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Summary

Bridges and viaducts in the Dutch Highway network have been used more intensively
by traffic in recent decades. As a result, the current traffic loads are higher than those
taken into account during the design. This is an important reason for Rijkswaterstaat
(RWS) to assess the structural safety of its older bridges and viaducts. Some of these
older structures contain prestressed girders with an I-shape and with a low amount of
shear reinforcement. For these bridges it frequently turns out that it is not possible to
demonstrate sufficient structural safety. Particularly in the regions close to the supports
where the shear forces are high, the shear resistance often appears to be insufficient
according to the current guidelines. These are also the regions where no flexural cracks
occur because prestressing is present and the moment caused by the load is low. When
no flexural cracks are present, these regions can be assessed in two ways: (i) by assum-
ing failure when a diagonal tension crack develops in the web (diagonal tension
cracking), or (ii) by determining the resistance after a diagonal tension crack forms,
taking into account the contribution of the stirrups, aggregate interlock and the shear
transfer by the uncracked flanges. Depending on the amount of shear reinforcement and
the level of prestressing, the highest and thus the governing shear resistance will be
found from one of these two assessments.

According to the current guidelines for the structural assessment of bridges, the re-
sistance to diagonal tension cracking is determined by equating the maximum principal
tensile stress in the web and the axial tensile strength of the concrete. Two comments
can be made regarding this approach: (i) the determination of the maximum principal
tension stress is less accurate due to the use of a number of simplifications (ii) the actual
tensile strength will be affected by the presence of principal compressive stresses (“bi-
axial behaviour”) and a ‘statistical size effect’. The latter refers to the phenomenon that
if the area with high tensile stresses increases, also the probability of encountering a spot
with a lower tensile strength increases. The first part of the research therefore focuses
on the question how these aspects affect the accuracy of the predicted resistance.

In order to investigate diagonal tension cracking, a database has been compiled with
relevant experiments from literature. For experiments without flexural cracks, the prin-
cipal tensile stresses were determined by using linear elastic finite element analyses. It
is investigated how accurately the numerically found maximum principal tensile stress
can be approximated analytically and how this accuracy is affected by using common
simplifications. Furthermore, it was investigated whether the experimentally found re-
sistance to diagonal tension cracking could be predicted more accurately when the
biaxial behaviour and the statistical size effect are considered. For this part of the re-
search only experiments without flexural cracks are considered, to exclude a potential



influence of the flexural cracks at the edge of the region without flexural cracks on the
assumed linear elastic stress distribution in this region. Furthermore, it is investigated
whether it is also possible to accurately predict the resistance to diagonal tension crack-
ing for experiments with flexural cracks, when the principal tensile stresses are
determined by a linear elastic calculation and it is assumed that these are not affected by
flexural cracks in the vicinity. Based on the gathered insights, analytical models have
been proposed that make it possible to accurately determine the resistance to diagonal
tension cracking: ‘model A1’ for girders without flexural cracks and ‘model A2’ for gird-
ers with flexural cracks.

From the linear-elastic finite element analyses of experiments without flexural cracks,
it was found that diagonal tension cracking occurs at a maximum principal tensile stress
lower than the axial tensile strength. Considering the biaxial behaviour or the statistical
size effect separately did not result in more consistent predictions. However, when both
phenomena are combined, it was found that the resistance to diagonal tension cracking
can be predicted very accurately. Another important finding is that the principal tensile
stresses in the regions without flexural cracks are lower, and less accurately to predict,
when flexural cracks are present at the edge of this region. Nevertheless, it has been
demonstrated that for both girders with and without flexural cracks, the resistance to
diagonal tension cracking can be accurately determined using the proposed analytical
models. For girders with flexural cracks at the edge of the regions without flexural
cracks, the overestimation of the maximum principal tensile stress is compensated by
assuming a higher tensile strength of the web. Eventually, design values have been de-
rived for both model Al and model A2, that correspond to an assumed failure
probability. By taking the most conservative value of both models, it is possible to use
only one model for the design value, referred to as model A. Model A can be used in
practice by engineers regardless of the presence of flexural cracks.

When a sufficient amount of shear reinforcement is present, the resistance after diagonal
tension cracking will be higher than the resistance to diagonal tension cracking. The
theoretical models for girders with stirrups, as used in current design and assessment
guidelines, are not intended for regions without flexural cracks. Hence, these models do
not take into account (i) the low longitudinal strain, which increases the contribution of
the aggregate interlock, and (ii) the shear stress transferred by the uncracked flanges.
The second part of the research therefore focuses on the question how the shear force is
transferred in these regions and what parameters and conditions affect this shear transfer.

The variable angle truss model, as used in the Eurocode, was found to significantly un-
derestimate the shear resistance of prestressed girders in regions without flexural cracks,
especially when a low amount of shear reinforcement is present. That is why, as part of
this research, an analytical model has been developed to determine this resistance more



accurately, referred to as ‘model B1°. This model is based on the Modified Compression
Field Theory (MCEFT). This theory is also suitable to determine the shear resistance for
lower amounts of transverse reinforcement. Moreover, the MCFT is able to account for
the low longitudinal strain that is typical for regions without flexural cracks. As the first
step in the development of the model, the maximum shear stress at mid-depth of the
girder height is investigated. This is done specifically for regions without flexural cracks
by assuming zero longitudinal strain. For a series of parameters, representative for ex-
isting bridges and viaducts, the maximum shear stress has been determined with the
MCEFT. Subsequently, the shear stress distribution along the diagonal tension crack was
investigated by using a non-linear sectional analyses programme based on the MCFT.
This programme was subsequently also used to investigate the distribution of the shear
stresses in the uncracked flanges. Eventually, model B1 was derived which includes all
parameters that significantly affect the shear resistance. In order to evaluate the accuracy
of model B1, a database has been compiled with relevant experiments from literature.

The results of the parameter study using the MCFT show that for regions without flex-
ural cracks, the shear resistance in the web is maximum (i) when the aggregate interlock
in the crack starts to decrease due to the opening of the crack or (ii) when the concrete
is about to crush. The maximum shear resistance found from the more complex MCFT
calculations are approximated with simple equations that will be part of the proposed
analytical model. These simple equations result in almost the same predicted resistance
as found from the MCFT. The maximum shear stress at mid-depth of the girder height,
appears to be representative for the resistance along the diagonal tension crack. In addi-
tion, when the web fails, a part of the shear force will be transferred by the uncracked
flanges. In the proposed model, the total resistance is determined by multiplying the
resistance at mid-depth of the girder height by the mean girder width and the effective
shear depth. For the effective shear depth a simple equation has been derived. This equa-
tion results in almost the same ratios between the maximum shear stress at mid-depth
and the total shear resistance as those found with the advanced sectional programme
based on the MCFT. Eventually, the experimentally found resistances were compared to
the resistance predicted with model B1 for the relevant experiments of the database
which demonstrates that the proposed model can determine the shear resistance consist-
ently. A design value has also been derived for model B1, that corresponds to an assumed
failure probability.

The resistance in model B1 consists of contributions of aggregate interlock and stirrups.
It is also possible to arithmetically ascribe this resistance entirely to the stirrups. Alt-
hough this way of formulating does not correspond to physical behaviour, the
formulation is nevertheless attractive because it is also applied in the currently used
variable angle truss model. This model is derived in this dissertation as alternative for



model B1 and is referred to as ‘the variable angle truss model modified for regions with-
out flexural cracks’ or simply ‘model B2’.

The main result of the research is that analytical models have become available that are
able to accurately predict the shear resistance in regions without flexural cracks. Using
these models, it is possible to make substantiated decisions about whether to maintain,
strengthen or replace prestressed bridges and viaducts. Another important result is that
the models are less conservative than the models currently in use. For approximately 75
prestressed bridges in the Dutch Highway network, it is not possible to demonstrate
sufficient shear resistance in the regions without flexural cracks when the current models
are used. However, when the models are used as proposed in this dissertation, it will be
possible to demonstrate sufficient shear resistance for approximately 65 of these 75
bridges.



Samenvatting

Bruggen en viaducten in het Nederlandse hoofdwegennet worden de afgelopen decennia
steeds intensiever door het verkeer gebruikt. Hierdoor is de huidige verkeersbelasting
hoger dan die waarmee tijdens het ontwerp rekening is gehouden. Dit is voor Rijkswa-
terstaat (RWS) een belangrijke aanleiding om de constructieve veiligheid van zijn
oudere bruggen en viaducten te beoordelen. Een deel van deze oudere kunstwerken be-
staat uit voorgespannen I-vormige liggers met weinig beugelwapening. Voor deze
kunstwerken blijkt het regelmatig niet mogelijk te zijn om aan te tonen dat de construc-
tieve veiligheid voldoende is. Met name in de gebieden nabij de opleggingen, waar de
optredende dwarskrachten hoog zijn, blijkt de dwarskrachtcapaciteit volgens de huidige
richtlijnen vaak onvoldoende. Dit zijn eveneens de gebieden waar geen buigscheuren
ontstaan omdat voorspanning aanwezig is en het optredende moment uit de belasting
laag is. Wanneer geen buigscheuren aanwezig zijn, kunnen deze gebieden op twee ma-
nieren worden beoordeeld: (i) door uit te gaan van bezwijken wanneer in het lijf een
afschuiftrekscheur ontstaat (afschuiftrekbreuk), of (i) door de weerstand te bepalen na
het ontstaan van een afschuiftrekscheur, waarbij rekening wordt gehouden met de bij-
drage van de beugels, scheurwrijving en dwarskrachtoverdracht door de niet-gescheurde
flenzen. Athankelijk van de hoeveelheid beugels en de voorspangraad zal uit één van
beide beoordelingen de hoogste en dus maatgevende dwarskrachtweerstand volgen.

In de vigerende richtlijnen voor het beoordelen van kunstwerken wordt de weerstand
tegen afschuiftrekbreuk bepaald door de maximale hoofdtrekspanning in het lijf gelijk
te stellen aan de axiale treksterkte van het beton. Ten aanzien van deze aanpak zijn een
tweetal kanttekeningen te maken: (i) de bepaling van de maximale hoofdtrekspanning
gebeurt minder nauwkeurig door het gebruik van een aantal vereenvoudigingen en (ii)
de aanwezige treksterkte zal worden beinvloed door hoofddrukspanningen die aanwezig
zijn (‘twee-assig gedrag’) en door een ‘statistisch afmetingeneffect’. Met dit laatste
wordt het fenomeen bedoeld dat de kans op het aantreffen van een plek met een lagere
treksterkte groter is naarmate het gebied met hoge trekspanningen groter is. Het eerste
deel van het onderzoek richt zich daarom op de vraag hoe deze aspecten de nauwkeu-
righeid van de voorspelde weerstand beinvloeden.

Om het ontstaan van afschuiftrekscheuren te kunnen onderzoeken is een database sa-
mengesteld met relevante experimenten uit de literatuur. Voor experimenten zonder
buigscheuren zijn de hoofdtrekspanningen bepaald met lineair-elastische eindige-ele-
mentenanalyses. Onderzocht is hoe nauwkeurig de numeriek gevonden maximale
hoofdtrekspanning analytisch te benaderen is en hoe deze nauwkeurigheid wordt bein-
vloed wanneer gangbare vereenvoudigingen worden gebruikt. Verder is onderzocht of



de experimenteel gevonden weerstand tegen afschuiftrekbreuk nauwkeuriger te voor-
spellen is wanneer het bi-axiale gedrag en het statistische afmetingeneffect worden
beschouwd. Voor dit deel van het onderzoek zijn alleen de experimenten zonder buig-
scheuren beschouwd. Hierdoor wordt een mogelijke invloed van de buigscheuren aan
de rand van het gebied zonder buigscheuren op de aangenomen lineair elastische span-
ningsverdeling in dit gebied uitgesloten. Bovendien is onderzocht of het ook voor de
experimenten met buigscheuren mogelijk is om de weerstand tegen afschuiftrekscheu-
ren nauwkeurig te voorspellen wanneer de hoofdtrekspanningen worden bepaald met
een lineair elastisch berekening en wordt aangenomen dat deze niet worden beinvloed
door de nabijheid van buigscheuren. Op basis van de opgedane inzichten zijn analytisch
modellen voorgesteld die het mogelijk maken om de weerstand tegen het ontstaan van
afschuiftrekscheuren nauwkeurig te bepalen: model Al voor liggers zonder buigscheu-
ren en model A2 voor liggers met buigscheuren.

Uit de lineair-elastische eindige-elementenanalyses van experimenten zonder buig-
scheuren volgt dat afschuiftrekscheuren ontstaan bij een maximale hoofdtrekspanning
die lager is dan de axiale treksterkte. Het beschouwen van de bi-axiale treksterkte of het
statistische afmetingeneffect afzonderlijk resulteert niet in consistentere voorspellingen.
Wanneer beide fenomenen worden gecombineerd kan de weerstand tegen afschuiftrek-
breuk echter zeer nauwkeurig worden voorspeld. Een andere belangrijke bevinding is
dat de hoofdtrekspanningen in de gebieden zonder buigscheuren lager zijn, en minder
nauwkeurig te voorspellen, wanneer buigscheuren aanwezig zijn aan de rand van dit
gebied. Desalniettemin is aangetoond dat zowel voor liggers met, als voor liggers zonder
buigscheuren, de weerstand tegen afschuiftrekbreuk nauwkeurig kan worden bepaald
met de voorgestelde analytische modellen. Voor liggers met buigscheuren aan de rand
van het gebied zonder buigscheuren, kan de overschatting van de maximale hoofdtrek-
spanning worden gecompenseerd door het aannemen van een hogere treksterkte van het
lijf. Uiteindelijk zijn voor zowel model Al als voor model A2 rekenwaarden afgeleid
die horen bij een aangenomen faalkans. Door uit te gaan van de meest conservatieve
waarde van beide modellen, is het mogelijk om in de praktijk slechts één model te han-
teren voor de rekenwaarde. Dit model, aangeduid als model A, kan dus worden gebruikt
ongeacht of buigscheuren aanwezigheid zijn.

Wanneer voldoende beugelwapening aanwezig is, zal de weerstand na het ontstaan van
een afschuiftrekscheur hoger zijn dan de weerstand tegen afschuiftrekbreuk. De theore-
tische modellen voor liggers met beugels, zoals gebruikt in de vigerende ontwerp en
beoordelingsrichtlijnen, zijn niet bedoeld voor gebieden zonder buigscheuren. Deze mo-
dellen houden namelijk geen rekening met (i) de lage rek in langsrichting, die de
bijdrage van de scheurwrijving verhoogt en (ii) de afdracht van schuifspanningen in de
niet-gescheurde flenzen. Het tweede deel van het onderzoek richt zich daarom op de
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vraag hoe de dwarskracht in deze gebieden wordt overgedragen en wat de parameters
en condities zijn die deze overdracht beinvloeden.

Het vakwerkmodel met variabele hoek, zoals gebruikt in de Eurocode, blijkt de dwars-
krachtweerstand van voorgespannen liggers in gebieden zonder buigscheuren sterk te
onderschatten, zeker wanneer weinig beugelwapening aanwezig is. Daarom is als on-
derdeel van dit onderzoek een analytisch model ontwikkeld om deze weerstand
nauwkeuriger te kunnen bepalen. Dit model wordt aangeduid als model B1. Voor dit
model is de ‘Modified Compression Field Theory’ (MCFT) als basis genomen, omdat
deze ook geschikt is om de dwarskrachtweerstand te bepalen voor lage hoeveelheden
dwarswapening. Daarnaast is de MCFT in staat rekening te houden met de lage rek in
langsrichting die typerend is voor gebieden zonder buigscheuren. De eerste stap in de
ontwikkeling van het model is het onderzoeken van de maximale schuifspanning hal-
verwege de liggerhoogte. Dit is specifiek gedaan voor gebieden zonder buigscheuren
door uit te gaan van een rek in langsrichting van nul. Voor een reeks van parameters, die
representatief is voor de bestaande bruggen en viaducten, is de maximale schuifspanning
bepaald met de MCFT. Daarna is het verloop van de schuifspanningen over de afschuif-
trekscheur onderzocht door gebruik te maken van een niet-lineair eindige-
elementenprogramma voor doorsneden dat is gebaseerd op de MCFT. Dit programma is
vervolgens ook gebruikt om het verloop van de schuifspanningen in de niet-gescheurde
flenzen te onderzoeken. Uiteindelijk is een analytisch model afgeleid waarin alle para-
meters die de dwarskrachtweerstand significant beinvloeden zijn opgenomen. Om de
nauwkeurigheid van het voorgestelde model te kunnen evalueren is een database samen-
gesteld met relevante experimenten uit de literatuur.

De resultaten van de parameterstudie met de MCFT tonen aan dat voor gebieden zonder
buigscheuren de dwarskrachtweerstand in het lijf maximaal is (i) wanneer de scheur-
wrijving begint af te nemen door het openen van de scheur of (ii) wanneer het beton op
het punt staat te verbrijzelen. De maximale dwarskrachtweerstand die volgt uit de meer
complexe MCFT berekeningen zijn benaderd met eenvoudige formules die worden ge-
bruikt in het voorgestelde analytische model. Deze eenvoudige formules resulteren in
vrijwel dezelfde voorspelde weerstand als de weerstand die volgt uit de MCFT. De maxi-
male schuifspanning op een hoogte halverwege de ligger, blijkt representatief te zijn
voor de weerstand over de afschuiftrekscheur. Op het moment dat het lijf bezwijkt, zal
ook een deel van de dwarskracht worden overgedragen door de niet-gescheurde delen,
met name de flenzen. In het voorgestelde model B1, wordt de totale weerstand bepaald
door de weerstand halverwege de liggerhoogte te vermenigvuldigen met de gemiddelde
liggerbreedte en de effectieve dwarskrachthoogte. Voor de effectieve dwarskrachthoogte
is een eenvoudige formule afgeleid. Deze formule leidt tot nagenoeg dezelfde verhou-
dingen tussen de maximale schuifspanning halverwege de ligger en de totale

Vii



dwarskrachtweerstand als de verhoudingen die worden gevonden met het geavanceerde
doorsnede-programma gebaseerd op de MCFT. Uiteindelijk is voor de relevante expe-
rimenten van de database de experimenteel gevonden weerstand vergeleken met de
voorspelde weerstand volgens model B1. Hieruit blijkt dat model B1 de dwarskracht-
weerstand consistent kan bepalen. Ook voor model B1 is een ontwerpwaarde afgeleid
horende bij een aangenomen faalkans.

In het voorgestelde model B1 wordt de weerstand bepaald op basis van bijdrages van
scheurwrijving en beugels. Het is ook mogelijk deze weerstand rekenkundig geheel toe
te schrijven aan de beugels. Hoewel deze formulering minder goed aansluit bij het fysi-
sche gedrag, is de formulering toch aantrekkelijk omdat deze aansluit bij het momenteel
gebruikte vakwerkmodel. Dit model is in dit proefschrift afgeleid als alternatief voor het
model B1 en wordt aangeduid als ‘het vakwerkmodel aangepast voor gebieden zonder
buigscheuren’ of kortweg ‘model B2’.

Het belangrijkste resultaat van het onderzoek is dat nieuwe analytische modellen be-
schikbaar zijn gekomen die de dwarskrachtweerstand in gebieden zonder buigscheuren
nauwkeurig kunnen voorspellen. Met het gebruik van deze modellen is het mogelijk om
gefundeerde beslissingen te nemen over het kunnen handhaven, of moeten versterken of
vervangen, van voorgespannen bruggen en viaducten. Een ander belangrijk resultaat is
dat de modellen minder conservatief zijn dan de modellen die momenteel worden ge-
bruikt. Bij gebruik van de huidige modellen is het voor ongeveer 75 voorgespannen
bruggen in het Nederlandse Hoofdwegennet niet mogelijk om voldoende dwarskracht-
weerststand aan te tonen in de gebieden zonder buigscheuren. Wanneer echter de
modellen worden gebruikt zoals voorgesteld in dit proefschrift, zal het alsnog mogelijk
zijn om voldoende dwarskrachtweerstand aan te tonen voor ongeveer 65 van deze 75
bruggen.
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Introduction

Prestressed girders will fail in shear when the applied shear force exceeds the shear re-
sistance. A distinction can be made between shear failure in regions with and without
flexural cracks. This is explained in Figure 1.1 which shows a single span prestressed
girder with an I-shaped cross-section loaded by two point loads. The bending moment
is maximum between the two point loads and causes a tensile force in the bottom flange.
This tensile force causes flexural cracks, starting from the bottom flange. The flexural
cracks between the point loads are vertical because of the absence of shear force. Be-
tween the point loads and the supports, the girder is exposed to both moment and shear
force. In the parts of the girder that are exposed to a substantial moment, flexural cracks
develop in the bottom flange and will, due to the presence of a shear force, extend to
diagonal cracks in the web. These cracks are defined as flexural shear cracks. The parts
of the girder that are less exposed to the moment caused by the point loads, will remain
free of flexural cracks, because prestress is present that reduces the tensile force in the
bottom flange. The high shear force in these parts causes high principal tensile stresses
in the web that can cause diagonal cracks in the web. These cracks are defined as diag-
onal tension cracks. Eventually, a girder can fail in shear in the region with or without
flexural cracks. In this dissertation shear failure of prestressed girders in regions without
flexural cracks is investigated.

Diagonal tension crack  Flexural shear crack Flexural crack
h N A AN //
< »
Region without flexural cracks Region with flexural cracks Region without flexural cracks

Figure 1.1. Regions of a prestressed girder with and without flexural cracks

The shear resistance in regions without flexural cracks is different than in regions with
flexural cracks. There are two reasons for this: the first reason is that the stress condi-
tions that cause diagonal tension cracking are different from the stress conditions that
lead to flexural shear cracking; the second reason is that the shear transfer after diagonal
cracking differs between both regions. Both reasons will be further explained in this
dissertation.



The first topic of this dissertation concerns diagonal tension cracking. For prestressed
girders without stirrups, the resistance to diagonal tension cracking is commonly con-
sidered as the shear resistance. This topic is relevant for prestressed girders that contain
nonconforming stirrups or for girders with a low amount of shear reinforcement. The
second topic of this dissertation concerns the shear resistance of prestressed girders with
stirrups in regions without flexural cracks. This topic relates to prestressed girders that
contain an amount of shear reinforcement which is sufficient to resist additional shear
force after diagonal tension cracking.

Section 1.1 describes the relevance and the objectives of this research. Sections 1.2 and
1.3 describe the models that are currently used to assess shear resistance in regions with-
out flexural cracks for existing bridges in the Dutch Highway network. For each model
it is evaluated whether the model is indeed suitable to determine the shear resistance in
regions without flexural cracks. The models for girders without stirrups are described in
Section 1.2 and the models for girders with stirrups in Section 1.3. Section 1.4 describes
the knowledge gaps and research questions that are found from the discussion of the
currently used models. Section 1.5 explains the methodology used for the research and
Section 1.6 provides an outline of the dissertation.

1.1 Research relevance and objectives

In the middle of the last century, the first prestressed structures were built in the Neth-
erlands. The principle of prestressing enabled structural engineers to design longer and
more slender bridges. The usage of prestressing has become more common since then.
Up-to-date, about 3300 bridges in the Dutch Highway network are prestressed (Klatter
2019).

Bridges and viaducts in Dutch Highway network have been used more intensively by
traffic in recent decades. As a result, the current traffic loads are higher than that taken
into account during the design. This is an important reason for Rijkswaterstaat, which is
part of the Dutch Ministry of Infrastructure and Water Management, to assess the struc-
tural safety of its existing bridges and viaducts. A second reason to carry out this
assessment is the evolution of the theoretical models used in the design codes to deter-
mine the shear resistance.

Preliminary assessments (RWS 2018, De Boer et al. 2016, Kamp 2017a, b, c¢) showed
that it is demanding to demonstrate sufficient shear resistance for a group of existing
bridges that contain girders with flanges and a thin web, that were designed before the
design code of 1974 (NEN 1974) was enforced. The introduction of NEN 1974 has been
a major change for the design practice, as since then a minimum amount of stirrups was



prescribed. According to a recent inventory, 630 prestressed bridges in the Dutch High-
way network contain girders with flanges and a thin web and were designed before the
design code of 1974 was enforced. These 630 bridges concern 80 post-tensioned bulb-
T-girders, 460 pre-tensioned precast girders and 90 post-tensioned box girder bridges
(Figure 1.2). For 107 (bulb-T-girders and precast girders) of these 630 older bridges a
preliminary assessment has been carried out using the guideline for the assessment of
existing structures issued by Rijkswaterstaat (RWS 2013). For 21 of these 107 bridges,
it was not possible to demonstrate sufficient shear resistance. The shear resistance was
found insufficient in the region with flexural cracks for 6 bridges and in the regions
without flexural cracks for 15 bridges. For the entire group of 540 older bulb-T-girders
and precast girders, it can be expected, based on extrapolation, that for approximately
75 of these bridges it will not be possible to demonstrate sufficient shear resistance in
the regions without flexural cracks.

Figure 1.2. Cross-sections of (from left to right) pre-tensioned precast girders with an in situ slab,
post-tensioned bulb-T girders and box girder bridges

To be able to make substantiated decisions about the structural safety of bridges there is
a need for models that can accurately determine the shear resistance in regions without
flexural cracks. This concerns both a model to determine the resistance to diagonal ten-
sion cracking and, for prestressed girders with stirrups, a model for the shear resistance
specifically intended for regions without flexural cracks.

Many assumptions have been made in developing the currently used model for diagonal
tension cracking (Section 1.2). These assumptions eventually have resulted in a simple
model that is easy to use in engineering practice. Because the large number of bridges
for which it is demanding to demonstrate sufficient shear resistance in the regions with-
out flexural cracks, there is a need to understand how the assumptions affect the
accuracy of the predicted resistance and whether refinements are possible to improve
the accuracy of the predictions.

The currently used models for the shear resistance of girders with stirrups (Section 1.3)
are not intended for regions without flexural cracks. Conditions for these regions, such
as a low longitudinal strain and shear transfer by the uncracked flanges, are not consid-
ered by the currently used models. There is a need to understand how these conditions
affect the shear resistance.



Based on these considerations, the objectives of this dissertation are:

1. To understand how the shear force is transferred in regions without flexural cracks
and determine the major parameters and conditions that affects the shear transfer.

2. To derive a model that is capable of accurately determining the resistance to diagonal
tension cracking.

3. To derive a model that is capable of accurately determining the shear resistance of
girders with stirrups in regions without flexural cracks.

To be able to apply the models in engineering practice, it is not only the objective to
derive models for the mean resistance, but also for the design value of the resistance that
corresponds to an assumed failure probability. Eventually, it should be possible to make
substantiated decisions regarding maintaining, strengthening or renewal of prestressed
bridges based on the proposed models.

1.2 Shear resistance of prestressed girders without stirrups

All existing prestressed bridges in the Dutch Highway network contain shear reinforce-
ment. However, not all shear reinforcement is considered as effective. This ineffective
shear reinforcement does not fulfil the design requirements and is defined as ‘noncon-
forming shear reinforcement’. Examples of nonconforming shear reinforcement lay-
outs are shown in Figure 1.3.

T

traight I . .
r,l,(?./s--‘?lgh o8 insufficient anchorage

Figure 1.3. Examples of shear reinforcement layouts that are considered ineffective

The bulb-T beam, shown in the left of Figure 1.3, contains shear reinforcement with
kinked legs that could possibly burst out. The inverted T-beam, shown in the right of
Figure 1.3, contains shear reinforcement insufficiently anchored in the tensile zone. In
preliminary assessments, the contribution of this nonconforming shear reinforcement to
the shear resistance is neglected, because it is unknown to what extend the stirrups con-
tribute to the shear resistance. Therefore, the girders are considered as members without
stirrups. For prestressed girders without stirrups, the resistance to diagonal tension



cracking is considered as the shear resistance, as will be explained in Chapter 2. There-
fore, the resistance to diagonal tension cracking can be used to determine the shear
resistance of prestressed girders with nonconforming shear reinforcement. The re-
sistance to diagonal tension cracking is also governing for girders with an amount of
shear reinforcement that is so low that no additional shear can be resisted after diagonal
tension cracking.

According to the Eurocode (NEN 2005) the principal tensile stresses of a single span
prestressed member without stirrups, should be limited by the uniaxial tensile strength
of concrete for regions which are uncracked in bending. The guideline for the assess-
ment of existing structures (RWS 2013) extends the application of this requirement from
‘single span members’ to ‘structures’. This implies that also bridges that contain contin-
uously supported girders can be assessed using this requirement and even complete
bridges, simply or continuously supported. The requirement is based on the principle
that concrete cracks at a load that causes a maximum principal tensile stress equal to the
uniaxial tensile strength of concrete. It is assumed that the principal tensile stresses can
be governing anywhere in the web. Although this principle is simple and might seem
indisputable, two remarks can be made to this approach.

The first remark concerns that the maximum principal tension stress is determined less
accurately due to the use of a number of simplifications. As a simplification the principal
stresses are calculated from the cross sectional forces assuming that the Euler Bernoulli
girder theory is valid. Also, the presence of vertical stresses is neglected for simplicity.
Both simplifications are questionable for cross-sections that are close to the support or
a concentrated load. However, these cross-sections usually turn out to be critical in as-
sessments. Another relevant simplification that could affect the accuracy of the predicted
maximum principal tensile stress, is the assumption that the principal tensile stresses in
the region free of flexural cracks are not affected by the flexural crack at the edge of this
region.

The second remark concerns the suitability of the uniaxial concrete tensile strength as
limitation for the maximum principal tensile stress. From tests on bi-axially loaded small
membranes, it is know that the tensile strength reduces when the lateral principal com-
pressive stresses increase. This is called bi-axial behaviour and is for instance
investigated by Kupfer et al. (1969). Moreover, the tensile strength was found to depend
on the size of the region subjected to high tensile stresses (Collins et al. 1997). If the
size of this region increases, the member cracks at lower principal tensile stresses. In
this dissertation this phenomenon is defined as the statistical size effect. The actual ten-
sile strength will be affected by the presence of principal compressive stresses and the
statistical size effect.



1.3 Shear resistance of prestressed girders with stirrups

A part of the existing bridges in the Dutch Highway network contain stirrups that do
fulfil the design requirements which are thus considered as effective. According to the
currently used guideline for the assessment of existing structures (RWS 2013) three
models can be used to determine the shear resistance for girders with stirrups in regions
without flexural cracks. The highest of the predicted resistances is considered as gov-
erning. The three models are:

1. The model for the resistance to diagonal tension cracking (RWS 2013, NEN 2005).
2. The model for the shear resistance in regions with flexural cracks (RWS 2013).
3. The variable angle truss model according to the Eurocode (NEN 2005).

The first model can only be applied to determine the shear resistance in regions without
flexural cracks. The second and third model are applied for regions both with and with-
out flexural cracks. For each model it will be evaluated below whether it is suitable to
determine the shear resistance in regions without flexural cracks.

The first model that could be applied to determine the shear resistance in regions without
flexural cracks, is the model that determines the resistance to diagonal tension cracking.
This approach is based on the principle that the resistance of girders with stirrups is at
least the resistance of the girders neglecting the presence of stirrups. As existing bridges
in the Dutch Highway network contain a low amount of shear reinforcement, it is indeed
possible that diagonal tension cracking is governing for the resistance. This is the case
if the amount of shear reinforcement is so low that the highest resistance is found at
diagonal tension cracking. However, for higher amounts of shear reinforcement, addi-
tional shear force can be resisted after diagonal tension cracking. For these bridges, the
resistance will be underestimated if the ultimate resistance is equalised to the resistance
to diagonal tension cracking. Therefore, there is also a need to develop a model that is
capable to determine the shear resistance in the regions without flexural cracks consid-
ering the presence of stirrups. The suitability of the currently used model to determine
the resistance to diagonal tension cracking is already discussed in Section 1.2.

The second possible approach is to use the resistance model derived for regions with
flexural cracks (RWS 2013). The model consists of a contribution of stirrups and a con-
tribution of concrete. The use of this model for the regions without flexural cracks is
based on the assumption that the resistance in regions without flexural cracks is higher
than that in regions with flexural cracks. This is attributed to a higher contribution of the
concrete to the shear resistance (Leonhardt et al. 1973). This assumption is further dis-
cussed in this dissertation (Section 5.1.7). The concrete contribution in the model
consists of two parts: (i) a part that causes decompression of the most tensioned flange



and (ii) a part empirically derived for flexural shear cracking of reinforced concrete
girders without stirrups. The model is thus derived to determine the resistance along a
flexural shear crack. Because no flexural shear cracks are present in regions without
flexural cracks the model is fictional for regions without flexural cracks. The model is
not further considered in this dissertation as it does not contribute to a better understand-
ing of transfer of the shear force in regions without flexural cracks.

The third model that could be applied to determine the shear resistance in regions with-
out flexural cracks is the variable angle truss model. This model is a lower bound
approach based on the theory of plasticity (Walraven 2002). According to the theory of
plasticity the largest resistance is found when the stirrups yield and the concrete struts
crush at the same time. It is noted that the effective strength of the concrete struts is
calibrated using experiments with higher amounts of shear reinforcement. For lower
amounts of shear reinforcement failure due to crushing of the struts may not be govern-
ing. Instead failure of the struts due to sliding along the (initial) crack may be governing
(Nielsen et al. 2011). For the later mechanism, calibration on the strength of struts has
not been reported in literature. Moreover, as the strength of struts is also not calibrated
for the conditions present in regions without flexural cracks, it is questionable whether
the variable angle truss model is suitable to predict the shear resistance in these regions.

1.4 Knowledge gaps and research questions

The objectives of this dissertation are (i) to develop a model that is capable of accurately
determining the resistance to diagonal tension cracking and (ii) to develop a model that
is capable of accurately determining the shear resistance of girders with stirrups in re-
gions without flexural cracks.

Based on the description and evaluation of the models currently used (Section 1.2), the
following knowledge gaps are identified for diagonal tension cracking:

1. From tests on bi-axially loaded small membranes, it is known that the tensile strength
is lower if a compressive stress is present perpendicular to the tensile stress. Models
that describe this behaviour are available in literature (Kupfer et al. 1969). Moreover,
if the size of a region subjected to tensile stresses increases, the member cracks at a
lower principal tensile stress (Collins et al. 1997). For both phenomena it is unknown
however, whether the relations as described in literature are directly applicable for
the tensile strength of the web which should be assumed to predict diagonal tension
cracking of girders.

2. The stresses in the girder around the supports and concentrated loads will be dis-
turbed, therefore the Euler Bernoulli girder theory is not valid in these regions.
Moreover, the presence of vertical stresses affect the principal tensile stresses around



the supports and concentrated loads. It is unknown how these phenomena affect the
maximum principal tensile stress.

3. Flexural cracks on the edge of regions without flexural cracks could affect the stress
distribution in the regions without flexural cracks. Currently the maximum principal
tensile stress in the regions without flexural cracks is determined by means of a linear
elastic calculation and a possible influence of the vicinity of flexural cracks is not
considered.

The identified knowledge gaps can respectively be reformulated into the following re-
search questions:

A. Does the accuracy of the predictions increase if bi-axial behaviour and statistical size
effect are taken into account?

B. How are the principal stresses distributed around the supports and the concentrated
loads and is it possible to determine the maximum principal tensile stress using the
Euler-Bernoulli girder theory and by neglecting the vertical stresses?

C. How does the presence of a flexural crack at the edge of the region without flexural
cracks affect the distribution of principal tensile stresses in this region?

Based on the description and evaluation of the currently used models for the shear re-
sistance in regions without flexural cracks of girders with stirrups (Section 1.3), the
following knowledge gaps are identified:

4. Besides crushing of the concrete struts, crack sliding along the initial crack appears
to be a possible failure mode. An example is shown in Figure 1.4, in which failure
occurs due to sliding along the major diagonal tension crack, without crushing of the
concrete. It is unclear to what extent the failure mode affects the shear resistance in
regions without flexural cracks. None of the currently used resistance models (Sec-
tion 1.3) distinguish these shear failure modes and the associated shear resistances.

5. In regions without flexural cracks, the longitudinal strains in the web will be negative
for almost the entire region. If the longitudinal strains decrease, also the crack widths
will decrease. Due to these smaller crack widths, higher shear stresses can be trans-
ferred in the cracks by aggregate interlock. This makes it plausible that, in regions
without flexural cracks, the web is able to resist more shear force than in regions with
flexural cracks. It is unclear to what extent the shear resistance is affected by the low
longitudinal strain. None of the currently used resistance models (Section 1.3) con-
sider the effect of the longitudinal strain on the shear resistance. It is noted that, when
the longitudinal strain in the web is negative, diagonal tension cracks can still occur.
This is because it is not the longitudinal stresses associated with the longitudinal



strains that determine the occurrence of a diagonal tension crack, but the principal
tensile stresses, which are also largely affected by the shear stresses.

1.25V Sliding aloné major diagonal tension crack 225V

Ve
centroiflal axis

—>

1.25V 1.25V I shear force

/I L2V / Point of contra ﬂe%{ure |
i 3 \I ! bending moment

1.2V

Figure 1.4. Crack patterns for experiment LB10 just before failure (Xie 2009)

6. In regions without flexural cracks, a part of the shear force will be transferred by the
uncracked concrete (mainly at the flanges). This is shown in Figure 1.4 in which the
flanges above and below the critical diagonal tension crack remain uncracked at a
load just before failure. It is unclear to what extent the uncracked concrete above and
below the diagonal tension crack contributes to the transfer of shear force in regions
without flexural cracks. None of the currently used resistance models (Section 1.3)
consider this contribution explicitly.

Again, the identified knowledge gaps can respectively be reformulated into the follow-
ing research questions:

D. What are the possible shear failure modes for prestressed girders with stirrups in the
regions without flexural cracks and is it possible to relate the shear resistance to the
potential failure modes?

E. How does the low longitudinal strain, that is associated with regions without flexural
cracks, affect the shear force transfer mechanism along the diagonal tension crack?

F. How can the contribution of the shear force transferred by the uncracked flanges be
determined and how is this contribution affected by the cross sectional properties?

1.5 Research methodology

Two topics are considered in this dissertation. These concern the resistance to diagonal
tension cracking (first topic) and the shear resistance of prestressed girders with stirrups
in regions without flexural cracks (second topic). With respect to the first topic, the re-
sistance to diagonal tension cracking is investigated using models that assume a linear
elastic stress distribution. With respect to the second topic, the investigation of the shear



resistance of prestressed girders with stirrups is investigated using models that consider

the non-linear elastic behaviour of the reinforcement steel, prestressing steel and con-

crete. An identical methodology regarding literature study is used for both topics:

An overview of relevant models that predict the shear resistance is compiled and sub-
sequently these models are mutually compared.

An evaluation is made regarding the following questions: (i) to what extend the mod-
els are suitable for determining the shear resistance in the regions without flexural
cracks and (ii) to what extend the research questions could be answered based on the
literature study.

The results of the literature review are used to determine the approach to develop a
new model.

A database of relevant experiments described in literature is compiled, which even-
tually is used to evaluate the accuracy of the proposed model.

The following methodology is used to study the resistance to diagonal tension cracking
(first topic):
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The effect of bi-axial behaviour and statistical size effect on the strength of the web
are investigated using equations found in literature derived for membrane elements,
to predict diagonal tension cracking in girders. These models are used in this study to
predict the shear behaviour of girders. To ensure that these phenomena can be inves-
tigated without any disturbance caused by the presence of flexural cracks, the
evaluation is carried out for experiments on girders free of flexural cracks.

The disturbed areas around the concentrated loads (supports and externally applied
loads) are analysed by carrying out linear elastic finite element analyses. It is assumed
that these analyses predict the distribution of principal tensile stresses perfectly. Then,
it is investigated how the maximum principal tensile stresses according to the linear
elastic finite element analyses can be approached by using the Euler-Bernoulli girder
theory. Also, for this purpose only experiments without flexural cracks are used, to
ensure that the principal stress distribution can be investigated without any disturb-
ance caused by the presence of flexural cracks.

The effect of flexural cracks is investigated using experiments on girders with flexural
cracks. It is assumed that the other phenomena are sufficiently investigated based on
experiments without flexural cracks and that the deviations are only due to the pres-
ence of flexural cracks. It is investigated whether it is possible to accurately predict
the resistance to diagonal tension cracking using the assumption that the principal
stresses are not disturbed in the vicinity of flexural cracks.



The shear resistance of prestressed girders with stirrups in regions without flexural
cracks (second topic) is investigated in two steps. Firstly, the resistance at the mid-depth
of the web by aggregate interlock and stirrups is determined for regions without flexural
cracks. Secondly, the distribution of shear transfer mechanism along the diagonal ten-
sion crack and through the flanges is investigated.

The model that is proposed for the shear resistance of the web at mid-depth is derived
using the Modified Compression Field Theory (MCFT, Vecchio et al. 1986). The MCFT
is used to derive the resistance per failure mode for membranes for a strain condition
associated with the regions of a girder without flexural cracks. The resistances per fail-
ure mode are derived for certain combinations of parameters. The ranges of these
parameters are representative for the intended application of the model (Table 1.1). For
the proposed model, the shear resistance at mid-depth of the web is based on the failure
modes and associated resistances, derived for the membrane elements.

Table 1.1. Main parameters for bridges with a web and flanges designed before 1974

Parameter minimum  maximum

Shear reinforcement ratio (p.,) 0.04% 0.70%

Mean value of concrete cylinder compressive strength (fen) 43 84 N/mm?
Mean yield strength of shear reinforcing (fywm) 280 560 N/mm?

Stress in concrete in longitudinal direction

. -10.7 24 N/mm?
at centre of gravity (o)
Ratio stress in concrete in longitudinal direction
at centre of gravity and mean value of concrete -0.20 -0.04 -
cylinder compressive strength (oc,/ fom)
Maximum aggregate size (dmax) 315 mm

The distribution of shear transfer mechanism along the cracks and through the flanges
is further analysed using a nonlinear sectional analysis programme for girders based on
the MCFT. It is investigated whether the resistance at mid-depth is representative for the
resistance along the crack. Moreover, it is investigated what parameters are decisive for
the contribution of the uncracked concrete to the total shear resistance. A sensitivity
analysis is carried out to determine the effect of the cross sectional properties on the
shear resistance contribution of the uncracked concrete. The results are used to derive a
model for the shear resistance of a prestressed girder.

Design equations for practice are determined for both models (first and second topic),
based on the statistical properties of the test-to-predicted shear resistance ratio. These
design values are determined using the approach described in Annex D7.3 of NEN
(2011).

The proposed models for both the first and the second topic are intended to determine
shear resistance for prestressed bridges, consisting of a web and flanges, for the regions
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without flexural cracks. The models are derived considering explicitly the ranges of the
main parameters that are representative for the bridges in the Dutch Highway network.
In Table 1.1 the ranges of parameters are listed that are assumed to significantly affect
the resistance of one or both proposed models. The table is based on data inventories of
9 pre-tensioned precast girders, 22 post-tensioned bulb-T girders and 19 box girder
bridges. All these bridges are designed with a design code prior to the design code of
1974 (NEN 1974) and contain girders with a web and flanges. If all bridges would have
been inventoried, it is likely a wider range of parameters would have been found. Nev-
ertheless, the table can be used as an indication of the range of parameters for which the
models are intended. The derived models are intended for both pre-tensioned and post-
tensioned girders, girders with straight or curved tendon profiles and both simply sup-
ported and continuously supported girders. The models are derived for normal weight
concrete.

1.6 Outline of the dissertation

The research is divided in two parts (Figure 1.5). The first part of the dissertation con-
cerns shear resistance of prestressed girders to diagonal tension cracking regardless of
whether stirrups are present (Chapters 2—4). The second part of the dissertation concerns
shear resistance of prestressed girders with stirrups after diagonal tension cracking

(Chapters 5-8).
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1
1
S EREEEEEEE IR S .
N 9 | Prestressed girders with stirrups w H
' o) 5 ! = % :
¥ =g 25 |
1 1
0 Chapter 2 O § ! Chapter 5 e E 1 Literature review
| g2 2ol
= 2o L
:: Chapter 3 E% : Chapter 6, 7 58U :
1 i)
" P =N R P 'E] < g ! Analyses
) S e
i 52 SE N
1 1
[ Q 1 = 1
i ' ] % ! E E ! Proposed model
: 1 anh :
5 — = ]
Chapter 9 Conclusions and
recommendations

Figure 1.5. Overview of chapters

It is possible that the resistance to diagonal tension cracking is higher than the resistance
after diagonal tension cracking. Therefore, the resistance to diagonal tension cracking
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can also be governing for the shear resistance of prestressed girders with a low shear
reinforcement ratio, the box around the prestressed girders with stirrups is also drawn
around chapters 2 to 4. Figure 1.5 further shows which of the chapters concern the liter-
ature review, the analyses and the proposed models.

Chapter 2 summarizes relevant literature regarding the determination of the resistance
to diagonal tension cracking. Also, an overview of experiments available from literature
is provided. These experiments are eventually used for the validation of the proposed
model. Chapter 3 investigates how the tensile strength of the web is affected by the
principal compressive stresses (bi-axial behaviour) and by the size of the region sub-
jected to high principal tensile stresses (statistical size effect). Moreover, this chapter
investigates how the maximum principal tensile stress around the concentrated loads
(disturbed areas) can be approximated using the Euler-Bernoulli girder theory and how
the distribution of the principal tensile stresses in the region without flexural cracks is
affected by the presence of flexural cracks on the edge of this region. Chapter 4 describes
the proposed analytical models for diagonal tension cracking (Table 1.2). These concern
model Al, for girders that remain free of flexural cracks (Section 4.1) and model A2, for
girders in which, beside the regions without flexural cracks, also regions with flexural
cracks are present (Section 4.2). For both models also the design value is derived for a
target reliability. As these design values are approximately the same for both models, it
is proposed to use just one model for engineering practice, referred to as model A, re-
gardless of whether flexural cracks are present (Section 4.3, shown bold in Table 1.2).

Table 1.2 Overview of newly proposed analytical models

Section Main
equation(s)
Resistance to Model Al: Proposed model for Mean value 4.1 4.1t04.4
diagonal ten-  girders without flexural cracks
sion cracking ~ Model A2: Proposed model for Mean value 4.2 42t04.5

girders with flexural cracks

Model A: Proposed model (regardless Design value 4.3 4.9 or 4.10
of whether flexural cracks are present)

Resistance af-  Model B1: Proposed model Mean value 8.3 8.6t08.8
ter diagonal Design value 8.5 8.18 to 8.20
tension crack-  Model B2: Alternative model, variable =~ Mean value 8.6 8.21 to 8.24
ing (for girders angle truss model modified for regions  Design value 8.6 8.25

with stirrups)  without flexural cracks

Chapter 5 summarizes relevant literature regarding the shear resistance of prestressed
girders with stirrups in regions without flexural cracks. Also, an overview of available
experiments from literature of girders with stirrups that failed in shear is provided. These
experiments are eventually used for the validation of the proposed model. Chapter 6
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derives equations for the shear resistance at the mid-depth of the web for regions without
flexural cracks. These equations are based on calculations of the resistances of mem-
brane elements for a strain condition associated with regions without flexural cracks.
Chapter 7 investigates the distribution of aggregate interlock and stirrup stresses along
the diagonal tension crack. It investigates whether the resistance at mid-depth is repre-
sentative for the resistance along the crack. Also, the contribution of the uncracked
concrete to the total shear resistance is investigated. Chapter 8 describes the proposed
analytical model for shear resistance of girders with stirrups in regions without flexural
cracks, referred to as ‘model B1’ (Table 1.2). Also, the application conditions are de-
scribed and the minimum and maximum shear resistances. Moreover, the accuracy of
model B1 is evaluated, using test data from the database on shear failure for girders with
stirrups. Furthermore, a design equation for practice is determined for model B1 for a
target reliability (shown bold in Table 1.2). At the end of this chapter a model is derived
that could be used as an alternative for the proposed model. In this model the shear
resistance is totally ascribed to the stirrups. Although this way of formulating does not
correspond to physical behaviour, the formulation is nevertheless attractive because it is
also applied in the variable angle truss model which is currently used in structural as-
sessments. This alternative model is referred to as ‘variable angle truss model modified
for regions without flexural cracks” or simply ‘model B2’ (Table 1.2).

Chapter 9 summarizes the results of this dissertation, gives recommendations regarding
the use of the models in practice and for future research.
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PART 1: RESISTANCE TO DIAGONAL TENSION CRACKING







Literature review on diagonal tension cracking

This chapter describes a literature review on diagonal tension cracking. Section 2.1 sum-
marizes relevant literature regarding the determination of the resistance to diagonal
tension cracking. Section 2.2 provides an overview of available experiments in literature
with diagonal tension cracks. Section 2.3 summarizes the literature findings and de-
scribes the approach that will be used to eventually propose a model.

2.1 Resistance to diagonal tension cracking

Section 2.1.1 gives a definition for diagonal tension cracking and explains why diagonal
tension crack is considered as measure for the ultimate capacity of girders without stir-
rups. Moreover, an overview of the models that will be further considered in this chapter
is given. Section 2.1.2 explains how the principal tensile stresses can be determined and
describes conditions and phenomena that could affect the accuracy of the calculated
principal tensile stresses. Section 2.1.3 explains, with an example, how the principal
tensile stress are distributed in a girder and where in the girder the maximum principal
tensile stresses can be expected. Section 2.1.4 describes the material tests that can be
used to derive the tensile strength of concrete and explains some phenomena which af-
fect the tensile strength. Section 2.1.5 summarizes the models from literature.

In this chapter, the findings from the literature review are frequently complemented with
considerations. These consideration are aimed to contribute to the development of an
accurate model for the predictions of diagonal tension cracking.

2.1.1 Diagonal tension cracking

Based on observations from experiments, Hanson categorized two different types of di-
agonal cracks (Hanson 1964, see Figure 2.1): diagonal tension cracks and flexural shear
cracks. Diagonal tension cracks were defined as diagonal cracks that start from a point
in the web. Flexural cracks that develop into inclined cracks were categorized as flexural
shear cracks. Flexural cracks can cause an increase of the principal tensile stresses in the
web above the flexural crack and therefore trigger the formation of inclined cracks in
the web (Figure 2.1). Hanson (1964) also categorized diagonal cracks triggered by flex-
ural cracks as flexural shear cracks.
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Figure 2.1. Type of cracking according to Hanson (Hanson 1964).

Like Hanson, MacGregor et al. (1960) distinguished two types of cracks: web shear
cracks, which is a synonym for diagonal tension cracks, and flexural shear cracks. Web
shear cracks were defined as cracks that occur in the web before flexural cracks appear
in its vicinity. Flexural shear cracks were defined as inclined cracks that extend from an
initiating flexural crack. Also MacGregor et al. (1960) defined inclined cracks, that
forms over or beside an initiating flexural crack, as a flexural shear crack.

In this dissertation diagonal tension cracks are defined as diagonal cracks that start in
the web in the region without flexural cracks. In contrast to the given definitions in
literature, this definition includes the diagonal cracks that are triggered by a flexural
crack (figure 2.1). The definition is adapted because the purpose of the eventually pro-
posed model is the determination of the resistance to diagonal tension cracking in the
regions without flexural cracks, regardless of what triggered diagonal tension cracking.

Jena et al. (1972) report that especially girders with a large shear span fail instantly after
the formation of the first diagonal tension crack. As part of this dissertation, it is inves-
tigated whether this dependency indeed exists. Therefore, experimental data of thirty
five experiments on prestressed girders without stirrups is used. This concerns experi-
ments carried out by Sozen et al. (1967), Arthur (1965), Elzanaty et al. (1986) and
Choulli (2005). In Figure 2.2 the ratio of the experimentally obtained ultimate resistance
V’rexp and the experimentally obtained resistance to diagonal tension cracking Vg exp
is shown. The apostrophes indicate that the resistances relate to the region without flex-
ural cracks. About half (seventeen) of the prestressed girders failed instantly at diagonal
tension cracking, shown by a V’zex/ V'k.cexp of unity. The other half of the girders could
resist additional load after diagonal tension cracking. The data points do not show a
strong dependency between a/d and whether failure occurred instantly at diagonal ten-
sion cracking. The statement of Jena et al. (1972) could therefore not be confirmed.
Figure 2.2 also shows the depth of the girders. The figure demonstrates that there is also
no clear relation between the depth of the girders and whether failure occurred instantly
at diagonal tension cracking. In literature, general agreement exists on considering the
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occurrence of the first diagonal tension crack as measure for the ultimate capacity for
girders without shear reinforcement. This is because it is difficult to predict the behav-
iour after diagonal tension cracking (Walraven 1987).
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Figure 2.2. Experimentally found ultimate resistance / resistance to diagonal tension cracking

From literature some observations are described regarding diagonal tension cracking.
Arthur (1965) reported three types of failure for girders without stirrups initiated by
diagonal tension cracking: (i) failure due to a single crack that develops from the support
to the load point (ii) failure due to the formation of a series of multiple diagonal tension
cracks (web distortion) and (iii) failure due to the formation of a series of multiple diag-
onal tension cracks (web distortion) followed by crushing of the compression flange
under the load point. Another observation is that diagonal tension cracks develop in-
stantly over a large part of the web depth or the complete web depth (Hanson 1964,
Choulli et al. 2008, Elzanaty et al. 1986). Furthermore, several investigators (Hanson
1964, Leonhardt et al. 1973, Sozen et al. 1959) observed that diagonal tension cracking
can occur after a period of sustained load.

Models that can be used to determine the resistance to diagonal tension cracking can be
found in design codes. In this chapter, three models are considered:

1. the Eurocode 2 (NEN 2005), in this chapter referred to as the ‘Eurocode model’

2. the Model Code 2010 (fib 2012), in this chapter referred to as the ‘MC2010 LoA1l
model’

3. the ACI (ACI 2008), in this chapter referred to as the ‘ACI model’

The Model Code 2010 contains two levels of approximations (LoA). Level 1 indicates
that the model is more conservative but easier to use than level 2 (Muttoni et al. 2013).
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The model considered in this chapter concerns the level 1 approximation. The model
described as level 2 approximation corresponds to the Eurocode model and will not be
further explained.

All models are based on the same leading assumption that diagonal tension cracking
occurs when the maximum principal tensile stress oimax in the web equals the concrete
tensile strength of the web. The models differ in the simplifications used to determine
01max. The Eurocode model bases gimaxon o1 throughout web whereas the MC2010 LoA 1
model and the ACI model only consider o1 along the centroidal axis. The models also
differ in the tensile strength of the web that is used.

