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In the design process of prestressed bridges and viaducts, the required amount of shear 
reinforcement is determined with a model that assumes the presence of flexural cracks. 
In order to keep the design process simple, this model is also prescribed to determine 
the amount of shear reinforcement for the regions of the structure in which, at the 
ultimate load, no flexural cracks are present. This is a conservative approach, as the 
conditions for shear transfer are more favourable in the regions without flexural cracks. 

From structural assessments of existing prestressed bridges and viaducts, it is found 
that the amount of shear reinforcement is frequently too low in the regions that remain 
free of flexural cracks. Accordingly, these structures are considered as unqualified, 
although the actual shear resistance could possibly be sufficient. This is the prime 
motivation for this research, in which the shear behaviour of prestressed girders in 
regions without flexural cracks is investigated.

Two models are proposed in this dissertation for the determination of the shear 
resistance in the regions without flexural cracks: 
– a model for diagonal tension cracking and 
– a model that considers the contributions of stirrups, aggregate interlock and 

uncracked flanges after diagonal tension cracking. 

Depending on the amount of shear reinforcement and the level of prestressing, the 
governing resistance will be present in either one of these stages. 

With the proposed models it has become possible to determine the shear that can be 
resisted in regions without flexural cracks more accurately. The use of the proposed 
models will therefore prevent that numerous bridges and viaducts are strengthened or 
replaced while the actual shear resistance is sufficient.
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Summary 

Bridges and viaducts in the Dutch Highway network have been used more intensively 

by traffic in recent decades. As a result, the current traffic loads are higher than those 

taken into account during the design. This is an important reason for Rijkswaterstaat 

(RWS) to assess the structural safety of its older bridges and viaducts. Some of these 

older structures contain prestressed girders with an I-shape and with a low amount of 

shear reinforcement. For these bridges it frequently turns out that it is not possible to 

demonstrate sufficient structural safety. Particularly in the regions close to the supports 

where the shear forces are high, the shear resistance often appears to be insufficient 

according to the current guidelines. These are also the regions where no flexural cracks 

occur because prestressing is present and the moment caused by the load is low. When 

no flexural cracks are present, these regions can be assessed in two ways: (i) by assum-

ing failure when a diagonal tension crack develops in the web (diagonal tension 

cracking), or (ii) by determining the resistance after a diagonal tension crack forms, 

taking into account the contribution of the stirrups, aggregate interlock and the shear 

transfer by the uncracked flanges. Depending on the amount of shear reinforcement and 

the level of prestressing, the highest and thus the governing shear resistance will be 

found from one of these two assessments. 

According to the current guidelines for the structural assessment of bridges, the re-

sistance to diagonal tension cracking is determined by equating the maximum principal 

tensile stress in the web and the axial tensile strength of the concrete. Two comments 

can be made regarding this approach: (i) the determination of the maximum principal 

tension stress is less accurate due to the use of a number of simplifications (ii) the actual 

tensile strength will be affected by the presence of principal compressive stresses (‘bi-

axial behaviour’) and a ‘statistical size effect’. The latter refers to the phenomenon that 

if the area with high tensile stresses increases, also the probability of encountering a spot 

with a lower tensile strength increases. The first part of the research therefore focuses 

on the question how these aspects affect the accuracy of the predicted resistance. 

In order to investigate diagonal tension cracking, a database has been compiled with 

relevant experiments from literature. For experiments without flexural cracks, the prin-

cipal tensile stresses were determined by using linear elastic finite element analyses. It 

is investigated how accurately the numerically found maximum principal tensile stress 

can be approximated analytically and how this accuracy is affected by using common 

simplifications. Furthermore, it was investigated whether the experimentally found re-

sistance to diagonal tension cracking could be predicted more accurately when the 

biaxial behaviour and the statistical size effect are considered. For this part of the re-

search only experiments without flexural cracks are considered, to exclude a potential 
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influence of the flexural cracks at the edge of the region without flexural cracks on the 

assumed linear elastic stress distribution in this region. Furthermore, it is investigated 

whether it is also possible to accurately predict the resistance to diagonal tension crack-

ing for experiments with flexural cracks, when the principal tensile stresses are 

determined by a linear elastic calculation and it is assumed that these are not affected by 

flexural cracks in the vicinity. Based on the gathered insights, analytical models have 

been proposed that make it possible to accurately determine the resistance to diagonal 

tension cracking: ‘model A1’ for girders without flexural cracks and ‘model A2’ for gird-

ers with flexural cracks. 

From the linear-elastic finite element analyses of experiments without flexural cracks, 

it was found that diagonal tension cracking occurs at a maximum principal tensile stress 

lower than the axial tensile strength. Considering the biaxial behaviour or the statistical 

size effect separately did not result in more consistent predictions. However, when both 

phenomena are combined, it was found that the resistance to diagonal tension cracking 

can be predicted very accurately. Another important finding is that the principal tensile 

stresses in the regions without flexural cracks are lower, and less accurately to predict, 

when flexural cracks are present at the edge of this region. Nevertheless, it has been 

demonstrated that for both girders with and without flexural cracks, the resistance to 

diagonal tension cracking can be accurately determined using the proposed analytical 

models. For girders with flexural cracks at the edge of the regions without flexural 

cracks, the overestimation of the maximum principal tensile stress is compensated by 

assuming a higher tensile strength of the web. Eventually, design values have been de-

rived for both model A1 and model A2, that correspond to an assumed failure 

probability. By taking the most conservative value of both models, it is possible to use 

only one model for the design value, referred to as model A. Model A can be used in 

practice by engineers regardless of the presence of flexural cracks. 

When a sufficient amount of shear reinforcement is present, the resistance after diagonal 

tension cracking will be higher than the resistance to diagonal tension cracking. The 

theoretical models for girders with stirrups, as used in current design and assessment 

guidelines, are not intended for regions without flexural cracks. Hence, these models do 

not take into account (i) the low longitudinal strain, which increases the contribution of 

the aggregate interlock, and (ii) the shear stress transferred by the uncracked flanges. 

The second part of the research therefore focuses on the question how the shear force is 

transferred in these regions and what parameters and conditions affect this shear transfer. 

The variable angle truss model, as used in the Eurocode, was found to significantly un-

derestimate the shear resistance of prestressed girders in regions without flexural cracks, 

especially when a low amount of shear reinforcement is present. That is why, as part of 

this research, an analytical model has been developed to determine this resistance more 
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accurately, referred to as ‘model B1’. This model is based on the Modified Compression 

Field Theory (MCFT). This theory is also suitable to determine the shear resistance for 

lower amounts of transverse reinforcement. Moreover, the MCFT is able to account for 

the low longitudinal strain that is typical for regions without flexural cracks. As the first 

step in the development of the model, the maximum shear stress at mid-depth of the 

girder height is investigated. This is done specifically for regions without flexural cracks 

by assuming zero longitudinal strain. For a series of parameters, representative for ex-

isting bridges and viaducts, the maximum shear stress has been determined with the 

MCFT. Subsequently, the shear stress distribution along the diagonal tension crack was 

investigated by using a non-linear sectional analyses programme based on the MCFT. 

This programme was subsequently also used to investigate the distribution of the shear 

stresses in the uncracked flanges. Eventually, model B1 was derived which includes all 

parameters that significantly affect the shear resistance. In order to evaluate the accuracy 

of model B1, a database has been compiled with relevant experiments from literature. 

The results of the parameter study using the MCFT show that for regions without flex-

ural cracks, the shear resistance in the web is maximum (i) when the aggregate interlock 

in the crack starts to decrease due to the opening of the crack or (ii) when the concrete 

is about to crush. The maximum shear resistance found from the more complex MCFT 

calculations are approximated with simple equations that will be part of the proposed 

analytical model. These simple equations result in almost the same predicted resistance 

as found from the MCFT. The maximum shear stress at mid-depth of the girder height, 

appears to be representative for the resistance along the diagonal tension crack. In addi-

tion, when the web fails, a part of the shear force will be transferred by the uncracked 

flanges. In the proposed model, the total resistance is determined by multiplying the 

resistance at mid-depth of the girder height by the mean girder width and the effective 

shear depth. For the effective shear depth a simple equation has been derived. This equa-

tion results in almost the same ratios between the maximum shear stress at mid-depth 

and the total shear resistance as those found with the advanced sectional programme 

based on the MCFT. Eventually, the experimentally found resistances were compared to 

the resistance predicted with model B1 for the relevant experiments of the database 

which demonstrates that the proposed model can determine the shear resistance consist-

ently. A design value has also been derived for model B1, that corresponds to an assumed 

failure probability. 

The resistance in model B1 consists of contributions of aggregate interlock and stirrups. 

It is also possible to arithmetically ascribe this resistance entirely to the stirrups. Alt-

hough this way of formulating does not correspond to physical behaviour, the 

formulation is nevertheless attractive because it is also applied in the currently used 

variable angle truss model. This model is derived in this dissertation as alternative for 
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model B1 and is referred to as ‘the variable angle truss model modified for regions with-

out flexural cracks’ or simply ‘model B2’.  

The main result of the research is that analytical models have become available that are 

able to accurately predict the shear resistance in regions without flexural cracks. Using 

these models, it is possible to make substantiated decisions about whether to maintain, 

strengthen or replace prestressed bridges and viaducts. Another important result is that 

the models are less conservative than the models currently in use. For approximately 75 

prestressed bridges in the Dutch Highway network, it is not possible to demonstrate 

sufficient shear resistance in the regions without flexural cracks when the current models 

are used. However, when the models are used as proposed in this dissertation, it will be 

possible to demonstrate sufficient shear resistance for approximately 65 of these 75 

bridges. 
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Samenvatting 

Bruggen en viaducten in het Nederlandse hoofdwegennet worden de afgelopen decennia 

steeds intensiever door het verkeer gebruikt. Hierdoor is de huidige verkeersbelasting 

hoger dan die waarmee tijdens het ontwerp rekening is gehouden. Dit is voor Rijkswa-

terstaat (RWS) een belangrijke aanleiding om de constructieve veiligheid van zijn 

oudere bruggen en viaducten te beoordelen. Een deel van deze oudere kunstwerken be-

staat uit voorgespannen I-vormige liggers met weinig beugelwapening. Voor deze 

kunstwerken blijkt het regelmatig niet mogelijk te zijn om aan te tonen dat de construc-

tieve veiligheid voldoende is. Met name in de gebieden nabij de opleggingen, waar de 

optredende dwarskrachten hoog zijn, blijkt de dwarskrachtcapaciteit volgens de huidige 

richtlijnen vaak onvoldoende. Dit zijn eveneens de gebieden waar geen buigscheuren 

ontstaan omdat voorspanning aanwezig is en het optredende moment uit de belasting 

laag is. Wanneer geen buigscheuren aanwezig zijn, kunnen deze gebieden op twee ma-

nieren worden beoordeeld: (i) door uit te gaan van bezwijken wanneer in het lijf een 

afschuiftrekscheur ontstaat (afschuiftrekbreuk), of (ii) door de weerstand te bepalen na 

het ontstaan van een afschuiftrekscheur, waarbij rekening wordt gehouden met de bij-

drage van de beugels, scheurwrijving en dwarskrachtoverdracht door de niet-gescheurde 

flenzen. Afhankelijk van de hoeveelheid beugels en de voorspangraad zal uit één van 

beide beoordelingen de hoogste en dus maatgevende dwarskrachtweerstand volgen.  

In de vigerende richtlijnen voor het beoordelen van kunstwerken wordt de weerstand 

tegen afschuiftrekbreuk bepaald door de maximale hoofdtrekspanning in het lijf gelijk 

te stellen aan de axiale treksterkte van het beton. Ten aanzien van deze aanpak zijn een 

tweetal kanttekeningen te maken: (i) de bepaling van de maximale hoofdtrekspanning 

gebeurt minder nauwkeurig door het gebruik van een aantal vereenvoudigingen en (ii) 

de aanwezige treksterkte zal worden beïnvloed door hoofddrukspanningen die aanwezig 

zijn (‘twee-assig gedrag’) en door een ‘statistisch afmetingeneffect’. Met dit laatste 

wordt het fenomeen bedoeld dat de kans op het aantreffen van een plek met een lagere 

treksterkte groter is naarmate het gebied met hoge trekspanningen groter is. Het eerste 

deel van het onderzoek richt zich daarom op de vraag hoe deze aspecten de nauwkeu-

righeid van de voorspelde weerstand beïnvloeden.  

Om het ontstaan van afschuiftrekscheuren te kunnen onderzoeken is een database sa-

mengesteld met relevante experimenten uit de literatuur. Voor experimenten zonder 

buigscheuren zijn de hoofdtrekspanningen bepaald met lineair-elastische eindige-ele-

mentenanalyses. Onderzocht is hoe nauwkeurig de numeriek gevonden maximale 

hoofdtrekspanning analytisch te benaderen is en hoe deze nauwkeurigheid wordt beïn-

vloed wanneer gangbare vereenvoudigingen worden gebruikt. Verder is onderzocht of 
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de experimenteel gevonden weerstand tegen afschuiftrekbreuk nauwkeuriger te voor-

spellen is wanneer het bi-axiale gedrag en het statistische afmetingeneffect worden 

beschouwd. Voor dit deel van het onderzoek zijn alleen de experimenten zonder buig-

scheuren beschouwd. Hierdoor wordt een mogelijke invloed van de buigscheuren aan 

de rand van het gebied zonder buigscheuren op de aangenomen lineair elastische span-

ningsverdeling in dit gebied uitgesloten. Bovendien is onderzocht of het ook voor de 

experimenten met buigscheuren mogelijk is om de weerstand tegen afschuiftrekscheu-

ren nauwkeurig te voorspellen wanneer de hoofdtrekspanningen worden bepaald met 

een lineair elastisch berekening en wordt aangenomen dat deze niet worden beïnvloed 

door de nabijheid van buigscheuren. Op basis van de opgedane inzichten zijn analytisch 

modellen voorgesteld die het mogelijk maken om de weerstand tegen het ontstaan van 

afschuiftrekscheuren nauwkeurig te bepalen: model A1 voor liggers zonder buigscheu-

ren en model A2 voor liggers met buigscheuren.  

Uit de lineair-elastische eindige-elementenanalyses van experimenten zonder buig-

scheuren volgt dat afschuiftrekscheuren ontstaan bij een maximale hoofdtrekspanning 

die lager is dan de axiale treksterkte. Het beschouwen van de bi-axiale treksterkte of het 

statistische afmetingeneffect afzonderlijk resulteert niet in consistentere voorspellingen. 

Wanneer beide fenomenen worden gecombineerd kan de weerstand tegen afschuiftrek-

breuk echter zeer nauwkeurig worden voorspeld. Een andere belangrijke bevinding is 

dat de hoofdtrekspanningen in de gebieden zonder buigscheuren lager zijn, en minder 

nauwkeurig te voorspellen, wanneer buigscheuren aanwezig zijn aan de rand van dit 

gebied. Desalniettemin is aangetoond dat zowel voor liggers met, als voor liggers zonder 

buigscheuren, de weerstand tegen afschuiftrekbreuk nauwkeurig kan worden bepaald 

met de voorgestelde analytische modellen. Voor liggers met buigscheuren aan de rand 

van het gebied zonder buigscheuren, kan de overschatting van de maximale hoofdtrek-

spanning worden gecompenseerd door het aannemen van een hogere treksterkte van het 

lijf. Uiteindelijk zijn voor zowel model A1 als voor model A2 rekenwaarden afgeleid 

die horen bij een aangenomen faalkans. Door uit te gaan van de meest conservatieve 

waarde van beide modellen, is het mogelijk om in de praktijk slechts één model te han-

teren voor de rekenwaarde. Dit model, aangeduid als model A, kan dus worden gebruikt 

ongeacht of buigscheuren aanwezigheid zijn. 

Wanneer voldoende beugelwapening aanwezig is, zal de weerstand na het ontstaan van 

een afschuiftrekscheur hoger zijn dan de weerstand tegen afschuiftrekbreuk. De theore-

tische modellen voor liggers met beugels, zoals gebruikt in de vigerende ontwerp en 

beoordelingsrichtlijnen, zijn niet bedoeld voor gebieden zonder buigscheuren. Deze mo-

dellen houden namelijk geen rekening met (i) de lage rek in langsrichting, die de 

bijdrage van de scheurwrijving verhoogt en (ii) de afdracht van schuifspanningen in de 

niet-gescheurde flenzen. Het tweede deel van het onderzoek richt zich daarom op de 
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vraag hoe de dwarskracht in deze gebieden wordt overgedragen en wat de parameters 

en condities zijn die deze overdracht beïnvloeden.  

Het vakwerkmodel met variabele hoek, zoals gebruikt in de Eurocode, blijkt de dwars-

krachtweerstand van voorgespannen liggers in gebieden zonder buigscheuren sterk te 

onderschatten, zeker wanneer weinig beugelwapening aanwezig is. Daarom is als on-

derdeel van dit onderzoek een analytisch model ontwikkeld om deze weerstand 

nauwkeuriger te kunnen bepalen. Dit model wordt aangeduid als model B1. Voor dit 

model is de ‘Modified Compression Field Theory’ (MCFT) als basis genomen, omdat 

deze ook geschikt is om de dwarskrachtweerstand te bepalen voor lage hoeveelheden 

dwarswapening. Daarnaast is de MCFT in staat rekening te houden met de lage rek in 

langsrichting die typerend is voor gebieden zonder buigscheuren. De eerste stap in de 

ontwikkeling van het model is het onderzoeken van de maximale schuifspanning hal-

verwege de liggerhoogte. Dit is specifiek gedaan voor gebieden zonder buigscheuren 

door uit te gaan van een rek in langsrichting van nul. Voor een reeks van parameters, die 

representatief is voor de bestaande bruggen en viaducten, is de maximale schuifspanning 

bepaald met de MCFT. Daarna is het verloop van de schuifspanningen over de afschuif-

trekscheur onderzocht door gebruik te maken van een niet-lineair eindige-

elementenprogramma voor doorsneden dat is gebaseerd op de MCFT. Dit programma is 

vervolgens ook gebruikt om het verloop van de schuifspanningen in de niet-gescheurde 

flenzen te onderzoeken. Uiteindelijk is een analytisch model afgeleid waarin alle para-

meters die de dwarskrachtweerstand significant beïnvloeden zijn opgenomen. Om de 

nauwkeurigheid van het voorgestelde model te kunnen evalueren is een database samen-

gesteld met relevante experimenten uit de literatuur. 

De resultaten van de parameterstudie met de MCFT tonen aan dat voor gebieden zonder 

buigscheuren de dwarskrachtweerstand in het lijf maximaal is (i) wanneer de scheur-

wrijving begint af te nemen door het openen van de scheur of (ii) wanneer het beton op 

het punt staat te verbrijzelen. De maximale dwarskrachtweerstand die volgt uit de meer 

complexe MCFT berekeningen zijn benaderd met eenvoudige formules die worden ge-

bruikt in het voorgestelde analytische model. Deze eenvoudige formules resulteren in 

vrijwel dezelfde voorspelde weerstand als de weerstand die volgt uit de MCFT. De maxi-

male schuifspanning op een hoogte halverwege de ligger, blijkt representatief te zijn 

voor de weerstand over de afschuiftrekscheur. Op het moment dat het lijf bezwijkt, zal 

ook een deel van de dwarskracht worden overgedragen door de niet-gescheurde delen, 

met name de flenzen. In het voorgestelde model B1, wordt de totale weerstand bepaald 

door de weerstand halverwege de liggerhoogte te vermenigvuldigen met de gemiddelde 

liggerbreedte en de effectieve dwarskrachthoogte. Voor de effectieve dwarskrachthoogte 

is een eenvoudige formule afgeleid. Deze formule leidt tot nagenoeg dezelfde verhou-

dingen tussen de maximale schuifspanning halverwege de ligger en de totale 
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dwarskrachtweerstand als de verhoudingen die worden gevonden met het geavanceerde 

doorsnede-programma gebaseerd op de MCFT. Uiteindelijk is voor de relevante expe-

rimenten van de database de experimenteel gevonden weerstand vergeleken met de 

voorspelde weerstand volgens model B1. Hieruit blijkt dat model B1 de dwarskracht-

weerstand consistent kan bepalen. Ook voor model B1 is een ontwerpwaarde afgeleid 

horende bij een aangenomen faalkans. 

In het voorgestelde model B1 wordt de weerstand bepaald op basis van bijdrages van 

scheurwrijving en beugels. Het is ook mogelijk deze weerstand rekenkundig geheel toe 

te schrijven aan de beugels. Hoewel deze formulering minder goed aansluit bij het fysi-

sche gedrag, is de formulering toch aantrekkelijk omdat deze aansluit bij het momenteel 

gebruikte vakwerkmodel. Dit model is in dit proefschrift afgeleid als alternatief voor het 

model B1 en wordt aangeduid als ‘het vakwerkmodel aangepast voor gebieden zonder 

buigscheuren’ of kortweg ‘model B2’.  

Het belangrijkste resultaat van het onderzoek is dat nieuwe analytische modellen be-

schikbaar zijn gekomen die de dwarskrachtweerstand in gebieden zonder buigscheuren 

nauwkeurig kunnen voorspellen. Met het gebruik van deze modellen is het mogelijk om 

gefundeerde beslissingen te nemen over het kunnen handhaven, of moeten versterken of 

vervangen, van voorgespannen bruggen en viaducten. Een ander belangrijk resultaat is 

dat de modellen minder conservatief zijn dan de modellen die momenteel worden ge-

bruikt. Bij gebruik van de huidige modellen is het voor ongeveer 75 voorgespannen 

bruggen in het Nederlandse Hoofdwegennet niet mogelijk om voldoende dwarskracht-

weerststand aan te tonen in de gebieden zonder buigscheuren. Wanneer echter de 

modellen worden gebruikt zoals voorgesteld in dit proefschrift, zal het alsnog mogelijk 

zijn om voldoende dwarskrachtweerstand aan te tonen voor ongeveer 65 van deze 75 

bruggen.  
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1 
Introduction 

Prestressed girders will fail in shear when the applied shear force exceeds the shear re-

sistance. A distinction can be made between shear failure in regions with and without 

flexural cracks. This is explained in Figure 1.1 which shows a single span prestressed 

girder with an I-shaped cross-section loaded by two point loads. The bending moment 

is maximum between the two point loads and causes a tensile force in the bottom flange. 

This tensile force causes flexural cracks, starting from the bottom flange. The flexural 

cracks between the point loads are vertical because of the absence of shear force. Be-

tween the point loads and the supports, the girder is exposed to both moment and shear 

force. In the parts of the girder that are exposed to a substantial moment, flexural cracks 

develop in the bottom flange and will, due to the presence of a shear force, extend to 

diagonal cracks in the web. These cracks are defined as flexural shear cracks. The parts 

of the girder that are less exposed to the moment caused by the point loads, will remain 

free of flexural cracks, because prestress is present that reduces the tensile force in the 

bottom flange. The high shear force in these parts causes high principal tensile stresses 

in the web that can cause diagonal cracks in the web. These cracks are defined as diag-

onal tension cracks. Eventually, a girder can fail in shear in the region with or without 

flexural cracks. In this dissertation shear failure of prestressed girders in regions without 

flexural cracks is investigated. 

 

Figure 1.1. Regions of a prestressed girder with and without flexural cracks  

The shear resistance in regions without flexural cracks is different than in regions with 

flexural cracks. There are two reasons for this: the first reason is that the stress condi-

tions that cause diagonal tension cracking are different from the stress conditions that 

lead to flexural shear cracking; the second reason is that the shear transfer after diagonal 

cracking differs between both regions. Both reasons will be further explained in this 

dissertation.  
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The first topic of this dissertation concerns diagonal tension cracking. For prestressed 

girders without stirrups, the resistance to diagonal tension cracking is commonly con-

sidered as the shear resistance. This topic is relevant for prestressed girders that contain 

nonconforming stirrups or for girders with a low amount of shear reinforcement. The 

second topic of this dissertation concerns the shear resistance of prestressed girders with 

stirrups in regions without flexural cracks. This topic relates to prestressed girders that 

contain an amount of shear reinforcement which is sufficient to resist additional shear 

force after diagonal tension cracking.  

Section 1.1 describes the relevance and the objectives of this research. Sections 1.2 and 

1.3 describe the models that are currently used to assess shear resistance in regions with-

out flexural cracks for existing bridges in the Dutch Highway network. For each model 

it is evaluated whether the model is indeed suitable to determine the shear resistance in 

regions without flexural cracks. The models for girders without stirrups are described in 

Section 1.2 and the models for girders with stirrups in Section 1.3. Section 1.4 describes 

the knowledge gaps and research questions that are found from the discussion of the 

currently used models. Section 1.5 explains the methodology used for the research and 

Section 1.6 provides an outline of the dissertation. 

1.1 Research relevance and objectives  

In the middle of the last century, the first prestressed structures were built in the Neth-

erlands. The principle of prestressing enabled structural engineers to design longer and 

more slender bridges. The usage of prestressing has become more common since then. 

Up-to-date, about 3300 bridges in the Dutch Highway network are prestressed (Klatter 

2019).  

Bridges and viaducts in Dutch Highway network have been used more intensively by 

traffic in recent decades. As a result, the current traffic loads are higher than that taken 

into account during the design. This is an important reason for Rijkswaterstaat, which is 

part of the Dutch Ministry of Infrastructure and Water Management, to assess the struc-

tural safety of its existing bridges and viaducts. A second reason to carry out this 

assessment is the evolution of the theoretical models used in the design codes to deter-

mine the shear resistance.  

Preliminary assessments (RWS 2018, De Boer et al. 2016, Kamp 2017a, b, c) showed 

that it is demanding to demonstrate sufficient shear resistance for a group of existing 

bridges that contain girders with flanges and a thin web, that were designed before the 

design code of 1974 (NEN 1974) was enforced. The introduction of NEN 1974 has been 

a major change for the design practice, as since then a minimum amount of stirrups was 
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prescribed. According to a recent inventory, 630 prestressed bridges in the Dutch High-

way network contain girders with flanges and a thin web and were designed before the 

design code of 1974 was enforced. These 630 bridges concern 80 post-tensioned bulb-

T-girders, 460 pre-tensioned precast girders and 90 post-tensioned box girder bridges 

(Figure 1.2). For 107 (bulb-T-girders and precast girders) of these 630 older bridges a 

preliminary assessment has been carried out using the guideline for the assessment of 

existing structures issued by Rijkswaterstaat (RWS 2013). For 21 of these 107 bridges, 

it was not possible to demonstrate sufficient shear resistance. The shear resistance was 

found insufficient in the region with flexural cracks for 6 bridges and in the regions 

without flexural cracks for 15 bridges. For the entire group of 540 older bulb-T-girders 

and precast girders, it can be expected, based on extrapolation, that for approximately 

75 of these bridges it will not be possible to demonstrate sufficient shear resistance in 

the regions without flexural cracks.  

 

Figure 1.2. Cross-sections of (from left to right) pre-tensioned precast girders with an in situ slab, 

post-tensioned bulb-T girders and box girder bridges   

To be able to make substantiated decisions about the structural safety of bridges there is 

a need for models that can accurately determine the shear resistance in regions without 

flexural cracks. This concerns both a model to determine the resistance to diagonal ten-

sion cracking and, for prestressed girders with stirrups, a model for the shear resistance 

specifically intended for regions without flexural cracks.  

Many assumptions have been made in developing the currently used model for diagonal 

tension cracking (Section 1.2). These assumptions eventually have resulted in a simple 

model that is easy to use in engineering practice. Because the large number of bridges 

for which it is demanding to demonstrate sufficient shear resistance in the regions with-

out flexural cracks, there is a need to understand how the assumptions affect the 

accuracy of the predicted resistance and whether refinements are possible to improve 

the accuracy of the predictions.  

The currently used models for the shear resistance of girders with stirrups (Section 1.3) 

are not intended for regions without flexural cracks. Conditions for these regions, such 

as a low longitudinal strain and shear transfer by the uncracked flanges, are not consid-

ered by the currently used models. There is a need to understand how these conditions 

affect the shear resistance. 
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Based on these considerations, the objectives of this dissertation are: 

1. To understand how the shear force is transferred in regions without flexural cracks 

and determine the major parameters and conditions that affects the shear transfer.  

2. To derive a model that is capable of accurately determining the resistance to diagonal 

tension cracking.  

3. To derive a model that is capable of accurately determining the shear resistance of 

girders with stirrups in regions without flexural cracks. 

To be able to apply the models in engineering practice, it is not only the objective to 

derive models for the mean resistance, but also for the design value of the resistance that 

corresponds to an assumed failure probability. Eventually, it should be possible to make 

substantiated decisions regarding maintaining, strengthening or renewal of prestressed 

bridges based on the proposed models. 

1.2 Shear resistance of prestressed girders without stirrups  

All existing prestressed bridges in the Dutch Highway network contain shear reinforce-

ment. However, not all shear reinforcement is considered as effective. This ineffective 

shear reinforcement does not fulfil the design requirements and is defined as ‘noncon-

forming shear reinforcement’. Examples of nonconforming shear reinforcement lay-

outs are shown in Figure 1.3.  

 

Figure 1.3. Examples of shear reinforcement layouts that are considered ineffective   

The bulb-T beam, shown in the left of Figure 1.3, contains shear reinforcement with 

kinked legs that could possibly burst out. The inverted T-beam, shown in the right of 

Figure 1.3, contains shear reinforcement insufficiently anchored in the tensile zone. In 

preliminary assessments, the contribution of this nonconforming shear reinforcement to 

the shear resistance is neglected, because it is unknown to what extend the stirrups con-

tribute to the shear resistance. Therefore, the girders are considered as members without 

stirrups. For prestressed girders without stirrups, the resistance to diagonal tension 
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cracking is considered as the shear resistance, as will be explained in Chapter 2. There-

fore, the resistance to diagonal tension cracking can be used to determine the shear 

resistance of prestressed girders with nonconforming shear reinforcement. The re-

sistance to diagonal tension cracking is also governing for girders with an amount of 

shear reinforcement that is so low that no additional shear can be resisted after diagonal 

tension cracking.  

According to the Eurocode (NEN 2005) the principal tensile stresses of a single span 

prestressed member without stirrups, should be limited by the uniaxial tensile strength 

of concrete for regions which are uncracked in bending. The guideline for the assess-

ment of existing structures (RWS 2013) extends the application of this requirement from 

‘single span members’ to ‘structures’. This implies that also bridges that contain contin-

uously supported girders can be assessed using this requirement and even complete 

bridges, simply or continuously supported. The requirement is based on the principle 

that concrete cracks at a load that causes a maximum principal tensile stress equal to the 

uniaxial tensile strength of concrete. It is assumed that the principal tensile stresses can 

be governing anywhere in the web. Although this principle is simple and might seem 

indisputable, two remarks can be made to this approach.  

The first remark concerns that the maximum principal tension stress is determined less 

accurately due to the use of a number of simplifications. As a simplification the principal 

stresses are calculated from the cross sectional forces assuming that the Euler Bernoulli 

girder theory is valid. Also, the presence of vertical stresses is neglected for simplicity. 

Both simplifications are questionable for cross-sections that are close to the support or 

a concentrated load. However, these cross-sections usually turn out to be critical in as-

sessments. Another relevant simplification that could affect the accuracy of the predicted 

maximum principal tensile stress, is the assumption that the principal tensile stresses in 

the region free of flexural cracks are not affected by the flexural crack at the edge of this 

region.  

The second remark concerns the suitability of the uniaxial concrete tensile strength as 

limitation for the maximum principal tensile stress. From tests on bi-axially loaded small 

membranes, it is know that the tensile strength reduces when the lateral principal com-

pressive stresses increase. This is called bi-axial behaviour and is for instance 

investigated by Kupfer et al. (1969). Moreover, the tensile strength was found to depend 

on the size of the region subjected to high tensile stresses (Collins et al. 1997). If the 

size of this region increases, the member cracks at lower principal tensile stresses. In 

this dissertation this phenomenon is defined as the statistical size effect. The actual ten-

sile strength will be affected by the presence of principal compressive stresses and the 

statistical size effect. 
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1.3 Shear resistance of prestressed girders with stirrups  

A part of the existing bridges in the Dutch Highway network contain stirrups that do 

fulfil the design requirements which are thus considered as effective. According to the 

currently used guideline for the assessment of existing structures (RWS 2013) three 

models can be used to determine the shear resistance for girders with stirrups in regions 

without flexural cracks. The highest of the predicted resistances is considered as gov-

erning. The three models are: 

1. The model for the resistance to diagonal tension cracking (RWS 2013, NEN 2005). 

2. The model for the shear resistance in regions with flexural cracks (RWS 2013). 

3. The variable angle truss model according to the Eurocode (NEN 2005). 

The first model can only be applied to determine the shear resistance in regions without 

flexural cracks. The second and third model are applied for regions both with and with-

out flexural cracks. For each model it will be evaluated below whether it is suitable to 

determine the shear resistance in regions without flexural cracks.  

The first model that could be applied to determine the shear resistance in regions without 

flexural cracks, is the model that determines the resistance to diagonal tension cracking. 

This approach is based on the principle that the resistance of girders with stirrups is at 

least the resistance of the girders neglecting the presence of stirrups. As existing bridges 

in the Dutch Highway network contain a low amount of shear reinforcement, it is indeed 

possible that diagonal tension cracking is governing for the resistance. This is the case 

if the amount of shear reinforcement is so low that the highest resistance is found at 

diagonal tension cracking. However, for higher amounts of shear reinforcement, addi-

tional shear force can be resisted after diagonal tension cracking. For these bridges, the 

resistance will be underestimated if the ultimate resistance is equalised to the resistance 

to diagonal tension cracking. Therefore, there is also a need to develop a model that is 

capable to determine the shear resistance in the regions without flexural cracks consid-

ering the presence of stirrups. The suitability of the currently used model to determine 

the resistance to diagonal tension cracking is already discussed in Section 1.2. 

The second possible approach is to use the resistance model derived for regions with 

flexural cracks (RWS 2013). The model consists of a contribution of stirrups and a con-

tribution of concrete. The use of this model for the regions without flexural cracks is 

based on the assumption that the resistance in regions without flexural cracks is higher 

than that in regions with flexural cracks. This is attributed to a higher contribution of the 

concrete to the shear resistance (Leonhardt et al. 1973). This assumption is further dis-

cussed in this dissertation (Section 5.1.7). The concrete contribution in the model 

consists of two parts: (i) a part that causes decompression of the most tensioned flange 
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and (ii) a part empirically derived for flexural shear cracking of reinforced concrete 

girders without stirrups. The model is thus derived to determine the resistance along a 

flexural shear crack. Because no flexural shear cracks are present in regions without 

flexural cracks the model is fictional for regions without flexural cracks. The model is 

not further considered in this dissertation as it does not contribute to a better understand-

ing of transfer of the shear force in regions without flexural cracks. 

The third model that could be applied to determine the shear resistance in regions with-

out flexural cracks is the variable angle truss model. This model is a lower bound 

approach based on the theory of plasticity (Walraven 2002). According to the theory of 

plasticity the largest resistance is found when the stirrups yield and the concrete struts 

crush at the same time. It is noted that the effective strength of the concrete struts is 

calibrated using experiments with higher amounts of shear reinforcement. For lower 

amounts of shear reinforcement failure due to crushing of the struts may not be govern-

ing. Instead failure of the struts due to sliding along the (initial) crack may be governing 

(Nielsen et al. 2011). For the later mechanism, calibration on the strength of struts has 

not been reported in literature. Moreover, as the strength of struts is also not calibrated 

for the conditions present in regions without flexural cracks, it is questionable whether 

the variable angle truss model is suitable to predict the shear resistance in these regions.  

1.4 Knowledge gaps and research questions 

The objectives of this dissertation are (i) to develop a model that is capable of accurately 

determining the resistance to diagonal tension cracking and (ii) to develop a model that 

is capable of accurately determining the shear resistance of girders with stirrups in re-

gions without flexural cracks. 

Based on the description and evaluation of the models currently used (Section 1.2), the 

following knowledge gaps are identified for diagonal tension cracking: 

1. From tests on bi-axially loaded small membranes, it is known that the tensile strength 

is lower if a compressive stress is present perpendicular to the tensile stress. Models 

that describe this behaviour are available in literature (Kupfer et al. 1969). Moreover, 

if the size of a region subjected to tensile stresses increases, the member cracks at a 

lower principal tensile stress (Collins et al. 1997). For both phenomena it is unknown 

however, whether the relations as described in literature are directly applicable for 

the tensile strength of the web which should be assumed to predict diagonal tension 

cracking of girders. 

2. The stresses in the girder around the supports and concentrated loads will be dis-

turbed, therefore the Euler Bernoulli girder theory is not valid in these regions. 

Moreover, the presence of vertical stresses affect the principal tensile stresses around 
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the supports and concentrated loads. It is unknown how these phenomena affect the 

maximum principal tensile stress. 

3. Flexural cracks on the edge of regions without flexural cracks could affect the stress 

distribution in the regions without flexural cracks. Currently the maximum principal 

tensile stress in the regions without flexural cracks is determined by means of a linear 

elastic calculation and a possible influence of the vicinity of flexural cracks is not 

considered.  

The identified knowledge gaps can respectively be reformulated into the following re-

search questions: 

A. Does the accuracy of the predictions increase if bi-axial behaviour and statistical size 

effect are taken into account? 

B. How are the principal stresses distributed around the supports and the concentrated 

loads and is it possible to determine the maximum principal tensile stress using the 

Euler-Bernoulli girder theory and by neglecting the vertical stresses? 

C. How does the presence of a flexural crack at the edge of the region without flexural 

cracks affect the distribution of principal tensile stresses in this region? 

