xαi [k])+aij [k](xαj [k]−xαi [k]);

ai,αβ [k](xβi [k]− xαi [k])|xαi [k]) (7)

If (4) and (7) is shown to hold, there will be no information
leakage in the system. The mutual information I(xαi [T ];xi[0])
will be zero since there will be no dependence between the
alpha states and the initial value.

For the simplicity of notation let Wαβ de-
note ai,αβ [k](xβi [k]−xαi [k]) and let Wij denote
aij [k](xαj [k] − xαi [k]). The iteration number [k] is omitted
in the equations and only written to explicitly state the next
iteration or the iteration 0.

First, it will be shown that for a fixed bounded vari-
ance xαi [0], the conditional mutual information I(xαi [k +
1]);xβi [k]|xαi [k]) goes to zero as the variance of ai,αβ [k]
goes to infinity. Let xαi [0] be a continuous random variable
with σ2

xαi [0]
< ∞. Define γ = 1

σ2
ai,αβ [k]

and W̄αβ =

γai,αβ [k](xβi [k]−xαi [k]). The conditional mutual information
can be written as the following.

I(xαi [k + 1];xβi |xαi , aij , xαj ) = I(Wαβ ;xβi |xαi )

The mutual information is invariant to scaling.

I(γWαβ ; γxβi |γxαi ) = I(W̄αβ ; γxβi |γxαi )

As the variance of ai,αβ [k] goes to infinity, the conditional
mutual information will go to zero.

lim
σ2
ai,αβ

→∞
I(W̄αβ ; γxβi |γxαi ) = lim

γ→0
I(W̄αβ ; γxβi |γxαi )

= I(W̄αβ ; 0) = 0

The second case is the update happening outside the neigh-
borhood of the adversary. Define β = 1

σ2
aij [k]

and W̄ij =

βaij [k](xβi [k] − xαi [k]). Mutual information is invariant to
scaling.

I(xαi [k + 1];Wαβ |xαi ) = I(γβxαi [k + 1]; γβWαβ |γβxαi )

= I(βW̄αβ + γW̄ij ;βW̄αβ |γβxαi )

When the variances of both coupling weights go to infinity,
the conditional mutual information will go to zero.

lim
σ2
aij

→∞
σ2
ai,αβ

→∞

I(βW̄αβ + γW̄ij ;βW̄αβ |γβxαi ) =

lim
γ→0
β→0

I(βW̄αβ + γW̄ij ;βW̄αβ |γβxαi ) = I(0; 0) = 0

Let T be the iteration at which the initialization has ended.
xα[T ] represents the vector of alpha values obtained starting
from x[0]. During the consensus phase let W k denote the
information obtained at each iteration to deduce x[0] with k =
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Fig. 1: Network Topology.

{1, 2, ...K} where K is the total iteration number. The final
mutual information can be represented as I(x[0];W k). Fixing
the update weights enables to find a function F k(xα[T ]) =
W k that will take the xα[T ] as input and will create the
output W k. The random variables will create a Markov chain
x[0] → xα[T ] → W k for k = {1, 2, ...K}. Thus data
processing inequality suggests that

I(x[0];xα[T ]) ≥ I(x[0];W k) , k = 1, ...,K.

I(x[0];xα[T ]) is shown to be going to zero earlier. Any clever
manipulation of data cannot increase the mutual information.
Thus, given that there is at least one neighbor of node i that
is not in the neighborhood of the adversary, the semi-honest
adversary cannot estimate the initial value of node i with any
guaranteed accuracy. In fact, the only requirement is that one
of the coupling weight aij [k] is hidden from the adversary
during the initialization phase.

B. Privacy Against Eavesdropper

The eavesdropper is defined to be an adversary who
taps all the communications in the channel. Following the
results of [16], the eavesdropper will be able to deduce
the initial value of vi exactly. The eavesdropper will get∑T
k=1 ai,αβ [k](xβi [k]− xαi [k]) via the update (5) and find the

initial value using (6).
Remark 4: It has been shown at Section IV that if one of

the aij [k] is hidden during the initialization phase, the privacy
can be achieved. This can be done using a one-time encryption
during the initialization process. An asynchronous algorithm
that would provide protection against eavesdropper with the
minimum amount of encryption is left for future work.

V. EXPERIMENTS

To demonstrate the performance of the proposed approach,
5 node cyclic graph as shown in Fig 1 is selected. The semi-
honest adversary won’t be able to deduce the initial values
exactly however, the privacy as defined in Definition 1 will not
hold as the variances of coupling weights are bounded. The
xα[0] and the coupling weights ai,αβ [k], aij [k] are selected
from [−5, 5] while the initial values are selected from [0, 20]
randomly. Fig 2 shows the final estimate of v2 guessing the
initial value of v1. The adversary goes through the update of
(5) while assigning 0 to a1,αβ(xβ1 [k]−xα1 [k]) when v1 contacts
v0.
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Fig. 2: Passive adversary estimation performance plot. The flat
lines represent the convergence process. The horizontal dashed
line represent the initial value of v1 which the adversary tries
to estimate.

Remark 5: The least amount of privacy is guaranteed when
the first initialization update is between the target node and its
neighbor that cannot be listened by the adversary. The variance
of alpha state values increase as the iterations continue result-
ing in an increase in the variance of aij [k](xαj [k] − xαi [k]).
Although no formal definition of privacy is given, it is ex-
pected that the estimates will be worse if the node that cannot
be listened is contacted later in the initialization.

As seen in Fig 3, the convergence rate of the proposed
approach is lower than the standard randomized gossip without
privacy-preserving attribute because of the increase in the
number of nodes due to the state decomposition. Given that
each node merges their state variables into one by xi[k] =
(xαi [k] + xβi [k])/2, the same convergence rate to the standard
randomized gossip can be obtained. Differential privacy and
noise-obfuscation methods promise the same convergence rate
with an offset due to the initial errors introduced to the system.

The proposed approach promises convergence to the exact
average, unlike differential privacy based methods. In addition
to this, the privacy is guaranteed given that one of the
coupling weight aij [k] is hidden from the adversary during
the initialization process. Unlike the noise-obfuscation based
methods, the Assumption 2 needs to hold only during the
initialization phase.

VI. CONCLUSIONS

In this paper, an asynchronous privacy-preserving average
consensus algorithm is proposed using the state decomposition
approach. An information theoretic privacy analysis is done
which promises to preserve the privacy of initial values given
that there is at least one coupling weight hidden from the
adversary. The proposed approach converges to the exact av-
erage however, the convergence rate drops due to the increase
in the number of nodes. Future research includes relaxing
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Fig. 3: Convergence rate plot for the proposed approach and
the standard randomized gossip.

the topological assumption and providing a privacy-preserving
scheme robust against eavesdropping attacks.
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