The Eurocode model uses the uniaxial tensile strength fe. as limit for the tensile strength
of the web. Also the MC2010 LoA1 uses fom but reduces the shear stress resistance with
20% to compensate that the principal tensile stresses are only considered along the cen-
troidal axis. The ACI model, on the other hand, uses the cracking strength of concrete
fer, which is defined as 0.332\/f e, in which f7. is the specified compressive strength of
concrete according to the ACI. It is however already noticed that f:is significantly lower
than fom. For values of /., between 35 and 105 N/mm?, f. varies between 57% and 64%
of fem. It is found in literature (Elzanaty et al. 1986) that /., is a conservatively chosen
value of the splitting strength of concrete fem,sp. Just like the MC2010 LoA1 model, the
value is chosen conservatively to compensate for the fact that gimax is underestimated
because it is based on o1 along the centroidal axis. Moreover, a low value is chosen
because the tensile strength is expected to decrease due to shrinkage. Based on back
calculations of experiments in which diagonal tension cracking occurred (Hanson 1964),
it is confirmed that the chosen value is conservative. From these back calculations, it
was found that the average principal tensile stress in the centre of gravity at diagonal
cracking was 0.457Vf.,, which is higher than the cracking strength of concrete according
to the ACIL. In this research, the tensile strength that can be used to predict diagonal
tension cracking of the web of a prestressed girder is generally defined as feum,wes, which
will be discussed further in Section 2.1.5 and Chapter 3.

2.1.2 Methods to determine the principal tensile stress

This section explains how the principal tensile stresses can be determined analytically.
The method described in this section is used in the considered models. Cracks occur
perpendicular to the principal tensile stress (Figure 2.3) when o1 equals the tensile
strength of concrete. Therefore, the distribution of the principal tensile stresses is of
importance for the prediction of the resistance to diagonal tension cracking in a pre-
stressed girder.
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Starting from the geometry and loading conditions (Figure 2.3), the principal tensile
stress in a cross-section (location x) and a point over the depth (z), under an applied load
F, can be determined in three steps:

1. Determine the cross-sectional forces (Mg, Ve and NE) for the considered cross-section.

2. Determine the shear stress (7) and the normal stress in the longitudinal direction (o).
These stresses are determined at a certain depth z in the cross-section and are based
on the sectional forces.

3. Determine the principal tensile stress o; for the considered point (x, z). This stress is
determined from 7 and oy

Aé 91

\ o
cracks

Figure 2.3. General method to determine principal tensile stresses in a prestressed girder.

For monolithic girders, 7 and o\ can be determined using Equations (2.1) and (2.2).

_ VgSc(2)

T(2) = b 1, 2.1
Ne M

0(@) = £+ 22)

In these equations, /. is the second moment of area, S. is the first moment of area, b, is
the width of the web and z is the considered vertical distance to the centroidal axis. The
subscript ¢ indicate that the cross-sectional properties are only based on the concrete.

Also the stiffness of the reinforcing and prestressing steel affect the principal stress dis-
tribution. The presence of steel could be considered by using the transformed cross-
sectional properties instead. However, this effect is neglected for all of the three consid-
ered models. The parameter z indicates that the associated parameter varies, or could
vary, over the depth of the cross-section.
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The Equations 2.1 and 2.2 are based on the assumption that the concrete is uncracked
and that linear elastic stress strain relations are applicable. The equations are therefore
intended to be used for the areas of a prestressed girder without flexural cracks. The
distribution of the principal tensile stresses in the regions without flexural cracks could
be affected by flexural cracks at the edge of this region. Because Equations 2.1 and 2.2
are used in the models, this potential disturbance of the principal stress distribution is
ignored. According to Leonhardt (1973), the maximum principal tensile stress in the
regions without flexural cracks increase due to flexural cracks in the region with flexural
cracks. This could be compensated by assuming a lower tensile strength of the web. The
tensile strength also reduces due to the presence of lateral principal compressive stresses
and due to the presence of residual stresses are accounted. Therefore, it is suggested to
use a tensile strength of the web of 0.3f; ¢, 200”>. In this equation f; 200 is the concrete
compressive strength determined by a cube with a rib length of 200 mm. If values of f.»x
are considered between 35 and 105 N/mm?, this equation corresponds to a suggested
tensile strength of the web between 58% and 67% of fom.

Equation 2.2 is based on the Euler Bernoulli assumption (plain cross-sections remain
plain). This is however questionable for a cross-section close to the support or close to
the loading plate (non-Bernoulli areas or disturbed areas). This is of importance because
the maximum principal tensile stress is typically found around these concentrated loads
(see Section 2.1.3 in which an example is given).

The maximum and minimum principal stresses (respectively o; and ¢2) can be found
from the stresses in longitudinal and vertical direction (respectively . and a:) by Equa-
tion 2.3. In this equation, tensile is defined as positive and compression as negative
which is a common rule in structural mechanics. This is in contrast to the three codes
cited, in which compression is defined as positive. Therefore, the appearance of the
equations in this dissertation differs from the code provisions.

oy + 0, N (Ux - Uz)z + g2 (2.3)

Q12 =7 2

If the vertical stress o is neglected, ox is replaced by ox(z) and 7 is replaced by 7(z), in
which z indicates that the stresses are considered for a certain depth in a considered
cross-section, Equation 2.4 can be found from Equation 2.3.

2
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Ao,

Figure 2.4. Effect of ignoring o- on determining o.

Around concentrated forces, like in the support area, 0. is negative (compression). For a
negative value of o, it is a conservative assumption to neglect o-. This is illustrated in
Figure 2.4 in which oy is assumed negative. If 0. is not neglected, Mohr’s circle runs
through the points (0., 7) and (o, 7). This circle is shown as a continuous line. Mohr’s
circle associated with neglecting o. runs through the points (o, 7) and (0, 7). This circle
is shown as a dashed line. By neglecting o, the centre of Mohr’s circle shifts to the right.
Moreover, the diameter of the circle increases. This leads to an increase of o; (Ao; in
Figure 2.4). If o, is overestimated, the resistance to diagonal cracking is underestimated,
which is conservative. For positive values of o, the increase of oy is less significant.
This is because, despite the centre of Mohr’s circle still shifts to the right, the radius of
the circle decreases.

The extent to which o is overestimated by neglecting o, depends on mutual ratios of the
stresses. This is illustrated in Figure 2.5 for different values of the stresses. Equation 2.4,
in which o is neglected, is divided by Equation 2.3, in which o, 1is accounted for. The
figure shows that the effect of neglecting o, becomes more significant for high values of
o, and low values of 7 and ox.

If Equation 2.4 is used, the maximum principal tensile stress is located in a cross section
at the intersection of the web and a flange exactly next to the concentrated external load
or the support reaction. This is because the bending moment has a maximum value at
these cross sections. However, the vertical stresses (o) that reduce the maximum prin-
cipal stresses are neglected in Equation 2.4. Using Equation 2.3 instead would reduce
the maximum principal tensile stresses. Therefore, according to the Eurocode model and
MC2010 LoAl model, the principal tensile stresses do not have to be considered for
cross-sections that are closer to the support than the point which is the intersection of an
axis through the centre of gravity and a 45° inclined line from the inner edge of the
support (Figure 2.6). Also according to the ACI model cross-sections directly next to the
support do not have to be considered. For prestressed members, a critical section at a
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distance //2 from the support is prescribed in ACI (2008) The equations used in the ACI
will be explained in Section 2.5.
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Figure 2.5. Overestimation of o) by ignoring o as function of o, o and 7

In girders with post-tensioned ducts there is a risk that the ducts are not fully grouted. If
a duct is not fully grouted, b, is reduced and consequentially 7 and o; increase (Equations
2.1 and 2.4). Therefore, according to the Eurocode, if grouted ducts are applied, the web
width should be reduced with 50% of the outer diameter of the duct @ if @ > b,/8 (NEN
2005). For non-grouted ducts, which are outside the scope of the current research, the
prescribed reduction is 1.29.

The presence of smooth cable ducts reduces the capability of cross-sections to transfer
principal tensile stresses. This was given as explanation for the overestimation of the
predicted resistance to diagonal tension cracking by Herbrand et al. (2015). This over-
estimation was found for experiments carried out on continuous prestressed girders with
smooth ducts (Herbrand et al. 2013, Herbrand et al. 2017).

For pre-tensioned prestressing steel, the principal stress distribution is affected by the
transfer of the prestress by bond along the transmission length. The longitudinal stress
ox caused by the prestressing steel should be reduced depending on the distance of the
considered cross-section from the starting point of the transmission length (according to
the Eurocode model and MC2010 LoA1l model). Also the shear stress 7 caused by the
prestressing steel should be reduced depending on the this distance, when kinked pre-
stressing strands are applied. Equations for this type of pre-tensioned prestressing steel
can be found in fib (2012), numbered as 7.3.46 and 7.4.47.
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2.1.3 Distribution of principal tensile stresses in a prestressed girder

A main difference between the three considered models (as pointed out in Section 2.1.1)
is the area considered to determine the maximum value of ;. According to the Eurocode
model all possible locations of the web need to be examined to determine the maximum
value of o1. The MC2010 LoA1 model and the ACI model limit this examination to the
centroidal axis. In this section an example of the principal tensile stress distribution in a
prestressed girder is given. With this example, insight is given of the impact of limiting
the area examined to determine the maximum value of a1.

Experiment HAP1W, reported by Choulli (2005), is chosen as an example. This con-
cerns a simply supported I-shaped girder with pre-tensioned horizontal prestressing
steel. At a certain load (F) diagonal tension cracks were observed in the experiment.
This is called the load that causes diagonal tension cracking. At this load that causes
diagonal tension cracking, no flexural cracks were observed in the experiment.

The distribution of the principal tensile stresses at the load that causes diagonal tension
cracking is illustrated in Figure 2.6. The principal tensile stress is calculated for points
on the intersection of the centroidal axis and 4 axes parallel to the centroidal axis and
three cross-sections. The stresses are determined using the three steps described in Sec-
tion 2.1.2. Cross-section A is located at the point which is the intersection of the
centroidal axis and a line inclined from the inner edge of the loading plate at an angle of
45°. Cross-section B is at the location of zero moment. Cross-sections C is located at
the point which is the intersection of the centroidal axis and a line inclined from the
inner edge of the support at an angle of 45°.
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Figure 2.6. Principal tensile stresses (N/mm?) at diagonal tension cracking load for HAP1W.

The highest principal tensile stresses are found in the web. This is because of the smaller
width of the web (b,) which leads to high shear stresses an therefore high principal
tensile stresses (Equations 2.1 and 2.4). In the considered cross-sections, the ultimate
fibres in the top and bottom flange remain under compression. As 7 = 0 in the ultimate
fibres of the considered cross-sections, the resulting principal tensile stress o; is equal
to zero (Equation 2.4), as shown in Figure 2.6.
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In cross-section A the absolute value of the positive moment due to the load F is larger
than the absolute value of the negative moment due to the prestressing. As a result of
the positive moment, the lowest o, in the web is found on the intersection of the web
and the bottom flange (o= -6.37 N/mm?). This is lower than o, in the centre of gravity
(0x=-9.56 N/mm?). Although 7 is lower at the intersection of the web and the bottom
flange (r = 6.55 N/mm?) than in the centre of gravity (z = 7.12 N/mm?), the effect of the
lower ox on o1 is more significant. This results in a higher o, at the intersection of the
web and the bottom flange (o1 = 4.10 N/mm?) than at the centre of gravity (o1 = 3.80
N/mm?).

Cross-section B is at the location of zero moment as result from a combined effect of
the external load and the prestressing. As o, is constant over the depth, the variation of
7 is decisive for the highest principal tensile stress. The maximum value of o1 is located
in the centre of gravity because the maximum value of 7 is located in the centre of grav-
ity.

In cross-section C the absolute value of the negative moment due to the prestressing is
larger than the absolute value of the positive moment due to the load F. The resulting
negative moment, leads to the observation that the lowest o, in the web is found at the
intersection of the web and the top flange. This is lower than oy in the centre of gravity.
Although 7 is lower, the effect of the lower ox on ¢, is more significant, resulting in a
maximum o7 at the intersection of the web and the top flange in cross-section C. In this
example, the highest principal stress is found at the intersection of the top flange and the
web and is about 9% higher than the highest principal stresses along the centroidal axis.

2.1.4 Methods to determine the tensile strength of concrete

As described at the end of Section 2.1.1, the considered models assume diagonal tension
cracking for different tensile strengths of the web: the Eurocode model uses the uniaxial
tensile strength f.;» and the ACI model uses the cracking strength of concrete f... Equa-
tion are available to derive both f.» and f.- from the concrete cylinder compressive
strength (these will be explained later). Reineck et al. (2012) found that the uniaxial
tensile strength can be accurately derived from the cylinder compressive strength. This
was shown by comparing the uniaxial tensile strength derived from cylinder compres-
sive test and the uniaxial tensile strength derived from splitting test for numerous
experiments for which both material test were carried out. The main reasons that f.,, and
fer differ, is that they are based on different types of tests. In this section, three types of
tests are explained that reveal various phenomena that will affect the tensile strength of
the web that should be assumed in girders (figure 2.7).
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Uniaxial tensile tests

Uniaxial tests are performed on prismatic specimen with notches, uniaxial loaded in
tension (Hordijk 1991, Figure 2.7). The concept of the test is that the stress distribution
at the crack location is undisturbed by the loading conditions. Therefore, these uniaxial
tests are considered as ‘pure tension test’. It is difficult to perform uniaxial tensile tests.
The uniaxial tensile tests appear to be sensitive to the way the tests are carried out.
Therefore, uniaxial tensile test are typically performed for research purpose. In engi-
neering practice, the uniaxial tensile strength is determined from concrete cylinder
compressive tests. For this purpose, empirical relations have been derived from batches
of both uniaxial tension tests and cylinder compressive test. Both the Eurocode (NEN
2005) and the Model Code 2010 (fib 2012) use the same empirical relations between the
cylinder compressive strength and the uniaxial tensile strength. These expressions are
given in Equation 2.5, for strength classes of concrete equal to or smaller than C50/60,
and Equation 2.6, for strength classes of concrete larger than C50/60. These equations
are applicable for normal weight concrete.

Uniaxial tensile test Bi-axial loaded Test on large
small membranes membranes
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Figure 2.7. Uniaxial tensile test (Hordijk 1991), bi-axial test on small membranes (Kupfer 1969) and
test on large reinforced membrane elements (Vecchio et al. 1994)

fetm = 0-30fck2/3 (2-5)

fetm = 2.12 In(1 + fcm/lo) (2.6)

Also splitting tensile tests (on cylinders) and flexural tension tests (or modulus of rup-
ture tests) can be used to indirectly determine the uniaxial tensile strength of concrete.
The tensile strength from these material tests deviates from the uniaxial tensile strength
because the stress distribution is affected by the loading conditions. Also for splitting
tensile tests and flexural tension tests, the uniaxial tensile strength can be determined by
empirical relations between both tensile strengths. The Eurocode (NEN 2005) pre-
scribed for instance the equation fem = 0.9fumsp to derive the uniaxial tensile strength
from the splitting strength. According to Reineck et al. (2012) splitting tests are preferred
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for the determination of the uniaxial tensile strength, above flexural tensile tests. How-
ever, no general agreement exists in literature about the empirical relations between the
splitting tensile strength and the uniaxial tensile strength (fib 2012).

Tests on bi-axially loaded small membrane elements

From tests on these elements it is found that lateral principal compressive stresses reduce
the tensile strength of concrete. This phenomenon is called bi-axial behaviour. Bi-axial
behaviour is investigated by Kupfer who developed a test setup to investigate small
membrane elements loaded by tension stresses and perpendicular to it compression
stresses (200 by 200 by 50 mm?, Figure 2.7). The compressive load was applied with
brush bearing plates that were flexible enough to follow the concrete deformations with-
out generating appreciable force into the membrane element (Kupfer et al. 1969, Kupfer
1973). Huber (2016) collected the experiments of bi-axial loaded small membrane ele-
ments of various researchers (Kupfer et al. 1969, Hussein 1998, Hampel 2006). The
results are shown in Figure 2.8. This figure shows the combination of o2/fem and o1/fem
at which the membranes cracked. The tensile strength, as ratio of the uniaxial tensile
strength, was found to decrease with decreasing principal compressive stresses (as ratio
of the compressive strength). From the figure it also appears that this reduction is larger
for higher strength classes of concrete.
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Figure 2.8. Experimentally found and predicted combination of o2/ fi,» and o1/ f..n that causes cracking

The Mohr-Coulomb linear approximation, which is given by Equation 2.7, is included
in Figure 2.8. The subscript ‘eff’ is used to indicate that the tensile strength of concrete
is depending on the lateral principal compressive stress, as introduced by Huber (2016).
According to this equation, the tensile strength is zero when o2 = -fon. The tensile
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strength linear increases to the uniaxial concrete tensile strength when o2 = 0. Note that,
according to figure 2.8, the Mohr-Coulomb equation leads to an overestimation of the
tensile strength for concrete with higher compressive strengths. This is especially the
case for high values of o2 /fom (i.€. less negative). It is further noted that these high values
of the compressive stress are typical for diagonal tension cracking of the web of pre-
stressed girders (Jena et al. 1972).

fetmerr = [1-0 +fj_72n] fetm 2.7)

Based on the data collected (Figure 2.8), Huber (2016) derived an empirical equation to
determine the effective tensile strength of concrete. Both the effect of the compressive
stresses and the effect of the concrete compressive strength on the tensile strength are
taken into account, (Equation 2.8). Huber suggest to limit the application of the equation
to -0.9 < a2 /fem < -0.1 as the equation only reflects the experimental data in this range.
In Figure 2.8 the predictions according to this equation are included, both for a low
concrete compressive strength (fon = 32 N/mm?) and for a high concrete compressive
strength (fon = 94 N/mm?). Note that, according to Figure 2.8, values of fom,op close to
fem are found only when o2 = 0 and the reduction of fi, appears to become significant,

even when o2 /fon 1S just below zero.

_ 1/3 02
foemers = [16 =02 fon ™ = 0.6 2 foem 2.8)
The Eurocode model assumes diagonal tension cracking when the maximum principal
tensile stress is equal to the uniaxial tension strength of concrete. Based on the result of
the membrane elements, it is expected that the resistance to diagonal tension cracking is
overestimated using this code, because the effect of the bi-axial behaviour is not consid-
ered.

Tests on large membrane elements

The tensile strength can also be derived from tests on large reinforced membrane ele-
ments (Figure 2.7). An example of a series of test on membranes is the research
programme carried out by Vecchio et al. (1994). The membrane elements are loaded
with loading keys, which are cast into the experiment. Membrane elements were tested
with dimensions of 890 mm by 890 mm by 70 mm. The membranes were tested with
various combinations of in-plane shear and bi-axial stresses (both tensile and compres-
sive stresses). Figure 2.9 shows the principal tensile stresses at cracking (fr, cracking
strength) versus the cylinder compressive strength of concrete. This principal tensile
stress can simply be determined from the reported shear stress and the horizontal and
the vertical stresses at which cracking occurred, using Equation 2.3.
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Figure 2.9. Principal tensile stress at cracking for membranes tested by Vecchio et al. (1994)

Bentz (2000) derived an empirical relation between the cracking strength and the cylin-
der compressive strength (Equation 2.9) using test results of 83 large membrane
elements, which were tested in Toronto and Houston. These include tests of Vecchio et
al. (1994) which are shown in Figure 2.9. Figure 2.9 also shows the predicted cracking
strength predicted by Equation 2.9.

for = 045 f2,,°* (N/mm?) (2.9)
for = 0332 /fon (N/mm?) (2.10)

In Equation 2.10 corresponds to the relation between as used in the ACI code
(ACI 2008) only fe is used instead of /.. Figure 2.9 also shows the cracking strength
predicted by Equation 2.10. The tensile strength based on this equation was found to
overestimate the experimentally found tensile strength (Bentz 2000). This is confirmed
by Figure 2.9. Equation 2.9 corresponds better with the experimentally found strength
than Equation 2.10, especially for higher strength concrete.

The tensile strength according to Equation 2.9 is significantly lower than the uniaxial
tensile strength (Equations 2.5 and 2.6). This can be explained by the size of the mem-
brane elements. For large membranes the chance of encountering the weakest and
controlling piece of concrete is larger than for small membranes (Bentz 2000). Accord-
ing to Collins et al. (1997) the tensile strength is about inversely proportional to the
fourth root of the size. In this dissertation this is defined as the statistical size effect.
Another consideration could be that the tensile strength is reduced due to bi-axial be-
haviour. As the membrane elements are bi-axial loaded it is plausible that the tensile
strength is reduced by the lateral principal compressive stresses. However, the principal
compressive stresses at the membrane tests are typically low which limits this effect of
bi-axial behaviour.
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It is noted that underestimation of the cracking strength for membrane elements, using
Equation 2.10, is not per definition also present when determining the resistance to di-
agonal tension cracking of girders. This is because, as already described in Section 2.1.1,
Equation 2.10 was found to result in conservative predictions of the resistance to diag-
onal tension cracking (Hanson 1964).

2.1.5 Models from literature

This section describes and compares the considered models. All models assume that the
resistance to diagonal tension cracking can be found by determining the shear force at
which the predicted maximum value of o1 equals fem, web.

When the Eurocode model is used, the resistance to diagonal tension cracking, V', can
be calculated by carrying out the following steps:

1. Consider the first cross-section (at distance x) that should be considered (for instance
cross-section A or C in Figure 2.6).

2. Consider a point on the cross-section (z). For instance the intersection of the web and
the bottom flange (see for example Figure 2.6).

3. Assume a load (F) and calculate the sectional forces Mg, Ng and Vg in the cross-
section.

4. Determine ox(z) in the considered point (z) from the sectional forces (Equation 2.2).

5. Determine the shear stress that can be resisted (7 'z (z)) in the considered point (z)
based on ox(z) and fom by using Equation 2.12 (which will be explained later). The
apostrophe in 7'z (z) indicated that the shear resistance concern the regions without
flexural cracks and the subscript ¢ indicates that the resistance is based on the con-
crete.

6. Determine the associated shear force V'z . from 7’z c using the cross-sectional proper-
ties (Equation 2.1).

7. Adapt the load (F) until the shear force Vr equals the shear resistance V’z.. When
both are equal o, equals fom and the shear resistance (V'r.) for the considered point
is known.

8. Repeat the steps 1 to 7 for all points (z) in the cross-section.

9. Equal the resistance of the cross-section V. with the lowest V’z( z) for all points
(z) in the cross-section. The lowest resistance is normally found at the web-flange
interfaces or at the centre of gravity (Section 2.1.3).
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10.  Repeat steps 1 to 9 for all cross-sections. The lowest resistance is normally found
in cross-sections A (negative moment governing), B (shear force governing) or C
(positive moment governing) as explained in Section 2.1.3.

11.  The resistance to diagonal tension cracking (Vz) of the girder is determined by
the lowest of V"’ . off all the cross-sections.

As for using the Eurocode model a lot of iterative steps are necessary, the use of for
instance a spread sheet is convenient.

Step 5 determines the shear stress that can be resisted in the considered point (z), 7'z(z),
based on ox (z) and feim,wer. To determine 7’z (z) Equation 2.4 is first rearranged in Equa-
tion 2.11. Equation 2.12 is found when 7(z) is equalized to 7’z (z) and o1 is equalized to

fctm, web -

2

— 010x(2) (2.11)

17(2)? = oy

T’R,c (2) = \/fctm,webz = fetmwen 0x(2) (2.12)

An iterative calculation is not necessary when the ACI model or the MC2010 LoAl
model are used, because gimax is based on o1 along the centroidal axis. This is because
ox 1s no longer dependant on the applied external load. When an external concentrated
load is applied, the first cross-section from the support is governing (Section 2.1.2). This
is because the self-weight causes a maximum shear force in this cross-section.

The equations that describe the three models are listed in Table 2.1. To make the models
comparable, the vertical component of prestress force (V) is omitted in the equations
according to the ACI (2008). This is because according to the Eurocode and Model Code
2010, Vz, is considered as reduction of the load instead of a component of the shear
resistance (equivalent load method).

Basically, three differences between the models exists:

1. Whether o1.4x is only based on o1 along the centroidal axis or over the area considered
throughout the web area (column oy in Table 2.1).

2. The tensile strength of the web used to determine 7’z (7’z c in Table 2.1).

3. The equation used to determine Vg from 7’r - and the cross-sectional properties (col-
umn Vg in Table 2.1).

The first difference between the models is the area in which o7 is considered to determine
the maximum value of ¢;. According to the MC2010 LoA1 model and the ACI model,
o1 1s only considered along the centroidal axis. The stress in longitudinal direction at the
centre of gravity o, can be determined using Equation 2.16. According to the Eurocode
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model, the depth of the cross is considered to determine gimax. Consequently oy should
be determined at different depths (z) using Equation 2.13.

Table 2.1. Models to determine the resistance to diagonal tension cracking

Model Ox TRe Ve

Lb()
214) Sc@ (15

Eurocode

UX(Z)= —+

2
IXE g (2.13) \/fctm _UX(Z)fctm
c c

MC2010 2
08 [ferm™ — Jcpfctm by,
T
LAl N, N @17) 5 Tre  (218)
Ocp = A, (2.16)
ACI 0.291{fc +030,  (2.19) bydyTre  (2.20)

The second difference between the models is the assumed concrete tensile strength of
the web at which diagonal cracking occurs. According to the Eurocode model, diagonal
tension cracking is predicted assuming femwer = femn. With this assumption, Equation
(2.14) is directly derived from Equation 2.12. The MC2010 LoA1 model is based on the
same assumption. However, because oimax 1s not considered at the most unfavourable
location, and is consequently underestimated, the resistance of the shear stress is reduced
to 80% (Eq. 2.17). According to the ACI model, diagonal tension cracking is predicted
assuming foum web = 0.332 N1’ (= fir) in which f”. is the specified compressive strength of
concrete according to the ACI (according to the ACL f"c = 1.1fon + 4.8, in N/mm?, for
f’¢>34 N/mm2). With this assumption, a similar equation could be expected as for the
other models. However, it was found that this equation could be closely approached
using Equation 2.19 (Xie 2009).

The third difference between the models is the equation used to relate the shear stress
resistance 7’z at the considered depth to the shear force resistance Vg of the cross-
section. As according to the Eurocode model several points over the depth (z) are con-
sidered, the cross-sectional properties at the considered depth are used to determine the
associates shear force (Equation 2.15). As according to the MC2010 LoAl model only
the centroidal axis is considered to determine oimax, the cross-sectional properties at the
centre of gravity are used to determine the associated shear force (Equation 2.18). Equa-
tion 2.20, which is used in the ACI model, is a simplification of Equation 2.18. In this
equation b d, has replaced 1. b/ S.ce. The effect of this simplification is illustrated in
Figure 2.10. In this figure, a cross-section with flanges with a depth of //5 and a variable
flange width (b+2Ab) is considered. It is assumed that d, = 0.94. On the vertical axis the
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factor is shown necessary to determine the shear force, divided by bh, from the shear
stress 7. The dashed line V' =7 b 0.9 represents the simplified ACI equation. The solid
line represents the exact factor as used in Equation 2.18. As shown in the Figure 2.10,
the ACI equation overestimates the shear force resistance for a given shear stress re-
sistance. Therefore, the simplification used in the ACI (2008) is unconservative. The
overestimation has a maximum value for a rectangular cross-section (Ab = 0) and de-
creases for larger flange widths. As the ACI equation uses d, instead of %, the
overestimation also depends on d,,.

1
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=06 A0 A
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Figure 2.10. Factor to relate J and tbh, exactly and simplified as used in the ACI

The Eurocode model is only intended for prestressed single span members without shear
reinforcement. Also the MC2010 LoA1 model is only applicable for hollow core slabs
and similar structural members. The ACI (2008) is on the other hand intended for pre-
stressed members both simply and continuously supported.

Beside the three considered models, also empirical models were derived by various re-
searchers. Hicks (1958), Sethunarayanan (1960), Olesen et al. (1967) and Arthur (1965)
suggested empirical relations to determine the resistance to diagonal tension cracking as
a function of the ratio of the shear span a over effective depth d or girder depth 4. Also
Jena et al. (1972) developed an empirical model. In contrast to the other empirical mod-
els, this empirical model used experiments on both simply and continuously supported
girders. Therefore the empirical model of Jena et al. (1972) is shown as an example of
an empirical model (Equation 2.21).

h 0.0857)

fctm,web = fcm,cube (0-0164 + (221)

The tensile strength of the web depends on the ratio of the shear span to girder depth
(a/h). According to this model, oimax is only based on o1 along the centroidal axis. Data
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from experiments with prestressing with and without bond were used as the behaviour
for diagonal tension cracking was considered to be identical for both conditions.

2.2 Database on diagonal tension cracking

To be able to study diagonal tension cracking, experiments have been inventoried from
literature. These experiments are used to compile a database which will be used to eval-
uate the accuracy of the predictions of the eventually proposed model. This section
describes the database that is composed of experiments on prestressed girders with and
without stirrups, in which diagonal tension cracking was observed. Section 2.2.1 ex-
plains the criteria that are used to determine whether experiments can be included in the
diagonal tension cracking database. Section 2.2.2 provides an overview of the selected
experiments.

2.2.1 Selection criteria

This section is based on literature survey on shear tests in which diagonal tension crack-
ing is reported. The survey results in a diagonal tension cracking database (Appendix
A).

The literature survey covered by the presented database includes the following over-
views and databases:

— an overview in a state-of-the art report on shear in prestressed concrete members
(Walraven 1987).

— an overview of experiments used for verification of a shear design method (Collins
et al. 1996).

— a shear database on prestressed members (Nakamura 2011).

— an overview of prestressed girders of a database with shear test on structural concrete
beams (Reineck et al. 2012).

All these overviews and databases consist of collection on members with and without
stirrups. From experiments it was found that the presence of stirrups does not affect the
resistance to diagonal tension cracking (Elzanaty et al. 1986). Therefore, both types are
considered in this part of the research.

For the considered experiments with prestressed girders, the main selection criterion is
whether diagonal tension cracks occurs. Diagonal tension cracks are defined as diagonal
cracks in the web of a girder in the region without flexural cracks (Section 2.1.1). The
selection is further based on the following criteria and considerations:
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— Only experiments that contain sufficient information to predict the resistance to diag-
onal tension cracking are included. If, for example, the associate load that causes
diagonal tension cracking is unknown, the experiment is not included in the database.

— Both simply and continuously supported girders are collected as this is the intended
use of the models proposed in this research.

— Only girders that are prestressed are selected. Sometimes one, or several experiments
from a series of tests on prestressed girders, did not contain prestress to investigate
the effect of the absence of prestressing. These experiments are not included in the
database.

— Only experiments with normal weight concrete are selected.

— It is unlikely that the absence or presence of bonding of the prestressing steel would
affect the cracking of the concrete. Therefore experiments are selected independently
of the type of prestressing.

— Experiments are selected independent of whether the formation of a diagonal tensions
cracks was triggered by the formation of a flexural crack. This is because the purpose
of the eventually proposed model is to determine the resistance to diagonal tension
cracking in the regions without flexural cracks regardless of what triggered diagonal
tension cracking.

— It should be avoided to develop a model that is intended for large girders in practice
based on test results of small girders, without considering the influence of the size on
the structural behaviour. For instance, in small girders the effect of tension softening
behaviour on the development of flexural cracks is more emphatically present than in
larger girders. To limit the chance that deviant behaviour of small girders affects the
evaluation of models, only experiments with a member depth larger than 450 mm are
selected. The selection criterion can be considered as relatively strict compared to
criteria used by other researchers. For instance Avendano et al. (2008), Hawkins et al.
(2007), Birrcher et al. (2009) and Reineck et al. (2012) used a minimum girder depth
of 305, 508, 305 and 70 mm respectively as selection criteria for their databases. An
important goal of the current research is to investigate if the predictions according to
the eventually proposed model is consistent for different girder depths larger than 450
mm.

2.2.2 Overview of selected experiments

The diagonal tension database is included in Appendix A. An overview of the selected
experiments and associated ranges of parameters is given in table 2.2. These parameters
concern the girder depth 4, the web width b, the mean concrete cylinder compressive
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strength f.., the stress in longitudinal direction caused by the prestressing in the cen-

troidal axis o, and the ratio of o, and fon. In total seventy experiments that meet the

selection criteria as described in section 2.2.1 are selected. Both simply and continuously

supported girders are included in the database.

Table 2.2. Overview database on diagonal tension cracking

Re- Identification Support 4 bw  fem Ocp Ocp/
searcher  (numbers of experiments) condi- fem
(year) tions
mm mm N/mm’ N/mm’ -
Elzanaty = CWI1, CW2, CW3, CW4, Simply 457 51 40/ -11.3/ -0.20/
et al. CW5, CW6, CW7, CWS, sup- 79 -7.9 -0.11
(1986) CW9, CW10,CW11, CW12, ported
CW13, CW14, CW15,
CW16, CW17 (17)
Choulli HAPIE, HAPITE, Simply 750 100 81/ 9.6/  -0.12/
(2005) HAPITW, HAPITW, sup- 99 -6.3 -0.07
HCP1TW, HCPITE, ported
HCP2TE, HAP1W,
HAP2TW, HAP2E,
HAP2W, HCP2TW (12)
Hanson F-X1A, F-X1B, F-1A, Simply 457 76 44/ -6.4/  -0.15/
(1964) F-1B, F-2A, F-2B, F-3A, F-  sup- 51 -5.8 -0.12
3B, F-4A, F-4B, F-5A, F- ported
5B, F-7A, F-7B, F-8A, F-
8B, F-10A, F-10B,
F-11A, F-11B, F-12A,
F-12B, F-13A, F-19A,
F-19B (25)
Leonhardt TP2, TP4 (2) Simply 900, 80, 24/ -5.6/  -0.24/
et al. Sup- 970 150 47 -6.5 -0.14
(1973) ported
Xie LB2, LB3, LB7, LBS, Contin- 504, 72, 62/ -11.2/ -0.20/
(2009) LB10, LB11 (6) uwously 506 74 64 -3.5 -0.11
Sup-
ported
Rupf et SR21, SR22, SR23, SR24, Contin- 780 150 30/ -2.3/ -0.14/
al. SR25, SR26, SR29, SR30 uously 37 -4.8 -0.07
(2013) () sup-
ported
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The main selection criterion is whether diagonal tension cracking occurred. This is ar-
gued in the remaining part of this section for each of the series of experiments. It is noted
that the values of Vg ey listed in Appendix A, are without self-weight. This experimen-
tally found shear force is compared with the predicted shear resistance for the external
load wherein the self-weight is subtracted.

A part of the experiments described in the research report of Elzanaty et al. (1986) was
designed to fail as a result of “web shear failure’ (CW-series). The experimentally found
resistance to diagonal cracking is reported. In the report, it is described that these diag-
onal cracks are web shear cracks which is an equivalent of diagonal tension cracking.
Therefore, all experiments of the CW-series are selected. The descriptions and photos
of the crack pattern confirmed this selection as shown by the photo of experiment CW§
(Figure 2.12).

Figure 2.12. Photo at diagonal tension cracking of experiment CW8 (Elzanaty et al. 1986).

The load at first cracking is reported in the dissertation of Choulli (2005). It is described
that the first cracks that appeared were diagonal cracks in the web. Therefore, all exper-
iments are selected. It is difficult to confirm this selection based on the photos, as both
flexural shear cracks and diagonal tension cracks are visible on the photos. Therefore,
the selection is mainly based on the description.

The dissertation of Hanson (1964) reports the experimentally found resistances to sig-
nificant shear cracking. This concerns both diagonal tension cracking and flexural shear
cracking. From the crack diagrams at significant shear cracking it could be determined
for which experiments diagonal tension cracking occurred, which were all selected. For
a part of the experiments diagonal tension cracking was triggered by a flexural crack
and for a part it was not.

The research report of Leonhardt et al. (1973) reports the experimentally found re-
sistance to diagonal cracking. For two experiments it could be determined from photos
that the diagonal cracks concerns diagonal tension cracks. Both these experiments are
selected.
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In the dissertation of Xie (2009) the experimentally found resistance to inclined web
shear cracking was reported for all considered experiments. Some experiments were not
selected as they were loaded in tension or without prestress. All other experiments were
selected. The descriptions and figures of the crack pattern at diagonal cracking stage
confirm the selection.

In the reports of Rupf (2014) and Rupf et al. (2012, 2013), the experimentally found
resistance to inclined cracking was not reported. However, from figures concerning the
crack openings vectors at each load step, it was possible to determine whether diagonal
tension cracks occurred and between which load steps. Subsequently, by interpreting the
stirrups strain measurements at different locations, it was possible to determine the exact
load at diagonal tension cracking. All experiments in which diagonal cracking was ob-
served were selected.

2.3 Findings from literature review

This literature study reveals that the models described in literature use different ap-
proaches to determine the maximum principal tensile stress (Sections 2.1.1, 2.1.2,2.1.3
and 2.1.5). It is unclear if the resistance to diagonal tension cracking can be accurately
determined if the maximum principal tensile stress is only based on the principal tensile
stresses along the centroidal axis. It is also unknown whether the accuracy increases
when the maximum principal tensile stress throughout the web is used. According to all
cited codes, it is not necessary to consider the principal tensile stresses around the sup-
port (as explained in Section 2.1.2). However, a substantiation is lacking of the size of
this area. And finally, it is uncertain whether the models from literature rightly assume
that the flexural crack on the edge of the region without flexural cracks does not affect
the stress distribution in this region (Section 2.1.2).

The literature study also reveals that the assumed tensile strength of the web differs for
each of the considered models (Sections 2.1.1, 2.1.4, 2.1.5). The statistical size effect
seems to be the main cause that the ACI model assumes a lower tensile strength than the
Eurocode model (Section 2.1.4). It is unclear whether this lower strength is indeed nec-
essary to prevent an overestimation of the resistance to diagonal tension cracking. Also,
no answer has been found on whether the effect of bi-axial behaviour can be omitted
despite that this effect is clearly shown by tests on small membrane elements (Section
2.1.4).
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Resistance to diagonal tension cracking

This chapter describes analyses regarding several phenomena that can affect the re-
sistance to diagonal tension cracking. The models that will be proposed in Chapter 4 are
based on these analyses.

This chapter investigates four phenomena based on the following questions:

1. How is the tensile strength of the web affected by the lateral principal compressive
stresses (bi-axial behaviour, Section 2.1.4)?

2. How is the tensile strength of the web affected by the size of the area subjected to
high principal tensile stresses (statistical size effect, Section 2.1.4)?

3. How can the maximum principal tensile stress around the concentrated loads (dis-
turbed areas) be approximated using equations based on the Euler Bernoulli girder
theory?

4. How is the distribution of the principal tensile stresses affected by the presence of
flexural cracks on the edge of the region of the girder free of flexural cracks?

Whether or not flexural cracks are present before the formation of diagonal tension
cracks (phenomenon 4), appears to have a significant effect on the diagonal cracking
process. Therefore, the tensile strength of the web (phenomena 1 and 2) and the dis-
turbed areas (phenomenon 3) are investigated considering experiments that are free of
flexural cracks at the instant a diagonal tension crack forms (Sections 3.1 — 3.4). This
ensures that the mentioned phenomena can by investigated without any disturbance
caused by the presence of flexural cracks. Section 3.5, on the other hand, considers ex-
periments in which flexural cracks are present at the instant a diagonal tension crack
forms. The differences are then ascribed to the effect of the flexural cracks on principal
tensile stresses in the region without flexural cracks. Hence, the other phenomena are
considered sufficiently investigated in the preceding sections.

Section 3.1 (roughly) derives the tensile strength of the web using the principal tensile
stresses found from linear elastic finite element analyses at the load that caused diagonal
tension cracking. In this section, the tensile strength of the web is derived assuming no
effect of the principal compressive stresses on the tensile strength and no statistical size
effect. Subsequently, Section 3.2 investigates whether considering a statistical size effect
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and bi-axial behaviour improves the consistency of the predictions. Section 3.3 investi-
gates the effect of concentrated loads on the principal tensile stress distribution.
Moreover, this section investigates whether the maximum principal tensile stresses can
be accurately approximated using equations based on the Euler Bernoulli girder theory.
Section 3.4 investigates, for girders without flexural cracks, what the effect is on the
accuracy, when the maximum principal tensile stresses gimax 1S based on o1 along the
centroidal axis instead of o1 over the entire web area. Section 3.5 investigates how the
presence of flexural cracks, on the edge of the regions without flexural cracks, affects
diagonal tension cracking in the regions without flexural cracks.

Figure 3.1 provides an overview of the methodology used to analyse the described phe-
nomena. The methodology will be explained more extensively in the following sections.

» Tensile strength of web (Section 3.1)
» Bi-axial behavior and statistical

Finite size effect (Section 3.2)
analyses

» Principal tensile stress along
the centroidal axis (Section 3.4)
» Disturbed areas » Effect of flexural cracks (Section 3.5)
(Section 3.3)

Analytical
models

Figure 3.1. Overview of the used methodology

Equations 2.1 to 2.4 of Chapter 2 are repeated an renumbered to Equations 3.1 to 3.4, to
make this chapter more self-contained. These equations are based on the Euler Bernoulli
girder theory. For monolithic structures, the shear stress (7(z)) and the stress in the con-
crete in the longitudinal direction (0x(z)) can be determined from the sectional forces
(M, V and N) using Equation 3.1 and 3.2. The principal stresses o; and o2 can be deter-
mined from 7, o, and o. using equation 3.3.

VS.(2)
T(2) = b 3.1
N Mz
0x(2) = g+ 3.2)
2
0_1'2(2) — ox(2) ; 0,(2) + \/(Jx(z) ; Uz(z)> + T(Z)Z (33)

2
012 = 22+ |(Z2) 4 2y G4
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In Equation 3.3 o: is the stress in the concrete in vertical direction. To determine the
principal tensile stress o1 the ‘+’ should be read as plus. To determine the principal com-

3

pressive stress o2 the ‘+’ should be read as minus. Alternatively, the principal tensile
stresses can be determined using Equation 3.4 in which the vertical stresses o. are ne-
glected. In the equations /. is the second moment of area, S. is the first moment of area,
A 1s the area of concrete cross-section, b,, is the width of the web and z is the vertical
distance from the centroidal axis. The subscript ¢ indicates that the cross-sectional prop-
erties concern the concrete. The parameter z indicates that the associated parameter

varies, or could vary, over the height z of the cross-section.

3.1 Experimentally found tensile strength of the web

As described in Section 2.1.4, there is no general agreement in literature on the tensile
strength of the web that should be used to determine diagonal tension cracking. If the
results of material tests are present, such as a concrete cylinder compressive test, the
tensile strength of the web can be determined using different equations (Equations 2.5
to 2.10). For a given strength class of concrete, these equations result in mutually dif-
ferent values of the tensile strength of the web.

Although the Equations 2.5 to 2.10 are used for diagonal tension cracking of girders,
none of these equations are based on test results on girders. To evaluate which equation
is most suitable for girders, this section will investigate the tensile strength of the web
using experiments from the diagonal tension cracking database (Section 2.2). The tensile
strength of the web is assumed to be equal to the maximum principal tensile stress in the
web at the load that caused diagonal tension cracking. The maximum principal tensile
stress of the web can be determined from linear elastic finite element analyses. The
highest principal stresses are typically found around the disturbed areas (Section 2.1.3).
By using a finite element analyses, the principal stresses in the disturbed areas can be
determined accurately. Equations 3.1, 3.2 and 3.4 are not suitable to predict the stresses
in these disturbed areas (Section 3.3).

To investigate the tensile strength of the web, only experiments are used in which no
flexural cracks are present at diagonal tension cracking. In Section 3.5 it will be demon-
strated that flexural cracks can affect the diagonal cracking process significantly. By
considering experiments without flexural cracks, this influence is avoided. For experi-
ments without cracks, linear elastic analyses are appropriate to investigate the
distribution of the principal tensile stresses. In the current section, it is assumed that
there is no effect of bi-axial behaviour and no statistical size effect. These two phenom-
ena will be further investigated in Section 3.2.
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Experiments without flexural cracks are selected from the database on diagonal tension
cracking (Appendix A). The substantiation whether experiments are considered as ex-
periment with or without flexural cracks is given in Appendix B. Whether flexural
cracks are present is based on both the descriptions in the associated research reports
and hand calculations. The longitudinal stress in the ultimate fibre (ox) at the cross-sec-
tion of the point load is determined using a hand calculation for the load that caused
diagonal tension cracking. If o is (significantly) smaller than the flexural tensile strength
of concrete, fumg, it is assumed that no flexural cracks are present. For this selection
criterion, the flexural tensile strength is determined using Equation 3.5 (NEN 2005). In
this equation, 4 is the girder height and f.. is the uniaxial tensile strength of concrete.

h
fctm,fl = max ((1-6 - m)fctm: fctm> (35)

Sixteen experiments could be categorized as ‘experiments without flexural cracks’. This
concerns experiments of Elzanaty et al. (1986), Choulli (2005) and Hanson (1964) and
Leonhardt et al. (1973). Eleven of these experiments remained free of flexural cracks
according to both the descriptions in the associated reports and according to the hand
calculations. Five experiments are selected for which it was not reported whether flex-
ural cracks were observed before diagonal tension cracking. These experiments were
selected based on only the results of the hand calculations. Because for these experi-
ments a description was missing to confirm that no flexural cracks were present, only
experiments are selected for which oy is significantly smaller than the flexural tensile
strength of concrete (ox < 0.75 fems1). To ensure that only experiments free of flexural
cracks are considered, experiments were not selected if hand calculations resulted in the
prediction that flexural cracks should be present but the reports described that the ex-
periments remained free of flexural cracks. Appendix B lists the results of the hand
calculation, whether flexural cracks are reported and the final categorization.

Linear elastic finite element analyses are carried out for twelve experiments of Elzanaty
et al. (1986) and Choulli (2005) and two experiments of Hanson (1964). For the two
selected experiments of Leonhardt et al. (1973) no finite element analyses are carried
out (Table 3.1). The finite element analyses of the experiments of Choulli and Elzanaty
et al. are described in Kroeze (2018) and the finite element analyses of the experiments
of Hanson are described in Sugianto (2019). These reports describe how the girders are
modelled, which analyses are carried out, how the models are verified and what the
results of the analyses are. The analyses are carried out using the finite element pro-
gramme DIANA. The girders are discretised with a 2D quadrilateral plane stress
elements with a linear interpolation of the displacements. The thickness of the experi-
ment is modelled using a thickness function. To gain accurate results a mesh was used
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of 25 x 25 mm?. The reinforcing and prestressing steel are modelled as embedded rein-
forcement.

Table 3.1 Number of experiments without flexural cracks used in analyses

Elzanaty et al. (1986) Hanson  Leonhardt
and Choulli (2005) (1964) et al. (1973)

Experiments CWI1, CW2, CW4, CW5, CW8, F-1Aand TP2 and
CW13, CW14, CW16, CW17, F-1B TP4

HAPIE, HAPTE, HAP1W

Linear elastic finite element

12 2 -
analyses
Section 3.1 Experimentally 12 ) i
found tensile strength of web
Section 3.2 bi-axial behaviour 12 - -
Section 3.2 bi-axial behaviour 12 ) i

and statistical size effect

Section 3.3 disturbed areas 12 2 -
Section 3.4 aspects affecting the

accuracy for girders without 12 2 2
flexural cracks

Figure 3.2 shows an example of a finite element model of experiment HAP1E.
(Choulli 2005) The principal (tensile) stresses are determined for the load that caused
diagonal cracking.

Figure 3.2. Finite element model of experiment HAP1E (Kroeze 2018)

For the selected experiments, the maximum principal tensile stress in the web at diago-
nal tension cracking (o1max) is determined. The found distribution of the principal tensile
stresses is further analysed in Section 3.3. The tensile strength of the web is expressed
as a fraction of the uniaxial tensile strength of concrete. The uniaxial tensile strength is
derived from the cylinder compressive test even if splitting tests are available. This ap-
proach is chosen because it corresponds to the approach used in practice to determinate
the tensile strength. Moreover, Reineck et al. (2012) describe that the uniaxial tensile
strength can be accurately derived from the concrete cylinder compressive strength. This
is found by comparing the uniaxial tensile strength derived from cylinder compressive
test and the uniaxial tensile strength derived from splitting test for experiments where
both material test are carried out. Equation 3.6 is used to determine fc. for experiments
in which fon < 54 N/mm? and Equation 3.7 for experiments in which fo, > 54 N/mm?.
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This corresponds with the equations applicable for experiments as described by Reineck
etal. (2012).

Although the limit of /., = 54 N/mm? corresponds to NEN (2005), it could be considered
to use 58 N/mm? instead to prevent a discontinuity at the transition of Equation 3.6 to
3.7. This discontinuity is not present in NEN (2005) in which the relation
fem=0.30 (fon— 8)*? is used instead of Equation 3.6 and which is applicable for struc-
tures in practice (which show a larger variation of the concrete compression strength
than for experiments carried out under laboratory conditions). However, the limit of fe
= 54 N/mm? is maintained, as this corresponds to the equations proposed by Reineck et
al. (2012).

feem = 0.30 (fom — 4)?/? (3.6)

Form = 2121In(1 + fory/10) (3.7)

For fourteen experiments without flexural cracks, linear elastic finite element analyses
are carried out (Table 3.1). The maximum principal tensile stress oimax i set equal to the
maximum value for o for all points of the mesh and is listed in Appendix C. Appendix
C also lists g1max/fesm for each experiment. A mean value of gimax/ferm 1s found of 0.84. If
it is assumed that the stress distribution simulated by the finite element analyses is ac-
curate and that diagonal cracks form when the maximum principal tensile stress equals
the tensile strength of concrete, the average tensile strength of the web should corre-
spond to Equation 3.8.

fetmwep = 0.84fcem (3.8)

The found tensile strength of the web is lower than f.., which is used in NEN (2005). In
all these equations the effect of bi-axial behaviour and a statistical size effect are not
explicitly considered. These phenomena will be further investigated in Section 3.2.

The coefficient of variation of o1max/ feim 1s found to be 6.7% (Appendix C). Despite that
bi-axial behaviour and a statistical size effect are not explicitly considered, diagonal
tension cracking of girders without flexural cracks can be predicted rather consistent
using linear elastic finite element analyses.

3.2 Bi-axial behaviour and statistical size effect

The average principal tensile stresses in the web at which diagonal tension cracks form
is lower than the uniaxial tensile strength of concrete as found in Section 3.1. In literature
two possible phenomena are described that support this finding (Section 2.1.4). The first
phenomenon is bi-axial behaviour. From tests on bi-axially loaded small membranes, it
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is found that the tensile strength reduces with increasing lateral compressive stresses.
The second phenomenon is a statistical size effect. The statistical size effect concerns
the phenomenon that if a larger region of a member is subjected to high tensile stresses,
the chance of encountering a weak spot increases and the member cracks at lower prin-
cipal tensile stresses. This section investigates both phenomena.

Firstly, it is investigated whether the strength of the web can be predicted accurately
using two models from literature that describe bi-axial behaviour (which will be ex-
plained hereafter), ignoring the presence of a statistical size effect. For this investigation
the results of the finite element analyses are used. In contradiction to Section 3.1, the
analyses are not only based on the found principal tensile stress o1, but also on the lateral
principal compressive stress 2. The bi-axial strength (defined as fem,ef) is found by mul-
tiplying the uniaxial tensile strength f. (according to Equations 3.6 and 3.7) with a
factor. The first investigated model from literature is the Mohr-Coulomb approximation
as described in Section 2.1.4 (Equation 2.7). The factor used in this model is listed in
Table 3.2. According to this factor, the tensile strength reduces linearly from femmat o2 = 0
to zero at o2 = -fem. The second investigated model from literature is the empirically
relation derived by Huber (2016). This relation is also described in Section 2.1.4 (Equa-
tion 2.8, which is applicable for -0.9 < > /fom < -0.1). Also the factor used in this model
is listed in Table 3.2. According to this equation, the reduction of fc.» does not only de-
pend on o2, but also on the concrete cylinder compressive strength fo.

Table 3.2. Factors by which f.,, has to be multiplied o account for bi-axial behaviour

No bi-axial behaviour Mohr-Coulomb Approximation Huber (2016)
(Section 2.1.4) (Section 2.1.4)
o; 1 o:
1 1.0 +—= 1.6 =02 fin3 — 0.6 —
cm ﬂm
(Equation 2.7) (Equation 2.8)

To determine whether the accuracy increases using the factors from literature (Ta-
ble 3.2), the results of the twelve finite element analyses carried out by Kroeze (2018)
are considered (Table 3.1). In this study, o1 and o2 are determined for the load that causes
diagonal tension cracking for each point of the mesh. By combining these values with
fem, the values of o1/fem.e could be determined. For each experiment, the maximum of
o1/femep 18 listed in Appendix D, for both the Mohr-Coulomb approximation (Equation
2.7) and the equation found by Huber (Equation 2.8).

The results for the twelve experiments are shown in Table 3.3, Figure 3.3, Figure 3.4
and Figure 3.5. The mean value and coefficient of variation for the situation that no bi-
axial behaviour in considered deviates somewhat from Section 3.1. This deviation is
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caused by the two additional experiments that are considered in Section 3.1 (Table 3.1,
Appendix D).

Table 3.3. Statistical properties of oimax/fem.er for depending on model for bi-axial behaviour
No bi-axial behaviour ~ Mohr-Coulomb  Huber (2016)

approximation
(Equation 2.7)  (Equation 2.8)
Ulmax{f;rm,eff Mean 0.83 1.01 1.29
Coefficient of variation 5.2% 6.7% 8.2%
1.6
A
1.4
A s
1.2 ©O Uniaxial
E? : 4 Equations 3.6,& 3.7
o3 - ¢ Mohr-Coulomb
\% x - = Equation 2.7
o 1.0 ® = = e ° A Huber
[ 4 Equation 2.8
08 Goo==d=--- O © .@ ________ Fa ¥ _8 ® Equation 3.10
0.6
-0.30 -0.25 -0.20 -0.15 -0.10
3 lfom

Figure 3.3. Gimax/feimey VErsus o2/fem using feq and three models for bi-axial strength

For the considered experiments, fon varies between 41 < f.,, < 99 N/mm?, as shown in
Figure 3.4. This complies with the range found for existing bridges in the Dutch High-
ways, for which f.,, varies between 43 < £, < 84 N/mm? (Table 1.1).

Figure 3.5 shows that considered experiments o./fem varies between -0.20 < oep/fem
<-0.10. This party complies with the range for existing bridges in the Dutch Highways,
for which o,/fom varies between -0.20 < o¢p/fem < -0.04 (Table 1.1). Only for -0.10 <
oeplfem < -0.04 , for which it could be expected that the effect of bi-axial behaviour is less
significant, no experimentally data is available.