Based on the description and evaluation of the currently used models for the shear re-

sistance in regions without flexural cracks of girders with stirrups (Section 1.3), the 

following knowledge gaps are identified: 

4. Besides crushing of the concrete struts, crack sliding along the initial crack appears 

to be a possible failure mode. An example is shown in Figure 1.4, in which failure 

occurs due to sliding along the major diagonal tension crack, without crushing of the 

concrete. It is unclear to what extent the failure mode affects the shear resistance in 

regions without flexural cracks. None of the currently used resistance models (Sec-

tion 1.3) distinguish these shear failure modes and the associated shear resistances.  

5. In regions without flexural cracks, the longitudinal strains in the web will be negative 

for almost the entire region. If the longitudinal strains decrease, also the crack widths 

will decrease. Due to these smaller crack widths, higher shear stresses can be trans-

ferred in the cracks by aggregate interlock. This makes it plausible that, in regions 

without flexural cracks, the web is able to resist more shear force than in regions with 

flexural cracks. It is unclear to what extent the shear resistance is affected by the low 

longitudinal strain. None of the currently used resistance models (Section 1.3) con-

sider the effect of the longitudinal strain on the shear resistance. It is noted that, when 

the longitudinal strain in the web is negative, diagonal tension cracks can still occur. 

This is because it is not the longitudinal stresses associated with the longitudinal 
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strains that determine the occurrence of a diagonal tension crack, but the principal 

tensile stresses, which are also largely affected by the shear stresses. 

 

Figure 1.4. Crack patterns for experiment LB10 just before failure (Xie 2009)  

6. In regions without flexural cracks, a part of the shear force will be transferred by the 

uncracked concrete (mainly at the flanges). This is shown in Figure 1.4 in which the 

flanges above and below the critical diagonal tension crack remain uncracked at a 

load just before failure. It is unclear to what extent the uncracked concrete above and 

below the diagonal tension crack contributes to the transfer of shear force in regions 

without flexural cracks. None of the currently used resistance models (Section 1.3) 

consider this contribution explicitly.  

Again, the identified knowledge gaps can respectively be reformulated into the follow-

ing research questions: 

D. What are the possible shear failure modes for prestressed girders with stirrups in the 

regions without flexural cracks and is it possible to relate the shear resistance to the 

potential failure modes?  

E. How does the low longitudinal strain, that is associated with regions without flexural 

cracks, affect the shear force transfer mechanism along the diagonal tension crack?  

F. How can the contribution of the shear force transferred by the uncracked flanges be 

determined and how is this contribution affected by the cross sectional properties? 

1.5 Research methodology 

Two topics are considered in this dissertation. These concern the resistance to diagonal 

tension cracking (first topic) and the shear resistance of prestressed girders with stirrups 

in regions without flexural cracks (second topic). With respect to the first topic, the re-

sistance to diagonal tension cracking is investigated using models that assume a linear 

elastic stress distribution. With respect to the second topic, the investigation of the shear 
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resistance of prestressed girders with stirrups is investigated using models that consider 

the non-linear elastic behaviour of the reinforcement steel, prestressing steel and con-

crete. An identical methodology regarding literature study is used for both topics: 

 An overview of relevant models that predict the shear resistance is compiled and sub-

sequently these models are mutually compared.  

 An evaluation is made regarding the following questions: (i) to what extend the mod-

els are suitable for determining the shear resistance in the regions without flexural 

cracks and (ii) to what extend the research questions could be answered based on the 

literature study. 

 The results of the literature review are used to determine the approach to develop a 

new model.  

 A database of relevant experiments described in literature is compiled, which even-

tually is used to evaluate the accuracy of the proposed model. 

The following methodology is used to study the resistance to diagonal tension cracking 

(first topic): 

 The effect of bi-axial behaviour and statistical size effect on the strength of the web 

are investigated using equations found in literature derived for membrane elements, 

to predict diagonal tension cracking in girders. These models are used in this study to 

predict the shear behaviour of girders. To ensure that these phenomena can be inves-

tigated without any disturbance caused by the presence of flexural cracks, the 

evaluation is carried out for experiments on girders free of flexural cracks. 

 The disturbed areas around the concentrated loads (supports and externally applied 

loads) are analysed by carrying out linear elastic finite element analyses. It is assumed 

that these analyses predict the distribution of principal tensile stresses perfectly. Then, 

it is investigated how the maximum principal tensile stresses according to the linear 

elastic finite element analyses can be approached by using the Euler-Bernoulli girder 

theory. Also, for this purpose only experiments without flexural cracks are used, to 

ensure that the principal stress distribution can be investigated without any disturb-

ance caused by the presence of flexural cracks. 

 The effect of flexural cracks is investigated using experiments on girders with flexural 

cracks. It is assumed that the other phenomena are sufficiently investigated based on 

experiments without flexural cracks and that the deviations are only due to the pres-

ence of flexural cracks. It is investigated whether it is possible to accurately predict 

the resistance to diagonal tension cracking using the assumption that the principal 

stresses are not disturbed in the vicinity of flexural cracks.  
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The shear resistance of prestressed girders with stirrups in regions without flexural 

cracks (second topic) is investigated in two steps. Firstly, the resistance at the mid-depth 

of the web by aggregate interlock and stirrups is determined for regions without flexural 

cracks. Secondly, the distribution of shear transfer mechanism along the diagonal ten-

sion crack and through the flanges is investigated. 

The model that is proposed for the shear resistance of the web at mid-depth is derived 

using the Modified Compression Field Theory (MCFT, Vecchio et al. 1986). The MCFT 

is used to derive the resistance per failure mode for membranes for a strain condition 

associated with the regions of a girder without flexural cracks. The resistances per fail-

ure mode are derived for certain combinations of parameters. The ranges of these 

parameters are representative for the intended application of the model (Table 1.1). For 

the proposed model, the shear resistance at mid-depth of the web is based on the failure 

modes and associated resistances, derived for the membrane elements.  

Table 1.1. Main parameters for bridges with a web and flanges designed before 1974 

Parameter minimum maximum  

Shear reinforcement ratio (ρw) 0.04% 0.70%  

Mean value of concrete cylinder compressive strength (fcm) 43 84 N/mm2 

Mean yield strength of shear reinforcing (fywm) 280 560 N/mm2 

Stress in concrete in longitudinal direction  

at centre of gravity (σcp) 
-10.7 -2.4 N/mm2 

Ratio stress in concrete in longitudinal direction 

 at centre of gravity and mean value of concrete  

cylinder compressive strength (σcp / fcm) 

-0.20 -0.04 - 

Maximum aggregate size (dmax) 31.5 mm 

The distribution of shear transfer mechanism along the cracks and through the flanges 

is further analysed using a nonlinear sectional analysis programme for girders based on 

the MCFT. It is investigated whether the resistance at mid-depth is representative for the 

resistance along the crack. Moreover, it is investigated what parameters are decisive for 

the contribution of the uncracked concrete to the total shear resistance. A sensitivity 

analysis is carried out to determine the effect of the cross sectional properties on the 

shear resistance contribution of the uncracked concrete. The results are used to derive a 

model for the shear resistance of a prestressed girder.  

Design equations for practice are determined for both models (first and second topic), 

based on the statistical properties of the test-to-predicted shear resistance ratio. These 

design values are determined using the approach described in Annex D7.3 of NEN 

(2011). 

The proposed models for both the first and the second topic are intended to determine 

shear resistance for prestressed bridges, consisting of a web and flanges, for the regions 
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without flexural cracks. The models are derived considering explicitly the ranges of the 

main parameters that are representative for the bridges in the Dutch Highway network. 

In Table 1.1 the ranges of parameters are listed that are assumed to significantly affect 

the resistance of one or both proposed models. The table is based on data inventories of 

9 pre-tensioned precast girders, 22 post-tensioned bulb-T girders and 19 box girder 

bridges. All these bridges are designed with a design code prior to the design code of 

1974 (NEN 1974) and contain girders with a web and flanges. If all bridges would have 

been inventoried, it is likely a wider range of parameters would have been found. Nev-

ertheless, the table can be used as an indication of the range of parameters for which the 

models are intended. The derived models are intended for both pre-tensioned and post-

tensioned girders, girders with straight or curved tendon profiles and both simply sup-

ported and continuously supported girders. The models are derived for normal weight 

concrete. 

1.6 Outline of the dissertation 

The research is divided in two parts (Figure 1.5). The first part of the dissertation con-

cerns shear resistance of prestressed girders to diagonal tension cracking regardless of 

whether stirrups are present (Chapters 2–4). The second part of the dissertation concerns 

shear resistance of prestressed girders with stirrups after diagonal tension cracking 

(Chapters 5–8). 

      

Figure 1.5. Overview of chapters 

It is possible that the resistance to diagonal tension cracking is higher than the resistance 

after diagonal tension cracking. Therefore, the resistance to diagonal tension cracking 
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can also be governing for the shear resistance of prestressed girders with a low shear 

reinforcement ratio, the box around the prestressed girders with stirrups is also drawn 

around chapters 2 to 4. Figure 1.5 further shows which of the chapters concern the liter-

ature review, the analyses and the proposed models. 

Chapter 2 summarizes relevant literature regarding the determination of the resistance 

to diagonal tension cracking. Also, an overview of experiments available from literature 

is provided. These experiments are eventually used for the validation of the proposed 

model. Chapter 3 investigates how the tensile strength of the web is affected by the 

principal compressive stresses (bi-axial behaviour) and by the size of the region sub-

jected to high principal tensile stresses (statistical size effect). Moreover, this chapter 

investigates how the maximum principal tensile stress around the concentrated loads 

(disturbed areas) can be approximated using the Euler-Bernoulli girder theory and how 

the distribution of the principal tensile stresses in the region without flexural cracks is 

affected by the presence of flexural cracks on the edge of this region. Chapter 4 describes 

the proposed analytical models for diagonal tension cracking (Table 1.2). These concern 

model A1, for girders that remain free of flexural cracks (Section 4.1) and model A2, for 

girders in which, beside the regions without flexural cracks, also regions with flexural 

cracks are present (Section 4.2). For both models also the design value is derived for a 

target reliability. As these design values are approximately the same for both models, it 

is proposed to use just one model for engineering practice, referred to as model A, re-

gardless of whether flexural cracks are present (Section 4.3, shown bold in Table 1.2). 

Table 1.2 Overview of newly proposed analytical models 

   Section 

 

Main  

equation(s) 

Resistance to 

diagonal  ten-

sion cracking 

Model A1: Proposed model for 

girders without flexural cracks 

Mean value 4.1 4.1 to 4.4 

Model A2: Proposed model for 

girders with flexural cracks 

Mean value 4.2 4.2 to 4.5 

Model A: Proposed model (regardless 

of whether flexural cracks are present) 

Design value 4.3 4.9 or 4.10 

Resistance af-

ter diagonal 

tension crack-

ing (for girders 

with stirrups) 

Model B1: Proposed model 

 

Mean value 8.3 8.6 to 8.8 

Design value 8.5 8.18 to 8.20 

Model B2: Alternative model, variable 

angle truss model modified for regions 

without flexural cracks 

Mean value 8.6 8.21 to 8.24 

Design value 8.6 8.25 

Chapter 5 summarizes relevant literature regarding the shear resistance of prestressed 

girders with stirrups in regions without flexural cracks. Also, an overview of available 

experiments from literature of girders with stirrups that failed in shear is provided. These 

experiments are eventually used for the validation of the proposed model. Chapter 6 



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 30PDF page: 30PDF page: 30PDF page: 30

14 

derives equations for the shear resistance at the mid-depth of the web for regions without 

flexural cracks. These equations are based on calculations of the resistances of mem-

brane elements for a strain condition associated with regions without flexural cracks. 

Chapter 7 investigates the distribution of aggregate interlock and stirrup stresses along 

the diagonal tension crack. It investigates whether the resistance at mid-depth is repre-

sentative for the resistance along the crack. Also, the contribution of the uncracked 

concrete to the total shear resistance is investigated. Chapter 8 describes the proposed 

analytical model for shear resistance of girders with stirrups in regions without flexural 

cracks, referred to as ‘model B1’ (Table 1.2). Also, the application conditions are de-

scribed and the minimum and maximum shear resistances. Moreover, the accuracy of 

model B1 is evaluated, using test data from the database on shear failure for girders with 

stirrups. Furthermore, a design equation for practice is determined for model B1 for a 

target reliability (shown bold in Table 1.2). At the end of this chapter a model is derived 

that could be used as an alternative for the proposed model. In this model the shear 

resistance is totally ascribed to the stirrups. Although this way of formulating does not 

correspond to physical behaviour, the formulation is nevertheless attractive because it is 

also applied in the variable angle truss model which is currently used in structural as-

sessments. This alternative model is referred to as ‘variable angle truss model modified 

for regions without flexural cracks’’ or simply ‘model B2’ (Table 1.2). 

Chapter 9 summarizes the results of this dissertation, gives recommendations regarding 

the use of the models in practice and for future research.  
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PART 1:  RESISTANCE TO DIAGONAL TENSION CRACKING 
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2 
Literature review on diagonal tension cracking 

This chapter describes a literature review on diagonal tension cracking. Section 2.1 sum-

marizes relevant literature regarding the determination of the resistance to diagonal 

tension cracking. Section 2.2 provides an overview of available experiments in literature 

with diagonal tension cracks. Section 2.3 summarizes the literature findings and de-

scribes the approach that will be used to eventually propose a model.  

2.1 Resistance to diagonal tension cracking 

Section 2.1.1 gives a definition for diagonal tension cracking and explains why diagonal 

tension crack is considered as measure for the ultimate capacity of girders without stir-

rups. Moreover, an overview of the models that will be further considered in this chapter 

is given. Section 2.1.2 explains how the principal tensile stresses can be determined and 

describes conditions and phenomena that could affect the accuracy of the calculated 

principal tensile stresses. Section 2.1.3 explains, with an example, how the principal 

tensile stress are distributed in a girder and where in the girder the maximum principal 

tensile stresses can be expected. Section 2.1.4 describes the material tests that can be 

used to derive the tensile strength of concrete and explains some phenomena which af-

fect the tensile strength. Section 2.1.5 summarizes the models from literature.  

In this chapter, the findings from the literature review are frequently complemented with 

considerations. These consideration are aimed to contribute to the development of an 

accurate model for the predictions of diagonal tension cracking.  

2.1.1 Diagonal tension cracking 

Based on observations from experiments, Hanson categorized two different types of di-

agonal cracks (Hanson 1964, see Figure 2.1): diagonal tension cracks and flexural shear 

cracks. Diagonal tension cracks were defined as diagonal cracks that start from a point 

in the web. Flexural cracks that develop into inclined cracks were categorized as flexural 

shear cracks. Flexural cracks can cause an increase of the principal tensile stresses in the 

web above the flexural crack and therefore trigger the formation of inclined cracks in 

the web (Figure 2.1). Hanson (1964) also categorized diagonal cracks triggered by flex-

ural cracks as flexural shear cracks.  
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Figure 2.1. Type of cracking according to Hanson (Hanson 1964). 

Like Hanson, MacGregor et al. (1960) distinguished two types of cracks: web shear 

cracks, which is a synonym for diagonal tension cracks, and flexural shear cracks. Web 

shear cracks were defined as cracks that occur in the web before flexural cracks appear 

in its vicinity. Flexural shear cracks were defined as inclined cracks that extend from an 

initiating flexural crack. Also MacGregor et al. (1960) defined inclined cracks, that 

forms over or beside an initiating flexural crack, as a flexural shear crack.  

In this dissertation diagonal tension cracks are defined as diagonal cracks that start in 

the web in the region without flexural cracks. In contrast to the given definitions in 

literature, this definition includes the diagonal cracks that are triggered by a flexural 

crack (figure 2.1). The definition is adapted because the purpose of the eventually pro-

posed model is the determination of the resistance to diagonal tension cracking in the 

regions without flexural cracks, regardless of what triggered diagonal tension cracking.  

Jena et al. (1972) report that especially girders with a large shear span fail instantly after 

the formation of the first diagonal tension crack. As part of this dissertation, it is inves-

tigated whether this dependency indeed exists. Therefore, experimental data of thirty 

five experiments on prestressed girders without stirrups is used. This concerns experi-

ments carried out by Sozen et al. (1967), Arthur (1965), Elzanaty et al. (1986) and 

Choulli (2005). In Figure 2.2 the ratio of the experimentally obtained ultimate resistance 

V’R,exp and the experimentally obtained resistance to diagonal tension cracking V’R,c,exp 

is shown. The apostrophes indicate that the resistances relate to the region without flex-

ural cracks. About half (seventeen) of the prestressed girders failed instantly at diagonal 

tension cracking, shown by a V’R,exp / V’R,c,exp of unity. The other half of the girders could 

resist additional load after diagonal tension cracking. The data points do not show a 

strong dependency between a/d and whether failure occurred instantly at diagonal ten-

sion cracking. The statement of Jena et al. (1972) could therefore not be confirmed. 

Figure 2.2 also shows the depth of the girders. The figure demonstrates that there is also 

no clear relation between the depth of the girders and whether failure occurred instantly 

at diagonal tension cracking. In literature, general agreement exists on considering the 
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occurrence of the first diagonal tension crack as measure for the ultimate capacity for 

girders without shear reinforcement. This is because it is difficult to predict the behav-

iour after diagonal tension cracking (Walraven 1987).  

 

Figure 2.2. Experimentally found ultimate resistance / resistance to diagonal tension cracking  

From literature some observations are described regarding diagonal tension cracking. 

Arthur (1965) reported three types of failure for girders without stirrups initiated by 

diagonal tension cracking: (i) failure due to a single crack that develops from the support 

to the load point (ii) failure due to the formation of a series of multiple diagonal tension 

cracks (web distortion) and (iii) failure due to the formation of a series of multiple diag-

onal tension cracks (web distortion) followed by crushing of the compression flange 

under the load point. Another observation is that diagonal tension cracks develop in-

stantly over a large part of the web depth or the complete web depth (Hanson 1964, 

Choulli et al. 2008, Elzanaty et al. 1986). Furthermore, several investigators (Hanson 

1964, Leonhardt et al. 1973, Sozen et al. 1959) observed that diagonal tension cracking 

can occur after a period of sustained load. 

Models that can be used to determine the resistance to diagonal tension cracking can be 

found in design codes. In this chapter, three models are considered: 

1. the Eurocode 2 (NEN 2005), in this chapter referred to as the ‘Eurocode model’ 

2. the Model Code 2010 (fib 2012), in this chapter referred to as the ‘MC2010 LoA1 

model’  

3. the ACI (ACI 2008), in this chapter referred to as the ‘ACI model’ 

The Model Code 2010 contains two levels of approximations (LoA). Level 1 indicates 

that the model is more conservative but easier to use than level 2 (Muttoni et al. 2013). 
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The model considered in this chapter concerns the level 1 approximation. The model 

described as level 2 approximation corresponds to the Eurocode model and will not be 

further explained.  

All models are based on the same leading assumption that diagonal tension cracking 

occurs when the maximum principal tensile stress σ1max in the web equals the concrete 

tensile strength of the web. The models differ in the simplifications used to determine 

σ1max. The Eurocode model bases σ1max on σ1 throughout web whereas the MC2010 LoA1 

model and the ACI model only consider σ1 along the centroidal axis. The models also 

differ in the tensile strength of the web that is used.  

The Eurocode model uses the uniaxial tensile strength fctm as limit for the tensile strength 

of the web. Also the MC2010 LoA1 uses fctm but reduces the shear stress resistance with 

20% to compensate that the principal tensile stresses are only considered along the cen-

troidal axis. The ACI model, on the other hand, uses the cracking strength of concrete 

fcr, which is defined as 0.332√f’c, in which f’c is the specified compressive strength of 

concrete according to the ACI. It is however already noticed that fcr is significantly lower 

than fctm. For values of fcm between 35 and 105 N/mm2, fcr varies between 57% and 64% 

of fctm. It is found in literature (Elzanaty et al. 1986) that fcr is a conservatively chosen 

value of the splitting strength of concrete fctm,sp. Just like the MC2010 LoA1 model, the 

value is chosen conservatively to compensate for the fact that σ1max is underestimated 

because it is based on σ1 along the centroidal axis. Moreover, a low value is chosen 

because the tensile strength is expected to decrease due to shrinkage. Based on back 

calculations of experiments in which diagonal tension cracking occurred (Hanson 1964), 

it is confirmed that the chosen value is conservative. From these back calculations, it 

was found that the average principal tensile stress in the centre of gravity at diagonal 

cracking was 0.457√fcm, which is higher than the cracking strength of concrete according 

to the ACI. In this research, the tensile strength that can be used to predict diagonal 

tension cracking of the web of a prestressed girder is generally defined as fctm,web, which 

will be discussed further in Section 2.1.5 and Chapter 3. 

2.1.2 Methods to determine the principal tensile stress 

This section explains how the principal tensile stresses can be determined analytically. 

The method described in this section is used in the considered models. Cracks occur 

perpendicular to the principal tensile stress (Figure 2.3) when σ1 equals the tensile 

strength of concrete. Therefore, the distribution of the principal tensile stresses is of 

importance for the prediction of the resistance to diagonal tension cracking in a pre-

stressed girder.  
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Starting from the geometry and loading conditions (Figure 2.3), the principal tensile 

stress in a cross-section (location x) and a point over the depth (z), under an applied load 

F, can be determined in three steps:  

1. Determine the cross-sectional forces (ME, VE and NE) for the considered cross-section. 

2. Determine the shear stress (τ) and the normal stress in the longitudinal direction (σx). 

These stresses are determined at a certain depth z in the cross-section and are based 

on the sectional forces.  

3. Determine the principal tensile stress σ1 for the considered point (x, z). This stress is 

determined from τ and σx. 

  

Figure 2.3. General method to determine principal tensile stresses in a prestressed girder. 

For monolithic girders, τ and σx can be determined using Equations (2.1) and (2.2). 

𝜏 (𝑧) =  
𝑉𝐸𝑆c(𝑧)

𝑏𝑤(𝑧) 𝐼𝑐
 (2.1) 

𝜎𝑥(𝑧) =  
𝑁𝐸

𝐴𝑐
+

𝑀𝐸  𝑧

𝐼𝑐
 (2.2) 

In these equations, Ic is the second moment of area, Sc is the first moment of area, bw is 

the width of the web and z is the considered vertical distance to the centroidal axis. The 

subscript c indicate that the cross-sectional properties are only based on the concrete.  

Also the stiffness of the reinforcing and prestressing steel affect the principal stress dis-

tribution. The presence of steel could be considered by using the transformed cross-

sectional properties instead. However, this effect is neglected for all of the three consid-

ered models. The parameter z indicates that the associated parameter varies, or could 

vary, over the depth of the cross-section.  
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The Equations 2.1 and 2.2 are based on the assumption that the concrete is uncracked 

and that linear elastic stress strain relations are applicable. The equations are therefore 

intended to be used for the areas of a prestressed girder without flexural cracks. The 

distribution of the principal tensile stresses in the regions without flexural cracks could 

be affected by flexural cracks at the edge of this region. Because Equations 2.1 and 2.2 

are used in the models, this potential disturbance of the principal stress distribution is 

ignored. According to Leonhardt (1973), the maximum principal tensile stress in the 

regions without flexural cracks increase due to flexural cracks in the region with flexural 

cracks. This could be compensated by assuming a lower tensile strength of the web. The 

tensile strength also reduces due to the presence of lateral principal compressive stresses 

and due to the presence of residual stresses are accounted. Therefore, it is suggested to 

use a tensile strength of the web of 0.3fc,cu,200
2/3. In this equation fc,cu,200 is the concrete 

compressive strength determined by a cube with a rib length of 200 mm. If values of fcm 

are considered between 35 and 105 N/mm2, this equation corresponds to a suggested 

tensile strength of the web between 58% and 67% of fctm. 

Equation 2.2 is based on the Euler Bernoulli assumption (plain cross-sections remain 

plain). This is however questionable for a cross-section close to the support or close to 

the loading plate (non-Bernoulli areas or disturbed areas). This is of importance because 

the maximum principal tensile stress is typically found around these concentrated loads 

(see Section 2.1.3 in which an example is given).  

The maximum and minimum principal stresses (respectively σ1 and σ2) can be found 

from the stresses in longitudinal and vertical direction (respectively σx and σz) by Equa-

tion 2.3. In this equation, tensile is defined as positive and compression as negative 

which is a common rule in structural mechanics. This is in contrast to the three codes 

cited, in which compression is defined as positive. Therefore, the appearance of the 

equations in this dissertation differs from the code provisions.  

𝜎1,2 =
𝜎𝑥 + 𝜎𝑧

2
± √(

𝜎𝑥 − 𝜎𝑧

2
)

2

+ 𝜏2 (2.3) 

If the vertical stress σz is neglected, σx is replaced by σx(z) and τ is replaced by τ(z), in 

which z indicates that the stresses are considered for a certain depth in a considered 

cross-section, Equation 2.4 can be found from Equation 2.3.  

𝜎1(𝑧) =
𝜎𝑥(𝑧)

2
+ √(

𝜎𝑥(𝑧)

2
)

2

+  𝜏(𝑧)2 (2.4) 



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 39PDF page: 39PDF page: 39PDF page: 39

 

23 

 

Figure 2.4. Effect of ignoring σz on determining σ1. 

Around concentrated forces, like in the support area, σz is negative (compression). For a 

negative value of σz, it is a conservative assumption to neglect σz. This is illustrated in 

Figure 2.4 in which σx is assumed negative. If σz is not neglected, Mohr’s circle runs 

through the points (σx, τ) and (σz, τ). This circle is shown as a continuous line. Mohr’s 

circle associated with neglecting σz runs through the points (σx, τ) and (0, τ). This circle 

is shown as a dashed line. By neglecting σz, the centre of Mohr’s circle shifts to the right. 

Moreover, the diameter of the circle increases. This leads to an increase of σ1 (Δσ1 in 

Figure 2.4). If σ1 is overestimated, the resistance to diagonal cracking is underestimated, 

which is conservative. For positive values of σx, the increase of σ1 is less significant. 

This is because, despite the centre of Mohr’s circle still shifts to the right, the radius of 

the circle decreases.  

The extent to which σ1 is overestimated by neglecting σz depends on mutual ratios of the 

stresses. This is illustrated in Figure 2.5 for different values of the stresses. Equation 2.4, 

in which σz is neglected, is divided by Equation 2.3, in which σz is accounted for. The 

figure shows that the effect of neglecting σz becomes more significant for high values of 

σz and low values of τ and σx. 

If Equation 2.4 is used, the maximum principal tensile stress is located in a cross section 

at the intersection of the web and a flange exactly next to the concentrated external load 

or the support reaction. This is because the bending moment has a maximum value at 

these cross sections. However, the vertical stresses (σz) that reduce the maximum prin-

cipal stresses are neglected in Equation 2.4. Using Equation 2.3 instead would reduce 

the maximum principal tensile stresses. Therefore, according to the Eurocode model and 

MC2010 LoA1 model, the principal tensile stresses do not have to be considered for 

cross-sections that are closer to the support than the point which is the intersection of an 

axis through the centre of gravity and a 45° inclined line from the inner edge of the 

support (Figure 2.6). Also according to the ACI model cross-sections directly next to the 

support do not have to be considered. For prestressed members, a critical section at a 
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distance h/2 from the support is prescribed in ACI (2008) The equations used in the ACI 

will be explained in Section 2.5. 

  

Figure 2.5. Overestimation of σ1 by ignoring σz as function of σz, σx and τ 

In girders with post-tensioned ducts there is a risk that the ducts are not fully grouted. If 

a duct is not fully grouted, bw is reduced and consequentially τ and σ1 increase (Equations 

2.1 and 2.4). Therefore, according to the Eurocode, if grouted ducts are applied, the web 

width should be reduced with 50% of the outer diameter of the duct Φ if Φ > bw/8 (NEN 

2005). For non-grouted ducts, which are outside the scope of the current research, the 

prescribed reduction is 1.2Φ.  

The presence of smooth cable ducts reduces the capability of cross-sections to transfer 

principal tensile stresses. This was given as explanation for the overestimation of the 

predicted resistance to diagonal tension cracking by Herbrand et al. (2015). This over-

estimation was found for experiments carried out on continuous prestressed girders with 

smooth ducts (Herbrand et al. 2013, Herbrand et al. 2017).  

For pre-tensioned prestressing steel, the principal stress distribution is affected by the 

transfer of the prestress by bond along the transmission length. The longitudinal stress 

σx caused by the prestressing steel should be reduced depending on the distance of the 

considered cross-section from the starting point of the transmission length (according to 

the Eurocode model and MC2010 LoA1 model). Also the shear stress τ caused by the 

prestressing steel should be reduced depending on the this distance, when kinked pre-

stressing strands are applied. Equations for this type of pre-tensioned prestressing steel 

can be found in fib (2012), numbered as 7.3.46 and 7.4.47.  
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2.1.3 Distribution of principal tensile stresses in a prestressed girder 

A main difference between the three considered models (as pointed out in Section 2.1.1) 

is the area considered to determine the maximum value of σ1. According to the Eurocode 

model all possible locations of the web need to be examined to determine the maximum 

value of σ1. The MC2010 LoA1 model and the ACI model limit this examination to the 

centroidal axis. In this section an example of the principal tensile stress distribution in a 

prestressed girder is given. With this example, insight is given of the impact of limiting 

the area examined to determine the maximum value of σ1. 

Experiment HAP1W, reported by Choulli (2005), is chosen as an example. This con-

cerns a simply supported I-shaped girder with pre-tensioned horizontal prestressing 

steel. At a certain load (F) diagonal tension cracks were observed in the experiment. 

This is called the load that causes diagonal tension cracking. At this load that causes 

diagonal tension cracking, no flexural cracks were observed in the experiment. 

The distribution of the principal tensile stresses at the load that causes diagonal tension 

cracking is illustrated in Figure 2.6. The principal tensile stress is calculated for points 

on the intersection of the centroidal axis and 4 axes parallel to the centroidal axis and 

three cross-sections. The stresses are determined using the three steps described in Sec-

tion 2.1.2. Cross-section A is located at the point which is the intersection of the 

centroidal axis and a line inclined from the inner edge of the loading plate at an angle of 

45°. Cross-section B is at the location of zero moment. Cross-sections C is located at 

the point which is the intersection of the centroidal axis and a line inclined from the 

inner edge of the support at an angle of 45°. 

 

Figure 2.6. Principal tensile stresses (N/mm2) at diagonal tension cracking load for HAP1W. 

The highest principal tensile stresses are found in the web. This is because of the smaller 

width of the web (bw) which leads to high shear stresses an therefore high principal 

tensile stresses (Equations 2.1 and 2.4). In the considered cross-sections, the ultimate 

fibres in the top and bottom flange remain under compression. As τ = 0 in the ultimate 

fibres of the considered cross-sections, the resulting principal tensile stress σ1 is equal 

to zero (Equation 2.4), as shown in Figure 2.6.  
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In cross-section A the absolute value of the positive moment due to the load F is larger 

than the absolute value of the negative moment due to the prestressing. As a result of 

the positive moment, the lowest σx in the web is found on the intersection of the web 

and the bottom flange (σx = -6.37 N/mm2). This is lower than σx in the centre of gravity 

(σx = -9.56 N/mm2). Although τ is lower at the intersection of the web and the bottom 

flange (τ = 6.55 N/mm2) than in the centre of gravity (τ = 7.12 N/mm2), the effect of the 

lower σx on σ1 is more significant. This results in a higher σ1 at the intersection of the 

web and the bottom flange (σ1 = 4.10 N/mm2) than at the centre of gravity (σ1 = 3.80 

N/mm2).  

Cross-section B is at the location of zero moment as result from a combined effect of 

the external load and the prestressing. As σx is constant over the depth, the variation of 

τ is decisive for the highest principal tensile stress. The maximum value of σ1 is located 

in the centre of gravity because the maximum value of τ is located in the centre of grav-

ity.  

In cross-section C the absolute value of the negative moment due to the prestressing is 

larger than the absolute value of the positive moment due to the load F. The resulting 

negative moment, leads to the observation that the lowest σx in the web is found at the 

intersection of the web and the top flange. This is lower than σx in the centre of gravity. 

Although τ is lower, the effect of the lower σx on σ1 is more significant, resulting in a 

maximum σ1 at the intersection of the web and the top flange in cross-section C. In this 

example, the highest principal stress is found at the intersection of the top flange and the 

web and is about 9% higher than the highest principal stresses along the centroidal axis.  

2.1.4 Methods to determine the tensile strength of concrete 

As described at the end of Section 2.1.1, the considered models assume diagonal tension 

cracking for different tensile strengths of the web: the Eurocode model uses the uniaxial 

tensile strength fctm and the ACI model uses the cracking strength of concrete fcr. Equa-

tion are available to derive both fctm and fcr from the concrete cylinder compressive 

strength (these will be explained later). Reineck et al. (2012) found that the uniaxial 

tensile strength can be accurately derived from the cylinder compressive strength. This 

was shown by comparing the uniaxial tensile strength derived from cylinder compres-

sive test and the uniaxial tensile strength derived from splitting test for numerous 

experiments for which both material test were carried out. The main reasons that fctm and 

fcr differ, is that they are based on different types of tests. In this section, three types of 

tests are explained that reveal various phenomena that will affect the tensile strength of 

the web that should be assumed in girders (figure 2.7). 
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Uniaxial tensile tests 

Uniaxial tests are performed on prismatic specimen with notches, uniaxial loaded in 

tension (Hordijk 1991, Figure 2.7). The concept of the test is that the stress distribution 

at the crack location is undisturbed by the loading conditions. Therefore, these uniaxial 

tests are considered as ‘pure tension test’. It is difficult to perform uniaxial tensile tests. 

The uniaxial tensile tests appear to be sensitive to the way the tests are carried out. 

Therefore, uniaxial tensile test are typically performed for research purpose. In engi-

neering practice, the uniaxial tensile strength is determined from concrete cylinder 

compressive tests. For this purpose, empirical relations have been derived from batches 

of both uniaxial tension tests and cylinder compressive test. Both the Eurocode (NEN 

2005) and the Model Code 2010 (fib 2012) use the same empirical relations between the 

cylinder compressive strength and the uniaxial tensile strength. These expressions are 

given in Equation 2.5, for strength classes of concrete equal to or smaller than C50/60, 

and Equation 2.6, for strength classes of concrete larger than C50/60. These equations 

are applicable for normal weight concrete. 

   

Figure 2.7. Uniaxial tensile test (Hordijk 1991), bi-axial test on small membranes (Kupfer 1969) and 
test on large reinforced membrane elements (Vecchio et al. 1994) 

𝑓𝑐𝑡𝑚 = 0.30𝑓𝑐𝑘
2 3⁄

 (2.5) 

𝑓𝑐𝑡𝑚 = 2.12 ln(1 +  𝑓𝑐𝑚 10⁄ ) (2.6) 

Also splitting tensile tests (on cylinders) and flexural tension tests (or modulus of rup-

ture tests) can be used to indirectly determine the uniaxial tensile strength of concrete. 

The tensile strength from these material tests deviates from the uniaxial tensile strength 

because the stress distribution is affected by the loading conditions. Also for splitting 

tensile tests and flexural tension tests, the uniaxial tensile strength can be determined by 

empirical relations between both tensile strengths. The Eurocode (NEN 2005) pre-

scribed for instance the equation fctm = 0.9fctm,sp to derive the uniaxial tensile strength 

from the splitting strength. According to Reineck et al. (2012) splitting tests are preferred 
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for the determination of the uniaxial tensile strength, above flexural tensile tests. How-

ever, no general agreement exists in literature about the empirical relations between the 

splitting tensile strength and the uniaxial tensile strength (fib 2012).  

Tests on bi-axially loaded small membrane elements 

From tests on these elements it is found that lateral principal compressive stresses reduce 

the tensile strength of concrete. This phenomenon is called bi-axial behaviour. Bi-axial 

behaviour is investigated by Kupfer who developed a test setup to investigate small 

membrane elements loaded by tension stresses and perpendicular to it compression 

stresses (200 by 200 by 50 mm3, Figure 2.7). The compressive load was applied with 

brush bearing plates that were flexible enough to follow the concrete deformations with-

out generating appreciable force into the membrane element (Kupfer et al. 1969, Kupfer 

1973). Huber (2016) collected the experiments of bi-axial loaded small membrane ele-

ments of various researchers (Kupfer et al. 1969, Hussein 1998, Hampel 2006). The 

results are shown in Figure 2.8. This figure shows the combination of σ2/fcm and σ1/fctm 

at which the membranes cracked. The tensile strength, as ratio of the uniaxial tensile 

strength, was found to decrease with decreasing principal compressive stresses (as ratio 

of the compressive strength). From the figure it also appears that this reduction is larger 

for higher strength classes of concrete.  

    

Figure 2.8. Experimentally found and predicted combination of σ2 / fcm and σ1 / fctm that causes cracking 

The Mohr-Coulomb linear approximation, which is given by Equation 2.7, is included 

in Figure 2.8. The subscript ‘eff’ is used to indicate that the tensile strength of concrete 

is depending on the lateral principal compressive stress, as introduced by Huber (2016). 

According to this equation, the tensile strength is zero when σ2 = -fcm. The tensile 
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strength linear increases to the uniaxial concrete tensile strength when σ2 = 0. Note that, 

according to figure 2.8, the Mohr-Coulomb equation leads to an overestimation of the 

tensile strength for concrete with higher compressive strengths. This is especially the 

case for high values of σ2 /fcm (i.e. less negative). It is further noted that these high values 

of the compressive stress are typical for diagonal tension cracking of the web of pre-

stressed girders (Jena et al. 1972). 

𝑓𝑐𝑡𝑚,𝑒𝑓𝑓 =  [1.0 +
𝜎2

𝑓𝑐𝑚
] 𝑓𝑐𝑡𝑚 (2.7) 

Based on the data collected (Figure 2.8), Huber (2016) derived an empirical equation to 

determine the effective tensile strength of concrete. Both the effect of the compressive 

stresses and the effect of the concrete compressive strength on the tensile strength are 

taken into account, (Equation 2.8). Huber suggest to limit the application of the equation 

to -0.9 ≤ σ2 /fcm ≤ -0.1 as the equation only reflects the experimental data in this range. 

In Figure 2.8 the predictions according to this equation are included, both for a low 

concrete compressive strength (fcm = 32 N/mm2) and for a high concrete compressive 

strength (fcm = 94 N/mm2). Note that, according to Figure 2.8, values of fctm,eff close to 

fctm are found only when σ2 = 0 and the reduction of fctm appears to become significant, 

even when σ2 /fcm is just below zero. 

𝑓𝑐𝑡𝑚,𝑒𝑓𝑓 =  [1.6 − 0.2 𝑓𝑐𝑚
 1/3 −  0.6 

𝜎2

𝑓𝑐𝑚
] 𝑓𝑐𝑡𝑚 (2.8) 

The Eurocode model assumes diagonal tension cracking when the maximum principal 

tensile stress is equal to the uniaxial tension strength of concrete. Based on the result of 

the membrane elements, it is expected that the resistance to diagonal tension cracking is 

overestimated using this code, because the effect of the bi-axial behaviour is not consid-

ered.  

Tests on large membrane elements 

The tensile strength can also be derived from tests on large reinforced membrane ele-

ments (Figure 2.7). An example of a series of test on membranes is the research 

programme carried out by Vecchio et al. (1994). The membrane elements are loaded 

with loading keys, which are cast into the experiment. Membrane elements were tested 

with dimensions of 890 mm by 890 mm by 70 mm. The membranes were tested with 

various combinations of in-plane shear and bi-axial stresses (both tensile and compres-

sive stresses). Figure 2.9 shows the principal tensile stresses at cracking (fcr, cracking 

strength) versus the cylinder compressive strength of concrete. This principal tensile 

stress can simply be determined from the reported shear stress and the horizontal and 

the vertical stresses at which cracking occurred, using Equation 2.3.  
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Figure 2.9. Principal tensile stress at cracking for membranes tested by Vecchio et al. (1994) 

Bentz (2000) derived an empirical relation between the cracking strength and the cylin-

der compressive strength (Equation 2.9) using test results of 83 large membrane 

elements, which were tested in Toronto and Houston. These include tests of Vecchio et 

al. (1994) which are shown in Figure 2.9. Figure 2.9 also shows the predicted cracking 

strength predicted by Equation 2.9.  

𝑓𝑐𝑟 = 0.45 𝑓𝑐𝑚
0.4 (𝑁 𝑚𝑚2⁄ ) (2.9) 

𝑓𝑐𝑟 = 0.332 √𝑓𝑐𝑚  (𝑁 𝑚𝑚2⁄ ) (2.10) 

In Equation 2.10 corresponds to the relation between as used in the ACI code 

(ACI 2008) only fcm is used instead of f’c. Figure 2.9 also shows the cracking strength 

predicted by Equation 2.10. The tensile strength based on this equation was found to 

overestimate the experimentally found tensile strength (Bentz 2000). This is confirmed 

by Figure 2.9. Equation 2.9 corresponds better with the experimentally found strength 

than Equation 2.10, especially for higher strength concrete.  

The tensile strength according to Equation 2.9 is significantly lower than the uniaxial 

tensile strength (Equations 2.5 and 2.6). This can be explained by the size of the mem-

brane elements. For large membranes the chance of encountering the weakest and 

controlling piece of concrete is larger than for small membranes (Bentz 2000). Accord-

ing to Collins et al. (1997) the tensile strength is about inversely proportional to the 

fourth root of the size. In this dissertation this is defined as the statistical size effect. 

Another consideration could be that the tensile strength is reduced due to bi-axial be-

haviour. As the membrane elements are bi-axial loaded it is plausible that the tensile 

strength is reduced by the lateral principal compressive stresses. However, the principal 

compressive stresses at the membrane tests are typically low which limits this effect of 

bi-axial behaviour. 
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It is noted that underestimation of the cracking strength for membrane elements, using 

Equation 2.10, is not per definition also present when determining the resistance to di-

agonal tension cracking of girders. This is because, as already described in Section 2.1.1, 

Equation 2.10 was found to result in conservative predictions of the resistance to diag-

onal tension cracking (Hanson 1964). 

2.1.5 Models from literature 

This section describes and compares the considered models. All models assume that the 

resistance to diagonal tension cracking can be found by determining the shear force at 

which the predicted maximum value of σ1 equals fctm,web. 

When the Eurocode model is used, the resistance to diagonal tension cracking, V’R,c, can 

be calculated by carrying out the following steps: 

1. Consider the first cross-section (at distance x) that should be considered (for instance 

cross-section A or C in Figure 2.6).  

2. Consider a point on the cross-section (z). For instance the intersection of the web and 

the bottom flange (see for example Figure 2.6). 

3. Assume a load (F) and calculate the sectional forces ME, NE and VE in the cross-

section. 

4. Determine σx(z) in the considered point (z) from the sectional forces (Equation 2.2).  

5. Determine the shear stress that can be resisted (τ’R,c (z)) in the considered point (z) 

based on σx(z) and fctm by using Equation 2.12 (which will be explained later). The 

apostrophe in τ’R,c (z) indicated that the shear resistance concern the regions without 

flexural cracks and the subscript c indicates that the resistance is based on the con-

crete. 

6. Determine the associated shear force V’R,c from τ’R,c using the cross-sectional proper-

ties (Equation 2.1). 

7. Adapt the load (F) until the shear force VE equals the shear resistance V’R,c. When 

both are equal σ1 equals fctm and the shear resistance (V’R,c) for the considered point 

is known.  

8. Repeat the steps 1 to 7 for all points (z) in the cross-section.  

9. Equal the resistance of the cross-section V’R,c with the lowest V’R,c( z) for all points 

(z) in the cross-section. The lowest resistance is normally found at the web-flange 

interfaces or at the centre of gravity (Section 2.1.3). 



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 48PDF page: 48PDF page: 48PDF page: 48

32 

10. Repeat steps 1 to 9 for all cross-sections. The lowest resistance is normally found 

in cross-sections A (negative moment governing), B (shear force governing) or C 

(positive moment governing) as explained in Section 2.1.3. 

11. The resistance to diagonal tension cracking (V’R,c) of the girder is determined by 

the lowest of V’R,c off all the cross-sections.  

As for using the Eurocode model a lot of iterative steps are necessary, the use of for 

instance a spread sheet is convenient.  

Step 5 determines the shear stress that can be resisted in the considered point (z), τ’R,c(z), 

based on σx (z) and fctm,web. To determine τ’R,c(z) Equation 2.4 is first rearranged in Equa-

tion 2.11. Equation 2.12 is found when τ(z) is equalized to τ’R,c(z) and σ1 is equalized to 

fctm,web.  

𝜏(𝑧)2 =  𝜎1
2 − 𝜎1 𝜎𝑥(𝑧)  (2.11) 

𝜏′𝑅,𝑐(𝑧) =  √𝑓𝑐𝑡𝑚,𝑤𝑒𝑏
2 −  𝑓𝑐𝑡𝑚,𝑤𝑒𝑏 𝜎𝑥(𝑧) (2.12) 

An iterative calculation is not necessary when the ACI model or the MC2010 LoA1 

model are used, because σ1max is based on σ1 along the centroidal axis. This is because 

σx is no longer dependant on the applied external load. When an external concentrated 

load is applied, the first cross-section from the support is governing (Section 2.1.2). This 

is because the self-weight causes a maximum shear force in this cross-section.  

The equations that describe the three models are listed in Table 2.1. To make the models 

comparable, the vertical component of prestress force (VR,p) is omitted in the equations 

according to the ACI (2008). This is because according to the Eurocode and Model Code 

2010, VR,p is considered as reduction of the load instead of a component of the shear 

resistance (equivalent load method).  

Basically, three differences between the models exists: 

1. Whether σ1max is only based on σ1 along the centroidal axis or over the area considered 

throughout the web area (column σx in Table 2.1).  

2. The tensile strength of the web used to determine τ’R,c (τ’R,c in Table 2.1).  

3. The equation used to determine V’R,c from τ’R,c and the cross-sectional properties (col-

umn V’R,c in Table 2.1). 

The first difference between the models is the area in which σ1 is considered to determine 

the maximum value of σ1. According to the MC2010 LoA1 model and the ACI model, 

σ1 is only considered along the centroidal axis. The stress in longitudinal direction at the 

centre of gravity σcp can be determined using Equation 2.16. According to the Eurocode 
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model, the depth of the cross is considered to determine σ1max. Consequently σx should 

be determined at different depths (z) using Equation 2.13.  

Table 2.1. Models to determine the resistance to diagonal tension cracking 

Model σx  τ'R,c  V’R,c  

Eurocode 

𝜎𝑥 (𝑧) =  
𝑁𝐸

𝐴𝑐
+

𝑀 𝐸𝑧

𝐼𝑐
 (2.13) 

√𝑓𝑐𝑡𝑚
2 − 𝜎 𝑥

 (𝑧)𝑓𝑐𝑡𝑚 

 

(2.14) 

𝐼𝑐  𝑏(𝑧)

𝑆 𝑐(𝑧)
 𝜏′𝑅,𝑐 

 

(2.15) 

MC2010  

LoA1 
𝜎𝑐𝑝 =  

𝑁𝐸

𝐴𝑐
 (2.16) 

0.8 √𝑓𝑐𝑡𝑚
2 −  𝜎 𝑐𝑝

 𝑓𝑐𝑡𝑚 

 

(2.17) 
𝐼𝑐  𝑏𝑤 

𝑆 𝑐,𝑐𝑔  
 𝜏′𝑅,𝑐 (2.18) 

ACI 0.291√𝑓′𝑐 + 0.3 𝜎𝑐𝑝 (2.19) 𝑏𝑤 𝑑𝑝 𝜏′𝑅,𝑐 (2.20) 

The second difference between the models is the assumed concrete tensile strength of 

the web at which diagonal cracking occurs. According to the Eurocode model, diagonal 

tension cracking is predicted assuming fctm,web = fctm. With this assumption, Equation 

(2.14) is directly derived from Equation 2.12. The MC2010 LoA1 model is based on the 

same assumption. However, because σ1max is not considered at the most unfavourable 

location, and is consequently underestimated, the resistance of the shear stress is reduced 

to 80% (Eq. 2.17). According to the ACI model, diagonal tension cracking is predicted 

assuming fctm,web = 0.332 √f’c (= fcr) in which f’c is the specified compressive strength of 

concrete according to the ACI (according to the ACI, f’c = 1.1fcm + 4.8, in N/mm2, for 

f’c ≥ 34 N/mm2). With this assumption, a similar equation could be expected as for the 

other models. However, it was found that this equation could be closely approached 

using Equation 2.19 (Xie 2009).  

The third difference between the models is the equation used to relate the shear stress 

resistance τ’R,c at the considered depth to the shear force resistance V’R,c of the cross-

section. As according to the Eurocode model several points over the depth (z) are con-

sidered, the cross-sectional properties at the considered depth are used to determine the 

associates shear force (Equation 2.15). As according to the MC2010 LoA1 model only 

the centroidal axis is considered to determine σ1max, the cross-sectional properties at the 

centre of gravity are used to determine the associated shear force (Equation 2.18). Equa-

tion 2.20, which is used in the ACI model, is a simplification of Equation 2.18. In this 

equation bw dp has replaced Ic bw / Sc,cg. The effect of this simplification is illustrated in 

Figure 2.10. In this figure, a cross-section with flanges with a depth of h/5 and a variable 

flange width (b+2Δb) is considered. It is assumed that dp = 0.9h. On the vertical axis the 
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factor is shown necessary to determine the shear force, divided by bh, from the shear 

stress τ. The dashed line V = τ b 0.9h represents the simplified ACI equation. The solid 

line represents the exact factor as used in Equation 2.18. As shown in the Figure 2.10, 

the ACI equation overestimates the shear force resistance for a given shear stress re-

sistance. Therefore, the simplification used in the ACI (2008) is unconservative. The 

overestimation has a maximum value for a rectangular cross-section (Δb = 0) and de-

creases for larger flange widths. As the ACI equation uses dp instead of h, the 

overestimation also depends on dp.  

  

Figure 2.10. Factor to relate V and τbh, exactly and simplified as used in the ACI 

The Eurocode model is only intended for prestressed single span members without shear 

reinforcement. Also the MC2010 LoA1 model is only applicable for hollow core slabs 

and similar structural members. The ACI (2008) is on the other hand intended for pre-

stressed members both simply and continuously supported. 

Beside the three considered models, also empirical models were derived by various re-

searchers. Hicks (1958), Sethunarayanan (1960), Olesen et al. (1967) and Arthur (1965) 

suggested empirical relations to determine the resistance to diagonal tension cracking as 

a function of the ratio of the shear span a over effective depth d or girder depth h. Also 

Jena et al. (1972) developed an empirical model. In contrast to the other empirical mod-

els, this empirical model used experiments on both simply and continuously supported 

girders. Therefore the empirical model of Jena et al. (1972) is shown as an example of 

an empirical model (Equation 2.21).  

𝑓𝑐𝑡𝑚,𝑤𝑒𝑏 =  𝑓𝑐𝑚,𝑐𝑢𝑏𝑒 (0.0164 +
ℎ 0.0857

𝑎
) (2.21) 

The tensile strength of the web depends on the ratio of the shear span to girder depth 

(a/h). According to this model, σ1max is only based on σ1 along the centroidal axis. Data 
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from experiments with prestressing with and without bond were used as the behaviour 

for diagonal tension cracking was considered to be identical for both conditions. 

2.2 Database on diagonal tension cracking  

To be able to study diagonal tension cracking, experiments have been inventoried from 

literature. These experiments are used to compile a database which will be used to eval-

uate the accuracy of the predictions of the eventually proposed model. This section 

describes the database that is composed of experiments on prestressed girders with and 

without stirrups, in which diagonal tension cracking was observed. Section 2.2.1 ex-

plains the criteria that are used to determine whether experiments can be included in the 

diagonal tension cracking database. Section 2.2.2 provides an overview of the selected 

experiments. 

2.2.1 Selection criteria  

This section is based on literature survey on shear tests in which diagonal tension crack-

ing is reported. The survey results in a diagonal tension cracking database (Appendix 

A).  

The literature survey covered by the presented database includes the following over-

views and databases: 

 an overview in a state-of-the art report on shear in prestressed concrete members 

(Walraven 1987).  

 an overview of experiments used for verification of a shear design method (Collins 

et al. 1996).  

 a shear database on prestressed members (Nakamura 2011). 

 an overview of prestressed girders of a database with shear test on structural concrete 

beams (Reineck et al. 2012). 

All these overviews and databases consist of collection on members with and without 

stirrups. From experiments it was found that the presence of stirrups does not affect the 

resistance to diagonal tension cracking (Elzanaty et al. 1986). Therefore, both types are 

considered in this part of the research. 

For the considered experiments with prestressed girders, the main selection criterion is 

whether diagonal tension cracks occurs. Diagonal tension cracks are defined as diagonal 

cracks in the web of a girder in the region without flexural cracks (Section 2.1.1). The 

selection is further based on the following criteria and considerations: 
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 Only experiments that contain sufficient information to predict the resistance to diag-

onal tension cracking are included. If, for example, the associate load that causes 

diagonal tension cracking is unknown, the experiment is not included in the database. 

 Both simply and continuously supported girders are collected as this is the intended 

use of the models proposed in this research.  

 Only girders that are prestressed are selected. Sometimes one, or several experiments 

from a series of tests on prestressed girders, did not contain prestress to investigate 

the effect of the absence of prestressing. These experiments are not included in the 

database.  

 Only experiments with normal weight concrete are selected.  

 It is unlikely that the absence or presence of bonding of the prestressing steel would 

affect the cracking of the concrete. Therefore experiments are selected independently 

of the type of prestressing.   

 Experiments are selected independent of whether the formation of a diagonal tensions 

cracks was triggered by the formation of a flexural crack. This is because the purpose 

of the eventually proposed model is to determine the resistance to diagonal tension 

cracking in the regions without flexural cracks regardless of what triggered diagonal 

tension cracking. 

 It should be avoided to develop a model that is intended for large girders in practice 

based on test results of small girders, without considering the influence of the size on 

the structural behaviour. For instance, in small girders the effect of tension softening 

behaviour on the development of flexural cracks is more emphatically present than in 

larger girders. To limit the chance that deviant behaviour of small girders affects the 

evaluation of models, only experiments with a member depth larger than 450 mm are 

selected. The selection criterion can be considered as relatively strict compared to 

criteria used by other researchers. For instance Avendano et al. (2008), Hawkins et al. 

(2007), Birrcher et al. (2009) and Reineck et al. (2012) used a minimum girder depth 

of 305, 508, 305 and 70 mm respectively as selection criteria for their databases. An 

important goal of the current research is to investigate if the predictions according to 

the eventually proposed model is consistent for different girder depths larger than 450 

mm. 

2.2.2 Overview of selected experiments 

The diagonal tension database is included in Appendix A. An overview of the selected 

experiments and associated ranges of parameters is given in table 2.2. These parameters 

concern the girder depth h, the web width bw, the mean concrete cylinder compressive 
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strength fcm, the stress in longitudinal direction caused by the prestressing in the cen-

troidal axis σcp and the ratio of σcp and fcm. In total seventy experiments that meet the 

selection criteria as described in section 2.2.1 are selected. Both simply and continuously 

supported girders are included in the database.  

Table 2.2. Overview database on diagonal tension cracking 

Re-

searcher 

(year) 

Identification 

(numbers of experiments) 

Support 

condi-

tions 

h bw 

 

fcm σcp σcp / 

fcm 

   mm mm N/mm2 N/mm2 - 

Elzanaty 

et al. 

(1986) 

CW1, CW2, CW3, CW4, 

CW5, CW6, CW7, CW8, 

CW9, CW10,CW11, CW12, 

CW13, CW14, CW15, 

CW16, CW17 (17) 

Simply 

sup-

ported 

457 51 40/ 

79 

-11.3/ 

-7.9 

-0.20/ 

-0.11 

Choulli  

(2005) 

HAP1E, HAP1TE, 

HAP1TW, HAP1TW, 

HCP1TW, HCP1TE, 

HCP2TE, HAP1W, 

HAP2TW, HAP2E, 

HAP2W, HCP2TW (12) 

Simply 

sup-

ported 

750 100 81/ 

99 

-9.6/ 

-6.3 

-0.12/ 

-0.07 

Hanson 

(1964) 

F-X1A, F-X1B, F-1A,  

F-1B, F-2A, F-2B, F-3A, F-

3B, F-4A, F-4B, F-5A, F-

5B, F-7A, F-7B, F-8A, F-

8B, F-10A, F-10B,  

F-11A, F-11B, F-12A,  

F-12B, F-13A, F-19A,  

F-19B (25) 

Simply 

sup-

ported 

457 76 44/ 

51 

-6.4/ 

-5.8 

-0.15/ 

-0.12 

Leonhardt  

et al. 

(1973) 

ŢP2, ŢP4 (2) Simply 

Sup-

ported 

900, 

970 

80, 

150  

24/ 

47 

-5.6/ 

-6.5 

-0.24/ 

-0.14 

Xie 

(2009) 

LB2, LB3, LB7, LB8, 

LB10, LB11 (6) 

 

Contin-

uously 

Sup-

ported 

 

504, 

506 

72, 

74 

62/ 

64 

-11.2/ 

-3.5 

-0.20/ 

-0.11 

Rupf et 

al. 

(2013) 

SR21, SR22, SR23, SR24, 

SR25, SR26, SR29, SR30 

(8) 

Contin-

uously 

sup-

ported 

780 150 30/ 

37 

-2.3/ 

-4.8 

-0.14/ 

-0.07 
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The main selection criterion is whether diagonal tension cracking occurred. This is ar-

gued in the remaining part of this section for each of the series of experiments. It is noted 

that the values of V’R,c,exp listed in Appendix A, are without self-weight. This experimen-

tally found shear force is compared with the predicted shear resistance for the external 

load wherein the self-weight is subtracted. 

A part of the experiments described in the research report of Elzanaty et al. (1986) was 

designed to fail as a result of ‘web shear failure’ (CW-series). The experimentally found 

resistance to diagonal cracking is reported. In the report, it is described that these diag-

onal cracks are web shear cracks which is an equivalent of diagonal tension cracking. 

Therefore, all experiments of the CW-series are selected. The descriptions and photos 

of the crack pattern confirmed this selection as shown by the photo of experiment CW8 

(Figure 2.12).  

 

Figure 2.12. Photo at diagonal tension cracking of experiment CW8 (Elzanaty et al. 1986). 

The load at first cracking is reported in the dissertation of Choulli (2005). It is described 

that the first cracks that appeared were diagonal cracks in the web. Therefore, all exper-

iments are selected. It is difficult to confirm this selection based on the photos, as both 

flexural shear cracks and diagonal tension cracks are visible on the photos. Therefore, 

the selection is mainly based on the description. 

The dissertation of Hanson (1964) reports the experimentally found resistances to sig-

nificant shear cracking. This concerns both diagonal tension cracking and flexural shear 

cracking. From the crack diagrams at significant shear cracking it could be determined 

for which experiments diagonal tension cracking occurred, which were all selected. For 

a part of the experiments diagonal tension cracking was triggered by a flexural crack 

and for a part it was not.  

The research report of Leonhardt et al. (1973) reports the experimentally found re-

sistance to diagonal cracking. For two experiments it could be determined from photos 

that the diagonal cracks concerns diagonal tension cracks. Both these experiments are 

selected.  
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In the dissertation of Xie (2009) the experimentally found resistance to inclined web 

shear cracking was reported for all considered experiments. Some experiments were not 

selected as they were loaded in tension or without prestress. All other experiments were 

selected. The descriptions and figures of the crack pattern at diagonal cracking stage 

confirm the selection. 

In the reports of Rupf (2014) and Rupf et al. (2012, 2013), the experimentally found 

resistance to inclined cracking was not reported. However, from figures concerning the 

crack openings vectors at each load step, it was possible to determine whether diagonal 

tension cracks occurred and between which load steps. Subsequently, by interpreting the 

stirrups strain measurements at different locations, it was possible to determine the exact 

load at diagonal tension cracking. All experiments in which diagonal cracking was ob-

served were selected. 

2.3 Findings from literature review  

This literature study reveals that the models described in literature use different ap-

proaches to determine the maximum principal tensile stress (Sections 2.1.1, 2.1.2, 2.1.3 

and 2.1.5). It is unclear if the resistance to diagonal tension cracking can be accurately 

determined if the maximum principal tensile stress is only based on the principal tensile 

stresses along the centroidal axis. It is also unknown whether the accuracy increases 

when the maximum principal tensile stress throughout the web is used. According to all 

cited codes, it is not necessary to consider the principal tensile stresses around the sup-

port (as explained in Section 2.1.2). However, a substantiation is lacking of the size of 

this area. And finally, it is uncertain whether the models from literature rightly assume 

that the flexural crack on the edge of the region without flexural cracks does not affect 

the stress distribution in this region (Section 2.1.2). 

The literature study also reveals that the assumed tensile strength of the web differs for 

each of the considered models (Sections 2.1.1, 2.1.4, 2.1.5). The statistical size effect 

seems to be the main cause that the ACI model assumes a lower tensile strength than the 

Eurocode model (Section 2.1.4). It is unclear whether this lower strength is indeed nec-

essary to prevent an overestimation of the resistance to diagonal tension cracking. Also, 

no answer has been found on whether the effect of bi-axial behaviour can be omitted 

despite that this effect is clearly shown by tests on small membrane elements (Section 

2.1.4).  
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3 
Resistance to diagonal tension cracking 

This chapter describes analyses regarding several phenomena that can affect the re-

sistance to diagonal tension cracking. The models that will be proposed in Chapter 4 are 

based on these analyses.  

This chapter investigates four phenomena based on the following questions: 

1. How is the tensile strength of the web affected by the lateral principal compressive 

stresses (bi-axial behaviour, Section 2.1.4)? 

2. How is the tensile strength of the web affected by the size of the area subjected to 

high principal tensile stresses (statistical size effect, Section 2.1.4)? 

3. How can the maximum principal tensile stress around the concentrated loads (dis-

turbed areas) be approximated using equations based on the Euler Bernoulli girder 

theory? 

4. How is the distribution of the principal tensile stresses affected by the presence of 

flexural cracks on the edge of the region of the girder free of flexural cracks? 

Whether or not flexural cracks are present before the formation of diagonal tension 

cracks (phenomenon 4), appears to have a significant effect on the diagonal cracking 

process. Therefore, the tensile strength of the web (phenomena 1 and 2) and the dis-

turbed areas (phenomenon 3) are investigated considering experiments that are free of 

flexural cracks at the instant a diagonal tension crack forms (Sections 3.1 – 3.4). This 

ensures that the mentioned phenomena can by investigated without any disturbance 

caused by the presence of flexural cracks. Section 3.5, on the other hand, considers ex-

periments in which flexural cracks are present at the instant a diagonal tension crack 

forms. The differences are then ascribed to the effect of the flexural cracks on principal 

tensile stresses in the region without flexural cracks. Hence, the other phenomena are 

considered sufficiently investigated in the preceding sections.  

Section 3.1 (roughly) derives the tensile strength of the web using the principal tensile 

stresses found from linear elastic finite element analyses at the load that caused diagonal 

tension cracking. In this section, the tensile strength of the web is derived assuming no 

effect of the principal compressive stresses on the tensile strength and no statistical size 

effect. Subsequently, Section 3.2 investigates whether considering a statistical size effect 
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and bi-axial behaviour improves the consistency of the predictions. Section 3.3 investi-

gates the effect of concentrated loads on the principal tensile stress distribution. 

Moreover, this section investigates whether the maximum principal tensile stresses can 

be accurately approximated using equations based on the Euler Bernoulli girder theory. 

Section 3.4 investigates, for girders without flexural cracks, what the effect is on the 

accuracy, when the maximum principal tensile stresses σ1max is based on σ1 along the 

centroidal axis instead of σ1 over the entire web area. Section 3.5 investigates how the 

presence of flexural cracks, on the edge of the regions without flexural cracks, affects 

diagonal tension cracking in the regions without flexural cracks.  

Figure 3.1 provides an overview of the methodology used to analyse the described phe-

nomena. The methodology will be explained more extensively in the following sections. 

    

Figure 3.1. Overview of the used methodology 

Equations 2.1 to 2.4 of Chapter 2 are repeated an renumbered to Equations 3.1 to 3.4, to 

make this chapter more self-contained. These equations are based on the Euler Bernoulli 

girder theory. For monolithic structures, the shear stress (τ(z)) and the stress in the con-

crete in the longitudinal direction (σx(z)) can be determined from the sectional forces 

(M, V and N) using Equation 3.1 and 3.2. The principal stresses σ1 and σ2 can be deter-

mined from τ, σx and σz using equation 3.3.  

𝜏 (𝑧) =  
𝑉𝑆c(𝑧)

𝑏𝑤(𝑧) 𝐼𝑐
 (3.1) 

𝜎𝑥(𝑧) =  
𝑁

𝐴𝑐
+

𝑀 𝑧

𝐼𝑐
 (3.2) 

𝜎1,2(𝑧) =
𝜎𝑥(𝑧) + 𝜎𝑧(𝑧)

2
± √(

𝜎𝑥(𝑧) − 𝜎𝑧(𝑧)

2
)

2

+ 𝜏(𝑧)2 (3.3) 

𝜎1,2(𝑧) =
𝜎𝑥(𝑧)

2
± √(

𝜎𝑥(𝑧)

2
)

2

+  𝜏(𝑧)2 (3.4) 
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In Equation 3.3 σz is the stress in the concrete in vertical direction. To determine the 

principal tensile stress σ1 the ‘±’ should be read as plus. To determine the principal com-

pressive stress σ2 the ‘±’ should be read as minus. Alternatively, the principal tensile 

stresses can be determined using Equation 3.4 in which the vertical stresses σz are ne-

glected. In the equations Ic is the second moment of area, Sc is the first moment of area, 

Ac is the area of concrete cross-section, bw is the width of the web and z is the vertical 

distance from the centroidal axis. The subscript c indicates that the cross-sectional prop-

erties concern the concrete. The parameter z indicates that the associated parameter 

varies, or could vary, over the height z of the cross-section. 

3.1 Experimentally found tensile strength of the web  

As described in Section 2.1.4, there is no general agreement in literature on the tensile 

strength of the web that should be used to determine diagonal tension cracking. If the 

results of material tests are present, such as a concrete cylinder compressive test, the 

tensile strength of the web can be determined using different equations (Equations 2.5 

to 2.10). For a given strength class of concrete, these equations result in mutually dif-

ferent values of the tensile strength of the web.  

Although the Equations 2.5 to 2.10 are used for diagonal tension cracking of girders, 

none of these equations are based on test results on girders. To evaluate which equation 

is most suitable for girders, this section will investigate the tensile strength of the web 

using experiments from the diagonal tension cracking database (Section 2.2). The tensile 

strength of the web is assumed to be equal to the maximum principal tensile stress in the 

web at the load that caused diagonal tension cracking. The maximum principal tensile 

stress of the web can be determined from linear elastic finite element analyses. The 

highest principal stresses are typically found around the disturbed areas (Section 2.1.3). 

By using a finite element analyses, the principal stresses in the disturbed areas can be 

determined accurately. Equations 3.1, 3.2 and 3.4 are not suitable to predict the stresses 

in these disturbed areas (Section 3.3).  

To investigate the tensile strength of the web, only experiments are used in which no 

flexural cracks are present at diagonal tension cracking. In Section 3.5 it will be demon-

strated that flexural cracks can affect the diagonal cracking process significantly. By 

considering experiments without flexural cracks, this influence is avoided. For experi-

ments without cracks, linear elastic analyses are appropriate to investigate the 

distribution of the principal tensile stresses. In the current section, it is assumed that 

there is no effect of bi-axial behaviour and no statistical size effect. These two phenom-

ena will be further investigated in Section 3.2.  
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Experiments without flexural cracks are selected from the database on diagonal tension 

cracking (Appendix A). The substantiation whether experiments are considered as ex-

periment with or without flexural cracks is given in Appendix B. Whether flexural 

cracks are present is based on both the descriptions in the associated research reports 

and hand calculations. The longitudinal stress in the ultimate fibre (σx) at the cross-sec-

tion of the point load is determined using a hand calculation for the load that caused 

diagonal tension cracking. If σx is (significantly) smaller than the flexural tensile strength 

of concrete, fctm,fl, it is assumed that no flexural cracks are present. For this selection 

criterion, the flexural tensile strength is determined using Equation 3.5 (NEN 2005). In 

this equation, h is the girder height and fctm is the uniaxial tensile strength of concrete. 

𝑓𝑐𝑡𝑚,𝑓𝑙 = max ((1.6 −
ℎ

1000
) 𝑓𝑐𝑡𝑚 , 𝑓𝑐𝑡𝑚) (3.5) 

Sixteen experiments could be categorized as ‘experiments without flexural cracks’. This 

concerns experiments of Elzanaty et al. (1986), Choulli (2005) and Hanson (1964) and 

Leonhardt et al. (1973). Eleven of these experiments remained free of flexural cracks 

according to both the descriptions in the associated reports and according to the hand 

calculations. Five experiments are selected for which it was not reported whether flex-

ural cracks were observed before diagonal tension cracking. These experiments were 

selected based on only the results of the hand calculations. Because for these experi-

ments a description was missing to confirm that no flexural cracks were present, only 

experiments are selected for which σx is significantly smaller than the flexural tensile 

strength of concrete (σx ≤ 0.75 fctm,fl). To ensure that only experiments free of flexural 

cracks are considered, experiments were not selected if hand calculations resulted in the 

prediction that flexural cracks should be present but the reports described that the ex-

periments remained free of flexural cracks. Appendix B lists the results of the hand 

calculation, whether flexural cracks are reported and the final categorization. 

Linear elastic finite element analyses are carried out for twelve experiments of Elzanaty 

et al. (1986) and Choulli (2005) and two experiments of Hanson (1964). For the two 

selected experiments of Leonhardt et al. (1973) no finite element analyses are carried 

out (Table 3.1). The finite element analyses of the experiments of Choulli and Elzanaty 

et al. are described in Kroeze (2018) and the finite element analyses of the experiments 

of Hanson are described in Sugianto (2019). These reports describe how the girders are 

modelled, which analyses are carried out, how the models are verified and what the 

results of the analyses are. The analyses are carried out using the finite element pro-

gramme DIANA. The girders are discretised with a 2D quadrilateral plane stress 

elements with a linear interpolation of the displacements. The thickness of the experi-

ment is modelled using a thickness function. To gain accurate results a mesh was used 
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of 25 x 25 mm2. The reinforcing and prestressing steel are modelled as embedded rein-

forcement.  

Table 3.1 Number of experiments without flexural cracks used in analyses 

 Elzanaty et al. (1986)  

and Choulli (2005) 

Hanson 

(1964) 

Leonhardt 

et al. (1973) 

Experiments CW1, CW2, CW4, CW5, CW8, 

CW13, CW14, CW16, CW17, 

HAP1E, HAPTE, HAP1W 

F-1A and  

F-1B 

ŢP2 and  

ŢP4 

Linear elastic finite element 

analyses 
12 2 - 

Section 3.1 Experimentally 

found tensile strength of web  
12 2 - 

Section 3.2 bi-axial behaviour 12 - - 

Section 3.2 bi-axial behaviour 

and statistical size effect 
12 2 - 

Section 3.3 disturbed areas 12 2 - 

Section 3.4 aspects affecting the 

accuracy for girders without 

flexural cracks 

12 2 2 

Figure 3.2 shows an example of a finite element model of experiment HAP1E. 

(Choulli 2005) The principal (tensile) stresses are determined for the load that caused 

diagonal cracking. 

 

Figure 3.2. Finite element model of experiment HAP1E (Kroeze 2018) 

For the selected experiments, the maximum principal tensile stress in the web at diago-

nal tension cracking (σ1max) is determined. The found distribution of the principal tensile 

stresses is further analysed in Section 3.3. The tensile strength of the web is expressed 

as a fraction of the uniaxial tensile strength of concrete. The uniaxial tensile strength is 

derived from the cylinder compressive test even if splitting tests are available. This ap-

proach is chosen because it corresponds to the approach used in practice to determinate 

the tensile strength. Moreover, Reineck et al. (2012) describe that the uniaxial tensile 

strength can be accurately derived from the concrete cylinder compressive strength. This 

is found by comparing the uniaxial tensile strength derived from cylinder compressive 

test and the uniaxial tensile strength derived from splitting test for experiments where 

both material test are carried out. Equation 3.6 is used to determine fctm for experiments 

in which fcm ≤ 54 N/mm2 and Equation 3.7 for experiments in which fcm > 54 N/mm2. 
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This corresponds with the equations applicable for experiments as described by Reineck 

et al. (2012).  

Although the limit of fcm = 54 N/mm2 corresponds to NEN (2005), it could be considered 

to use 58 N/mm2 instead to prevent a discontinuity at the transition of Equation 3.6 to 

3.7. This discontinuity is not present in NEN (2005) in which the relation 

fctm = 0.30 (fcm – 8)2/3 is used instead of Equation 3.6 and which is applicable for struc-

tures in practice (which show a larger variation of the concrete compression strength 

than for experiments carried out under laboratory conditions). However, the limit of fcm 

= 54 N/mm2 is maintained, as this corresponds to the equations proposed by Reineck et 

al. (2012). 

𝑓𝑐𝑡𝑚 = 0.30 (𝑓𝑐𝑚 − 4 )2 3⁄  (3.6) 

𝑓𝑐𝑡𝑚 = 2.12 ln(1 +  𝑓𝑐𝑚 10⁄ ) (3.7) 

For fourteen experiments without flexural cracks, linear elastic finite element analyses 

are carried out (Table 3.1). The maximum principal tensile stress σ1max is set equal to the 

maximum value for σ1 for all points of the mesh and is listed in Appendix C. Appendix 

C also lists σ1max/fctm for each experiment. A mean value of σ1max/fctm is found of 0.84. If 

it is assumed that the stress distribution simulated by the finite element analyses is ac-

curate and that diagonal cracks form when the maximum principal tensile stress equals 

the tensile strength of concrete, the average tensile strength of the web should corre-

spond to Equation 3.8.  

𝑓𝑐𝑡𝑚,𝑤𝑒𝑏 =  0.84𝑓𝑐𝑡𝑚  (3.8) 

The found tensile strength of the web is lower than fctm which is used in NEN (2005). In 

all these equations the effect of bi-axial behaviour and a statistical size effect are not 

explicitly considered. These phenomena will be further investigated in Section 3.2. 

The coefficient of variation of σ1max/ fctm is found to be 6.7% (Appendix C). Despite that 

bi-axial behaviour and a statistical size effect are not explicitly considered, diagonal 

tension cracking of girders without flexural cracks can be predicted rather consistent 

using linear elastic finite element analyses.  

3.2 Bi-axial behaviour and statistical size effect 

The average principal tensile stresses in the web at which diagonal tension cracks form 

is lower than the uniaxial tensile strength of concrete as found in Section 3.1. In literature 

two possible phenomena are described that support this finding (Section 2.1.4). The first 

phenomenon is bi-axial behaviour. From tests on bi-axially loaded small membranes, it 
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is found that the tensile strength reduces with increasing lateral compressive stresses. 

The second phenomenon is a statistical size effect. The statistical size effect concerns 

the phenomenon that if a larger region of a member is subjected to high tensile stresses, 

the chance of encountering a weak spot increases and the member cracks at lower prin-

cipal tensile stresses. This section investigates both phenomena.  