It is found that using the Mohr-Coulomb approximation (grey diamonds, dashed grey
trend line) results in Gimax/ femer of almost unity (Table 3.3). However, for high values
of o2/fem and for high values of fn, the predicted strength of the web is overestimated
(Figure 3.3 and 3.4). If the equation derived by Huber (grey triangles, continuous grey
trend line) is used it is found that the tensile strength of the web was significantly un-
derestimated (Table 3.3), especially for high values of o2/ fon (Figure 3.3) and high
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values of f., (Figure 3.4). Moreover, it was found that the consistency of the predictions
for both models slightly decreases compared to simply using the uniaxial strength and
neglecting the bi-axial behaviour (white circles, dashed black trend line in Figures 3.3
and 3.4). Based on these results, it is plausible that bi-axial behaviour is the cause that
the web cracks at principal tensile stresses below the uniaxial tensile strength, as was
found in Section 3.1. However, regarding the increase of the coefficient of variation of
the predictions, the difference cannot be satisfactorily explained by only considering the
existing models for bi-axial strength.

g 12 O Uniaxial
£ Equations 3.6 & 3.7
S ¢ Mohr-Coulomb
E 1.0 Equation 2.7
° A Huber
Equation 2.8
0.8 .
® Equation 3.10
0.6
40 50 60 70 80 90 100
o (/)
Figure 3.4. imax/femm,efr VErsus fon using femm and three models for bi-axial strength
1.6
A
1.4
A
12 o Uniaxial
% A4 Equations 3.6 & 3.7
=..§ . — ¢ Mohr-Coulomb
4 1.0 f s Equation 2.7
t-]g ) o . 3 l T T e = 9 A Huber
< Equation 2.8
. .
e AT == ———————— - Equation 3.10
08 [ §----omomors Lo ©-8 a
0.6
-0.21 -0.19 -0.17 -0.15 -0.13 -0.11 -0.09

o/ 12
Figure 3.5. oimax/feim,ef VErSUs oepl/fem using feum and three models for bi-axial strength

In the second part of this section, a statistical size effect is considered in addition to the
bi-axial behaviour as discussed in the first part of this section. An equation is derived
for the tensile strength of the web that considers both phenomena.
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The suggested equation is based on four assumptions:
1. The bi-axial behaviour is well described using the Mohr-Coulomb approximation.

2. The tensile strength is inversely proportional to the fourth root of the size (Collins,
1997).

3. This size corresponds to the length along the longitudinal axis over which the princi-
pal tensile stresses are between 90% and 100% of the maximum principal tensile
stresses (this length is defined as /,1).

4. The principal tensile stress (o1,) and principal compressive stress (o2x,) at the point at
the mid-length of /;1 and at mid-height of the points defining /,1 are representative for
the stresses at which diagonal tension cracking occurs (Figure 3.6).

The factor by which the bi-axial tensile strength has to be multiplied to consider a sta-
tistical size effect will be derived using four of the experiments that are categorized as
‘No flexural cracks present’ (Figure 3.6). For these experiments the area of the web in
which o1 is between the 90% and 100% of o1max are shown in dark grey in Figure 3.6.
The principal tensile stresses are based on the results of the finite element analyses car-
ried out by Kroeze (2018) and Sugianto (2019). The concrete tensile strength is not a
fixed value but will have a spatial variation. It is likely that diagonal tensile cracks will
initiate from the location with the lowest tensile strength. Cracks are expected in the
area associated with /,1, shown as light grey parallelograms in Figure 3.6 (which is con-
firmed by observations).

The results of finite element analyses are used to determine /5 for each of the four gird-
ers. It is assumed that the tensile strength is inversely proportional to the fourth root of
a critical size, defined as [,1. The factor for the statistical size effect is defined as (/p/l,1)"*
(Equation 3.9). The parameter /y is introduced to determine the value of /51 for which no
size effect is present. Equation 3.9 is the equation for the tensile strength feim 25 in which
both the factor for bi-axial behaviour according to the Mohr-Coulomb approximation
and the factor for a statistical size effect are combined. The parameter /) is determined
based on the four experiments by equating f.m2s and o1, at a point at the mid-length of
l»1 and at mid-height of the points defining /1 (halfway the length of the white arrows
as shown in Figure 3.6). The results are shown in Table 3.4. A mean /y was found of 710
mm from the four experiments (Table 3.4). In the derived for the tensile strength of the
web (Equation 3.10) a slightly higher value is used for /y of 750 mm (as rounded gross
value).

1
fctm,Zs = (1'0 + O'Zm/fcm ) (lo/l(ﬂ> f fetm (39)
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Figure 3.6. areas in which 0.901max < 01 < o1maxand /,1 used to derive a statistical size effect

Table 3.4. Data used for derivation of a statistical size effect factor /y

Experiment Som fom Oom 1.0 + 2z Somefy Om _Jim It Iy
’ fem ' fctm,eff

N/mm®> N/mm’ N/mm?’ - N/mm®>  N/mm’ - mm mm
HAP1W 99.2 5.07  -13.7 0.86 4.36 3.81 0.87 1075 620
CW8 41.4 335  -11.5 0.72 2.42 2.59 1.07 680 890
CW1 76.6 458 -15.7 0.79 3.64 4.35 1.20 410 840
F1A 47.0 3.68 -9.7 0.79 2.93 3.37 1.15 270 480
Mean 710

famas = (10+%m/, (750, )" (3.10)
ctm,2s — . /fcm /la'l fctm :
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To investigate whether the strength of the web can be predicted more accurately if both
bi-axial behaviour and a statistical size effect are considered, o1max/feim,2s 1S determined
for all of the 14 experiments without flexural cracks for which linear elastic finite ele-
ment analyses are carried out (Table 3.1). The area in which the principal tensile stress
are higher than 90% of the maximum principal tensile stress, /51, o1, and o2, are deter-
mined in the same way as for the four experiments of Figure 3.6 that were used to derive
lo. The tensile strength of the web is determined from Equation 3.10. The results for the
fourteen experiments are shown in Appendix D, Figure 3.3, Figure 3.4 and Figure 3.5
(black circles and a continuous black trend line).

Table 3.5 compares the results of the derived equation for the tensile strength of the web
(Equations 3.10) and the results of using the uniaxial tensile strength of concrete. It is
found that both the mean value and the coefficient of variation significantly improves if
a statistical size effect and bi-axial behaviour is considered. Moreover, the predictions
were found to be consistent for the considered ranges of o2/ fon (as found from Figure
3.3) and fon (as found from Figure 3.4).

Table 3.5. Statistical properties of gimax/ fem for bi-axial behaviour and a statistical size effect

Sfetmweb femn (Equations 3.6, 3.7) femn,2s (Equations 3.6, 3.7, 3.10)
Statistical size effect no yes
Bi-axial behaviour no yes
Oimax/fern ~ Mean 0.84 1.01
Coefficient of variation 6.7% 2.3%

As the derived tensile strength is found to result in particular accurate predictions, it is
not necessary to further reconsidered the four assumptions that are used to derive Equa-
tion 3.10. In Section 3.1 it was found that the tensile strength of the web is about 84%
of the uniaxial tensile strength. The difference can satisfactorily be explained by consid-
ering both the bi-axial strength and a statistical size effect.

In the current section the principal stresses are determined numerical and only for gird-
ers without flexural cracks. Sections 3.4 and 3.5 investigate the accuracy of the predicted
resistance, without considering bi-axial behaviour and a statistical size effect, when the
principal stresses are analytical determination, for girders both with and without flexural
cracks. Based on the results of Section 3.4 and 3.5, and some additional considerations,
bi-axial behaviour and a statistical size effect will not be part of the models proposed
models in Chapter 4. This is further argued in Chapter 4.
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It is noted that it could also be considered to relate the tensile strength to the size ‘sur-
face’ or “volume’. This is not further investigated considering the consistent predictions
of Equation 3.10".

3.3 Principal tensile stresses in disturbed areas

In this section the disturbed areas are analysed. The distribution of the principal stresses,
as found from the finite element analyses for experiments without flexural cracks (Sec-
tion 3.2) will be further evaluated. Subsequently the results of the finite element analyses
are compared to the results of the analytical equation which derives the maximum prin-
cipal tensile stress from the cross sectional forces using Equations 3.1, 3.2 and 3.4.
Finally, it is evaluated if it is possible to approximate the results of the finite element

! In a recent research the ‘cracking size effect’ has been investigated (Bentz 2019, Bentz 2020).
The ‘cracking size effect’ is a synonym for the ‘statistical size effect’ as used in this dissertation.
The recent research reveals that it is possible to relate the cracking strength of concrete to the
volume within which the tensile stress is at least equal to 85% of the maximum value (the
Highly Stressed Volume, abbreviated as HSV). This relation is referred to as the “unified tension
model’. The model is justified with 511 tension tests, consisting of flexural tests, direct tension
tests, split cylinder tests and shells. The ‘unified tension model’ relates the tensile strength to
the highly stressed volume, which seems in contrast to the derived model in this dissertation
(Equation 3.10). In Equation 3.10, the tensile stress is related to a length along the longitudinal
axis, related to an highly stressed surface. It is however noted that no diagonal tension tests with
girders were used to justify the unified tension model. A possible reason for the difference be-
tween both models, is whether a significant gradient of the (principal) tensile stresses is present
in the associated tests. For direct tensile tests, split cylinder tests and the shell tests, the stresses
are uniformly distributed over the whole highly stressed volume and no redistribution is possi-
ble when at the weakest spot the tensile stress is equal to the tensile strength. For diagonal the
tension test on girders, on the other hand, the principle tensile stress is only locally equal to the
tensile strength, and the area around the weakest spot can resist additional stresses. This could
potentially postpone diagonal tension cracking. The possibility to redistribute stresses could be
a possible explanation for the difference between both models. It is noted that the model derived
in this dissertation (Equation 3.10) also takes into account the conditions that the principal com-
pressive stress differs in every spot of the highly stressed surface. In the tests for the unified
tensile model, on the other hand, a constant value could be assumed for a2/fn for each type of
tests (0-10%, which was significantly lower than 14-28% found for the diagonal tension tests
on girders). It is not yet clear how the different values of the principal compressive stress should
be taken into account when the unified tensile model is applied. These conditions currently
complicate a direct application of the ‘unified tension model’ for the prediction of diagonal
tension cracking.
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analyses by limiting the considered area around the concentrated loads for which the
maximum principal stress are determined using Equations 3.1, 3.2 and 3.4 (Figure 3.7).

Figure 3.7 shows girder HAP1E of the Choulli test series (Choulli 2005). The relation
between the cross sectional forces and the distribution of the principal tensile stresses,
based on Equations 3.1, 3.2 and 3.4, is already described in Section 2.1.3. The principal
stress distribution can be exemplified by only considering the principal stress distribu-
tion along the axis that coincides with the intersection of the top flange and the web, the
centroidal axis and the axis that coincide with the intersection of the web and the bottom
flange. These considered axes are shown in Figure 3.7.

Ox < f;zﬂ

1.6
1.8

Cross bedtion atjx +

ange-and

L - Distance from support 0= fup
Figure 3.7. Location of considered axis, cross-sections and areas of experiment HAP1E

Figure 3.8 shows the distribution of the principal tensile stresses along each defined
axis. The continuous black lines show the principal tensile stresses as found from the
finite element analyses. The dashed lines show the principal tensile stresses as found
from the cross sectional forces using Equation 3.1, 3.2 and 3.4.

Intersection top flange and web Centroidal axis Intersection bottom flange and web
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Figure 3.8. Distribution of o1 along defined axes determined both numerical and analytical

It appears that at the location of the concentrated forces (support plate at x = 0 m and
loading plate at x = 2.1 m) the principal tensile stresses are significantly overestimated
using Equation 3.1, 3.2 and 3.4. It also appears that in the middle region (the areas which
are not ‘disturbed”) the principal tensile stresses are more accurately approached using
Equation 3.1, 3.2 and 3.4.
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To further investigate the cause of the deviation, a cross-section in the disturbed area is
considered at a location 300 mm from the point load, at x = 1.8 m (Figure 3.7). The
distribution of the longitudinal stresses oy, the vertical stresses o, the shear stresses z
and the resulting o1 along the cross-section (z direction) are shown in Figure 3.9. The
stresses are shown both as result of the finite element analyses (dots) and derived from
the cross sectional forces using Equations 3.1, 3.2 and 3.4 (continuous line).
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Figure 3.9. ., 0., T and g along cross-section at x = 1.8 m

In Table 3.6, the principal tensile stresses are more extensively compared at x = 1.8 m,
at the location of z in which the maximum value of o1 is found (black dots in Figure 3.9).
As shown in Table 3.6, the principal tensile stress is significantly overestimated using
Equations 3.1, 3.2 and 3.4 compared to the principal tensile stresses found from the finite
element analyses (which are considered as accurate). Using Equation 3.2 results in an
overestimation of the longitudinal stresses (Figure 3.9). A higher longitudinal stress (less
compression) results in a higher principal tensile stress (Equation 3.3). This is the first
cause of the overestimation of o1 by the analytical equations. Equations 3.4 conserva-
tively neglects any contribution of the vertical stresses (Section 2.1.2). Figure 3.9 shows
that, at the considered location, a negative (compression) vertical stress is present that
will result in a lower principal tensile stress (Equation 3.3). This is the second cause of
the overestimation of o1 by using the analytical equations. Using Equation 3.1 also re-
sults in an overestimation of the shear stresses. A higher shear stress results in a higher
principal tensile stress (Equation 3.3). This is the third cause of the overestimation of o1
by using the analytical equations. All three causes were found to have a comparable
contribution to the overestimation of | for the considered girder.
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Table 3.6. 0., 0-, rand gy at x = 1.8 m and 1.6 m at the intersection of web and bottom flange

X Oy o: T o1
m N/mm?  N/mm? N/mm?  N/mm?
Finite element analyses 1.80 -7.05 -0.90 5.81 2.60
Analytical Equations 3.1, 3.2 and 3.4 1.80 -5.30 0.00 6.69 4.55
Finite element analyses 1.65 -7.76 -0.38 6.51 3.41
Analytical Equations 3.1, 3.2 and 3.4 1.65 -6.17 0.00 6.70 4.29

Apparently, the principal tensile stresses are overestimated around the disturbed area if
Equations 3.1, 3.2 and 3.4 are used. The finite element analyses demonstrate that the
maximum principal tensile stress is not located in an area close to the support (Fig-
ure 3.8). If the stresses are considered further away from the support the stresses
determined with analytical equations correspond better with the stresses determined
with the finite element analyses (Figure 3.8). Therefore, the analytical equation could
still be suitable to predicted the maximum principal tensile stresses under the condition
that an area around the support is not considered. This is a logical approach because the
maximum principal tensile stress is not located close to the support (Figure 3.7). This
approach corresponds to the Eurocode (NEN 2005) and the Model Code 2010 (fib 2012),
that prescribe that the principal tensile stresses do not have to be considered for cross-
sections closer to the support than the point that is the intersection of the elastic cen-
troidal axis and a 45° inclined line from the inner edge of the support (Figure 3.7).
Whether this definition of the ‘not critical area’ results in accurate predictions of the
maximum principal tensile stress is evaluated. For the evaluation, the prescribed area is
assumed to be applicable for both the support and the concentrated load. These areas are
shown in Figure 3.7 in dark grey. As a consequence, the maximum principal tensile
stress will only be based on the principal tensile stresses in the light grey area.

Firstly, the suggested dimensions of the ‘not critical area’ is evaluated by reconsidering
the stress distribution of girder HAP1E. Table 3.6 shows the stresses at the intersection
of the bottom flange and the web for the location x = 1.65 m which corresponds to the
edge of the area that has to be considered as described by NEN (2005) and fib (2012).
As appears from Table 3.6, the predictions of the longitudinal stress and the shear stress
according to the Equations 3.1 and 3.2 are more similar to the stresses found from the
finite element analyses, although the equations still slightly overestimate the stresses.
Also the absolute value of the vertical stress is less at x = 1.65 than at x = 1.8 m, although
still significant. As a consequence, the principal tensile stress is still overestimated at
this location (o1 = 4.29 N/mm? instead of 3.41 N/mm?). However, according to the finite
element analyses the maximum value of g1 was located at a cross-section further away
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from the concentrated load. According to the finite element analyses the maximum prin-
cipal tensile stress oimax = 4.19 N/mm?, which is just slightly less than the value found
using Equations 3.1, 3.2 ad 3.4 at x = 1.65 m (o1 = 4.29 N/mm?).

Secondly, the suggested dimensions of the ‘not critical area’ is evaluated by considering
the fourteen experiments for which linear elastic finite element analyses are carried out
(Table 3.1). For these experiments o7 is determined using Equations 3.1, 3.2 and 3.4,
and g1max equals the maximum of o in the web (light grey area in Figure 3.7). These
values for o1max are compared to oimaxaccording to the finite element analyses (Appendix
C). The last column of Appendix C shows that the mean value of the ratio o1max according
to Equations 3.1, 3.2 and 3.4 and o1max according to the linear elastic finite element anal-
yses equals 1.06, with an associated coefficient of variation of 2.9%. It was found that
the assumed dimensions of the ‘not critical area’ results in a rather accurate prediction
of oimax. Despite the significant deviations of o1 in the areas close to the point loads,
Equations 3.1, 3.2 and 3.4 are still found to be rather suitable to predict the maximum
o1, if the considered area is limited to the light grey area shown in Figure 3.7. This is
relevant as it avoids extensive finite element analyses in practice. However, it is empha-
sized that this is only demonstrated for girders that remain free of flexural cracks (in
which g < fom s both at the support and at point load). Section 3.5 will demonstrate that
this approach is not suitable in areas where the point loads causes flexural cracks in the
flanges of the girder (ox > fom ).

If a distributed load, or a combination of a distributed load and a point load are applied,
the shear stresses will increase toward the support. This phenomenon is not included in
the considerations of this section. On the other hand, neglecting the vertical stresses will
still result in an overestimation of the principal tensile stress at the critical spot using the
analytical equations, also for distributed load. Moreover, determining the longitudinal
stress using the analytical equations will, also for distributed loads, result in an overes-
timation of the principal tensile stress. Nevertheless, the difference in loading conditions
will be a reason to include some conservatism when the design value for the eventually
proposed model is derived for girders without flexural cracks (Section 4.3). This is be-
cause distribution of the shear stresses in bridges is, due to the presence of distributed
loads, less favourable, compared to the experiments used to derive the design value,
which were loaded with concentrated loads.

3.4 Aspects affecting the accuracy for girders without flexural cracks

This section only concerns girders without flexural cracks for which a model will be
proposed in Section 4.1. This section investigates the effect on the accuracy when the
maximum principal tensile stresses o1max is based on o1 along the centroidal axis instead
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of o1 over the web area. The effect is investigated by comparing accuracy of the predic-
tions according to both models, using the experimentally found load that caused
diagonal tension cracking (Figure 3.1). The maximum principal tensile stress oimax 1S
determined using Equations 3.1, 3.2 and 3.4. for the 16 experiments without flexural
cracks (Table 3.1), both for the model considering o1 over the (light grey) web area and
for the model that considers a1 only along the centroidal axis (Figure 3.7). The maximum
principal tensile stresses are compared to the uniaxial tensile strength. The results are
listed in Appendix C (‘Maximum o1 in the web’ and ‘Maximum o1 along the centroidal
axis’). When the experimental results are used to determine the mean value of a pro-
posed models, only the coefficient of variation will be relevant for the judgement of
which model is the most accurate. The results are shown in Table 3.7.

Table 3.7. Effect of considered area for oimax 0n the statistical properties of oimax/feim

Maximum o in the web Maximum o in the along
the centroidal axis
Number of experiments 16 16
Oimax/fern ~ Mean 0.89 0.79
Coefficient of variation 5.2% 11.8%

As appears from Table 3.7, the most accurate predictions are found if o1max is based on
o1 over the web area. This approach will therefore be used in the proposed model for
girders without flexural cracks in Section 4.1. In this section a assuming tensile strength
of the web feum,wer Will be assumed of 0.89fc». By assuming a tensile strength of the web
0f 0.89fim, the mean value of o1/fem,we» for the 16 considered experiments becomes unity.
The proposed tensile strength of the web is somewhat higher than the value 0.84f.n
found in Section 3.1. This corresponds to the finding of Section 3.3, that o1max iS average
6% higher according to Equations 3.1, 3.2 and 3.4 than according to the finite element
analyses (Appendix C).

If o1max Would be based on o1 along the centroidal axis, a strength of the web feumwes
should be assumed of 0.79f... This value is somewhat lower than the value 0.84fcn
derived in Section 3.1. If the oimax is located at another location than the centroidal axis,
which will be generally the case (Section 2.1.3), then this model will lead to an under-
estimation of oimax. This explains the lower value of fum wer Which should be assumed
when this model is used. The coefficient of variation significantly increases compared
to the model that considers o1 over the entire height of the web (light grey area in Figure
3.6). This difference will be explained using the results of the experiment TP2 of Leon-
hardt for which o1/fesn is shown in Figure 3.10. The principal tensile stress o1 is
determined from the cross sectional forces using Equations 3.1, 3.2 and 3.4. As shown
in Figure 3.10, a maximum value for o1 is found at intersection of the top-flange and the

58



web. This value (0.81f.) is significantly higher than the maximum of o along the cen-
troidal axis (0.55fcm). Therefore, it is plausible that the formation of diagonal tension
cracks is initiated around the location at which a1 = 0.81f:. If o1max Would have been
only based on o1 along the centroidal axis, the resistance to diagonal tension cracking
would have been underestimated significantly. Therefore, the model that is proposed in
Section 4.1 considers o1 over the complete height of the web (light grey area of Figure
3.6) instead of only at the centroidal axis.
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Figure 3.10. 0imax/ fem at the load causing diagonal tension cracking for experiment TP2

3.5 Aspects affecting the accuracy for girders with flexural cracks

In the previous sections, the resistance to diagonal tension cracking of girders without
flexural cracks is investigated. Determining the maximum principal tensile stress for
these girders from linear elastic analyses is rather indisputable. As the effect of flexural
cracks on cracking process was not present, experiments on girders without flexural
cracks were suitable to investigate the effect of bi-axial behaviour, a statistical size effect
and the distribution of principal tensile stresses around concentrated loads. Also for gird-
ers with flexural cracks it is common to determine the maximum principal tensile stress
in the region without flexural cracks using Equations 3.1, 3.2 and 3.4. These equations
assume a linear elastic stress distribution in the regions without flexural cracks, not dis-
turbed by flexural cracks. For girders with flexural cracks this assumption is disputable.
Flexural cracks at the edge of the region without flexural cracks can affect the stress
distribution in regions without flexural cracks (Leonhardt et al. 1973). Moreover, as will
be explained later in this section, flexural cracking itself could initiate diagonal tension
cracking in the regions without flexural cracks.

The effect of flexural cracks on diagonal tension cracking is investigated using experi-
ments from the diagonal tension cracking database (Section 2.2) with flexural cracks.
The method to determine whether flexural cracks are present is already described in
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Section 3.1 (and listed in Appendix B). As explained in Section 3.1, 16 of the 70 exper-
iments in the diagonal cracking database were categorized as ‘girders without flexural
cracks’ (these are used for the analyses in Sections 3.1 to 3.4). In this section, experi-
ments will be used in which flexural cracks were present at diagonal tension cracking
(Appendix B). Of the 70 experiments in the diagonal cracking database 43 were catego-
rized as ‘girders with flexural cracks’. To ensure the right categorization, only
experiments were categorized for which hand calculations and the observations corre-
spond. For 11 experiments, the calculations and observations did not match and these
experiments were categorized as ‘Unknown’(Appendix B) and were not further used for
the analyses in the current section.

This section will illustrate that for a part of the experiments with flexural cracks, diago-
nal tension cracking were initiated by flexural cracks. To relate the experiments to
whether a flexural crack caused diagonal tension cracking, the experiments are catego-
rized in three types of diagonal tension cracking, based on a method that will be
explained further in this section (Appendix E):

— type a: no flexural cracks are present (these correspond to the ones in Appendix B,
these are not further used in this section, but included for completeness)

— type b: flexural cracks are present but these flexural cracks did not cause diagonal
tension cracking

— type c: flexural cracks are present and these flexural cracks caused diagonal tension
cracking.

Cracking type b will now be discussed. Even if flexural cracks are present, diagonal
cracks can form independently of the formation of these flexural cracks. In other words,
flexural cracks are present but do not cause diagonal tension cracking. An example for
this type of diagonal tension cracking is shown in Figure 3.11, for the end part of the
simply supported girder of experiment F2-B of Hanson (1964).

115 139 i
] T
i ll Flexural crack

No flexural cracks predicted o, =f.y Flexural cracks predicted

Figure 3.11. 0imax / fem at the load causing diagonal tension cracking for experiment F2-B
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The regions with and without flexural cracks are predicted for the load that causes diag-
onal tension cracking and these are shown in this figure by the condition ox = feim.
Figure 3.11 shows that the observed flexural crack is indeed located in the region in
which flexural cracks are predicted. From Figure 3.11 it also appears that the diagonal
tension cracks did not form in the vicinity of the flexural crack. This is an indication that
the diagonal cracking was not caused by the formation of the flexural crack. This figure
also shows o1 / fam along three axis: the intersection of the top flange and the web, the
centroidal axis and the intersection of the web and the bottom flange. The principal ten-
sile stresses o1 are determined at load that causes diagonal tension cracking using
Equations 3.1, 3.2 and 3.4. Although it is unclear what point is responsible for the initi-
ation of the diagonal tension crack, it is clear that the principal tensile stress are
significant over a large part of the web. The significant principal tensile stresses and the
distance of the observed flexural crack to the diagonal tension crack makes it plausible
that the stress condition in the web it selves caused diagonal tension cracking.

The 43 experiments with flexural cracks (Appendix B) are categorized as ‘type b’ if two
conditions are met: (i) From the observations (a cracking pattern or a photo) it is clear
that diagonal tension cracks did not form in the vicinity of a flexural crack and (ii) from
calculations (Equations 3.1, 3.2 and 3.4) it is found that the principal tensile stresses are
significant in the web (close to the strength of the web). It was found that 12 of the 43
experiments meet both these conditions (Appendix E).

Cracking type ¢ will now be discussed. The formation of a flexural crack can be the
cause for diagonal tension cracking. An example for this type of diagonal tension crack-
ing is shown in Figure 3.12, for the continuously supported girder of experiment SR25
reported in Rupf et al. (2012). This figure presents the region between the point of con-
traflexure and the middle support. The regions with flexural cracks is predicted using
the condition ox = feum, and the regions are shown in Figure 3.12. This figure shows that
the observed flexural cracks are indeed closely related to this predicted region.
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Figure 3.12. 0imax / fom at the load causing diagonal tension cracking for experiment SR25
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Before diagonal tension cracks formed, only the shallow flexural crack straight above
the middle support was present (described as ‘Flexural crack 1’ in Figure 3.12). At the
load that causes diagonal tension cracking, the other flexural cracks (described as Flex-
ural cracks 2 and 3 in Figure 3.12) and the diagonal cracks formed at once at the same
load step (this finding is based on drawings of the cracks at each load stage combined
with strain measurements of the stirrups). Figure 3.12 shows that diagonal tension cracks
form directly below Flexural crack 3. This is an indication that the diagonal cracking
was caused by the formation Flexural crack 3. Figure 3.12 shows o1 /fum, in which a; is
determined from Equations 3.1, 3.2 and 3.4. The distribution of this ratio shows that the
principal tensile stresses are significantly lower than the tensile strength of the web, over
almost the entire web. Despite the low principal stresses in the web, diagonal tensile
cracks formed in the entire considered part of the girder. It is plausible that flexural crack
3 caused an increase in the principal tensile stresses in the web below, which triggered
the diagonal tension crack. This makes it plausible that the flexural crack caused diago-
nal tension cracking of the web.

The 43 experiments with flexural cracks are categorized as type c if two conditions are
met: (i) From the observations (a cracking pattern or a photo) it is clear that diagonal
tension cracks form in the vicinity of a flexural crack and (ii) from calculations it is
found that the principal tensile stresses are rather low in the web. It was found that 25
of the 43 experiments meet both conditions (Appendix E).

Apparently, the principal tensile stress distribution, predicted using Equations 3.1, 3.2
and 3.4, is affected by the formation of flexural cracks. It is investigated whether the
model as proposed in Section 3.4 is still suitable to predict diagonal tension cracking for
the experiments categorized as crack types b and ¢ (Appendix E). To investigate this,
the web area without flexural cracks are considered (light grey areas in Figure 3.13).
This includes the cross-section at which gx = fem. In this cross-section the principal
tensile stress in the web will be maximum at the intersection of the tensile flange and
the web. At this point, the longitudinal stresses will be lower than in the ultimate fibre.
The value of principal tensile stress at this point also depends on the magnitude of the
shear stresses. The higher the principal tensile stress is at this point, the more likely it is
that the flexural cracks will trigger diagonal tension cracking in this point. When this
point is also considered (light grey areas of Figure 3.13), the model could potentially be
suitable to predict diagonal tension cracking, also if diagonal tension cracking is caused
by flexural cracks (crack type c). This will now be evaluated.

In the regions of Figure 13 with flexural cracks, flexural shear is assumed to be govern-
ing and in the regions without flexural cracks, diagonal tension cracking. Figure 3.13
show the areas in which o1 were considered to determined oimax (light grey areas). In the
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dark grey area at the support, the principal tensile stresses are not considered, as de-
scribed in Section 3.3. For all of the 70 experiments, the light grey regions are
determined and subsequently the maximum principal tensile stresses in these regions are
determined at the load causing diagonal tension cracking (using Equations 3.1, 3.2 and
3.4). The found values for imax, and o1max / fem, are listed in Appendix E. Only the results
for the experiments that could clearly be categorized as cracking types a, b and c are
further considered.
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Figure 3.13. Proposed model for the resistance to diagonal tension cracking

Table 3.8 summarizes the statistical properties per cracking type as found from Appen-
dix E. The statistical properties for the 16 experiments without flexural cracks
correspond to Table 3.7 and are included for completeness and as reference. The mean
values found for oimax / fem for cracking type b and c are higher than that of cracking
type a. As the tensile strength of the concrete is not affected by type of cracking, the
higher ratios will be caused by an overestimation of oimax. For cracking type b and c, the
coefficient of variation is found to be higher than for cracking type a. This indicates that
diagonal tension cracking is less accurate to determine if flexural cracks are present.

Table 3.8. Statistical properties of oimax/femn depending on type of diagonal tension cracking

No flexural Flexural cracks present
cracks (Section 3.5)
(Section 3.4)
Type of diagonal Diagonal tension Diagonal tension Total
tension cracking cracks not caused cracks caused
by flexural cracks by flexural cracks  (typeb &
(type a) (type b) (type ¢) type ¢)
Number of 16 12 25 37
experiments
Mean o'1max/fem 0.89 1.12 0.96 1.01
Coefficient of varia- 5.2% 7.6% 10.9% 12.3%

tion o max/chrm

The proposed model for girders with flexural cracks in Section 4.2 will therefore assume
a tensile strength of the web feim we» Of 1.01f.m. By assuming a tensile strength of the web
of 1.01fm, the mean value of a1/feum, we» for the 37 considered experiments becomes unity.
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This assumed value for the tensile strength of the web is higher than the one proposed
for girders without flexural cracks (which was 0.89f.m, Section 3.4). Apparently, the
principal tensile stresses are somewhat overestimated for girders with flexural cracks.
This overestimation can be compensated by assuming a higher tensile strength of the
web. It is not necessary to make a distinction between whether diagonal tension cracks
are caused by flexural cracks or not (between crack types b and c¢). Hence, with a coef-
ficient of variation of 12.3% it is possible to rather accurately predict the resistance to
diagonal tension cracking for girders with flexural cracks.
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4

Proposed models for diagonal tension cracking

The current chapter describes the analytical models that are proposed to determine the
resistance to diagonal tension cracking. The proposed models are based on the results of
the analyses of Chapter 3. Also an overview is given of simplifications that are regarded
as acceptable considering the accuracy found. Moreover some points of attention are
enumerated that should be considered when determining the maximum principal tensile
stress. Section 9.3 provides further guidance on the application of the models for engi-
neering practice.

This chapter proposes two different models for diagonal tension cracking. Section 4.1
proposes a model for girders without flexural cracks, referred to as ‘model A1’. Section
4.2 proposes a model for girders with flexural cracks, referred to as ‘model A2’. Section
4.3 derives the design value for the proposed models, for a target reliability, that can be
used in engineering practice. Because the design values of both models do not differ
much, the most conservative value is chosen to be applicable for both models. As a
result, it is possible to use one model to predict the resistance to diagonal tension crack-
ing in engineering practice, Model A, regardless of whether flexural cracks are present.

The models that are proposed assume that diagonal cracks form in the web of a pre-
stressed girder if the maximum principal tensile stress equals the derived tensile strength
of the web. The models are applicable for both simply and continuously supported pre-
stressed girders.

Equations from previous chapters are repeated (and renumbered) to make this chapter
more self-contained.

4.1 Model Al: girders without flexural cracks

The analytical model proposed to determine the resistance to diagonal tension cracking
for girders without flexural cracks is referred to as ‘model A1’ and is shown in Figure
4.1. Figure 4.1 also shows how the analyses of Chapter 3 are used in the proposed model
by referring to the relevant sections.
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Figure 4.1. Model A1 —diagonal tension cracking for girders without flexural cracks

For girders without flexural cracks, in which no flexural cracks or flexural shear cracks
are present, sufficient resistance to diagonal tension cracking is present if the maximum
principle tensile stress in the web o1max is smaller than 0.89f:» (Equation 4.1). If a diag-
onal tension crack forms, a girder without (sufficient) stirrups is considered as failed
(Section 2.1.1).

O1max < 0-89fctm (41)

The fraction of 0.89 corresponds to the average ¢imax / fern found from back calculations
of experiments at the load that causes diagonal tension cracking (Section 3.4, Table 3.7).
The maximum principal tensile stress oimax should be based on the maximum of o1 in
the light grey regions of Figure 4.1.

Principal tensile stresses can be determined using Equation 4.2.

2

In Equation 4.2, 0x(z) is the normal stress in the longitudinal direction and z(z) is the
shear stress, both determined assuming a linear elastic stress distribution. For monolithic
structures, ox(z) can be determined by Equation 4.3, and 7(z) by Equation 4.4. In these
equations z is the considered distance from the centroidal axis, /. is the second moment
of area, Sc(z) is the first moment of area, 4. is the area of the concrete cross-section and
bw(z) is the width of the web.

0, (2) = % + MIE z (4.3)
VESC(Z)
e 9

The maximum principal tensile stresses oimax should be based on a1 over the height of
the girder (light grey area of Figure 4.1). When, as a simplification, gimax would have
been based on o1 along the centroidal axis, the consistency of the predicted resistance to
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diagonal tension cracking decreases significantly (Section 3.4). This simplification is
therefore not used in model Al.

Around the support of a simply supported girder, oimax is located outside the dark grey
region as shown in Figure 4.1. This region is defined by a vertical line through the point
that is the intersection of the elastic centroidal axis and the 45° inclined line from the
inner edge of the support. This dark grey region is not critical because of the presence
of o, which is neglected in Equation 4.5, and the favourable distributions of o, and
(Section 3.4). It is noted that simply supported girders are designed in a way that the
moment due to prestressing will not cause flexural cracks in the ultimate fibre at the top
flange at the girder ends. If this is the case, the condition o, < fems Will automatically be
met at the girder ends. Also the cross-section above the intermediate support could re-
main free of flexural cracks. If this is the case, the same considerations are applicable as
for the end support. Therefore, if the condition oy < fom s 1s met, it is also for the inter-
mediate supports not necessary to consider the principal tensile stresses in the dark grey
region as shown in Figure 4.1.

Equation 4.3 shows that ox(z) depends on Mg (Equation 4.6). Therefore, also o1 depends
on Mg (Equation 4.5). In engineering practice, it is often unclear if a load combination
that results in a maximum Vg will also cause the highest o1max. Therefore, different load
combinations should be considered to determine o1max (Hegger et al. 2015).

Model Al uses the following assumptions which makes it possible to assess bridges in
a rather simple way:

— Diagonal cracks form at the instant the maximum principal stress equals the tensile
strength of concrete.

Bi-axial behaviour of concrete is not considered.

A statistical size effect is not considered.

— The presence of stirrups does not affect the resistance to diagonal tension cracking.

The longitudinal and shear stresses are determined from the cross-sectional properties
of concrete 4., Sc(z) and I, and the effect of the stiffness of the reinforcing and pre-
stressing steel on these stresses is not considered.

Considering the high accuracy of the predicted resistances, the effect of these assump-
tions on the predicted resistance is limited.

The model assumes that diagonal cracks form at the instant the maximum principal
stress equals the tensile strength of concrete. In a nonlinear finite element analyses
(Slobbe et al. 2017), it was found that diagonal tension cracks did not directly form at
the instant that the tensile strength of the concrete is reached at one location. This is
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because, at the load step before diagonal tension cracking, the principal tensile strains
already exceeded the tensile strain associated with the tensile strength. Apparently some
redistribution occurred. Due to tension softening, the tensile strength does not immedi-
ately drop to zero. However, as the proposed model is found to be accurate there is little
reason to further investigate this possible effect of redistribution.

As described in Section 3.2, the tensile strength depends on the lateral principal com-
pressive stresses (bi-axial behaviour). If the level of prestressing increases, o¢p/fem
decreases, consequentially o»/fn decreases and also the tensile strength decreases due to
bi-axial behaviour (Equation 2.7). As a consequence, diagonal tension cracking will oc-
cur at a lower principal tensile stress. However, bi-axial behaviour is already implicitly
considered by assuming a tensile strength of the web of 89% in the proposed model.
Moreover, it is likely that 0.89f. is an upper bound for bridges in practice. For existing
bridges in the Dutch Highways (designed with a design code before 1974, Table 1.1)
ocplfem varies between -0.20 < o¢p/fem < -0.04. For the experiments considered to derive
feimweb, Ocplfem varies between -0.28 < op/fem < -0.13. For bridges in practice it is also
likely that areas with high principal tensile stresses will be rather small and will not
significantly affect the resistance to diagonal tension cracking?. Therefore, and given the
accuracy found (Table 3.8), bi-axial behaviour and statistical size effect are no part of
the proposed model. Besides, bi-axial behaviour and size effect can be considered by
applying Equation 3.10 (Section 3.3) if for a specific structure there is still reason to
consider these phenomena.

For girders without shear reinforcement, diagonal tension cracking is a brittle failure
mode in which the girders are not able to redistribute the stresses after cracking. There-
fore, all phenomena that could affect the principal tensile stress should be considered.
Depending on the type of structures and whether the structure is post-tensioned or pre-
tensioned, the following points of attention should be considered when determining
maximum principal tensile stress:

— If the considered structures consist of both a precast part and a cast in-situ part, the
construction phases should be taken into account. Moreover, the different moduli of
elasticity of both parts should be considered.

2 Arecent research, in which the ‘cracking size effect’ has been investigated (Bentz 2019, Bentz
2020), shows that a lower bound of the cracking size effect is found for 30 litres of the Highly
Stressed Volume (HSV). This HSV is defined as the volume within which the tensile stress is
at least equal to 85% of the maximum value. For higher volumes of the HSV, the cracking
strength does not further reduce. This lower bound is found by considering the results of nu-
merous tension tests. This is an additional argument for not considering the statistical size effect
for the structural assessment of existing bridges.
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— If the equations are applied for cross-sections within the transmission length of the
structure, both ox(z) and 7(z) should be determined considering the prestress is not
fully introduced. Equations for this application can be found in fib (2012), numbered
as 7.3.46 and 7.4-47.

— Areduction of b,(z) should be considered to account for the risk that the ducts are not
fully grouted for post-tensioned structures. An equation for this application can be
found in NEN (2005), numbered as 6.16.

— The effects of imposed deformations should be considered (temperature, support set-
tlement, shrinkage and creep).

— The effects of transverse bending should be considered.

Especially the regions on both sides of the mid support, imposed deformations could
affect the maximum principal tensile stress. Section 9.3.1 describes further considera-
tions for the application of the proposed models for these support conditions.

4.2 Model A2: girders with flexural cracks

The analytical model proposed to determine the resistance to diagonal tension cracking
for girders with flexural cracks is referred to as ‘model A2’ and is shown in Figure 4.2.
Figure 4.2 also shows how the analyses of Chapter 3 are used in the proposed model by
referring to the relevant sections.

Considered height and width to 0y = fotmgpt Oy = fotmp

"« x
determine o, ., Section 3.5 . . [ .
Imax Diagonal tension ! Flexural shear ! Diagonal tension

& :
Not ! P N
ritical | @1 < 1OV N P e <71,~01fcm
TDiagonal tension i Flexural shear i Diagonal tension T
0= fomp 0= fomp Value of 1.01f,,,, based on statistical

properties of o, /f..,, Section 3.5.
Figure 4.2. Model A2 —diagonal tension cracking for girders with flexural cracks

Model A2 is only applicable for the regions of the girders with flexural cracks (Figure
4.2), that remain free of flexural cracks (light grey areas in Figure 4.2). The regions
without flexural cracks are limited by the condition ox < fums . For regions in which
flexural cracks are present, diagonal cracks will develop from these flexural cracks.
These regions are shown white in Figure 4.2. The resistance to flexural shear cracking
should be based on appropriate resistance models. This is further explained in Section
9.3.1, in which the equations given by the Eurocode (NEN 2005) are used as an example
of how to determine the shear resistance in the regions with flexural cracks.
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For girders with flexural cracks, sufficient resistance to diagonal tension cracking is
present if the maximum principle tensile stress oimax is smaller than 1.01f.. (Equation
4.5).

Oimax < 1.01f¢em 4.5)

The fraction of 1.01 corresponds to the average gimax / fern found from back calculations
of experiments at the load that causes diagonal tension cracking (Section 3.5, Table 3.8).

Just like for model A1, the maximum principal tensile stresses oimax should be based on
o1 over the height of the girder (light grey area of Figure 4.2). When, as a simplification,
o1max Would have been based on o1 along the centroidal axis, the consistency of the pre-
dicted resistance to diagonal tension cracking decreases significantly (Section 3.5). This
simplification is therefore not used in model A2.

Figure 4.2 shows the regions with flexural cracks (ox> fem s, as white areas) and the
regions without flexural cracks (ox < fems1, as grey areas). The flexural cracks at the edge
of the light grey regions can initiate diagonal tension cracking. Whether this cracking
mode will occur can be determined by examining the principal tensile stresses along the
edge of the light grey region (Section 3.5). Eventually, diagonal tension cracking is pre-
dicted if the principal tensile stresses are equal to the tensile strength of the web
(Equation 4.5) anywhere in the light grey area in Figure 4 2, regardless of whether these
are caused by flexural cracks.

Model A2 uses the same simplifications as model A1l. Just like model A1, it is considered
as unnecessary to further investigate these simplifications considering the accuracy of
the predicted resistances. Due to the presence of flexural cracks, the variation increases
significantly when flexural cracks are present (Table 3.8). This is an additional argument
for girders with flexural cracks that it is not worth the effort to consider bi-axial behav-
iour and size effect. For model A2, the same points of attention should be considered
when determining the maximum principal tensile stress as for model A1, given the brittle
failure mode.

4.3 Design values for the proposed models

This section determines the design value for the tensile strength of the web that can be
used to determine the resistance to diagonal tension cracking. The design value is de-
rived to reach a failure probability of 10* for a 50 year reference period, which
corresponds to a target reliability index f; = 3.8. If another failure probability is envis-
aged, the same approach can be used to determine the associated design value for the
tensile strength of the web. The design value for the tensile strength is based on the
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statistical properties of oimax/ferm as found in Section 3.5, listed in Table 3.8 and in Ap-
pendix E. These statistical properties concern the uncertainty of the resistance model.
The uncertainties regarding the model, the geometry and the material are implicitly in-
cluded. The design value for the tensile strength is derived using the approach described
in Annex D7.3 of the NEN (2011). It is noted that the design value for the tensile strength
is related to the resistance of the model and is no material property.

The design value Xy for the basic variable X', which equals Gimax/fesm, can be determined
using Equation 4.6 as described in NEN (2011). X is assumed to follow a lognormal
distribution, which is a common distribution function for the resistance and is also used
in the design value format of the Eurocode.

Xg = nde(my_ Ka,nsy) (4.6)

m, = 1/n21n(X) 4.7)

Sy = /ln(sz +1) 4.8)

In Equation 4.6, 74 is de design value of the conversion factor and should cover all un-
certainties in a real structure that are not covered by the considered experiments. For the
derivation of the design value for the tensile strength, a factor of 1/1.15 is used, to be
consistent with the design value format of the Eurocode. The design value for the fractile
factor (ka,) can be found from Table D2 in NEN (2011). Table D2 assumes that the
design value corresponds to arf;, in which az is the first-order reliability method sensi-
tivity factor for the resistance, which equals 0.8, and f; is the target reliability index
which is equated to 3.8. Equation 4.7 concerns the equation for m,, which is the mean
of the basic variable in a lognormal distribution and Equation 4.8 concerns the equation
for s,, which is the coefficient of variation in a lognormal distribution. In Equation 4.8,
V. is the coefficient of variation.

For model A1, the design value Xy is determined for the statistical properties of the 16
experiments without flexural cracks (Table 3.8, Appendix E). The design value Xy is
derived by applying these statistical data in Equations 4.6 to 4.8. A design value Xy is
found of 0.652 (Table 4.1), which means that o1zimax < 0.652f.m. If the relation fex =
0.7fcm 1s used, this equation can also be written as o1z4,max < 0.931fc4. If subsequently a
partial factor y.is used of 1.5, which means that fi.v = fex / 1.5, the equations can be

rewritten as o1£4,max < 1.40fa.

Also for model A2, the design value Xy is determined, but now for the statistical prop-
erties of the 37 experiments with flexural cracks (Table 3.8, Appendix E). A design value
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X is found of 0.599 (Table 4.1), meaning that o1£imax < 0.599fcm, which can be rewrit-
ten, using the same assumptions as for model Al, as 01£4,max < 1.28fc1a.

Table 4.1. Derivation of design value Xy for diagonal tension cracking

n my Sy kan Xa
Model Al 16 -0.121 5.2% 3.19 0.652
Model A2 37 0.007 12.2% 3.11 0.599

Although it is somewhat conservative for model Al, it is for simplicity proposed to use
a design value of 1.28f.« for both models (Equation 4.9). The design value of the re-
sistance to diagonal tension cracking is referred to as model A and can be applied in
practice irrespectively of whether flexural cracks are present. It is noted that some con-
servatism is desirable for model A1, to compensate for the less favourable distribution
of the shear stresses in bridges, which are loaded with distributed loads, compared to the
experiments used to derive the design value, which are loaded with a concentrated load
(Section 3.3). As a consequence of using one design value, it is possible to use just one
model for diagonal tension cracking for application in engineering practice.

O1maxed < 1.28f¢¢q 4.9)

It is noted that instead of limiting the design value of the maximum principal tensile
stress o1zq4 to 1.28f.« and using a y. = 1.5 is also possible, if preferred, to limit o1z4 to
1.00f:« and use a partial factor y.of 1.17.

The design value of the resistance to diagonal tension cracking that corresponds to this
condition is defined as V’r4.c. For monolithic structures, Equation 4.10 can be derived if
Equation 4.9 is combined with Equations 2.14 and 2.15. The apostrophe in V4. indi-
cates that the equation is only applicable in regions without flexural cracks.

I

CbW
Virae = SC(Z()Z L[ 28]eca? + ox D125

(4.10)
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PART 2: SHEAR RESISTANCE
AFTER DIAGONAL TENSION CRACKING







Literature review on prestressed girders with stirrups

This chapter describes a literature review on shear resistance of girder with stirrups.
Section 5.1 provides an overview of models from literature intended to determine the
shear resistance of prestressed girders with stirrups. Section 5.2 mutually compares the
models of Section 5.1. Section 5.3 describes a database that is compiled out of experi-
ments from literature on prestressed girders with stirrups for which failure could be
related to diagonal tension cracks. Section 5.4 evaluates to what extend the research
questions are answered based on the literature study. Based on these answers, an ap-
proach is chosen to derive the model for the determination of the shear resistance in
regions without flexural cracks.

5.1 Models from literature

This section provides an overview of models from literature that are intended to deter-
mine shear resistance of prestressed girders with stirrups. The models are intended to
determine shear resistance in general or shear resistance in regions without flexural
cracks specifically. The models that are described are the variable angle truss model
(Section 5.1.1), an empirical model derived by MacGregor et al. (Section 5.1.2), models
based on the Modified Compression Field Theory (Sections 5.1.3-5.1.6), an empirical
model suggested by Leonhardt (Section 5.1.7) and a model based on arch action as sug-
gested by Huber (Section 5.1.8).

In this chapter, the findings from the literature review are frequently complemented with
considerations. These consideration are aimed to contribute to the development of an
accurate model for the resistance of prestressed girders with stirrups in regions without
flexural cracks.

5.1.1 Variable angle truss model

The variable angle truss model, as used in the Eurocode (NEN 2005), is intended to
determine both the shear and moment resistance of reinforced and prestressed members
with stirrups. In this section the determination of shear resistance is explained. No dis-
tinction is made between the resistance in regions with and without flexural cracks.
Walraven described the model in several publications (Walraven et al. 1995, 1999,
Walraven 2002). In these publications the method is referred as ‘variable inclination
strut method’. The explanation of the variable angle truss model given in this section is
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based on the model described in these publications. The alternative name ‘variable angle
truss model” is used by Collins et al. (1997) and this name is adopted in this dissertation.

The variable angle truss model is based on equilibrium, assuming the presence of a
smeared truss in the girder. The shear transfer mechanisms of the variable angle truss
model are illustrated in Figure 5.1, for a free body diagram that is cut along a compres-
sive strut. Figure 5.1 could be interpreted as if the vertical components are only resisted
by the stirrups and there is no contribution of aggregate interlock. However, 6 is the
angle of the compressive strut which does not corresponds to angle of the cracks. Be-
cause aggregate interlock is present, the angle of the compressive struts is smaller the
angle of the cracks. The variable angle truss model therefore implicitly takes into ac-
count the contribution of aggregate interlock.

o Aswfywm

z cotd
>
VR, s VR, str

Figure 5.1. Variable angle truss model (Walraven 2002)

Vertical components of the truss are represented by the stirrups. For stirrups that are
applied perpendicular to the longitudinal axis, the maximum shear that can be resisted
by stirrups (V) is represented by Equation 5.1.

Vis = /5 2 fypm cot@ (5.1)

In this equation, 4 is the area of the stirrups, s is the spacing of stirrups, fywm is the yield
strength of the stirrups in tension and @ is the inclination of the compressive struts. The
distance between the chords parallel to the longitudinal axis is assumed to be equal to
the internal lever arm z.

The internal lever arm is the distance between the centre of the tensile forces in longitu-
dinal direction in the steel and the centre of the longitudinal compressive stresses in the
concrete. It is unclear how this internal level arm should be determined according to the
variable angle truss model. From the background document of the Eurocode, in which
the variable angle truss model in included, it appears that the lever arm is set to a defined
ratio of the effective depth d. The internal lever arm for reinforced structures is assumed
to be equal to 0.9d, independently whether flanges are present. The equation for the
internal lever arm for prestressed concrete is not explicitly described. However, in the
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background document predictions of the resistance were carried out for the variable an-
gle truss model (Walraven 2002). As part of the current dissertation these predictions
were analysed. This was done for the predictions of the experiments carried out by
Lyngberg (1976), Hanson et al. (1964), Leonhardt et al. (1973) and Levi et al. (1993). It
was found that an internal lever arm of 0.95d was assumed for prestressing steel.

The equation for the effective depth of the combined prestressing and reinforcing steel
is not explicitly described in the Eurocode (NEN 2005). By analysing the predictions in
the background document, as part of the current dissertation, it was found that for these
girders a weighted mean value was used to determine the internal lever arm z (Equation
5.2). In Equation 5.2, z, is the internal lever arm of prestressing steel, zy is the internal
lever arm of reinforcing steel, 4, is the area of prestressing steel and A; is the area of
reinforcing steel.

z= (2,45 + 2p4,)/(As + Ap) (5.2)

Diagonal struts of the truss are represented by concrete(Figure 5.1, right part). The area
perpendicular to the compressive struts equals to by, z cosf. In this equation b,, is the
width of the web. The force in the compressive struts is equal to Vzs/sin 6. The strength
of the struts is assumed to be equal to acy v fem, in Which f, is the concrete compressive
strength of a cylinder, v is the concrete effectiveness factor and o is a factor addressing
the effect of prestressing. The ultimate shear associated with the crushing of the com-
pressive strut is given by Equation 5.3.

Vrstr = by Z dcyV fom Sin6 cos 6 (5.3)

The background of the effectiveness factor for concrete v is given by Nielsen et al.
(2011). The effectiveness factor is introduced because the concrete compressive strength
of the web is smaller than the concrete compressive strength of a cylinder (f.). The
main reason is that the concrete is cracked and cracking reduces the strength. The trans-
fer of stresses from the reinforcement to the concrete between macro cracks, causes
micro cracks. These micro cracks are assumed to be the main reason for the strength
reduction in compressive struts. The strength reduction is affected by the compressive
strength of concrete, the diameter of the reinforcement, the reinforcement ratio, texture
of the surface of the bars and reinforcement stresses. However, based on an extensive
experimental test programme it was found that it was sufficient to base the effectiveness
factor only on the concrete compressive strength. Based on the experimental test pro-
gramme, two equation were derived: v= 0.8 - f..,/ 200, applicable for values of fo, up to
75 N/mm?, and v = 1.9 / £.,,"3 for values of f., between 75 and 100 N/mm?. As a con-
servative simplification Equation 5.4 was suggested applicable for all values of fon
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(Nielsen et al. 2011). This equation is adopted in the Eurocode (NEN 2005). The equa-
tions above are derived for experiments with a significant amount of shear
reinforcement, of which the consequence will be discussed hereafter.

The factor a.. addresses the effect of prestressing on the strength of the compressive
struts. The factor depends on the ratio of the stress in the concrete in longitudinal direc-
tion in the centre of gravity (o) and the mean concrete cylinder strength (o). For 0 <
Oeplfem < 0.25fcm, Ocw = 1 + Gep/fem, 101 0.25fem < Ocp/fem < 0.50fcm, 0w = 1.25 and for 0.50f
< Oplfem < femy 0w =2.5(1 - op/fem). The equations assume that for concrete compressive
stresses up to a value of 0.6fcn, the strength of the concrete struts increases by the pres-
ence of prestressing. The equations were validated by carrying out predictions for the
resistances with and without ac. and comparing these with the experimentally found
resistances (Walraven 2002). Both the level of overestimation of the resistance and the
scatter were found to reduce, if a.» according to the given equations is applied.