Firstly, it is investigated whether the strength of the web can be predicted accurately 

using two models from literature that describe bi-axial behaviour (which will be ex-

plained hereafter), ignoring the presence of a statistical size effect. For this investigation 

the results of the finite element analyses are used. In contradiction to Section 3.1, the 

analyses are not only based on the found principal tensile stress σ1, but also on the lateral 

principal compressive stress σ2. The bi-axial strength (defined as fctm,eff) is found by mul-

tiplying the uniaxial tensile strength fctm (according to Equations 3.6 and 3.7) with a 

factor. The first investigated model from literature is the Mohr-Coulomb approximation 

as described in Section 2.1.4 (Equation 2.7). The factor used in this model is listed in 

Table 3.2. According to this factor, the tensile strength reduces linearly from fctm at σ2 = 0 

to zero at σ2 = -fcm. The second investigated model from literature is the empirically 

relation derived by Huber (2016). This relation is also described in Section 2.1.4 (Equa-

tion 2.8, which is applicable for -0.9 ≤ σ2 /fcm ≤ -0.1). Also the factor used in this model 

is listed in Table 3.2. According to this equation, the reduction of fctm does not only de-

pend on σ2, but also on the concrete cylinder compressive strength fcm.  

Table 3.2. Factors by which fctm has to be multiplied o account for bi-axial behaviour  

No bi-axial behaviour Mohr-Coulomb Approximation 

(Section 2.1.4) 

Huber (2016) 

(Section 2.1.4) 

1 1.0 +
𝜎2

𝑓𝑐𝑚
 1.6 − 0.2 𝑓𝑐𝑚

1
3 −  0.6 

𝜎2

𝑓𝑐𝑚
 

 (Equation 2.7) (Equation 2.8) 

To determine whether the accuracy increases using the factors from literature (Ta-

ble 3.2), the results of the twelve finite element analyses carried out by Kroeze (2018) 

are considered (Table 3.1). In this study, σ1 and σ2 are determined for the load that causes 

diagonal tension cracking for each point of the mesh. By combining these values with 

fcm, the values of σ1/fctm,eff  could be determined. For each experiment, the maximum of 

σ1/fctm,eff  is listed in Appendix D, for both the Mohr-Coulomb approximation (Equation 

2.7) and the equation found by Huber (Equation 2.8).  

The results for the twelve experiments are shown in Table 3.3, Figure 3.3, Figure 3.4 

and Figure 3.5. The mean value and coefficient of variation for the situation that no bi-

axial behaviour in considered deviates somewhat from Section 3.1. This deviation is 
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caused by the two additional experiments that are considered in Section 3.1 (Table 3.1, 

Appendix D).  

Table 3.3. Statistical properties of σ1max/fctm,eff  for depending on model for bi-axial behaviour  

 

 No bi-axial behaviour Mohr-Coulomb 

approximation 

(Equation 2.7) 

Huber (2016) 

 

(Equation 2.8) 

σ1max/fctm,eff  Mean 0.83 1.01 1.29 

Coefficient of variation 5.2% 6.7% 8.2% 

 

   

Figure 3.3. σ1max/fctm,eff  versus σ2/fcm using fctm and three models for bi-axial strength 

For the considered experiments, fcm varies between 41 ≤ fcm ≤ 99 N/mm2, as shown in 

Figure 3.4. This complies with the range found for existing bridges in the Dutch High-

ways, for which fcm varies between 43 ≤ fcm ≤ 84 N/mm2 (Table 1.1).  

Figure 3.5 shows that considered experiments σcp/fcm varies between -0.20 ≤ σcp/fcm  

≤ -0.10. This party complies with the range for existing bridges in the Dutch Highways, 

for which σcp/fcm varies between -0.20 ≤ σcp/fcm ≤ -0.04 (Table 1.1). Only for -0.10 ≤ 

σcp/fcm ≤ -0.04 , for which it could be expected that the effect of bi-axial behaviour is less 

significant, no experimentally data is available. 

It is found that using the Mohr-Coulomb approximation (grey diamonds, dashed grey 

trend line) results in σ1max / fctm,eff  of almost unity (Table 3.3). However, for high values 

of σ2/fcm and for high values of fcm, the predicted strength of the web is overestimated 

(Figure 3.3 and 3.4). If the equation derived by Huber (grey triangles, continuous grey 

trend line) is used it is found that the tensile strength of the web was significantly un-

derestimated (Table 3.3), especially for high values of σ2 / fcm (Figure 3.3) and high 
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values of fcm (Figure 3.4). Moreover, it was found that the consistency of the predictions 

for both models slightly decreases compared to simply using the uniaxial strength and 

neglecting the bi-axial behaviour (white circles, dashed black trend line in Figures 3.3 

and 3.4). Based on these results, it is plausible that bi-axial behaviour is the cause that 

the web cracks at principal tensile stresses below the uniaxial tensile strength, as was 

found in Section 3.1. However, regarding the increase of the coefficient of variation of 

the predictions, the difference cannot be satisfactorily explained by only considering the 

existing models for bi-axial strength. 

    

Figure 3.4. σ1max/fctm,eff  versus fcm using fctm and three models for bi-axial strength 

   

Figure 3.5. σ1max/fctm,eff  versus σcp/fcm using fctm and three models for bi-axial strength 

In the second part of this section, a statistical size effect is considered in addition to the 

bi-axial behaviour as discussed in the first part of this section. An equation is derived 

for the tensile strength of the web that considers both phenomena.  
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The suggested equation is based on four assumptions: 

1. The bi-axial behaviour is well described using the Mohr-Coulomb approximation. 

2. The tensile strength is inversely proportional to the fourth root of the size (Collins, 

1997).  

3. This size corresponds to the length along the longitudinal axis over which the princi-

pal tensile stresses are between 90% and 100% of the maximum principal tensile 

stresses (this length is defined as lσ1).  

4. The principal tensile stress (σ1m) and principal compressive stress (σ2m) at the point at 

the mid-length of lσ1 and at mid-height of the points defining lσ1 are representative for 

the stresses at which diagonal tension cracking occurs (Figure 3.6). 

The factor by which the bi-axial tensile strength has to be multiplied to consider a sta-

tistical size effect will be derived using four of the experiments that are categorized as 

‘No flexural cracks present’ (Figure 3.6). For these experiments the area of the web in 

which σ1 is between the 90% and 100% of σ1max are shown in dark grey in Figure 3.6. 

The principal tensile stresses are based on the results of the finite element analyses car-

ried out by Kroeze (2018) and Sugianto (2019). The concrete tensile strength is not a 

fixed value but will have a spatial variation. It is likely that diagonal tensile cracks will 

initiate from the location with the lowest tensile strength. Cracks are expected in the 

area associated with lσ1, shown as light grey parallelograms in Figure 3.6 (which is con-

firmed by observations).  

The results of finite element analyses are used to determine lσ1 for each of the four gird-

ers. It is assumed that the tensile strength is inversely proportional to the fourth root of 

a critical size, defined as lσ1. The factor for the statistical size effect is defined as (l0/lσ1)1/4 

(Equation 3.9). The parameter l0 is introduced to determine the value of lσ1 for which no 

size effect is present. Equation 3.9 is the equation for the tensile strength fctm,2s  in which 

both the factor for bi-axial behaviour according to the Mohr-Coulomb approximation 

and the factor for a statistical size effect are combined. The parameter l0 is determined 

based on the four experiments by equating fctm,2s and σ1m at a point at the mid-length of 

lσ1 and at mid-height of the points defining lσ1 (halfway the length of the white arrows 

as shown in Figure 3.6). The results are shown in Table 3.4. A mean l0 was found of 710 

mm from the four experiments (Table 3.4). In the derived for the tensile strength of the 

web (Equation 3.10) a slightly higher value is used for l0 of 750 mm (as rounded gross 

value). 

𝑓𝑐𝑡𝑚,2𝑠 =  (1.0 +
𝜎2𝑚

𝑓𝑐𝑚
⁄  ) (

𝑙0
𝑙𝜎1

⁄ )
1

4⁄

 𝑓𝑐𝑡𝑚 (3.9) 
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Figure 3.6. areas in which 0.9σ1max ≤ σ1 ≤ σ1max and lσ1 used to derive a statistical size effect 

Table 3.4. Data used for derivation of a statistical size effect factor l0  

Experiment fcm fctm σ2m 1.0 +
𝜎2

𝑓𝑐𝑚
 fctm,eff σ1m 

𝜎1𝑚

𝑓𝑐𝑡𝑚,𝑒𝑓𝑓
 lσ1 l0 

 N/mm2 N/mm2 N/mm2 - N/mm2 N/mm2 - mm mm 

HAP1W 99.2 5.07 -13.7 0.86 4.36 3.81 0.87 1075 620 

CW8 41.4 3.35 -11.5 0.72 2.42 2.59 1.07 680 890 

CW1 76.6 4.58 -15.7 0.79 3.64 4.35 1.20 410 840 

F1A 47.0 3.68 -9.7 0.79 2.93 3.37 1.15 270 480 

Mean          710 

 

𝑓𝑐𝑡𝑚,2𝑠 =  (1.0 +
𝜎2𝑚

𝑓𝑐𝑚
⁄  ) (750

𝑙𝜎1
⁄ )

1
4⁄

 𝑓𝑐𝑡𝑚 (3.10) 
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To investigate whether the strength of the web can be predicted more accurately if both 

bi-axial behaviour and a statistical size effect are considered, σ1max/fctm,2s is determined 

for all of the 14 experiments without flexural cracks for which linear elastic finite ele-

ment analyses are carried out (Table 3.1). The area in which the principal tensile stress 

are higher than 90% of the maximum principal tensile stress, lσ1, σ1m and σ2m are deter-

mined in the same way as for the four experiments of Figure 3.6 that were used to derive 

l0. The tensile strength of the web is determined from Equation 3.10. The results for the 

fourteen experiments are shown in Appendix D, Figure 3.3, Figure 3.4 and Figure 3.5 

(black circles and a continuous black trend line).  

Table 3.5 compares the results of the derived equation for the tensile strength of the web 

(Equations 3.10) and the results of using the uniaxial tensile strength of concrete. It is 

found that both the mean value and the coefficient of variation significantly improves if 

a statistical size effect and bi-axial behaviour is considered. Moreover, the predictions 

were found to be consistent for the considered ranges of σ2 / fcm (as found from Figure 

3.3) and fcm (as found from Figure 3.4).  

Table 3.5. Statistical properties of σ1max / fctm for bi-axial behaviour and a statistical size effect 

fctm,web  

Statistical size effect 

Bi-axial behaviour 

fctm (Equations 3.6, 3.7) 

no 

no 

fctm,2s (Equations 3.6, 3.7, 3.10) 

yes 

yes 

σ1max/fctm  Mean 0.84 1.01 

Coefficient of variation 6.7% 2.3% 

As the derived tensile strength is found to result in particular accurate predictions, it is 

not necessary to further reconsidered the four assumptions that are used to derive Equa-

tion 3.10. In Section 3.1 it was found that the tensile strength of the web is about 84% 

of the uniaxial tensile strength. The difference can satisfactorily be explained by consid-

ering both the bi-axial strength and a statistical size effect.  

In the current section the principal stresses are determined numerical and only for gird-

ers without flexural cracks. Sections 3.4 and 3.5 investigate the accuracy of the predicted 

resistance, without considering bi-axial behaviour and a statistical size effect, when the 

principal stresses are analytical determination, for girders both with and without flexural 

cracks. Based on the results of Section 3.4 and 3.5, and some additional considerations, 

bi-axial behaviour and a statistical size effect will not be part of the models proposed 

models in Chapter 4. This is further argued in Chapter 4. 
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It is noted that it could also be considered to relate the tensile strength to the size ‘sur-

face’ or ‘volume’. This is not further investigated considering the consistent predictions 

of Equation 3.101. 

3.3 Principal tensile stresses in disturbed areas 

In this section the disturbed areas are analysed. The distribution of the principal stresses, 

as found from the finite element analyses for experiments without flexural cracks (Sec-

tion 3.2) will be further evaluated. Subsequently the results of the finite element analyses 

are compared to the results of the analytical equation which derives the maximum prin-

cipal tensile stress from the cross sectional forces using Equations 3.1, 3.2 and 3.4. 

Finally, it is evaluated if it is possible to approximate the results of the finite element 

                                                             

1 In a recent research the ‘cracking size effect’ has been investigated (Bentz 2019, Bentz 2020). 

The ‘cracking size effect’ is a synonym for the ‘statistical size effect’ as used in this dissertation. 

The recent research reveals that it is possible to relate the cracking strength of concrete to the 

volume within which the tensile stress is at least equal to 85% of the maximum value (the 

Highly Stressed Volume, abbreviated as HSV). This relation is referred to as the ‘unified tension 

model’. The model is justified with 511 tension tests, consisting of flexural tests, direct tension 

tests, split cylinder tests and shells. The ‘unified tension model’ relates the tensile strength to 

the highly stressed volume, which seems in contrast to the derived model in this dissertation 

(Equation 3.10). In Equation 3.10, the tensile stress is related to a length along the longitudinal 

axis, related to an highly stressed surface. It is however noted that no diagonal tension tests with 

girders were used to justify the unified tension model. A possible reason for the difference be-

tween both models, is whether a significant gradient of the (principal) tensile stresses is present 

in the associated tests. For direct tensile tests, split cylinder tests and the shell tests, the stresses 

are uniformly distributed over the whole highly stressed volume and no redistribution is possi-

ble when at the weakest spot the tensile stress is equal to the tensile strength. For diagonal the 

tension test on girders, on the other hand, the principle tensile stress is only locally equal to the 

tensile strength, and the area around the weakest spot can resist additional stresses. This could 

potentially postpone diagonal tension cracking. The possibility to redistribute stresses could be 

a possible explanation for the difference between both models. It is noted that the model derived 

in this dissertation (Equation 3.10) also takes into account the conditions that the principal com-

pressive stress differs in every spot of the highly stressed surface. In the tests for the unified 

tensile model, on the other hand, a constant value could be assumed for σ2/fcm for each type of 

tests (0-10%, which was significantly lower than 14-28% found for the diagonal tension tests 

on girders). It is not yet clear how the different values of the principal compressive stress should 

be taken into account when the unified tensile model is applied. These conditions currently 

complicate a direct application of the ‘unified tension model’ for the prediction of diagonal 

tension cracking.   
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analyses by limiting the considered area around the concentrated loads for which the 

maximum principal stress are determined using Equations 3.1, 3.2 and 3.4 (Figure 3.7). 

Figure 3.7 shows girder HAP1E of the Choulli test series (Choulli 2005). The relation 

between the cross sectional forces and the distribution of the principal tensile stresses, 

based on Equations 3.1, 3.2 and 3.4, is already described in Section 2.1.3. The principal 

stress distribution can be exemplified by only considering the principal stress distribu-

tion along the axis that coincides with the intersection of the top flange and the web, the 

centroidal axis and the axis that coincide with the intersection of the web and the bottom 

flange. These considered axes are shown in Figure 3.7. 

  

Figure 3.7. Location of considered axis, cross-sections and areas of experiment HAP1E  

Figure 3.8 shows the distribution of the principal tensile stresses along each defined 

axis. The continuous black lines show the principal tensile stresses as found from the 

finite element analyses. The dashed lines show the principal tensile stresses as found 

from the cross sectional forces using Equation 3.1, 3.2 and 3.4.  

 

Figure 3.8. Distribution of σ1 along defined axes determined both numerical and analytical  

It appears that at the location of the concentrated forces (support plate at x = 0 m and 

loading plate at x = 2.1 m) the principal tensile stresses are significantly overestimated 

using Equation 3.1, 3.2 and 3.4. It also appears that in the middle region (the areas which 

are not ‘disturbed’) the principal tensile stresses are more accurately approached using 

Equation 3.1, 3.2 and 3.4.  



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 71PDF page: 71PDF page: 71PDF page: 71

 

55 

To further investigate the cause of the deviation, a cross-section in the disturbed area is 

considered at a location 300 mm from the point load, at x = 1.8 m (Figure 3.7). The 

distribution of the longitudinal stresses σx, the vertical stresses σz, the shear stresses τ 

and the resulting σ1 along the cross-section (z direction) are shown in Figure 3.9. The 

stresses are shown both as result of the finite element analyses (dots) and derived from 

the cross sectional forces using Equations 3.1, 3.2 and 3.4 (continuous line).  

 

Figure 3.9. σx, σz , τ and σ1 along cross-section at x = 1.8 m 

In Table 3.6, the principal tensile stresses are more extensively compared at x = 1.8 m, 

at the location of z in which the maximum value of σ1 is found (black dots in Figure 3.9). 

As shown in Table 3.6, the principal tensile stress is significantly overestimated using 

Equations 3.1, 3.2 and 3.4 compared to the principal tensile stresses found from the finite 

element analyses (which are considered as accurate). Using Equation 3.2 results in an 

overestimation of the longitudinal stresses (Figure 3.9). A higher longitudinal stress (less 

compression) results in a higher principal tensile stress (Equation 3.3). This is the first 

cause of the overestimation of σ1 by the analytical equations. Equations 3.4 conserva-

tively neglects any contribution of the vertical stresses (Section 2.1.2). Figure 3.9 shows 

that, at the considered location, a negative (compression) vertical stress is present that 

will result in a lower principal tensile stress (Equation 3.3). This is the second cause of 

the overestimation of σ1 by using the analytical equations. Using Equation 3.1 also re-

sults in an overestimation of the shear stresses. A higher shear stress results in a higher 

principal tensile stress (Equation 3.3). This is the third cause of the overestimation of σ1 

by using the analytical equations. All three causes were found to have a comparable 

contribution to the overestimation of σ1 for the considered girder.  
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Table 3.6. σx, σz , τ and σ1 at x = 1.8 m and 1.6 m at the intersection of web and bottom flange 

 x σx σz τ σ1 

 m N/mm2 N/mm2 N/mm2 N/mm2 

Finite element analyses 1.80 -7.05 -0.90 5.81 2.60 

Analytical Equations 3.1, 3.2 and 3.4 1.80 -5.30 0.00 6.69 4.55 

Finite element analyses 1.65 -7.76 -0.38 6.51 3.41 

Analytical Equations 3.1, 3.2 and 3.4 1.65 -6.17 0.00 6.70 4.29 

Apparently, the principal tensile stresses are overestimated around the disturbed area if 

Equations 3.1, 3.2 and 3.4 are used. The finite element analyses demonstrate that the 

maximum principal tensile stress is not located in an area close to the support (Fig-

ure 3.8). If the stresses are considered further away from the support the stresses 

determined with analytical equations correspond better with the stresses determined 

with the finite element analyses (Figure 3.8). Therefore, the analytical equation could 

still be suitable to predicted the maximum principal tensile stresses under the condition 

that an area around the support is not considered. This is a logical approach because the 

maximum principal tensile stress is not located close to the support (Figure 3.7). This 

approach corresponds to the Eurocode (NEN 2005) and the Model Code 2010 (fib 2012), 

that prescribe that the principal tensile stresses do not have to be considered for cross-

sections closer to the support than the point that is the intersection of the elastic cen-

troidal axis and a 45° inclined line from the inner edge of the support (Figure 3.7). 

Whether this definition of the ‘not critical area’ results in accurate predictions of the 

maximum principal tensile stress is evaluated. For the evaluation, the prescribed area is 

assumed to be applicable for both the support and the concentrated load. These areas are 

shown in Figure 3.7 in dark grey. As a consequence, the maximum principal tensile 

stress will only be based on the principal tensile stresses in the light grey area.  

Firstly, the suggested dimensions of the ‘not critical area’ is evaluated by reconsidering 

the stress distribution of girder HAP1E. Table 3.6 shows the stresses at the intersection 

of the bottom flange and the web for the location x = 1.65 m which corresponds to the 

edge of the area that has to be considered as described by NEN (2005) and fib (2012). 

As appears from Table 3.6, the predictions of the longitudinal stress and the shear stress 

according to the Equations 3.1 and 3.2 are more similar to the stresses found from the 

finite element analyses, although the equations still slightly overestimate the stresses. 

Also the absolute value of the vertical stress is less at x = 1.65 than at x = 1.8 m, although 

still significant. As a consequence, the principal tensile stress is still overestimated at 

this location (σ1 = 4.29 N/mm2 instead of 3.41 N/mm2). However, according to the finite 

element analyses the maximum value of σ1 was located at a cross-section further away 
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from the concentrated load. According to the finite element analyses the maximum prin-

cipal tensile stress σ1max = 4.19 N/mm2, which is just slightly less than the value found 

using Equations 3.1, 3.2 ad 3.4 at x = 1.65 m (σ1 = 4.29 N/mm2).  

Secondly, the suggested dimensions of the ‘not critical area’ is evaluated by considering 

the fourteen experiments for which linear elastic finite element analyses are carried out 

(Table 3.1). For these experiments σ1 is determined using Equations 3.1, 3.2 and 3.4, 

and σ1max equals the maximum of σ1 in the web (light grey area in Figure 3.7). These 

values for σ1max are compared to σ1max according to the finite element analyses (Appendix 

C). The last column of Appendix C shows that the mean value of the ratio σ1max according 

to Equations 3.1, 3.2 and 3.4 and σ1max according to the linear elastic finite element anal-

yses equals 1.06, with an associated coefficient of variation of 2.9%. It was found that 

the assumed dimensions of the ‘not critical area’ results in a rather accurate prediction 

of σ1max. Despite the significant deviations of σ1 in the areas close to the point loads, 

Equations 3.1, 3.2 and 3.4 are still found to be rather suitable to predict the maximum 

σ1, if the considered area is limited to the light grey area shown in Figure 3.7. This is 

relevant as it avoids extensive finite element analyses in practice. However, it is empha-

sized that this is only demonstrated for girders that remain free of flexural cracks (in 

which σx ≤ fctm,fl both at the support and at point load). Section 3.5 will demonstrate that 

this approach is not suitable in areas where the point loads causes flexural cracks in the 

flanges of the girder (σx > fctm,fl). 

If a distributed load, or a combination of a distributed load and a point load are applied, 

the shear stresses will increase toward the support. This phenomenon is not included in 

the considerations of this section. On the other hand, neglecting the vertical stresses will 

still result in an overestimation of the principal tensile stress at the critical spot using the 

analytical equations, also for distributed load. Moreover, determining the longitudinal 

stress using the analytical equations will, also for distributed loads, result in an overes-

timation of the principal tensile stress. Nevertheless, the difference in loading conditions 

will be a reason to include some conservatism when the design value for the eventually 

proposed model is derived for girders without flexural cracks (Section 4.3). This is be-

cause distribution of the shear stresses in bridges is, due to the presence of distributed 

loads, less favourable, compared to the experiments used to derive the design value, 

which were loaded with concentrated loads. 

3.4 Aspects affecting the accuracy for girders without flexural cracks 

This section only concerns girders without flexural cracks for which a model will be 

proposed in Section 4.1. This section investigates the effect on the accuracy when the 

maximum principal tensile stresses σ1max is based on σ1 along the centroidal axis instead 
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of σ1 over the web area. The effect is investigated by comparing accuracy of the predic-

tions according to both models, using the experimentally found load that caused 

diagonal tension cracking (Figure 3.1). The maximum principal tensile stress σ1max is 

determined using Equations 3.1, 3.2 and 3.4. for the 16 experiments without flexural 

cracks (Table 3.1), both for the model considering σ1 over the (light grey) web area and 

for the model that considers σ1 only along the centroidal axis (Figure 3.7). The maximum 

principal tensile stresses are compared to the uniaxial tensile strength. The results are 

listed in Appendix C (‘Maximum σ1 in the web’ and ‘Maximum σ1 along the centroidal 

axis’). When the experimental results are used to determine the mean value of a pro-

posed models, only the coefficient of variation will be relevant for the judgement of 

which model is the most accurate. The results are shown in Table 3.7.  

Table 3.7. Effect of considered area for σ1max on the statistical properties of σ1max/fctm  

 
 Maximum σ1 in the web Maximum σ1 in the along 

 the centroidal axis 

Number of experiments 16 16 

σ1max/fctm  Mean 0.89 0.79 

Coefficient of variation 5.2% 11.8% 

As appears from Table 3.7, the most accurate predictions are found if σ1max is based on 

σ1 over the web area. This approach will therefore be used in the proposed model for 

girders without flexural cracks in Section 4.1. In this section a assuming tensile strength 

of the web fctm,web will be assumed of 0.89fctm. By assuming a tensile strength of the web 

of 0.89fctm, the mean value of σ1/fctm,web for the 16 considered experiments becomes unity. 

The proposed tensile strength of the web is somewhat higher than the value 0.84fctm 

found in Section 3.1. This corresponds to the finding of Section 3.3, that σ1max is average 

6% higher according to Equations 3.1, 3.2 and 3.4 than according to the finite element 

analyses (Appendix C).  

If σ1max would be based on σ1 along the centroidal axis, a strength of the web fctm,web 

should be assumed of 0.79fctm. This value is somewhat lower than the value 0.84fctm 

derived in Section 3.1. If the σ1max is located at another location than the centroidal axis, 

which will be generally the case (Section 2.1.3), then this model will lead to an under-

estimation of σ1max. This explains the lower value of fctm,web which should be assumed 

when this model is used. The coefficient of variation significantly increases compared 

to the model that considers σ1 over the entire height of the web (light grey area in Figure 

3.6). This difference will be explained using the results of the experiment ŢP2 of Leon-

hardt for which σ1/fctm is shown in Figure 3.10. The principal tensile stress σ1 is 

determined from the cross sectional forces using Equations 3.1, 3.2 and 3.4. As shown 

in Figure 3.10, a maximum value for σ1 is found at intersection of the top-flange and the 
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web. This value (0.81fctm) is significantly higher than the maximum of σ1 along the cen-

troidal axis (0.55fctm). Therefore, it is plausible that the formation of diagonal tension 

cracks is initiated around the location at which σ1 = 0.81fctm. If σ1max would have been 

only based on σ1 along the centroidal axis, the resistance to diagonal tension cracking 

would have been underestimated significantly. Therefore, the model that is proposed in 

Section 4.1 considers σ1 over the complete height of the web (light grey area of Figure 

3.6) instead of only at the centroidal axis.  

  

Figure 3.10. σ1max / fctm at the load causing diagonal tension cracking for experiment ŢP2 

3.5 Aspects affecting the accuracy for girders with flexural cracks 

In the previous sections, the resistance to diagonal tension cracking of girders without 

flexural cracks is investigated. Determining the maximum principal tensile stress for 

these girders from linear elastic analyses is rather indisputable. As the effect of flexural 

cracks on cracking process was not present, experiments on girders without flexural 

cracks were suitable to investigate the effect of bi-axial behaviour, a statistical size effect 

and the distribution of principal tensile stresses around concentrated loads. Also for gird-

ers with flexural cracks it is common to determine the maximum principal tensile stress 

in the region without flexural cracks using Equations 3.1, 3.2 and 3.4. These equations 

assume a linear elastic stress distribution in the regions without flexural cracks, not dis-

turbed by flexural cracks. For girders with flexural cracks this assumption is disputable. 

Flexural cracks at the edge of the region without flexural cracks can affect the stress 

distribution in regions without flexural cracks (Leonhardt et al. 1973). Moreover, as will 

be explained later in this section, flexural cracking itself could initiate diagonal tension 

cracking in the regions without flexural cracks.  

The effect of flexural cracks on diagonal tension cracking is investigated using experi-

ments from the diagonal tension cracking database (Section 2.2) with flexural cracks. 

The method to determine whether flexural cracks are present is already described in 
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Section 3.1 (and listed in Appendix B). As explained in Section 3.1, 16 of the 70 exper-

iments in the diagonal cracking database were categorized as ‘girders without flexural 

cracks’ (these are used for the analyses in Sections 3.1 to 3.4). In this section, experi-

ments will be used in which flexural cracks were present at diagonal tension cracking 

(Appendix B). Of the 70 experiments in the diagonal cracking database 43 were catego-

rized as ‘girders with flexural cracks’. To ensure the right categorization, only 

experiments were categorized for which hand calculations and the observations corre-

spond. For 11 experiments, the calculations and observations did not match and these 

experiments were categorized as ‘Unknown’(Appendix B) and were not further used for 

the analyses in the current section.  

This section will illustrate that for a part of the experiments with flexural cracks, diago-

nal tension cracking were initiated by flexural cracks. To relate the experiments to 

whether a flexural crack caused diagonal tension cracking, the experiments are catego-

rized in three types of diagonal tension cracking, based on a method that will be 

explained further in this section (Appendix E): 

 type a: no flexural cracks are present (these correspond to the ones in Appendix B, 

these are not further used in this section, but included for completeness) 

 type b: flexural cracks are present but these flexural cracks did not cause diagonal 

tension cracking 

 type c: flexural cracks are present and these flexural cracks caused diagonal tension 

cracking. 

Cracking type b will now be discussed. Even if flexural cracks are present, diagonal 

cracks can form independently of the formation of these flexural cracks. In other words, 

flexural cracks are present but do not cause diagonal tension cracking. An example for 

this type of diagonal tension cracking is shown in Figure 3.11, for the end part of the 

simply supported girder of experiment F2-B of Hanson (1964).  

    

Figure 3.11. σ1max / fctm at the load causing diagonal tension cracking for experiment F2-B  
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The regions with and without flexural cracks are predicted for the load that causes diag-

onal tension cracking and these are shown in this figure by the condition σx = fctm,fl. 

Figure 3.11 shows that the observed flexural crack is indeed located in the region in 

which flexural cracks are predicted. From Figure 3.11 it also appears that the diagonal 

tension cracks did not form in the vicinity of the flexural crack. This is an indication that 

the diagonal cracking was not caused by the formation of the flexural crack. This figure 

also shows σ1 / fctm along three axis: the intersection of the top flange and the web, the 

centroidal axis and the intersection of the web and the bottom flange. The principal ten-

sile stresses σ1 are determined at load that causes diagonal tension cracking using 

Equations 3.1, 3.2 and 3.4. Although it is unclear what point is responsible for the initi-

ation of the diagonal tension crack, it is clear that the principal tensile stress are 

significant over a large part of the web. The significant principal tensile stresses and the 

distance of the observed flexural crack to the diagonal tension crack makes it plausible 

that the stress condition in the web it selves caused diagonal tension cracking. 

The 43 experiments with flexural cracks (Appendix B) are categorized as ‘type b’ if two 

conditions are met: (i) From the observations (a cracking pattern or a photo) it is clear 

that diagonal tension cracks did not form in the vicinity of a flexural crack and (ii) from 

calculations (Equations 3.1, 3.2 and 3.4) it is found that the principal tensile stresses are 

significant in the web (close to the strength of the web). It was found that 12 of the 43 

experiments meet both these conditions (Appendix E).  

Cracking type c will now be discussed. The formation of a flexural crack can be the 

cause for diagonal tension cracking. An example for this type of diagonal tension crack-

ing is shown in Figure 3.12, for the continuously supported girder of experiment SR25 

reported in Rupf et al. (2012). This figure presents the region between the point of con-

traflexure and the middle support. The regions with flexural cracks is predicted using 

the condition σx = fctm,fl and the regions are shown in Figure 3.12. This figure shows that 

the observed flexural cracks are indeed closely related to this predicted region. 

   

Figure 3.12. σ1max / fctm at the load causing diagonal tension cracking for experiment SR25  
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Before diagonal tension cracks formed, only the shallow flexural crack straight above 

the middle support was present (described as ‘Flexural crack 1’ in Figure 3.12). At the 

load that causes diagonal tension cracking, the other flexural cracks (described as Flex-

ural cracks 2 and 3 in Figure 3.12) and the diagonal cracks formed at once at the same 

load step (this finding is based on drawings of the cracks at each load stage combined 

with strain measurements of the stirrups). Figure 3.12 shows that diagonal tension cracks 

form directly below Flexural crack 3. This is an indication that the diagonal cracking 

was caused by the formation Flexural crack 3. Figure 3.12 shows σ1 / fctm, in which σ1 is 

determined from Equations 3.1, 3.2 and 3.4. The distribution of this ratio shows that the 

principal tensile stresses are significantly lower than the tensile strength of the web, over 

almost the entire web. Despite the low principal stresses in the web, diagonal tensile 

cracks formed in the entire considered part of the girder. It is plausible that flexural crack 

3 caused an increase in the principal tensile stresses in the web below, which triggered 

the diagonal tension crack. This makes it plausible that the flexural crack caused diago-

nal tension cracking of the web.  

The 43 experiments with flexural cracks are categorized as type c if two conditions are 

met: (i) From the observations (a cracking pattern or a photo) it is clear that diagonal 

tension cracks form in the vicinity of a flexural crack and (ii) from calculations it is 

found that the principal tensile stresses are rather low in the web. It was found that 25 

of the 43 experiments meet both conditions (Appendix E).  

Apparently, the principal tensile stress distribution, predicted using Equations 3.1, 3.2 

and 3.4, is affected by the formation of flexural cracks. It is investigated whether the 

model as proposed in Section 3.4 is still suitable to predict diagonal tension cracking for 

the experiments categorized as crack types b and c (Appendix E). To investigate this, 

the web area without flexural cracks are considered (light grey areas in Figure 3.13). 

This includes the cross-section at which σx = fctm,fl. In this cross-section the principal 

tensile stress in the web will be maximum at the intersection of the tensile flange and 

the web. At this point, the longitudinal stresses will be lower than in the ultimate fibre. 

The value of principal tensile stress at this point also depends on the magnitude of the 

shear stresses. The higher the principal tensile stress is at this point, the more likely it is 

that the flexural cracks will trigger diagonal tension cracking in this point. When this 

point is also considered (light grey areas of Figure 3.13), the model could potentially be 

suitable to predict diagonal tension cracking, also if diagonal tension cracking is caused 

by flexural cracks (crack type c). This will now be evaluated.  

In the regions of Figure 13 with flexural cracks, flexural shear is assumed to be govern-

ing and in the regions without flexural cracks, diagonal tension cracking. Figure 3.13 

show the areas in which σ1 were considered to determined σ1max (light grey areas). In the 
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dark grey area at the support, the principal tensile stresses are not considered, as de-

scribed in Section 3.3. For all of the 70 experiments, the light grey regions are 

determined and subsequently the maximum principal tensile stresses in these regions are 

determined at the load causing diagonal tension cracking (using Equations 3.1, 3.2 and 

3.4). The found values for σ1max, and σ1max / fctm, are listed in Appendix E. Only the results 

for the experiments that could clearly be categorized as cracking types a, b and c are 

further considered. 

   

Figure 3.13. Proposed model for the resistance to diagonal tension cracking 

Table 3.8 summarizes the statistical properties per cracking type as found from Appen-

dix E. The statistical properties for the 16 experiments without flexural cracks 

correspond to Table 3.7 and are included for completeness and as reference. The mean 

values found for σ1max / fctm for cracking type b and c are higher than that of cracking 

type a. As the tensile strength of the concrete is not affected by type of cracking, the 

higher ratios will be caused by an overestimation of σ1max. For cracking type b and c, the 

coefficient of variation is found to be higher than for cracking type a. This indicates that 

diagonal tension cracking is less accurate to determine if flexural cracks are present.  

Table 3.8. Statistical properties of σ1max/fctm depending on type of diagonal tension cracking  

 

No flexural 

cracks  

(Section 3.4) 

Flexural cracks present 

(Section 3.5) 

Type of diagonal 

tension cracking 

 Diagonal tension 

cracks not caused 

by flexural cracks 

Diagonal tension 

cracks caused 

by flexural cracks 

Total  

 

(type b & 

type c)  (type a) (type b) (type c) 

Number of  

experiments 
16 12 25 37 

Mean σ1max/fctm  0.89 1.12 0.96 1.01 

Coefficient of varia-

tion σ1max/fctm  
5.2% 7.6% 10.9% 12.3% 

The proposed model for girders with flexural cracks in Section 4.2 will therefore assume 

a tensile strength of the web fctm,web of 1.01fctm. By assuming a tensile strength of the web 

of 1.01fctm, the mean value of σ1/fctm,web for the 37 considered experiments becomes unity. 
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This assumed value for the tensile strength of the web is higher than the one proposed 

for girders without flexural cracks (which was 0.89fctm, Section 3.4). Apparently, the 

principal tensile stresses are somewhat overestimated for girders with flexural cracks. 

This overestimation can be compensated by assuming a higher tensile strength of the 

web. It is not necessary to make a distinction between whether diagonal tension cracks 

are caused by flexural cracks or not (between crack types b and c). Hence, with a coef-

ficient of variation of 12.3% it is possible to rather accurately predict the resistance to 

diagonal tension cracking for girders with flexural cracks. 
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4 
Proposed models for diagonal tension cracking 

The current chapter describes the analytical models that are proposed to determine the 

resistance to diagonal tension cracking. The proposed models are based on the results of 

the analyses of Chapter 3. Also an overview is given of simplifications that are regarded 

as acceptable considering the accuracy found. Moreover some points of attention are 

enumerated that should be considered when determining the maximum principal tensile 

stress. Section 9.3 provides further guidance on the application of the models for engi-

neering practice. 

This chapter proposes two different models for diagonal tension cracking. Section 4.1 

proposes a model for girders without flexural cracks, referred to as ‘model A1’. Section 

4.2 proposes a model for girders with flexural cracks, referred to as ‘model A2’. Section 

4.3 derives the design value for the proposed models, for a target reliability, that can be 

used in engineering practice. Because the design values of both models do not differ 

much, the most conservative value is chosen to be applicable for both models. As a 

result, it is possible to use one model to predict the resistance to diagonal tension crack-

ing in engineering practice, Model A, regardless of whether flexural cracks are present. 

The models that are proposed assume that diagonal cracks form in the web of a pre-

stressed girder if the maximum principal tensile stress equals the derived tensile strength 

of the web. The models are applicable for both simply and continuously supported pre-

stressed girders. 

Equations from previous chapters are repeated (and renumbered) to make this chapter 

more self-contained. 

4.1 Model A1: girders without flexural cracks  

The analytical model proposed to determine the resistance to diagonal tension cracking 

for girders without flexural cracks is referred to as ‘model A1’ and is shown in Figure 

4.1. Figure 4.1 also shows how the analyses of Chapter 3 are used in the proposed model 

by referring to the relevant sections.  
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Figure 4.1. Model A1 –diagonal tension cracking for girders without flexural cracks 

For girders without flexural cracks, in which no flexural cracks or flexural shear cracks 

are present, sufficient resistance to diagonal tension cracking is present if the maximum 

principle tensile stress in the web σ1max is smaller than 0.89fctm (Equation 4.1). If a diag-

onal tension crack forms, a girder without (sufficient) stirrups is considered as failed 

(Section 2.1.1). 

𝜎1max ≤ 0.89𝑓𝑐𝑡𝑚 (4.1) 

The fraction of 0.89 corresponds to the average σ1max / fctm found from back calculations 

of experiments at the load that causes diagonal tension cracking (Section 3.4, Table 3.7). 

The maximum principal tensile stress σ1max should be based on the maximum of σ1 in 

the light grey regions of Figure 4.1.  

Principal tensile stresses can be determined using Equation 4.2.  

𝜎1(𝑧) =
𝜎𝑥 (𝑧)

2
+ √(

𝜎𝑥(𝑧)

2
)

2

+ 𝜏(𝑧)2 (4.2) 

In Equation 4.2, σx(z) is the normal stress in the longitudinal direction and τ(z) is the 

shear stress, both determined assuming a linear elastic stress distribution. For monolithic 

structures, σx(z) can be determined by Equation 4.3, and τ(z) by Equation 4.4. In these 

equations z is the considered distance from the centroidal axis, Ic is the second moment 

of area, Sc(z) is the first moment of area, Ac is the area of the concrete cross-section and 

bw(z) is the width of the web.  

𝜎𝑥(𝑧) =  
𝑁𝐸

𝐴𝑐
+

𝑀𝐸  𝑧

𝐼𝑐
 (4.3) 

𝜏(𝑧) =  
𝑉𝐸𝑆c(𝑧)

𝑏𝑤(𝑧) 𝐼𝑐
 (4.4) 

The maximum principal tensile stresses σ1max should be based on σ1 over the height of 

the girder (light grey area of Figure 4.1). When, as a simplification, σ1max would have 

been based on σ1 along the centroidal axis, the consistency of the predicted resistance to 
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diagonal tension cracking decreases significantly (Section 3.4). This simplification is 

therefore not used in model A1. 

Around the support of a simply supported girder, σ1max is located outside the dark grey 

region as shown in Figure 4.1. This region is defined by a vertical line through the point 

that is the intersection of the elastic centroidal axis and the 45° inclined line from the 

inner edge of the support. This dark grey region is not critical because of the presence 

of σz, which is neglected in Equation 4.5, and the favourable distributions of σx and τ 

(Section 3.4). It is noted that simply supported girders are designed in a way that the 

moment due to prestressing will not cause flexural cracks in the ultimate fibre at the top 

flange at the girder ends. If this is the case, the condition σx < fctm,fl will automatically be 

met at the girder ends. Also the cross-section above the intermediate support could re-

main free of flexural cracks. If this is the case, the same considerations are applicable as 

for the end support. Therefore, if the condition σx < fctm,fl is met, it is also for the inter-

mediate supports not necessary to consider the principal tensile stresses in the dark grey 

region as shown in Figure 4.1. 

Equation 4.3 shows that σx(z) depends on ME (Equation 4.6). Therefore, also σ1 depends 

on ME (Equation 4.5). In engineering practice, it is often unclear if a load combination 

that results in a maximum VE will also cause the highest σ1max. Therefore, different load 

combinations should be considered to determine σ1max (Hegger et al. 2015).  

Model A1 uses the following assumptions which makes it possible to assess bridges in 

a rather simple way: 

 Diagonal cracks form at the instant the maximum principal stress equals the tensile 

strength of concrete.  

 Bi-axial behaviour of concrete is not considered.  

 A statistical size effect is not considered.  

 The presence of stirrups does not affect the resistance to diagonal tension cracking. 

 The longitudinal and shear stresses are determined from the cross-sectional properties 

of concrete Ac, Sc(z) and Ic, and the effect of the stiffness of the reinforcing and pre-

stressing steel on these stresses is not considered. 

Considering the high accuracy of the predicted resistances, the effect of these assump-

tions on the predicted resistance is limited.   

The model assumes that diagonal cracks form at the instant the maximum principal 

stress equals the tensile strength of concrete. In a nonlinear finite element analyses 

(Slobbe et al. 2017), it was found that diagonal tension cracks did not directly form at 

the instant that the tensile strength of the concrete is reached at one location. This is 
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because, at the load step before diagonal tension cracking, the principal tensile strains 

already exceeded the tensile strain associated with the tensile strength. Apparently some 

redistribution occurred. Due to tension softening, the tensile strength does not immedi-

ately drop to zero. However, as the proposed model is found to be accurate there is little 

reason to further investigate this possible effect of redistribution.  

As described in Section 3.2, the tensile strength depends on the lateral principal com-

pressive stresses (bi-axial behaviour). If the level of prestressing increases, σcp/fcm 

decreases, consequentially σ2/fcm decreases and also the tensile strength decreases due to 

bi-axial behaviour (Equation 2.7). As a consequence, diagonal tension cracking will oc-

cur at a lower principal tensile stress. However, bi-axial behaviour is already implicitly 

considered by assuming a tensile strength of the web of 89% in the proposed model. 

Moreover, it is likely that 0.89fctm is an upper bound for bridges in practice. For existing 

bridges in the Dutch Highways (designed with a design code before 1974, Table 1.1) 

σcp/fcm varies between -0.20 ≤ σcp/fcm ≤ -0.04. For the experiments considered to derive 

fctm,web, σcp/fcm varies between -0.28 ≤ σcp/fcm ≤ -0.13. For bridges in practice it is also 

likely that areas with high principal tensile stresses will be rather small and will not 

significantly affect the resistance to diagonal tension cracking2. Therefore, and given the 

accuracy found (Table 3.8), bi-axial behaviour and statistical size effect are no part of 

the proposed model. Besides, bi-axial behaviour and size effect can be considered by 

applying Equation 3.10 (Section 3.3) if for a specific structure there is still reason to 

consider these phenomena. 

For girders without shear reinforcement, diagonal tension cracking is a brittle failure 

mode in which the girders are not able to redistribute the stresses after cracking. There-

fore, all phenomena that could affect the principal tensile stress should be considered. 

Depending on the type of structures and whether the structure is post-tensioned or pre-

tensioned, the following points of attention should be considered when determining 

maximum principal tensile stress: 

 If the considered structures consist of both a precast part and a cast in-situ part, the 

construction phases should be taken into account. Moreover, the different moduli of 

elasticity of both parts should be considered. 

                                                             

2 A recent research, in which the ‘cracking size effect’ has been investigated (Bentz 2019, Bentz 

2020), shows that a lower bound of the cracking size effect is found for 30 litres of the Highly 

Stressed Volume (HSV). This HSV is defined as the volume within which the tensile stress is 

at least equal to 85% of the maximum value. For higher volumes of the HSV, the cracking 

strength does not further reduce. This lower bound is found by considering the results of nu-

merous tension tests. This is an additional argument for not considering the statistical size effect 

for the structural assessment of existing bridges.  
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 If the equations are applied for cross-sections within the transmission length of the 

structure, both σx(z) and τ(z) should be determined considering the prestress is not 

fully introduced. Equations for this application can be found in fib (2012), numbered 

as 7.3.46 and 7.4-47.  

 A reduction of bw(z) should be considered to account for the risk that the ducts are not 

fully grouted for post-tensioned structures. An equation for this application can be 

found in NEN (2005), numbered as 6.16. 

 The effects of imposed deformations should be considered (temperature, support set-

tlement, shrinkage and creep). 

 The effects of transverse bending should be considered. 

Especially the regions on both sides of the mid support, imposed deformations could 

affect the maximum principal tensile stress. Section 9.3.1 describes further considera-

tions for the application of the proposed models for these support conditions. 

4.2 Model A2: girders with flexural cracks 

The analytical model proposed to determine the resistance to diagonal tension cracking 

for girders with flexural cracks is referred to as ‘model A2’ and is shown in Figure 4.2. 

Figure 4.2 also shows how the analyses of Chapter 3 are used in the proposed model by 

referring to the relevant sections. 

        

Figure 4.2. Model A2 –diagonal tension cracking for girders with flexural cracks 

Model A2 is only applicable for the regions of the girders with flexural cracks (Figure 

4.2), that remain free of flexural cracks (light grey areas in Figure 4.2). The regions 

without flexural cracks are limited by the condition σx < fctm,fl . For regions in which 

flexural cracks are present, diagonal cracks will develop from these flexural cracks. 

These regions are shown white in Figure 4.2. The resistance to flexural shear cracking 

should be based on appropriate resistance models. This is further explained in Section 

9.3.1, in which the equations given by the Eurocode (NEN 2005) are used as an example 

of how to determine the shear resistance in the regions with flexural cracks.  
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For girders with flexural cracks, sufficient resistance to diagonal tension cracking is 

present if the maximum principle tensile stress σ1max is smaller than 1.01fctm (Equation 

4.5). 

𝜎1max ≤ 1.01𝑓𝑐𝑡𝑚 (4.5) 

The fraction of 1.01 corresponds to the average σ1max / fctm found from back calculations 

of experiments at the load that causes diagonal tension cracking (Section 3.5, Table 3.8).  

Just like for model A1, the maximum principal tensile stresses σ1max should be based on 

σ1 over the height of the girder (light grey area of Figure 4.2). When, as a simplification, 

σ1max would have been based on σ1 along the centroidal axis, the consistency of the pre-

dicted resistance to diagonal tension cracking decreases significantly (Section 3.5). This 

simplification is therefore not used in model A2. 

Figure 4.2 shows the regions with flexural cracks (σx > fctm,fl, as white areas) and the 

regions without flexural cracks (σx < fctm,fl, as grey areas). The flexural cracks at the edge 

of the light grey regions can initiate diagonal tension cracking. Whether this cracking 

mode will occur can be determined by examining the principal tensile stresses along the 

edge of the light grey region (Section 3.5). Eventually, diagonal tension cracking is pre-

dicted if the principal tensile stresses are equal to the tensile strength of the web 

(Equation 4.5) anywhere in the light grey area in Figure 4 2, regardless of whether these 

are caused by flexural cracks. 

Model A2 uses the same simplifications as model A1. Just like model A1, it is considered 

as unnecessary to further investigate these simplifications considering the accuracy of 

the predicted resistances. Due to the presence of flexural cracks, the variation increases 

significantly when flexural cracks are present (Table 3.8). This is an additional argument 

for girders with flexural cracks that it is not worth the effort to consider bi-axial behav-

iour and size effect. For model A2, the same points of attention should be considered 

when determining the maximum principal tensile stress as for model A1, given the brittle 

failure mode. 

4.3 Design values for the proposed models 

This section determines the design value for the tensile strength of the web that can be 

used to determine the resistance to diagonal tension cracking. The design value is de-

rived to reach a failure probability of 10-4 for a 50 year reference period, which 

corresponds to a target reliability index βt = 3.8. If another failure probability is envis-

aged, the same approach can be used to determine the associated design value for the 

tensile strength of the web. The design value for the tensile strength is based on the 
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statistical properties of σ1max/fctm as found in Section 3.5, listed in Table 3.8 and in Ap-

pendix E. These statistical properties concern the uncertainty of the resistance model. 

The uncertainties regarding the model, the geometry and the material are implicitly in-

cluded. The design value for the tensile strength is derived using the approach described 

in Annex D7.3 of the NEN (2011). It is noted that the design value for the tensile strength 

is related to the resistance of the model and is no material property.  

The design value Xd for the basic variable X , which equals σ1max/fctm, can be determined 

using Equation 4.6 as described in NEN (2011). X is assumed to follow a lognormal 

distribution, which is a common distribution function for the resistance and is also used 

in the design value format of the Eurocode. 

𝑋𝑑 =  𝜂𝑑𝑒(𝑚𝑦− 𝑘𝑑,𝑛𝑠𝑦) (4.6) 

𝑚𝑦 =  1
𝑛⁄ ∑ ln( 𝑋) (4.7) 

𝑠𝑦 =  √ln (𝑉𝑥
2 + 1) (4.8) 

In Equation 4.6, ηd is de design value of the conversion factor and should cover all un-

certainties in a real structure that are not covered by the considered experiments. For the 

derivation of the design value for the tensile strength, a factor of 1/1.15 is used, to be 

consistent with the design value format of the Eurocode. The design value for the fractile 

factor (kd,η) can be found from Table D2 in NEN (2011). Table D2 assumes that the 

design value corresponds to αRβt, in which αR is the first-order reliability method sensi-

tivity factor for the resistance, which equals 0.8, and βt is the target reliability index 

which is equated to 3.8. Equation 4.7 concerns the equation for my, which is the mean 

of the basic variable in a lognormal distribution and Equation 4.8 concerns the equation 

for sy, which is the coefficient of variation in a lognormal distribution. In Equation 4.8, 

Vx is the coefficient of variation. 

For model A1, the design value Xd is determined for the statistical properties of the 16 

experiments without flexural cracks (Table 3.8, Appendix E). The design value Xd is 

derived by applying these statistical data in Equations 4.6 to 4.8. A design value Xd is 

found of 0.652 (Table 4.1), which means that σ1Ed,max ≤ 0.652fctm. If the relation fctk = 

0.7fctm is used, this equation can also be written as σ1Ed,max ≤ 0.931fctk. If subsequently a 

partial factor γc is used of 1.5, which means that fctd = fctk / 1.5, the equations can be 

rewritten as σ1Ed,max ≤ 1.40fctd.  

Also for model A2, the design value Xd is determined, but now for the statistical prop-

erties of the 37 experiments with flexural cracks (Table 3.8, Appendix E). A design value 
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Xd is found of 0.599 (Table 4.1), meaning that σ1Ed,max ≤ 0.599fctm, which can be rewrit-

ten, using the same assumptions as for model A1, as σ1Ed,max ≤ 1.28fctd.  

Table 4.1. Derivation of design value Xd for diagonal tension cracking 

 n my sy kd,η  Xd 

Model A1 16 -0.121 5.2% 3.19 0.652 

Model A2 37 0.007 12.2% 3.11 0.599 

Although it is somewhat conservative for model A1, it is for simplicity proposed to use 

a design value of 1.28fctd for both models (Equation 4.9). The design value of the re-

sistance to diagonal tension cracking is referred to as model A and can be applied in 

practice irrespectively of whether flexural cracks are present. It is noted that some con-

servatism is desirable for model A1, to compensate for the less favourable distribution 

of the shear stresses in bridges, which are loaded with distributed loads, compared to the 

experiments used to derive the design value, which are loaded with a concentrated load 

(Section 3.3). As a consequence of using one design value, it is possible to use just one 

model for diagonal tension cracking for application in engineering practice.  

𝜎1max,𝐸𝑑 ≤ 1.28𝑓𝑐𝑡𝑑 (4.9) 

It is noted that instead of limiting the design value of the maximum principal tensile 

stress σ1Ed to 1.28fctd and using a γc = 1.5 is also possible, if preferred, to limit σ1Ed to 

1.00fctd and use a partial factor γc of 1.17.  

The design value of the resistance to diagonal tension cracking that corresponds to this 

condition is defined as V’Rd,c. For monolithic structures, Equation 4.10 can be derived if 

Equation 4.9 is combined with Equations 2.14 and 2.15. The apostrophe in V’Rd,c indi-

cates that the equation is only applicable in regions without flexural cracks. 

𝑉′𝑅𝑑,𝑐 =  
𝐼𝑐𝑏𝑤(𝑧)

𝑠𝑐(𝑧)
√(1.28𝑓𝑐𝑡𝑑)2 + 𝜎𝑥(𝑧)(1.28𝑓𝑐𝑡𝑑) 

(4.10) 



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 89PDF page: 89PDF page: 89PDF page: 89

 

 

 

 

 

 

 

 

 

 
PART 2:  SHEAR RESISTANCE                                   

AFTER DIAGONAL TENSION CRACKING  



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 90PDF page: 90PDF page: 90PDF page: 90

 



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 91PDF page: 91PDF page: 91PDF page: 91

 

75 

5 
Literature review on prestressed girders with stirrups 

This chapter describes a literature review on shear resistance of girder with stirrups. 

Section 5.1 provides an overview of models from literature intended to determine the 

shear resistance of prestressed girders with stirrups. Section 5.2 mutually compares the 

models of Section 5.1. Section 5.3 describes a database that is compiled out of experi-

ments from literature on prestressed girders with stirrups for which failure could be 

related to diagonal tension cracks. Section 5.4 evaluates to what extend the research 

questions are answered based on the literature study. Based on these answers, an ap-

proach is chosen to derive the model for the determination of the shear resistance in 

regions without flexural cracks.  

5.1 Models from literature 

This section provides an overview of models from literature that are intended to deter-

mine shear resistance of prestressed girders with stirrups. The models are intended to 

determine shear resistance in general or shear resistance in regions without flexural 

cracks specifically. The models that are described are the variable angle truss model 

(Section 5.1.1), an empirical model derived by MacGregor et al. (Section 5.1.2), models 

based on the Modified Compression Field Theory (Sections 5.1.3-5.1.6), an empirical 

model suggested by Leonhardt (Section 5.1.7) and a model based on arch action as sug-

gested by Huber (Section 5.1.8).  

In this chapter, the findings from the literature review are frequently complemented with 

considerations. These consideration are aimed to contribute to the development of an 

accurate model for the resistance of prestressed girders with stirrups in regions without 

flexural cracks.  

5.1.1 Variable angle truss model 

The variable angle truss model, as used in the Eurocode (NEN 2005), is intended to 

determine both the shear and moment resistance of reinforced and prestressed members 

with stirrups. In this section the determination of shear resistance is explained. No dis-

tinction is made between the resistance in regions with and without flexural cracks. 

Walraven described the model in several publications (Walraven et al. 1995, 1999, 

Walraven 2002). In these publications the method is referred as ‘variable inclination 

strut method’. The explanation of the variable angle truss model given in this section is 
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based on the model described in these publications. The alternative name ‘variable angle 

truss model’ is used by Collins et al. (1997) and this name is adopted in this dissertation.  

The variable angle truss model is based on equilibrium, assuming the presence of a 

smeared truss in the girder. The shear transfer mechanisms of the variable angle truss 

model are illustrated in Figure 5.1, for a free body diagram that is cut along a compres-

sive strut. Figure 5.1 could be interpreted as if the vertical components are only resisted 

by the stirrups and there is no contribution of aggregate interlock. However, θ is the 

angle of the compressive strut which does not corresponds to angle of the cracks. Be-

cause aggregate interlock is present, the angle of the compressive struts is smaller the 

angle of the cracks. The variable angle truss model therefore implicitly takes into ac-

count the contribution of aggregate interlock. 

   

Figure 5.1. Variable angle truss model (Walraven 2002) 

Vertical components of the truss are represented by the stirrups. For stirrups that are 

applied perpendicular to the longitudinal axis, the maximum shear that can be resisted 

by stirrups (VR,s) is represented by Equation 5.1.  

𝑉𝑅,𝑠 =  
𝐴𝑠𝑤

𝑠⁄  𝑧 𝑓𝑦𝑤𝑚 cot 𝜃  (5.1) 

In this equation, Asw is the area of the stirrups, s is the spacing of stirrups, fywm is the yield 

strength of the stirrups in tension and θ is the inclination of the compressive struts. The 

distance between the chords parallel to the longitudinal axis is assumed to be equal to 

the internal lever arm z.  

The internal lever arm is the distance between the centre of the tensile forces in longitu-

dinal direction in the steel and the centre of the longitudinal compressive stresses in the 

concrete. It is unclear how this internal level arm should be determined according to the 

variable angle truss model. From the background document of the Eurocode, in which 

the variable angle truss model in included,  it appears that the lever arm is set to a defined 

ratio of the effective depth d. The internal lever arm for reinforced structures is assumed 

to be equal to 0.9d, independently whether flanges are present. The equation for the 

internal lever arm for prestressed concrete is not explicitly described. However, in the 
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background document predictions of the resistance were carried out for the variable an-

gle truss model (Walraven 2002). As part of the current dissertation these predictions 

were analysed. This was done for the predictions of the experiments carried out by 

Lyngberg (1976), Hanson et al. (1964), Leonhardt et al. (1973) and Levi et al. (1993). It 

was found that an internal lever arm of 0.95d was assumed for prestressing steel. 

The equation for the effective depth of the combined prestressing and reinforcing steel 

is not explicitly described in the Eurocode (NEN 2005). By analysing the predictions in 

the background document, as part of the current dissertation, it was found that for these 

girders a weighted mean value was used to determine the internal lever arm z (Equation 

5.2). In Equation 5.2, zp is the internal lever arm of prestressing steel, zs is the internal 

lever arm of reinforcing steel, Ap is the area of prestressing steel and As is the area of 

reinforcing steel. 

𝑧 =  (𝑧𝑠𝐴𝑠 + 𝑧𝑝𝐴𝑝) (𝐴𝑠 + 𝐴𝑝)⁄  (5.2) 

Diagonal struts of the truss are represented by concrete(Figure 5.1, right part). The area 

perpendicular to the compressive struts equals to bw z cosθ. In this equation bw is the 

width of the web. The force in the compressive struts is equal to VR,str/sin θ. The strength 

of the struts is assumed to be equal to αcw ν fcm, in which fcm is the concrete compressive 

strength of a cylinder, ν is the concrete effectiveness factor and αcw is a factor addressing 

the effect of prestressing. The ultimate shear associated with the crushing of the com-

pressive strut is given by Equation 5.3. 

𝑉𝑅,𝑠𝑡𝑟 =  𝑏𝑤 𝑧 𝛼𝑐𝑤𝜈 𝑓𝑐𝑚 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜃 (5.3) 

The background of the effectiveness factor for concrete ν is given by Nielsen et al. 

(2011). The effectiveness factor is introduced because the concrete compressive strength 

of the web is smaller than the concrete compressive strength of a cylinder (fcm). The 

main reason is that the concrete is cracked and cracking reduces the strength. The trans-

fer of stresses from the reinforcement to the concrete between macro cracks, causes 

micro cracks. These micro cracks are assumed to be the main reason for the strength 

reduction in compressive struts. The strength reduction is affected by the compressive 

strength of concrete, the diameter of the reinforcement, the reinforcement ratio, texture 

of the surface of the bars and reinforcement stresses. However, based on an extensive 

experimental test programme it was found that it was sufficient to base the effectiveness 

factor only on the concrete compressive strength. Based on the experimental test pro-

gramme, two equation were derived: ν = 0.8 - fcm / 200, applicable for values of fcm up to 

75 N/mm2, and ν = 1.9 / fcm
0.34 for values of fcm between 75 and 100 N/mm2. As a con-

servative simplification Equation 5.4 was suggested applicable for all values of fcm 
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(Nielsen et al. 2011). This equation is adopted in the Eurocode (NEN 2005). The equa-

tions above are derived for experiments with a significant amount of shear 

reinforcement, of which the consequence will be discussed hereafter.  

𝜈 = 0.6 (1 −  
𝑓

𝑐𝑚
250)

⁄  (5.4) 

The factor αcw addresses the effect of prestressing on the strength of the compressive 

struts. The factor depends on the ratio of the stress in the concrete in longitudinal direc-

tion in the centre of gravity (σcp) and the mean concrete cylinder strength (fcm). For 0 ≤ 

σcp/fcm ≤ 0.25fcm, αcw = 1 + σcp/fcm, for 0.25fcm ≤ σcp/fcm ≤ 0.50fcm, αcw = 1.25 and for 0.50fcm 

≤ σcp/fcm ≤ fcm, αcw = 2.5(1 - σcp/fcm). The equations assume that for concrete compressive 

stresses up to a value of 0.6fcm, the strength of the concrete struts increases by the pres-

ence of prestressing. The equations were validated by carrying out predictions for the 

resistances with and without αcw and comparing these with the experimentally found 

resistances (Walraven 2002). Both the level of overestimation of the resistance and the 

scatter were found to reduce, if αcw according to the given equations is applied. 

The variable angle truss model is a lower bound approach based on the theory of plas-

ticity. According to the theory of plasticity the largest resistance is found if the stirrups 

yield and the concrete struts crush at the same time. To meet this condition, the maxi-

mum resistance of the stirrups according to Equation 5.1 must be equal to the maximum 

resistance associated with crushing of the compressive struts according to Equation 5.3. 

By assuming both equations are equal, the strut inclination according to Equation 5.5 is 

found. Equation 5.6 shows the equation for ψvat which is used in Equation 5.5. The sub-

script ‘vat’ is used to distinguish between the factor ψvat which is frequently used in 

literature and which equals to ρsw fywm / fcm.  

tan 𝜃 = √
𝜓𝑣𝑎𝑡

(1 − 𝜓𝑣𝑎𝑡)⁄  (5.5) 

𝜓𝑣𝑎𝑡 = 𝜌
𝑧
𝑓

𝑦𝑤𝑚
 𝜈 𝛼𝑐𝑤𝑓

𝑐𝑚
⁄  (5.6) 

If the value of ψvat decreases, the model will predict a decrease of the angle of the com-

pressive struts, activating more stirrups (Equation 5.5). As a result of the smaller 

inclination of the struts, the stress in the struts increases (Equation 5.3). This decrease 

of the angle of the compressive struts is possible until the stress in the concrete reaches 

its compressive strength. This predicted behaviour is confirmed with experiments 

(Walraven et al. 1995, Walraven et al. 1999). These experiments concern normal, light-

weight and high strength reinforced concrete girders with shear reinforcement ratios 

between 0.36% and 3.86%. In these experiments, the principal strains in the web of the 

experiments were measured using LVDT’s. These are compared to the strut inclination 
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θ as predicted using the variable angle truss model. The predictions show good similarity 

with the measurements.  

In the variable angle truss model, the maximum angle of the compressive strut is as-

sumed to be 45°, which is associated with crushing of concrete without the yielding of 

the stirrups (VR,max). Also this behaviour is confirmed with the experiments (Walraven 

et al. 1995, Walraven et al. 1999). Yielding of stirrups and crushing of concrete was 

observed for experiments with low values of ψvat. For experiments with high values of 

ψvat, crushing of concrete before yielding of stirrups was observed.  

The inclination of the compressive struts is limited to 21.8°. As explained, the concrete 

effectiveness factor ν according to Equation 5.4 is derived by Nielsen et al. (2011) using 

experiments with values of ψvat > 0.05ν (which correspondents with a values of ψvat of 

about 0.023). Nielsen did not investigate the application for lower values of ψvat. Ac-

cording to Nielsen et al. (2011) the effectiveness factor ν is the product of νc, that 

represents the strength reduction by micro cracks, and νs, which is the sliding reduction 

factor. However, Nielsen assumed that if sufficient stirrups are present, crack sliding 

does not have to be taken into account and νs equals 1. For low values of ψvat the variable 

angle truss method was found to overestimate the shear resistance. This was found using 

experiments on non-prestressed girders (Walraven 2002). Apparently the strength of the 

compressive struts is overestimated using Equation 5.4 for low values of ψvat. The over-

estimation could be compensated by setting a limit of θ of 21.8° (cotθ = 2.5). This leads 

to conservative predictions for low values of ψvat.  

As part of this dissertation it is argued to what extend the variable angle truss model is 

suitable for the determination of the shear resistance in regions without flexural cracks. 

Two considerations are described. 

The first consideration, regarding regions without flexural cracks, concerns the effect of 

the longitudinal strain on the shear resistance. For reinforced concrete girders, without 

prestressing, the longitudinal strain in the critical cross-section is significantly larger 

than zero. Large longitudinal strains result in lower shear resistance. For prestressed 

girders on the other hand, the longitudinal strains are lower. Due to the smaller crack 

width, a higher shear force can be transferred in the cracks by aggregate interlock. To 

take into account this additional contribution, the variable angle truss should allow a 

smaller strut angle. However, the model is independent of the longitudinal strain and 

valid for both girders with and without flexural cracks. Therefore, the model has no 

mechanism which could take into account this additional contribution for prestressed 

girders while remain conservative for reinforced concrete girders.  

The second consideration, regarding prestressed girders in general, concerns the con-

servatism of the prediction for prestressed girders. This is investigated, as part of this 
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dissertation, using experiments on 76 prestressed I and T shaped girders that failed in 

shear that are reported in the background document of the Eurocode (Walraven 2002). 

The resistances for these experiments are predicted using the variable angle truss model. 

The predicted resistances are compared to the experimentally found resistances. The 

determined mean value and the coefficient of variation of the experimentally found to 

predicted resistance ratio are shown in Table 5.1. A distinction is made between whether 

the lower limit for θ was found to be governing. The predictions for the 40 experiments 

for which the lower limit was found governing were found to be extremely conservative 

and inconsistent (Table 5.1). The predictions for the 36 experiments for which the lower 

limit was not governing the predictions, were found to be much less conservative and 

much more consistent. 

Table 5.1. Test-to-predicted shear resistance ratio for variable angle truss model 

 Lower limit for  θ (21.8°) found as governing  

 no yes 

Number of experiments 36 40 

Mean VR,exp/VR,vat 1.22 2.03 

Coefficient of variation VR,exp/VR,vat 13% 39% 

For reinforced concrete the variable angle truss model overestimates the resistance for 

low values of ψvat (Walraven 2002). This is the reason to limit θ to 21.8°. It is addition-

ally investigated, as part of this dissertation, if for prestressed girders the resistance is 

also overestimated if θ is not limited. Figure 5.2 shows the predictions (lines) and the 

experimentally found resistances (dots) for the 76 experiments of the back-ground doc-

ument (Walraven 2002). The continuous line shows the predicted resistance without 

limitation of θ and the dashed line with limitation of θ (‘cut-off’).  

   

Figure 5.2. Experimentally found and predicted resistances for 76 experiments with & without limit θ 
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As appears from the figure, the number of experiments for which the resistance is over-

estimated without limitation of θ, is limited. Moreover, some of these experiments, 

appeared to be reinforced experiments without prestressing (black dots in Figure 5.2). 

These were probably selected because the experiments were part of a series of experi-

ments that mainly contained experiments with prestressing. Based on the data, it is 

questionable if the reported limitation of the inclination of the comprise struts is also 

necessary for prestressed girders.  

As described by Nielsen et al. (2011), not only crushing of the concrete struts, but also 

crack sliding along the initial crack appears to be a possible failure mode, especially for 

girder with a low amount of shear reinforcement. However, an appropriate concrete ef-

fectiveness factor for this failure mode is yet unknown.  

5.1.2 Empirical model of MacGregor et al. 

MacGregor et al. (1960) derived a model which is intended to determine shear and mo-

ment resistance for prestressed girders with stirrups. The shear resistance models for 

prestressed girders in the ACI (2008) are based on this model. In this section the deter-

mination of shear resistance is explained. In the model, a distinction is made between 

the resistance to flexural shear failure (VR,FSF) and web shear failure (VR,WSF). The mini-

mum of both determines the governing failure mode (Table 5.2, Equation 5.10).  

Table 5.2. Overview model MacGregor et al. (1960) 

Resistance to flexural shear failure VR,FSF = VR,FSC + VR,s (5.7) 

Resistance to web shear failure VR,WSF = VR,DTC + VR,s (5.8) 

Resistance to diagonal cracking VR,DC  = Minimum 

(VR,FSC, VR,DTC) 

  
(5.9) 

Resistance to shear failure VR  = Minimum  

(VR,FSF, VR,WSF) 

    
(5.10) 

MacGregor et al. (1960) derived a model based on the assumption that the shear re-

sistance is equal to the resistance to diagonal cracking (VR,DC) plus a contribution of 

stirrups (VR,s). These shear transfer mechanisms are shown in Figure 5.3. This figure is 

drawn in a similar way as Figure 5.1 (variable angle truss model) so these models can 

easily be compared. It is noted that diagonal cracking is not a shear transfer mechanism 

after diagonal cracking. The physical relevance of this figure is thus limited. Diagonal 

cracking can be diagonal tension cracking or flexural shear cracking (Figure 1.1). The 

minimum of both determines which cracking mode is governing (Table 5.2, Equation 

5.9).  
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Figure 5.3. Empirical model MacGregor et al. (1960) 

The resistance to both diagonal tension cracking (VR,DTC) as flexural cracking (VR,FC) are 

based on the concrete tensile strength (which will be explained hereafter). Additionally, 

three relations are determined empirically: 

 The increase in resistance between flexural shear cracking and flexural shear failure.  

 The increase in resistance between diagonal tension cracking and web shear failure.  

 The increase in the resistance between flexural cracking (VR,FC) and flexural shear 

cracking (VR,FSC). 

The empirical relations are based on experiments carried out by MacGregor et al. (1960) 

and experiments carried out by Sozen et al. (1959). 

In the model that MacGregor used for the prediction of diagonal tensile cracking, the 

tensile strength of the web is based on the shear stress resistance along the centroidal 

axis (as described in Section 2.1.5). Unlike Equation 2.17, the tensile strength of the 

web is assumed to be 80% of the flexural tensile strength (0.8fctm.fl). The flexural tensile 

strength was subsequently derived from fcm which was determined by carrying out com-

pressive test on cylinders. The equation fctm.fl = 21 / (4 + 83/ fcm) was used, expressed in 

N/mm2. This equation was derived for small-coarse aggregate by Sozen et al. (1959). 

The predicted diagonal cracking resistance was found to be accurate. This was found by 

MacGregor et al. (1960) by comparing the predicted and experimentally found re-

sistances for 32 experiments (experiments of both MacGregor et al. and Sozen et al.). 

Unlike Equations 2.16, 2.17 and 2.18, the stresses were based on the presence of both 

concrete and reinforcement. Thus in Equation 5.11, I and Scg are used that are based on 

the presence of both materials (‘transformed cross-sections’). 

𝑉𝑅,𝐷𝑇𝐶 =  
𝐼 𝑏𝑤 

𝑆𝑐𝑔  
  √0.8𝑓𝑐𝑡𝑚,𝑓𝑙

2 − 𝜎 𝑐𝑔
0.8𝑓𝑐𝑡𝑚,𝑓𝑙 (5.11) 

MacGregor’s model assumes that the resistance to flexural shear cracking consists of 

two components (Equation 5.12). The first component is the resistance to flexural crack-

ing (VR,FC). VR,FC is determined by calculating the shear force at which the tensile stress 

in the ultimate fiber equals fctm,fl. Thus VR,FC depends on the forces in each cross-section 

https://ctm.fl/
https://ctm.fl/
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and will differ along the girder axis. The second component is the shear force needed to 

transform the flexural crack into a flexural shear crack. This term is determined empiri-

cally from experiments in which a flexural crack were observed that turned into a 

flexural shear crack. To derive this empirical relation, an initiating shear crack was as-

sumed at a location that is the sum of 1/4 of the girder height and 1/6 of the shear span 

from the concentrated load. The increase of shear force to transform the flexural crack 

into a flexural shear was related to the resistance to diagonal tension cracking. A value 

of 1/15 VR,DTC was found appropriate (Equation 5.12, Figure 5.4).  

𝑉𝑅,𝐹𝑆𝐶 =  𝑉𝑅,𝐹𝐶 + 
1

15
 𝑉𝑅,𝐷𝑇𝐶  (5.12) 

Figure 5.4 was reproduced as part of this dissertation using the data of MacGregor 

(1960). In this figure both the experimentally found and the predicted resistance to di-

agonal cracking are shown as ratio of the predicted resistance to diagonal tension 

cracking. Both the predicted resistances to diagonal tension cracking (Equation 5.11, 

horizontal dashed line) and to flexural shear cracking (continuous line, Equation 5.12) 

are shown. Also a distinction is made between observed flexural shear cracking (black 

coloured circles) and observed diagonal tension cracking (not-coloured circles). Figure 

5.4 demonstrated that Equations 5.11 and 5.12 are rather accurate. Moreover, the suita-

bility of Equation 5.9 is demonstrated, which predicts the governing diagonal cracking 

mode (lowest resistance approach, Section 2.1.7). 

 

Figure 5.4. Predicted and experimentally found diagonal cracking resistance (MacGregor et al. 1960) 

MacGregor determined the added resistance of the stirrups empirically. For this purpose 

the 16 prestressed experiments were selected, that contained stirrups and failed in shear. 

No distinction was made between the initial diagonal cracking modes. Associated ranges 



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 100PDF page: 100PDF page: 100PDF page: 100

84 

of parameters are shown in Table 5.3. Experiments of which the identification start with 

B, have a web width of 76 mm. Experiments of which the identification start with C 

have a web width of 38 mm. The girder of which the identification starts with F is com-

bined with a composite slab. The contribution of stirrups (Equation 5.13) was 

determined by subtracting the predicted resistance to diagonal cracking (Equations 5.9, 

5.11 and 5.12) from the experimentally found ultimate resistance. 

Table 5.3. Experiments selected for empirical relation Equation 5.11 and associated parameters ranges  

Re-

searcher 

(year) 

Identification 

(number of experi-

ments) 

Pre-

stressing 

Support 

condi-

tions 

h a/d σcp ρw  

 

fcm dmax 

    mm - N/ 

mm2 

% N/ 

mm2 

mm 

Mac-

Gregor 

et al. 

(1960) 

BW.14.34, BW.14.38, 

BW.14.58, BW14.60, 

BW.18.15S, CW.13.28, 

CW.14.17, CW.14.22, 

CW.14.23, CW.14.37, 

CW.14.39, CW.14.47, 

CW.14.50, CW.14.51, 

CW.14.54, FW.14.06  

Straight 

pre-ten-

sioned 

tendons 

Simply 

sup-

ported 

305 2.8-

7.0 

2.2-

6.0 

0.14-

1.04 

17-

53 

9 

The empirically found coefficient of 1.1 (Equation 5.13) equals a cracking angle of 42°. 