The variable angle truss model is a lower bound approach based on the theory of plas-
ticity. According to the theory of plasticity the largest resistance is found if the stirrups
yield and the concrete struts crush at the same time. To meet this condition, the maxi-
mum resistance of the stirrups according to Equation 5.1 must be equal to the maximum
resistance associated with crushing of the compressive struts according to Equation 5.3.
By assuming both equations are equal, the strut inclination according to Equation 5.5 is
found. Equation 5.6 shows the equation for . which is used in Equation 5.5. The sub-
script ‘vat’ is used to distinguish between the factor y.. which is frequently used in
literature and which equals to psw fywm / fem.

tan @ = ’lpvat/(l _ l[l,,at) (5.5)

Yvat = P,f yym IV CewS oy (5.6)

If the value of .., decreases, the model will predict a decrease of the angle of the com-
pressive struts, activating more stirrups (Equation 5.5). As a result of the smaller
inclination of the struts, the stress in the struts increases (Equation 5.3). This decrease
of the angle of the compressive struts is possible until the stress in the concrete reaches
its compressive strength. This predicted behaviour is confirmed with experiments
(Walraven et al. 1995, Walraven et al. 1999). These experiments concern normal, light-
weight and high strength reinforced concrete girders with shear reinforcement ratios
between 0.36% and 3.86%. In these experiments, the principal strains in the web of the
experiments were measured using LVDT’s. These are compared to the strut inclination
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6 as predicted using the variable angle truss model. The predictions show good similarity
with the measurements.

In the variable angle truss model, the maximum angle of the compressive strut is as-
sumed to be 45°, which is associated with crushing of concrete without the yielding of
the stirrups (Vzmax). Also this behaviour is confirmed with the experiments (Walraven
et al. 1995, Walraven et al. 1999). Yielding of stirrups and crushing of concrete was
observed for experiments with low values of w.... For experiments with high values of
Wvar, crushing of concrete before yielding of stirrups was observed.

The inclination of the compressive struts is limited to 21.8°. As explained, the concrete
effectiveness factor v according to Equation 5.4 is derived by Nielsen et al. (2011) using
experiments with values of yva > 0.05v (which correspondents with a values of yya of
about 0.023). Nielsen did not investigate the application for lower values of . Ac-
cording to Nielsen et al. (2011) the effectiveness factor v is the product of v., that
represents the strength reduction by micro cracks, and vy, which is the sliding reduction
factor. However, Nielsen assumed that if sufficient stirrups are present, crack sliding
does not have to be taken into account and vs equals 1. For low values of y4 the variable
angle truss method was found to overestimate the shear resistance. This was found using
experiments on non-prestressed girders (Walraven 2002). Apparently the strength of the
compressive struts is overestimated using Equation 5.4 for low values of 4. The over-
estimation could be compensated by setting a limit of € of 21.8° (cotd = 2.5). This leads
to conservative predictions for low values of wya.

As part of this dissertation it is argued to what extend the variable angle truss model is
suitable for the determination of the shear resistance in regions without flexural cracks.
Two considerations are described.

The first consideration, regarding regions without flexural cracks, concerns the effect of
the longitudinal strain on the shear resistance. For reinforced concrete girders, without
prestressing, the longitudinal strain in the critical cross-section is significantly larger
than zero. Large longitudinal strains result in lower shear resistance. For prestressed
girders on the other hand, the longitudinal strains are lower. Due to the smaller crack
width, a higher shear force can be transferred in the cracks by aggregate interlock. To
take into account this additional contribution, the variable angle truss should allow a
smaller strut angle. However, the model is independent of the longitudinal strain and
valid for both girders with and without flexural cracks. Therefore, the model has no
mechanism which could take into account this additional contribution for prestressed
girders while remain conservative for reinforced concrete girders.

The second consideration, regarding prestressed girders in general, concerns the con-
servatism of the prediction for prestressed girders. This is investigated, as part of this
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dissertation, using experiments on 76 prestressed I and T shaped girders that failed in
shear that are reported in the background document of the Eurocode (Walraven 2002).
The resistances for these experiments are predicted using the variable angle truss model.
The predicted resistances are compared to the experimentally found resistances. The
determined mean value and the coefficient of variation of the experimentally found to
predicted resistance ratio are shown in Table 5.1. A distinction is made between whether
the lower limit for € was found to be governing. The predictions for the 40 experiments
for which the lower limit was found governing were found to be extremely conservative
and inconsistent (Table 5.1). The predictions for the 36 experiments for which the lower
limit was not governing the predictions, were found to be much less conservative and
much more consistent.

Table 5.1. Test-to-predicted shear resistance ratio for variable angle truss model

Lower limit for € (21.8°) found as governing

no yes
Number of experiments 36 40

Mean Ve exp/ Vi var 1.22 2.03
Coefficient of variation Vg ex/ Vi var 13% 39%

For reinforced concrete the variable angle truss model overestimates the resistance for
low values of y. (Walraven 2002). This is the reason to limit £ to 21.8°. It is addition-
ally investigated, as part of this dissertation, if for prestressed girders the resistance is
also overestimated if € is not limited. Figure 5.2 shows the predictions (lines) and the
experimentally found resistances (dots) for the 76 experiments of the back-ground doc-
ument (Walraven 2002). The continuous line shows the predicted resistance without
limitation of @ and the dashed line with limitation of & (‘cut-off”).
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Figure 5.2. Experimentally found and predicted resistances for 76 experiments with & without limit 8
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As appears from the figure, the number of experiments for which the resistance is over-
estimated without limitation of 6, is limited. Moreover, some of these experiments,
appeared to be reinforced experiments without prestressing (black dots in Figure 5.2).
These were probably selected because the experiments were part of a series of experi-
ments that mainly contained experiments with prestressing. Based on the data, it is
questionable if the reported limitation of the inclination of the comprise struts is also
necessary for prestressed girders.

As described by Nielsen et al. (2011), not only crushing of the concrete struts, but also
crack sliding along the initial crack appears to be a possible failure mode, especially for
girder with a low amount of shear reinforcement. However, an appropriate concrete ef-
fectiveness factor for this failure mode is yet unknown.

5.1.2 Empirical model of MacGregor et al.

MacGregor et al. (1960) derived a model which is intended to determine shear and mo-
ment resistance for prestressed girders with stirrups. The shear resistance models for
prestressed girders in the ACI (2008) are based on this model. In this section the deter-
mination of shear resistance is explained. In the model, a distinction is made between
the resistance to flexural shear failure (V rsr) and web shear failure (Vz wsr). The mini-
mum of both determines the governing failure mode (Table 5.2, Equation 5.10).

Table 5.2. Overview model MacGregor et al. (1960)

Resistance to flexural shear failure VR FsF = Vrrsc +  Vrs 5.7)
Resistance to web shear failure Vrwsr = Veorc + Vs (5.8
Resistance to diagonal cracking Vi pc = Minimum
(5.9)
(Ve Fsc, Vrpre)
Resistance to shear failure Vz = Minimum (5.10)

(V& rsk, Vewsr)

MacGregor et al. (1960) derived a model based on the assumption that the shear re-
sistance is equal to the resistance to diagonal cracking (Vzpc) plus a contribution of
stirrups (Vrs). These shear transfer mechanisms are shown in Figure 5.3. This figure is
drawn in a similar way as Figure 5.1 (variable angle truss model) so these models can
easily be compared. It is noted that diagonal cracking is not a shear transfer mechanism
after diagonal cracking. The physical relevance of this figure is thus limited. Diagonal
cracking can be diagonal tension cracking or flexural shear cracking (Figure 1.1). The
minimum of both determines which cracking mode is governing (Table 5.2, Equation
5.9).
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Figure 5.3. Empirical model MacGregor et al. (1960)

The resistance to both diagonal tension cracking (Vz prc) as flexural cracking (Vz rc) are
based on the concrete tensile strength (which will be explained hereafter). Additionally,
three relations are determined empirically:

— The increase in resistance between flexural shear cracking and flexural shear failure.
— The increase in resistance between diagonal tension cracking and web shear failure.

— The increase in the resistance between flexural cracking (Vzrc) and flexural shear
cracking (Vg rsc).

The empirical relations are based on experiments carried out by MacGregor et al. (1960)
and experiments carried out by Sozen et al. (1959).

In the model that MacGregor used for the prediction of diagonal tensile cracking, the
tensile strength of the web is based on the shear stress resistance along the centroidal
axis (as described in Section 2.1.5). Unlike Equation 2.17, the tensile strength of the
web is assumed to be 80% of the flexural tensile strength (0.8fcum 7). The flexural tensile
strength was subsequently derived from f.,, which was determined by carrying out com-
pressive test on cylinders. The equation fom= 21/ (4 + 83/ fom) Was used, expressed in
N/mm?. This equation was derived for small-coarse aggregate by Sozen et al. (1959).
The predicted diagonal cracking resistance was found to be accurate. This was found by
MacGregor et al. (1960) by comparing the predicted and experimentally found re-
sistances for 32 experiments (experiments of both MacGregor et al. and Sozen et al.).
Unlike Equations 2.16, 2.17 and 2.18, the stresses were based on the presence of both
concrete and reinforcement. Thus in Equation 5.11, / and S are used that are based on
the presence of both materials (‘transformed cross-sections’).

Ib,

Vrpre = S \/O-chtm,flz - Gcg0-8fctm,fl (5.11)
cg

MacGregor’s model assumes that the resistance to flexural shear cracking consists of
two components (Equation 5.12). The first component is the resistance to flexural crack-
ing (Vr rc). Vrrcis determined by calculating the shear force at which the tensile stress
in the ultimate fiber equals fem . Thus Ve e depends on the forces in each cross-section
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and will differ along the girder axis. The second component is the shear force needed to
transform the flexural crack into a flexural shear crack. This term is determined empiri-
cally from experiments in which a flexural crack were observed that turned into a
flexural shear crack. To derive this empirical relation, an initiating shear crack was as-
sumed at a location that is the sum of 1/4 of the girder height and 1/6 of the shear span
from the concentrated load. The increase of shear force to transform the flexural crack
into a flexural shear was related to the resistance to diagonal tension cracking. A value
of 1/15 Vk prc was found appropriate (Equation 5.12, Figure 5.4).

1
Vrrsc = Vrrc + 15 Vrpre (5.12)

Figure 5.4 was reproduced as part of this dissertation using the data of MacGregor
(1960). In this figure both the experimentally found and the predicted resistance to di-
agonal cracking are shown as ratio of the predicted resistance to diagonal tension
cracking. Both the predicted resistances to diagonal tension cracking (Equation 5.11,
horizontal dashed line) and to flexural shear cracking (continuous line, Equation 5.12)
are shown. Also a distinction is made between observed flexural shear cracking (black
coloured circles) and observed diagonal tension cracking (not-coloured circles). Figure
5.4 demonstrated that Equations 5.11 and 5.12 are rather accurate. Moreover, the suita-
bility of Equation 5.9 is demonstrated, which predicts the governing diagonal cracking
mode (lowest resistance approach, Section 2.1.7).
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Figure 5.4. Predicted and experimentally found diagonal cracking resistance (MacGregor et al. 1960)

MacGregor determined the added resistance of the stirrups empirically. For this purpose
the 16 prestressed experiments were selected, that contained stirrups and failed in shear.
No distinction was made between the initial diagonal cracking modes. Associated ranges
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of parameters are shown in Table 5.3. Experiments of which the identification start with
B, have a web width of 76 mm. Experiments of which the identification start with C
have a web width of 38 mm. The girder of which the identification starts with F is com-
bined with a composite slab. The contribution of stirrups (Equation 5.13) was
determined by subtracting the predicted resistance to diagonal cracking (Equations 5.9,
5.11 and 5.12) from the experimentally found ultimate resistance.

Table 5.3. Experiments selected for empirical relation Equation 5.11 and associated parameters ranges

Re- Identification Pre- Support & a/d oy pw Sfem Aimax
searcher  (number of experi- stressing  condi-
(year) ments) tions

mm - N/ % N/ mm

mm? mm?

Mac- BW.14.34, BW.14.38, Straight ~ Simply 305 2.8- 2.2- 0.14- 17- 9
Gregor BW.14.58, BW14.60, pre-ten-  sup- 7.0 6.0 1.04 53
et al. BW.18.15S, CW.13.28,  sioned ported

(1960) CW.14.17, CW.14.22, tendons
CW.14.23, CW.14.37,
CW.14.39, CW.14.47,
CW.14.50, CW.14.51,
CW.14.54, FW.14.06

The empirically found coefficient of 1.1 (Equation 5.13) equals a cracking angle of 42°.
This is rather steep compared to observed cracking angles in prestressed girders. Mac-
Gregor et al. gave as possible explanation for the low coefficient of 1.1, that the stirrups
near the end of the inclined crack may not have been stressed to the yield point.

Vs = 1.1 Agy fyw U/s (5.13)

As part of this dissertation the data in the report were further analysed. It is investigated
whether also experiments that failed in web shear were part of the experiments. Alt-
hough this could not be confirmed, it was found that the initial cracking mode concerned
flexural shear cracking for 7 experiments and diagonal tension cracking for 9 experi-
ments. The empirical model of MacGregor et al. was used to determine the ACI shear
provisions (ACI 2008). Some modifications were made:

— For the equation to determine the flexural cracking strength fim 1= 0.498 \fen is used
instead of foma= 21/ (4 + 83/ fom), both expressed in N/mm?. This affects Vg rc.

— Vrprcis based on the cracking strength f.- (Equation 2.10) instead of 0.8 £z
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— To relate the shear stress resistance 7’z at the centre of gravity to the shear force
resistance of the cross-section, the simplified Equation 2.19 is used instead of Equa-
tion 5.11.

— The shear force necessary to transform a flexural crack into a flexural shear crack is
set to 0.0498,/ fom bz (=0.171Vr prc) instead of 1/15Vz prc (=0.067Vz prc)

— The empirical found factor 1.1 (Equation 5.13) for the contribution of stirrups (Vzs)
is conservatively set to 1.

If web shear resistance is governing, the resistance for prestressed girders with stirrups
according to the ACI (2008), is represented by Equation 5.14. In this equation the re-
sistance to diagonal tension cracking is based on d,. The contribution of the stirrups is
based on d, which is the distance from extreme compression fiber to centroid of longi-
tudinal tension reinforcement. In the ACI a minimum value of 0.84 is prescribed for d
and d,.

Viste = by dp (0291F7c +0300) + Ay furym Us (5.14)

In literature many researchers investigated the accuracy of the ACI code provisions. In
this literature review the accuracy investigated by Esfandiari et al. (2009) is reported as
this specifically concerns prestressed girders with stirrups. For 88 simply supported
girders, a mean value of the test-to-predicted shear resistance ratio was found of 1.08
and an associated coefficient of variation of 25%. In this research no distinction was
made between the accuracy for regions with or without flexural cracks. For an empiri-
cally derived model a low level of conservatism can be expected. This is because all
shear transfer mechanism are implicitly included in an empirical model. The predictions
were however found not so consistent.

5.1.3 Modified Compression Field Theory

The Modified Compression Field Theory (MCFT) is a theory capable to predict the load-
deformation response of membrane elements (Vecchio et al. 1986, Bentz et al. 2006a).
The MCFT is also used to derive a model to determine shear resistance for girders (Bentz
et al. 2006a, Esfandiari 2009). The main principles of the MCFT are explained in this
section. In Section 5.1.4 it is explained how the MCFT is made applicable to predict
shear resistance for girders. For this dissertation, two models are considered that predict
shear resistance for girders that are based on the MCFT. This concerns the model of
Bentz et al. (2006a), which is explained in Section 5.1.5 and the model of Esfandiari
(2009), which is explained in Section 5.1.6.
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The MCFT consists of 15 equations which are listed in Tables 5.4 and 5.5. Since the
original version of the MCFT several adaptions have been made. In this section, the
version of the MCFT that is also used in Response is explained (Bentz 2000, Bentz et
al. 2001). This is a non-linear sectional analyses programme for girders, also referred as
R2K. The original notation of the parameters used in the equations are replaced by no-
tations in accordance to the Model Code 2010 (fib 2012). Also the original notions are
shown in the explanation of the parameters.

The MCFT treats cracked concrete as a new material with its own empirically found
stress-strain relations. Equilibrium, compatibility and stress-strain relations are ex-
pressed as average stresses and strains (Table 5.4).

Table 5.4. Average stresses and strains equations of the MCFT (Bentz et al. 2006a).

Average stresses Average strains Stress—strain relationships
Reinforcement
&t €
Oy = PyxOsx + 01 — T cOtO tan20 = =2 Osx =Es&x < fyx
&+ &
(5.15) (5.18) (5.21)
0, = pPy0sz + 04 — T tan @ g =&+ & + & s, =Ese, < fy,
(5.16) (5.19) (5.22)
Concrete
_ (og+ 02)/ =2(e, + &, ) cotd __ Jem 2 & _ (8_2>2
t= (tan@ + cotg) Yez = “\&x T £2)€0 2T08+1706 \“ 5 \&
(5.17) (5.20) (5.23)
o = 033Vfem /
! (1 + V500¢;)

(5.24)

For concrete stresses the two principal stress directions are considered (Figure 5.5). This
results in principal tensile stresses (o1, original notation fi) and principal compressive
stresses (o2, original notation f>). Steel stresses are considered in the axial directions.
The average reinforcement stress per unit length is the product of the average reinforce-
ment stresses (s in x-direction, original notation f: and o in z-direction, original
notation f;-) and the reinforcement ratio (respectively px and p:). The applied stresses on
the membrane element (ax, oz, 7, original notations fs, fz, v) should be in equilibrium with
average stresses in the concrete and steel.
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Figure 5.5. Average stresses according to MCFT (first two figures, Vecchio et al. 1986).

From this principle Equations 5.15 — 5.17 are derived. The angle of inclination of the
principal compressive stresses 6 (original notation 6.) and the angle of inclination of the
principal strains 6. (original notation ) are assumed to be equal. This assumption is
made despite measurements show that 6 and 6, deviate somewhat. For simplification the
notation 6 is used in Table 5.4. According to the Compression Field Theory, the prede-
cessor of the MCFT, a value of o1 = 0 is assumed as stress-strain relation instead of 5.24.

The average strain equations (Equations 5.18 — 5.20) relate the averages strains (&, &,
7z) and the principal strains (g1, &2, 6). The strains in the concrete are assumed to be
equal to the strains in principal direction. In Figure 5.6, 1 is the principal tensile strain
in concrete and &2 the principal compression strain in concrete. The strains in the steel
are assumed to be equal to the longitudinal average strains &, &-. The equations are trans-
formation equations used to transform the strains to a different coordinate system. For
instance as described by Verruijt (1987).

Figure 5.6. Average strain parameters according to MCFT (Vecchio et al. 1986)

In the MCFT bilinear stress-strain relations are used for reinforcement (Equations 5.21
and 5.22). However, in Response also tension hardening behaviour is considered. The
constitutive equations of the “new material” cracked concrete are determined empiri-
cally, initially based on 30 tests on reinforced membrane elements (890 mm x 890 mm
x 90 mm). The relations have later been confirmed with 250 experiments performed at
the University of Toronto (Bentz 2000). Empirical relations could be derived from the
applied stresses and the measured strains. Consequently, the average stresses include
stresses between cracks, stresses at cracks, interface shear in cracks and dowel action.
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And the average concrete strain (1) contains local strains at cracks, strains between the
cracks, bond slip and crack slip (Bentz 2000). Hence, the average stress — strain relations
differ significantly from the relations measured in for example splitting tests or cylinder
compression tests.

Equation 5.23 describes the empirically found relation for cracked concrete in compres-
sion. The equation is visualised in Figure 5.7. The concrete strength (fomrea) 1S
represented as ratio of the maximum compressive strength of a cylinder test (fcn). The
strains are represented as ratio of e, the strain associated with fo,. The principal com-
pressive stress o2, was found to depend on not only the principal compressive strain &
but also the principal tensile strain ¢1. For uncracked concrete no reduction of f.,, is nec-
essary (femrea= fem) and the stress strain relation does not differ from a concrete cylinder
test (Figure 5.7, figure on the left, minimum value of o2 = fo). For cracked concrete a
reduced value of f., was found, fom . (Figure 5.7, figure on the right). It was found that
the strength of concrete under compression reduces with increasing values of principal
tensile strains ¢1 according to Equation 5.23.
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Figure 5.7. Average stress- average strain relations for concrete in compression (Eq. 5.23)

For uncracked concrete the principal tensile stress increases linear with the principal
strain (o1 = &1 Es). The version of the MCFT used by Response, uses Equation 2.9 for
the cracking strength of concrete f-. Equation 5.24 describes the empirically found (high
scatter) stress strain relation for cracked concrete in tension. After cracking the average
tensile strength reduces with increasing values of ¢1. The relation is visualised in Fig-
ure 5.8. The principal tensile stress should be limited if the average stress cannot be
resisted locally at the crack (see hereafter), it is unsafe to apply the MCFT without this
crack-check. The crack check ensures that the principal tensile stress can be resisted
locally by the steel (yielding strength minus average stress) and the aggregate interlock
at the crack.
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Figure 5.8. Average stress- average strain relation for concrete in tension (Equation 5.24)

At a crack the stresses in the reinforcement (osy,e- and o, for respectively the stress in
the reinforcement in x and z direction, original notations fu.- and fizc-) are higher than
the average stresses o5 and o,.. The concrete tensile stress is zero at the crack which is
lower than the stresses of the uncracked concrete between two existing cracks. Accord-
ing to the MCFT the use of average stresses is allowed under the conditions that the
average stresses can be resisted locally at a crack. If the computed stresses exceed the
resistance at the crack, the average stresses o1 is reduced until equilibrium at the crack
surface is possible. Equations concerning the crack conditions are listed in Table 5.5.

Table 5.5. Crack conditions equations of the MCFT (Bentz et al. 2006a).

Stresses at cracks Crack widths Max. shear stress on crack
0.18 \/fim
Gover = (ox + T cotf + 7 cot 6)/Px w=sg- & Teimax = a1+ aw
' (dmax + 16)
(5.25) (5.27) (5.29)

Osz,cr

-1
_ (0,4 ttanf — 7 tan 9)/ Sg = /sinB cos O
Pz (sx + S, )

(5.26) (5.28)

In Figure 5.9 the external applied stresses and the internal stresses at the crack are
shown. In this figure z.; is the shear stress on the crack surface due to aggregate interlock.
Equation 5.25 and 5.26 are found if the applied loads are equal to the stresses at the
surface for both directions. Equilibrium can be achieved with different combinations of
the stress in the reinforcement at the crack and z... The solution used in the MCFT is to
only assume shear stresses at the crack when the resistance of the reinforcement is in-
sufficient to resist the applied stresses. If the average stresses cannot be resisted locally
at a crack, o1 should be reduced until equilibrium is possible.
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Figure 5.9. Transmission of stresses across a crack (MCFT, based upon Bentz et al. 2006b)

The MCFT assumes that the maximum value of z.;, which is 7. max, only depends on the
crack width w. Based on results of experiments carried out by Walraven, (Walraven
1980, 1981) an empirical equation was derived between the crack width and 7c;max
(Equation 5.29). Equation 5.29 results in reasonably accurate approximations despite
that the tangential displacement is eliminated, which is argued by Yang (2014). The
maximum shear on the crack increases for higher strength concrete classes or larger
maximum aggregate sizes (dmax, original notation a). The crack width is assumed to be
the product of the principal tension strain &1 and the crack spacing sy (Equation 5.27).
The diagonal crack spacing at an angle € is calculated from the cracks spacing in both
orthogonal directions (sx and s, Equation 5.28).

According to the MCFT three conditions can be governing at failure for cracked con-
crete:

1. Crushing of the concrete (minimum value of o).
2. Slipping of the crack (maximum value of o1).
3. Yielding of the longitudinal reinforcement (maximum value of a1).

Several assumptions are made in the development of the MCFT. It is assumed that, stress
and strains can be considered as average values, perfect bond exist between steel and
concrete, the stress-strain relations of concrete and steel are independent and the incli-
nation of principal compressive stress and strain coincide. The effect of these
assumptions on the accuracy appears to be limited. Bentz et al. compared the resistances
according to the MCFT with the experimentally found resistance of 102 experiments
with membrane elements (Bentz et al. 2006b) loaded in pure shear or shear combined
with uniaxial stress (o: = 0). This resulted in a mean ratio of test-to-predicted resistance
of 1.01 and a CoV of 12.2%. The accuracy regarding models for shear resistance for
girders based on the MCFT is discussed in Section 5.1.5 and 5.1.6.
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5.1.4 Models for girders based on the MCFT

In this section it is explained how the MCFT, intended for membrane elements, is made
applicable to predict shear resistance for girders. Two girder models will be considered
which determine the shear resistance (Sections 5.1.5 and 5.1.6). The part of the method
that is equal for both models is described in this section. This section is based on the
Simplified Modified Compression Field Theory (Bentz et al. 2006b) and the background
article of the CSA (Bentz et al. 2006a). The models are intended to determine shear and
moment resistance for reinforced and prestressed members with and without stirrups. In
this section the determination of shear resistance of girders with stirrups is explained.
No distinction is made for models that determine the shear resistance for regions with
and without flexural cracks. The models are based on equilibrium and compatibility. The
shear transfer mechanisms of the models are illustrated in Figure 5.10 for a free body
diagram that is cut though along a diagonal crack. This figure is drawn in a similar way
as Figure 5.1 (variable angle truss model) and Figure 5.3 (empirical model used in ACI),
so these models can easily be compared.
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Figure 5.10. Girder model based on MCFT, based on Bentz (2006b)

As shown in Figure 5.10, the shear resistance of a girder consist of contributions of the
stirrups (Vzs) and of aggregate interlock (Vz ). It is assumed that the stirrups yield along
the horizontal projection of the diagonal crack (z cotf). The aggregate interlock consists
of the shear stress (which corresponds to z.; according to Figure 5.9) over the length of
the crack.

The shear resistance of the flexural compression zone is assumed to be larger than that
of'the cracked zone. With this assumption, the resistance of the cracked zone will control
the shear strength of the girder (Bentz et al. 2006a). To explain this, Figure 5.11 is drawn
as part of this dissertation. In this example only the most tensioned flange is cracked by
bending. It is assumed that failure occurs in the cracked zone. In that case, the shear
resistance in the cracked zone is governing for the ultimate failure.

The contribution of the uncracked concrete is considered implicitly by assuming a larger
contribution of the stirrups and aggregate interlock. Both contributions are considered
along the internal lever arm multiplied with cotf. As shown in Figure 5.11, the internal
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lever arm is partly located in the flexural compression zone. So neglecting the contribu-
tion of the uncracked concrete is compensated by assuming contributions of aggregate
interlock and stirrups along a larger length of the crack. As the shear resistance ap-
proaches zero at the top of the cross-section, z is chosen and not the full effective depth
d (Figure 5.11).

flexural shear resisted by

b compression  uncracked concrete
— zone

_ cracked shear resisted by

- zone aggregate interlock
8 and stresses in the stirrups
1
v

Figure 5.11. Zones of shear stress multiplied with width over the height of the girder

The models assume no contribution of dowel action by the longitudinal reinforcement
to shear resistance.

The shear resistance for girders with concrete using normal weight aggregate is repre-
sented in Equation 5.30. In this equation f is the concrete contribution factor (aggregate
interlock) and @ is the angle of inclination of the principal compressive stress. This angle
is assumed to correspond with the angle of diagonal cracks. The vertical component of
prestress force (Vz,), which is present in the original model (Bentz et al. 2006a), is not
taken over in Equation 5.30. In this research V', is considered as a reduction of the load
instead of as a component of the shear resistance. This way the described models of this
chapter are mutually comparable. The shear strength is limited by the crushing resistance
of concrete in diagonal compression, without yielding of the stirrups, which is shown
by Equation 5.31, and will be explained hereafter.

Vi = B/ fem bw z+ Agy fywm zcot8/s (5.30)
Vamax = 025 fom b 2 (5.31)

The shear stress resistance of a cross-section is only determined at the mid-depth of the
cross-section. It is assumed that the aggregate interlock resistance of the complex crack
geometry may be estimated at the mid-depth and that this can represent the entire crack
surface. Also the number of stirrups that are crossed by the crack is simply based on the
angle of the diagonal crack at the mid-depth. By multiplying the shear stress with the
shear area b, z, the shear resistance of the cross-section is found. In this way, a theory
intended for membrane elements is made applicable for girders.

Parameters ¢ and f in Equation 5.30 can be related to the equations of the MCFT. As the
two considered models are used for sectional analyses of girders, it is assumed that o is
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zero. Moreover, it is assumed that the stirrups yield at failure. Hence, crushing of con-
crete before the stirrups yield is considered as a separate limitation of the shear
resistance (Equation 5.31). As 0. = 0 and 65z = 0z.e» = fywm, Equation 5.16 can be rewritten
as Equation 5.32 and Equation 5.26 can be rewritten as Equation 5.33. In these equa-
tions, both o1 as z.; can be expressed in terms of Vf as can be seen from Equations 5.24
and 5.29. Therefore, Equations 5.32 and 5.33 can formulated as Equation 5.34 (Bentz et
al. 2006b). Equation 5.30 is found if both sides of Equation 5.34 are multiplied with the
shear area b, z.

The predictions of S and 6 are described as part of the models of Bentz et al. (Section
5.1.5) and Esfandiari (Section 5.1.6.). The parameters £ and 8 depend on the normalized
applied shear (7/fi) the longitudinal strain &, and the effective crack spacing size (Bentz
et al. 2006a). If these are determined, f and € can be found using tables (AASHTO
2004). To simplify the application of the model, the two considered models determine 3
and 6 independently of the normalized applied shear. As a consequence, no tables have
to be used, which make the models more appealing for applications in practice. The
models are deemed to be applicable for both regions with and without flexural cracks.

T= pyfywcotd + oy cotd (5.32)
T= pyfywcotd + T (5.33)
T= pyfywcot® + Bf (5.34)

Also the upper limit of the shear Vz max (Equation 5.31) is derived from the MCFT. This
concerns the crushing resistance of the cracked concrete without yielding of the trans-
verse reinforcement. As the condition concerns crushing of the concrete, &> is assumed
to be =2 mm/m. Because the transverse reinforcement is not yielding, the strain ¢ is
lower than 2 mm/m. As a lower strain on longitudinal direction increases the maximum
resistance, conservatively ¢: = 2 mm/m is assumed. The longitudinal strain & will be
lower than 2 mm/m (because the longitudinal reinforcement is not yielding). As a lower
strain increases the resistance, conservatively &x =2 mm/m is assumed. Using these val-
ues in respectively Equations 5.18, 5.19, 5.23, 5.24 and 5.17, a value for the shear stress
Trmax 1S found of 0.28f:,. Conservatively, a value of 7z max = 0.25f.» was chosen. Equation
5.31 is found if 7z max is multiplied with the shear area b, z (Bentz et al. 2006b).

5.1.5 Model of Bentz et al.

The model of Bentz et al. is intended to determine shear and moment resistance for
reinforced and prestressed members with and without stirrups. In this section the deter-
mination of shear resistance for girders with stirrups is explained. No explicit distinction
is made between regions with and without flexural cracks, although a relation between
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the failure mode and the magnitude of the longitudinal strain is obvious. The model of
Bentz et al. is used in the Canadian Highway Bridge Design Code (CSA 2006). The
model is partly explained in Section 5.1.4. In this section the derivation of equations for
p and 6 is explained. The equation for £ is derived for elements without transverse rein-
forcement and the equation for  is derived for elements with transverse reinforcement.
These derivations are explained based on the background article of the design code
(Bentz et al. 2006a). The Simplified Modified Compression Field Theory (Bentz et al.
2006b) is used to demonstrate that the derived equations can be combined to determine
the shear resistance for elements with transverse reinforcement.

The equation for f is based on MCFT calculations for membrane element without trans-
verse reinforcement. The value of § can be determined using the equations of the MCFT
(Table 5.4 and Table 5.5) for a range of values of the longitudinal strain &, the crack
spacing sy, the maximum aggregate size dmax and the concrete cylinder compressive
strength f.,. To demonstrate this, as part of this dissertation, the crack width is deter-
mined for a crack spacing sy of 300 mm, a concrete strength of 60 N/mm? and different
values of .. These are calculated using an example described by Bentz et al. (2006b).
The results are shown in Figure 5.12 (dots).
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Figure 5.12. Crack width versus the longitudinal strain conform the MCFT and Equation 5.35

A simply linear equation (Equation 5.35) was found to be a rather good approach of the
relation between &, and w according to the MCFT (Figure 5.12). Especially for values
of steel up to 400 N/mm? for which for shear failure the strain at mid-depth is expected
to be lower than 1 mm/m. Also for other values of f.. Equation 5.35 approached the
calculated values of the crack width reasonably (Bentz et al. 2006a). The value of f can
easily be found by substituting Equation 5.35 in Equation 5.29. If a value of the maxi-
mum aggregate size dmax 18 assumed of 20 mm, Equation 5.36 is found for f. The
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equation shows that contribution of the aggregate interlock decreases if the crack open-
ing increases. To prevent negative crack widths the minimum allowable value of &, is
set to —0.2 mm/m (which is found by setting w to 0 mm in Equation 5.35).

w = 0.0002 + & (5.35)

B="% 4 1500¢,) (5.36)

The crack width (and the aggregate interlock resistance) does not only depend on the
longitudinal strain & but also on the diagonal crack spacing sy (Equation 5.27). Equation
5.36 is derived for a crack spacing of 300 mm. For different values of the crack spacing,
Equation 5.36 has to be multiplied with 1300/(1000+s4). For girders without stirrups the
crack spacing depends on the girder height. The crack spacing increases proportional
with the girder height and so does the crack width. Therefore, an increase of girder
height leads to a decrease of aggregate interlock and deeper girders fail at lower stresses
(‘size effect’). However, for girders with stirrups the crack spacing is controlled and no
significant size effect is expected. For girders with stirrups it is assumed that the crack
spacing s does not exceed 300 mm.

The equation of the angle of the compressive stresses 6, is based on MCFT calculations
for membrane elements with transverse reinforcement. Based on the theory of plasticity,
shear can be resisted at a range of possible values of §. However, 0 should be low enough
to ensure yielding of the stirrups and high enough to prevent crushing of the concrete.
The range in which both conditions are met, decreases if the shear load increases. There-
fore, the MCFT calculations are conservatively made for the maximum value of the
shear load 7/f... = 0.25 (Section 5.1.4). The calculations are carried out for a range of
values of the longitudinal strain &, and several values of the concrete cylinder compres-
sive strengths fo.. Moreover, it is assumed that 0. = 0. In Figure 5.13 the resulting upper
and lower limit of the angle are shown as function &. The figure shows the most narrow
results for all ranges of f.., noticing that the effect of /... on the figure is not significant.
The area in which both conditions are met (areas that are not grey) was found to be
rather small. Equation 5.37 fits in between the found relations for the upper and lower
limit.

6 = 29 + 7000¢, (5.37)

Although the equation for £ is derived for elements without transverse reinforcement
and the equation for 6 is derived based on elements with transverse reinforcement, Bentz
et al. propose to use Equations 5.36 and 5.37 for elements with and without transverse
reinforcement (Bentz et al. 2006a). After yielding of the transverse reinforcement, 6 and
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f reduce as a consequence of an increase of e1. Consequently, the contribution of aggre-
gate interlock decreases and the contribution of the transverse reinforcement increases.
Therefore, Bentz et al. consider it as a conservative approach to predict £ at a maximum
value of the aggregate interlock. Therefore, MCFT calculations for a maximum value of
7. are used to verify the suitability of the application of Equations 5.36 and 5.37 for
elements that contain transverse reinforcement.

_-- Equation 5.37
Stirrups do not yield Pras

before failure .-

.- Concrete crushes before
.- reaching desired stress

SX

Figure 5.13. Limits of the angle of the compressive stresses for 7/f.,,= 0.25 (Bentz et al. 2006a)

In Figure 5.14, the predictions of § and é are show in relation to the longitudinal strain
for membrane element with transverse reinforcement. The dashed lines show the pre-
dicted values of f# according to Equation 5.36 and the prediction of & according to 5.37.
The grey areas show the values of 6 and f predicted according to the MCFT for a max-
imum value of z; and a value for sy of 300 mm and with a range of values for p_fywm/fem.
The kink in the graphs shows that for high values of p.f;wm/fem, the crushing of concrete
before yielding of the transverse reinforcement becomes governing (t/fem = 0.25).
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Figure 5.14. Comparison £ and 6 between MCFT & Equations 5.36 and 5.37 at maximum z.; (Bentz et
al. 2006b)

If the Equations 5.36 and 5.37 are used, the predicted values for § and 6 appear to be
conservative in comparison with the predictions of the MCFT for most values of ;.
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However, for small values of &, the values of f are too high, which results in uncon-
servative predictions of the aggregate interlock component. On the other hand, 6 is
predicted too high for low value of &, which is a conservative result. It is obvious that
for regions without flexural cracks, low values of the longitudinal strain are of specific
interest.

Several assumptions are summarized regarding the development of the Simplified Mod-
ified Compression Field Theory (which corresponds with Equations 5.36 and 5.37 for
membrane elements with transverse reinforcement). It is assumed that w can be ap-
proached directly from &, with a linear relation, that 8 can be approached directly from
& with a linear relation and the same equations for 8 and f can be used for elements with
and without transverse reinforcement. The effect of the assumptions on the accuracy
appears to be limited. Bentz et al. compared the resistances according to the Simplified
Modified Compression Field Theory with the experimentally found resistance of 102
experiments on membrane elements (Bentz et al. 2006b) loaded in pure shear or shear
combined with uniaxial stress (¢:= 0). This resulted in a mean ratio of test-to-predicted
resistance of 1.11 and a CoV of 13.0%.
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Figure 5.15. Model to determine longitudinal strain (Bentz et al. 2006a)

Also the method to determine &, is part of the model of Bentz et al.. This method is
illustrated in Figure 5.15. As the shear resistance is only determined at the mid-depth of
a cross-section, also & is determined at the mid-depth. The modelled girder consist of a
compressive chord and a tensile chord. The compressive force C = -Mg/z + 0.5VE cot0
+ A’y 0p, in Wwhich M is the moment due to the external load, z is the internal lever arm,
Ve is the shear due to the external load, 4°, is the area of the prestressing steel at the
compressive side of the girder and o0 is the initial stress in the prestressing steel at the
compressive side of the girder. The internal lever arm is assumed to be equal to 0.9 times
the effective depth. The tensile force 7= Mg/z + 0.5VEe cotd + Ap 60, in which 4, is the
area of the prestressing steel at the tensile side of the girder and g0 is the initial stress
in the prestressing steel at the tensile side of the girder. It is suggested (Bentz et al.
2006a) to use conservatively Vg instead of 0.5Vg cotf for simplicity. The strain in the
tensioned chord & = T /(EsAs + EpAy). If the tension chord is not cracked the stiffness
should be increased by the stiffness of the uncracked concrete (Esds+ EpAp+ EcAe), in
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which 4. is based on the area of concrete within 0.5/ of the ultimate fiber (Figure 5.15).
The strain in the compressive chord e. = D / (EsAs+ Epdp + EcAcc). Finally, &, is assumed
to be equal to (& + &./2. It is suggested to conservatively assume e = 0 S0 & = &/2.
However, as this research concerns shear resistance in regions without flexural cracks,
which is characterised by small longitudinal strains, this suggested simplification is not
further used in this dissertation.

The accuracy of the model of Bentz et al., was investigated by Esfandiari et al.(2009)
for 88 simply supported girders. This reference is used as this specifically concerns pre-
stressed girders with stirrups. This investigation was already reported in Section 5.1.2
for the accuracy of the model of MacGregor et al.. For the model of Bentz et al., a mean
value of the test-to-predicted shear resistance ratio was found of 1.31 and an associated
coefficient of variation of 16%. In his research no distinction was made between the
accuracy for regions with or without flexural cracks.

5.1.6 Model of Esfandiari

Like the model of Bentz et al., the model of Esfandiari is intended to determine shear
and moment resistance for reinforced and prestressed members with and without stir-
rups. In this section the determination of shear resistance for girders with stirrups is
explained. Also in the model of Esfandiari, no explicit distinction is made between the
flexural shear resistance in regions with and without flexural cracks, although a relation
between the failure modes and the magnitude of the longitudinal strain is obvious. The
model is partly explained in Section 5.1.4. In this section the derivation of the equations
for f and 6 is explained. This section is based on Esfandiari (2009) and Esfandiari et al.
(2009).

Esfandiari carried out MCFT analyses on membrane elements with different amounts of
longitudinal and transverse reinforcement (Esfandiari 2009). The results for two ele-
ments with the same amount of longitudinal reinforcement but a different amount of
transverse reinforcement, are shown in Figure 5.16. In this figure the ratio of the shear
stress and concrete strength is presented versus the shear strain. After yielding of the
transverse reinforcement, ¢ increases and 6 and f decrease. This implies that the re-
sistance by aggregate interlock decreases and the resistance by the transverse
reinforcement increases. Depending on the magnitude of both shear transfer mechanism,
the total resistance could decrease (Figure 5.16, membrane element with low p.) or in-
crease (Figure 5.16, membrane element with high p.) after first yielding. A further
increase of yx: eventually causes concrete crushing for both elements. Significant differ-
ences are found in values of § and f for both physical conditions. Hence, first yielding
of stirrups or crushing of concrete could be associated with the highest resistance and
be the governing failure mechanism.
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Figure 5.16. Shear response for two membrane elements, based on Esfandiari (2009)

At first yielding of the transverse reinforcement, values of 6 and f were determined as
function of &, from MCFT analyses on membrane elements (Esfandiari 2009). The pa-
rameter p: fywm/fem Was used to fit the trend predicted by the MCFT. Equations 5.38 - 5.41
were found as rather good approximations of 8 and f at yielding of the transverse rein-
forcement. In these equations, ¢, is the yielding strain of the transverse reinforcement.

6=00+ A0 e, (5.38)
_ pzfyw
6, = (85——+19.3)(1.1- 50¢,) (5.39)
fem
A8 = 1000(37.5(1.4 - 200&,,) — 6,) (5.40)
B = 0.18(1.6 - 300¢,) (5.41)

The results are presented as example in Figure 5.17 for values of /o, of 40 N/mm? and
frwm of 400 N/mm? and values of p- of both 0.002 and 0.010. The solid lines are the
predictions according to the MCFT membrane element predictions. According to Equa-
tion 5.39, the angle of principal compression depends on the parameter p: fywm/fem. The
concrete contribution factor § according to Equation 5.41 is a fixed value and is pre-
sented with a dashed line. Figure 5.17 shows that the results of the model of Esfandiari
matches the results of the MCFT well, although for low shear reinforcement ratios,
which are typical for the Dutch Highway bridges designed with a design code prior to
the design code of 1974, the predictions of  are conservative.

Figure 5.17 furthermore shows that f is significantly overestimated for low longitudinal
strains for the condition of first yielding, when the model according to Bentz et al. is
used. For these conditions, the aggregate interlock is overestimated. On the other hand,
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also 6 is overestimated for these conditions and the contributions of the stirrups is there-
fore underestimated. Eventually, the overestimation of the contribution of aggregate
interlock is compensated by the underestimation of the contribution of stirrups. This is
found from the comparison of the predicted and experimentally found resistance for 102
membranes (Bentz et al. 2006b) and 88 simply supported prestressed girders (Esfandiari
et al. 2009), as described in Section 5.1.5.

——  MCFT 350
04 1. ---- Model Esfandiari
Model Bentz et al. 300
_ 03 | =0.002
NE e T 0010 o 2
= >
Z 02 1 20
Q
0.1 1 15°
2, = 0.002
T T T T T I I T I I
0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
£, (mm/m) &, (mm/m)

Figure 5.17 Comparison f and € between MCFT & Eqns. 5.38-5.41 at first yielding (Esfandiari 2009)

Also at concrete crushing, values of @ and f were determined as function of & from
MCEFT analyses on membrane element and the parameter p. fyum/fon Was used to fit the
trend predicted by the MCFT. Equations 5.38, 5.42 - 5.44 were found as approximation
of # and £ at crushing of the concrete.

6o = 11972 | 156 (5.42)
cm
AG = 15,000@ + 2000 (5.43)
cm
B = 0.65 Palyw +0.030 (5.44)
fem

The results are presented as example in Figure 5.18, again for values of £, of 40 N/mm?
and of fyum of 400 N/mm? and values of p- of both 0.002 and 0.010. According to Equa-
tion 5.44, the concrete contribution factor £ depends on the parameter p: fywm/fom.
According to Equations 5.42 and 5.43, also the angle of principal compression depends
on the parameter p: fywm/fem. From Figure 5.18 is found that the results of the model of
Esfandiari and the results of the MCFT match well, although some conservatism exist
regarding S for low longitudinal strains.
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Figure 5.18 Comparison £ and 6 between MCFT and Equations 5.42-5.44 at concrete crushing (Esfan-
diari 2009)

Figure 5.18 furthermore shows that f is also significantly overestimated for low longi-

tudinal strains for the condition of concrete crushing when the model according to Bentz

et al. is used. But just like for the condition of first yielding, the overestimation of the

contribution of aggregate interlock (overestimation of /) is compensated by an under-

estimation of the contribution of stirrups (overestimation of 9).

The shear stress that can be resisted can be determined from Equation 5.34 based on the
determined values of @ and . The governing resistance equals the highest resistance that
is found for both physical conditions (first yielding and crushing). The failure mode
associated with the highest resistance is the predicted failure mode.

The equations were fitted for values of & between 0 and 1.0 mm/m. Within these limits
the equations generally match well with the predictions of full MCFT analyses. How-
ever, the predicted values for both 8 and /S are more conservative for low values of &,
which can be associated with regions without flexural cracks. The predictions are espe-
cially conservative in combination with low values of p..

Also the method to determine &, is part of the model of Esfandiari. For the longitudinal
component of the shear force carried by the web, the angle @ is calculated. This is in
contrast to the approach used by Bentz et al. for which the angle is assumed (Section
5.1.5 and Figure 5.15). Moreover, this longitudinal component is only accounted for in
the cracked web. Also tension stiffing of the tensioned flange and the presence of longi-
tudinal reinforcement in the web are accounted for in the approach used by Esfandiari.
Furthermore, the location at which the prestressing steel in the web are present is ac-
counted for explicitly. These refinements result in an extensive set of equations
(Esfandiari 2009) and more accurate predictions of & compared to the model of Bentz
et al.. However, the model still suggests to use the equation & = &/2 instead of &x = (&; +
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&:)/2. As shear failure in regions without flexural cracks is characterised by small lon-
gitudinal strains, the effect of this simplification can be significant.

Esfandiari et al.(2009) investigated the accuracy of his model for 88 simply supported
prestressed girders with stirrups. This investigation was already reported in Section 5.1.2
and 5.1.6 for the accuracy of the model of respectively MacGregor et al. and Bentz et
al.. For the model of Esfandiari a mean value of the test-to-predicted shear resistance
ratio was found of 1.27 and an associated coefficient of variation of 17%. In this research
no distinction was made between the accuracy for regions with or without flexural
cracks. Esfandiari concluded that the model becomes more conservative for & < 0.1
mm/m.

5.1.7 Empirical model of Leonhardt

Leonhardt et al. (1973) suggested an empirical model based on experiments with post-
tensioned girders with an I and T shaped cross-section. The experiments contained
straight and inclined prestressing cables and the level of prestressing varied between the
experiments. The described empirical model according to Leonhardt is intended to de-
termine the shear resistance for prestressed members with stirrups in regions free of
flexural cracks.

Based on the cracking pattern at failure, different zones were distinguished (Figure
5.19). This concerns zone A, which is free of cracks, zone B, which contains diagonal
tension cracks and no flexural cracks, and zone C, which contains both flexural cracks
and flexural shear cracks. For each zone Leonhardt et al. derived different models to
determine the shear resistance.

l/ F=1800kN
NSRS TR L
ANANRSNENAARSEY
SRR SNET T
Wi B i
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/\/\/\

ﬁ / \
200 /-—/ \
100 ! \—\

~

o5y (N/mm?)

zone C zone B zone A

Figure 5.19. Crack pattern, cracking zones and max. stirrups stresses for IP1 (Leonhardt et al. 1973)
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As part of the experiment, the strains in the stirrups were measured at four locations
over the length of the stirrups. In Figure 5.19 the stress associated with the maximum of
the measured strains is shown for experiments IP1 at the last load step before failure (a
load of 1800 kN). Although the shear force was equal in both zones, the maximum
stresses in zone B were found to be significant lower than in zone C. Leonhardt assumed
that this was due to the contribution of the compressive and tensile chords to the shear
resistance, as both chords remain uncracked and have a high stiffness. For zone B, Leon-
hardt suggested to use the linear elastics principal tensile stress distribution as basis for
the determination of the shear resistance. This was assumed justified as the diagonal
tensile cracks were fine hair cracks at the instant the experiments failed.

The stresses in the stirrups have a component in the direction of the maximum principal
tensile stress. From equilibrium it is found that this component equals p, gsw, in Which
pwis the transverse reinforcement ratio (original notation ;) and gy, (original notation
oei) 1s the stress in the stirrups. The measured stresses in the stirrups are lower than
calculated from the principal tensile stresses. Therefore, a ‘reduction parameter’ oz was
introduced (original notation o¢;p) which is determined empirically using the data of five
tested experiments at various load stages and Equation 5.45. In this equation o7 (original
notation a;y) is the principal tensile stress at the centroidal axis determined from a linear
elastic calculation. For g, the stress in the stirrups associated with the maximum of the
four measured strains is used.

Ocgr = 01— Pw Osw (545)

The contribution of the concrete is determined for the 5 experiments at different load

23 was found to be a lower

stages (in total 30 calculations). A value for g.r of 0.25fcn
limit for all obtained results. The maximum principal tensile stress that can be resisted
according to the model of Leonhardt (o;z) is given in Equation 5.46. In this equation fon
is used instead of the cube compressive strength (which was based on cubes sized 200
mm) which was used by Leonhardt et al.. To converse the cube compressive strength
into a cylinder compressive strength the conversion equations of Reineck et al. (2012)
are used. The last part of Equation 5.46 is based on the assumption that at failure the

stirrups will yield.
O1Rr = 0-25fcm2/3 + Pw fyw (5'46)

Some critical remarks are make regarding Leonhardt’s model as part of this dissertation.
The contribution of the concrete is empirically derived and mainly based on load stages
before failure. The contribution of concrete could possibly reduce at higher load stages,
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when the crack further opens. Moreover, only for two of the five considered experi-
ments, the failure could be related to diagonal tension cracks (Section 5.2.2). The
gathered empirical data for various load steps is thus limited to ensure the behaviour at
shear failure in regions without flexural cracks is covered for all possible situations. In
addition, some experiments did show the development of significant stirrups stresses in
zone B (TP2 and TP4). Also the measurements of experiment IP1, which is shown in
Figure 5.19, shows significant stresses developed in the stirrups in the zone B at an
earlier load step. At this earlier load step, the zone with flexural cracks was smaller and
zone B larger. The significant stresses developed in the area what subsequently ‘became’
a C zone. It is also mentioned that equilibrium for stresses along the girder axis is not
considered in the model suggested by Leonhardt.

5.1.8 Arch action models

In this section, arch action models are explained for prestressed girders with stirrups.
Both shear and moment resistance can be determined using arch action models. In this
section the determination of shear resistance is explained. In arch action models a com-
pressive strut is modelled that makes equilibrium with a part of the external loads (F)
and the prestressing forces (P), see Figure 5.20. As shown in this figure, the arch profile
should suit the loading. The longitudinal component of the arch is in equilibrium with
the longitudinal component of the prestressing. The vertical component of the arch can
resist a part of the vertical external load. Arch action models are used together with truss
analogy models that resist the remaining part of the external load. Examples of arch
action models are described in the Model Code 1990 (fib 1993), Huber (2016), Huber et
al. (20164, b, c), Gleich et al. (2015, 2016, 2018). Arch action models differ in the ap-
proach of composing the shape of the compressive arch and the way the truss analogy
model was applied. The model of Huber (2016) is intended for the region without flex-
ural cracks (zone B as described in Section 5.1.7). Therefore, the model of Huber will
be further described in this section.

v
1
\
’

Figure 5.20. Arch profiles adapted to different load patterns according to Model Code 1990 (fib 1993)

According to the model of Huber, the shear resistance in a region without flexural
cracks, consists of a contribution of the vertical component of the inclined compressive
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strut V.. and a contribution of stirrups Vzs (Equation 5.47). The model for shear re-
sistance assumes no contribution of aggregate interlock (¥z.:) to the shear resistance.

Vg = VR,S + Ve (547)

The critical cross-section for the resistance is assumed to be at a distance x.., from the
support, that is equal to the depth of the beam (%) minus the distance between the ulti-
mate top fiber and the centre of gravity of the cross-section (z.0), see Figure 5.21.
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Figure 5.21. Compression arch model Huber (Huber 2016)

Vee is defined as the vertical component of the inclination of the compression strut. To
determine the inclination of the compression strut, two cross-sections are considered.
The first cross-section is located at the support (x = 0). The second cross-section is lo-
cated at the location of the first flexural crack (x = x.) . In this cross-section the
longitudinal stress ox in the ultimate fiber equals the uniaxial tensile strength fesm. For
both cross-sections, the distance zr. between the ultimate fiber and the resulting concrete
compressive force (F¢) is found from the stress distribution over the cross-section. This
is determined from the cross-section forces using Hooke’s law. The angle of the com-
pressive strut ac can be determined from Equation 5.48. As a simplification, the force
in the compression strut is assumed to be equal to the component of the prestressing
force parallel to the girder axis (Px). With this assumption Equation 5.49 is found.

Zre(x=0) — ZFc(x=
QAee = arctan( Fete=0) ~ Trex x")) (5.48)
Xcr
Ve = P, sina,, (5.49)

The contribution of the reinforcement is given by Equation 5.50. The angle of the crack
is assumed to be equal to ¢, which is the angle of the principal stresses at a load that
causes a diagonal tension crack. This is the case if the principal tensile stress in the web
equals the biaxial concrete tensile strength fem.cy (Equation 2.8 in Section 2.1.4). The
angle ¢, varies over the height of girder. As a simplification, ¢, is based on the principal
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stresses at the centre of gravity. Rotation of the crack after formation of the crack is
assumed to be obstructed by the uncracked compression zones between the crack and
the ultimate fiber on both sides of the crack. It is further assumed that the stirrups are
yielding along a length cot ¢ multiplied with the effective depth d minus the height of
the compression flange /.

Vrs =

iivw ( d - hfc) * fywm * €Ot @cr (5.50)
There are some critical remarks to make regarding the model of Huber. As no compari-
son with experiments is done, because these were assumed to be not available, the model
is not validated. It is unknown if the model can predict the shear resistance accurately.
Moreover, the model assumes no contribution of aggregate interlock as the rotation of
the compressive strut is obstructed by the uncracked flanges. This assumption is in con-
trast to observations of experiments for which the flange remained free of flexural cracks
in the shear critical region, carried out by Rupf et al. (2013). For these experiments, the
inclination of the principal compressive strains was measured at the last load step just
before failure. These measured angles were found to be significantly lower than the ob-
served angle of the cracks. This clearly indicates that the compressive struts have rotated
between the formation of the diagonal cracks and the ultimate failure of the girder.