This is rather steep compared to observed cracking angles in prestressed girders. Mac-

Gregor et al. gave as possible explanation for the low coefficient of 1.1, that the stirrups 

near the end of the inclined crack may not have been stressed to the yield point.  

𝑉𝑅,𝑠 = 1.1 𝐴𝑠𝑤  𝑓𝑦𝑤  𝑑 𝑠⁄  (5.13) 

As part of this dissertation the data in the report were further analysed. It is investigated 

whether also experiments that failed in web shear were part of the experiments. Alt-

hough this could not be confirmed, it was found that the initial cracking mode concerned 

flexural shear cracking for 7 experiments and diagonal tension cracking for 9 experi-

ments. The empirical model of MacGregor et al. was used to determine the ACI shear 

provisions (ACI 2008). Some modifications were made: 

 For the equation to determine the flexural cracking strength fctm,fl = 0.498 √fcm is used 

instead of fctm,fl = 21 / (4 + 83/ fcm), both expressed in N/mm2. This affects VR,FC. 

 VR,DTC is based on the cracking strength fcr (Equation 2.10) instead of 0.8fctm,fl 
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 To relate the shear stress resistance τ’R,c at the centre of gravity to the shear force 

resistance of the cross-section, the simplified Equation 2.19 is used instead of Equa-

tion 5.11. 

 The shear force necessary to transform a flexural crack into a flexural shear crack is 

set to 0.0498√𝑓𝑐𝑚 𝑏𝑤𝑧 (=0.171VR,DTC) instead of 1/15VR,DTC (=0.067VR,DTC) 

 The empirical found factor 1.1 (Equation 5.13) for the contribution of stirrups (VR,s) 

is conservatively set to 1. 

 

If web shear resistance is governing, the resistance for prestressed girders with stirrups 

according to the ACI (2008), is represented by Equation 5.14. In this equation the re-

sistance to diagonal tension cracking is based on dp. The contribution of the stirrups is 

based on d, which is the distance from extreme compression fiber to centroid of longi-

tudinal tension reinforcement. In the ACI a minimum value of 0.8h is prescribed for d 

and dp.  

𝑉𝑅,𝑆𝑇𝐹 =  𝑏𝑤 𝑑𝑝  (0.291√𝑓′𝑐 + 0.3 𝜎𝑐𝑝) +  𝐴𝑠𝑤 𝑓𝑤𝑦𝑚  𝑑 𝑠⁄  (5.14) 

In literature many researchers investigated the accuracy of the ACI code provisions. In 

this literature review the accuracy investigated by Esfandiari et al. (2009) is reported as 

this specifically concerns prestressed girders with stirrups. For 88 simply supported 

girders, a mean value of the test-to-predicted shear resistance ratio was found of 1.08 

and an associated coefficient of variation of 25%. In this research no distinction was 

made between the accuracy for regions with or without flexural cracks. For an empiri-

cally derived model a low level of conservatism can be expected. This is because all 

shear transfer mechanism are implicitly included in an empirical model. The predictions 

were however found not so consistent. 

5.1.3 Modified Compression Field Theory 

The Modified Compression Field Theory (MCFT) is a theory capable to predict the load-

deformation response of membrane elements (Vecchio et al. 1986, Bentz et al. 2006a). 

The MCFT is also used to derive a model to determine shear resistance for girders (Bentz 

et al. 2006a, Esfandiari 2009). The main principles of the MCFT are explained in this 

section. In Section 5.1.4 it is explained how the MCFT is made applicable to predict 

shear resistance for girders. For this dissertation, two models are considered that predict 

shear resistance for girders that are based on the MCFT. This concerns the model of 

Bentz et al. (2006a), which is explained in Section 5.1.5 and the model of Esfandiari 

(2009), which is explained in Section 5.1.6. 
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The MCFT consists of 15 equations which are listed in Tables 5.4 and 5.5. Since the 

original version of the MCFT several adaptions have been made. In this section, the 

version of the MCFT that is also used in Response is explained (Bentz 2000, Bentz et 

al. 2001). This is a non-linear sectional analyses programme for girders, also referred as 

R2K. The original notation of the parameters used in the equations are replaced by no-

tations in accordance to the Model Code 2010 (fib 2012). Also the original notions are 

shown in the explanation of the parameters.  

The MCFT treats cracked concrete as a new material with its own empirically found 

stress-strain relations. Equilibrium, compatibility and stress-strain relations are ex-

pressed as average stresses and strains (Table 5.4).  

Table 5.4. Average stresses and strains equations of the MCFT (Bentz et al. 2006a). 

Average stresses Average strains Stress–strain relationships 

  Reinforcement 

𝜎𝑥 =  𝜌𝑥𝜎𝑠𝑥 + 𝜎1 − 𝜏 cot 𝜃 tan2 𝜃 =  
𝜀𝑥 +  𝜀2

𝜀𝑧 + 𝜀2
 𝜎𝑠𝑥 = 𝐸𝑠 𝜀𝑥  ≤  𝑓𝑦𝑥  

(5.15) (5.18) (5.21) 

𝜎𝑧 =  𝜌𝑧𝜎𝑠𝑧 + 𝜎1 − 𝜏 tan 𝜃 𝜀1 = 𝜀𝑥 + 𝜀𝑧  + 𝜀2 𝜎𝑠𝑧 = 𝐸𝑠 𝜀𝑧  ≤  𝑓𝑦𝑧  

(5.16) (5.19) (5.22) 

  Concrete 

𝜏 =  
(𝜎1 +  𝜎2)

(tan 𝜃 + cot 𝜃)⁄  𝛾𝑥𝑧 = 2(𝜀𝑥 + 𝜀2 ) cot 𝜃  𝜎2 =
𝑓𝑐𝑚

0.8 + 170 𝜀1
 (2 

𝜀2

𝜀𝑐
−  (

𝜀2

𝜀𝑐
)

2

) 

(5.17) (5.20) (5.23) 

  𝜎1 =
0.33√𝑓𝑐𝑚

(1 + √500𝜀1)
⁄  

  (5.24) 

For concrete stresses the two principal stress directions are considered (Figure 5.5). This 

results in principal tensile stresses (σ1, original notation f1) and principal compressive 

stresses (σ2, original notation f2). Steel stresses are considered in the axial directions. 

The average reinforcement stress per unit length is the product of the average reinforce-

ment stresses (σsx in x-direction, original notation fsx and σsz in z-direction, original 

notation fsz) and the reinforcement ratio (respectively ρx and ρz). The applied stresses on 

the membrane element (σx, σz, τ, original notations fx, fz, ν) should be in equilibrium with 

average stresses in the concrete and steel.  
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Figure 5.5. Average stresses according to MCFT (first two figures, Vecchio et al. 1986). 

From this principle Equations 5.15 – 5.17 are derived. The angle of inclination of the 

principal compressive stresses θ (original notation θc) and the angle of inclination of the 

principal strains θε (original notation θ) are assumed to be equal. This assumption is 

made despite measurements show that θ and θε deviate somewhat. For simplification the 

notation θ is used in Table 5.4. According to the Compression Field Theory, the prede-

cessor of the MCFT, a value of σ1 = 0 is assumed as stress-strain relation instead of 5.24. 

The average strain equations (Equations 5.18 – 5.20) relate the averages strains (εx, εz, 

γxz) and the principal strains (ε1, ε2, θ). The strains in the concrete are assumed to be 

equal to the strains in principal direction. In Figure 5.6, ε1 is the principal tensile strain 

in concrete and ε2 the principal compression strain in concrete. The strains in the steel 

are assumed to be equal to the longitudinal average strains εx, εz. The equations are trans-

formation equations used to transform the strains to a different coordinate system. For 

instance as described by Verruijt (1987).  

 

Figure 5.6. Average strain parameters according to MCFT (Vecchio et al. 1986) 

In the MCFT bilinear stress-strain relations are used for reinforcement (Equations 5.21 

and 5.22). However, in Response also tension hardening behaviour is considered. The 

constitutive equations of the “new material” cracked concrete are determined empiri-

cally, initially based on 30 tests on reinforced membrane elements (890 mm x 890 mm 

x 90 mm). The relations have later been confirmed with 250 experiments performed at 

the University of Toronto (Bentz 2000). Empirical relations could be derived from the 

applied stresses and the measured strains. Consequently, the average stresses include 

stresses between cracks, stresses at cracks, interface shear in cracks and dowel action. 
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And the average concrete strain (ε1) contains local strains at cracks, strains between the 

cracks, bond slip and crack slip (Bentz 2000). Hence, the average stress – strain relations 

differ significantly from the relations measured in for example splitting tests or cylinder 

compression tests. 

Equation 5.23 describes the empirically found relation for cracked concrete in compres-

sion. The equation is visualised in Figure 5.7. The concrete strength (fcm,red) is 

represented as ratio of the maximum compressive strength of a cylinder test (fcm). The 

strains are represented as ratio of εc, the strain associated with fcm. The principal com-

pressive stress σ2, was found to depend on not only the principal compressive strain ε2 

but also the principal tensile strain ε1. For uncracked concrete no reduction of fcm is nec-

essary (fcm,red = fcm) and the stress strain relation does not differ from a concrete cylinder 

test (Figure 5.7, figure on the left, minimum value of σ2 = fcm). For cracked concrete a 

reduced value of fcm was found, fcm,red (Figure 5.7, figure on the right). It was found that 

the strength of concrete under compression reduces with increasing values of principal 

tensile strains ε1 according to Equation 5.23. 

 

Figure 5.7. Average stress- average strain relations for concrete in compression (Eq. 5.23) 

For uncracked concrete the principal tensile stress increases linear with the principal 

strain (σ1 = ε1 Es). The version of the MCFT used by Response, uses Equation 2.9 for 

the cracking strength of concrete fcr. Equation 5.24 describes the empirically found (high 

scatter) stress strain relation for cracked concrete in tension. After cracking the average 

tensile strength reduces with increasing values of ε1. The relation is visualised in Fig-

ure 5.8. The principal tensile stress should be limited if the average stress cannot be 

resisted locally at the crack (see hereafter), it is unsafe to apply the MCFT without this 

crack-check. The crack check ensures that the principal tensile stress can be resisted 

locally by the steel (yielding strength minus average stress) and the aggregate interlock 

at the crack.  
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Figure 5.8. Average stress- average strain relation for concrete in tension (Equation 5.24) 

At a crack the stresses in the reinforcement (σsx,cr and σsz,cr for respectively the stress in 

the reinforcement in x and z direction, original notations fsxcr and fszcr) are higher than 

the average stresses σsx and σsz. The concrete tensile stress is zero at the crack which is 

lower than the stresses of the uncracked concrete between two existing cracks. Accord-

ing to the MCFT the use of average stresses is allowed under the conditions that the 

average stresses can be resisted locally at a crack. If the computed stresses exceed the 

resistance at the crack, the average stresses σ1 is reduced until equilibrium at the crack 

surface is possible. Equations concerning the crack conditions are listed in Table 5.5.  

Table 5.5. Crack conditions equations of the MCFT (Bentz et al. 2006a). 

Stresses at cracks Crack widths Max. shear stress on crack 

𝜎𝑠𝑥,𝑐𝑟 =  
(𝜎𝑥 +  𝜏 cot 𝜃 + 𝜏𝑐𝑖  cot 𝜃)

𝜌𝑥
⁄  𝑤 = 𝑠𝜃 ∙  𝜀1 𝜏𝑐𝑖,𝑚𝑎𝑥 =  

0.18 √𝑓𝑐𝑚

0.31 +  
24 𝑤

(𝑑𝑚𝑎𝑥 + 16)

 

(5.25) (5.27) (5.29) 

𝜎𝑠𝑧,𝑐𝑟 =  
(𝜎𝑧 +  𝜏 tan 𝜃 − 𝜏𝑐𝑖  tan 𝜃)

𝜌𝑧
⁄  

𝑠𝜃 =  1

(
sin 𝜃

𝑠𝑥
+  

cos θ
𝑠𝑧

)
⁄   

(5.26) (5.28)  

In Figure 5.9 the external applied stresses and the internal stresses at the crack are 

shown. In this figure τci is the shear stress on the crack surface due to aggregate interlock. 

Equation 5.25 and 5.26 are found if the applied loads are equal to the stresses at the 

surface for both directions. Equilibrium can be achieved with different combinations of 

the stress in the reinforcement at the crack and τci. The solution used in the MCFT is to 

only assume shear stresses at the crack when the resistance of the reinforcement is in-

sufficient to resist the applied stresses. If the average stresses cannot be resisted locally 

at a crack, σ1 should be reduced until equilibrium is possible.  
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Figure 5.9. Transmission of stresses across a crack (MCFT, based upon Bentz et al. 2006b) 

The MCFT assumes that the maximum value of τci, which is τci,max, only depends on the 

crack width w. Based on results of experiments carried out by Walraven, (Walraven 

1980, 1981) an empirical equation was derived between the crack width and τci,max 

(Equation 5.29). Equation 5.29 results in reasonably accurate approximations despite 

that the tangential displacement is eliminated, which is argued by Yang (2014). The 

maximum shear on the crack increases for higher strength concrete classes or larger 

maximum aggregate sizes (dmax, original notation a). The crack width is assumed to be 

the product of the principal tension strain ε1 and the crack spacing sθ (Equation 5.27). 

The diagonal crack spacing at an angle θ is calculated from the cracks spacing in both 

orthogonal directions (sx and sz, Equation 5.28).  

According to the MCFT three conditions can be governing at failure for cracked con-

crete:  

1. Crushing of the concrete (minimum value of σ2).  

2. Slipping of the crack (maximum value of σ1).  

3. Yielding of the longitudinal reinforcement (maximum value of σ1).  

Several assumptions are made in the development of the MCFT. It is assumed that, stress 

and strains can be considered as average values, perfect bond exist between steel and 

concrete, the stress-strain relations of concrete and steel are independent and the incli-

nation of principal compressive stress and strain coincide. The effect of these 

assumptions on the accuracy appears to be limited. Bentz et al. compared the resistances 

according to the MCFT with the experimentally found resistance of 102 experiments 

with membrane elements (Bentz et al. 2006b) loaded in pure shear or shear combined 

with uniaxial stress (σz = 0). This resulted in a mean ratio of test-to-predicted resistance 

of 1.01 and a CoV of 12.2%. The accuracy regarding models for shear resistance for 

girders based on the MCFT is discussed in Section 5.1.5 and 5.1.6. 
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5.1.4 Models for girders based on the MCFT 

In this section it is explained how the MCFT, intended for membrane elements, is made 

applicable to predict shear resistance for girders. Two girder models will be considered 

which determine the shear resistance (Sections 5.1.5 and 5.1.6). The part of the method 

that is equal for both models is described in this section. This section is based on the 

Simplified Modified Compression Field Theory (Bentz et al. 2006b) and the background 

article of the CSA (Bentz et al. 2006a). The models are intended to determine shear and 

moment resistance for reinforced and prestressed members with and without stirrups. In 

this section the determination of shear resistance of girders with stirrups is explained. 

No distinction is made for models that determine the shear resistance for regions with 

and without flexural cracks. The models are based on equilibrium and compatibility. The 

shear transfer mechanisms of the models are illustrated in Figure 5.10 for a free body 

diagram that is cut though along a diagonal crack. This figure is drawn in a similar way 

as Figure 5.1 (variable angle truss model) and Figure 5.3 (empirical model used in ACI), 

so these models can easily be compared. 

  

Figure 5.10. Girder model based on MCFT, based on Bentz (2006b) 

As shown in Figure 5.10, the shear resistance of a girder consist of contributions of the 

stirrups (VR,s) and of aggregate interlock (VR,ci). It is assumed that the stirrups yield along 

the horizontal projection of the diagonal crack (z cotθ). The aggregate interlock consists 

of the shear stress (which corresponds to τci according to Figure 5.9) over the length of 

the crack.  

The shear resistance of the flexural compression zone is assumed to be larger than that 

of the cracked zone. With this assumption, the resistance of the cracked zone will control 

the shear strength of the girder (Bentz et al. 2006a). To explain this, Figure 5.11 is drawn 

as part of this dissertation. In this example only the most tensioned flange is cracked by 

bending. It is assumed that failure occurs in the cracked zone. In that case, the shear 

resistance in the cracked zone is governing for the ultimate failure.  

The contribution of the uncracked concrete is considered implicitly by assuming a larger 

contribution of the stirrups and aggregate interlock. Both contributions are considered 

along the internal lever arm multiplied with cotθ. As shown in Figure 5.11, the internal 
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lever arm is partly located in the flexural compression zone. So neglecting the contribu-

tion of the uncracked concrete is compensated by assuming contributions of aggregate 

interlock and stirrups along a larger length of the crack. As the shear resistance ap-

proaches zero at the top of the cross-section, z is chosen and not the full effective depth 

d (Figure 5.11). 

 

Figure 5.11. Zones of shear stress multiplied with width over the height of the girder 

The models assume no contribution of dowel action by the longitudinal reinforcement 

to shear resistance. 

The shear resistance for girders with concrete using normal weight aggregate is repre-

sented in Equation 5.30. In this equation β is the concrete contribution factor (aggregate 

interlock) and θ is the angle of inclination of the principal compressive stress. This angle 

is assumed to correspond with the angle of diagonal cracks. The vertical component of 

prestress force (VR,p), which is present in the original model (Bentz et al. 2006a), is not 

taken over in Equation 5.30. In this research VR,p is considered as a reduction of the load 

instead of as a component of the shear resistance. This way the described models of this 

chapter are mutually comparable. The shear strength is limited by the crushing resistance 

of concrete in diagonal compression, without yielding of the stirrups, which is shown 

by Equation 5.31, and will be explained hereafter.  

𝑉𝑅 =  𝛽 √𝑓𝑐𝑚  𝑏𝑤 𝑧 + 𝐴𝑠𝑤 𝑓𝑦𝑤𝑚 𝑧 cot 𝜃 𝑠⁄  (5.30) 

𝑉𝑅,𝑚𝑎𝑥 =  0.25 𝑓𝑐𝑚  𝑏𝑤 𝑧  (5.31) 

The shear stress resistance of a cross-section is only determined at the mid-depth of the 

cross-section. It is assumed that the aggregate interlock resistance of the complex crack 

geometry may be estimated at the mid-depth and that this can represent the entire crack 

surface. Also the number of stirrups that are crossed by the crack is simply based on the 

angle of the diagonal crack at the mid-depth. By multiplying the shear stress with the 

shear area bw z, the shear resistance of the cross-section is found. In this way, a theory 

intended for membrane elements is made applicable for girders.  

Parameters θ and β in Equation 5.30 can be related to the equations of the MCFT. As the 

two considered models are used for sectional analyses of girders, it is assumed that σz is 
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zero. Moreover, it is assumed that the stirrups yield at failure. Hence, crushing of con-

crete before the stirrups yield is considered as a separate limitation of the shear 

resistance (Equation 5.31). As σz = 0 and σsz = σsz,cr = fywm, Equation 5.16 can be rewritten 

as Equation 5.32 and Equation 5.26 can be rewritten as Equation 5.33. In these equa-

tions, both σ1 as τci can be expressed in terms of √fcm as can be seen from Equations 5.24 

and 5.29. Therefore, Equations 5.32 and 5.33 can formulated as Equation 5.34 (Bentz et 

al. 2006b). Equation 5.30 is found if both sides of Equation 5.34 are multiplied with the 

shear area bw z.  

The predictions of β and θ are described as part of the models of Bentz et al. (Section 

5.1.5) and Esfandiari (Section 5.1.6.). The parameters β and θ depend on the normalized 

applied shear (τ/fcm) the longitudinal strain εx and the effective crack spacing size (Bentz 

et al. 2006a). If these are determined, β and θ can be found using tables (AASHTO 

2004). To simplify the application of the model, the two considered models determine β 

and θ independently of the normalized applied shear. As a consequence, no tables have 

to be used, which make the models more appealing for applications in practice. The 

models are deemed to be applicable for both regions with and without flexural cracks.  

𝜏 =  𝜌𝑧𝑓𝑦𝑤 𝑐𝑜𝑡 𝜃 + 𝜎1  𝑐𝑜𝑡 𝜃 (5.32) 

𝜏 =  𝜌𝑧𝑓𝑦𝑤 𝑐𝑜𝑡 𝜃 +  𝜏𝑐𝑖     (5.33) 

𝜏 =  𝜌𝑧𝑓𝑦𝑤 𝑐𝑜𝑡 𝜃 +  𝛽√𝑓
𝑐𝑚

 (5.34) 

Also the upper limit of the shear VR,max (Equation 5.31) is derived from the MCFT. This 

concerns the crushing resistance of the cracked concrete without yielding of the trans-

verse reinforcement. As the condition concerns crushing of the concrete, ε2 is assumed 

to be 2 mm/m. Because the transverse reinforcement is not yielding, the strain εz is 

lower than 2 mm/m. As a lower strain on longitudinal direction increases the maximum 

resistance, conservatively εz = 2 mm/m is assumed. The longitudinal strain εx will be 

lower than 2 mm/m (because the longitudinal reinforcement is not yielding). As a lower 

strain increases the resistance, conservatively εx = 2 mm/m is assumed. Using these val-

ues in respectively Equations 5.18, 5.19, 5.23, 5.24 and 5.17, a value for the shear stress 

τR,max is found of 0.28fcm. Conservatively, a value of τR,max = 0.25fcm was chosen. Equation 

5.31 is found if τR,max is multiplied with the shear area bw z (Bentz et al. 2006b).  

5.1.5 Model of Bentz et al.  

The model of Bentz et al. is intended to determine shear and moment resistance for 

reinforced and prestressed members with and without stirrups. In this section the deter-

mination of shear resistance for girders with stirrups is explained. No explicit distinction 

is made between regions with and without flexural cracks, although a relation between 
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the failure mode and the magnitude of the longitudinal strain is obvious. The model of 

Bentz et al. is used in the Canadian Highway Bridge Design Code (CSA 2006). The 

model is partly explained in Section 5.1.4. In this section the derivation of equations for 

β and θ is explained. The equation for β is derived for elements without transverse rein-

forcement and the equation for θ is derived for elements with transverse reinforcement. 

These derivations are explained based on the background article of the design code 

(Bentz et al. 2006a). The Simplified Modified Compression Field Theory (Bentz et al. 

2006b) is used to demonstrate that the derived equations can be combined to determine 

the shear resistance for elements with transverse reinforcement.  

The equation for β is based on MCFT calculations for membrane element without trans-

verse reinforcement. The value of β can be determined using the equations of the MCFT 

(Table 5.4 and Table 5.5) for a range of values of the longitudinal strain εx, the crack 

spacing sθ, the maximum aggregate size dmax and the concrete cylinder compressive 

strength fcm. To demonstrate this, as part of this dissertation, the crack width is deter-

mined for a crack spacing sθ of 300 mm, a concrete strength of 60 N/mm2 and different 

values of εx. These are calculated using an example described by Bentz et al. (2006b). 

The results are shown in Figure 5.12 (dots).  

 

Figure 5.12. Crack width versus the longitudinal strain conform the MCFT and Equation 5.35 

A simply linear equation (Equation 5.35) was found to be a rather good approach of the 

relation between εx and w according to the MCFT (Figure 5.12). Especially for values 

of steel up to 400 N/mm2 for which for shear failure the strain at mid-depth is expected 

to be lower than 1 mm/m. Also for other values of fcm Equation 5.35 approached the 

calculated values of the crack width reasonably (Bentz et al. 2006a). The value of β can 

easily be found by substituting Equation 5.35 in Equation 5.29. If a value of the maxi-

mum aggregate size dmax is assumed of 20 mm, Equation 5.36 is found for β. The 
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equation shows that contribution of the aggregate interlock decreases if the crack open-

ing increases. To prevent negative crack widths the minimum allowable value of εx is 

set to 0.2 mm/m (which is found by setting w to 0 mm in Equation 5.35). 

𝑤 =  0.0002 + 𝜀𝑥 (5.35) 

𝛽 = 0.4 
(1 + 1500𝜀𝑥)⁄  (5.36) 

The crack width (and the aggregate interlock resistance) does not only depend on the 

longitudinal strain εx but also on the diagonal crack spacing sθ (Equation 5.27). Equation 

5.36 is derived for a crack spacing of 300 mm. For different values of the crack spacing, 

Equation 5.36 has to be multiplied with 1300/(1000+sθ). For girders without stirrups the 

crack spacing depends on the girder height. The crack spacing increases proportional 

with the girder height and so does the crack width. Therefore, an increase of girder 

height leads to a decrease of aggregate interlock and deeper girders fail at lower stresses 

(‘size effect’). However, for girders with stirrups the crack spacing is controlled and no 

significant size effect is expected. For girders with stirrups it is assumed that the crack 

spacing s does not exceed 300 mm.  

The equation of the angle of the compressive stresses θ, is based on MCFT calculations 

for membrane elements with transverse reinforcement. Based on the theory of plasticity, 

shear can be resisted at a range of possible values of θ. However, θ should be low enough 

to ensure yielding of the stirrups and high enough to prevent crushing of the concrete. 

The range in which both conditions are met, decreases if the shear load increases. There-

fore, the MCFT calculations are conservatively made for the maximum value of the 

shear load τ/fcm = 0.25 (Section 5.1.4). The calculations are carried out for a range of 

values of the longitudinal strain εx and several values of the concrete cylinder compres-

sive strengths fcm. Moreover, it is assumed that σz = 0. In Figure 5.13 the resulting upper 

and lower limit of the angle are shown as function εx. The figure shows the most narrow 

results for all ranges of fcm, noticing that the effect of fcm on the figure is not significant. 

The area in which both conditions are met (areas that are not grey) was found to be 

rather small. Equation 5.37 fits in between the found relations for the upper and lower 

limit.  

𝜃 = 29 + 7000𝜀𝑥  (5.37) 

Although the equation for β is derived for elements without transverse reinforcement 

and the equation for θ is derived based on elements with transverse reinforcement, Bentz 

et al. propose to use Equations 5.36 and 5.37 for elements with and without transverse 

reinforcement (Bentz et al. 2006a). After yielding of the transverse reinforcement, θ and 
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β reduce as a consequence of an increase of ε1. Consequently, the contribution of aggre-

gate interlock decreases and the contribution of the transverse reinforcement increases. 

Therefore, Bentz et al. consider it as a conservative approach to predict θ at a maximum 

value of the aggregate interlock. Therefore, MCFT calculations for a maximum value of 

τci are used to verify the suitability of the application of Equations 5.36 and 5.37 for 

elements that contain transverse reinforcement.  

 

Figure 5.13. Limits of the angle of the compressive stresses for τ/fcm = 0.25 (Bentz et al. 2006a) 

In Figure 5.14, the predictions of β and θ are show in relation to the longitudinal strain 

for membrane element with transverse reinforcement. The dashed lines show the pre-

dicted values of β according to Equation 5.36 and the prediction of θ according to 5.37. 

The grey areas show the values of θ and β predicted according to the MCFT for a max-

imum value of τci and a value for sθ of 300 mm and with a range of values for ρzfywm/fcm. 

The kink in the graphs shows that for high values of ρzfywm/fcm, the crushing of concrete 

before yielding of the transverse reinforcement becomes governing (τ/fcm = 0.25). 

 

Figure 5.14. Comparison β and θ between MCFT & Equations 5.36 and 5.37 at maximum τci (Bentz et 
al. 2006b) 

If the Equations 5.36 and 5.37 are used, the predicted values for β and θ appear to be 

conservative in comparison with the predictions of the MCFT for most values of εx. 
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However, for small values of εx, the values of β are too high, which results in uncon-

servative predictions of the aggregate interlock component. On the other hand, θ is 

predicted too high for low value of εx, which is a conservative result. It is obvious that 

for regions without flexural cracks, low values of the longitudinal strain are of specific 

interest. 

Several assumptions are summarized regarding the development of the Simplified Mod-

ified Compression Field Theory (which corresponds with Equations 5.36 and 5.37 for 

membrane elements with transverse reinforcement). It is assumed that w can be ap-

proached directly from εx with a linear relation, that θ can be approached directly from 

εx with a linear relation and the same equations for θ and β can be used for elements with 

and without transverse reinforcement. The effect of the assumptions on the accuracy 

appears to be limited. Bentz et al. compared the resistances according to the Simplified 

Modified Compression Field Theory with the experimentally found resistance of 102 

experiments on membrane elements (Bentz et al. 2006b) loaded in pure shear or shear 

combined with uniaxial stress (σz = 0). This resulted in a mean ratio of test-to-predicted 

resistance of 1.11 and a CoV of 13.0%.  

 

Figure 5.15. Model to determine longitudinal strain (Bentz et al. 2006a) 

Also the method to determine εx is part of the model of Bentz et al.. This method is 

illustrated in Figure 5.15. As the shear resistance is only determined at the mid-depth of 

a cross-section, also εx is determined at the mid-depth. The modelled girder consist of a 

compressive chord and a tensile chord. The compressive force C = -ME/z + 0.5VE cotθ 

+ A’p σp’o, in which ME is the moment due to the external load, z is the internal lever arm, 

VE is the shear due to the external load, A’p is the area of the prestressing steel at the 

compressive side of the girder and σp’0 is the initial stress in the prestressing steel at the 

compressive side of the girder. The internal lever arm is assumed to be equal to 0.9 times 

the effective depth. The tensile force T = ME/z + 0.5VE cotθ + Ap σpo, in which Ap is the 

area of the prestressing steel at the tensile side of the girder and σp0 is the initial stress 

in the prestressing steel at the tensile side of the girder. It is suggested (Bentz et al. 

2006a) to use conservatively VE instead of 0.5VE cotθ for simplicity. The strain in the 

tensioned chord εt = T /(EsAs + EpAp). If the tension chord is not cracked the stiffness 

should be increased by the stiffness of the uncracked concrete (EsAs + EpAp + EcAct), in 
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which Act is based on the area of concrete within 0.5h of the ultimate fiber (Figure 5.15). 

The strain in the compressive chord εc = D / (EsAs + EpAp + EcAcc). Finally, εx is assumed 

to be equal to (εt + εc)/2. It is suggested to conservatively assume εc = 0 so εx = εt/2. 

However, as this research concerns shear resistance in regions without flexural cracks, 

which is characterised by small longitudinal strains, this suggested simplification is not 

further used in this dissertation. 

The accuracy of the model of Bentz et al., was investigated by Esfandiari et al.(2009) 

for 88 simply supported girders. This reference is used as this specifically concerns pre-

stressed girders with stirrups. This investigation was already reported in Section 5.1.2 

for the accuracy of the model of MacGregor et al.. For the model of Bentz et al., a mean 

value of the test-to-predicted shear resistance ratio was found of 1.31 and an associated 

coefficient of variation of 16%. In his research no distinction was made between the 

accuracy for regions with or without flexural cracks.  

5.1.6 Model of Esfandiari 

Like the model of Bentz et al., the model of Esfandiari is intended to determine shear 

and moment resistance for reinforced and prestressed members with and without stir-

rups. In this section the determination of shear resistance for girders with stirrups is 

explained. Also in the model of Esfandiari, no explicit distinction is made between the 

flexural shear resistance in regions with and without flexural cracks, although a relation 

between the failure modes and the magnitude of the longitudinal strain is obvious. The 

model is partly explained in Section 5.1.4. In this section the derivation of the equations 

for β and θ is explained. This section is based on Esfandiari (2009) and Esfandiari et al. 

(2009). 

Esfandiari carried out MCFT analyses on membrane elements with different amounts of 

longitudinal and transverse reinforcement (Esfandiari 2009). The results for two ele-

ments with the same amount of longitudinal reinforcement but a different amount of 

transverse reinforcement, are shown in Figure 5.16. In this figure the ratio of the shear 

stress and concrete strength is presented versus the shear strain. After yielding of the 

transverse reinforcement, εx increases and θ and β decrease. This implies that the re-

sistance by aggregate interlock decreases and the resistance by the transverse 

reinforcement increases. Depending on the magnitude of both shear transfer mechanism, 

the total resistance could decrease (Figure 5.16, membrane element with low ρz) or in-

crease (Figure 5.16, membrane element with high ρz) after first yielding. A further 

increase of γxz eventually causes concrete crushing for both elements. Significant differ-

ences are found in values of θ and β for both physical conditions. Hence, first yielding 

of stirrups or crushing of concrete could be associated with the highest resistance and 

be the governing failure mechanism.  
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Figure 5.16. Shear response for two membrane elements, based on Esfandiari (2009) 

At first yielding of the transverse reinforcement, values of θ and β were determined as 

function of εx from MCFT analyses on membrane elements (Esfandiari 2009). The pa-

rameter ρz fywm/fcm was used to fit the trend predicted by the MCFT. Equations 5.38 - 5.41 

were found as rather good approximations of θ and β at yielding of the transverse rein-

forcement. In these equations, εy is the yielding strain of the transverse reinforcement.  

𝜃 = 𝜃0 +  Δ𝜃 𝜀𝑥  (5.38) 

𝜃0 =  (85
𝜌𝑧𝑓𝑦𝑤

𝑓𝑐𝑚
+ 19.3) (1.1 –  50 𝜖𝑦) (5.39) 

Δ𝜃 =  1000(37.5(1.4 –  200𝜀𝑦) −  𝜃0) (5.40) 

𝛽 =  0.18(1.6 –  300𝜀𝑦) (5.41) 

The results are presented as example in Figure 5.17 for values of fcm of 40 N/mm2 and 

fywm of 400 N/mm2 and values of ρz of both 0.002 and 0.010. The solid lines are the 

predictions according to the MCFT membrane element predictions. According to Equa-

tion 5.39, the angle of principal compression depends on the parameter ρz fywm/fcm. The 

concrete contribution factor β according to Equation 5.41 is a fixed value and is pre-

sented with a dashed line. Figure 5.17 shows that the results of the model of Esfandiari 

matches the results of the MCFT well, although for low shear reinforcement ratios, 

which are typical for the Dutch Highway bridges designed with a design code prior to 

the design code of 1974, the predictions of β are conservative.  

Figure 5.17 furthermore shows that β is significantly overestimated for low longitudinal 

strains for the condition of first yielding, when the model according to Bentz et al. is 

used. For these conditions, the aggregate interlock is overestimated. On the other hand, 
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also θ is overestimated for these conditions and the contributions of the stirrups is there-

fore underestimated. Eventually, the overestimation of the contribution of aggregate 

interlock is compensated by the underestimation of the contribution of stirrups. This is 

found from the comparison of the predicted and experimentally found resistance for 102 

membranes (Bentz et al. 2006b) and 88 simply supported prestressed girders (Esfandiari 

et al. 2009), as described in Section 5.1.5. 

 

Figure 5.17 Comparison β and θ between MCFT & Eqns. 5.38-5.41 at first yielding (Esfandiari 2009) 

Also at concrete crushing, values of θ and β were determined as function of εx from 

MCFT analyses on membrane element and the parameter ρz fywm/fcm was used to fit the 

trend predicted by the MCFT. Equations 5.38, 5.42 - 5.44 were found as approximation 

of θ and β at crushing of the concrete.  

𝜃0 =  119
𝜌𝑧𝑓𝑦𝑤

𝑓𝑐𝑚
+ 15.6 (5.42) 

Δ𝜃 =  15,000
𝜌𝑧𝑓𝑦𝑤

𝑓𝑐𝑚
+ 2000 (5.43) 

𝛽 = 0.65 
𝜌𝑧𝑓𝑦𝑤

𝑓𝑐𝑚
+ 0.030 (5.44) 

The results are presented as example in Figure 5.18, again for values of fcm of 40 N/mm2 

and of fywm of 400 N/mm2 and values of ρz of both 0.002 and 0.010. According to Equa-

tion 5.44, the concrete contribution factor β depends on the parameter ρz fywm/fcm. 

According to Equations 5.42 and 5.43, also the angle of principal compression depends 

on the parameter ρz fywm/fcm. From Figure 5.18 is found that the results of the model of 

Esfandiari and the results of the MCFT match well, although some conservatism exist 

regarding β for low longitudinal strains.  
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Figure 5.18 Comparison β and θ between MCFT and Equations 5.42-5.44 at concrete crushing (Esfan-
diari 2009) 

Figure 5.18 furthermore shows that β is also significantly overestimated for low longi-

tudinal strains for the condition of concrete crushing when the model according to Bentz 

et al. is used. But just like for the condition of first yielding, the overestimation of the 

contribution of aggregate interlock (overestimation of  β) is compensated by an under-

estimation of the contribution of stirrups (overestimation of θ).  

The shear stress that can be resisted can be determined from Equation 5.34 based on the 

determined values of θ and β. The governing resistance equals the highest resistance that 

is found for both physical conditions (first yielding and crushing). The failure mode 

associated with the highest resistance is the predicted failure mode. 

The equations were fitted for values of εx between 0 and 1.0 mm/m. Within these limits 

the equations generally match well with the predictions of full MCFT analyses. How-

ever, the predicted values for both θ and β are more conservative for low values of εx, 

which can be associated with regions without flexural cracks. The predictions are espe-

cially conservative in combination with low values of ρz.  

Also the method to determine εx is part of the model of Esfandiari. For the longitudinal 

component of the shear force carried by the web, the angle θ is calculated. This is in 

contrast to the approach used by Bentz et al. for which the angle is assumed (Section 

5.1.5 and Figure 5.15). Moreover, this longitudinal component is only accounted for in 

the cracked web. Also tension stiffing of the tensioned flange and the presence of longi-

tudinal reinforcement in the web are accounted for in the approach used by Esfandiari. 

Furthermore, the location at which the prestressing steel in the web are present is ac-

counted for explicitly. These refinements result in an extensive set of equations 

(Esfandiari 2009) and more accurate predictions of εx compared to the model of Bentz 

et al.. However, the model still suggests to use the equation εx = εt/2 instead of εx = (εt + 
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εc )/2. As shear failure in regions without flexural cracks is characterised by small lon-

gitudinal strains, the effect of this simplification can be significant. 