5.2 Comparison of models from literature

In this section, models as described in Section 5.1 are mutually compared. These com-
parisons concern the following aspects:

1. the applicability for regions without flexural cracks

2. the assumed failure mode

3. the contribution of the stirrups to the shear resistance

4. the contribution of the concrete to the shear resistance

5. the contribution of the uncracked concrete to the shear resistance

The first aspects concerns the applicability for regions without flexural cracks. All mod-
els are intended to determine the shear resistance of prestressed girders with stirrups in
regions without flexural cracks either specifically or in combination with regions with
flexural cracks. Two models are specifically intended for regions without flexural cracks
and cannot be used for regions with flexural cracks. These concern the models of Leon-
hardt and Huber. The model of MacGregor et al. describes the resistance to web-shear
failure and flexural shear failure. In the region without flexural cracks the resistance to
web-shear failure will always be governing. This is because the resistance to flexural
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shear failure equals the resistance to flexural shear cracking and an additional term. The
models of Bentz et al. and Esfandiari do not explicitly distinguishes regions with and
without flexural cracks. However, the longitudinal strain at the mid-depth of the girder
(&x) significantly affects the predicted resistance. As the values for the longitudinal strain
at the mid-depth associated with regions without flexural cracks will be lower than for
regions with flexural cracks, the associated shear resistance will be higher. The variable
angle truss model, does not distinguishes the resistance in regions with and without flex-
ural cracks.

The second aspect concerns the assumed failure mode. All models determine the shear
resistance under the condition that failure due to concrete crushing before yielding of
the stirrups, is not governing. To capture this condition, each model describes an asso-
ciated equation for this maximum shear resistance. Only the model of Esfandiari predicts
the governing shear failure mode. This concerns either failure at first yielding of stirrups
or failure due to stirrups yielding and concrete crushing simultaneously. According to
the variable angle truss model, failure occurs due to the simultaneously crushing of con-
crete and yielding of stirrups. Also the model of Huber assumes that at failure the stirrups
yield, but the resistance of the compressive struts is verified independently. The model
of Bentz does not explicitly predict the failure mode. The models of MacGregor et al.
and Leonhardt are empirical and do not further distinct specific failure mechanisms.

The third aspect concerns the contribution of the stirrups to the shear resistance. The
models determine the contribution of the stirrups to the shear resistance (Vz) differently.
The equations used in the models are shown in Table 5.6. All models assume yielding
of'the stirrups at failure. All models also assume yielding along the horizontal projection
of a diagonal crack. Only the horizontal projection of the diagonal crack differs per
model. According to the variable angle truss model the angle € is found for the condition
that the shear force associated with crushing of the compressive struts is equal to the
shear force at yielding of the stirrups. In the variable angle truss model 8 concerns the
angle of the compressive strut and can be lower than the angle of the cracks. The con-
tribution of aggregate interlock is implicitly included in 0. If the ranges of parameters
according to Table 1.1 are applied, the values for € are found as listed in Table 5.6. The
variable angle truss model bases the horizontal projection of a diagonal crack on the
internal lever arm. The cracking angle according to the model of MacGregor et al. is
determined as final part of the empirical model (a value of 42° was found that was con-
servatively set to 45%). MacGregor already recognised that the angle was too steep
compared to observations (Section 5.1.2). The model according to MacGregor et al. ba-
ses the horizontal projection of a diagonal crack on the effective depth d. The cracking
angle according to the model of Bentz et al. depends on &:. According to the model of
Esfandiari the cracking angle depends not only on & but also on fjm, fem, and p- and on
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the failure mode. If the range of parameters according to Table 1.1 is applied and it is
further assumed that -0.2 < &r < 0 mm/m (which is typical for regions without flexural
cracks), values for # are found as listed in Table 5.6 (‘indication 6)’. Both models base
the horizontal projection of a diagonal crack on the internal lever arm. According to the
model of Huber it is assumed that the diagonal crack does not extend into the most
compressed flange but remains in the web. Therefore, the horizontal projection of a di-
agonal crack is based on the height of the effective depth minus the height of the
compression flange. Huber assumes that the angle of the crack equals ¢.-, which is the
angle of the principal stresses at a load that causes a diagonal tension crack.

Table 5.6. Comparison between models regarding contributions of aggregate interlock & stirrups for -

02<&<0

Model Variable angle MacGregor et al.  Bentz et al. Esfandiari Huber

truss model

(Section 5.1.1)  (Section 5.1.2) (section (Section (Section 5.1.8)

5.1.5) 5.1.6)

Vs AslS frwm AslS fywm AslS frum AslS frum AslS frum

z cotd d z cotd z cotd (d - hy)cotper
Indication ~ 22°<60<25° (0=45°) 28°<0<29° 15°<6<26°
0
Viei Implicitly via ~ 0.291Nfonbuwd, + S finbuz B\fombuz None

0 0.304 bwd,
Indication 040<p< 0.03<p<
B 0.57 0.21

The fourth aspect concerns the contribution of the concrete to the shear resistance. The
models determine the contribution of the aggregate interlock (V) differently. The var-
iable strut model has no separate term to predict the contribution of aggregate interlock.
Hence, aggregate interlock is implicitly considered by allowing an angle of the com-
pressive struts less than the cracking angle. According to the model of MacGregor et al.,
the contribution of the concrete equals the resistance to diagonal tension cracking. This
explains the presence of ¢, which is not present in the other models. The models ac-
cording to Bentz et al. and Esfandiari explicitly predict the contribution of aggregate
interlock. The contribution of the aggregate interlock, expressed in f, according to the
models of Bentz et al., depends on &x. According to the model of Esfandiari the concrete
contribution depends not only on &, but also on fyum, fom, and p- and on the failure mode.
If the range of parameters according to Table 1.1 is applied and it is also assumed that -
0.2 < & < 0 mm/m, values for f are found as listed in Table 5.6 (‘indication f)’. The
model of Huber does not take into account the contribution of aggregate interlock.
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The fifth aspect concerns the contribution of the uncracked concrete to the shear re-
sistance. None of the described models explicitly considers the contribution of the
uncracked flanges to the shear resistance.

5.3 Database on shear failure of prestressed girder with stirrups

To be able to study the resistance of prestressed girders with stirrups in regions without
flexural cracks, experiments have been inventoried from literature. These experiments
are used to compile a database. These inventoried experiments will be used for specific
analyses (Chapter 7). These experiments will also be used to evaluate the accuracy of
the proposed model (Chapter 8).

This section describes the database that is compiled of experiments on prestressed gird-
ers with stirrups for which failure could be related to diagonal tension cracks. Section
5.3.1 explains the choice of the criterion ‘failure related to diagonal tension cracks’ as
main criterion for the selection. This is used instead of ‘failure in a region without flex-
ural cracks’, which is the scope of the current research. Section 5.3.1 further explains
the other selection criteria that are used. Section 5.3.2 provides an overview of the se-
lected experiments.

5.3.1 Selection criteria

In literature no reports are found that explicitly mention whether failure occurred in a
region with or without flexural cracks. Many reports were found from literature on the
other hand of experiments for which failure could be related to diagonal tension cracks.
Therefore, it was possible to compile a database of experiments for which failure could
be related to diagonal tension cracks. This is the main reason why ‘failure related to
diagonal tension cracks’ is chosen as main selection criterion instead of ‘failure in a
region without flexural cracks’.

For these experiments it is however uncertain if failure also occurred in an region that
remained free of flexural cracks until failure. This is illustrated in Figure 5.22. The left
part of the figure shows the crack pattern at diagonal tension cracking. Shallow flexural
cracks are present at this load stage, but just outside the region which could be critical
for shear failure. The right part of the figure shows the crack pattern at failure. At this
load stage, flexural cracks have penetrated into the region critical for shear failure. These
cracks are shallow and did not merge with the diagonal tension cracks. Nevertheless,
flexural cracks were present in the region in which the girder failed. Hence, although it
was explicitly reported that the failure could be related to diagonal tension cracks, failure
took place in a region with flexural cracks.
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Figure 5.22. Crack pattern at diagonal tension cracking & at failure (experiment F5B, Hanson 1964a).

In contrast to Figure 5.22, it is frequently not clear from reports from literature whether

failure occurred in a region with or without flexural cracks. Therefore, the presence of

flexural cracks is not based on observations of experiments. The presence of flexural

cracks will be calculated instead. These calculations are carried out based on a method,

described in Section 8.1. This method will be used to further select experiments that

failed in regions without flexural cracks. Eventually, the accuracies of the models are

based on the experiments for which no flexural cracks are predicted in the shear critical

region.

The literature survey which is covered by the presented database, includes the following

overviews and databases:

— an overview listed in a state-of-the art report on shear in prestressed concrete mem-
bers (Walraven 1987).

— an overview of experiments used for verification of a shear design method (Col-
lins et al. 1996).

— a shear database on prestressed members (Nakamura 2011).

— an overview of prestressed girders of a database with shear test on structural concrete
girders (Reineck et al. 2012).

All these overviews and databases consist of a part with and a part without stirrups.
Considering the purpose of the database, only the parts with stirrups are considered.

The main selection criterion is whether shear failure can be related to diagonal tension
cracks. Experiments for which failure was related to flexure cracks or flexural shear
cracks are not included in the database. Also experiments that failed within the trans-
mission length of pre-tensioned tendons are excluded.

The section is based on the following criteria and considerations:

— Only reports and dissertations that contain sufficient information to predict the shear
resistance are included.

— Both simply and continuously supported girders are collected, because both support-
ing conditions are part of the intended application of the developed model (Section
L.5).
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— Only normal weight concrete is considered as this is the intended application (Section
L.5).

— Only experiments with vertical stirrups are considered.

— The behaviour of shear failure between girders with bonded and unbonded prestress-
ing steel can differ fundamentally. This is because for girders with only unbonded
prestressing steel the only equilibrium model is a tied arch (Walraven 1987). This is
the case unless girders contain also reinforcement or if flexural cracks are only pre-
sent over a limited length. As unbonded prestressing steel are not applied in
prestressed bridge girders in the Dutch Highways, experiments with unbonded pre-
stressing steel are not selected in the database. An exception is the experiment carried
out by Xie (2009), which could be selected, because in addition to unbonded prestress
also bonded reinforcement was applied.

— The developed model is not intended for girders that have insufficient stirrups to pre-
vent failure after diagonal tension cracking. The resistance of these girders does not
differ from the resistance of girders without stirrups. Therefore, girders that instantly
fail after diagonal tension cracking are not included in the database. For a part of
experiments with a low shear reinforcement ratio, the resistance is higher than the
resistance to diagonal tension cracking. In advance it can be difficult to determine if
this additional resistance is due to the presence of stirrups. Hence a part of the girders
without stirrups has some residual resistance after diagonal tension cracking (Chapter
2.1.1. and Figure 2.2). In Section 8.4.1 both the resistance to diagonal tension crack-
ing and the resistance considering the presence of stirrups are predicted. Experiments
are selected for which the predicted resistance, if the presence of stirrups in consid-
ered, is higher than the predicted resistance to diagonal tension cracking.

— The ratio of the shear span to the effective depth (a/d) could be chosen as selection
criterion. In literature, a/d is a common selection criterion if only the behaviour of
slender girders is investigated. By selecting only experiments with a large a/d, the
increase to the resistance due to direct transfer mechanism is limited (Section 5.1.8).
For instance a minimum a/d of 2.4 is used in the Reineck database for slender girders
(Reineck et al. 2012). The same limit is applied by Bentz to select experiments to
verify the accuracy of the sectional analyses programme Response (Bentz 2000).
Most models are intended to describe sectional behaviour and conservatively neglect
any contribution of direct load transfer mechanism. Also the model that is developed
as part of this research is intended to describe sectional behaviour. It is however un-
certain if a minimum a/d of 2.4 is a valid limit for prestressed girders that fail in the
region without flexural cracks. Therefore, a/d is not used as selection criterion. Part
of the research is to investigate if the predictions according to the proposed model for
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shear resistance in regions without flexural cracks are affected by a/d. This is an ad-
ditionally objective of the current research.

— It should be avoided to base models that are intended for large girders in practice on
test results of small experiments, considering the influence of the sizes of girders to
their structural behaviour. Crack spacing in small girders is small compared to higher
girders if girders do not contain stirrups. As a result the aggregate interlock compo-
nent is much higher in small girders compared to deeper girders. This is called a ‘size
effect’. However, for girders with stirrups, crack spacing is controlled and no signif-
icant size effect is expected (Bentz et al. 2006a). Nevertheless, to limit the chance
that deviant behaviour of small girders affects the development or evaluation of mod-
els, only experiments with a member height larger than 450 mm are selected. The
selection criterion can be considered as relatively strict compared to criteria used by
other researchers to compile their databases. For instance Avendano et al. (2008),
Hawkins et al. (2007), Birrcher et al. (2009) and Reineck et al. (2012) used respec-
tively a minimum girder height of 305, 508, 305 and 70 mm as selection criteria for
their databases. An additional goal of the current research is to investigate whether
the predictions are consistent for different girder heights according to proposed model
for the shear resistance in regions without flexural cracks.

5.3.2 Overview of selected experiments

The database of shear failure related to diagonal tension cracks of girders with stirrups
is included in Appendix F. An overview of the selected experiments and associated
ranges of parameters is given in table 5.7. Figure 5.23 illustrates the described parame-
ters. Fifty seven experiments are selected that meet the selection criteria as described in
section 5.3.2. Both simply as continuously supported girders are included. Selected ex-
periments contain both post-tensioned and pre-tensioned tendons. The applied
geometries of the tendons of the experiments are straight, draped and curved.

a I

=

A, Materials: oy, fom fie s Ap
Figure 5.23. Data used to determine the main parameters and characteristics of the experiments

The main selection criterion is if failure could be related to diagonal tension cracks. The
selected experiments meet this condition. This is argued in the remaining part of this
section.
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Table 5.7. Overview database on shear failure related to diagonal tension cracks, girders with stirrups

Re- Identification Prestress-  Support £ Ocp Pw Sem a/d  dmax
searcher  (number of experi- ing condi-
(year) ments) tions
mm N/mm?> % N/mm? - mm
Elzanaty CW10,CW11, Straight Simply 457 7.9- 0.25- 40- 34- 13
et al. CW12, CW13, pre-ten- sup- 11.3 0.79 74 3.7
(1986) CW14, CW15, sioned ported
CW16,CW17 (8) tendons
Choulli ~ HCP2TE, Straight Simply 750 6.3- 0.50 81- 3.0- 12
(2005) HCP2TW, pre-ten- sup- 9.6 96 3.1
HAP2TW, sioned ported
HCPITE, tendons
HCPITW,
HAPITE,
HAPITW (7)
Hanson  FXIA, Straight Simple 457 5.8- 0.20- 44- 1.9- 19
(1964) FXIB,F1A,FIB,  pre-ten- sup- 6.4 0.74 51 3.2
F2A, F2B, F3A, sioned ported
F3B, F4B, F5A, tendons
F5B, F19A (12)
Leon- TP2, TP4 (2) Draped Simply 970, 5.5, 0.70- 24, 39 15
hardt et post-ten-  sup- 900 6.3 231 47
al. sioned ported
(1973) cable
with bond
Rupf et SR21, SR22, Curved Contin- 780 2.3- 0.06- 28- 6.6- 16
al. SR23, SR24, post-ten-  uously 4.9 025 37 6.9
(2013) SR25, SR26, sioned sup-
SR27, SR29, cable ported
SR30 (9) with bond
Mattock  S1, S2, S3, S5, S6,  Straight Contin- 648 8.0 0.37- 42- 1.0- 19
et al. S7, S8, S9, S10, pre-ten- uously 1.12 47 4.5
(1961) S11, S12, S13, sioned sup-
S21 (13) tendons ported
Xie LB2, LB3, LB6, Straight Contin- 500 4.3- 0.19- 62- 5.1 10
(2009) LB7,LBS, LB10  post-ten-  uously 11.2 037 64
6) sioned sup-
ported
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A part of the experiments of the experiment of Elzanaty et al. (1986) that were designed
to fail as result of “web shear failure’ (CW-series) contain stirrups. For these experiments
the experimentally found shear resistance is reported. As the failure was related to diag-
onal tension cracks, all experiments of the CW-series with stirrups are selected. It was
reported that flexural cracks were present but that these were all shallow and did not
propagate in the web. It is difficult to confirm the selection based on the photos of the
failed experiments. Hence, it is unclear from the photos to what extend the flexural
cracks were expanded. Therefore, the selection is based on the description. The failure
modes reported concern extensive crack opening, sometimes combined with crushing
of concrete. For two experiments the diagonal tension cracks propagated through the top
flange.

A part of the experiments tested by Choulli (2005) contain stirrups. It was reported that
six of the experiments failed as a result of diagonal tension, yielding of the stirrups and
crushing of the concrete in the web. Because the failure was associated with diagonal
tension, these six experiments were selected for the database. It was difficult to confirm
the selection based on the photos. That is because it was unclear from the photos to what
extend the flexural shear cracks were expanded. Therefore, the selection is based on the
description. Experiment HCP2TW was reported to fail as result of stirrups rupture and
concrete crushing. Because it was reported that the rupture occurred in a diagonal ten-
sion crack, also this experiment is selected.

In the dissertation of Hanson (1964) a distinction was made between if flexural shear
cracks or diagonal tension cracks could be associated with the shear failure mechanism.
This was done by studying photographs of the tested girders taken before and after fail-
ure. All experiments for which failure was related to diagonal tension cracking are
selected. The failure modes reported concern web crushing, stirrups fracture and shear
compression.

For two of the experiments in the research report of Leonhardt et al. (1973) that failed
in shear, the failure could be associated with diagonal tension cracks. This was deter-
mined from the figures in the report that describe the development of the cracks. These
two experiments are selected. The associated photos were studied and it was confirmed
that failure was related to diagonal tension cracks.

Most of the experiments that were part of the experiment carried out by Rupf et al.
(2013) concerned prestressed girders with a flange. It was reported that all these girders
failed in the region of the point of contraflexure. Therefore, the experimentally found
resistance was related to diagonal tension cracking. All experiments that contained pre-
stress were selected. For two of these experiments photos of the final crack pattern were
present that confirmed that failure was related to diagonal tension cracks. Two failure
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modes were described. The first concerned failure of the web by large openings of the
cracks of the web and rupture of the stirrups. This was observed for experiments with
low amounts of shear reinforcement. The second failure mode concerned crushing of
concrete simultaneous with yielding of the stirrups. This was observed for higher
amounts of shear reinforcement. Although different anchorage conditions were applied
in the experiments of Rupf et al., no influence was observed on the shear resistance or
the failure mode. However, a potential effect of the anchorage conditions on the pre-
dicted resistance cannot be ruled out.

Almost all experiments in the research report of Mattock et al. (1961) failed in shear.
For these experiments it was reported that diagonal tension cracks led to failure. The
flexural cracks caused by the negative moment were too close to the support and to
steeply inclined to lead to shear failure. Besides, it was reported that flexural cracks
merged with diagonal tension cracks that developed independently in the web. Never-
theless, all the experiments for which the girder failed in shear are selected, as the
diagonal cracks are diagonal tension cracks. For some tests, photos of the failed experi-
ments were present and for several other experiments figures of the cracking pattern.
These were studied and it was confirmed that failure was related to diagonal tension
cracks. All girders failed due to crushing of the web and simultaneously yielding of the
stirrups.

Seven experiments that were part of the experiment carried out by Xie (2009), concerned
prestressed girders with stirrups. One experiment suffered some problems with the form-
work and was not selected. It was reported that failure occurred due to rupture of the
stirrups and sliding along a major inclined web-shear crack for all experiments, so all
six remaining experiments are selected. For all experiments, crack diagrams were in-
cluded in the dissertation for each load stage. The dissertation also includes photos of
the girders after failure. These crack pattern and photos confirm that failure was related
to diagonal tension cracks.

5.4 Findings from literature review and further approach

This section describes to what extend the research questions could be answered based
on the literature study. Based on these answers an approach is chosen to derive the model
which is proposed in this dissertation.

Research question D concerns the question ‘What are the possible shear failure modes
for prestressed girders with stirrups in the regions without flexural cracks? Is it possible
to relate the shear resistance to the possible failure modes?’. From the literature review
it is found that the model of Esfandiari distinguishes possible failure modes. The model
also relates the shear resistance to these possible failure modes. This makes the approach
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that is used to derive the model of Esfandiari also suitable to further investigate the
possible shear failure modes in the regions without flexural cracks. Subsequently it is
possible to relate the shear resistance to the failure modes.

Research question E concerns the question ‘How does the low longitudinal strain, that
is associated with regions without flexural cracks, affect the shear force transfer mech-
anism along the diagonal tension crack?. From the literature review two approaches are
found. The first approach is to relate the shear resistance to the longitudinal strain. This
approach is used in the models based on the MCFT (Bentz et al. and Esfandiari). These
models relate the contribution of aggregate interlock and stirrups to the strain at mid-
depth. As a consequence, low longitudinal strain, which is associated with regions with-
out flexural cracks, will result in high contributions of aggregate interlock and stirrups.
A second approach is to develop models that are only applicable in regions without flex-
ural cracks. In this approach the low longitudinal strain, associated with regions without
flexural cracks, is considered implicitly. Such an approach is used in the empirical mod-
els of Leonhardt and MacGregor et al..

Research question F concerns the question ‘How can the contribution of the shear force
transferred by the uncracked flanges be determined? And how is this contribution af-
fected by the cross sectional properties?” From the literature review it was found that
none of the described models consider the contribution of the shear force transferred by
the uncracked concrete (flanges) by a separate term. However, the model of Bentz et al.,
does consider the contribution of the uncracked most compressed zone implicitly. The
contribution by aggregate interlock and stirrups was found to be related to the crack
length over the cracked height. The model of Bentz et al., determines the total shear
resistance based on a cracked length related to the internal lever arm instead of the
cracked height. The difference between the internal lever arm and the cracked height
results in the contribution of the uncracked compression flange. A possible contribution
of the uncracked least compressed zone, is no part of the model of Bentz et al.. The
effect of the cross sectional properties on the contribution by the uncracked concrete, is
also not considered in the model of Bentz et al..

The approach used to derive the model of Esfandiari will be used to further investigate
the possible shear failure modes in the regions without flexural cracks and to relate the
shear resistance to the failure modes (Chapter 6). The newly proposed model will thus
be based on the Modified Compression Field Theory (Vecchio et al. 1986). This theory
is based on extensively studied membrane behaviour and provides insight into the fun-
damental behaviour of concrete in shear. The resistance of this well-known membrane
behaviour was related (Bentz et al., Esfandiari) to the resistance of a girder by making
some clear assumptions.
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These assumptions are:

— plane sections remain plane,

— transverse stresses are neglected and

— the resistance is assumed to remain constant over the web (Bentz et al. 2006a).

Because the model is based on this rational theory it is plausible that all parameters that
affect the resistance are considered. This is in contrast to the other models for shear
resistance that are calibrated using results of experiments on girders. This is obvious for
the empirical models (MacGregor et al., Leonhardt). But also in the variable angle truss
model the strength of the compressive struts is based on experiments on girders. For the
newly derived model, experiments on girders will eventually only be used to investigate
the accuracy of the developed model.

It could be argued to just use the model of Esfandiari to predict the shear resistance in
regions without flexural cracks, instead of developing a new model. From the literature
review, the following remarks can be made regarding to what extend the model of Esfan-
diari is suitable for the prediction of the shear resistance in regions without flexural
cracks (Section 5.1.6):

— The model is derived for values of the longitudinal strain between 0 and 1.0 mm/m.
For low values of the longitudinal strain, which can be associated with regions with-
out flexural cracks, the predicted values for both 6 and f appear to be conservative
compared to the predictions using the MCFT (Section 5.1.6).

— From a comparison with experimentally found resistance, the predicted resistance
was found to be conservative for & < 0.1 mm/m (Section 5.1.6). This will eventually
be evaluated in Section 8.4.3 for experiments that failed in regions without flexural
cracks.

— The model of Esfandiari is derived for values of 0.2% <p.<1.0%, 30 <fm
<60 N/mm? and dmax = 19 mm (Esfandiari 2009). For the application of the model
for the assessment of existing Dutch Highway bridges also values p. < 0.2% are of
interest just like values of f.,, > 60 N/mm? (Table 1.1). Moreover, a value of dmax =
31.5 mm is applicable for the assessment of existing Dutch Highway bridges build
before the year 2000 (based on experience expert).

— No validation is found in literature for the assumption that the resistance remains
constant over the web. Also this substantiation is missing for the now investigated
condition that both flanges remain uncracked.

— The contribution of the uncracked concrete is not considered in the model of Esfan-
diari.
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In the newly proposed model the longitudinal strain will not be considered explicitly.
The low longitudinal strain will implicitly be considered by developing a model that is
only applicable for regions without flexural cracks. It is appealing for practice to avoid
the complex calculation of longitudinal strain. This simplifies the models and enables
engineers to easily apply the model to assess large numbers of bridges. As the model
will be based on the MCFT, a fixed value for the longitudinal strain is assumed (Section
6.1). It is however investigated whether the accuracy increases if the longitudinal strain
is considered explicitly (Section 8.4.2).

In the newly developed model, the contribution of the uncracked concrete will be con-
sidered by assuming a contribution of aggregate interlock and stirrups over a cracked
length associated with a height larger than the cracked height just like the model of Bentz
et al. does. This height will be derived for the condition that both flanges remain
uncracked.
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Shear resistance at the mid-depth of the web

In this dissertation a model is derived for the shear resistance of prestressed girders with
stirrups in regions without flexural cracks. The model describes the transfer of shear
force by aggregate interlock, stirrups and uncracked concrete. The current chapter de-
rives equations for the maximum shear stress that can be resisted at the mid-depth of the
web by aggregate interlock and stirrups. Chapter 7 demonstrates that the shear stress
that can be resisted at mid-depth of the web is representative for shear stress that can be
resisted along the diagonal tension crack. Also the additional shear that can be trans-
ferred in uncracked concrete is described in Chapter 7. Chapter 8 describes the proposed
model and is based on the results of Chapter 6 and 7 (see Figure 6.1).

Regions of prestressed girders with stirrups without flexural cracks

[ Chapter 6: Shear resistance at the mid-depth of the web
Chapter 8

Proposed model

Chapter 7: shear transfer along the diagonal tension
crack and in uncracked concrete

Figure 6.1. Overview of the analysed topics and the allocation of the proposed model per chapter

An overview of the sections is shown in Figure 6.2. The longitudinal strain (&) will not
be considered explicitly for the proposed model of Chapter 8. Instead a fixed value is
chosen for the regions of a girder without flexural cracks (as announced in Section 5.4).
Zero is chosen for this fixed value for &., which is explained in Section 6.1. The shear
stress that can be resisted depends on the governing failure mode. Therefore, it is nec-
essary to first determine the possible failure modes for regions without flexural cracks.
Section 6.2 determines the possible failure modes for regions without flexural cracks
using the approach that was as suggested in Esfandiari (2009) as announced in Section
5.4.

Section 6.3 then describes the shear resistance according to the MCFT for each possible
failure mode at &, = 0. The resistance is determined using ranges of parameters repre-
sentative for bridges with a thin web that are designed with a design code prior to the
design code of 1974 (NEN 1974), see Table 1.1). Section 6.4 describes the derivation of
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the approximation equations for the shear resistance of the mid-depth of the web for &,
= 0. Consequentially, the resistance can be determined with simplified equations instead
of the MCFT. To evaluate the accuracy of the proposed approximation equations, Sec-
tion 6.5 compares the resistances determined with the MCFT with the resistances
obtained with the model of Bentz et al.. Moreover, Section 6.5 compares the resistances
determined using the MCFT with the resistances found using the variable angle truss
model. By comparing both resistances, the currently used limitation of the inclination of
the compressive struts could be evaluated for regions without flexural cracks.

Table 1.1
Ranges of parameters
of existing bridges with

Section 6.1 a thin-web
Assumption ¢, = 0
for regions without Section 6.3 Section 6.4
flexural cracks Shear resistance Proposed approximation equations for
Section 6.2 according to MCFT per shear resistance of web at mid-depth
Failure modes failure mode
for regions without
flexural cracks Section 6.5

Comparison between resistances
MCFT and models from literature

Figure 6.2. Overview and coherence of sections

As the resistance is determined using the MCFT, which is intended for membranes, the
term transverse reinforcement is used in this chapter, instead of stirrups. The resistances
according to the MCFT are determined using Membrane 2000 (Bentz 2000, Bentz et al.
2001) which is a programme that solves the equations of the MCFT as described in
Section 5.1.3.

6.1 Longitudinal strains of the web in regions without flexural cracks

In the model proposed in Chapter 8, the shear resistance of the web is based on the
resistance calculated with the MCFT. The shear resistance according to the MCFT is
related to the longitudinal strain. The shear resistance at mid-depth, investigated in this
chapter, thus depends on the longitudinal strain at mid-depth. This longitudinal strain
will not be considered explicitly for the proposed model (Chapter 8). This is because,
for the regions without flexural cracks, considering the longitudinal strain explicitly will
not lead to a more accurate determination of the resistance. This will be demonstrated
in Section 8.4.2. Because &, does not have to be considered explicitly, complex calcula-
tions of the longitudinal strain are not needed, which simplifies the application of the
model. Instead of explicitly considering the longitudinal strain, the longitudinal strain is
assumed to be zero. In this sections it is explained that & equals zero is a suitable and
conservative assumption for regions of a girder without flexural cracks.
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In this dissertation, the shear resistance is investigated in regions without flexural cracks
(Figure 6.3). A region remains free of flexural cracks, if the stress in the ultimate fibre
of the most tensioned flange is smaller than the flexural tensile strength of concrete
(fem ). Or, expressed in terms of strains, if the ultimate strain in longitudinal direction
in the most tensioned flange & is smaller than the cracking strain e.- (= fems/ Ec). The
cracking strain is about 0.1 mm/m (for 40 < ., < 100 N/mm?). The longitudinal strain
at mid-depth (&y) equals (e + &)/ 2, in which & is the strain in the most compressed
fibre (Figure 6.3). As & < 0.10 and & < 0, & will be small or negative (theoretical a
maximum value of 0.05 could be found for the maxima ¢ = 0 and &= 0.1 mm/m).
Therefore, the assumption of &x = 0 at mid-depth could be considered as an upper limit.
For lower values of &, the resistance will be higher. A smaller value of &, results in a
smaller crack width and more aggregate interlock (Figures 5.14, 5.17 and 5.18). A
smaller value of &, also leads to a higher stirrup contribution, as the cracking angle de-
creases (Figures 5.14, 5.17 and 5.18). Therefore, it is a conservative assumption to use
&x= 0 to determine the shear resistances using the MCFT for regions without flexural
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cracks.
Model applicable Model not applicable
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Region with flexural cracks
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Region without flexural cracks

Figure 6.3. Relation between presence of flexural cracks and longitudinal strain at mid-depth

It is noted that, when the longitudinal strain in the web is negative, diagonal tension
cracks can still occur (Figure 6.3).. This is because not the longitudinal stresses, that are
associated with the longitudinal strains, are decisive for whether a diagonal tension crack
occurs, but the principal tensile stresses, that are also largely affected by the shear
stresses. This was already demonstrated in Figure 1.5 in which diagonal tension cracks

form in the web of a girder in the vicinity of the point of contra flexure.
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6.2 Failure modes of the web in regions without flexural cracks

This section determines the shear resistance for a membrane element for a considered
failure mode and a considered strain. This approach is suggested in Esfandiari (2009)
and described in Section 5.1.6. Esfandiari distinguished failure modes and was able to
related the resistance for each failure mode to the strain. Subsections 6.2.1 describes the
failure modes that can occur specifically in regions without flexural cracks. Subsection
6.2.2. explains the method to determine the resistance for a failure mode and a strain
state in more detail. Moreover, Subsection 6.2.2 explains that the maximum of the de-
termined resistances is governing.

6.2.1 Possible failure modes of the web

The proposed model (Chapter 8) will determine the resistance for two failure modes for
&x= 0 (Section 6.1):

1. Crushing of the concrete and simultaneous yielding of the transverse reinforcement.
2. Slipping of the crack and simultaneous yielding of the transverse reinforcement.

These two failures modes are also described by Vecchio et al. (1986) as possible failure
modes that can be determined using MCFT analyses. A third possible failure mode de-
scribed in this article, concerns failure due to yielding of the longitudinal reinforcement.
This failure mode is not possible in regions without flexural cracks. Therefore, this fail-
ure mode is not further considered in this dissertation.

A fourth possible failure mode concerns instant failure due to diagonal tension cracking.
This failure could occur if the amount of transverse reinforcement is so low that the
membrane element fails directly after diagonal tension cracking. If this is the case, the
resistance is comparable to that of a membrane element without transverse reinforce-
ment (Section 2.1.1). As explained in Chapter 2, the resistance to diagonal cracking
depends on the stresses in the longitudinal (and potentially transverse) direction and the
tensile strength of the concrete. In this dissertation the resistance associated with diago-
nal tension cracking is called ‘minimum shear resistance’. The determination of this
shear resistance is described in Chapters 2 to 4 and Section 8.2. The resistance to diag-
onal tension cracking is derived analytically and it is not necessary to use the MCFT for
this purpose.

A fifth possible failure mode is crushing of the concrete without yielding of the trans-
verse reinforcement. If the amount of transverse reinforcement is high, the concrete can
crush before the transverse reinforcement yields. Bentz (2009a) already derived an equa-
tion for this upper limit of shear resistance based on the MCFT (Section 5.1.4). In
Section 8.2 this derivation is adapted to be suitable to determine the upper limit of the
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shear resistance for regions without flexural cracks. It is common to describe the re-
sistance associated with this failure mode as ‘maximum shear resistance’ (Chapter 5).
This definition will also be used in this dissertation.

The described possible failure modes deviate in two aspects from the approach used by
Esfandiari. The first aspects concerns yielding of the longitudinal reinforcement (indi-
cated above as ‘third failure mode’). As the model of Esfandiari is also applicable for
regions with flexural cracks, also failure due to yielding of the longitudinal reinforce-
ment was considered and is a part the model. However, this is not relevant in the current
dissertation. The second aspects concerns the failure due to slipping of the crack (indi-
cated above as ‘second failure mode’). Esfandiari did not recognize slipping of the crack
as failure mode. Instead he defined yielding of the transverse reinforcement as failure
mode. As will be shown in Subsection 6.2.2., it is possible to determine the shear stress
for several conditions, such as yielding of the traverse reinforcement. Therefore, the
analyses (Section 6.3) are also carried out for yielding of the transverse reinforcement
(ex=0). It was found that slipping of the crack and yielding of the transverse reinforce-
ment frequently (but not always) resulted in the same shear resistance (Appendix G).
However, if this was not the case, the shear stresses associated with the condition sliding
of the cracks was found to be higher than the shear stress associated with yielding of the
transverse reinforcement for almost all combinations of the considered parameters (Ap-
pendix G). The condition associated with the highest shear stress corresponds to the
shear resistance. Therefore, failure due to yielding of the transverse reinforcement is not
considered as failure mode in this dissertation.

It can be concluded that the proposed model should be suitable to determine the re-
sistance for the first two failure modes. The resistance of the proposed model should
eventually be limited to prevent crushing of the compression field without yielding of
the stirrups (upper bound). And the proposed model should be combined with the mod-
els for diagonal tension cracking which is a lower bound for the shear resistance.

6.2.2 Method to determine the shear resistance of a failure mode

This subsection explains how the resistance of a membrane element can be determined
for the two considered failure modes, using the MCFT. This is explained by considering
two analyses for a membrane element. The first analysis is intended to demonstrate that
sliding of the crack or crushing of the concrete can be governing. The second analysis
is intended, in combination with the first analysis, to demonstrate how the shear re-
sistance associated with an investigated strain state (for this investigation &;= 0) and an
investigated failure mode (for this research crushing of concrete or slipping of the crack)
can be determined. It will be described that the resistances can be found by adapting the
load increment for a condition associated with a failure, until the longitudinal strain is
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zero. This approach is also suggested by Esfandiari (2009), as described in Section 5.1.6.
This subsection is intended to explain in more detail how the MCFT is used to determine
the resistance of the web of a girder for &, = 0.
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Figure 6.4. Shear transfer across a crack (MCFT, based upon Bentz et al. 2006b)

To explain the two considered failure modes, the explanation of some parameters that
follow from the MCFT (Section 5.1.3), are shortly repeated (Figure 6.4). The shear re-
sistance of a cracked membrane element consists of contributions of the transverse
reinforcement (z;) and of the aggregate interlock (z.;), according to Equation 6.1. The
shear stress transferred by the transverse reinforcement depends on the transverse rein-
forcement ratio p- (= As: /(b s), in which b is the depth of the membrane element), the
stress in the transverse reinforcement at the crack o .- and the angle of the crack € (Sec-
tion 5.1.4.2, Equation 6.2).

T= Ts+ T (6.1)
Ty = PyTsser COLO 6.2)

B 0.18 \/Form
Tcimax = 031+ (dmzajfm) (6.3a)
Teimax = BVfem (6.3b)

The stress in the transverse reinforcement, the cracking angle and shear stress transferred
by aggregate interlock can be found from membrane analyses using the MCFT. If the
shear stress transferred by the crack is small, the aggregate interlock stresses follow from
equilibrium (Equation 5.26). At this situation, the maximum aggregate interlock stress
is not governing (zei < Teimax). If the shear stress transferred by the crack is high, the
maximum aggregate interlock stress can be governing (7 = Tcimax). This maximum ag-
gregate interlock stress zci,max depends on the crack width w, the cylinder compressive
strength of concrete f., and the maximum aggregate size dmax (Equation 6.3a, see also
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remarks in Section 6.3 regarding higher strength concrete). Equation 6.3a can be sim-
plified by using the parameter S instead of w and dmax (Equation 6.3b).

Based on this short repetition of the explanation of some parameters of the MCFT, the
first analysis will be described. This analyses is intended to demonstrate that sliding of
the crack or crushing of the concrete can be governing. The governing failure mode
depends on the amount of transverse reinforcement, the yield strength of the transverse
reinforcement and the strength of the concrete. The first analysis is carried out with
Membrane 2000 (Bentz 2000). The properties of the membrane element are: fe, = 60
N/mm?, f;. = 250 N/mm? (no strain hardening), p- = 0.5%, dmax= 31.5 mm and crack
spacing parameters s, = s: =400 mm. The element is loaded with load increments of da.
/ 6t =-1.82/ 1. The used ratio of load increments and crack spacing parameters lead to
& =0 mm/m at crack slipping and a diagonal crack spacing ss of 300 mm. The used load
increment will be further explained in combination with the second analyses and in Sec-
tion 6.3. The shear stress versus shear strain diagram that is found from the membrane
analysis is shown in Figure 6.5.

6.0
5.0

4.0

7 (N/mm?)

2.0

1.0

0.0
Vie

Figure 6.5. Shear stress versus shear strain
(triangle = cracking, circle = crack slipping, diamond = crushing)

Until diagonal cracking, the shear is resisted by the concrete. A diagonal crack forms at
the instant the cracking strength is reached (Equation 5.24). The parameters at the load
step directly after cracking are shown in Table 6.1. This point is shown in Figure 6.5
with a triangle. At this load step, aggregate interlock stresses are present. Because the
crack width is limited, a high value of the maximum aggregate interlock is found (Equa-
tion 6.3). At this load, the calculated aggregate interlock stress is less than its maximum
(Table 6.1, e < 7cimax). As subsequently the load increases, the aggregate interlock stress
increases. Simultaneous, the crack width increases and the maximum value of the ag-
gregate interlock decreases. This increase is possible until the crack width has a value

125



resulting in an aggregate interlock stress that equals the maximum (z¢ = Tcimax). At this
load crack slipping occurs. This point is shown in Figure 6.5 with a circle. After diagonal
cracking, the stress in the transverse reinforcement at the crack os.,.-immediately equals
the yielding strength (f,- = 250 N/mm?). As also the cracking angle remains about equal,
the increase of shear stress between cracking and slipping, can be attributed to the in-
crease of the aggregate interlock stresses (z, t, 7, in Table 6.1).

Table 6.1. Strains, stresses and maximum stresses at different load stages

strains at crack at compression field
Vxz &x % Ts w ﬁ Tei,max Tei T 02 02 max
mm/m mm/m ° N/mm> mm - N/mm?> N/mm?> N/mm?> N/mm? N/mm?

Cracking  0.28 -0.19 262 2.54 0.03 0.55 4.29 1.50 4.04 -8.4 -60.0
Slipping  1.58 0.00 25.7 2.60 049 032 2.51 2.51 5.11 -12.0  -58.1
Crushing 17.1 0.75 18.6 3.71 825 0.04 0.31 0.31 4.02 -13.2 -13.2

After slipping (and yielding of the reinforcement), the cracking angle starts to decrease.
The rotation leads to an increase of the contribution of the transverse reinforcement to
the shear resistance (Equation 6.2). Simultaneous, as the cracks width increases, the
contribution of the aggregate interlock decreases. At increasing loads, also the principal
strain &1 increases. This results in a reduction of the maximum compressive stresses at
the compression field o2 max (Equation 5.23). Due to the rotation of the compression field,
the stress in the compression field o2 increases simultaneously. For a certain rotation of
the compression field, the compressive stresses at the compression field equals the max-
imum compressive stress (02 = g2,max). At this point the concrete crushes. This point is
shown in Figure 6.5 with a square diamond (Table 6.1).

In general two scenarios are possible. The first scenario is that when the load increases,
the resistance by the transverse reinforcement due to the rotation of the compression
field increases faster than the shear stresses in the aggregate interlock decreases by the
crack opening. For this scenario the maximum resistance is found at concrete crushing.
The second scenario is that when the load increases, the shear stresses in the aggregate
interlock decreases faster than the resistance by the transverse reinforcement increases.
For this scenario the maximum resistance is found at crack sliding. This is the case for
the considered element (Figure 6.5). The associated failure mode and the maximum
shear resistance, depends on the amount of transverse reinforcement, the yield strength
and the strength of the concrete (in symbols y which equals p: f;- /fem). So depending on
v, sliding of the crack or crushing of the concrete can be governing.

To derive a model for a girder, the longitudinal strain is the prescribed parameter (Sec-
tion 6.1). The second analysis demonstrates how to find the shear resistance associated
with an fixed strain state (for this investigation &,= 0) and an investigated failure mode
(for this research crushing of concrete or slipping of the crack). The assumption of a

126



fixed strain state requires an approach that differs from the first analysis. This is illus-
trated for the same membrane element as used in the first analysis. In this first analysis
the (ratio of the) load was prescribed. The analysis resulted in different values of the
longitudinal strain depending on the load step (Table 6.1) and governing failure mode.
In the membrane analyses, the fixed strain state & = 0 can be found by adapting the ratio
of the load increments da, /07 until, for an investigated failure mode, the condition & = 0
is met (iterative process). For both failure modes (02 = 02,max O Tei = Tei,max) @ TeSistance
can be determined that matches the condition & = 0. Therefore, analyses resulting in &
= 0 are carried out for each of the two possible failure modes. Sufficient longitudinal
reinforcement is applied to ensure that yielding of the longitudinal reinforcement is not
governing. Only the results at &; = 0 are of interest for the model that will be developed.
The investigated failure modes lead to two shear strain versus shear stress diagrams
(Figure 6.6). Associated values of the parameters are shown in Table 6.2. The black dot
in Figure 6.6 indicated the point of slipping of the crack for &; = 0. The grey diamond
indicates the point of crushing of the concrete for & = 0. As the resistance for crack
sliding for & = 0 (zr = 5.11 N/mm?, Table 6.2) is higher than the resistance to concrete
crushing for & = 0 (z = 4.35 N/mm?, Table 6.2), crack sliding was found to be the gov-
erning failure mode for this membrane element.

00,/é7=-3.11 N/mm?

S [ R AR R R — do,/ét=-1.82 N/mm?

%

Figure 6.6. Maximum shear at slipping (circle) and crushing (diamond) for &, = 0

Table 6.2. Strains, stresses and maximum stresses for & =0 and sy = 300 mm

load Sy = at crack at compression field
50—,‘(/ 57 Sz 9 Ts w ﬁ Tei,max Tei T a2 02, max
- mm ° N/mm?> mm - N/mm?> N/mm?> N/mm? N/mm? N/mm?

Slipping  -1.82/1 400 25.7 2.60 049 0.32 2.1 2.51 5.11 -12.0  -58.1
Crush- -3.11/1 376 17.5 3.96 6.70 0.05 0.38 0.38 4.35 -15.1 -15.1
ing
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6.3 Shear resistance determined using the MCFT

This section describes the shear resistance according to the MCFT for each possible
failure mode at &, = 0. Subsection 6.2.2. explained that the resistance for a failure mode
should be derived for the condition that corresponds to the failure mode (zci = 7ei,max for
crack sliding and 02 = 02max for crushing of the compression fields) and & = 0. Also
Section 6.2.2 explained that the maximum resistance is governing. This section deter-
mines the resistance using ranges of parameters that cover the parameters associated
with the bridges with a thin web that are designed with a design code prior to the design
code of 1974 (NEN 1974), see Table 1.1. Based on the results of the analyses, approxi-
mation equations are derived to determine the shear that can be resisted by the web of a
girder in regions without flexural cracks (Section 6.4).

The MCFT (Section 5.1.4) is developed to determine the load-shear response of mem-
brane elements. As mentioned in Section 5.1.4.1, the MCFT is validated using 102
experiments with membrane elements. A mean test-to-predicted resistance ratio was
found of 1.01 and an associated coefficient of variation of 12% (Bentz et al. 2006b). For
the majority of these membranes only shear loads were applied (o = 0) or shear loads
in combination with longitudinal tension loads (ox > 0). However, for some of these
experiments shear loads were applied in combination with longitudinal compressive
loads (g. < 0). The accuracy of the predictions for these experiments with compressive
loads was similar to the accuracy of the other experiments. Since the loading conditions
of some of the reported tests are similar to the stress conditions in the web investigated
in the current research, it is assumed that the prediction of MCFT results in an accurate
determination of the real behaviour of the structure. Eventually, the proposed model
(Chapter 8) is also validated with experiments on girders (Section 8.4).

The resistances are determined using the MCFT for a wide range of parameters. The
parameters are determined in such a way that they are representative for the intended
application of the model (Table 1.1). In Table 6.3, the parameters are listed and argu-
ments are summarized for the investigated values of the parameters. Forty analyses per
failure mode are carried out. The effect of the longitudinal strain parameter &: and the
diagonal crack spacing parameters soon the accuracy of the predictions is investigated
as part of the evaluation of the model (Section 8.4.2). In Membrane 2000, the value of
dmax is linearly reduced from its actual value at f;,,= 60 N/mm? to zero at fon= 80 N/mm?.
For higher strength concrete the aggregate size is assumed to have no significant effect
on the shear strength. This is because in higher strength concrete the cracks run through
the aggregates due to the strong paste (Bentz et al. 2006a). Because of the drop in ag-
gregate interlock resistance at these values, not only the minimum and maximum values
are examined (fon = 40 N/mm? and f;,» = 100 N/mm?), but also the two mentioned inter-
mediate values.
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Table 6.3. Considered parameters for the membrane analyses

Investigated parameter(s) Comments

& 0 mm/m This value relates to the investigated regions without
flexural cracks as explained in Section 6.1. The effect
on the accuracy of ¢, is investigated in Section 8.4.2.

dmax  31.5 mm Common value for dmax applied in Dutch bridges (up
to 2000). It is noted that dma reduces from the actual
dimax at fom= 60 to zero at fo,,= 80 N/mm?. The model is
also validated in Section 8.4.2, using dmax as applied in
the experiments, which leads to a lower resistance.

So 300 mm Conservative assumption for elements that contain
both transverse and longitudinal reinforcement (Bentz
et al. 2006a). In Section 8.4.2, both s =300 mm and
the measured value for sy are used to validate the
model.

fom 40, 60,80, 100 N/mm’ Concrete strengths of £;,,= 40 and 100 N/mm? are con-
sidered as minimum and maximum values for the
concrete strength for Dutch bridges (Table 1.1). As
dmax reduces from the actual dmax at fon = 60 to zero at
fom= 80 N/mm’, these strengths are additional investi-

gated.
= 250, 600 N/mm? (no strain harden- Yielding strength of stirrups of 250 and 600 N/mm?
ing) are considered as minimum and maximum values of

the mean yield strength for stirrups applied in Dutch
bridges (Table 1.1).

p: 0.10%, 0.25%, 0.50%, 0.75%, 1.00% A shear reinforcement ratio of 1.00 % is considered as
maximum values applied in Dutch bridges (Table 1.1).
It is assumed that diagonal tension cracking is govern-
ing for values of p- lower than 0.10%. Older bridges
typically contain a low amount of shear reinforcement
(an indication for the maximum value for bridges that
consist of girders is about 0.30%, for box girder
bridges the maximum is about 0.70%).

The method used to derive the resistances will be explained. The analyses are carried
out using the Programme Membrane 2000 which is a programme that solves the equa-
tions of the MCFT (Section 5.1.3, Bentz 2000, Bentz et al. 2001). For each combination
of parameters the material properties are entered: fom, dmax, fyz, fox, Pz, px and the geometry
of the concrete and reinforcement. Sufficient longitudinal reinforcement is applied to
ensure no yielding of the longitudinal reinforcement. Values for the crack spacing in
longitudinal and transverse direction (sx, s:) are estimated that would lead to
so =300 mm and are entered in the programme. Firstly, failure due to slipping of the
crack is investigated. A value for oy is estimated and entered that would lead to &x = 0 at
crack slipping. A full response analyses is carried out and the strain is determined at the
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load step that results in 7.;= 7;max. At this load step & will initially not be equal to zero.
Therefore, o is adapted until the condition &, = 0 at crack slipping (ze = 7cimax) 1S met
(Figure 6.6). Next, the crack spacing parameters s, and s: are adapted until s¢ equals
300 mm. Additionally it is checked if this effects e = 0 at crack slipping and possibly
again oy is adapted until the condition & = 0 is met. Thereafter, the values of the z.;,
are noted (Appendix G) and it is checked if the values match the calculated value of ¢
using equation 6.1 and 6.2. This check is carried out using oz ¢-= f;-, so this also confirms
that the transverse steel at the crack is yielding at the instant the cracks slips. Also the
input values for the crack spacing parameters are noted (Appendix G). Secondly, failure
due to crushing of the compression field is investigated. A similar process is carried out.
For this failure, o, is determined that leads to &, = 0 at crushing of the compression field
(Figure 6.6). In other words, the load step at which o2 = g2,max. The resistances (zz) de-
termined with the MCFT for each combinations of fem, fy-, p-, and for each failure mode
are listed in Appendix G. The governing resistance is the maximum of the resistances
associated with both failure modes (Appendix H). Also the iterative determined values
for sx (and s: which value is set equal to sx) and oy are listed.

Beside the results of crack sliding (7e = ci,max) and crushing of the compression fields
(02 = 02,max) also the resistances associated with yielding of the transverse reinforcement
are listed in Appendix G. As noted in Section 6.2.1, in Esfandiari (2009) it was not rec-
ognized that slipping of the crack was a failure mode. Instead, yielding of the transverse
reinforcement was defined as failure mode. As shown in Appendix G, the shear re-
sistance associated with yielding of the transverse reinforcement was never significant
higher than the shear resistance associated with sliding of the cracks. But the shear re-
sistance associated with sliding of the cracks was frequently significant higher than the
shear resistance associated with yielding of the transverse reinforcement.

In Figure 6.7, the resistances that are found from the MCFT analyses are plotted versus
w. The maximum values of y differs per graph as a consequence of the different consid-
ered values for fo, (the ranges of p: and f,- do not differ). The resistance associated with
crack sliding is plotted with black trend lines (and black circles) and the resistance as-
sociated with crushing of the compression field is plotted with grey trend lines (and grey
diamonds). Both trend lines are second order polynomials and are plotted with the in-
tention to show the trend and the governing failure mode (highest of both trend lines).
For the lower strength concrete (fon = 40 N/mm? and f., = 60 N/mm?) crack sliding is
found to be the governing failure mode. Also for the higher strength concrete (fo, = 80
N/mm? and fi,» = 100 N/mm?) in combination with lower values of y, crack sliding is
found to be the governing failure mode. For the higher strength concrete in combination
with higher values of y, crushing of the compression field is found to be governing. This
is because for the higher strength concrete dmax = 0 so the maximum resistance due to
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aggregate interlock decreases. Therefore, the resistance to crack sliding decreases and
failure due to concrete crushing was found to become governing. For the higher strength
concrete and low values of y, on the other hand, the potential increase of the resistance
by crack rotation is relatively low. So despite the low contribution of aggregate interlock,
crack sliding is still found to be governing for low values of y for these higher strengths
of concrete.
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Figure 6.7. Resistance to crack sliding (circles) and concrete crushing (diamonds) at . = 0 versus y

6.4 Proposed approximation equations

In Section 6.3, the shear resistance according to the MCFT is determined, for a range of
parameters, for both the failure modes crushing of the compression field and slipping of
the crack. As explained in section 6.2, the highest of both resistances is governing. In
the current section, equations are derived to approximate the resistance found using the
MCFT with simple equations. These approximation equations are used for the proposed
model (Chapter 8). This prevents that MCFT analyses are necessary for each assessed
bridge. In the proposed approximation equations, a distinction is made between the con-
tribution of aggregate interlock to the shear resistance (which corresponds to ,[)’\_/ﬁ,m as
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explained in Section 5.1.4) and the contribution of the stirrups (which corresponds to
p- [z cotf, which is also explained in Section 5.1.4).

To derive an approximation equation for the contribution of aggregate interlock, a linear
equation f§ = ea + by is assumed. The parameters a and b define the linear model for S,
for fom < 60 N/mm?. The parameter e accounts for the drop in the contribution of aggre-
gate interlock for /o, > 80 N/mm? (for which the crack runs through the aggregates). For
the contribution of stirrups, a linear equation = ¢ + dy is assumed. The values ¢ and d
define the linear model for #. For a combination of a, b, ¢, d and e, the approached
resistance and the resistance according to the MCFT are determined (Section 6.3, Ap-
pendix G). Subsequently the mean values of the ratio of both resistances and the
associated coefficient of variation are determined using the results of 40 membranes.
The values of a, b, ¢, d and e are adapted until the mean value of the ratio of the re-
sistances equals 1.00 and a minimum coefficient of variation is found (which eventually
was 4%). This results in values for a, b, ¢, d and e of respectively 0.38, -2.5, 26, 0, 0.8
(Equations 6.4 to 6.6).

TR = Ts + T¢i = pafyzcot0 + B, (6.4)
£ =0.38- 25y for fum < 60 N/mm? (6.5)
B =030- 25y for fom> 80 N/mm? (6.6)

With = pzfyz /fcm and 6 = 26°

The following considerations are made regarding the approximation equations:

— As shown in Figure 6.7, for the range of values of v, different resistances are found
for the two possible failure modes. However, is was found possible to accurately
cover the governing (highest) resistance, using just one set of equations (Equations
6.4 to 6.6). This significantly reduces the effort to determine the shear resistance in
practice. Moreover, considering both failure modes separately does not lead to a sig-
nificant increase of accuracy, as the found coefficient for the ratio of the approached
resistance and the resistance found from the MCFT was low.

— The resistances according to Equations 6.4 to 6.6 are included in Figure 6.7. In this
figure, the results of the approximation equations are compared to the resistance cal-
culated with the MCFT. It is noted that the resistances from the approximation
equations should be compared to the highest of the resistance to crack sliding and
crushing of the compression field (Section 6.2.1). Equations 6.4 to 6.6 result in a
mean value of the ratio of the calculated to approximated resistance of 1.00 and a
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coefficient of variation of 4%. Since the coefficient of variation found is so low, ap-
parently all parameters that significantly affect the accuracy are considered. The low
coefficient of variation also confirms the suitability of the assumption that the contri-
butions of aggregate interlock and transverse reinforcement depend linear on .

— The largest overestimation for the resistance is found to be 8%. This is found for a
membrane with a low strength concrete (fon = 40 N/mm?) and with a high values of y
(v =0.150). This overestimation is considered to be acceptable as shear reinforcement
ratios of 1% are not expected to be present for existing Dutch bridges (Table 1.1).
Only for box-girder bridges, shear reinforcement ratios up to 0.70% are present.
Moreover, for these box-girder bridges the concrete cylinder compressive strength
will typically be higher than 40 N/mm?.

— The shear contribution of aggregate interlock is lower for f,, > 80 N/mm? than for £
< 60 N/mm?, as explained in Section 6.3. Therefore, the MCFT uses a value for dmax
of zero for fo,> 80 N/mm?. This results in a drop in the maximum aggregate interlock
resistance according to the MCFT. This can be accounted for by limiting f. in Equa-
tion 6.3 for z.;max (as done in the model of Bentz et al.), or by adapting the factor S
for fem> 80 N/mm?. It was found that the latter leads to the most accurate approxima-
tion.

— It is conservative, considering Equation 6.3a, to interpolate f linearly for 60 < f., <
80 N/mm?. This results in a larger reduction of z.;max than if Equation 6.3a would have
been used.

— Note that in Chapters 7 and 8, the parameter f,- which is applicable for membranes,
will be replaced by fw» which is applicable for girders.

Figure 6.8 compares the values of f calculated with the MCFT with the values of f
predicted using Equation 6.5 and 6.6. Especially for low values of y, the contribution of
the aggregate interlock to the shear resistance can be substantial. For the low values of
w, for which crack sliding is the governing failure mode, the values of /8 are reasonably
approached (Figure 6.8). For higher values of i, for which both failure modes can be
governing, the f§ approximation of the MCFT results is poor. However, for higher values
of y, the contribution of the aggregate interlock to the shear resistance is less significant.
This explains why the approximation of the total shear resistance is found accurate de-
spite the poor predictions of 5. Therefore, Equation 6.5 to 6.6 are considered as suitable
approximation equations for f. Notice that the found drop in the value for f for fo, >
80 N/mm? according to the MCFT is well captured for low values of y, for all concrete
strengths by using Equations 6.5 and 6.6. Also the observed trend that relative contribu-
tion of the aggregate interlock decreases when y increases is well captured with the
approximation equations.
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Figure 6.8. § for crack sliding (circles) and concrete crushing (diamonds) at &, = 0 versus

Figure 6.9 compares the values for  calculated with the MCFT to the proposed value
for 8 of 26°. Crack sliding is found to be governing for all values of y for low concrete
strengths and for low values of y for high concrete strengths. For this failure mode, the
approximation of @ =26° is reasonable. For high values of v, for high concrete
strengths, crushing of the compression field is governing. For this failure mode, the ap-
proximation of 4 is poor. However, the underestimation of # associated with this
failure mode (which causes an overestimation of the contribution of transverse rein-
forcement), is compensated by an underestimation of § (Figure 6.8). This explains that
the approximation of the total shear resistance is accurate. Therefore, the value for 9 of
26° is considered as suitable.

6.5 Comparison approached resistances with models from literature

This section compares the resistances for membranes determined with the MCFT for
&x= 0 (Section 6.3) to the resistances found by using two models from literature as de-
scribed in Chapter 5. This concerns the model of Bentz et al. (Section 5.1.5) and the
variable angle truss model (Section 5.1.1). The model of Bentz is considered to evaluate
the proposed approximation equations (Equation 6.4 — 6.6). The variable angle truss
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model is considered to evaluate the currently used limitation of the inclination of the
compressive struts of 21.8° for regions without flexural cracks, as announced in 5.1.1.
(Figure 5.2).
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Figure 6.9. @ at to crack sliding (circles) and concrete crushing (diamond) at &, = 0 versus

The ratios of the resistances according to the MCFT and the resistances according to the
considered models are determined. The mean values and coefficients of variation of the
proposed approximation equations (Equations 6.4 to 6.6) and both models are shown in
Table 6.4, for zero longitudinal strain. Appendix H lists the ratio of resistance according
to MCFT and the models from literature, including some intermediate results, at a lon-
gitudinal strain of zero. The derivation of these ratios will be further explained in this
section.

6.5.1 Model of Bentz et al.

The approximation equations (Equations 6.4 to 6.6) are intended to accurate approxi-
mate the resistance found from the MCFT, for the condition &, = 0. Also the model of
Bentz et al. is derived from the MCFT for &,> -0.2. Therefore, the model of Bentz et al.
(Section 5.1.5) is considered to evaluate whether the approximation equations indeed
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result in more accurate approximation of the resistance found from the MCFT for the
condition &= 0.

Table 6.4. Mean value and COV of the ratio of resistance according to the MCFT and according to the
models

Proposed approximation Model of Bentz ~ Variable angle truss

equations et al. model (Section 5.1.1)
(Section 5.1.5)
Section 6.4 Section 6.5.1 Section 6.5.2
Mean 1.00 0.94 1.89
Coefficient of variation 4% 5% 69%

This subsection compares the resistances calculated with the model of Bentz et al. (Sec-
tion 5.1.5, Bentz et al. 2006a,b, CSA 2006) and the resistances predicted with the MCFT
(Section 6.3). The model of Bentz et al. is based on the MCFT and intended for both
membrane analyses (Simplified Modified Compression Field Theory, Bentz et al.
2006b) and girder analyses. The model of Bentz et al., and the approximation equations
(Section 6.4) both determine the shear resistance with Equation 6.4 (Equation 6.4 is
equal to Equation 5.34 in Section 5.1.4). The approximation equations are derived for
the condition &, = 0. To evaluate the model of Bentz et al. for zero longitudinal strain, &,
is set to zero. This results in a fixed value for § of 0.4 and a fixed value for 8 of 29°.
Both the model of Bentz et al. as the proposed approximation equations assume a fixed
value for the diagonal crack spacing parameter sy of 300 mm. There are some differences
between the model of Bentz et al. and approximation equations (Equations 6.4 to 6.6)
for the condition &, = 0:

1. According to the model of Bentz et al., f and 6 are independently of w.

2. For girders with stirrups, the resistance according to the model of Bentz et al. is as-
sumed to be independent of dmax. The model of Bentz et al. is derived for dmax equals
19 mm. It is noted that for values of fon < 60 N/mm?, the MCFT will predict a higher
resistance if dmax equals 31.5 mm than if dmax equals 19 mm.

3. The shear contribution of aggregate interlock is lower for f.» > 80 N/mm? than for £
<60 N/mm?, as explained in Section 6.3. To account for this effect, the model of
Bentz et al. limits £, to a maximum of 65 N/mm? in Equation 6.4. In the approxima-
tion equations, on the other hand, § is limited in accordance to Equation 6.6 for f., >
80 N/mm?.

To illustrate the differences, the resistances using the model of Bentz et al. is compared
to the resistance according to the MCFT for a membrane element with £z, = 60 N/mm?
and dmax = 31.5 mm. The results are shown in Figure 6.10. The resistance 7z calculated
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with the MCFT is shown with a solid black trend line (and transparent dots). The con-
tribution of the aggregate interlock z.; according to the MCFT is shown with a black
dotted trend line (and transparent diamonds). The resistance according to the model of
Bentz at al. is shown with a solid grey trend line (and grey dots). The model of Bentz
assumes a constant value for the contribution of the aggregate interlock z.;, which is
shown with a grey dotted trend line (and grey diamonds). As appear from Figure 6.10,
the model of Bentz et al. overestimates the resistance compared to the MCFT. This over-
estimation can be ascribed to an overestimation of the aggregate interlock for higher
values of .
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Figure 6.10. Comparison predicted resistances of MCFT with model of Bentz et al. for &,=0

In addition to the analysis for a membrane element with /., = 60 N/mm?, the comparison
is extended to all considered concrete strengths (f.» = 40, 60, 80 and 100 N/mm?, 40
membranes).

This comparison results in three findings.

1. The model of Bentz et al. results in a mean value of the ratio of the calculated to
approximated resistance of 0.94 and a coefficient of variation of 5% (Table 6.4, Ap-
pendix H). The coefficients of variation of the model of Bentz et al. and the
approximation equations are comparable. However, the model of Bentz et al. overes-
timates the resistance for the considered &x = 0 mm/m. This is the case despite the
lower values for dmax (19 mm) for which the model of Bentz et al. is derived.

2. In contrast to the approximation equations in Section 6.4, the trend of a decreasing
contribution of aggregate interlock at increasing values of y is not present. Hence, in
the approximation equations of Bentz et al., a constant value is used.

3. Using the model of Bentz et al., a mean value of the ratio of the calculated to approx-
imated resistance for f.,» = 80 N/mm? (in which dmax is just zero) is 0.91, with a lowest
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value of 0.84. Using the approximation equations of Section 6.4, a mean value of the
ratio of the calculated to approximated resistance is found of 1.00 with a lowest value
of 0.93. The underestimation can be attributed to using a value of fon = 65 N/mm? in
Equation 6.4 to account for the drop in the contribution of aggregate interlock for
higher strength concrete (fon > 80 N/mm?), instead of limiting f in accordance with
6.5 and 6.6.

If only the regions without flexural cracks are considered, the approximation equations
are capable to approach the shear resistance according to the MCFT more accurate than
the model of Bentz et al.. It is noted that the approximation equations are only suitable
to predict the resistance in regions without flexural cracks. The model of Bentz et al., on
the other hand, is also suitable to predict the resistance for regions with flexural cracks.

6.5.2 Variable angle truss model

In Section 5.1.1 the hypothesis is made, that if the variable angle truss model is used, no
limit is necessary for prestressed girders (Section 5.1.1 and Figure 5.2). In this section
it is evaluated whether this can be confirmed, specifically for regions without flexural
cracks, by using the resistances found from the MCFT. Therefore, the resistances calcu-
lated with the MCFT are compared to the resistances predicted with the variable angle
truss model for the condition & = 0 (in the equations and figures the variable angle truss
model is abbreviated as VAT). Although the variable angle truss model (Section 5.1.1)
is intended for girders, it is also possible to apply the theory to predict the resistance of
membranes, by Equations 6.7 to 6.10.

Ty = Ts = Pyfy; COLO (6.7)
ano = [P, — )
Yvat = P,f,, 1V S oy (6.9)
v=06(1- Fom 250) (6.10)

As explained in Section 5.1.1, the factor a., addresses the effect of prestressing on the
strength of the compressive struts. The factor depends on the ratio of the stress in the
concrete in longitudinal direction in the centre of gravity (o) and the cylinder compres-
sive strength of concrete (fon). To be able to compare both models, it is necessary to
assume a value for o.,. For the comparison it is assumed that o, = 0.1fn. According to
the variable angle truss model, ac, equals to 1 + op/fem (for 0 < oep/fem < 0.25fcm). The
assumption o, = 0.1/, results in a factor ac,, of 1.1. With this assumption the resistances
can be predicted using the variable angle truss model. The resistances are determined
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for the membranes for which the resistance were already calculated using the MCFT
(Section 6.3). Note that the variable angle truss model assumes that the resistance is
independent of spand dmax. Also the longitudinal strain (&) is assumed to have no effect
on the resistance, although one could argue that this is implemented to some extend by
the factor acw. It is noted that the version of the Eurocode that is currently under devel-
opment (CEN 2020), relates the limitation of the angle of the compressive struts to the
average axial compressive stresses.

To illustrate the differences, the resistances for the variable angle truss model is com-
pared to the resistance according to the MCFT for a membrane elements with f., = 60
N/mm?. In Figure 6.11 the resistance calculated with the MCFT (zz) is shown with a
solid trend line (and black dots). The contribution of the aggregate interlock z.; according
to the MCFT is shown with a dotted trend line (and transparent diamonds). The contri-
bution of the transverse reinforcement according to the MCFT is the difference between
7z and 7.; as illustrated with an arrow. The resistance according to the variable angle truss
model is shown with a black dashed trend line (and black squares). It is shown that the
variable angle truss model underestimates the resistance compared to the MCFT. This
underestimation increases for decreasing values of .

7z (N/mm?)

Ts,MCFT

5 ;2( P oIooo
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0.000 0.025 0.050 0.075 0.100

Figure 6.11. Predicted resistances according to the MCFT and the variable angle truss model for &,= 0

The underestimation was found to be related to the limitation of the angle of the com-
pressive struts. For the membranes in Figure 6.11, the variable angle truss model predicts
only an angle of the compressive strut > 21.8° for values of y of 0.075 and 0.100. For
these two membranes, the predictions using the variable angle truss model reasonable
agree with the results of the MCFT. For lower values of w, the minimal angle of the
compressive struts is governing and the predictions according to the variable angle truss
model deviate from the resistances according to the MCFT. As explained in Section
5.1.1, the effectiveness factor was derived for experiments with higher values for y.
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Section 5.1.1 also explains that for lower values of i, the limit of §=21.8° is governing,
which leads to (over)conservative predictions.

Additionally to the results for the membrane elements with f., = 60 N/mm?, for which
the shear strength is shown in Figure 6.11, the comparison is extended to all the consid-
ered concrete strengths (fo, = 40, 60, 80 and 100 N/mm?, 40 membranes). A mean value
of the ratio of the resistance according to the MCFT and according to the variable angel
truss model is found of 1.89 and a coefficient of variation of 69% (Table 6.4). The results
are shown in Appendix H. It appears that for 34 of the 40 membranes the lower limit of
6 of 21.8° is governing.

It is noted that for reinforced concrete the longitudinal strain in the critical cross-section
will be significantly larger than zero. Large longitudinal strains result in low shear re-
sistance. For prestressed girders on the other hand, the longitudinal strains will be lower.
In Section 5.1.1 it is shown that the resistance for the considered 76 prestressed girders
could be estimated quite accurate without any limitation of @ (Figure 5.2). It is plausible
that this can be attributed to the higher resistance due to smaller longitudinal strains.
Therefore, it is investigated if the limitation is necessary for predicting the shear re-
sistance at zero longitudinal strain. This is done by comparing va.., that represents the
effective strength of the concrete struts, for the MCFT and the variable angle truss model
for the 40 considered membranes. Firstly, vac, is determined that would result in the
same resistances as calculated with the MCFT. For each membrane the resistance is
known from the membrane analyses from Section 6.3 (Appendix G). Assuming this
shear resistance, 6 can be calculated using Equation 6.7, yyur using Equation 6.8 and
vaew using Equation 6.9. The results are the black dots in Figure 6.12. Secondly vae. is
determined according to the variable angle truss model, using Equation 6.10 and the
assumption o, = 1.1. This is shown as solid black lines in Figure 6.12. For the lower
limit of 4 of 21.8°, a value for yur is found of 0.138 using Equation 6.8. From this
value, vae,associated with the minimal € can be determined using Equation 6.9. This is
shown as continuous grey lines in Figure 6.12. The lowest of both lines is the governing
value according to the current variable angle truss model.

As can be seen from Figure 6.12, the lower limit (if governing) results in lower vae
than calculate with the MCFT (the black dots are all above the grey line representing the
lower limit). As expected, the lower limit is found to be too strict. The variable angle
truss model without limitation results for most membranes in higher values for vo., than
calculate with the MCFT (the black dots are frequently lower than the black continuous
line representing the variable angle truss model without limitation of 6). The hypothesis
that no limit is necessary (Section 5.1.1 and Figure 5.2) could not be confirmed based
the comparison carried out in this section. On the other hand, it was confirmed that the
currently used limitation of 8 of 21.8°, is found to be too strict. Section 8.5, suggests an
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alternative model in which a more suitable equation for the effective strength of the
concrete struts is derived, based on y, for zero longitudinal strain.
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Figure 6.12.Comparison between va., according to MCFT & predicted with variable angle truss
model
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Shear transfer along the crack and by uncracked concrete

In this dissertation a model is derived for the shear resistance of prestressed girders with
stirrups in regions without flexural cracks. The model describes the transfer of shear
force by aggregate interlock, stirrups and uncracked concrete. Chapter 6 derives equa-
tions for the maximum shear stress that can be resisted at the mid-depth of the web by
aggregate interlock and stirrups. The current chapter demonstrates that the shear stress
that can be resisted at mid-depth of the web is representative for shear stress that can be
resisted along the diagonal tension crack. Also the additional shear that can be trans-
ferred by uncracked concrete is described in the current chapter. Chapter 8 describes the
proposed model and is based on the results of Chapter 6 and 7 (Figure 6.1).

Section 7.1

Section 7.3
uncracked concrete

Section 7.4

o

T
]
o &
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o &
o) 2
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M — — e m oo o

uncracked congj

1
| Section 7.3
1
1

Figure 7.1. Overview and coherence of sections

In Figure 7.1 an overview of the sections of this chapter and their relations is presented.
Section 7.1 describes the mechanisms that can contribute to the transfer of the shear
force in girders with stirrups in regions without flexural cracks. This section further de-
scribes equations to determine the contribution of each shear transfer mechanism to the
total shear resistance. Section 7.2 investigates the distribution of aggregate interlock and
stirrup stresses along the diagonal tension crack, using Response (Bentz 2000). Response
is a non-linear sectional analyses programme based on the MCFT. Two girders from
experiments, which are reported in literature, are analysed that are predicted to fail at a
condition that no flexural cracks are present. The decisive failure mechanism of the first
girder was crack slipping, while the decisive failure mechanism of the second girder was
crushing of the compression field. For both girders, it will be investigated whether the
resistance at mid-depth is representative for the resistance along the crack. Section 7.3
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describes the contribution of the uncracked concrete to the total shear resistance. Also
this contribution is analysed using Response. In the proposed model (Chapter 8), the
contribution of uncracked concrete is not taken into account explicitly. Instead, it is
taken into account by introducing the ‘effective shear depth’ in the calculation of the
shear resistance. An equation is derived to determine the effective shear depth. Section
7.4 summarizes the main results and evaluates to what extend the research questions are
answered based on the analyses carried out in Chapter 6 and 7.

7.1 Overview of shear transfer mechanism in a girder

This section describes how shear is transferred in girders with stirrups in regions without
flexural cracks. These shear transfer mechanism are illustrated with a free body diagram
that is cut through at a diagonal tension crack (Figure 7.2). Shear can be transferred by
three mechanism:

1. Shear transfer along the diagonal tension crack by stirrups crossing the diagonal ten-
sion crack (Asw /(bw §) Oszerz COtO: OF P2 Ogzcz cOtO:, left part of Figure 7.2)

2. Shear transfer by aggregate interlock stresses (z.;:) along the diagonal tension crack
(right part of Figure 7.2).

3. Shear transfer by shear stresses in the uncracked concrete (zuc;z) above and below the
diagonal tension crack (right part of Figure 7.2).

diagonal tension crack uncracked concrete
jf
/
z
S,

A’:/(b! ) 10 v

5) Oyer, CO

T v A0S O ] v

Figure 7.2. Possible shear transfer mechanism in regions without flexural cracks (girder with stirrups)

In the description of the shear transfer by stirrups, Ay is the area of shear reinforcement,
b is the width of the web, s is the distance between the stirrups, os-c;- is the stress in the
stirrups in the crack and @ is the angle of the crack. To make the contributions compa-
rable, the shear transfer by stirrups is considered as distributed stress along the crack.
Therefore, the width of the web section is part of the equation. Alternatively the shear
transfer by stirrups could be expressed as p: os.c;- cotf), in which p. is the shear reinforce-
ment ratio (4s/(bws)). The subscription z is used for the parameters that vary along the
crack.

For regions without flexural cracks, dowel action of the longitudinal reinforcement is
not relevant. At least, as long as the longitudinal reinforcement is located in the flanges
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that remain uncracked, which is a reasonable assumption for regions without flexural
cracks.

The vertical component of prestressing could be considered as a shear transfer mecha-
nism (cross sectional method). However, in this dissertation the equivalent prestressing
method is used instead of the cross sectional method. Therefore, the vertical component
of the prestress is considered as a reduction of the load instead of a shear transfer mech-
anism.

To determine the contribution of each shear transfer mechanism, the stresses need to be
integrated along the edge surface of the free body diagram (width and height). The con-
tribution of the three shear transfer mechanisms can be determined from the stresses
using Equations 7.1 to 7.3.

V, = ASW/SJ‘GSZ”‘Z cotf,dz (7.1)
VCi = beTCi,Z dz (72)
Viner = f b,Tyner,, Az (7.3)

Equation 7.1 describes the contribution of the stirrups to the shear force (V5). The
stresses in the stirrups that cross the crack (os.c:z) and the angle of the crack (6.) along
the crack, need to be integrated over the height. Equation 7.1 is valid for a constant area
of shear reinforcement (4,v) and a constant distance between the stirrups (s). Note that
the stirrups contribution does not depend on b,,.. Equation 7.2 describes the contribution
of the aggregate interlock to the shear force (V.). This part is found by integrating the
aggregate interlock stresses 7.;- along the crack multiplied with the associated width of
the cross-section b., over the height. The stirrups and aggregate interlock resist a part of
the shear force only along the diagonal tension crack. For the part of the free body dia-
gram that is not cracked, shear force is resisted by uncracked concrete. The concrete
remains uncracked as long as the principal tensile stress does not exceed the concrete
tensile strength. Equation 7.3 describes the contribution of the uncracked concrete to the
shear force (Vuner). The shear is found by integrating the shear stresses transferred by
uncracked concrete (zune;-) multiplied with the associated width of the cross-section, over
the height.

The equations are applicable to determine the contributions by the different load transfer
mechanisms for an arbitrary load. For the shear force associated with the maximum load,
the shear resistance, the subscript R is added to the shear forces (Vzs, Vrei, VRuner)-
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The three components will be presented in the next section as distributed shear force (V
per & or z-times b:). By expressing all three contributions as shear force per unit height,
they can be mutually compared. It is noted that, because the resistance is presented as
distributed shear force (z:b-), the typical drop in shear stresses (z.) at the transition of the
small web and the broad flange, observed if only the shear stresses are shown, is not
present. The distributed shear force will show uninterrupted graphs instead (see as ex-
ample Figure 7.1).

In this chapter Response will be used for the analyses (Bentz 2000). Response is a non-
linear sectional analyses programme based on the MCFT. In addition, Response assumes
that the girder theory is valid (plane sections remain plane) and that there are no stresses
present in traverse direction. Response uses a series of bi-axial nodes along the cross-
section. Response integrates the stresses along the height instead of along the cracks. As
the diagonal cracks will form parallel of each other and the angle will not change sig-
nificantly it is assumed that the Response is suitable to analyse the stresses along the
crack.

7.2 Shear transfer along a diagonal tension crack

This section investigates if the resistance at mid-depth is representative for the resistance
along the entire crack surface. Chapter 6, derives equations for membrane elements that
meet the condition & =0 at mid-depth. For the regions of a girder without flexural
cracks, this assumption is conservative, as explained in Section 6.1. If the resistance at
mid-depth can represent the resistance along the entire crack surface for regions of a
girder without flexural cracks, Equations 6.4 to 6.6 can also be used to determine the
maximum shear force that can be transferred by aggregate interlock and stirrups. This
can be achieved by multiplying the shear resistance at mid-depth by the surface of the
crack.

A part of the height of the girder remains uncracked. Therefore, in addition to the part
of the shear force that is transferred in the part of the section with diagonal cracks, also
a part of the shear force is transferred by the uncracked parts (mainly the flanges). The
contribution of the uncracked concrete to the shear resistance is further investigated in
Section 7.3.

The distribution along the diagonal tension crack of the aggregate interlock and stirrups
is investigated. Two girders from the database (Section 5.3) are analysed, with two typ-
ical failures modes: a girder that was predicted to fail due to slipping of the crack (FX1-
A, Hanson 1964) and a girder that was predicted to fail due to crushing of the concrete
(HCPI1TE, Choulli 2005). The distributions of the shear stresses are analysed using the
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programme Response (Bentz 2000). The results can be used to investigate the distribu-
tion of the aggregate interlock stresses, the stresses in the stirrups at the crack and the
cracking angles, along the crack. Also the shear transferred by the uncracked concrete
is analysed using Response. The distribution over the various transfer mechanism is in-
vestigated at maximum shear force predicted by Response (the shear resistance).

The Response analyses are carried out based on the geometric an material properties
which are described in the dissertations in which the experiments are described (Hanson
1964, Choulli 2005, Appendix F). The stress strain diagrams (including the tensile
strength of concrete) are derived from the measured cylinder compressive strength of
concrete, using the default relations as described in the User Manuel of Response (Bentz
et al. 2001). The analyses are based on the maximum aggregate size used in the girders.
For the girder of Choulli, a maximum aggregate size of zero is used, as fon > SON/mm?
(Section 6.3). For the material properties of the reinforcing steel, the stress strain rela-
tions are based on data from the material tests. The reinforcing steel is characterised by
the yield strength, the ultimate strength, the modulus of elasticity, the strain at strain
hardening and the rupture strain. The material properties for the prestressing reinforce-
ment are based on data from material tests, as reported in the dissertations. The material
of the prestressing reinforcement is characterised by the ultimate strength, the modulus
of elasticity and the rupture strain in combination with the derived Ramsberg-Osgood
parameters. The normal force caused by prestressing, as reported in the dissertations, is
entered by defining pre-strains. Crack spacing (s) is automatically calculated using the
CEB crack spacing equation (Equation 7.4). Response uses this equation to determine
the crack spacing in the two orthogonal directions separately (sx an s-, Equation 5.28).
In Equation 7.4, c is the diagonal distance from the considered depth to the nearest re-
inforcement in the section, d, is the diameter of the nearest bar and p is the percentage
of steel within a concrete area of 7.5d), above and below a bar.

s=2c+0.1 dp /p (7.4

Analyses for the two simply supported girders are performed at cross-sections at a dis-
tance of 2 (h - hussir - hogsi) / tan30 to the point load. This is considered as the cross-
section that can be associated with the first possible diagonal tension crack. The terms
hiysir and hpgsie are used for the height of respectively the straight and the skew part of
the bottom flange. These terms are subtracted from the girder height as the crack through
the bottom flange is about perpendicular to the longitudinal axis. For the two considered
simply supported girders, the moment to shear ratio decreases in cross-sections closer
to the support. Therefore, the cross-section at a distance of Y2 (4 - hyssi - hogsi) / tan30
to the point load is assumed to be the most critical one. The location of the considered
cross-section determines the used load increments.
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In Figure 7.3 the results of the Response analyses are shown for girder HX1-A (Hanson
1964). The light grey area shows the part of the cross-section that is cracked and the
dark grey area shows the uncracked part. Whether a cross-section is cracked depends on
whether the principal tensile stresses exceed the concrete tensile strength. As Response
assumes that no transverse stresses are present, the principal tensile stress depends on
the stress in longitudinal direction and the shear stress. The web is cracked because the
shear stresses in the web are significantly higher than in the flange (due to the difference
in the width) which increases the principal tensile stresses. The longitudinal stresses are
affected by the bending moment. In the considered cross-section, the longitudinal stress
is higher in the bottom part than in the top part, which increases the principal tensile
stress. Therefore, a small part in the top of the web remains uncracked whereas a small
part of the skew bottom flange is cracked (Figure 7.3). In the cracked part, shear force
is transferred by aggregate interlock and stirrups, whereas in the uncracked part, shear
force is transferred by uncracked concrete.

Maximum shear resistance at z.; = 7,; max

bt

USZCT

uncracked flange

! total

stirlliups
aggregate
interlock "% !

uncracked flan;

Figure 7.3. Distributed shear force & parameters per shear transfer mechanism (HX1-A, Hanson 1964)

The failure of girder HX1-A is caused by slipping of the crack. This is shown in Figure
7.3, where z.; equals 7. max at a height just below mid-depth, at the maximum shear force
(shear resistance). At this location the crack width (w) is at its maximum. As shown in
Figure 7.3, the maximum aggregate interlock stresses decrease with increasing crack
widths (Equation 5.29). The distribution of the aggregate interlock stresses is not af-
fected by the distribution of the crack width, as the cracks widths only determines z¢;max.
Along the crack, z.; follows from equilibrium (Equation 5.25 and 5.26) as explained in
Section 5.1.3. As shown in Figure 7.3, it is a plausible assumption for this girder to
consider the aggregate interlock stress at mid-depth as representative for the entire crack
surface (see b.t for aggregate interlock).

As shown in Figure 7.3, the stresses of the stirrups at the crack (oi--) were found to be
equal to the yielding strength over the entire cracked height. Moreover, Figure 7.3 shows
that the crack angle @ is rather constant over the cracked height. Only in the bottom
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flange the crack angle is higher than average, what causes a decrease in the contribution
of the stirrups. This decrease in contribution of the stirrups is compensated by an in-
crease of the contribution of aggregate interlock as result of the increasing width of the
cross-section. As shown in Figure 7.3, is a plausible assumption for this girder to con-
sider the contribution of the stirrups at mid-depth as representative for the entire crack
surface (see bt for stirrup contribution).

At the maximum shear force (shear resistance) the associated stresses in the compression
field (o2) are not governing, as these are smaller than the maximum (o2 max, Figure 7.4).
It is found that HX1-A is predicted to fail as result of slipping of the crack (Figure 7.3)
instead of crushing of the compression fields (Figure 7.4).

Oymax

Figure 7.4. Stresses and strength of compression field at maximum shear (HX1-A, Hanson 1964)

The second girder, that is analysed with Response, concerns HCPT1E (Choulli 2005).
In Figure 7.5, the stresses in the compression field (¢2) at maximum shear (shear re-
sistance) and the maximum compressive stresses of the compression field (o2,max) are
shown. The stresses in the compression field (o2 = 02,max) are found to be governing for
the shear resistance and therefore, HCPT1E is predicted to fail as result of crushing of
the compression fields.

Maximum shear
resistance
at oy = Comax

O2,max

Figure 7.5. Stresses and strength of compression field at maximum shear (HCP1TE, Choulli 2005)

Figure 7.6 shows the distributed shear force and associated parameters per shear transfer
mechanism for HCP1TE. Just like girder HX1-A, the cracked area extends more into

149



the bottom of the cross-section than the top of the cross-section, because the moment
affects the longitudinal stresses.

w Osz.er

aggregd
interlod

Figure 7.6. Distributed shear force & parameters per shear transfer mechanism (HCP1TE, Choulli
2005)

As described, crushing of the concrete was found governing for girder HCP1TE. In con-
trast to the girder HX1-A, the girder HCPITE could resisted additional shear force after
Tei = Teimax. AS @ consequence, 7 max 18 decisive for the distribution of z.; for a consider-
able part of the cross-section, as shown in Figure 7.6 (area where 7c; = 7cimax). The
maximum aggregate interlock stresses decreases if the crack width increases (Equation
5.29). The crack width increases toward the mid span preliminarily due to the increase
of the principal tensile strain 1. Hence, it is found that the diagonal crack spacing ss
remains rather constant (Equation 5.27) . The principal tensile strain €1 increases because
the transverse tensile strain &: increases towards the mid-depth (Equation 5.19). There-
fore, 7imax and consequentially z;, are minimum around mid-depth. Based on these
finding, one could argue that the aggregate interlock at mid-depth is less representative
for the entire crack surface. Assuming the aggregate interlock at mid-span as representa-
tive for the entire crack could lead to an underestimation of contribution of the aggregate
interlock. However, considering z.; in Figure 7.6 it is appears that this effect is less sig-
nificant. Hence, for a part of the cross-section z.;max is not limiting z.; (area where z.; <
Teimax). Moreover, because the crack penetrates into the bottom flange, the contribution
of the aggregate interlock increases toward the bottom surface due to an increasing width
of the cross-section. Considering the distribution of the distributed aggregate interlock
force over the crack (see b. 7 for aggregate interlock in Figure 7.6), the assumption to
consider the aggregate interlock stress at mid-depth as representative for the entire crack
surface is also plausible for this girder.

The stresses of the stirrups at the crack (o) were found to be equal to the yielding
strength over almost the entire cracked height. Locally the stresses were about two per-
cent higher because of tension hardening. This is caused by high transverse strains &:
that are associated with failure due to concrete crushing. It is noted that Equations 6.4
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to 6.6 are derived assuming no tension hardening. Using these equations could poten-
tially lead to underestimation of the capacity. However, for the considered girders, the
effect is negligible as appears from the distribution of oy in Figure 7.6. Just like for
HX1-A, also for HCP1TE the crack angle was found as rather constant over the cracked
height with only some increase in the part of the bottom flange that is cracked. To con-
sider the contribution of the stirrups at mid-depth as representative for the entire crack
surface is a plausible assumption also for this girder (see b- t for stirrup contribution in
Figure 7.6).

Based on the results of the Response analyses, the assumption that the resistance of the
aggregate interlock and the stirrups at mid-depth represents the entire crack surface, was
found appropriate for the considered girders and associated failure mechanism. The con-
tributions of the aggregate interlock and the stirrups together was found rather constant
along the diagonal tension crack (see vertical dotted lines in Figure 7.3 and 7.6). But
even for the parts of the web that are not cracked, the distributed shear force is about the
same magnitude as for the cracked part. This corresponds to the linear elastic stress dis-
tribution for a girder with an I-shape and a thin web, in which the distributed shear stress
is rather constant in the web. Hence, due to the thin web the first moment of area will
hardly increase between the intersection of the flange and the web and the centre of
gravity. Based on these two observations the resistance of only the web could be pre-
dicted by multiplying the resisted shear stress at mid-depth, the web height and the web
width.

Both considered girders failed because the ultimate resistance of the web was reached,
due to slipping of the crack or crushing of the compression field in the web. At failure,
also the flanges resisted a significant part of the shear force, mainly by shear transfer of
the uncracked concrete. Although failure of the flange was not governing, the contribu-
tion by the flanges was found to be significant (Figure 7.3 and 7.6). In Section 7.3 it is
investigated how the additional contribution of the flanges can be accounted for.

7.3 Shear transfer in uncracked concrete

At a maximum shear force (the shear resistance) the shear is not only resisted by aggre-
gate interlock and stirrups but also by a contribution of uncracked concrete. The
contribution by the uncracked concrete was found to be significant, as shown in Figures
7.3 and 7.6. This section analyses the contribution of the uncracked concrete to the shear
resistance.

The model that is proposed in this dissertation (Chapter 8) to determine the contribution
of the uncracked concrete to the shear resistance is simple, to make the model more
appealing for engineering practice. The contribution of uncracked concrete will not be
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accounted for explicitly. Instead, the contribution of the uncracked concrete is accounted
for by increasing the contribution of the aggregate interlock and the stirrups.

In the Section 7.2 it was found that the resistance of the web could be approached by
multiplying the shear stress that can be resisted by aggregate interlock and stirrups at
mid-depth (zzme) with the web height (4,) and the web width (b,). To determine the total
resistance for a girder, this resistance should be increased with the shear transferred by
the uncracked flange. In the proposed model (Chapter 8), this is accounted for by re-
placing the web height (%,) by the effective shear depth (z’). The total shear resistance
of a girder, based on z’, is shown in Equation 7.5. The increase from 4, to z” concerns
the contribution of the shear transferred by the flanges. In the proposed model trua is
determined using Equations 6.4 — 6.6. The apostrophe used in the parameters, indicates
that the equations are derived for regions without flexural cracks.

V'g = by Z'Trina (7.5

The effective shear depth is derived from the assumption that the shear resistance found
using Equation 7.5 equals the shear resistance found from Response according to Equa-
tion 7.6. In Equation 7.6 the distribution of 7z z2« along the diagonal crack is considered.
The associated shear resistance (Vz r2«) is determined by integrating the distributed shear
force (zrr2x- bz) over the height. Equation 7.5 also assumes 7z na equals 7z r2x so the ef-
fective shear depth is the only unknown.

Vrr2k = fTR,RZk,z b,6z (7.6)

Figures 7.3 and 7.6 show the distribution of the total distributed shear force (continuous
lines) and the contributions of aggregate interlock (fine dashed lines) and the stirrups
(course dashed lines) over the height of the cross-section as found from the Response
analyses, for the two girders analysed in Section 7.2.

Figure 7.7 show the total distributed shear force (zrzx - b=, continuous lines) for both gird-
ers and the proposed approximation Equation 7.5 (trme b-, dashed line). Equation 7.5
assumes a constant distributed shear force over a limited height of the cross-section,
whereas the distribution varies over the total height according to Equation 7.6. This fig-
ure also shows the linear elastic distributed shear force (zz£:b-), which is the dotted line
(which is hardly to see because it almost coincides with the continuous line). These lin-
ear elastic distributions are derived, assuming a linear elastic stress distribution that
results in the same shear resistance as found from Response (Vrre= Vrror). As can be
seen the shape of the linear elastic distributed shear force and the distributed shear force
as found from Response are very similar. In literature examples are found of Response
analyses for cross-sections with flexural cracks (Esfandiari et al. 2009). It is found that

152



the shear stress distribution according to Response of girders with flexural cracks can
deviate strongly from the linear elastic distribution. For the current dissertation, inves-
tigating the shear resistance in regions without flexural cracks, the observation that both
shear force distributions (Response and linear elastic) are similar, is used for the deriva-
tion of z’ for regions without flexural cracks.

Tkmd Dy

1

15 b

:

Trokz b-

Figure 7.7. Distributed shear force R2k (continuous), linear elastic (dotted) and approached with
z’(dashed)

The method to derive z’ is explained in Figure 7.8. As the shapes of both the Response
distribution and the linear elastic distribution are similar, z’ is derived assuming a linear
elastic distribution. With this assumption, the shape of the distribution only depends on
the geometric proportions of the cross-section. Therefore, it is possible to investigate the
effect of the geometric properties on the shear resisted by the uncracked concrete. A
parametric study is carried out, considering geometric properties, and the results are
used for the derivation z’. For the parametric study, the relative properties of various
cross-sections are considered, that are representative for Dutch Highway bridges. Even-
tually, the predicted resistance based on the effective shear depth is compared with the
predicted resistance according to Response. The resistances are compared for 26 girders
of the database, which is described in Section 5.2. In this way it can be determined to
what extend the proposed simple equation for the effective shear depth can accurately
approximate the resistance found with R2K.

Initial assumption of linear elastic shear distribution

< =| Response analyses
Eventual validation of

equation

Linear elastic shear
distribution

Relative
geometric
proportions

Equation effective
shear depth

Figure 7.8. Method to derive the effective shear depth for regions without flexural cracks

It is assumed that the effective shear depth equals the height of the web increased with
a contribution of the flanges. The linear elastic stress distribution is used to determine
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the distribution of the contributions of the web and the flanges. These contributions de-
pend on geometric properties. The effective shear depth is derived by multiplying the
web height (4,) with the ratio of total shear (V...£) and the shear transferred by the web
(Vw.E, Equation 7.7).

Z, — Vtot,LE hw (77)

VW,LE

An example how z’is derived is shown in the left part of Figure 7.9.

by by
0.1h$| Ve = 0.0607, | e |
hygsiow Tl ,‘1:-"’/—
1 1
0.1by
0.6h | |
Vi |s=0.7467, bl e Ebw
d’ = 0.6W/0.746 | i
= 0.80h [ I !
0.3h VbﬁLE:0-195Vt hbfskw ___-—"" “h"‘-_“‘
hbﬁm' | |
0.3by by

Figure 7.9. Example of distribution of shear force over the web and the flanges and definition of the
geometric properties

The effective shear depth, based on the linear elastic stress distribution, is determined
for several relative combinations of the geometric properties (Table 7.1).

Table 7.1. Considered geometric ratios

Figure 7.10 line a line b line ¢ line d line e
higsir! h 0.05-0.30 0.05-0.30 0.05-0.30 0.05-0.30 0.05-0.30
Rigsir! Pifsir 1 1 1 3 1
Pgsiow! Pugser 0 0 0 0 1
b/ by 0.1 0.3 0.2 0.2 0.2
byl by 1 1 0.3 0.3 1

The results of each combination is shown in Figure 7.10 with a line indicated with a
letter. The height of the top flange is varied between 0.05 and 0.30 of the girder height
for al considered combinations. This range covers all possible practical girder types. For
the web width the extremes of 0.1 (line a) and 0.3 (line b) times the width of the top
flange are used (and 0.2 for the other combinations). The width of the bottom flange can
be smaller than the width of the top flange. This can be combined with equal heights of
the flanges (line c, typically for an edge girder of a box-girder bridge) or with dissimilar
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heights of both flanges (line d, typically for a bulb T-girder). Also the presence of skew
sides of the flanges is investigated (line e).

d'yy/ h

— Equation7.10

0.05 0.10 0.15 0.20 0.25 0.30
(Nigeqthgg) 20

Figure 7.10. Effective shear depth versus half of average equivalent flange heights both as ratio of
girder height

The results of the parameter study are shown in Figure 7.10. On the vertical axis, the
calculated effective shear depth is shown as ratio of the height of the girder. On the
horizontal axis the ratio of the average equivalent flange height and the girder height is
plotted. The equivalent flange height is defined as the height of the straight flanges in-
creased with a half of the heights of the skew flanges, which is present over the width
of the flange (Equations 7.8 and 7.9). If the skew flange is only present for a (small) part
of the flange, the presence can be ignored. For a symmetric I shaped girder without skew
heights, the equivalent flange height corresponds to the flange height.

All considered combinations of geometric parameters show a comparable trend. The
trend can be approached with Equation 7.10. The predictions of the effective shear depth
according to this equation is also shown in Figure 7.10 (continuous line). Although the
predicted line is somewhat steeper than the average trend of the other lines, the equation
is attractive because of its simplicity.

If the intend use is out of the range of the investigated parameters, the effective shear
depth can be calculated from the distribution of the contributions of the web and the
flanges assuming a linear elastic shear stress distribution (Equation 7.7).

h
hepeq = hepser + %Y/, (7.8)
h - hbf,skw/ (7.9)
bfeq = Npfstr + 2 :
7 = - (ereat lopea) | (7.10)

155



Finally the proposed equations for the effective shear depth are validated by comparing
the resistances calculated using Response and the resistances determined using the pro-
posed equations for the effective shear depth (Equations 7.8 to 7.10). The resistances are
compared for 26 girders (Appendix I). This concerns girders of experiments of Elzanaty
et al. (1986), Choulli (2005), Hanson (1964) and Leonhardt (1973), with the exception
of CW17 and TP4. The properties of the girders, necessary for the comparison, are listed
in Appendix I. The Response analyses are carried out for cross-sections at a distance of
Ya (h - hegsir - higsin) / tan30 from the point load (x = a - Y2 (h - hegsnr - hygskn) / tan30).
However, if flexural cracks were predicted in the bottom flange, the load increments
were adjusted in a way that no flexural cracks were predicted in the bottom flange.
Hence, the effective shear depth for regions without flexural cracks is investigated. The
shear resistance V' rx follows directly from Response. To determine the resistance V'r
according to Equation 7.5, both the effective shear depth z” and 7z me are needed. The
effective shear depth is found using Equations 7.8 to 7.10. To determine the equivalent
flange height, only the heights of the skew flanges (Asiw, Aiysiw) are considered which
are present over the full width of the flanges (Equations 7.8 and 7.9). The shear stress at
mid-depth 7z a4 is found from the Response analyses (tzma = Tz r2k at mid-depth). Based
on 7, fywm, and @ at mid-depth, 7z rox is determined. Eventually, the ratio Ve zox /V'r is
determined (Appendix I).

The results are shown in Figure 7.11. Based on the analyses for 26 girders, a mean ratio
of Vrra /V’r was found of 0.99 and a coefficient of variation of 2%. Apparently, the
simplifications of determining the resistance on the effective shear depth and assuming
a constant shear resistance, hardly effects the accuracy, in comparison with a Response
analysis. Therefore, it is justifiable to determine the resistance based on z’, b,, and the
shear stress that can be resisted at mid—depth.

1.05
5 Q
:
& 1.00 g
e

§ n S

095 5

0.90

0585

0.10 0.15 020 025 030 035

Figure 7.11. Ratio of resistances found from R2K and approached using Equations 7.5 and 7.8 to 7.10.
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Proposed model for shear resistance of girders with stirrups

In this dissertation a model is derived for the shear resistance of prestressed girders with
stirrups in regions without flexural cracks. The model describes the transfer of shear
force by aggregate interlock, stirrups and uncracked concrete. Chapter 6 derives equa-
tions for the maximum shear stress that can be resisted at the mid-depth of the web by
aggregate interlock and stirrups. Chapter 7 demonstrates that the shear stress that can be
resisted at mid-depth of the web is representative for shear stress that can be resisted
along the diagonal tension crack. Also the additional shear that can be transferred by
uncracked concrete is described in Chapter 7. The current chapter describes the proposed
model, referred to as model B1, and its application conditions and is based on the results
of Chapter 6 and 7 (Figure 6.1).

Section 8.1 describes the method to determine the regions of the girder without flexural
cracks in the ultimate limit state for which he model is intended. Section 8.2 describes
the models that can be used to determine the maximum and minimum shear resistances.
The minimum shear resistance concerns the resistance to diagonal tension cracking and
can be governing for girders with a low amount of shear reinforcement. The maximum
resistance concerns the shear resistance to crushing of the concrete before the stirrups
yield and can be governing for girders with a high amount of shear reinforcement. Sec-
tion 8.3 summarizes the proposed model using the equations derived in the previous
chapters. Section 8.4 evaluates the accuracy of the proposed model, using test data from
the database on shear failure for girders with stirrups (Section 5.3). The effect of various
parameters on the accuracy is also described in this section. Additionally, the accuracy
is compared to the accuracy of models from literature. Section 8.5 determines the design
value of the proposed model. Section 8.6 describes an alternative for the proposed
model. This concerns the variable angle truss model which is modified for regions with-
out flexural cracks. Just like the proposed model in Section 8.3, this alternative model
is based on the resistances of membranes at zero longitudinal strain that are determined
using the MCFT (Section 6.3).

8.1 Method to determine the regions without flexural cracks

The model that is proposed to determine the shear resistance of girders with stirrups is
applicable for regions without flexural cracks. In this section a method is proposed to
determine this region.
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A distinction should be made between whether diagonal tension cracking is governing
or additional shear can be resisted after diagonal tension cracking. If diagonal tension
cracking is governing, the presence of flexural cracks can be determined by assuming a
linear stress distribution. Subsequently, it can be verified whether the tensile stress in
the ultimate fibre exceeds the flexural tensile strength. However, if additional shear force
can be resisted after diagonal tension cracking, diagonal tension cracks will be present,
and the stresses are no longer linear distributed. Therefore, another method is necessary
to determine whether flexural cracks are present.

A more appropriate method to determine the presence of flexural cracks, assuming that
the lower limit of the resistance is not governing, is described in Section 5.1.5 (Bentz et
al. 2006a). This method assumes a compression chord and tension chord at a vertical
distance of the internal lever arm. Both chords are connected by a compression field.
This method assumes the presence of diagonal cracks. This approach is adopted in the
method proposed in the current section. However, in two aspects the proposed method
deviates from the method described in Section 5.1.5:

1. According to the method described in Section 5.1.5, the compression chord is located
at a vertical distance of 0.1/ from the most compressed side. The tension chord is
located at the centre of the tensile forces, which is determined based on the forces in
both the prestressing steel and the reinforcing steel (Figure 5.15). However, in regions
without flexural cracks, the centre of the tensile forces is unsuitable as chord as only
a compression chord is present. It could be considered to locate both the most com-
pressed chord and the least compressed chord at a distance of 0.1/ from the most and
least compressed sides. However, a more accurate predicting can be expected if both
chords are assumed to be located at the centre of the concrete compressive stresses in
the flanges. If this approach is followed, than the lever arm almost corresponds to the
suggested equations for the effective shear depth (Equations 7.8 to 7.10). Therefore,
it is proposed to use a lever arm equal to the effective shear depth (as derived in
Section 7.3) and use the symbol z” for both parameters. At the end of this section, the
proposed method to determine whether flexural cracks are present will be evaluated.
This way also the suitability to use the effective shear depth as lever arm is evaluated.
The apostrophe in z” indicates that the parameter is only applicable for regions with-
out flexural cracks. It is noted that, as a consequence of this adapted approach, the
internal lever arm can significantly deviate between the proposed method and the
method described in Section 5.1.5.methods.

2. In this dissertation prestress is considered as part of the external load. This is called
the ‘equivalent load prestressing method’ (Walraven et al. 2018). Therefore, the pro-
posed method is based on the equivalent load prestressing method. This is in contrast

158



to the method described in Section 5.1.5, which does consider prestressing as part of
the resistances, instead of part of the external load.

The application of the equivalent load prestressing method is demonstrated in Figure
8.1. The applied prestress results in a horizontal force P (prestressing force), a moment
P epo (epo 1s the eccentricity of the prestressing steel at the end of the girder relative to
the centroidal axis) and a distributed load g, which is the result of the curvature of the
prestressing steel. Because the prestressing steel is at an angle at the girder end, the
prestress can be decomposed into a horizontal force somewhat smaller than P and a
small vertical force. For small angles, the effect of decomposing the prestress force is
usually not significant. As simplification only a horizontal force is shown in Figure 8.1
with the magnitude P.

Figure 8.1. Derivation of the force in least compressed chord based on equivalent load prestressing
method

A cross-section can be represented by a slice (right part of Figure 8.1). The cross sec-
tional forces on the slice (Mg, Vi, P) can be determined from the external loads and the
prestress loads on the considered free body diagram (left part of Figure 8.1). Hence, Mg
includes the moment as result of R, gk, ¢, and Pep. Subsequently, the force 7in de least
compressed chord can be found from moment equilibrium around point a. Note that the
component V¢ coté is located at a vertical distance of % z” from point a, which corre-
sponds to the centre of the web, whereas P is located a vertical distance of e. from point
a, which is the distance from the most compressed chord to the centre of gravity of the
cross-section (these distances coincide for the I shaped cross-section of Figure 8.1 be-
cause it is a symmetrical cross-section). The result is shown in Equation 8.1.

M, 1 e
T = E/Z’+E VECOtg"r C/ZrP (81)

If it is assumed that %2 cotd = 1 (this corresponds to § = 26.6°), the equation can be
simplified to Equation 8.2.

T = ME/Z,+ Ve + %/, P (8.2)
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For the ease of use in engineering practice, it is proposed to simply assume that flexural
cracks are present in a cross-section if the force in the least compressed chord 7'is larger
than zero (this corresponds to the method described in Section 5.1.5).

The method to determine whether flexural cracks are present as described in this section,
is evaluated. For this purpose the longitudinal strains at the least compressed chord &
are calculated accurately using the programme Response (R2k). The longitudinal strains
according to R2k are compared to the strains derived using the proposed method. For
the comparison, strains are used instead of forces, because only these are determined by
Response. The strains are calculated for the same 26 experiments that were used to val-
idate the effective shear depth in Section 7.3. Also the same load increments are used
that result in a bottom flange without flexural cracks. Appendix J illustrates how T is
determined using the proposed method. The strain ¢; is subsequently determined using
the stiffness of the chords according to CSA code (CSA 2006), as explained in Section
5.1.5.
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Figure 8.2. Longitudinal strain at tensile chord according to method proposed in this section and R2K

The results are also shown in Figure 8.2. The least compressed (or most tensioned)
flange remains uncracked if ¢ is smaller than the cracking strain ., which is equal to
Jfemp! Ec. For commonly used concrete strengths (40 < £, < 100 N/mm?), the cracking
strain & is about 0.1 mm/m. As can be seen (Figure 8.2), the proposed method results
in the prediction of flexural cracks for three of the experiments. This is more conserva-
tive than Response, for which the load increments were adapted to ensure that no flexural
cracks would be present (Section 7.3). For almost all experiments a higher longitudinal
strain is predicted compared to Response. For the few experiments for which the aver-
age strain according to Response is higher, the underestimation is insignificant. For the
considered experiments it can be concluded the proposed method is conservative. This
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also confirms the suitability of the use zand the assumption %2 cotd = 1 in the proposed
method.

In section 8.4 the accuracy of the proposed model will be evaluated. Experiments of the
database (Section 5.3) will be selected that meet the condition & < 0. To determine if
this condition is met, also the strains in the most and the least compressed chord are
considered (Appendix L). Therefore, for the selection of experiments, also the force in
the most compressed chord C is needed. The force C in de most compressed chord,
found from moment equilibrium around point b, equals —Mg/z’ + Ve + (z’— e.)/z” P (Fig-

ure 8.1).

8.2 Minimum and maximum shear resistance

The model derived in Chapter 6 is intended to determine the shear resistance of the web
in which shear is transferred by stirrups and aggregate interlock. The model covers fail-
ure due to crushing of the concrete or slipping of the crack, after the stirrups start to
yield. However, also uncracked concrete can resist shear. This corresponds to the re-
sistance to diagonal tension cracking as described in Chapters 2 to 4. For higher amounts
of shear reinforcement the resistance after diagonal tension cracking, by aggregate in-
terlock, stirrups and the uncracked flanges, will be higher than the resistance to diagonal
tension cracking. However, if the amount of shear reinforcement is low, it is possible
that the resistance of after diagonal tension cracking is lower than the resistance to di-
agonal tension cracking. The highest of both resistances will be governing. It is not
necessary to determine a minimum shear reinforcement ratio (or minimum ) to deter-
mine which failure mode is governing. It is sufficient to determine the resistance using
the proposed model for cracked concrete and subsequently verify if the found resistance
is higher than the resistance to diagonal tension cracking. Therefore, the resistance to
diagonal tension cracking is defined as the minimum shear resistance for girders with
stirrups in regions without flexural cracks (V'zc). The apostrophe indicates that the
model is only applicable for regions without flexural cracks.