Esfandiari et al.(2009) investigated the accuracy of his model for 88 simply supported 

prestressed girders with stirrups. This investigation was already reported in Section 5.1.2 

and 5.1.6 for the accuracy of the model of respectively MacGregor et al. and Bentz et 

al.. For the model of Esfandiari a mean value of the test-to-predicted shear resistance 

ratio was found of 1.27 and an associated coefficient of variation of 17%. In this research 

no distinction was made between the accuracy for regions with or without flexural 

cracks. Esfandiari concluded that the model becomes more conservative for εx < 0.1 

mm/m. 

5.1.7 Empirical model of Leonhardt 

Leonhardt et al. (1973) suggested an empirical model based on experiments with post-

tensioned girders with an I and T shaped cross-section. The experiments contained 

straight and inclined prestressing cables and the level of prestressing varied between the 

experiments. The described empirical model according to Leonhardt is intended to de-

termine the shear resistance for prestressed members with stirrups in regions free of 

flexural cracks.  

Based on the cracking pattern at failure, different zones were distinguished (Figure 

5.19). This concerns zone A, which is free of cracks, zone B, which contains diagonal 

tension cracks and no flexural cracks, and zone C, which contains both flexural cracks 

and flexural shear cracks. For each zone Leonhardt et al. derived different models to 

determine the shear resistance. 

 

Figure 5.19. Crack pattern, cracking zones and max. stirrups stresses for IP1 (Leonhardt et al. 1973) 
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As part of the experiment, the strains in the stirrups were measured at four locations 

over the length of the stirrups. In Figure 5.19 the stress associated with the maximum of 

the measured strains is shown for experiments IP1 at the last load step before failure (a 

load of 1800 kN). Although the shear force was equal in both zones, the maximum 

stresses in zone B were found to be significant lower than in zone C. Leonhardt assumed 

that this was due to the contribution of the compressive and tensile chords to the shear 

resistance, as both chords remain uncracked and have a high stiffness. For zone B, Leon-

hardt suggested to use the linear elastics principal tensile stress distribution as basis for 

the determination of the shear resistance. This was assumed justified as the diagonal 

tensile cracks were fine hair cracks at the instant the experiments failed. 

The stresses in the stirrups have a component in the direction of the maximum principal 

tensile stress. From equilibrium it is found that this component equals ρw σsw, in which 

ρw is the transverse reinforcement ratio (original notation μs) and σsw (original notation 

σeBü) is the stress in the stirrups. The measured stresses in the stirrups are lower than 

calculated from the principal tensile stresses. Therefore, a ‘reduction parameter’ σcR was 

introduced (original notation σ1D) which is determined empirically using the data of five 

tested experiments at various load stages and Equation 5.45. In this equation σ1 (original 

notation σ1M) is the principal tensile stress at the centroidal axis determined from a linear 

elastic calculation. For σsw, the stress in the stirrups associated with the maximum of the 

four measured strains is used. 

𝜎𝑐𝑅 =  𝜎1 − 𝜌𝑤 𝜎𝑠𝑤  (5.45) 

The contribution of the concrete is determined for the 5 experiments at different load 

stages (in total 30 calculations). A value for σcR of 0.25fcm
2/3 was found to be a lower 

limit for all obtained results. The maximum principal tensile stress that can be resisted 

according to the model of Leonhardt (σ1R) is given in Equation 5.46. In this equation fcm 

is used instead of the cube compressive strength (which was based on cubes sized 200 

mm) which was used by Leonhardt et al.. To converse the cube compressive strength 

into a cylinder compressive strength the conversion equations of Reineck et al. (2012) 

are used. The last part of Equation 5.46 is based on the assumption that at failure the 

stirrups will yield.  

𝜎1𝑅 =  0.25𝑓𝑐𝑚

2
3⁄ + 𝜌𝑤 𝑓𝑦𝑤   (5.46) 

Some critical remarks are make regarding Leonhardt’s model as part of this dissertation. 

The contribution of the concrete is empirically derived and mainly based on load stages 

before failure. The contribution of concrete could possibly reduce at higher load stages, 
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when the crack further opens. Moreover, only for two of the five considered experi-

ments, the failure could be related to diagonal tension cracks (Section 5.2.2). The 

gathered empirical data for various load steps is thus limited to ensure the behaviour at 

shear failure in regions without flexural cracks is covered for all possible situations. In 

addition, some experiments did show the development of significant stirrups stresses in 

zone B (ŢP2 and ŢP4). Also the measurements of experiment IP1, which is shown in 

Figure 5.19, shows significant stresses developed in the stirrups in the zone B at an 

earlier load step. At this earlier load step, the zone with flexural cracks was smaller and 

zone B larger. The significant stresses developed in the area what subsequently ‘became’ 

a C zone. It is also mentioned that equilibrium for stresses along the girder axis is not 

considered in the model suggested by Leonhardt. 

5.1.8 Arch action models 

In this section, arch action models are explained for prestressed girders with stirrups. 

Both shear and moment resistance can be determined using arch action models. In this 

section the determination of shear resistance is explained. In arch action models a com-

pressive strut is modelled that makes equilibrium with a part of the external loads (F) 

and the prestressing forces (P), see Figure 5.20. As shown in this figure, the arch profile 

should suit the loading. The longitudinal component of the arch is in equilibrium with 

the longitudinal component of the prestressing. The vertical component of the arch can 

resist a part of the vertical external load. Arch action models are used together with truss 

analogy models that resist the remaining part of the external load. Examples of arch 

action models are described in the Model Code 1990 (fib 1993), Huber (2016), Huber et 

al. (2016a, b, c), Gleich et al. (2015, 2016, 2018). Arch action models differ in the ap-

proach of composing the shape of the compressive arch and the way the truss analogy 

model was applied. The model of Huber (2016) is intended for the region without flex-

ural cracks (zone B as described in Section 5.1.7). Therefore, the model of Huber will 

be further described in this section. 

 

Figure 5.20. Arch profiles adapted to different load patterns according to Model Code 1990 (fib 1993) 

According to the model of Huber, the shear resistance in a region without flexural 

cracks, consists of a contribution of the vertical component of the inclined compressive 



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 121PDF page: 121PDF page: 121PDF page: 121

 

105 

strut Vcc and a contribution of stirrups VR,s (Equation 5.47). The model for shear re-

sistance assumes no contribution of aggregate interlock (VR,ci) to the shear resistance.  

𝑉𝑅 =  𝑉𝑅,𝑠 + 𝑉𝑐𝑐 (5.47) 

The critical cross-section for the resistance is assumed to be at a distance xcrit from the 

support, that is equal to the depth of the beam (h) minus the distance between the ulti-

mate top fiber and the centre of gravity of the cross-section (zc,0), see Figure 5.21.  

 

Figure 5.21. Compression arch model Huber (Huber 2016) 

Vcc is defined as the vertical component of the inclination of the compression strut. To 

determine the inclination of the compression strut, two cross-sections are considered. 

The first cross-section is located at the support (x = 0). The second cross-section is lo-

cated at the location of the first flexural crack (x = xcr) . In this cross-section the 

longitudinal stress σx in the ultimate fiber equals the uniaxial tensile strength fctm. For 

both cross-sections, the distance zFc between the ultimate fiber and the resulting concrete 

compressive force (Fc) is found from the stress distribution over the cross-section. This 

is determined from the cross-section forces using Hooke’s law. The angle of the com-

pressive strut αcc can be determined from Equation 5.48. As a simplification, the force 

in the compression strut is assumed to be equal to the component of the prestressing 

force parallel to the girder axis (Px). With this assumption Equation 5.49 is found. 

𝛼𝑐𝑐 = arctan (
𝑧𝐹𝑐(𝑥=0) −  𝑧𝐹𝑐(𝑥=𝑥𝑐𝑟)

𝑥𝑐𝑟
) (5.48) 

𝑉𝑐𝑐 =  𝑃𝑥  sin 𝛼𝑐𝑐 (5.49) 

The contribution of the reinforcement is given by Equation 5.50. The angle of the crack 

is assumed to be equal to φcr, which is the angle of the principal stresses at a load that 

causes a diagonal tension crack. This is the case if the principal tensile stress in the web 

equals the biaxial concrete tensile strength fctm,eff (Equation 2.8 in Section 2.1.4). The 

angle φcr varies over the height of girder. As a simplification, φcr is based on the principal 



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 122PDF page: 122PDF page: 122PDF page: 122

106 

stresses at the centre of gravity. Rotation of the crack after formation of the crack is 

assumed to be obstructed by the uncracked compression zones between the crack and 

the ultimate fiber on both sides of the crack. It is further assumed that the stirrups are 

yielding along a length cot φcr multiplied with the effective depth d minus the height of 

the compression flange hfc. 

𝑉𝑅,𝑠 =  
𝐴𝑠𝑤

𝑠𝑤
( 𝑑 − ℎ𝑓𝑐) ∙ 𝑓𝑦𝑤𝑚  ∙ 𝑐𝑜𝑡 𝜑𝑐𝑟  (5.50) 

There are some critical remarks to make regarding the model of Huber. As no compari-

son with experiments is done, because these were assumed to be not available, the model 

is not validated. It is unknown if the model can predict the shear resistance accurately. 

Moreover, the model assumes no contribution of aggregate interlock as the rotation of 

the compressive strut is obstructed by the uncracked flanges. This assumption is in con-

trast to observations of experiments for which the flange remained free of flexural cracks 

in the shear critical region, carried out by Rupf et al. (2013). For these experiments, the 

inclination of the principal compressive strains was measured at the last load step just 

before failure. These measured angles were found to be significantly lower than the ob-

served angle of the cracks. This clearly indicates that the compressive struts have rotated 

between the formation of the diagonal cracks and the ultimate failure of the girder.  

5.2 Comparison of models from literature 

In this section, models as described in Section 5.1 are mutually compared. These com-

parisons concern the following aspects: 

1. the applicability for regions without flexural cracks 

2. the assumed failure mode  

3. the contribution of the stirrups to the shear resistance 

4. the contribution of the concrete to the shear resistance 

5. the contribution of the uncracked concrete to the shear resistance 

The first aspects concerns the applicability for regions without flexural cracks. All mod-

els are intended to determine the shear resistance of prestressed girders with stirrups in 

regions without flexural cracks either specifically or in combination with regions with 

flexural cracks. Two models are specifically intended for regions without flexural cracks 

and cannot be used for regions with flexural cracks. These concern the models of Leon-

hardt and Huber. The model of MacGregor et al. describes the resistance to web-shear 

failure and flexural shear failure. In the region without flexural cracks the resistance to 

web-shear failure will always be governing. This is because the resistance to flexural 
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shear failure equals the resistance to flexural shear cracking and an additional term. The 

models of Bentz et al. and Esfandiari do not explicitly distinguishes regions with and 

without flexural cracks. However, the longitudinal strain at the mid-depth of the girder 

(εx) significantly affects the predicted resistance. As the values for the longitudinal strain 

at the mid-depth associated with regions without flexural cracks will be lower than for 

regions with flexural cracks, the associated shear resistance will be higher. The variable 

angle truss model, does not distinguishes the resistance in regions with and without flex-

ural cracks. 

The second aspect concerns the assumed failure mode. All models determine the shear 

resistance under the condition that failure due to concrete crushing before yielding of 

the stirrups, is not governing. To capture this condition, each model describes an asso-

ciated equation for this maximum shear resistance. Only the model of Esfandiari predicts 

the governing shear failure mode. This concerns either failure at first yielding of stirrups 

or failure due to stirrups yielding and concrete crushing simultaneously. According to 

the variable angle truss model, failure occurs due to the simultaneously crushing of con-

crete and yielding of stirrups. Also the model of Huber assumes that at failure the stirrups 

yield, but the resistance of the compressive struts is verified independently. The model 

of Bentz does not explicitly predict the failure mode. The models of MacGregor et al. 

and Leonhardt are empirical and do not further distinct specific failure mechanisms.  

The third aspect concerns the contribution of the stirrups to the shear resistance. The 

models determine the contribution of the stirrups to the shear resistance (VR,s) differently. 

The equations used in the models are shown in Table 5.6. All models assume yielding 

of the stirrups at failure. All models also assume yielding along the horizontal projection 

of a diagonal crack. Only the horizontal projection of the diagonal crack differs per 

model. According to the variable angle truss model the angle θ is found for the condition 

that the shear force associated with crushing of the compressive struts is equal to the 

shear force at yielding of the stirrups. In the variable angle truss model θ concerns the 

angle of the compressive strut and can be lower than the angle of the cracks. The con-

tribution of aggregate interlock is implicitly included in θ. If the ranges of parameters 

according to Table 1.1 are applied, the values for θ are found as listed in Table 5.6. The 

variable angle truss model bases the horizontal projection of a diagonal crack on the 

internal lever arm. The cracking angle according to the model of MacGregor et al. is 

determined as final part of the empirical model (a value of 42˚ was found that was con-

servatively set to 45˚). MacGregor already recognised that the angle was too steep 

compared to observations (Section 5.1.2). The model according to MacGregor et al. ba-

ses the horizontal projection of a diagonal crack on the effective depth d. The cracking 

angle according to the model of Bentz et al. depends on εx. According to the model of 

Esfandiari the cracking angle depends not only on εx but also on fywm, fcm, and ρz and on 
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the failure mode. If the range of parameters according to Table 1.1 is applied and it is 

further assumed that -0.2 ≤ εx ≤ 0 mm/m (which is typical for regions without flexural 

cracks), values for θ are found as listed in Table 5.6 (‘indication θ)’. Both models base 

the horizontal projection of a diagonal crack on the internal lever arm. According to the 

model of Huber it is assumed that the diagonal crack does not extend into the most 

compressed flange but remains in the web. Therefore, the horizontal projection of a di-

agonal crack is based on the height of the effective depth minus the height of the 

compression flange. Huber assumes that the angle of the crack equals φcr, which is the 

angle of the principal stresses at a load that causes a diagonal tension crack. 

Table 5.6. Comparison between models regarding contributions of aggregate interlock & stirrups for -
0.2 ≤ εx ≤ 0 

Model Variable angle  

truss model 

(Section 5.1.1) 

MacGregor et al. 

 

(Section 5.1.2) 

Bentz et al. 

 

(section 

5.1.5) 

Esfandiari  

 

(Section 

5.1.6) 

Huber 

 

(Section 5.1.8) 

VR,s Asw/s fywm  

z cotθ 

Asw/s fywm  

d 

Asw/s fywm  

z cotθ 

Asw/s fywm  

z cotθ 

Asw/s fywm  

(d - hfc)cotφcr 

 

Indication 

θ  

22° ≤ θ ≤ 25° (θ =45°) 28° ≤ θ ≤ 29°  15° ≤ θ ≤ 26°   

VR,ci Implicitly via 

θ 

0.291√fcm bw dp + 

0.3σcp bw dp 

β √fcm bw z  β √fcm bw z  None 

Indication 

β  

  0.40 ≤ β ≤ 

0.57 

0.03 ≤ β ≤ 

0.21 

 

The fourth aspect concerns the contribution of the concrete to the shear resistance. The 

models determine the contribution of the aggregate interlock (VR,ci) differently. The var-

iable strut model has no separate term to predict the contribution of aggregate interlock. 

Hence, aggregate interlock is implicitly considered by allowing an angle of the com-

pressive struts less than the cracking angle. According to the model of MacGregor et al., 

the contribution of the concrete equals the resistance to diagonal tension cracking. This 

explains the presence of σcp which is not present in the other models. The models ac-

cording to Bentz et al. and Esfandiari explicitly predict the contribution of aggregate 

interlock. The contribution of the aggregate interlock, expressed in β, according to the 

models of Bentz et al., depends on εx. According to the model of Esfandiari the concrete 

contribution depends not only on εx but also on fywm, fcm, and ρz and on the failure mode. 

If the range of parameters according to Table 1.1 is applied and it is also assumed that -

0.2 ≤ εx ≤ 0 mm/m, values for β are found as listed in Table 5.6 (‘indication β)’. The 

model of Huber does not take into account the contribution of aggregate interlock.  
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The fifth aspect concerns the contribution of the uncracked concrete to the shear re-

sistance. None of the described models explicitly considers the contribution of the 

uncracked flanges to the shear resistance.  

5.3 Database on shear failure of prestressed girder with stirrups  

To be able to study the resistance of prestressed girders with stirrups in regions without 

flexural cracks, experiments have been inventoried from literature. These experiments 

are used to compile a database. These inventoried experiments will be used for specific 

analyses (Chapter 7). These experiments will also be used to evaluate the accuracy of 

the proposed model (Chapter 8).  

This section describes the database that is compiled of experiments on prestressed gird-

ers with stirrups for which failure could be related to diagonal tension cracks. Section 

5.3.1 explains the choice of the criterion ‘failure related to diagonal tension cracks’ as 

main criterion for the selection. This is used instead of ‘failure in a region without flex-

ural cracks’, which is the scope of the current research. Section 5.3.1 further explains 

the other selection criteria that are used. Section 5.3.2 provides an overview of the se-

lected experiments. 

5.3.1 Selection criteria 

In literature no reports are found that explicitly mention whether failure occurred in a 

region with or without flexural cracks. Many reports were found from literature on the 

other hand of experiments for which failure could be related to diagonal tension cracks. 

Therefore, it was possible to compile a database of experiments for which failure could 

be related to diagonal tension cracks. This is the main reason why ‘failure related to 

diagonal tension cracks’ is chosen as main selection criterion instead of ‘failure in a 

region without flexural cracks’. 

For these experiments it is however uncertain if failure also occurred in an region that 

remained free of flexural cracks until failure. This is illustrated in Figure 5.22. The left 

part of the figure shows the crack pattern at diagonal tension cracking. Shallow flexural 

cracks are present at this load stage, but just outside the region which could be critical 

for shear failure. The right part of the figure shows the crack pattern at failure. At this 

load stage, flexural cracks have penetrated into the region critical for shear failure. These 

cracks are shallow and did not merge with the diagonal tension cracks. Nevertheless, 

flexural cracks were present in the region in which the girder failed. Hence, although it 

was explicitly reported that the failure could be related to diagonal tension cracks, failure 

took place in a region with flexural cracks.  
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Figure 5.22. Crack pattern at diagonal tension cracking & at failure (experiment F5B, Hanson 1964a). 

In contrast to Figure 5.22, it is frequently not clear from reports from literature whether 

failure occurred in a region with or without flexural cracks. Therefore, the presence of 

flexural cracks is not based on observations of experiments. The presence of flexural 

cracks will be calculated instead. These calculations are carried out based on a method, 

described in Section 8.1. This method will be used to further select experiments that 

failed in regions without flexural cracks. Eventually, the accuracies of the models are 

based on the experiments for which no flexural cracks are predicted in the shear critical 

region. 

The literature survey which is covered by the presented database, includes the following 

overviews and databases: 

 an overview listed in a state-of-the art report on shear in prestressed concrete mem-

bers (Walraven 1987).  

 an overview of experiments used for verification of a shear design method (Col-

lins et al. 1996).  

 a shear database on prestressed members (Nakamura 2011). 

 an overview of prestressed girders of a database with shear test on structural concrete 

girders (Reineck et al. 2012). 

All these overviews and databases consist of a part with and a part without stirrups. 

Considering the purpose of the database, only the parts with stirrups are considered.  

The main selection criterion is whether shear failure can be related to diagonal tension 

cracks. Experiments for which failure was related to flexure cracks or flexural shear 

cracks are not included in the database. Also experiments that failed within the trans-

mission length of pre-tensioned tendons are excluded.  

The section is based on the following criteria and considerations: 

 Only reports and dissertations that contain sufficient information to predict the shear 

resistance are included. 

 Both simply and continuously supported girders are collected, because both support-

ing conditions are part of the intended application of the developed model (Section 

1.5). 
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 Only normal weight concrete is considered as this is the intended application (Section 

1.5). 

 Only experiments with vertical stirrups are considered. 

 The behaviour of shear failure between girders with bonded and unbonded prestress-

ing steel can differ fundamentally. This is because for girders with only unbonded 

prestressing steel the only equilibrium model is a tied arch (Walraven 1987). This is 

the case unless girders contain also reinforcement or if flexural cracks are only pre-

sent over a limited length. As unbonded prestressing steel are not applied in 

prestressed bridge girders in the Dutch Highways, experiments with unbonded pre-

stressing steel are not selected in the database. An exception is the experiment carried 

out by Xie (2009), which could be selected, because in addition to unbonded prestress 

also bonded reinforcement was applied. 

 The developed model is not intended for girders that have insufficient stirrups to pre-

vent failure after diagonal tension cracking. The resistance of these girders does not 

differ from the resistance of girders without stirrups. Therefore, girders that instantly 

fail after diagonal tension cracking are not included in the database. For a part of 

experiments with a low shear reinforcement ratio, the resistance is higher than the 

resistance to diagonal tension cracking. In advance it can be difficult to determine if 

this additional resistance is due to the presence of stirrups. Hence a part of the girders 

without stirrups has some residual resistance after diagonal tension cracking (Chapter 

2.1.1. and Figure 2.2). In Section 8.4.1 both the resistance to diagonal tension crack-

ing and the resistance considering the presence of stirrups are predicted. Experiments 

are selected for which the predicted resistance, if the presence of stirrups in consid-

ered, is higher than the predicted resistance to diagonal tension cracking.  

 The ratio of the shear span to the effective depth (a/d) could be chosen as selection 

criterion. In literature, a/d is a common selection criterion if only the behaviour of 

slender girders is investigated. By selecting only experiments with a large a/d, the 

increase to the resistance due to direct transfer mechanism is limited (Section 5.1.8). 

For instance a minimum a/d of 2.4 is used in the Reineck database for slender girders 

(Reineck et al. 2012). The same limit is applied by Bentz to select experiments to 

verify the accuracy of the sectional analyses programme Response (Bentz 2000). 

Most models are intended to describe sectional behaviour and conservatively neglect 

any contribution of direct load transfer mechanism. Also the model that is developed 

as part of this research is intended to describe sectional behaviour. It is however un-

certain if a minimum a/d of 2.4 is a valid limit for prestressed girders that fail in the 

region without flexural cracks. Therefore, a/d is not used as selection criterion. Part 

of the research is to investigate if the predictions according to the proposed model for 
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shear resistance in regions without flexural cracks are affected by a/d. This is an ad-

ditionally objective of the current research. 

 It should be avoided to base models that are intended for large girders in practice on 

test results of small experiments, considering the influence of the sizes of girders to 

their structural behaviour. Crack spacing in small girders is small compared to higher 

girders if girders do not contain stirrups. As a result the aggregate interlock compo-

nent is much higher in small girders compared to deeper girders. This is called a ‘size 

effect’. However, for girders with stirrups, crack spacing is controlled and no signif-

icant size effect is expected (Bentz et al. 2006a). Nevertheless, to limit the chance 

that deviant behaviour of small girders affects the development or evaluation of mod-

els, only experiments with a member height larger than 450 mm are selected. The 

selection criterion can be considered as relatively strict compared to criteria used by 

other researchers to compile their databases. For instance Avendano et al. (2008), 

Hawkins et al. (2007), Birrcher et al. (2009) and Reineck et al. (2012) used respec-

tively a minimum girder height of 305, 508, 305 and 70 mm as selection criteria for 

their databases. An additional goal of the current research is to investigate whether 

the predictions are consistent for different girder heights according to proposed model 

for the shear resistance in regions without flexural cracks. 

5.3.2 Overview of selected experiments 

The database of shear failure related to diagonal tension cracks of girders with stirrups 

is included in Appendix F. An overview of the selected experiments and associated 

ranges of parameters is given in table 5.7. Figure 5.23 illustrates the described parame-

ters. Fifty seven experiments are selected that meet the selection criteria as described in 

section 5.3.2. Both simply as continuously supported girders are included. Selected ex-

periments contain both post-tensioned and pre-tensioned tendons. The applied 

geometries of the tendons of the experiments are straight, draped and curved.  

 

Figure 5.23. Data used to determine the main parameters and characteristics of the experiments 

The main selection criterion is if failure could be related to diagonal tension cracks. The 

selected experiments meet this condition. This is argued in the remaining part of this 

section.  
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Table 5.7. Overview database on shear failure related to diagonal tension cracks, girders with stirrups 

Re-

searcher 

(year) 

Identification 

(number of experi-

ments) 

Prestress-

ing 

Support 

condi-

tions 

h σcp ρw  

 

fcm a/d dmax 

    mm N/mm2 % N/mm2 - mm 

Elzanaty 

et al. 

(1986) 

CW10,CW11, 

CW12, CW13, 

CW14, CW15, 

CW16, CW17 (8) 

Straight 

pre-ten-

sioned 

tendons 

Simply 

sup-

ported 

457 7.9-

11.3 

0.25-

0.79 

40- 

74 

3.4-

3.7 

13 

Choulli  

(2005) 

HCP2TE, 

HCP2TW, 

HAP2TW, 

HCP1TE, 

HCP1TW, 

HAP1TE, 

HAP1TW (7) 

 

Straight 

pre-ten-

sioned 

tendons 

Simply 

sup-

ported 

750 6.3- 

9.6 

0.50 81- 

96 

3.0- 

3.1 

12 

Hanson 

(1964) 

FX1A, 

FX1B,F1A, F1B, 

F2A, F2B, F3A, 

F3B, F4B, F5A, 

F5B, F19A (12) 

 

Straight 

pre-ten-

sioned 

tendons 

Simple 

sup-

ported 

 

457 5.8- 

6.4 

0.20-

0.74 

44- 

51 

1.9-

3.2 

19 

Leon-

hardt et 

al. 

(1973) 

ŢP2, ŢP4 (2) Draped 

post-ten-

sioned 

cable 

with bond 

Simply 

sup-

ported 

970, 

900 

5.5, 

6.3 

0.70-

2.31 

24,  

47 

3.9 15 

Rupf et 

al. 

(2013) 

SR21, SR22, 

SR23, SR24, 

SR25, SR26, 

SR27, SR29, 

SR30 (9) 

 

Curved 

post-ten-

sioned 

cable 

with bond 

Contin-

uously 

sup-

ported 

780 2.3-

4.9 

0.06-

0.25 

28- 

37 

6.6- 

6.9 

16 

Mattock 

et al. 

(1961) 

S1, S2, S3, S5, S6, 

S7, S8, S9, S10, 

S11, S12, S13, 

S21 (13) 

 

Straight 

pre-ten-

sioned 

tendons  

Contin-

uously 

sup-

ported 

648 8.0 0.37-

1.12 

42- 

47 

1.0-

4.5 

19 

Xie 

(2009) 

LB2, LB3, LB6, 

LB7, LB8, LB10 

(6) 

Straight 

post-ten-

sioned 

Contin-

uously 

sup-

ported 

500 4.3-

11.2 

0.19-

0.37 

62- 

64 

5.1 10 
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A part of the experiments of the experiment of Elzanaty et al. (1986) that were designed 

to fail as result of ‘web shear failure’ (CW-series) contain stirrups. For these experiments 

the experimentally found shear resistance is reported. As the failure was related to diag-

onal tension cracks, all experiments of the CW-series with stirrups are selected. It was 

reported that flexural cracks were present but that these were all shallow and did not 

propagate in the web. It is difficult to confirm the selection based on the photos of the 

failed experiments. Hence, it is unclear from the photos to what extend the flexural 

cracks were expanded. Therefore, the selection is based on the description. The failure 

modes reported concern extensive crack opening, sometimes combined with crushing 

of concrete. For two experiments the diagonal tension cracks propagated through the top 

flange. 

A part of the experiments tested by Choulli (2005) contain stirrups. It was reported that 

six of the experiments failed as a result of diagonal tension, yielding of the stirrups and 

crushing of the concrete in the web. Because the failure was associated with diagonal 

tension, these six experiments were selected for the database. It was difficult to confirm 

the selection based on the photos. That is because it was unclear from the photos to what 

extend the flexural shear cracks were expanded. Therefore, the selection is based on the 

description. Experiment HCP2TW was reported to fail as result of stirrups rupture and 

concrete crushing. Because it was reported that the rupture occurred in a diagonal ten-

sion crack, also this experiment is selected. 

In the dissertation of Hanson (1964) a distinction was made between if flexural shear 

cracks or diagonal tension cracks could be associated with the shear failure mechanism. 

This was done by studying photographs of the tested girders taken before and after fail-

ure. All experiments for which failure was related to diagonal tension cracking are 

selected. The failure modes reported concern web crushing, stirrups fracture and shear 

compression.  

For two of the experiments in the research report of Leonhardt et al. (1973) that failed 

in shear, the failure could be associated with diagonal tension cracks. This was deter-

mined from the figures in the report that describe the development of the cracks. These 

two experiments are selected. The associated photos were studied and it was confirmed 

that failure was related to diagonal tension cracks. 

Most of the experiments that were part of the experiment carried out by Rupf et al. 

(2013) concerned prestressed girders with a flange. It was reported that all these girders 

failed in the region of the point of contraflexure. Therefore, the experimentally found 

resistance was related to diagonal tension cracking. All experiments that contained pre-

stress were selected. For two of these experiments photos of the final crack pattern were 

present that confirmed that failure was related to diagonal tension cracks. Two failure 
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modes were described. The first concerned failure of the web by large openings of the 

cracks of the web and rupture of the stirrups. This was observed for experiments with 

low amounts of shear reinforcement. The second failure mode concerned crushing of 

concrete simultaneous with yielding of the stirrups. This was observed for higher 

amounts of shear reinforcement. Although different anchorage conditions were applied 

in the experiments of Rupf et al., no influence was observed on the shear resistance or 

the failure mode. However, a potential effect of the anchorage conditions on the pre-

dicted resistance cannot be ruled out. 

Almost all experiments in the research report of Mattock et al. (1961) failed in shear. 

For these experiments it was reported that diagonal tension cracks led to failure. The 

flexural cracks caused by the negative moment were too close to the support and to 

steeply inclined to lead to shear failure. Besides, it was reported that flexural cracks 

merged with diagonal tension cracks that developed independently in the web. Never-

theless, all the experiments for which the girder failed in shear are selected, as the 

diagonal cracks are diagonal tension cracks. For some tests, photos of the failed experi-

ments were present and for several other experiments figures of the cracking pattern. 

These were studied and it was confirmed that failure was related to diagonal tension 

cracks. All girders failed due to crushing of the web and simultaneously yielding of the 

stirrups. 

Seven experiments that were part of the experiment carried out by Xie (2009), concerned 

prestressed girders with stirrups. One experiment suffered some problems with the form-

work and was not selected. It was reported that failure occurred due to rupture of the 

stirrups and sliding along a major inclined web-shear crack for all experiments, so all 

six remaining experiments are selected. For all experiments, crack diagrams were in-

cluded in the dissertation for each load stage. The dissertation also includes photos of 

the girders after failure. These crack pattern and photos confirm that failure was related 

to diagonal tension cracks.  

5.4 Findings from literature review and further approach 

This section describes to what extend the research questions could be answered based 

on the literature study. Based on these answers an approach is chosen to derive the model 

which is proposed in this dissertation. 

Research question D concerns the question ‘What are the possible shear failure modes 

for prestressed girders with stirrups in the regions without flexural cracks? Is it possible 

to relate the shear resistance to the possible failure modes?’. From the literature review 

it is found that the model of Esfandiari distinguishes possible failure modes. The model 

also relates the shear resistance to these possible failure modes. This makes the approach 
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that is used to derive the model of Esfandiari also suitable to further investigate the 

possible shear failure modes in the regions without flexural cracks. Subsequently it is 

possible to relate the shear resistance to the failure modes.  

Research question E concerns the question ‘How does the low longitudinal strain, that 

is associated with regions without flexural cracks, affect the shear force transfer mech-

anism along the diagonal tension crack?. From the literature review two approaches are 

found. The first approach is to relate the shear resistance to the longitudinal strain. This 

approach is used in the models based on the MCFT (Bentz et al. and Esfandiari). These 

models relate the contribution of aggregate interlock and stirrups to the strain at mid-

depth. As a consequence, low longitudinal strain, which is associated with regions with-

out flexural cracks, will result in high contributions of aggregate interlock and stirrups. 

A second approach is to develop models that are only applicable in regions without flex-

ural cracks. In this approach the low longitudinal strain, associated with regions without 

flexural cracks, is considered implicitly. Such an approach is used in the empirical mod-

els of Leonhardt and MacGregor et al.. 

Research question F concerns the question ‘How can the contribution of the shear force 

transferred by the uncracked flanges be determined? And how is this contribution af-

fected by the cross sectional properties?’ From the literature review it was found that 

none of the described models consider the contribution of the shear force transferred by 

the uncracked concrete (flanges) by a separate term. However, the model of Bentz et al., 

does consider the contribution of the uncracked most compressed zone implicitly. The 

contribution by aggregate interlock and stirrups was found to be related to the crack 

length over the cracked height. The model of Bentz et al., determines the total shear 

resistance based on a cracked length related to the internal lever arm instead of the 

cracked height. The difference between the internal lever arm and the cracked height 

results in the contribution of the uncracked compression flange. A possible contribution 

of the uncracked least compressed zone, is no part of the model of Bentz et al.. The 

effect of the cross sectional properties on the contribution by the uncracked concrete, is 

also not considered in the model of Bentz et al.. 

The approach used to derive the model of Esfandiari will be used to further investigate 

the possible shear failure modes in the regions without flexural cracks and to relate the 

shear resistance to the failure modes (Chapter 6). The newly proposed model will thus 

be based on the Modified Compression Field Theory (Vecchio et al. 1986). This theory 

is based on extensively studied membrane behaviour and provides insight into the fun-

damental behaviour of concrete in shear. The resistance of this well-known membrane 

behaviour was related (Bentz et al., Esfandiari) to the resistance of a girder by making 

some clear assumptions.  
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These assumptions are: 

 plane sections remain plane,  

 transverse stresses are neglected and  

 the resistance is assumed to remain constant over the web (Bentz et al. 2006a).  

Because the model is based on this rational theory it is plausible that all parameters that 

affect the resistance are considered. This is in contrast to the other models for shear 

resistance that are calibrated using results of experiments on girders. This is obvious for 

the empirical models (MacGregor et al., Leonhardt). But also in the variable angle truss 

model the strength of the compressive struts is based on experiments on girders. For the 

newly derived model, experiments on girders will eventually only be used to investigate 

the accuracy of the developed model. 

It could be argued to just use the model of Esfandiari to predict the shear resistance in 

regions without flexural cracks, instead of developing a new model. From the literature 

review, the following remarks can be made regarding to what extend the model of Esfan-

diari is suitable for the prediction of the shear resistance in regions without flexural 

cracks (Section 5.1.6): 

 The model is derived for values of the longitudinal strain between 0 and 1.0 mm/m. 

For low values of the longitudinal strain, which can be associated with regions with-

out flexural cracks, the predicted values for both θ and β appear to be conservative 

compared to the predictions using the MCFT (Section 5.1.6).  

 From a comparison with experimentally found resistance, the predicted resistance 

was found to be conservative for εx < 0.1 mm/m (Section 5.1.6). This will eventually 

be evaluated in Section 8.4.3 for experiments that failed in regions without flexural 

cracks. 

 The model of Esfandiari is derived for values of 0.2% ≤ ρz ≤ 1.0%, 30 ≤ fcm 

≤ 60 N/mm2 and dmax = 19 mm (Esfandiari 2009). For the application of the model 

for the assessment of existing Dutch Highway bridges also values ρz < 0.2% are of 

interest just like values of fcm > 60 N/mm2 (Table 1.1). Moreover, a value of dmax = 

31.5 mm is applicable for the assessment of existing Dutch Highway bridges build 

before the year 2000 (based on experience expert). 

 No validation is found in literature for the assumption that the resistance remains 

constant over the web. Also this substantiation is missing for the now investigated 

condition that both flanges remain uncracked.  

 The contribution of the uncracked concrete is not considered in the model of Esfan-

diari. 
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In the newly proposed model the longitudinal strain will not be considered explicitly. 

The low longitudinal strain will implicitly be considered by developing a model that is 

only applicable for regions without flexural cracks. It is appealing for practice to avoid 

the complex calculation of longitudinal strain. This simplifies the models and enables 

engineers to easily apply the model to assess large numbers of bridges. As the model 

will be based on the MCFT, a fixed value for the longitudinal strain is assumed (Section 

6.1). It is however investigated whether the accuracy increases if the longitudinal strain 

is considered explicitly (Section 8.4.2). 

In the newly developed model, the contribution of the uncracked concrete will be con-

sidered by assuming a contribution of aggregate interlock and stirrups over a cracked 

length associated with a height larger than the cracked height just like the model of Bentz 

et al. does. This height will be derived for the condition that both flanges remain 

uncracked.  
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6 
Shear resistance at the mid-depth of the web 

In this dissertation a model is derived for the shear resistance of prestressed girders with 

stirrups in regions without flexural cracks. The model describes the transfer of shear 

force by aggregate interlock, stirrups and uncracked concrete. The current chapter de-

rives equations for the maximum shear stress that can be resisted at the mid-depth of the 

web by aggregate interlock and stirrups. Chapter 7 demonstrates that the shear stress 

that can be resisted at mid-depth of the web is representative for shear stress that can be 

resisted along the diagonal tension crack. Also the additional shear that can be trans-

ferred in uncracked concrete is described in Chapter 7. Chapter 8 describes the proposed 

model and is based on the results of Chapter 6 and 7 (see Figure 6.1).  

  

Figure 6.1. Overview of the analysed topics and the allocation of the proposed model per chapter 

An overview of the sections is shown in Figure 6.2. The longitudinal strain (εx) will not 

be considered explicitly for the proposed model of Chapter 8. Instead a fixed value is 

chosen for the regions of a girder without flexural cracks (as announced in Section 5.4). 

Zero is chosen for this fixed value for εx, which is explained in Section 6.1. The shear 

stress that can be resisted depends on the governing failure mode. Therefore, it is nec-

essary to first determine the possible failure modes for regions without flexural cracks. 