For the regions in which no flexural cracks are present in the ultimate limit state, the
maximum principal tensile stress o1£(z) should be limited by the tensile strength of the
web fem,wev (Equation 8.3). The shear force at which this condition is just met, corre-
sponds to the minimum shear resistance }’z.. For girders that remain free of flexural
cracks in the ultimate limit state, fcim we» corresponds to 0.89f.:» (model A1, Section 3.4).
For girders with flexural cracks in the ultimate limit state, fem, wes corresponds to 1.01/em
(Section 3.5, model A2). In Equation 8.3, ¢1£,max is the maximum principal tensile stress
in the regions without flexural cracks. The principal tensile stress can be determined
using Equation 8.4. In Equation 8.4, oy (z) is the normal stress in the longitudinal di-
rection and 7z (z) is the shear stress, assuming a linear elastic stress distribution. The
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parameter z indicates that the associated parameter varies, or could vary, over the height
z of the cross-section. If the cross-section opposite the support remains free of flexural
cracks, o1£(z) is considered as not critical between a vertical line through the support
and a vertical line through a point that is the intersection of the elastic centroidal axis
and a line inclined from the inner edge of the support at an angle of 45°(Figure 3.7 and
Figure 4.1). These regions do not have to be considered for the determination of &1z max.

Oimaxe < fetmwen (8.3)
2
01£(2) = U"'EZ(Z) + \/ (GX'EZ(Z)) + 15(2)? (8.4)

As described earlier in this section, the proposed model is intended to determine the
shear resistance to crushing of the concrete or to slipping of the crack, both while the
stirrups yield simultaneously. For girders with a high amount of shear reinforcement, it
is possible that the resistance is limited because the concrete crushes before the stirrups
yield. Using a model that assumes that the stirrups yield would lead to an overestimation
of the shear resistance. The proposed model does not cover this failure mode. Therefore,
it should be verified if resistance found with the proposed model is lower than the re-
sistance to crushing of the concrete before the stirrups yield. The resistance to crushing
of the concrete before the stirrups yield is defined as the maximum shear resistance
(V’rmax). The apostrophe indicates that the derived model is only applicable for regions
without flexural cracks.

Section 5.1.4.2 already derived the upper limit of the shear force Vzmax using the MCFT
(Equation 5.31, Bentz et al. 2006b). This derivation conservatively assumed that &, =
0.002. For regions without flexural cracks, it can be assumed that &, is zero. Zero longi-
tudinal strain can still be considered as a rather conservative assumption as explained in
Section 6.1. If the other assumptions of the derivation remain the same, Equation 8.5
can be derived using the same approach. As the condition concerns crushing of the con-
crete, &2 is assumed to be -2 mm/m. Because the transverse reinforcement is not yielding,
the strain & is lower than 2 mm/m. As a lower strain increases the maximum capacity,
conservatively 2 mm/m is assumed for ¢.. These values are used sequentially in Equa-
tions 5.18, 5.19, 5.23, 5.24 and 5.17. Based on these values for the strains, an associated
value for the maximum shear stress trmax 1S found of 0.32f., as average for all concrete
strengths. For lower strengths of concrete a maximum shear stress is found of 0.33f,
which is conservatively neglected. Equation 8.5 is found if zzmax is multiplied with the
width of the web b,, and the effective shear depths z’.

V'rmax = 0.32 form by, 2 (8.5)
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It is found that the strength of the compression field in a region without flexural cracks
is higher than in a region with flexural cracks (Hence, in Section 5.1.2 a factor of 0.28
was found instead of 0.32). This is caused by smaller longitudinal strains, that are asso-
ciated with regions without flexural cracks, that consequentially result in smaller
principal tensile strains and therefore higher values of 02max (Equation 5.23).

8.3 Model B1: shear resistance of prestressed girders with stirrups

This section summarizes the model proposed to determine the shear resistance of pre-
stressed girders with stirrups in regions without flexural cracks, referred to as model B1.
Equations from previous chapters are repeated (and renumbered) to get a clear overview.
Model B1 is derived for normal weight concrete.

For regions of prestressed girders without flexural cracks the shear resistance can be
determined using Equations 8.6 to 8.12. The apostrophe used in the parameters, indi-
cates that the equations are only applicable for regions without flexural cracks
(Section 8.1). The first term in Equation 8.6 represents the contribution of the aggregate
interlock. The contribution depends on y, which equals p. fywm/ fem. In this equation, p,
is the shear reinforcement ratio, fun is the yielding strength of the stirrups and fe. the
concrete cylinder compressive strength. In the equation for p., Ay, is the area of the
stirrups, by is the width of the web and s is the centre to centre distance of the stirrups.
The contribution of aggregate interlock reduces if y increases (Equations 8.7 and 8.8).
The aggregate interlock contribution is also lower for f., > 60 N/mm?. This is because
in higher strength concrete the cracks run through the aggregates due to the strong paste
(Bentz et al. 2006a). Therefore, the aggregate interlock contribution reduces for higher
strength concrete.

V'r = B fem bwz' + Asw/s fywm 2 cotB (8.6)
B =0.38- 25 for fon < 60 N/mm? (8.7)
B =030- 259 for fom> 80 N/mm’ (8.8)

With ¢ = py fywm /fes Pw = Asw /(by s) and 6 = 26°.
For 60 < fon < 80 N/mm?, S can be interpolated linearly.

The second part of Equation 8.6 represents the contribution of stirrups to the shear re-
sistance. The cracking angle (6) that would have been found using the MCFT could
deviate from 26° as described in Section 6.4. Nevertheless, it is demonstrated in Section
6.4 that the total shear resistance corresponds to the total shear resistance as found from
the MCFT, using an angle of 26°.

163



The contribution of aggregate interlock and stirrups is attributed to the web as the diag-
onal tension crack will be primarily located in the web. Even if a part of the web remains
uncracked, it was found that the shear resisted by the web could be determined assuming
aggregate interlock and stirrups along a crack over the height of the web (Section 7.2).
The additional contribution due to shear transfer in uncracked concrete (mainly the
flanges) is accounted for by replacing the web height by the effective shear depth z’
(Section 7.3). The effective shear depth in regions without flexural cracks can be deter-
mined from Equations 8.9 — 8.11, for which the parameters are shown in Figure 8.3. The
equivalent flange height in Equations 8.10 and 8.11 is defined as the height of the
straight flanges increased with a half of the heights of the skew flanges. Only, the heights
of skew flanges need to be considered, that are present over the full width of the flanges.
Alternatively, the effective shear depth can be calculated from the distribution of the
contributions between the web and the flanges assuming a linear elastic shear stress
distribution (Section 7.4).

, 1
7' =h—5(hereq + hofeq) (8.9)
1
hifeq = hegser 5 hegsiow (8.10)
1
hvfeq = Rog.str 5 Rog.siow (8.11)
hmstr %|
Pogion
h z
hbﬁskw
gy [

Figure 8.3. Effective shear depth z”

Model B1 is derived for a diagonal crack spacing s¢ of 300 mm. If the diagonal crack
spacing is significant larger, the contribution for the aggregate interlock reduces and
model B1 could overestimate the resistance. The orthogonal crack spacing for each of
the directions (sx and s,) can be determined using Equation 7.4. The diagonal crack spac-
ing can be determined from the cracks spacing in orthogonal directions using Equation
5.28. Only if the centre to centre distances of both the longitudinal reinforcing steel and
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the stirrups (s) is large (for instance both larger than 400 mm) the diagonal crack spacing
sowill be larger than 300 mm. For elements that contain both stirrups and longitudinal
reinforcing steel, the crack spacing will be typically less than 300 mm (Bentz et al.
20064, b). Therefore, for simplicity, the application of model B1 is limited for centre to
centre distance (s) between the stirrups of maximum 300 mm (so the associated s, < 300
mm). For larger values of s the limit of the diagonal crack spacing of 300 mm should be
verified when the newly proposed model is used to determine the shear resistance.

The method to determine the regions without flexural cracks is described in Section 8.1.

The shear resistance is limited by /’rcand ¥’rmax (Equation 8.12) as described in section
8.2.

V're V'R <V'kmax (8.12)

8.4 Accuracy of the proposed model

In this section, the accuracy of model B1 (Section 8.3) is evaluated, based on test data
from the database described in Section 5.3. In this evaluation, the shear resistance de-
termined with model B1 is compared to resistance obtained from experiments. The
accuracy is expressed in terms of a test-to-predicted shear resistance ratio. A model is
accurate if the mean value of the test-to-predicted shear resistance ratio is close to one
and the associated coefficient of variation is low.

Section 8.4.1. describes the experiments from the database that are used to evaluate the
accuracy. Section 8.4.2 describes the accuracy found for model B1. Also the effect of
the parameters shear span to depth ratio, the maximum aggregate size, the diagonal crack
spacing and the longitudinal strain on the accuracy is investigated in this section. Finally
in Section 8.4.3, the accuracy of the proposed model is compared to the accuracy found
using other models from literature. The results are reflected with earlier findings from
literature regarding the accuracy of the models from literature.

8.4.1 Selection of experiments for the evaluation of the accuracy

The accuracy of model B1 evaluated by the test data from the experiments from the
database on shear failure of girders with stirrups (Section 5.3). Model B1 is derived
assuming a longitudinal strain at mid-depth equal to or smaller than zero (&x < 0, Sec-
tion 6.1). The database, on the other hand, is compiled of experiments on prestressed
girders with stirrups for which failure could be related to diagonal tension cracks (Sec-
tion 5.3). Whether the experiments also meet the condition of a longitudinal strain at
mid-depth smaller zero is uncertain. Therefore, only experiments that meet this condi-
tion are selected for the evaluation of the accuracy. Whether the condition &, < 0 is met,
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is based on calculations with the proposed method as described in Section 8.1. A second
selection criterion is that only experiments with predicted resistances between V’z . and
V’rmax (Equation 8.5) are selected to evaluate the accuracy. The selection will be carried
out by the following steps considering both selection criteria:

1. For all experiments in the database described in Section 5.3 the resistance V'r is de-
termined using Equations 8.6 to 8.11 (Appendix K).

2. For all experiments in the database described in Section 5.3 the strain at mid-depth &,
associated with V’r is calculated and it is determined whether & < 0 (Appendix L).

3. For the experiments that meet the condition & < 0, the resistances Vg and Vzmax are
determined (Appendix M). Experiments that meet both conditions & < 0 and
V’re< V'R < V’rmax are used for the evaluation of the accuracy of the model (Appen-
dix N).

In the first step, resistances /' are determined for all the experiments of the database
on shear failure related to diagonal tension cracks of girders with stirrups (Section 5.3,
Appendix F). The used parameters, intermediate results and the resulting resistances ¥’z
are listed in Appendix K ‘Shear resistance according to proposed model for prestressed
girders with stirrups’. The effective shear depth z’ is determined using Equations 8.9 to
8.11. As the cross-section of the experiments of Choulli were found to be irregular (Sec-
tion 7.3), z’ was calculated from the linear elastic shear stress distribution, using
Equation 7.7, instead of using Equations 8.9 to 8.11. Subsequently, the shear reinforce-
ment ratio p, and, y and S (using Equations 8.7 or 8.8) were determined. Finally, V&
was determined using Equation 8.6. Although the resistance for all experiments of the
initial database are shown, the experiments that were eventually not selected are struck
through in Appendix K (as these don’t meet the criteria of Appendices L and N). It is
further noted that all experiments of the initial database meet the condition s <300 mm
(Section 8.3).

In step 2, the strain at mid-depth & at V’z is determined for all experiments. As model
B1 is derived for experiments with &, < 0, only experiments that meet this condition are
used in the evaluation. To determine &, it is necessary to assume a critical cross-section.
For the selection, the cross-section at location x = a — (% - hsgsur - hifskw) cotd is assumed
to be critical. In this equation a is the shear span, 4 the height of the girder, A is the
height of the straight parts of the bottom flange and /sy is the height of the skew part
of the bottom flange. For continuously supported girders, where the most tensioned
chord will be at the top flange, /s and hysie Will be used instead of Zipzs- and Apgsion.
The location of the critical cross-section is determined from subtracting the longitudinal
projection of the diagonal crack (4 - hyssir - hogsiw) cotd, from the shear span. The terms
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hagso- and hagsioe are subtracted as the crack through the bottom flange is about perpen-
dicular to the longitudinal axis.

The location x is used to determine the strain in the chord at the location of the least
compressed flange (&). Cracks at a distance further away from the support than x are
assumed to be flexural cracks and do not concern the shear resistance (‘Shear critical
region’ in Figure 8.4). The angle is found based on the analyses of photos and figures of
crack patterns of the 25 experiments, both simply and continuously supported, for which
clear cracking patterns were present. These experiments are CW10, CW11, CW13,
CW14, CWI16 (Elzanaty et al. 1986), HCP2TE, HCP2TW, HAP2TW, HCPITE,
HCP1TW, HAPITE, HAP1TW (Choulli 2005), F1B, F3A, F3B, F5A, F5B,F19A (Han-
son 1964), TP2 (Leonhardt 1973), LB2, LB3, LB6, LB7, LB8, LB10 (Xie 2009). It is
conservatively assumed that shear failure could be related to the diagonal crack at x. The
analyses of data from the observations result in an average angle of the first diagonal
crack of 30°.

Considered cross section to evaluate &, < 0

Shear critical region \L

hbﬁsxr

N ]
f e i
I (7 — oo — Pygins ) COL30° |

Figure 8.4. Considered cross-section for determination the strains

Assuming the critical cross-section at x =a — (h — hpfso- — hifsiow) Tesults in an overesti-
mation of .. Hence, the top of the diagonal crack will be more compressed than the top
of the assumed cross-section. This is conservative, as an overestimation & results in an
overestimation of &. One could argue to assume the critical cross-section at
x=a— "% (h— hetsir — hapsiw) 0 the overestimation of & would be compensated by an
underestimation of &;. However, the effect of & on & can be much more significant than
the effect of ¢c on &.. This is because the stiffness of the chord reduces significantly if &
is positive. Hence, if the most tensile chord is under tension, only the stiffness of steel
is ascribed to the chord. Therefore, the critical cross-section is chosen at
x =a — (h— hyssir — hossiw) and the effect of underestimating . is considered acceptable.
Hence, the overestimation of & only results in a stricter selection.
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Based on V', z” (Appendix K) and x, the strain &, can be determined for all experiments

of the database described in Section 5.3. Appendix L lists the determined strains and the
conclusion whether experiments meet the condition & < 0, including intermediate re-
sults. The longitudinal strain of . is determined in accordance to Section 8.1. Based on
the distance x and Vs, the moment due to the external load MF is determined. Based on
ep, which is the vertical distance between location of the centroidal axis and the prestress
force P, the moment due to the prestressing Mp is determined. The continuously sup-
ported girders required more extensive calculations to determine M, and Mr than the
simply supported girders. The internal lever arm z’ is already determined in Appendix
K. Based on these values, the forces in the compression chord (C) and tension chord (7)
are determined using respectively equations 7= Mg/z’+ Vg +e./ z” Pand C = -Mg/z’ +
VE+ (z’— ec)/z’ P (Section 8.1). Subsequently, ¢;and &. are determined from the forces in
the compression chord (C) and tension chord (7) and the stiffness of the chords. The
stiffness of the least compressed chord and the most compressed chord are determined
based on the defined steel areas and the measured stiffness of the reinforcement and the
prestressing steel. The stiffness of the concrete is calculated from area of the associated
chord (Figure 5.15) and the measured compressive strength f.,, using the equation E.
=3000 Vfim+ 6900 as described in the CSA (2006). For positive values of C and T the
stiffness of the concrete and steel are added together. For negative values of C and 7, the
stiffness equals the stiffness of the steel. The strain at mid-depth, &, equals the mean of
&rand &.. Eventually, experiments are selected that meet the condition & < 0.

It was found that of the 57 experiments of the initial database for shear failure of girders
with stirrups, 28 experiments meet the condition & < 0 (of which 19 also meet the con-
dition & < 0) and 29 do not meet the condition &, < 0. It is noted that the selection is strict
as consequence of the assumption that the most tensioned chord is immediately cracked
when T > 0 (tensile strength of zero).

The third step concerns the selection of the experiments that meet the condition
V’re < V'rR< V' rmax for the 28 experiments that meet the condition & < 0 (Appendix M).
Vg 1s determined using Equations 8.3 and 8.4. For some of the experiments diagonal
tension cracking is predicted before flexural cracking. For these experiments Vg is
found by adapting V¢ until the condition o1£max equals 0.89fc is met (Section 3.4) in
the considered region (Figure 3.5). Other experiments are predicted to have flexural
cracks before diagonal tension cracking. For these experiments, both /¢ and the dimen-
sion of the region without flexural cracks (Figure 3.11) are adapted until the condition
o1Emaxequals 1.01£, is met (Section 3.5). Appendix M lists both whether flexural cracks
are predicted at diagonal tension cracking and the determined V'g..

Using these models results in a mean value of the ratio experimentally found to predicted
resistance for diagonal tension cracking of about unity (Section 4.3). The mean value of
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the ratio experimentally found to predicted resistance for girders with stirrups is about
30% higher than unity (Section 8.4.2). Therefore, some of the experiments are selected
despite V'rc/ V'’ exceeds unity but for which V’z./ V’r < 1.3. Eventually it could be
confirmed for these experiments that /’z . was indeed not governing, by increasing V'z
with a factor depending on a/d (Section 8.4.2). One experiment is not used to evaluate
the accuracy of model B1 because it is likely that it failed as result of diagonal tension
cracking (CW17). Although in the experiment additional shear could be resisted after
diagonal tension cracking (the shear force could be raised from 123kN to 142 kN), the
predictions made it likely that the additional resistance could not be ascribed to the pres-
ence of stirrups. Hence, considering the contribution of stirrups after diagonal tension
cracking a resistance was predicted of 81kN, whereas a resistance to diagonal tension
cracking was predicted of 123kN (Appendix M). In Section 2.1 it is explained that also
girders without stirrups can sometimes resist some additional shear force after diagonal
tension cracking.

V" rmax 18 determined using Equation 8.5. For none of the experiments V' 'zmax 1S predicted
to be governing (Appendix M).

Experiment TP4 is further considered, although the predicted & is larger than zero, and
the experiment was not used for the evaluation of the accuracy of model B1. This ex-
periment contains a high amount of shear reinforcement (p.=2.32%). The
experimentally found resistance (Vzexy = 883 kN) reasonably agrees with the maximum
predicted resistance (¥ rmax= 770 kN, predicted using Equation 5.31 as & is larger than
zero). From the experimentally measured stirrup strains it was found that the maximum
resistance was reached before the stirrups yielded (Leonhardt et al. 1973). This shows
that the maximum shear resistance can be governing and that the maximum resistance
is reasonably predicted using the applicable equation.

Eventually, 26 of the 57 experiments of the database described in Section 5.3 meet all
selection criteria and will be used for the evaluation of model B1.

8.4.2 Accuracy of model B1

To evaluate the accuracy, the shear resistance determined with the proposed model (Ap-
pendix K) is compared to the experimentally found resistance (Appendix N). The
accuracy is expressed in terms of the test-to-predicted shear resistance ratio. The results
in terms of mean value of the test-to-predicted shear resistance ratio and the associated
coefficient of variation are listed in Table 8.1 and shown in Figure 8.5.
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Table 8.1. Statistical properties of test-to-predicted shear resistance ratio for model B1

ald>2.5 ald>5.0
Number of experiments 26 21 6
Mean 1.39 1.33 1.12
Coefficient of variation 17.5% 14.6% 8.5%
25
2.0 e
e
~ ‘e E
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£ e @ =8 X O Choulli (2006)
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Figure 8.5. Test-to-predicted shear resistance ratio versus the ratio a/d for proposed model

Model B1 assumes sectional behaviour and conservatively neglects the contribution of
direct load transfer mechanism. The proposed model further assumes that the shear force
is only resisted by aggregate interlock, stirrups and the uncracked flanges. In literature
it is frequently assumed that direct load transfer contributes to the shear resistance up to
a value of a/d of 2.4. The value a/d of 2.4 is assumed for instance as selection criterion
for the Reineck database for slender girders (Reineck et al. 2012). The value is also used
as selection criterion to evaluate the accuracy of the sectional analyses programme Re-
sponse (Bentz 2000). In this dissertation, also experiments with a/d smaller than 2.4 are
selected in the current research to be able to investigate the effect of a/d on the accuracy
(Section 5.3.2). Figure 8.5 and Table 8.1 show that the test-to-predicted shear resistance
ratio strongly depends on the a/d ratio. For decreasing values of a/d, the test-to-predicted
shear resistance ratio increases, which indicates that the actual resistance is underesti-
mated when a/d is low. This observed trend corresponds well to the theory of arch action
models (Section 5.1.8), that predict that a larger part of the shear will be resisted by
direct load transfer if a/d decreases. When a/d is smaller than 5, direct load transfer will
already increase the shear resistance. An adaption of model B1 to account for this addi-
tional resistance is a promising topic to further reduce the conservatism for low a over
d ratios. However, this topic will not further be addressed in the current research.
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Also the effect of crack spacing so and the maximum aggregate size dmax on the accuracy
of the proposed model is considered. Table 8.2 lists the maximum aggregate size as used
in the experiments. The maximum aggregate size as used in the experiments is often
smaller than 31.5 mm which is used to derive the proposed model (Section 6.3). As a
result the contribution of aggregate interlock is overestimated (Equation 5.29). This is
only the case for experiments with /., smaller than 80 N/mm?, because above this value
the aggregate size is assumed to have no effect (Equation 6.3a). Table 8.2 also lists the
diagonal crack spacing at mid-depth as measured from photos or crack diagram figures.
Crack patterns were not available for all experiments. Therefore, the average of the di-
agonal crack spacing based on the experiments for which photos or crack diagram
figures were available was assumed to be representative for the whole test series. As
shown in Table 8.2, the diagonal crack spacing found from observations was much lower
than the assumed value of 300 mm. Because a too large diagonal cracking spacing is
assumed, the contribution of aggregate interlock is underestimated (Equations 5.27 and
5.29) when the proposed model is used. This in contrast to the effect of assuming a to
large assumed maximum aggregate size, which causes an overestimation of the aggre-
gate interlock contribution.

Table 8.2. dmix and s¢ as assumed in models and as used in experiments and found from measurements

Model Elzanaty et al. Choulli  Hanson  Rupfetal Xie
(Section 8.3) (1986) (2005) (1964) (2013) (2009)
dmax  (mm) 315 12.7 12.0 19.1 16.0 10.0
S0 (mm) 300 90 100 70 75 90

The shear stress that can be resisted is determined using Equations 6.4 to 6.6. The equa-
tions are derived assuming a diagonal cracking spacing of 300 mm and a maximum
aggregate size dmax 0f 31.5 mm. The maximum shear stress that can be resisted can also
be determined using the MCFT by using the programme Membrane (Section 6.3). This
way, dmax and s¢ can be explicitly considered. The resistances are determined using both
approaches and they are listed in Appendix O. The resistances using Membrane are de-
termined for fem, f- and p,, associated with each experiment. To consider the fact that in
high strength concrete, cracks go through the coarse aggregates, the maximum aggregate
size is linearly reduced from dmax (Table 8.2) at f.,= 60 N/mm? to 0 mm at f.., = 80
N/mm? (Bentz et al. 2001). The aggregate size which is adjusted at high f. is also listed
in Appendix O and defined as dmax(fem). Membrane determines the diagonal crack spac-
ing from the longitudinal crack spacing s. and the vertical crack spacing s.. As a
simplification, s, is equalized to the vertical distance between the bars in longitudinal
direction (at mid-depth) and s: is equalized to the centre to centre distance of the stirrups
(Bentz et al. 2006b).
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Figure 8.6 shows the ratio of 7’z £46.4-6.5, Which is the shear resistance according to the
proposed model, assuming so =300 mm and dmax = 31.5 mm, and 7’z m2x which is the
shear resistance according to Membrane at e = 0, using the actual dmax and resulting se,
as function of 5o (Appendix O). Figure 8.6 shows that assuming a constant diagonal
crack spacing of 300 mm leads to a more conservative prediction of the shear resistance
compared to the smaller values of the diagonal crack spacing calculated using the
MCEFT. When the smaller dmax as used in the experiments (Table 8.2) would not have
been considered, the predictions would have become even more conservative.

1.2
1.1 o(b 8 o
© ]
: 1S
s o
= 1.0 o 60
x
S
X 09
0.8
50 100 150 200 250 300
s (Mm)

Figure 8.6. Ratio 7’z zg.6.46.6 (50 =300 mm and dmax = 31.5 mm) and 7,2« (calculated 5o and dmax)

The predicted V’» for the model that explicitly considers dmax and s¢ can be found by
multiplying the resistance found for the proposed model with 7’z a2k / T’z £46.4-6.6. Based
on the predicted V’z , and considering the 21 experiments with a/d > 2.5 (Table 8.3), a
mean value of 1.28 is found for the test-to-predicted shear resistance ratio and an asso-
ciated coefficient of variation of 14.1%.

The assumption of a diagonal crack spacing of 300 mm turns out to be rather significant
according to Figure 8.6. The assumed sy clearly contributes to the conservatism found
in the predictions of the proposed model. On the other hand, the coefficient of variation
is not significantly reduced when s¢ and dmax are explicitly considered. This could pos-
sibly be ascribed to the poor prediction of the diagonal crack spacing. This is evident if
the average diagonal crack spacing of 82 mm found in the experiments (Table 8.2) is
compared to the average diagonal crack spacing of 149 mm found from the Membrane
calculations (Appendix O). Nevertheless, an adaption of the model to account for this
additional resistance is a promising topic to further reduce the conservatism of the pro-
posed model, but will not be further addressed in the current research.

Finally the effect of the longitudinal strain e, is investigated. The models of Bentz et al.
(2006b) and Esfandiari (2009) explicitly consider &.. This is logical, as these models are
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also applicable for the regions with flexural cracks where &, > 0. It is however question-
able whether considering values of & smaller than zero contributes to more accurate
predictions of the resistance. As described in Section 6.1, the model is developed for &.
= 0. This significantly simplifies the application of the model, as extensive calculation
in which the areas, the locations and the stiffness of the concrete, the prestressing- and
reinforcing steel, have to be considered are not necessary. As shown in Figure 8.5, a/d
significantly affects the accuracy. Therefore, to be able to analyse the effect of the lon-
gitudinal strain, the test-to-predicted shear resistance ratio is divided by aas and plotted
versus the longitudinal strain (Figure 8.7). The factor a.s equals the second degree pol-
ynomial for the trend line as shown in Figure 8.5 as a function of a/d (dashed black line).
Figure 8.7 shows that no significant effect of &, on the test-to-predicted shear resistance
ratio is observed. Based on this observation it is plausible that considering the strain will
not significantly improve the accuracy of the proposed model for regions without flex-
ural cracks.
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Figure 8.7. Test-to-predicted shear resistance versus the longitudinal strain

8.4.3 Comparison with models from literature

The accuracy of model B1 is compared to other models from literature using the test
data. To compare the accuracy of the models, the accuracy of model B1 for the 21 ex-
periments with an a/d > 2.5, is listed in Table 8.3 as reference. Additionally, the accuracy
of the model of Bentz et al. (Section 5.1.5), the model of Esfandiari (Section 5.1.6) and
the Variable Angle Truss model (Section 5.1.1) are listed in Table 8.3. The steps neces-
sary to predict the resistance for each of these models are listed in Appendix P. Section
8.6 derives the variable angle truss model modified for regions without flexural cracks
(also referred to as model B2). Also the accuracy of this model is listed in Table 8.3. The
test-to-predicted shear resistance ratio for all models, including some intermediate re-
sults, are listed in Appendix N.
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Table 8.3. Accuracy prop. model compared to models from literature for 21 experiments with a/d > 2.5

Model B1: Model of Model of Variable angle Model B2:
Proposed Bentz et al. Esfandiari truss model Modified variable
model (Section 5.1.5)  (Section 5.1.6) (Section 5.1.1) angle truss model
(Section 8.3) (Section 8.6)
Mean 1.33 1.25 1.41 2.04 1.36
CoV 14.6% 16.9% 12.8% 32.6% 13.0%

For the model of Bentz et al., a mean value for the test-to-predicted shear resistance ratio
of 1.25 was found for the 21 experiments that failed in regions without flexural cracks,
with an associated coefficient of variation of 16.9% (Appendix N). This matches the
results described in Section 5.1.5 reasonably, where a mean value for the test-to-pre-
dicted shear resistance ratio of 1.31 was found for 88 simply supported prestressed
girders that failed in shear, with an associated coefficient of variation of 15.8%. Appar-
ently the accuracy for regions with and without flexural cracks is about equal using the
model of Bentz et al.. The mean value of the test-to-predicted shear resistance ratio is
somewhat lower compared to model B1. This corresponds to the finding of Section 6.5.
Hence, in Table 6.4, a lower mean value was found for test-to-predicted resistance for
membrane elements at a longitudinal strain of zero using the model of Bentz et al. than
using the proposed approximation equations. The found coefficient of variation using
the model of Bentz et al., is higher than for model B1, despite that the longitudinal strain
is explicitly calculated. This finding confirms that it is plausible that considering the
strain will not significant improve the accuracy of model B1 for regions without flexural
cracks (as also found from Figure 8.7).

For the model of Esfandiari, a mean value for the test-to-predicted shear resistance ratio
of 1.41 was found for the 21 experiments that failed in regions without flexural cracks
with an associated coefficient of variation of 12.8%. Section 5.1.6 describes the accu-
racy for 88 simply supported prestressed girders that failed in shear. For these
experiments, a mean value for the test-to-predicted shear resistance ratio of 1.27 was
found with an associated coefficient of variation of 16.7%. Esfandiari (2009) already
concluded that the prediction became more conservative for values of the longitudinal
strain smaller than 0.1 mm/m. Also for the current selection with a longitudinal strain
smaller than 0 mm/m conservative predictions were found. The coefficient of variation
of the model of Esfandiari is somewhat lower than the coefficient of variation of model
BI.

For the variable angle truss model, a mean value for the test-to-predicted shear resistance
ratio was found of 2.04 for the 21 experiments that failed in regions without flexural
cracks with an associated coefficient of variation of 32.6%. The predictions are found
to be extremely conservative and inconsistent, which can be attributed to the limitation
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of angle of the compressive struts to 21.8° for low values of y (Section 5.1.1). In Section
8.6 a modified variable angle truss model is suggested for regions without flexural
cracks, in which the strength of the compressive struts depends on  (model B2). With
the modified variable angle truss model, the limitation of 21.8° is not necessary any-
more. The predictions with this modified model become much more accurate, as shown
in Table 8.3.

8.5 Design value of model B1

The design value of model B1 is determined by using the simple approach described in
Annex D7.3 of the NEN (2011), with the statistical properties of Vrexy/V g as described
in Appendix N as the basic input. These statistical properties concern the uncertainty of
the proposed model with respect to the experimentally result, which therefore implicitly
include the uncertainties regarding the model, the geometry and the material. This sec-
tion determines the design value for the proposed model, for a failure probability of 10
for a 50 year reference period (the target reliability index f; = 3.8). If another failure
probability is envisaged, the same approach can be used to determine the associated
partial factors.

The design value Xy for the basic variable X (in which X equals Vexy/V ) can be deter-
mined using Equation 8.13 as described in NEN (2011). X is assumed to follow a
lognormal distribution, which is a common distribution function for the resistance and
is also used in the design value format of the Eurocode.

X, = nde(my‘ kdySy) (8.13)
Equation 8.14 concerns the equation for m,, which is the mean of the basic variable in a

lognormal distribution. As the number of experiments is 21, and YIn(V gexp/V'r) = 5.77,
my = 0.275 (Table 8.4).

Vl
my= Yo Y in( ) (514

Equation 8.15 concerns the equation for s, which is the coefficient of variation of the
basic variable in a lognormal distribution. In this equation V% is the coefficient of varia-
tion. The coefficient of variation is listed in Table 8.1, which results in s, = 14.5% (Table

8.4).
sy = /m(vx2 +1) (8.15)
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Table 8.4. Derivation of design value Xy

n my Sy kay Xa

All experiments 21 0.275 14.5% 3.16 0.833

The design value for the fractile factor, k4, is found from Table D2 in NEN (2011). The
value corresponds to 1.04azf;, in which oz = 0.8 and ;= 3.8. The factor ax is the first-
order reliability method sensitivity factor for the resistance and f; concerns the target
reliability index. Given the limited number of experiments (n =21), an additional factor
of 1.04 is required according to the referred Table D2.

In Equation 8.13, 74 is de design value of the conversion factor and should cover all
uncertainties in a real structure that are not covered by the considered experiments. To
be consistent with the design value format of the Eurocode 74 is equated to 1/1.15 for
concrete and to 1.00 for reinforcing steel. Besides, an additional factor of 1/1.05 is in-
troduced to ensure that the conservative that was intended by assuming s¢ of 300 mm is
maintained and not included in the bias. Section 8.4.2 demonstrates that the resistances
would have been average 5% higher if diagonal crack spacing and the maximum aggre-
gate size would have been explicitly considered (Appendix O). The additional factor of
1/1.05 also covers a smaller dmax in the experiments than assumed for model B1. This
avoids, on contrast to sy, that the design values becomes too conservative.

The mean value for the shear resistance for regions of prestressed girders with stirrups
in regions without flexural cracks can be determined using Equation 8.6. The design
value is found by multiplying Equation 8.6 with Xy = 0.833 and the additional factor
1/1.05 and fcn and fyum with 74, which results in Equation 8.16. Xy is the partial factor of
the whole equation which already covers the uncertainty of the material properties and
other uncertainties, it is sufficient to use the mean value of the material properties. How-
ever, this equation has to be converted into a design equation using fes and f,w« instead
of respectively fon and fyum (Equation 8.17). Accordingly, the correction factors a1 and
oo are introduced in the equation. Both a1 and a» are derived by equalizing Equation 8.16
and 8.17.

, 1 , 1 ’
Viga = 0.833m,8 Nafem bwz' + 0833EASW/5 Nafywm 2’ cotO (8.16)
V'ra = a1 B/feabwz' + az Asw/s fywa 2’ cot® (8.17)

5 fek fywk
with f.; = = and = =
fcd Ve fywd vs

The correction factor a1 for concrete is derived by equating the first part of Equation
8.16 and the first part of Equation 8.17. The ratio between fct/ fom, Which is necessary to
derive a1, depends on the mean value of the concrete compressive strength. Therefore,
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a1 is derived for a range of concrete strengths (Table 8.4). Table 8.4 show that the deter-
mined values of ai vary between 1.00 and 0.95. For simplicity it is proposed to
conservatively use a a1 of 0.95 for all concrete compressive strengths. The correction
factor is taken into account by reducing f according to Equation 8.7 and 8.8 which will
be explained hereafter. It is noted that, when a design code is compiled, f.» in Equation
8.16 is frequently replaced by fix for practical considerations, but given the approach
used in this section this is not considered as necessary for this dissertation.

Table 8.4. Correction factor for design value of concrete based on ., = for + 8 (NEN 2005)

fck _/L-‘m f(’/\/fun (251
N/mm’ N/mm?2 - -
35 43 0.81 1.00
45 53 0.85 0.98
55 63 0.87 0.97
65 73 0.89 0.96
75 83 0.90 0.95
85 93 0.91 0.95

The correction factor az for the reinforcing steel is derived by equating the second part
of Equation 8.16 and the second part of Equation 8.17. The ratio between fiuk / fywm,
which is necessary to derive a2, depends on the characteristic value of the yield strength
of the reinforcing steel. Therefore, a is derived for a range of yields strengths (Table
8.5). A partial factor for the reinforcing steel y; is assumed of 1.15. This partial factor
covers the uncertainties regarding the model, the geometry and the material. Table 8.5
show that the determined values of a2 vary between 1.16 and 1.02. For simplicity it is
proposed to conservatively use a2 of 1.00 for all yield strengths.

Table 8.5. Correction factor for design value of reinforcing steel based on fiym = frwr + 60 (JCSS 2002)

ﬁfwk ﬁ’wm f)‘fwk/ ﬁfwm [£%)
N/mm? N/mm? - -
220 280 0.79 1.16
300 360 0.83 1.09
400 460 0.87 1.05
500 560 0.89 1.02

Equations 8.18 to 8.20 concern the design value for model B1. Only a: has to be con-
sidered because a value for oz of unity is used. Equations 8.19 and 8.20 are found by
multiplying Equations 8.7 and 8.8 with a1= 0.95. This reduces the first parts of S from
respectively 0.38 (Equation 8.7) and 0.30 (Equation 8.8) to 0.36 (Equation 8.19) and
0.28 (Equation 8.20). The second parts of equations 8.7 and 8.8 are conservatively not
multiplied with a1, because -2.5 is a nicely rounded value. Equation 8.18 should be used
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in combination with y. = 1.5 and y; = 1.15, for a target reliability index f; = 3.8 for a 50
year reference period.

V,Rd = ﬁ de bWZ’ + ASW/S nyd Z, cot@ (8.18)
B =0.36- 25y for fom< 60 N/mm® (8.19)
£ =0.28- 25y for fon> 80 N/mm’ (8.20)

With ¢ = pwfywm / fem> Pw = Asw /(by, s) and 6 = 26°

8.6 Model B2: modified variable angle truss model

Section 8.3 proposes a model for the shear resistance for prestressed girders with stirrups
in regions without flexural cracks, referred to as model B1. Model B1 explicitly takes
into account the contribution of aggregate interlock and stirrups. In the current section
an alternative presentation of model B1 is described. This concerns a modification of
the variable angle truss model specifically intended for regions without flexural cracks,
referred to as model B2. Model B2 ascribes the shear resistance completely to the stir-
rups. The contribution of aggregate interlock is taken into account implicitly by using a
smaller angle of the compressive struts than the cracking angle.

Like model B1 (Section 8.3), model B2 is based on the resistances determined for mem-
brane elements at a longitudinal strain of zero (Section 6.3). This approach solves the
following two issues regarding the application of the currently used variable angle truss
model (Section 5.1.1) in regions without flexural cracks:

1. The currently used variable angle truss model does not distinguish between regions
with and without flexural cracks. The additional resistance due to the smaller longi-
tudinal strains and smaller crack width, is not considered. This additional resistance
is however considered in the modified model described in this section, because the
model is based on membrane resistances at a longitudinal strain of zero (Sections 6.1
to 6.4). It is noted that the version of the Eurocode that is currently under development
(CEN 2020), relates the limitation of the angle of the compressive struts to the aver-
age axial compressive stresses.

2. The effective concrete strength of the struts according to the current variable angle
truss model is derived for high values of y, for which crushing of the struts is gov-
erning. For lower values of y, for which sliding of the crack can be governing, the
derived effective concrete strength of the struts is not suitable and could lead to an
overestimation of the shear resistance. Therefore, the angle of the compression strut
is limited to a minimum of 21.8° in the current model. However, this limitation results
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in extremely conservative predictions for values of y for which the limit is governing,
as shown in Table 5.1. In contrast to the current variable angle truss model, the mod-
ified version is based on membrane resistances based on the resistance associated
with the governing failure mode. Thus both crushing of the compression fields and
sliding of the cracks can be governing and the model is capable of determining asso-
ciated resistances.

In the modified variable angle truss model, model B2, the effective strength of the com-
pression struts is back calculated from the resistance for membrane elements as
determined in Section 6.3. For the modified model, the effectiveness factor of the con-
crete strength in regions without flexural cracks is defined as one parameter v’ (instead
of vaew, which is used in the current variable truss model). In Section 6.3, the values for
vaew (replaced in the proposed model by v’) are calculated and related to fin and . The
concrete effectiveness factor v’, found from back calculations of the resistances of the
MCEFT, is shown in Figure 8.8 with black bullets (notice that of va.. is replaced by v’).
It is noted that the angle of the compressive struts follows from the back calculations
and therefore there is no need to limit this angle.

1.00 0.90
0.90 |e 0.80 |* « MCFT
0.80 0.70 — Equation 8.21
0.70 * 0.60 !
[ ]
. 0.60 . w 0.50
* 050 | .
’ * . 0.40 -
0.40 0,30
0.30 :
0.20 0.20
0.10 Som =40 N/mm? 0.10 Jfom = 60 N/mm?
0.00 0.00
0.000 0.030 0.060 0.090 0.120 0.150 0.000  0.025 0.050 0.075  0.100
74 14
0.70 0.60
[ ]
0.60 |q 0.50
0.50 0.40
0.40
" ~ 0.30
030 | o — .
0.20 e ‘
0.10 fom = 80 N/mm? 0.10 fom= 100 N/mm?
0.00 | 0.00
0.000  0.020 0.040  0.060  0.080 0.000 0.015 0.030 0.045  0.060
72 14

Figure 8.8. Comparison of v’ according to MCFT and predicted with the variable angle truss model .
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As shown in Figure 8.8, the highest values for v’ are found, for the lowest values of .
This is explained considering Figure 6.11. For values of y approaching zero, the contri-
bution of aggregate interlock can still be significant, whereas the contribution for the
stirrups approaches zero. As the shear resistance is fully ascribed to the stirrups, the
effective strength of the compressive struts must be significantly increased to find the
associated resistance. The observation that the highest values for v’ are found for the
lowest values of w, is not considered in model B2. Hence, for values of y that approach
zero, the resistance to diagonal tension cracking (V) will be governing.

To derive an approximation equation for the effectiveness factor of the concrete strength,
an equation v’ = (a — b fom)+c ¥ fomis assumed. The part a — b fi.n accounts for the differ-
ent values of v’ for the considered values of f.n, at y = 0. The part ¢ v fon accounts for
the different slopes of the graphs for the considered values of f... For a combination of
a, b and c it is possible to determine the ratio of the approached resistance and the re-
sistance according to the MCFT. For the 32 membranes that meet the condition y >
0.010, the mean values of the ratio of both resistances are determined with the associated
coefficient of variation. The values of a, b and ¢ are adapted until the mean value of the
ratio of the resistances approaches 1.00 (eventually 1.03) and a minimum coefficient of
variation is found (eventually 6%). This results in values for a, b and ¢ of respectively
0.54, -0.004, 0.04 (Equation 8.21, with f.,s and fywm in N/mm?). Eventually, v fon Is re-
written as pw fywm.

The concrete effectiveness factor according to Equation 8.21 is shown in Figure 8.8 with
a continuous black line for each concrete strength. Note that this equation is only valid
for regions without flexural cracks, because the equation is based on the resistance of
membrane elements with ex = 0. For regions with flexural cracks in the ultimate limit
state, for which & > 0, lower resistances will be found for the membranes elements.
Therefore, if flexural cracks are present, the effective strength of the concrete v’ will
also be lower than follows from Equation 8.21.

V' =054~ 0.004f, +0.04p f

ywm

(8.21)

The modified variable angle truss model, model B2, is summarized in the following text.
For regions of prestressed girders without flexural cracks the shear resistance can be
determined using model B2 according to Equation 8.21 — 8.24. The apostrophe used in
the parameters, indicates that the equations are derived for regions without flexural
cracks. In these equations, 0 is the angle of the compressive strut (this in in contrast to
model B1, in which 6 represents the angle of the cracks). The angle of the compressive
strut is steeper than the cracking angle. This is possible because aggregate interlock en-
ables shear transfer across the crack. The resistance by the aggregate interlock and
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stirrups is expressed as a resistance by the stirrups only, as appears from Equation 8.22.
In this equation Ay, is the area of shear reinforcement, s is the distance between the
stirrups and f,wm the yielding strength of the stirrups. The effective shear depth z” in
regions without flexural cracks can be determined from Equations 8.9 — 8.11.

Vp = Asw/s fywm z'cot 0 (8.22)

g = [Pvar (8.23)
tan /= yar)

Yvar =P, 0 IV fom (8.24)

With p, = Agy /(by 5)

Equation 8.21 is found from the assumption that the struts fail due to or concrete crush-
ing or crack sliding, after the stirrups start to yield. Note that in Equation 8.24 for wyur,
the strength of the compressive struts v fo, comprises the denominator whereas in the
equation for y (Equation 8.8), the concrete cylinder compressive f.., comprises the de-
nominator. Equation 8.21 is found from back calculations of the resistance determined
with the MCFT (Section 6.5.2).

The conditions regarding the diagonal crack spacing, as described at the end of Section
8.3, are also applicable for model B2. Also Vg and ¥ rmax should be considered if the
resistance is determined with model B2 (Section 8.2).

Finally, the accuracy is evaluated for model B2. The shear resistance determined with
model B2 is compared to the experimentally found resistance (Appendix N). To deter-
mine the shear resistance, firstly, the internal lever arm (which equals the effective shear
depth) is determined from Equations 8.9 — 8.11. Secondly, v’ is determined using Equa-
tion 8.21. Thereafter, yur, @ and V' are determined using successively Equations 8.24,
8.23 and 8.22. Note that the angles of the compressive struts, determined with model
B2, vary between 9.0° and 20.8° (Appendix N). Using the variable angle truss model, a
mean value for the test-to-predicted shear resistance ratio was found, for 21 experiments
that failed in regions without flexural cracks, of 1.36 and an associated coefficient of
variation of 13.0%. The accuracy is comparable with model B1 (Table 8.3). The predic-
tions are a little more conservative compared to model B1, which can be ascribed to the
conservative approximation of v’ for low values of y. (Figure 8.8). The coefficient of
variation is found to be somewhat lower than for model B1.

The design value for model B2 can be determined in the same way as for model B1
(Section 8.5). Again the statistical properties of ¥ rexp/V'r as described in Appendix N
can be used as the basic input. Equation 8.14 results in a mean of the basic variable in a
lognormal distribution (m,) of 0.298, as the number of experiments = 21 and
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> In(V rexp/V'’r) = 6.25. Equation 8.15 results in a coefficient of variation of the basic
variable in a lognormal distribution (s,) of 12.9%, as V.= 13.0%. The design value for
the fractile factor ks, = 3.16, considering the number of experiments. Equation 8.13 re-
sults in Xy = 0.896. As for reinforcing steel #4 = 1, only the additional factor of 1/1.05 is
used that ensures that the conservative that was intended by assuming s¢ of 300 mm is
maintained and not included in the bias. By equating the second part of Equation 8.16
and the second part of Equation 8.17, a correction factor for the reinforcing steel (02) of
1.10 is found for a yield strength £« = 500 N/mm? (which is the yield strength that
results in a minimum a2, Table 8.5). For simplicity it is proposed to conservatively use
a2 =1.00 for all yield strengths. The design value, which can be used with a partial factor
for the reinforcing steel ys of 1.15, is shown in Equation 8.25.

V'ra = Asw/S fywa z'cot® (8.25)

8.7 Minimum shear reinforcement ratio

A minimum amount of shear reinforcement should ensure that failure does not occur
immediately upon shear cracking and that truss action can develop (fib 2012, article
7.13.5.2). Based on this definition, the minimum shear reinforcement ratio for regions
without flexural cracks (p 'w,min) can be derived by equating the shear resistance of gird-
ers with stirrups (7’r) and the resistance to diagonal tension cracking (V’z.). The
apostrophes indicate that the parameters are applicable for regions without flexural
cracks.

The most consistent way to determine both resistances is by using models Al, A2 and
B1 (respectively in sections 4.1, 4.2 and 8.3). In engineering practice, both resistances
will be determined and the highest of both resistances will be governing. Therefore,
there is no need to have an equation for p’ymin for engineering practice. Nevertheless,
an equation for p’,.min Will be derived because it provides insight in the conditions under
which diagonal tension cracking is governing and when additional shear can be resisted
after diagonal tension cracking.

Because the equation for p’w,min is only derived to provide insight, models from literature
will be used that are further simplified and lead to a simple equation for p’min. To de-
termine Vg, Equation 8.26 is used which combines Equations 2.19 and 2.20 (ACI
2008). Furthermore, the effective height of the prestressing steel (d,) is assumed to be
0.9h, as investigated in Section 2.1.5. To determine V’r, Equation 8.27 is used, which
combines Equations 5.30, 5.36 and 5.37 (Bentz et al. 2006a). Furthermore, &; is assumed
to be zero and z is assumed to be 0.8/, as investigated in respectively Sections 6.1 and
7.3.
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V'ge = 0.9h by, (0.291\/fom + 0.3 0,;) (8.26)

pwfywm
tan 29°

V'z = 0.8h b, (0.4 Fom + (8.27)

The experimentally found resistances will not exactly match the predicted shear re-
sistances. To get a realistic value for p’w.min, the predicted resistances will be multiplied
by the mean value of the test-to-predicted shear resistance ratio. The mean values are
determined for the 26 experiments which were found suitable to evaluate models for
regions without flexural cracks of girders with stirrups (Section 8.4.1). Considering ex-
periments without stirrups is not useful to determine p’y,min. A mean value for Vg cexp /
V’ r c(£q8.26) Was found of 1.01, which is in line with the earlier found values for the pro-
posed models Al and A2 for diagonal tension cracking (Table 3.8). A mean value for
V’ gexp | V7 r£qs.27) was found of 1.27, which is also in line with the earlier found values
for model B1 for girders wit stirrups (Table 8.1). The equation for the minimum shear
reinforcement ratio (Equation 8.28) is found by equating 1.27V’r and 1.01V’z.. It is
noted the associated coefficients of variation for the simple models are both 18%, which
is indeed more than for models A1, A2 and B1.

(0.150, — 0.08\/fom) (8.28)

P w,min = fywm

For the selected 26 experiments p’..min is determined using equation 8.28. This is also
done for experiment CW 17, that was not selected because the experiment was consid-
ered to have failed due to diagonal tension cracking (Section 8.4.1). In Figure 8.9 the of
ratio p’wand p’wmin is plotted versus the ratio of the experimentally found ultimate re-
sistance and the experimentally found resistance to diagonal tension cracking. For all
experiments, except CW17, it is found that V’gexp / V' rcexp is indeed larger than unity if
p’wis larger than p’ymin (shown with a grey area). For values of p’/ p’w.min that decrease
towards unity, also ¥’ rexp / V’rc.exp approaches unity. This trend confirms that Equation
8.28 is suitable to determine p’y,min.

For experiment CW17, it was found that V’rexp / V'rcexp > 1 despite that p’ < p’ywmin. In
Section 2.1 is it shown that also girders without stirrups can sometimes resist some ad-
ditional shear force after diagonal tension cracking (Figure 2.2). It is plausible that this
is the case for CW17. It is noted that regarding the selection criterion V> V. (Section
8.4.1), the same experiments would have been selected if Equation 8.28 was used instead
of considering the highest resistance determined with the more accurate models (A1, A2
and B1, Appendix M).
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For one experiment (SR23) a negative value for p’y.min was found (this result is not
shown in Figure 8.9). This negative value was caused by the ratio V’gex, and Vreegs.27)
of 0.96 which was substantial lower than the mean value of 1.27. If a test to predict
resistance ratio of 0.96 was used instead of 1.27, a positive value for p’,min would have
been found and a p’y / p’w.min 0f 1.3, which fits well into the range of p’\/ p’vw,min Shown
in Figure 8.9.
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Figure 8.9. ratio of p’,,and p’,min Versus ¥’ gex / Ve for selected 26 experiments & CW17

Figure 8.10 shows p’w.min according to Equation 8.28 versus o, for some combinations
of fem and fium that are representative for practice (Table 1.1).
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Figure 8.10. p’.min versus o, for combinations of f:,, and f,... representative for practice.

It is noted that for low values of o, the minimum shear reinforcement approaches zero.
A value of zero means that the resistance by the aggregate interlock in the diagonal
tension crack (after diagonal tension cracking) equals the resistance to diagonal tension
cracking. That these values could be equal follows from Equations 8.26 and 8.27. For
low values of o, diagonal tension cracking occurs at a lower load, and V’z. will be
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small (Equation 8.26). On the other hand, low values of o, will not affect J’z (Equation
8.27). There is however another phenomenon that reduces the chance that both values
could be equal. This is because the aggregate interlock part of "’z remains high accord-
ing to Equation 8.27, because it is located in a region without flexural cracks (& = 0).
For low values of o, the chance that a regions remains uncracked reduces. Therefore,
the chance that the equations are applicable reduces if o, reduces.

Figure 8.10 shows that diagonal tension cracking is governing for high values of o, and
low values of p’.. For low values of o, and high values of p’,, additional shear can be
resisted after diagonal tension cracking.
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Conclusions and recommendations

This chapter summarizes the results of this dissertation and gives recommendations re-
garding the use of the proposed models in practice and for future research. Section 9.1
summarizes the main scientific results and Section 9.2 addresses the answers to the re-
search questions. Section 9.3 summarizes the proposed models and their application
conditions. Section 9.4 describes the implications of the use of the proposed models for
the structural assessments of bridges. Finally, Section 9.5 suggests topics for further re-
search.

9.1 Scientific results

This dissertation investigated two aspects of the shear resistance of prestressed girders
in regions without flexural cracks: (i) the resistance to diagonal tension cracking and (ii)
the shear resistance after diagonal tension cracking. The latter is only relevant if stirrups
are present. The main scientific results for these two topics are described in respectively
Sections 9.1.1 and 9.1.2.

9.1.1 Resistance to diagonal tension cracking

1. This dissertation provides an overview of models from literature for the resistance of
prestressed girders to diagonal tension cracking (Section 2.1). The models, as applied
in the Eurocode (NEN 2005), the Model Code 2010 (fib 2012) and the ACI (ACI
2008), all assume diagonal tension cracking at the instant the maximum principal
tensile stress equals the tensile strength of the web. However, different simplifica-
tions are used to determine the maximum principal tensile stress. Also, different
models use different values for the tensile strength of the web. These two issues are
further investigated.

2. In this dissertation a database is composed, containing 70 experiments from seven
test series of prestressed girders (Appendix A), in which diagonal tension cracking
was reported. The main parameters of the experiments vary between the ranges: -11.3
<0y <-2.3 N/mm?, -0.23 < 6/ fom < -0.05, 24 < fon < 99 N/mm?. These ranges of
parameters are reasonably representative for the parameters of existing bridges (Ta-
ble 1.1).
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3. Diagonal tension cracking occurs at a principal tensile stress lower than the uniaxial
tensile strength of concrete. This can be ascribed to the presence of principal com-
pressive stresses that reduce the tensile strength of concrete (bi-axial behaviour,
Section 3.2).

4. The tensile strength of the web relates to the size of the region exposed to high prin-
cipal tensile stresses (statistical size effect). This dissertation derives an equation for
the tensile strength of the web that combines the statistical size effect and the effect
of bi-axial behaviour (Equation 3.10). Using Equation 3.10 to determine the tensile
strength of the web for the 14 experiments without flexural cracks, instead of the
uniaxial tensile strength, results in a reduction of the bias of the mean ratio of ¢/max/
Sfemwev from 0.84 to 1.01 and reduction of the associated coefticient of variation from
6.7% to 2.3% (Section 3.2).

5. The maximum principal tensile stresses are not present in the disturbed area around
the support, as long as no flexural cracks are present in this disturbed area. This is
due to the vertical stresses and the more favourable distribution of the longitudinal
and shear stresses in the disturbed areas (Section 3.3).

6. The distribution of principal tensile stresses in the region without flexural cracks
cannot be considered as independent of flexural cracks on the edge of this region.
This is because the formation of a flexural crack on the edge of the region without
flexural cracks can increase the principal tensile stresses in the uncracked region and
trigger diagonal tension cracking (Section 3.5).

7. When the maximum principal tensile stresses oimax are based on o1 along the cen-
troidal axis instead of over the web area (light grey area of Figure 3.7), the
consistency of the predicted resistance to diagonal tension cracking decreases signif-
icantly.

8. This dissertation proposes a model to predict the resistance to diagonal tension crack-
ing for girders in which no flexural cracks are present, referred to as model Al
(Section 3.4). The accuracy of model Al is investigated considering 16 experiments
in which no flexural cracks are present. A mean value of the test-to-predicted shear
resistance ratio was found of 1.00 and an associated coefficient of variation of 5.2%
(Section 3.4).

9. This dissertation proposes a model to predict the resistance to diagonal tension crack-
ing for girders in which flexural cracks are present, referred to as model A2 (Section
3.5). The accuracy of model A2 is investigated considering 37 experiments in which
flexural cracks are present. A mean value of the test-to-predicted shear resistance
ratio was found of 1.01 and an associated coefficient of variation of 12.3% (Section
3.5).
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9.1.2 Shear resistance of prestressed girders with stirrups
1.

This dissertation provides an overview of models from literature that are intended to
determine the shear resistance of prestressed girders with stirrups for regions without
flexural cracks (Section 5.1). These concern empirical models as derived by Mac-
Gregor et al. (1960) and Leonhardt (1973), the variable angle truss model, which is a
lower bound approach based on the theory of plasticity (Walraven 2002), models
based on the MCFT (Bentz et al. 2006a, Esfandiari 2009) and the arch action model
as proposed by Huber (2016). Based on a comparative study of the models (Section
5.2) and an evaluation of the models (Section 5.4), it was decided to base the proposed
model on the MCFT theory (Section 5.1.3). This is because the MCFT is capable to
predict the shear resistance for the low longitudinal strains that are present in regions
without flexural cracks and for low shear reinforcement ratios that are present in ex-
isting bridges (Tables 1.1 and 6.3).

In this dissertation a database is composed, containing 57 experiments of prestressed
girders with stirrups that failed in shear and for which the shear failure could be re-
lated to diagonal tension cracks. Of these 57 experiments, 21 are considered suitable
to use for the validation of the proposed model because it could be demonstrated that
(i) the failure occurred in the region without flexural cracks, (ii) sufficient stirrups
were present to prevent instant failure at diagonal tension cracking and (iii) the shear
span to depth ratio was larger than 2.5 (Section 8.4.1). These 21 experiments consist
of five test series, containing both simply as well as continuously supported girders,
containing experiments with post-tensioned and pre-tensioned prestressing steel with
straight, draped and curved geometries of the prestressing steel. The main parameters
vary as follows: 0.06% < pw < 0.79%, 28 < fom <91 N/mm?, 298 < f;,m < 585 N/mm?.
These ranges of parameters are representative for the parameters of existing bridges
(Table 1.1).

This dissertation derives an equation to determine the shear resistance by aggregate
interlock and stirrups at mid-depth of the web (Section 6.4) which will be used in the
model proposed in this dissertation (model B1). This equation (Equation 6.4) is based
on the resistances found for a series of membranes for a range of parameters, which
are determined using the MCFT (Section 6.3). It was found possible to cover the
possible failure modes with just this one equation. Equation 6.4 determines the re-
sistances found from the MCFT more accurately (Table 6.4) than equations used in
existing models (Bentz et al. 2006a, Esfandiari 2009) and is also more simple to use.
For the considered 40 membranes, the mean value of the ratio of the resistance ac-
cording to the proposed equation and the MCFT was found to be 1.00 and an
associated coefficient of variation of 4%. The proposed equation differs in a number
of aspects from equations used in these cited existing models:
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a. The range of parameters considered for the determination of the re-
sistances of the membranes is extended to become representative for the
intended application of the proposed model (Table 1.1). This implies that
the lowest value for p,, has been reduced from 0.2% to 0.1% and the high-
est value for f., has been increased from 60 N/mm? to 100 N/mm?.
Moreover a value for dmax is used of 31.5 mm, which is a common value
for dmax applied in Dutch bridges up to 2000.

b. The proposed model assumes a longitudinal strain of zero as it is specifi-
cally intended to predict the shear resistance in regions without flexural
cracks. It was found that explicitly considering the longitudinal strain for
this condition did not increase the accuracy (Figure 8.7).

c. The way in which the decreasing contribution of aggregate interlock for
higher strength concrete (£ > 80 N/mm?) is taken into account, is adapted
(Section 6.4).

4. The model of Bentz et al. (2006b) assumes that the resistance of the aggregate inter-
lock and stirrups at mid-depth is representative for the resistances along the entire
crack surface. The validity of this assumption is demonstrated for regions without
flexural cracks (Section 7.2).

5. For the parts of the web that are not cracked, the distributed shear force is approxi-
mately the same magnitude as for the cracked part of the web. Therefore, the
resistance of the web in the regions without flexural cracks can be accurately pre-
dicted by multiplying the shear resistance at the web at mid-depth, the web height
and the average web width.

6. The contribution of the uncracked concrete to the shear transfer was found to depend
mainly on the height of the straight and skew flanges (Section 7.3). It was found that
the effect of the width of the flanges on the contribution by uncracked concrete was
insignificant. Based on these findings, an equation for the effective shear depth was
derived (Equation 7.10). The effective shear depth accounts for an increase of the
shear that can be resisted by aggregate interlock and stirrups along the crack, by shear
transferred in the uncracked concrete. This is in contrast to the existing models (Bentz
et al. 2006a, Esfandiari 2009) which relate the effective shear depth to the effective
depth of the reinforcing steel and prestressing steel, which are irrelevant if no flexural
cracks are present.

7. The shear resistance calculated with a non-linear sectional analyses programme based
on the MCFT, that predicts the shear flow over the height (Response), can be pre-
dicted accurately by using the simple equation proposed for the effective shear depth
(Equation 7.10), which will be used in the model proposed in this dissertation. This
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10.

11.

is evaluated by comparing the resistances determined using the proposed equations
for the effective shear depth for 26 experiments of the database, for cross-sections in
which no flexural cracks were predicted. A mean value of the ratio of both resistances
was found of 0.99 and a coefficient of variation of 2% (Section 7.3, Figure 7.11).

This dissertation proposes a model, referred to as model B1, to predict the shear re-
sistance of prestressed girders with stirrups in regions without flexural cracks, based
on the derived equations for the shear resistance at mid-depth and the effective shear
depth (Chapter 8). The accuracy of the model is evaluated by comparing the shear
resistance determined with the proposed model (Appendix K) and the experimentally
found resistance (Appendix N). For the 21 experiments that are considered suitable
for the evaluation (Section 8.4.1), a mean value of the test-to-predicted shear re-
sistance ratio was found of 1.33 with an associated coefficient of variation 14.6%
(Table 8.1).

Neglecting the effect of direct load transfer in the proposed model was found to affect
the accuracy of the predictions significantly. The influence appears from Figure 8.5,
which shows that, despite the observation that the level of conservatism reduces for
increasing shear span to depth ratios, the effect remains significant even for higher
shear span to depth ratios.

This dissertation also offers an alternative for the proposed model B1. This alterna-
tive is the variable angle truss model modified for regions without flexural cracks
(Section 8.6), which is referred to as model B2. This model ascribes the shear re-
sistance completely to the stirrups. The contribution of aggregate interlock is taken
into account implicitly by using a smaller angle for the strut angle than the cracking
angle. In the modified variable angle truss model, the effective strength of the com-
pression struts is determined from back calculations of the resistances found from
the MCFT for the considered series of membrane elements (Section 6.3). The effec-
tive concrete strength (v’) was found to depend not only on the mean compressive
strength of the concrete (Equation 5.4), but also on the mean yielding strength of the
stirrups and the shear reinforcement ratio (Equation 8.21). As this equation is also
applicable for low shear reinforcement ratios, it is no longer needed to limit the angle
of the compressive strut as prescribed in the current variable angle truss model (Sec-
tion 5.1.1).

Model B2, the variable angle truss model modified for regions without flexural
cracks, is found to be slightly more accurate than model B1 and significantly more
accurate than the currently used variable angle truss model (Table 8.3). The accuracy
of model B2 is evaluated using the 21 experiments that are considered suitable for
the evaluation (Section 8.4.1). As a result, the mean value of the test-to-predicted
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shear resistance ratio was found to be 1.36 and the associated coefficient of variation
of 13.0% (Table 8.3).

9.2 Answers to research questions

This section explicitly addresses the answers to the research questions as posted in Sec-
tion 1.4.

Research question A: ‘Does the accuracy of the predictions increase if bi-axial behav-
iour and statistical size effect are taken into account?’

Related part of dissertation: Sections 3.2, 3.4 and 3.5

The accuracy of the predictions was found to increase if the bi-axial behaviour and sta-
tistical size effect are taken into account (Table 3.5). Moreover, the bi-axial behaviour
was found as the main explanation for the finding that diagonal tensile cracking occurred
at stresses below the uniaxial tensile strength (Equation 3.8). Nevertheless, for girders
without flexural cracks, diagonal tension cracking can be predicted accurately based on
a fraction of the uniaxial tensile strength, without considering bi-axial behaviour and
statistical size effect (Table 3.7). Also for girders with flexural cracks, diagonal tension
cracking could be predicted consistently without considering bi-axial behaviour and sta-
tistical size effect (Table 3.8, Appendix E).

Research question B ‘How are the principal stresses distributed around the supports
and the concentrated loads and is it possible to determine the maximum principal tensile
stress using the Euler-Bernoulli girder theory and neglecting the vertical stresses?’

Related part of dissertation: Sections 3.3 and 3.5

To answer research question B, a distinction should be made between girders with and
without flexural cracks in the flange opposite to the concentrated load (Figures 3.7, 4.1
and 4.2).

For girders without flexural cracks in the flange opposite to the concentrated load, the
maximum principal tensile stresses are found in the undisturbed regions (Section 3.3).
Therefore, the maximum principal tensile stress can be fairly accurate approached using
the Euler-Bernoulli girder theory in the undisturbed regions. Moreover, it is appropriate
to neglect the influence of the vertical stresses to the principal tensile stresses, as at the
governing location, the vertical stresses are relatively small. Because the maximum prin-
cipal tensile stresses are not present around the support, a region is defined around the
support (Figure 3.5) which can be neglected when determining the maximum principal
tensile stress. In Appendix C, column Gimax (Eq. 3.1, 3.2 and 3.4)/ 6imax(LEFEA)), it is
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demonstrated that the maximum principal tensile stresses can be accurately determined
using this approach.

For girders with flexural cracks in the flange opposite to the concentrated load , it was
found that also the formation of a flexural crack at the edge of the region without flexural
cracks can initiate diagonal tension cracking in the regions without flexural cracks (Sec-
tion 3.5). Whether this is the case, can be rather accurately determined by assessing the
principal tensile stresses in the web in the cross-section at the edge of the uncracked
region. The principal tensile stresses in this cross-section can be approximated using the
Euler-Bernoulli girder theory and neglecting the vertical stresses. Although assuming a
linear elastic stress distribution in the vicinity of a flexural crack might seem question-
able, it was found that diagonal tension cracking can be predicted accurately by using
this assumption (Table 3.8, Appendix E).

Research question C ‘How does the presence of flexural cracks affect the distribution of
principal tensile stresses?’

Related part of dissertation: Section 3.5

It was found that for experiments with flexural cracks, diagonal cracking occurred at
higher ratios of o1max and fe.n than for the experiments without flexural cracks (Table 3.8,
Appendix E). The principal tensile stresses are overestimated in the regions without
flexural cracks, if these are determined with the Euler-Bernoulli girder theory, when
flexural cracks are present. Nevertheless, it was found that diagonal tension cracking
can be predicted accurately for girders with flexural cracks by using the approach de-
scribed above (see answer to research question B).

Research question D ‘What are the possible shear failure modes for prestressed girders
with stirrups in the regions without flexural cracks and is it possible to relate the shear
resistance to the potential failure modes?’

Related part of dissertation: Chapters 6 and 7

When sufficient stirrups are present to prevent instant failure after diagonal tension
cracking, two failure modes are possible in regions without flexural cracks. The two
failure modes are sliding of the crack and crushing of the compression field, after the
stirrups start to yield (Section 6.2.1). Sliding of the crack is predicted as governing fail-
ure mode for low concrete strengths (Figure 6.7). Also for high concrete strengths in
combination with low values of y (= fywmpw/ fem) sliding of the crack is found governing
(Figure 6.7). Crushing of compression field is predicted as the governing failure mode
for high concrete strength in combination with high values of y (Figure 6.7). The shear
resistance can be found for both failure modes and the higher resistance is considered to
be governing (Section 6.2). However, the difference between the resistances associated
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with the two failure modes is found to be limited (Figure 6.7). Therefore, it is proposed
to determine the shear resistance using just one set of equations, that covers both failure
modes. Theoretically, failure due to crushing of the compression field could also occur
without yielding of the stirrups. However, this is only relevant for girders with a very
high shear reinforcement ratio. It is unlikely that this will be the case for existing bridges.
Nevertheless, an equation for this maximum shear resistance is derived for regions with-
out flexural cracks (Section 8.2).

Research question E ‘How does the low longitudinal strain, that is associated with re-
gions without flexural cracks, affect the shear force transfer mechanism along the
diagonal tension crack?’

Related part of dissertation: Chapter 5

It was found that the low longitudinal strain results in high contributions of aggregate
interlock and stirrups to the shear resistance (Table 5.6). It is noted that the high contri-
butions are considered in the proposed model B1, because the contributions of aggregate
interlock and stirrups are derived at a longitudinal strain of zero (Section 6.1 and 6.3).

Research question F ‘How can the contribution of the shear force transferred by the
uncracked flanges be determined and how is this contribution affected by the cross sec-
tional properties?’

Related part of dissertation: Chapter 7

For regions without flexural cracks, the ratio of the shear transferred by the web and the
flange at failure reasonably corresponds to the ratio of the shear transferred by the web
and the flange assuming uncracked concrete. The proposed model B1 includes the ef-
fects of uncracked concrete in the flanges by the ‘effective shear depth’, which replaces
the height of the web (Section 7.3). This effective shear depth is mainly determined by
the relative height of the straight and skew flanges. It was further found that the width
of the flanges does not significantly affect the contribution of the uncracked concrete to
the shear resistance (Figure 7.10). The scientific conclusions about the shear transfer by
the uncracked flanges are already discussed in Section 9.1.2.

9.3 Summary of proposed models and their application conditions

Section 9.3.1 provides an overview of the models for the determination of the shear
resistance of prestressed girders and describes a step wise procedure to apply the differ-
ent models. Section 9.3.2 describes the model to determine the resistance of prestressed
girders to diagonal tension cracking. Section 9.3.3 describes the model to determine the
shear resistance of prestressed girders with stirrups for regions without flexural cracks
after diagonal tension cracking.
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9.3.1 Overview shear resistance models for a prestressed girder

This dissertation proposes a model for the shear resistance of girders with stirrups in
regions without flexural cracks, referred to as model B1 (Section 8.5, V'rs). As an ex-
ample for how to determine the shear resistance for the regions of girders with flexural
cracks(Vra), the equations given by the Eurocode (NEN 2005) are used (for which the
partial factors should be applied for a reliability class 2 to achieve f; = 3.8 for a 50 year
reference period). The equations that are applicable for this combination of models are
shown in Figure 9.1 for girders with stirrups. Figure 9.1 also shows the equation pro-
posed to determine the regions with and without flexural cracks (Section 8.1), so it is
clear in which region each model is applicable.

This dissertation also proposes a model that can be applied to determine the resistance
to diagonal tension cracking of girders without stirrups (¥ ra.c, Section 4.3), referred to
as model A. This model is applicable for the regions in which oy s < fea 5. For the regions
(of a girder without stirrups) with flexural cracks, the shear resistance (Vzsc) can be
determined with, for example, the equations given by the Eurocode (NEN 2005). The
equations that are applicable for this combination of models are shown in Figure 9.2.

For girders that contain nonconforming shear reinforcement (Figure 1.3), it is unknown
to what extend the stirrups contribute to the shear resistance. In practice, the shear re-
sistance is usually determined neglecting the contribution of nonconforming shear
reinforcement. For that assumption, the models for a girder without stirrups are applica-
ble (Figure 9.2).

For girders that contain (conforming) shear reinforcement (Figure 1.3), the resistance
can be determined by using the following step wise procedure:

1. verify whether sufficient shear resistance is present if the resistance models for gird-
ers with stirrups are used (Figure 9.1). If this does not result in sufficient shear
resistance:

2. neglect the presence of stirrups and verify whether sufficient shear resistance is pre-
sent if the resistance models for girders without stirrups are used (Figure 9.2). If this
also does not result in sufficient shear resistance:

3. verify whether sufficient shear resistance is present in the region with flexural cracks
using the resistance model for girders with stirrups (Figure 9.1) and verify whether
sufficient shear resistance is present in the region without flexural cracks using the
resistance model for girders without stirrups (Figure 9.2).
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Figure 9.1. Model B1 combined with Eurocode model for girders with stirrups®
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Figure 9.2. Model A combined with Eurocode model for girders without stirrups

Sufficient shear resistance is present if this is demonstrated for all cross sections by one
of these steps. Sufficient resistance to diagonal tension cracking should be considered
for the whole region without flexural cracks. This is because diagonal tension cracks
itself can cause an increase of the principal tensile stresses, leading to new diagonal
tension cracks (Section 3.5).

The proposed models are validated for both simply supported and continuously sup-
ported girders (Section 3.5 and 8.4.2). Girders without stirrups do not have the
possibility to redistribute stresses before failure. Therefore, the failure mode is brittle

* Model B2 (Equation 8.25) can be used as an alternative for Model B1. Equation 8.25 is
Veas = Asw/S fywa Z' cot6, in which 6 can be determined from Equations 8.21, 8.23 and 8.24

(Section 8.6).
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and these girders could instantly fail at diagonal tension cracking (Section 2.1). Conse-
quently, also the effect of imposed deformations and transverse bending should be
considered when determining the maximum principal tensile stress. Especially in the
regions around the point of contraflexure on both sides of the mid support, imposed
deformations could affect the maximum principal tensile stress (Figure 9.2 ‘oimax sensi-
tive to imposed deformations’). For the continuously supported girders it is therefore
preferable to only use the model proposed for girders with stirrups (Figure 9.1) to
demonstrate sufficient shear resistance. Otherwise, it is less certain that all load effects
can be adequately considered when determining the maximum principal tensile stress.

9.3.2 Model A: resistance to diagonal tension cracking

The proposed model, referred to as model A, assumes that diagonal tension cracks form
when the maximum principal tensile stress in the web equals the tensile strength of the
web. Although potentially some redistribution of stresses can occur before a diagonal
tension crack forms, it is not necessary to consider this phenomenon in the proposed
model, given the accuracy found.

According to model A, the maximum principal tensile stress o1£4max 1S determined as
follows:

— The Euler-Bernoulli girder theory can be used and the longitudinal stresses and shear
stresses can be determined using Equations 4.3 and 4.4. The principal tensile stress
can be determined from the longitudinal stresses and shear stresses by Equation 4.2.
The effect of vertical stresses on the principal tensile strength can be neglected. The
cross-sectional properties of the concrete can be used in Equations 4.3 and 4.4. It is,
given the accuracy found, not necessary to consider the effect of the stiffness of the
reinforcing steel and prestressing steel to determine the stresses.

— The principal tensile stresses in the entire web area should be considered to determine
the maximum principal tensile stress. The accuracy significantly decreases if only the
principal tensile stresses along the centroidal axis are considered (Section 3.4).

— Under the condition that the flange opposite to the support remains free of flexural
cracks, the maximum principal stress can be accurately determined by considering
the principal tensile stresses (determined with Equations 4.2 to 4.4) in the undisturbed
areas such as defined in Figures 4.1 and 4.2 (light grey). The principal tensile stresses
in the disturbed areas around the supports do not have to be considered.

— The principal tensile stresses in the web area should be considered up to and including
the cross-section at the edge of the uncracked region such as defined in Figure 4.2
(light grey). The maximum principal tensile stress in this cross-section is decisive for
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whether a diagonal tension crack occurs that is caused by the formation of a flexural
crack (Section 3.5).

To achieve a target reliability index f; of 3.8 for a 50 year reference period, a design
value for the tensile strength of the web should be used of 0.599f.m (thus o1rdmax <
0.599fcm). If the relations feu = 0.7fcm, fea = feu / ye and y. = 1.5 are used, this could also
be written as o1zs,max < 1.28fca (Equation 4.9, see also Figure 9.2). The design value is
derived for the model for girders in which flexural cracks are present (Section 3.5). As
the design value for the model without flexural cracks (Section 3.4) is just a bit higher
(0.652fcim, see Table 4.1), it is proposed to use 1.28f.« regardless of whether flexural
cracks are present. Some conservatism is desirable for girder without flexural cracks, to
compensate for the less favourable distribution of the shear stresses in bridges, which
are loaded with distributed loads, compared to the experiments used to derive the design

value, which are loaded with a concentrated load.

If diagonal tension cracking is predicted by a (linear elastic) finite element analysis, bi-
axial behaviour should be considered by using the Mohr-Coulomb approximation
(Equation 2.7), to prevent an overestimation of the resistance to diagonal tensile crack-
ing (Section 3.1).

9.3.3 Model B1: shear resistance of prestressed girders with stirrups

The proposed model, referred to as model B1, should be applied in combination with
the ‘equivalent load prestressing method’. This means that the prestress should be con-
sidered as part of the load instead of part of the resistance (Section 8.1).

The proposed model is applicable for regions without flexural cracks. A simple method
is proposed to determine this region (Section 8.1). The method assumes two longitudinal
chords, which can be under compression or tension, at a vertical distance of the internal
lever arm. The internal level arm is equated to the effective shear depth and both chords
are connected by a compression field (Figure 8.1). The force in the least compressed
chord can be determined using Equation 8.1. It is assumed that the region is free of
flexural cracks when the force in the least compressed chord is negative. This simple
method leads to a conservative prediction of the region without flexural cracks (Figure
8.2).

Model B1 is given by Equations 8.18 to 8.20 (see also Figure 9.1). These equations
concern the design value of the model to achieve a target reliability index f; of 3.8 for a
50 year reference period. The proposed model assumes a diagonal tension crack in the
web and describes the shear force that can be transferred by aggregate interlock (first
part of Equation 8.18) and stirrups (second part of Equation 8.18). This resistance is
further increased with the contribution of the uncracked flanges to the shear transfer.
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The contribution of the uncracked concrete is incorporated in Equation 8.20 by using
the effective shear depth instead of the height of the cracked web. Model B1 is based on
the Modified Compression Field Theory (Section 5.1.3). The shear resistance is based
on failure of the web, either by crushing of the concrete compression fields or slipping
along the diagonal tension crack (Section 6.2). For both failures modes, the stirrups yield
simultaneously.

As shown from Equation 8.19 and 8.20, the aggregate interlock contribution decreases
for increasing shear reinforcement ratios, for increasing yielding strengths of the stirrups
and for decreasing concrete compressive strengths (Figure 6.8). According to Equations
8.19 and 8.20, the contribution of the aggregate interlock is lower for fo, > 80 N/mm?
than for fo, > 60 N/mm?. This is because for fu, > 80 N/mm? the cracks are assumed to
run through the aggregates, due to the strong paste. Model B1 is intended for girders
with dmax = 31.5 mm. The model should only be used for girders with a centre to centre
distance of the stirrups s <300 mm. Larger centre to centre distances can cause larger
cracking distances which causes wider cracks and reduces the contribution of aggregate
interlock. In such a case, the proposed model is still applicable when it can be verified
with more refined calculations (Equation 7.4) that the diagonal crack spacing s¢ at mid-
depth is less than 300 mm (Section 8.3).

For the cracking angle, a fixed value of 26° is used. This angle belongs to the failure
mode crack sliding (Figure 6.9), which is the most likely failure mode for regions with-
out flexural cracks (Figure 6.7). For conditions in which crushing of the compression
field is found to be the governing failure mode, lower values for the cracking angle are
found. However, for this failure mode, the overestimation of the cracking angle is com-
pensated by an overestimation of the aggregate interlock contribution (Figure 6.7).
Therefore, if a cracking angle of 26° is assumed, the prediction of the total resistance
along the diagonal tension crack still remains accurate.

For girders with a high shear reinforcement ratio a model is proposed to determine the
maximum shear resistance in the region without flexural cracks (Section 8.2). The pro-
posed model for girders with stirrups (Equation 8.18) is intended to determine the shear
resistance to crushing of the concrete or to slipping of the crack, after the stirrups start
to yield (Section 6.4). However, it is possible that the resistance for these assumed fail-
ure mechanisms should be limited because the concrete crushes before the stirrups yield.
This maximum resistance (Equation 8.5) limits the shear resistance for model B1 for
girders with stirrups (Equation 8.18).
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9.4 Implications for the structural assessments of bridges

This section describes the implications of the use of the proposed models for the struc-
tural assessments of bridges. Section 9.4.1 describes the implications that apply for both
models. Section 9.4.2 describes the implications regarding the proposed model for di-
agonal tension cracking, model A. Section 9.4.3 describes the implications regarding the
proposed model for shear resistance of prestressed girders with stirrups for regions with-
out flexural cracks, model B1.

9.4.1 Implications for both proposed models

The main implication of this research for the assessment of bridges in practice is that
models have become available that are capable to accurately determine the shear re-
sistance in regions without flexural cracks.

This dissertation also provides insight into which parameters and conditions signifi-
cantly affect the accuracy of the shear resistance and should be considered to ensure an
accurate determination of the resistance. Accordingly, the study indicates the parameters
that affect the accuracy of the shear resistance less significantly. Because these less in-
fluential parameters are omitted from the proposed models, the application in
engineering practice becomes more simple than models in which these parameters are
considered.

Another important result is that design values of the models are derived. This makes it
possible to relate the results of assessments to a target level of safety. This is not possible
with the currently used models as data about the accuracy of the models is lacking.

As the proposed models are shown to be accurate, these models allow substantiated de-
cisions about whether to maintain, strengthen or replace prestressed bridges and viaducts
with a thin web.

Commissioned by RWS, an engineering company assessed 15 bridges using the models
for shear resistance as proposed in this dissertation (De Boer 2020). This concerns the
15 bridges for which the shear resistance was insufficient in the regions without flexural
cracks according to the current guideline for the assessment of existing structures (Sec-
tion 1.1, RWS 2013). In these assessments, the resistance to diagonal tension cracking
was conservatively determined assuming a reduction of the tensile strength of concrete
with 15% because of the sustained loading. By using the newly proposed models it was
found possible to demonstrate sufficient shear resistance for 13 of these 15 bridges. For
7 bridges sufficient shear resistance could be demonstrated using the proposed model
for diagonal tension cracking, model A (Section 9.3.2). For 6 bridges sufficient shear
resistance could be demonstrated using the proposed model for prestressed girders with
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stirrups for regions without flexural cracks, model B1 (Section 9.3.3). Chapter 1 indi-
cated that for approximately 75 of the entire group of 540 older bulb-T-girders and
precast girders, it will not be possible to demonstrate sufficient shear resistance in the
regions without flexural cracks if the current assessment guideline (RWS 2013) is used.
Based on the additional assessments, it can be expected, by extrapolation, that by using
the proposed models it will be possible to demonstrate sufficient shear resistance for
another 65 of these 75 bridges.

9.4.2 Implications for resistance to diagonal tension cracking

The proposed model for diagonal tension cracking, model A, approximately corresponds
to the model used in current assessments (Section 1.2, Chapter 2). An important result
is that, given the gained insights, the doubts about the applicability of the model can be
dispelled.

As model A was found to predict the resistance to diagonal tension cracking fairly ac-
curate, the currently used design value for the tensile strength of the web was found to
be too strict. Therefore, the target level of safety can be obtained with an increase of
28% compared to the currently used design value of the concrete tensile strength of the
web. As a consequence, it is possible to demonstrate the structural safety of more pre-
stressed bridges by using the proposed model, as found from the additional assessments
(De Boer 2020). Especially for the bridges that consist of girders with a low shear rein-
forcement ratio and a high prestress level. For these conditions, diagonal tension
cracking is the governing failure mode as no additional shear force can be resisted after
diagonal tension cracking (Figure 8.10).

9.4.3 Implications for girders with stirrups

The proposed model for prestressed girders with stirrups, model B1, concerns a newly
developed model for regions without flexural cracks based on the principles as described
by Bentz et al. (2006a) and Esfandiari (2009). In contrast to the currently used variable
angle truss model (Sections 1.3 and 5.1.1), the proposed model is suitable to predict the
shear resistance for regions without flexural cracks and is suitable for all shear reinforce-
ment ratios present in existing bridges. Model B1 is based on the Modified Compression
Field Theory and it was not necessary to calibrate the model with experimental data.

As an alternative to model B1, a modified version of the variable angle truss model is
derived for regions without flexural cracks, model B2 (Section 8.6). The accuracy of
model B2 is about the same as for model B1 (Table 8.3). Nevertheless, model B1 is
preferred above model B2 because the physical phenomena ‘aggregate interlock’ and
‘shear transfer by the stirrups in the crack’ are explicitly part of the proposed model,
which contributes to a better insight of how the shear force is transferred.
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The proposed model B1 is shown to be considerably less conservative than the currently
used variable angle truss model (Sections 1.3, 5.1.1 and Table 8.3). In current assess-
ments, also another model is used to determine the shear resistance for regions without
flexural cracks, which is actually intended for the regions with flexural cracks (Section
1.3, RWS 2013). This is considered an conservative approach because the shear re-
sistance in regions without flexural cracks is assumed to be higher than in the regions
with flexural cracks (Section 1.3). Therefore, it is likely that the currently used model
(intended for the regions with flexural cracks) is more conservative for regions without
flexural cracks than model B1. This is indeed confirmed with the results of the additional
assessments (De Boer 2020). In summary, it can be concluded that it will be possible to
demonstrate the structural safety of more prestressed bridges by using model B1. Espe-
cially for the bridges that consist of girders with a high shear reinforcement ratio and a
low prestress level. For these bridges, additional shear force can be resisted after diago-
nal tension cracking (Figure 8.10).

9.5 Future research

The following topics are suggested either to further improve the accuracy of the pro-
posed models or to investigate adjacent topics which could contribute to make better
substantiated decisions about the structural safety of existing prestressed bridges:

1. For girders with a low shear reinforcement ratio, which is the case for most of the
existing bridges in the Dutch Highways (Table 1.1, Table 6.3), the contribution of
aggregate interlock to the total shear resistance is significant (Figure 6.11). The ag-
gregate interlock resistance depends on the diagonal crack spacing s¢ (Equation 5.29),
which is assumed to be 300 mm for model B1 (Section 6.3). It is suggested to inves-
tigate whether the experimentally found diagonal crack spacing can be predicted
more accurately and whether explicitly considering the diagonal cracking improves
the accuracy of the proposed model.

2. Due to direct load transfer, model B1 is still found to be conservative for lower shear
span to effective depth ratios (Figure 8.5). It is suggested to investigate whether this
additional resistance can be quantified.

3. Instead of neglecting the contribution of non-conforming stirrups, it is suggested to
investigate to what extent the nonconforming stirrups contribute to the shear re-
sistance.

4. Model Bl is derived for regions without flexural cracks. It is suggested to extend this
model to regions with flexural cracks using the same approach as used in this disser-
tation for regions without flexural cracks. Ideally, future study should lead to one
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model which is capable of predicting the shear resistance for prestressed girders with
stirrups, irrespectively of whether flexural cracks are present.

. It is suggested to further investigate the uncertainties that are present in real bridges
which are not covered by experiments. An overview of these uncertainties and their
magnitude will help to substantiate and improve the currently used conversion factors
which are used to determine the design value of resistance models.
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Appendix P

Steps to determine shear resistance for models from literature

The predicted resistance using the model of Bentz et al. (Section 5.1.5) is determined

iteratively. This is because the resisted load depends on the strain at mid-depth and the

strain at mid-depth depends on the applied load. The predicted resistance is determined

by the following steps:

L.

The effective depth d is determined using a weighted mean of the effective depth of
the reinforcing steel and the prestressing steel. For the internal lever arm z, the max-
imum of 0.9d and 0.724 is used (CSA 2006).

. The stiffness of the most tensioned chord and the most compressed chord are deter-

mined based on the defined steel areas and the measured stiffness of the reinforcement
and the prestress tendons. The stiffness of the concrete is calculated from the defined
area and the measured compressive strength /..., using the equation £, =3000 fin +
6900 as described in the CSA (2006). Because it is unclear in advance if a cracked or
uncracked most tensioned flange should be assumed, both a cracked stiffness and
uncracked stiffness are determined.

. The resistance is determined for both a cracked most tensioned chord as an uncracked

most tensioned chord.

. As initial resistance, the experimentally found resistance is used.
. The strain at mid-depth &, is calculated for the initially resistance using the equations

from Section 5.1.5. The strain at mid-depth &, is the minimum of the calculated strain
and -2 mm/m (Section 5.1.5).

. p and 0 are determined using the determined value of &, using Equations 5.36 and

5.37

. The resisted shear force is calculated using Equation 5.30. A maximum value of 65

N/mm? is used for fon (CSA 2006).

. The assumed resistance is adapted until the assumed and calculated resistances

match. Both resistances are assumed to match if the difference between both is less
than 0.1%.

. The sign of the force in the most tensioned flange associated with the calculated re-

sistance determines which of the both calculated resistances is applicable for the
considered experiment (a cracked or an uncracked most tensioned chord).

The predicted resistance using the model of Esfandiari (Section 5.1.6) is determined

iteratively. The predicted resistance is determined by the following steps:

L.

The effective depth d is determined identical as for the model of Bentz et al..
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The stiffness’s of the most tensioned chord and the most compressed chord are de-
termined identical as for the model of Bentz et al..

. The resistances are determined for both the failure mode yielding of the stirrups and

crushing of the concrete.

For each failure mode, the resistance is determined for both a cracked most tensioned
chord as an uncracked most tensioned chord.

As an initial resistance, the experimentally found resistance is used.

The strain at mid-depth &, is calculated identical as for the model of Bentz et al..
For each failure mode, f§ and 6 are determined using the determined value of &x, using
Equations 5.38-5.44.

. The resisted shear force is calculated from Equation 5.30. A maximum value for £,

is used of 65 N/mm?.

The assumed resistance is adapted for each failure mode until the assumed and cal-
culated resistances matches. Both resistances are assumed to match if the difference
between both is less than 0.1%.

10.The sign of the force in the most tensioned flange associated with the calculated

resistance determines which of the both calculated resistances is applicable for the
considered experiment (a cracked or an uncracked most tensioned chord).

11.Finally, the highest of the resistances to yielding of the stirrups and crushing of the

concrete is considered governing.

The predicted resistance for the variable angle truss model is determined by the follow-

ing steps:

1.

The internal lever arm is determined assuming zs = 0.9d and z, = 0.95d, and using
Equation 5.2 (as described in Section 5.1.1).

. The factor v, which accounts for the reduced strength, is determined using equation v

= 0.6 (1 — fcn/250). The factor a., which addresses the effect of prestressing, is de-
termined as described in Section 5.1.1.

. The parameter wy4r and successively angle of the compressive struts 6 was deter-

mined using Equations 5.5 and 5.6. If cable ducts were present it is assumed that these
are fully filled. Hence, the resistance is predicted using a non-reduced web width b,,.

. If the angle of the compressive struts @ determined with Equation 5.5 is lower than

21.8°, a value of 21.8° is used (which appear to be the case for all experiments, see
Appendix N)

. The shear resistance Vz is predicted using Equation 5.1.

256



Notations

Roman lower case letters

a Shear span

b Width of cross section

byy Width of bottom flange

by Width of top flange

by Width of web on T or I girders

c Diagonal distance from the considered depth to the nearest reinforcement in the
section

d Effective height, distance from extreme compression fiber to centroid of longi-
tudinal tension reinforcing steel

dp Diameter of the nearest bar

Amax Maximum aggregate size

dp Effective depth for prestressing steel

ds Effective depth of longitudinal reinforcing steel

ec Distance from the most compressed chord to the centre of gravity of the cross-
section

€po Eccentricity of the prestressing steel at the end of the girder relative to the cen-
troidal axis

fle Specified compressive strength of concrete (ACI)

Je.cu200 Concrete compressive strength determined for a cube with a rib length of
200 mm

Semred Reduced value of the cylinder compressive strength of concrete depending on
principal tensile strain

Jea Design value of concrete cylinder compressive strength

Jek Characteristic value of concrete cylinder compressive strength

Sex Characteristic value of concrete cylinder compressive strength

Sek.cube Characteristic value of cube compressive strength of concrete

Sem Mean value of concrete cylinder compressive strength

Jer Cracking strength of concrete

Sete Effective tensile strength of concrete depending on principle compression
stresses

Sew Design value of axial tensile strength of concrete

Setap Design value of flexural tensile strength of a concrete member

Seik Characteristic value of axial tensile strength of concrete

Sem Mean value of axial tensile strength of concrete
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Mean value of tensile strength considering bi-axial behaviour
Mean value of flexural tensile strength of a concrete member

Mean value of tensile strength considering bi-axial behaviour and the statistical
size effect

Mean value of splitting tensile strength of concrete

Mean value of tensile strength of concrete in a web used to predict diagonal ten-
sile cracking

Design value of yield strength of shear reinforcing
Characteristic value of yield strength of shear reinforcing
Mean yield strength of shear reinforcing

Yield strength of reinforcing in longitudinal direction (MCFT)
Yield strength of reinforcing in vertical direction (MCFT)
Overall depth of member

Equivalent height of the bottom flange

Height of the skew part of the bottom flange

Height of the straight part of the bottom flange

Depth of the crack

Depth of flange

Height of the compression flange

Equivalent height of the top flange

Height of the skew part of the top flange

Height of the straight part of the top flange

Web height

Value of /51 for which no size effect is present.

The length along the longitudinal axis over which the principal tensile stresses
are between 90% and 100% of the maximum principal tensile stresses

Number of experiments

Distributed load which is the result of the curvature of the prestressing steel
Spacing of stirrups, spacing of bars

Spacing of cracks in longitudinal direction (MCFT)

Spacing of cracks in vertical direction (MCFT)

Diagonal crack spacing (MCFT)

Crack width

Distance from critical cross section to support

Internal lever arm, the vertical distance to the centroidal axis



Zc,0
ZFc
Zp

Zs

Effective shear depth in regions without flexural cracks, the level arm in regions
without flexural cracks

Distance between ultimate top fibre and the centre of gravity
Distance between ultimate top fibre and centre of concrete compressive force
Internal lever arm of prestressing

Internal lever arm of longitudinal reinforcing steel

Greek lower case letters

kan

P
Ye
Vs

&l
&2
Ec

Ec

Es
&t
Ex
&y
&z

Nd

ecr
0:

Ve

Design value for the fractile factor
Angle of the compressive strut in arch action model

Factor intended to address the effect of prestressing on maximum compressive
stress in compressive struts

First-order reliability method sensitivity factor for the resistance
Concrete contribution factor

Target reliability index

Partial factor for concrete

Partial factor for the reinforcing steel

Shear strain relative to x- z axis (MCFT)

Principle tensile strain in concrete (MCFT)

Principle compressive strain in concrete (MCFT)

Concrete strain in a concrete cylinder at peak stress

Strain at the flexural compressive side of a member

Cracking strain of concrete

Steel strain

Strain at the flexural tension side of a member

Strain in x-direction (MCFT), strain at mid-depth of a section (MCFT)
Yielding strain of the transverse reinforcing steel

Strain in z-direction (MCFT)

Design value of the conversion factor which should cover all uncertainties in a
real structure that are not covered by the considered experiments

Inclination of the compressive struts (Variable Angle Truss model) or angle of in-
clination of compressive stresses in concrete to x-axis (MCFT, original notation
0.).

Angle of diagonal crack to the longitudinal axis

Angle of inclination op principle strains to x-axis (MCFT, original notation 6)
Effectiveness factor for concrete

Effectiveness factor of the concrete strength in regions without flexural cracks

Strength reduction factor by micro cracks

259



Vs

P ,w,min
Pw
Px
pZ
o1

O1Ed,max
Olm

O lmax
OIR

02

02 max

O02m

Oc¢

OxEd
Oz

Oz
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Strength reduction factor by sliding

Ratio of (longitudinal) tension reinforcing steel

Minimum shear reinforcement ratio for regions without flexural cracks
Reinforcement ratio of shear reinforcement

Ratio of reinforcing steel in x direction

Ratio of reinforcing steel in z direction

Highest principle stress, principal tensile stress in concrete (MCFT, original nota-
tion f1)

Design value of the maximum value of the highest principle stress for a consid-
ered area

Principal tensile stress at the point at the mid-length of /51 and at mid-height of the
points defining /51

Maximum value of the principle tensile stress for a considered area
Principle tensile stress resistance according to Leonhardt

Lowest principle stress, principal compressive stress in concrete (MCFT, original
notation f>)

Maximum stress in compression field

Principal compressive stress at the point at the mid-length of /5 and at mid-height
of the points defining /1

Concrete compression stress
Stress in the concrete in longitudinal direction in the centre of gravity

Reduction parameter indicating the difference between the stresses in the stirrups
and the principle tensile stresses in the centre of gravity (Leonhardt, original nota-
tion op)

Initial stress in prestressed reinforcing steel at the compression side of a member
Initial stress in prestressed reinforcing steel at the tensile side of a member

Compressive stress in the concrete from effective prestressing force only at the
extreme fibre

Stress in the stirrups

Average stress in x-reinforcing steel (MCFT, original notation f;x)

Stress in x-reinforcing steel at crack location (MCFT, original notation fixcr)
Average stress in z-reinforcing steel (MCFT, original notation f-)

Stress in z-reinforcing steel at crack location (MCFT, original notation fi-c,)
Stress in the longitudinal direction, stress in x-direction (MCFT, original notation
1)

Design value of the stress in the longitudinal direction

Stress in the vertical direction

Stress in the depth direction (MCFT, original notation f)

Shear stress (MCFT, original notation v)



Tci,max
TR
TR.c

TR, max

,
T REq6.4-

6.6

T'R M2k
TR.R2k
TR s

TRmd

Wvat

Maximum shear stress that can be resisted for diagonal tension cracking
Shear stress on crack surface (MCFT)

Maximum shear stress on crack surface (MCFT)

Maximum shear stress that can be resisted

Concrete contribution to shear strength

Maximum shear strength associated with crushing of the concrete without yield-
ing of the stirrups

Maximum shear stress that can be resisted according to Equations 6.4 to 6.6

Maximum shear stress that can be resisted according to membrane at & =0
Maximum shear stress that can be resisted according to Response

Steel contribution to shear strength

Maximum shear stress that can be resisted at mid-depth

Shear stress resisted by transverse reinforcement

Shear transferred by uncracked concrete

Angle of the principal stresses at a diagonal tension cracking

Psw fywm ! fem

Psw fowm !V fem

Roman capital letters

A’s

A sw
A Sz

Ec

Eq

Fe

Fi

Area of reinforcing steel on the flexural compression side of a member
Area of concrete cross section
Area of concrete cross section on the flexural compression side of a member

Area of concrete cross section area of concrete on the flexural tension side of a
member

Area of prestressing steel on the flexural tensile side of a member

Area of prestressing steel on the flexural compression side of a member
Area of reinforcing steel on the flexural tensile side of a member

Area of shear reinforcing steel

Area of transverse reinforcement

Force in the compressive chord of a girder

Modulus of elasticity of concrete

Modulus of elasticity of prestressing steel

Modulus of elasticity of reinforcing steel

Applied load

Strut force (compression force), resulting concrete compressive force (Fe) in
cross section

Tie force (tension force)

261



V )R, crexp

V)R, exp
V)Rmax

Ve

Vr

VR, cc
VR, ci
V& pC
V& p1C
VR, exp
VR Fc
VR, Fs
VR Fsc
VR, max
Vrp
VR R2k
VR,:
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Second moment of area of the uncracked concrete cross section (including rein-
forcement)

Second moment of area of the uncracked concrete cross section (excluding rein-
forcement)

Moment required to cause cracking in the ultimate fiber
Applied internal; bending moment

Cracking moment

Applied axial force

Prestressing force

Component of the prestressing force parallel to the girder axis

First moment of area of the uncracked concrete cross section (including rein-
forcement)

First moment of area of the uncracked concrete cross section (excluding rein-
forcement)

First moment of area of the uncracked concrete cross section in the centre of
gravity (excluding reinforcement)

Force in the tensile chord of a girder
Shear resistance in a region without flexural cracks

Resistance to diagonal tension cracking, the minimum shear resistance for gird-
ers with stirrups in regions without flexural cracks

Experimentally obtained resistance to diagonal tension cracking

Experimentally obtained ultimate shear resistance in a regions without flexural
cracks

Resistance to crushing of the concrete before the stirrups yield in regions with-
out flexural cracks

Applied shear force

Shear resistance

Vertical component of compressive arch

Shear that can be resisted by aggregate interlock
Shear resistance to diagonal cracking

Shear resistance to diagonal tension cracking
Experimentally obtained ultimate shear resistance
Shear resistance to flexural cracking

Shear resistance to flexural shear failure

Shear resistance to flexural shear cracking
Resistance to crushing of the concrete before the stirrups yield
Vertical component of prestress force

Shear resistance according to Response

Shear that can be resisted by shear reinforcing steel



VR strut Maximum shear force which can be sustained by the member, limited by crush-
ing of the compression struts with yielding of stirrups

VR uner Shear resistance by the uncracked concrete
ViowLE Total shear force associated with a linear elastic stress distribution
VL Shear force associated with a linear elastic stress distribution transferred by the
web
Ve Coefficient of variation.
Xy Design value
Others
@ Diameter of a prestressing duct
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Mijn dank gaat op de eerste plaats uit naar mijn werkgever Rijkswaterstaat. Rijkswater-
staat heeft, gedurende de duur van het promoticonderzoek (April 2015 — September
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structies, heeft Yuguang altijd tijd weten te vinden, meestal in de avond maar soms tot
diep in de nacht, om de hoofdstukken van het proefstuk te lezen en van commentaar te
voorzien. Als expert op het gebied van dwarskracht kon ik bij Yuguang altijd terecht
voor de meest complexe vraagstukken over dwarskracht. Daarnaast heeft hij rapporten
en artikelen aangedragen die erg relevant zijn gebleken voor het onderzoek. De vele
vragen die hij heeft gesteld en de discussies die we samen hebben gevoerd, hebben veel
bijgedragen aan het uiteindelijke resultaat en de onderbouwing van het proefschrift.

Zeker ook gaat mijn dank uit naar mijn begeleider Cor van der Veen. Zijn uitgebreide
en brede kennis op het gebied van betonconstructies waren erg waardevol voor het on-
derzoek. Cor heeft er steeds voor gezorgd dat de focus van het onderzoek op de meest
essenti€éle vraagstukken bleef liggen, de aandacht uitging naar het meest geschikte mo-
del en dat de onderzoeksresultaten praktisch toepasbaar zouden zijn. Ook ben ik Cor
dankbaar voor zijn motiverende begeleiding en zijn bereidheid om mij te blijven bege-
leiden zelfs na zijn pensioen.

Verder gaat mijn dank uit naar Dick Hordijk die gedurende de eerste helft van het on-
derzoek mijn promotor was. Dick heeft de gave om de juiste vragen te stellen die het
onderzoek verder helpen en ik heb zijn begeleiding als zeer inspirerend ervaren.
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Ik ben mijn promotoren en begeleiders verder erkentelijk voor de vrijheid die ik heb
gekregen om het onderzoek naar eigen inzicht in te vullen.

Mijn dank gaat uit naar Maaike Ritzen van Rijkswaterstaat. Dat het onderzoek binnen
de beschikbare tijd is afgerond is mede te danken aan de aandacht die Maaike hiervoor
bij ieder voortgangsoverleg heeft gevraagd. Verder wil ik haar danken voor het bewaken
van de zichtbaarheid van de onderzoeksresultaten binnen Rijkswaterstaat. Ik ben Dick
Schaafsma van Rijkswaterstaat dankbaar voor het reviewen van de algemene hoofdstuk-
ken van het proefschrift. Dat de modellen nu direct voor de praktijk toepasbaar zijn is
vooral dankzij zijn reviewopmerkingen. Ook ben ik hem dankbaar voor het laten uit-
voeren van de aanvullende beoordelingen door het ingenieursbureau waardoor inzicht
kon worden gegeven in de aantallen bruggen en viaducten waarvoor het promoticonder-
zoek gevolgen heeft. Als laatste collega van Rijkswaterstaat wil ik Christien Mak
bedanken voor de prettige afspraken die we hebben kunnen maken rondom de afronding
van het promotietraject.

Daarnaast wil ik Gerrie Dieteren van TNO bedanken voor de feedback die hij heeft wil-
len geven op de gebruikte methode voor het vaststellen van de rekenwaarden van de
modellen. Ook wil ik Joost Walraven bedanken voor de ideeén die heeft aangedragen en
de vakliteratuur die ik van hem heb gekregen. Ik heb het heel bijzonder gevonden om af
en toe onverwachts bezoek te krijgen van de hoogleraar waarbij ik in 1996 ben afgestu-
deerd.

Mijn dank en waardering gaat verder uit naar de afstudeerders die met hun onderzoeken
hebben bijgedragen aan de onderzoeksresultaten. Het promoticonderzoek is extra ple-
zierig geweest door met hen gezamenlijk aan het onderzoek te werken. De volgende
afstudeerders hebben bijgedragen aan het onderzoek:

— Maciej Kraczla, die onderzoek heeft verricht met de titel: ‘Analytical and Numerical
Analysis of the Shear Tension Critical Prestressed Beams’ (Kraczla 2016).

— Sijtse Jan Kroeze, die onderzoek heeft verricht met de titel: ‘Resistance to Diagonal
Tension Cracking in Prestressed Beams’ (Kroeze 2018).

— Andrew Sugianto, die onderzoek heeft verricht met de titel: ‘Numerical Investigation
into Size Effect on Prestressed Concrete Beam Resistance to Shear Tension Cracking’
(Sugianto 2019).

— Marieke Vergeer, die onderzoek heeft verricht met de titel: 'Shear tension resistance
of prestressed concrete beams with shear reinforcement, Based on the MCFT’ (Ver-
geer 2019).

— Mathijs Tuitjer, die onderzoek heeft verricht met de titel: ‘Effect of Flexural Cracks
on web-shear cracking of prestressed concrete continuous members’ (Tuitjer 2019).
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Ik wil verder de vele mensen bedanken die tijdens mijn promotie met me hebben mee-
geleefd en belangstelling hebben getoond voor het onderzoek. Mijn kinderen Ilse en
Floris die als een van de weinigen de titel van het proefschrift feilloos uit hun hoofd
kennen. Mijn ouders en broer, mijn andere familieleden, schoonfamilie en vrienden.
Mijn goede vriend Erwin van Aalst wil ik bedanken voor het meedenken over het ont-
werp van de omslag. Ook wil ik alle collega’s van Rijkswaterstaat danken voor alle
interesse die zij hebben getoond. Ik heb het ontzettend gewaardeerd dat de afdeling
Bruggen en Viaducten tijdens het promoveren op bezoek is geweest bij de groep beton-
constructies van de TU Delft.

Ook wil ik de collega’s van de afdeling betonconstructies van de TU Delft danken voor
de fijne tijd die ik daar heb gehad. Ik kijk met plezier terug op de vele etentjes, uitjes,
de ‘dangerous sports’ activiteiten en de lunch- en koffiemomenten. De hoogtepunten in
deze periode waren voor mij de week dat we Vechtbrug hebben laten bezwijken, de
experimenten die ik samen met Rutger Koekkoek en Albert Bosman heb uitgevoerd met
de prefab ZIP-liggers, het fib congres in Maastricht en het SEMC congres in Zuid Afrika.
Met mijn leeftijds- en kamergenoot Sebastiaan Ensink heb ik het promoveren als geza-
menlijk avontuur mogen beleven wat de promotie een extra plezierige ervaring heeft
gemaakt.

Maar mijn meeste dankbaarheid gaat uit naar mijn partner Riemke Overal. Vanwege
haar positieve reactie op het idee om naast het werk een promoticonderzoek te beginnen
en mijn niet meer zo nodige ‘pappadag’ in te ruilen voor een ‘promotie dag’. Vanwege
alle klussen die ze heeft gedaan in ons nicuwe huis terwijl ik weer eens een weekend
doorwerkte aan mijn promotie. Omdat ze alle belangrijke teksten nog heeft willen con-
troleren op spellingsfouten voordat het proefschrift naar de drukker is gegaan. Maar
vooral vanwege de vele uren waarin ze de verhalen over het onderzoek heeft willen
aanhoren en heeft willen meedenken over alle vraagstukken die niet inhoudelijk waren.
Ik heb het erg getroffen met haar.
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In the design process of prestressed bridges and viaducts, the
required amount of shear reinforcement is determined with a model
that assumes the presence of flexural cracks. In order to keep the
design process simple, this model is also prescribed to determine
the amount of shear reinforcement for the regions of the structure
in which, at the ultimate load, no flexural cracks are present. This
is a conservative approach, as the conditions for shear transfer are
more favourable in the regions without flexural cracks.

From structural assessments of existing prestressed bridges
and viaducts, it is found that the amount of shear reinforcement
is frequently too low in the regions that remain free of flexural
cracks. Accordingly, these structures are considered as unqualified,
although the actual shear resistance could possibly be sufficient.
This is the prime motivation for this research, in which the shear
behaviour of prestressed girders in regions without flexural cracks
is investigated.

Two models are proposed in this dissertation for the determination
of the shear resistance in the regions without flexural cracks:

- a model for diagonal tension cracking and

- a model that considers the contributions of stirrups, aggregate
interlock and uncracked flanges after diagonal tension cracking.

Depending on the amount of shear reinforcement and the level of
prestressing, the governing resistance will be present in either one
of these stages.

With the proposed models it has become possible to determine
the shear that can be resisted in regions without flexural cracks more
accurately. The use of the proposed models will therefore prevent
that numerous bridges and viaducts are strengthened or replaced
while the actual shear resistance is sufficient.
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