Section 6.2 determines the possible failure modes for regions without flexural cracks 

using the approach that was as suggested in Esfandiari (2009) as announced in Section 

5.4.  

Section 6.3 then describes the shear resistance according to the MCFT for each possible 

failure mode at εx = 0. The resistance is determined using ranges of parameters repre-

sentative for bridges with a thin web that are designed with a design code prior to the 

design code of 1974 (NEN 1974), see Table 1.1). Section 6.4 describes the derivation of 
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the approximation equations for the shear resistance of the mid-depth of the web for εx 

= 0. Consequentially, the resistance can be determined with simplified equations instead 

of the MCFT. To evaluate the accuracy of the proposed approximation equations, Sec-

tion 6.5 compares the resistances determined with the MCFT with the resistances 

obtained with the model of Bentz et al.. Moreover, Section 6.5 compares the resistances 

determined using the MCFT with the resistances found using the variable angle truss 

model. By comparing both resistances, the currently used limitation of the inclination of 

the compressive struts could be evaluated for regions without flexural cracks.  

 

Figure 6.2. Overview and coherence of sections 

As the resistance is determined using the MCFT, which is intended for membranes, the 

term transverse reinforcement is used in this chapter, instead of stirrups. The resistances 

according to the MCFT are determined using Membrane 2000 (Bentz 2000, Bentz et al. 

2001) which is a programme that solves the equations of the MCFT as described in 

Section 5.1.3. 

6.1 Longitudinal strains of the web in regions without flexural cracks 

In the model proposed in Chapter 8, the shear resistance of the web is based on the 

resistance calculated with the MCFT. The shear resistance according to the MCFT is 

related to the longitudinal strain. The shear resistance at mid-depth, investigated in this 

chapter, thus depends on the longitudinal strain at mid-depth. This longitudinal strain 

will not be considered explicitly for the proposed model (Chapter 8). This is because, 

for the regions without flexural cracks, considering the longitudinal strain explicitly will 

not lead to a more accurate determination of the resistance. This will be demonstrated 

in Section 8.4.2. Because εx does not have to be considered explicitly, complex calcula-

tions of the longitudinal strain are not needed, which simplifies the application of the 

model. Instead of explicitly considering the longitudinal strain, the longitudinal strain is 

assumed to be zero. In this sections it is explained that εx equals zero is a suitable and 

conservative assumption for regions of a girder without flexural cracks. 
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In this dissertation, the shear resistance is investigated in regions without flexural cracks 

(Figure 6.3). A region remains free of flexural cracks, if the stress in the ultimate fibre 

of the most tensioned flange is smaller than the flexural tensile strength of concrete 

(fctm,fl). Or, expressed in terms of strains, if the ultimate strain in longitudinal direction 

in the most tensioned flange εt is smaller than the cracking strain εcr (= fctm,fl / Ec). The 

cracking strain is about 0.1 mm/m (for 40 ≤ fcm ≤ 100 N/mm2). The longitudinal strain 

at mid-depth (εx) equals (εc + εt) / 2, in which εc is the strain in the most compressed 

fibre (Figure 6.3). As εt ≤ 0.10 and εc ≤ 0, εx will be small or negative (theoretical a 

maximum value of 0.05 could be found for the maxima εc = 0 and εt = 0.1 mm/m). 

Therefore, the assumption of εx = 0 at mid-depth could be considered as an upper limit. 

For lower values of εx, the resistance will be higher. A smaller value of εx results in a 

smaller crack width and more aggregate interlock (Figures 5.14, 5.17 and 5.18). A 

smaller value of εx also leads to a higher stirrup contribution, as the cracking angle de-

creases (Figures 5.14, 5.17 and 5.18). Therefore, it is a conservative assumption to use 

εx = 0 to determine the shear resistances using the MCFT for regions without flexural 

cracks. 

 

Figure 6.3. Relation between presence of flexural cracks and longitudinal strain at mid-depth 

It is noted that, when the longitudinal strain in the web is negative, diagonal tension 

cracks can still occur (Figure 6.3).. This is because not the longitudinal stresses, that are 

associated with the longitudinal strains, are decisive for whether a diagonal tension crack 

occurs, but the principal tensile stresses, that are also largely affected by the shear 

stresses. This was already demonstrated in Figure 1.5 in which diagonal tension cracks 

form in the web of a girder in the vicinity of the point of contra flexure. 
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6.2 Failure modes of the web in regions without flexural cracks 

This section determines the shear resistance for a membrane element for a considered 

failure mode and a considered strain. This approach is suggested in Esfandiari (2009) 

and described in Section 5.1.6. Esfandiari distinguished failure modes and was able to 

related the resistance for each failure mode to the strain. Subsections 6.2.1 describes the 

failure modes that can occur specifically in regions without flexural cracks. Subsection 

6.2.2. explains the method to determine the resistance for a failure mode and a strain 

state in more detail. Moreover, Subsection 6.2.2 explains that the maximum of the de-

termined resistances is governing.  

6.2.1 Possible failure modes of the web 

The proposed model (Chapter 8) will determine the resistance for two failure modes for 

εx = 0 (Section 6.1):  

1. Crushing of the concrete and simultaneous yielding of the transverse reinforcement.  

2. Slipping of the crack and simultaneous yielding of the transverse reinforcement.  

These two failures modes are also described by Vecchio et al. (1986) as possible failure 

modes that can be determined using MCFT analyses. A third possible failure mode de-

scribed in this article, concerns failure due to yielding of the longitudinal reinforcement. 

This failure mode is not possible in regions without flexural cracks. Therefore, this fail-

ure mode is not further considered in this dissertation.  

A fourth possible failure mode concerns instant failure due to diagonal tension cracking. 

This failure could occur if the amount of transverse reinforcement is so low that the 

membrane element fails directly after diagonal tension cracking. If this is the case, the 

resistance is comparable to that of a membrane element without transverse reinforce-

ment (Section 2.1.1). As explained in Chapter 2, the resistance to diagonal cracking 

depends on the stresses in the longitudinal (and potentially transverse) direction and the 

tensile strength of the concrete. In this dissertation the resistance associated with diago-

nal tension cracking is called ‘minimum shear resistance’. The determination of this 

shear resistance is described in Chapters 2 to 4 and Section 8.2. The resistance to diag-

onal tension cracking is derived analytically and it is not necessary to use the MCFT for 

this purpose. 

A fifth possible failure mode is crushing of the concrete without yielding of the trans-

verse reinforcement. If the amount of transverse reinforcement is high, the concrete can 

crush before the transverse reinforcement yields. Bentz (2009a) already derived an equa-

tion for this upper limit of shear resistance based on the MCFT (Section 5.1.4). In 

Section 8.2 this derivation is adapted to be suitable to determine the upper limit of the 
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shear resistance for regions without flexural cracks. It is common to describe the re-

sistance associated with this failure mode as ‘maximum shear resistance’ (Chapter 5). 

This definition will also be used in this dissertation.  

The described possible failure modes deviate in two aspects from the approach used by 

Esfandiari. The first aspects concerns yielding of the longitudinal reinforcement (indi-

cated above as ‘third failure mode’). As the model of Esfandiari is also applicable for 

regions with flexural cracks, also failure due to yielding of the longitudinal reinforce-

ment was considered and is a part the model. However, this is not relevant in the current 

dissertation. The second aspects concerns the failure due to slipping of the crack (indi-

cated above as ‘second failure mode’). Esfandiari did not recognize slipping of the crack 

as failure mode. Instead he defined yielding of the transverse reinforcement as failure 

mode. As will be shown in Subsection 6.2.2., it is possible to determine the shear stress 

for several conditions, such as yielding of the traverse reinforcement. Therefore, the 

analyses (Section 6.3) are also carried out for yielding of the transverse reinforcement 

(εx = 0). It was found that slipping of the crack and yielding of the transverse reinforce-

ment frequently (but not always) resulted in the same shear resistance (Appendix G). 

However, if this was not the case, the shear stresses associated with the condition sliding 

of the cracks was found to be higher than the shear stress associated with yielding of the 

transverse reinforcement for almost all combinations of the considered parameters (Ap-

pendix G). The condition associated with the highest shear stress corresponds to the 

shear resistance. Therefore, failure due to yielding of the transverse reinforcement is not 

considered as failure mode in this dissertation. 

It can be concluded that the proposed model should be suitable to determine the re-

sistance for the first two failure modes. The resistance of the proposed model should 

eventually be limited to prevent crushing of the compression field without yielding of 

the stirrups (upper bound). And the proposed model  should be combined with the mod-

els for diagonal tension cracking which is a lower bound for the shear resistance.  

6.2.2 Method to determine the shear resistance of a failure mode 

This subsection explains how the resistance of a membrane element can be determined 

for the two considered failure modes, using the MCFT. This is explained by considering 

two analyses for a membrane element. The first analysis is intended to demonstrate that 

sliding of the crack or crushing of the concrete can be governing. The second analysis 

is intended, in combination with the first analysis, to demonstrate how the shear re-

sistance associated with an investigated strain state (for this investigation εx = 0) and an 

investigated failure mode (for this research crushing of concrete or slipping of the crack) 

can be determined. It will be described that the resistances can be found by adapting the 

load increment for a condition associated with a failure, until the longitudinal strain is 
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zero. This approach is also suggested by Esfandiari (2009), as described in Section 5.1.6. 

This subsection is intended to explain in more detail how the MCFT is used to determine 

the resistance of the web of a girder for εx = 0. 

  

Figure 6.4. Shear transfer across a crack (MCFT, based upon Bentz et al. 2006b) 

To explain the two considered failure modes, the explanation of some parameters that 

follow from the MCFT (Section 5.1.3), are shortly repeated (Figure 6.4). The shear re-

sistance of a cracked membrane element consists of contributions of the transverse 

reinforcement (τs) and of the aggregate interlock (τci), according to Equation 6.1. The 

shear stress transferred by the transverse reinforcement depends on the transverse rein-

forcement ratio ρz (= Asz /(b s), in which b is the depth of the membrane element), the 

stress in the transverse reinforcement at the crack σsz,cr and the angle of the crack θ (Sec-

tion 5.1.4.2, Equation 6.2).  

𝜏 =  𝜏𝑠 +  𝜏𝑐𝑖         (6.1) 

𝜏𝑠 =  𝜌𝑧𝜎𝑠𝑧,𝑐𝑟 𝑐𝑜𝑡 𝜃  (6.2) 

𝜏𝑐𝑖,max =  
0.18 √𝑓𝑐𝑚

0.31 + 
24 𝑤

(𝑑max + 16)

 (6.3a) 

𝜏𝑐𝑖,𝑚𝑎𝑥 =  𝛽√𝑓𝑐𝑚 (6.3b) 

The stress in the transverse reinforcement, the cracking angle and shear stress transferred 

by aggregate interlock can be found from membrane analyses using the MCFT. If the 

shear stress transferred by the crack is small, the aggregate interlock stresses follow from 

equilibrium (Equation 5.26). At this situation, the maximum aggregate interlock stress 

is not governing (τci < τci,max). If the shear stress transferred by the crack is high, the 

maximum aggregate interlock stress can be governing (τci = τci,max). This maximum ag-

gregate interlock stress τci,max depends on the crack width w, the cylinder compressive 

strength of concrete fcm and the maximum aggregate size dmax (Equation 6.3a, see also 
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remarks in Section 6.3 regarding higher strength concrete). Equation 6.3a can be sim-

plified by using the parameter β instead of w and dmax (Equation 6.3b). 

Based on this short repetition of the explanation of some parameters of the MCFT, the 

first analysis will be described. This analyses is intended to demonstrate that sliding of 

the crack or crushing of the concrete can be governing. The governing failure mode 

depends on the amount of transverse reinforcement, the yield strength of the transverse 

reinforcement and the strength of the concrete. The first analysis is carried out with 

Membrane 2000 (Bentz 2000). The properties of the membrane element are: fcm = 60 

N/mm2, fyz = 250 N/mm2 (no strain hardening), ρz = 0.5%, dmax = 31.5 mm and crack 

spacing parameters sx = sz = 400 mm. The element is loaded with load increments of δσx 

/ δτ = -1.82 / 1. The used ratio of load increments and crack spacing parameters lead to 

εx = 0 mm/m at crack slipping and a diagonal crack spacing sθ of 300 mm. The used load 

increment will be further explained in combination with the second analyses and in Sec-

tion 6.3. The shear stress versus shear strain diagram that is found from the membrane 

analysis is shown in Figure 6.5.  

 

Figure 6.5. Shear stress versus shear strain  

(triangle = cracking, circle = crack slipping, diamond = crushing) 

Until diagonal cracking, the shear is resisted by the concrete. A diagonal crack forms at 

the instant the cracking strength is reached (Equation 5.24). The parameters at the load 

step directly after cracking are shown in Table 6.1. This point is shown in Figure 6.5 

with a triangle. At this load step, aggregate interlock stresses are present. Because the 

crack width is limited, a high value of the maximum aggregate interlock is found (Equa-

tion 6.3). At this load, the calculated aggregate interlock stress is less than its maximum 

(Table 6.1, τci < τci,max). As subsequently the load increases, the aggregate interlock stress 

increases. Simultaneous, the crack width increases and the maximum value of the ag-

gregate interlock decreases. This increase is possible until the crack width has a value 
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resulting in an aggregate interlock stress that equals the maximum (τci  = τci,max). At this 

load crack slipping occurs. This point is shown in Figure 6.5 with a circle. After diagonal 

cracking, the stress in the transverse reinforcement at the crack σsz,cr immediately equals 

the yielding strength (fyz = 250 N/mm2). As also the cracking angle remains about equal, 

the increase of shear stress between cracking and slipping, can be attributed to the in-

crease of the aggregate interlock stresses (τ, τs, τci, in Table 6.1).  

Table 6.1. Strains, stresses and maximum stresses at different load stages 

 strains  at crack at compression field 

 γxz εx θ τs w β τci,max τci τ σ2 σ2,max 

 mm/m mm/m ° N/mm2 mm - N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 

Cracking 0.28 -0.19 26.2 2.54 0.03 0.55 4.29 1.50 4.04 -8.4 -60.0 

Slipping 1.58 0.00 25.7 2.60 0.49 0.32 2.51 2.51 5.11 -12.0 -58.1 

Crushing 17.1 0.75 18.6 3.71 8.25 0.04 0.31 0.31 4.02 -13.2 -13.2 

After slipping (and yielding of the reinforcement), the cracking angle starts to decrease. 

The rotation leads to an increase of the contribution of the transverse reinforcement to 

the shear resistance (Equation 6.2). Simultaneous, as the cracks width increases, the 

contribution of the aggregate interlock decreases. At increasing loads, also the principal 

strain ε1 increases. This results in a reduction of the maximum compressive stresses at 

the compression field σ2,max (Equation 5.23). Due to the rotation of the compression field, 

the stress in the compression field σ2 increases simultaneously. For a certain rotation of 

the compression field, the compressive stresses at the compression field equals the max-

imum compressive stress (σ2 = σ2,max). At this point the concrete crushes. This point is 

shown in Figure 6.5 with a square diamond (Table 6.1).  

In general two scenarios are possible. The first scenario is that when the load increases, 

the resistance by the transverse reinforcement due to the rotation of the compression 

field increases faster than the shear stresses in the aggregate interlock decreases by the 

crack opening. For this scenario the maximum resistance is found at concrete crushing. 

The second scenario is that when the load increases, the shear stresses in the aggregate 

interlock decreases faster than the resistance by the transverse reinforcement increases. 

For this scenario the maximum resistance is found at crack sliding. This is the case for 

the considered element (Figure 6.5). The associated failure mode and the maximum 

shear resistance, depends on the amount of transverse reinforcement, the yield strength 

and the strength of the concrete (in symbols ψ which equals ρz fyz /fcm). So depending on 

ψ, sliding of the crack or crushing of the concrete can be governing. 

To derive a model for a girder, the longitudinal strain is the prescribed parameter (Sec-

tion 6.1). The second analysis demonstrates how to find the shear resistance associated 

with an fixed strain state (for this investigation εx = 0) and an investigated failure mode 

(for this research crushing of concrete or slipping of the crack). The assumption of a 



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 143PDF page: 143PDF page: 143PDF page: 143

 

127 

fixed strain state requires an approach that differs from the first analysis. This is illus-

trated for the same membrane element as used in the first analysis. In this first analysis 

the (ratio of the) load was prescribed. The analysis resulted in different values of the 

longitudinal strain depending on the load step (Table 6.1) and governing failure mode. 

In the membrane analyses, the fixed strain state εx = 0 can be found by adapting the ratio 

of the load increments δσx /δτ until, for an investigated failure mode, the condition εx = 0 

is met (iterative process). For both failure modes (σ2 = σ2,max or τci = τci,max) a resistance 

can be determined that matches the condition εx = 0. Therefore, analyses resulting in εx 

= 0 are carried out for each of the two possible failure modes. Sufficient longitudinal 

reinforcement is applied to ensure that yielding of the longitudinal reinforcement is not 

governing. Only the results at εx = 0 are of interest for the model that will be developed. 

The investigated failure modes lead to two shear strain versus shear stress diagrams 

(Figure 6.6). Associated values of the parameters are shown in Table 6.2. The black dot 

in Figure 6.6 indicated the point of slipping of the crack for εx = 0. The grey diamond 

indicates the point of crushing of the concrete for εx = 0. As the resistance for crack 

sliding for εx = 0 (τ = 5.11 N/mm2, Table 6.2) is higher than the resistance to concrete 

crushing for εx = 0 (τ = 4.35 N/mm2, Table 6.2), crack sliding was found to be the gov-

erning failure mode for this membrane element.  

 

Figure 6.6. Maximum shear at slipping (circle) and crushing (diamond) for εx = 0 

Table 6.2. Strains, stresses and maximum stresses for εx =0 and sθ = 300 mm 

 load sx = 

sz 

at crack at compression field 

 δσx/δτ θ τs w β τci,max τci τ σ2 σ2,max 

 - mm ° N/mm2 mm - N/mm2 N/mm2 N/mm2 N/mm2 N/mm2 

Slipping -1.82/1 400 25.7 2.60 0.49 0.32 2.51 2.51 5.11 -12.0 -58.1 

Crush-

ing 

-3.11/1 376 17.5 3.96 6.70 0.05 0.38 0.38 4.35 -15.1 -15.1 



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 144PDF page: 144PDF page: 144PDF page: 144

128 

6.3 Shear resistance determined using the MCFT 

This section describes the shear resistance according to the MCFT for each possible 

failure mode at εx = 0. Subsection 6.2.2. explained that the resistance for a failure mode 

should be derived for the condition that corresponds to the failure mode (τci = τci,max for 

crack sliding and σ2 = σ2,max for crushing of the compression fields) and εx = 0. Also 

Section 6.2.2 explained that the maximum resistance is governing. This section deter-

mines the resistance using ranges of parameters that cover the parameters associated 

with the bridges with a thin web that are designed with a design code prior to the design 

code of 1974 (NEN 1974), see Table 1.1. Based on the results of the analyses, approxi-

mation equations are derived to determine the shear that can be resisted by the web of a 

girder in regions without flexural cracks (Section 6.4).  

The MCFT (Section 5.1.4) is developed to determine the load-shear response of mem-

brane elements. As mentioned in Section 5.1.4.1, the MCFT is validated using 102 

experiments with membrane elements. A mean test-to-predicted resistance ratio was 

found of 1.01 and an associated coefficient of variation of 12% (Bentz et al. 2006b). For 

the majority of these membranes only shear loads were applied (σx = 0) or shear loads 

in combination with longitudinal tension loads (σx > 0). However, for some of these 

experiments shear loads were applied in combination with longitudinal compressive 

loads (σx < 0). The accuracy of the predictions for these experiments with compressive 

loads was similar to the accuracy of the other experiments. Since the loading conditions 

of some of the reported tests are similar to the stress conditions in the web investigated 

in the current research, it is assumed that the prediction of MCFT results in an accurate 

determination of the real behaviour of the structure. Eventually, the proposed model 

(Chapter 8) is also validated with experiments on girders (Section 8.4). 

The resistances are determined using the MCFT for a wide range of parameters. The 

parameters are determined in such a way that they are representative for the intended 

application of the model (Table 1.1). In Table 6.3, the parameters are listed and argu-

ments are summarized for the investigated values of the parameters. Forty analyses per 

failure mode are carried out. The effect of the longitudinal strain parameter εx and the 

diagonal crack spacing parameters sθ on the accuracy of the predictions is investigated 

as part of the evaluation of the model (Section 8.4.2). In Membrane 2000, the value of 

dmax is linearly reduced from its actual value at fcm = 60 N/mm2 to zero at fcm = 80 N/mm2. 

For higher strength concrete the aggregate size is assumed to have no significant effect 

on the shear strength. This is because in higher strength concrete the cracks run through 

the aggregates due to the strong paste (Bentz et al. 2006a). Because of the drop in ag-

gregate interlock resistance at these values, not only the minimum and maximum values 

are examined (fcm = 40 N/mm2 and fcm = 100 N/mm2), but also the two mentioned inter-

mediate values. 
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Table 6.3. Considered parameters for the membrane analyses 

Investigated parameter(s) Comments 

εx 0 mm/m This value relates to the investigated regions without 

flexural cracks as explained in Section 6.1. The effect 

on the accuracy of εx is investigated in Section 8.4.2. 

dmax 31.5 mm Common value for dmax applied in Dutch bridges (up 

to 2000). It is noted that dmax reduces from the actual 

dmax at fcm = 60 to zero at fcm = 80 N/mm2. The model is 

also validated in Section 8.4.2, using dmax as applied in 

the experiments, which leads to a lower resistance. 

sθ 300 mm Conservative assumption for elements that contain 

both transverse and longitudinal reinforcement (Bentz 

et al. 2006a). In Section 8.4.2, both sθ = 300 mm and 

the measured value for sθ are used to validate the 

model. 

fcm 40, 60 ,80, 100 N/mm2 Concrete strengths of fcm = 40 and 100 N/mm2 are con-

sidered as minimum and maximum values for the 

concrete strength for Dutch bridges (Table 1.1). As 

dmax reduces from the actual dmax at fcm = 60 to zero at 

fcm = 80 N/mm2, these strengths are additional investi-

gated. 

fyz 250, 600 N/mm2 (no strain harden-

ing) 

Yielding strength of stirrups of 250 and 600 N/mm2 

are considered as minimum and maximum values of 

the mean yield strength for stirrups applied in Dutch 

bridges (Table 1.1). 

ρz 0.10%, 0.25%, 0.50%, 0.75%, 1.00% A shear reinforcement ratio of 1.00 % is considered as 

maximum values applied in Dutch bridges (Table 1.1). 

It is assumed that diagonal tension cracking is govern-

ing for values of ρz lower than 0.10%. Older bridges 

typically contain a low amount of shear reinforcement 

(an indication for the maximum value for bridges that 

consist of girders is about 0.30%, for box girder 

bridges the maximum is about 0.70%).  

The method used to derive the resistances will be explained. The analyses are carried 

out using the Programme Membrane 2000 which is a programme that solves the equa-

tions of the MCFT (Section 5.1.3, Bentz 2000, Bentz et al. 2001). For each combination 

of parameters the material properties are entered: fcm, dmax, fyz, fyx, ρz, ρx and the geometry 

of the concrete and reinforcement. Sufficient longitudinal reinforcement is applied to 

ensure no yielding of the longitudinal reinforcement. Values for the crack spacing in 

longitudinal and transverse direction (sx, sz) are estimated that would lead to 

sθ = 300 mm and are entered in the programme. Firstly, failure due to slipping of the 

crack is investigated. A value for σx is estimated and entered that would lead to εx = 0 at 

crack slipping. A full response analyses is carried out and the strain is determined at the 
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load step that results in τci = τci,max. At this load step εx will initially not be equal to zero. 

Therefore, σx is adapted until the condition εx = 0 at crack slipping (τci = τci,max) is met 

(Figure 6.6). Next, the crack spacing parameters sx and sz are adapted until sθ equals 

300 mm. Additionally it is checked if this effects εx = 0 at crack slipping and possibly 

again σx is adapted until the condition εx = 0 is met. Thereafter, the values of the τci, θ 

are noted (Appendix G) and it is checked if the values match the calculated value of τ 

using equation 6.1 and 6.2. This check is carried out using σsz,cr = fyz, so this also confirms 

that the transverse steel at the crack is yielding at the instant the cracks slips. Also the 

input values for the crack spacing parameters are noted (Appendix G). Secondly, failure 

due to crushing of the compression field is investigated. A similar process is carried out. 

For this failure, σx is determined that leads to εx = 0 at crushing of the compression field 

(Figure 6.6). In other words, the load step at which σ2 = σ2,max. The resistances (τR) de-

termined with the MCFT for each combinations of fcm, fyz, ρz, and for each failure mode 

are listed in Appendix G. The governing resistance is the maximum of the resistances 

associated with both failure modes (Appendix H). Also the iterative determined values 

for sx (and sz which value is set equal to sx) and σx are listed.  

Beside the results of crack sliding (τci = τci,max) and crushing of the compression fields 

(σ2 = σ2,max) also the resistances associated with yielding of the transverse reinforcement 

are listed in Appendix G. As noted in Section 6.2.1, in Esfandiari (2009) it was not rec-

ognized that slipping of the crack was a failure mode. Instead, yielding of the transverse 

reinforcement was defined as failure mode. As shown in Appendix G, the shear re-

sistance associated with yielding of the transverse reinforcement was never significant 

higher than the shear resistance associated with sliding of the cracks. But the shear re-

sistance associated with sliding of the cracks was frequently significant higher than the 

shear resistance associated with yielding of the transverse reinforcement. 

In Figure 6.7, the resistances that are found from the MCFT analyses are plotted versus 

ψ. The maximum values of ψ differs per graph as a consequence of the different consid-

ered values for fcm (the ranges of ρz and fyz do not differ). The resistance associated with 

crack sliding is plotted with black trend lines (and black circles) and the resistance as-

sociated with crushing of the compression field is plotted with grey trend lines (and grey 

diamonds). Both trend lines are second order polynomials and are plotted with the in-

tention to show the trend and the governing failure mode (highest of both trend lines). 

For the lower strength concrete (fcm = 40 N/mm2 and fcm = 60 N/mm2) crack sliding is 

found to be the governing failure mode. Also for the higher strength concrete (fcm = 80 

N/mm2 and fcm = 100 N/mm2) in combination with lower values of ψ, crack sliding is 

found to be the governing failure mode. For the higher strength concrete in combination 

with higher values of ψ, crushing of the compression field is found to be governing. This 

is because for the higher strength concrete dmax = 0 so the maximum resistance due to 



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 147PDF page: 147PDF page: 147PDF page: 147

 

131 

aggregate interlock decreases. Therefore, the resistance to crack sliding decreases and 

failure due to concrete crushing was found to become governing. For the higher strength 

concrete and low values of ψ, on the other hand, the potential increase of the resistance 

by crack rotation is relatively low. So despite the low contribution of aggregate interlock, 

crack sliding is still found to be governing for low values of ψ for these higher strengths 

of concrete.  

  

  

Figure 6.7. Resistance to crack sliding (circles) and concrete crushing (diamonds) at εx = 0 versus ψ 

6.4 Proposed approximation equations 

In Section 6.3, the shear resistance according to the MCFT is determined, for a range of 

parameters, for both the failure modes crushing of the compression field and slipping of 

the crack. As explained in section 6.2, the highest of both resistances is governing. In 

the current section, equations are derived to approximate the resistance found using the 

MCFT with simple equations. These approximation equations are used for the proposed 

model (Chapter 8). This prevents that MCFT analyses are necessary for each assessed 

bridge. In the proposed approximation equations, a distinction is made between the con-

tribution of aggregate interlock to the shear resistance (which corresponds to β√fcm, as 
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explained in Section 5.1.4) and the contribution of the stirrups (which corresponds to 

ρz fyz cotθ, which is also explained in Section 5.1.4).  

To derive an approximation equation for the contribution of aggregate interlock, a linear 

equation β = ea + bψ is assumed. The parameters a and b define the linear model for β, 

for fcm ≤ 60 N/mm2. The parameter e accounts for the drop in the contribution of aggre-

gate interlock for fcm ≥ 80 N/mm2 (for which the crack runs through the aggregates). For 

the contribution of stirrups, a linear equation θ = c + dψ is assumed. The values c and d 

define the linear model for θ. For a combination of a, b, c, d and e, the approached 

resistance and the resistance according to the MCFT are determined (Section 6.3, Ap-

pendix G). Subsequently the mean values of the ratio of both resistances and the 

associated coefficient of variation are determined using the results of 40 membranes. 

The values of a, b, c, d and e are adapted until the mean value of the ratio of the re-

sistances equals 1.00 and a minimum coefficient of variation is found (which eventually 

was 4%). This results in values for a, b, c, d and e of respectively 0.38, -2.5, 26, 0, 0.8 

(Equations 6.4 to 6.6).  

𝜏𝑅 = 𝜏𝑠 + 𝜏𝑐𝑖 = 𝜌𝑧𝑓𝑦𝑧 𝑐𝑜𝑡 𝜃 +  𝛽√𝑓
𝑐𝑚

  (6.4) 

𝛽 = 0.38 –  2.5𝜓 for fcm ≤ 60 N/mm2 (6.5) 

𝛽 = 0.30 –  2.5𝜓 for fcm ≥ 80 N/mm2 (6.6) 

With 𝜓 = 𝜌
𝑧
𝑓

𝑦𝑧
 𝑓

𝑐𝑚
⁄  and 𝜃 = 26° 

The following considerations are made regarding the approximation equations: 

 As shown in Figure 6.7, for the range of values of ψ, different resistances are found 

for the two possible failure modes. However, is was found possible to accurately 

cover the governing (highest) resistance, using just one set of equations (Equations 

6.4 to 6.6). This significantly reduces the effort to determine the shear resistance in 

practice. Moreover, considering both failure modes separately does not lead to a sig-

nificant increase of accuracy, as the found coefficient for the ratio of the approached 

resistance and the resistance found from the MCFT was low. 

 The resistances according to Equations 6.4 to 6.6 are included in Figure 6.7. In this 

figure, the results of the approximation equations are compared to the resistance cal-

culated with the MCFT. It is noted that the resistances from the approximation 

equations should be compared to the highest of the resistance to crack sliding and 

crushing of the compression field (Section 6.2.1). Equations 6.4 to 6.6 result in a 

mean value of the ratio of the calculated to approximated resistance of 1.00 and a 
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coefficient of variation of 4%. Since the coefficient of variation found is so low, ap-

parently all parameters that significantly affect the accuracy are considered. The low 

coefficient of variation also confirms the suitability of the assumption that the contri-

butions of aggregate interlock and transverse reinforcement depend linear on ψ.  

 The largest overestimation for the resistance is found to be 8%. This is found for a 

membrane with a low strength concrete (fcm = 40 N/mm2) and with a high values of ψ 

(ψ =0.150). This overestimation is considered to be acceptable as shear reinforcement 

ratios of 1% are not expected to be present for existing Dutch bridges (Table 1.1). 

Only for box-girder bridges, shear reinforcement ratios up to 0.70% are present. 

Moreover, for these box-girder bridges the concrete cylinder compressive strength 

will typically be higher than 40 N/mm2. 

 The shear contribution of aggregate interlock is lower for fcm ≥ 80 N/mm2 than for fcm 

≤ 60 N/mm2, as explained in Section 6.3. Therefore, the MCFT uses a value for dmax 

of zero for fcm ≥ 80 N/mm2. This results in a drop in the maximum aggregate interlock 

resistance according to the MCFT. This can be accounted for by limiting fcm in Equa-

tion 6.3 for τci,max (as done in the model of Bentz et al.), or by adapting the factor β 

for fcm ≥ 80 N/mm2. It was found that the latter leads to the most accurate approxima-

tion.  

 It is conservative, considering Equation 6.3a, to interpolate β linearly for 60 < fcm < 

80 N/mm2. This results in a larger reduction of τci,max than if Equation 6.3a would have 

been used. 

 Note that in Chapters 7 and 8, the parameter fyz which is applicable for membranes, 

will be replaced by fywm which is applicable for girders. 

Figure 6.8 compares the values of β calculated with the MCFT with the values of β 

predicted using Equation 6.5 and 6.6. Especially for low values of ψ, the contribution of 

the aggregate interlock to the shear resistance can be substantial. For the low values of 

ψ, for which crack sliding is the governing failure mode, the values of β are reasonably 

approached (Figure 6.8). For higher values of ψ, for which both failure modes can be 

governing, the β approximation of the MCFT results is poor. However, for higher values 

of ψ, the contribution of the aggregate interlock to the shear resistance is less significant. 

This explains why the approximation of the total shear resistance is found accurate de-

spite the poor predictions of β. Therefore, Equation 6.5 to 6.6 are considered as suitable 

approximation equations for β. Notice that the found drop in the value for β for fcm ≥ 

80 N/mm2 according to the MCFT is well captured for low values of ψ, for all concrete 

strengths by using Equations 6.5 and 6.6. Also the observed trend that relative contribu-

tion of the aggregate interlock decreases when ψ increases is well captured with the 

approximation equations.  
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Figure 6.8. β for crack sliding (circles) and concrete crushing (diamonds) at εx = 0 versus ψ 

Figure 6.9 compares the values for θ calculated with the MCFT to the proposed value 

for θ of 26°. Crack sliding is found to be governing for all values of ψ for low concrete 

strengths and for low values of ψ for high concrete strengths. For this failure mode, the 

approximation of θ = 26° is reasonable. For high values of ψ, for high concrete 

strengths, crushing of the compression field is governing. For this failure mode, the ap-

proximation of θ is poor. However, the underestimation of θ associated with this 

failure mode (which causes an overestimation of the contribution of transverse rein-

forcement), is compensated by an underestimation of β (Figure 6.8). This explains that 

the approximation of the total shear resistance is accurate. Therefore, the value for θ of 

26° is considered as suitable. 

6.5 Comparison approached resistances with models from literature 

This section compares the resistances for membranes determined with the MCFT for 

εx = 0 (Section 6.3) to the resistances found by using two models from literature as de-

scribed in Chapter 5. This concerns the model of Bentz et al. (Section 5.1.5) and the 

variable angle truss model (Section 5.1.1). The model of Bentz is considered to evaluate 

the proposed approximation equations (Equation 6.4 – 6.6). The variable angle truss 
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model is considered to evaluate the currently used limitation of the inclination of the 

compressive struts of 21.8° for regions without flexural cracks, as announced in 5.1.1. 

(Figure 5.2). 

  

  

Figure 6.9. θ at to crack sliding (circles) and concrete crushing (diamond) at εx = 0 versus ψ 

The ratios of the resistances according to the MCFT and the resistances according to the 

considered models are determined. The mean values and coefficients of variation of the 

proposed approximation equations (Equations 6.4 to 6.6) and both models are shown in 

Table 6.4, for zero longitudinal strain. Appendix H lists the ratio of resistance according 

to MCFT and the models from literature, including some intermediate results, at a lon-

gitudinal strain of zero. The derivation of these ratios will be further explained in this 

section.  

6.5.1 Model of Bentz et al.  

The approximation equations (Equations 6.4 to 6.6) are intended to accurate approxi-

mate the resistance found from the MCFT, for the condition εx = 0. Also the model of 

Bentz et al. is derived from the MCFT for εx ≥ -0.2. Therefore, the model of Bentz et al. 

(Section 5.1.5) is considered to evaluate whether the approximation equations indeed 
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result in more accurate approximation of the resistance found from the MCFT for the 

condition εx = 0.  

Table 6.4. Mean value and COV of the ratio of resistance according to the MCFT and according to the 

models 

 Proposed approximation 

equations 

 

Section 6.4 

Model of Bentz 

et al. 

(Section 5.1.5) 

Section 6.5.1 

Variable angle truss  

model (Section 5.1.1) 

 

Section 6.5.2 

Mean 1.00 0.94  1.89 

Coefficient of variation 4% 5% 69% 

This subsection compares the resistances calculated with the model of Bentz et al. (Sec-

tion 5.1.5, Bentz et al. 2006a,b, CSA 2006) and the resistances predicted with the MCFT 

(Section 6.3). The model of Bentz et al. is based on the MCFT and intended for both 

membrane analyses (Simplified Modified Compression Field Theory, Bentz et al. 

2006b) and girder analyses. The model of Bentz et al., and the approximation equations 

(Section 6.4) both determine the shear resistance with Equation 6.4 (Equation 6.4 is 

equal to Equation 5.34 in Section 5.1.4). The approximation equations are derived for 

the condition εx = 0. To evaluate the model of Bentz et al. for zero longitudinal strain, εx 

is set to zero. This results in a fixed value for β of 0.4 and a fixed value for θ of 29°. 

Both the model of Bentz et al. as the proposed approximation equations assume a fixed 

value for the diagonal crack spacing parameter sθ of 300 mm. There are some differences 

between the model of Bentz et al. and approximation equations (Equations 6.4 to 6.6) 

for the condition εx = 0: 

1. According to the model of Bentz et al., β and θ are independently of ψ. 

2. For girders with stirrups, the resistance according to the model of Bentz et al. is as-

sumed to be independent of dmax. The model of Bentz et al. is derived for dmax equals 

19 mm. It is noted that for values of fcm ≤ 60 N/mm2, the MCFT will predict a higher 

resistance if dmax equals 31.5 mm than if dmax equals 19 mm.   

3. The shear contribution of aggregate interlock is lower for fcm ≥ 80 N/mm2 than for fcm 

≤ 60 N/mm2, as explained in Section 6.3. To account for this effect, the model of 

Bentz et al. limits fcm to a maximum of 65 N/mm2 in Equation 6.4. In the approxima-

tion equations, on the other hand, β is limited in accordance to Equation 6.6 for fcm ≥ 

80 N/mm2. 

To illustrate the differences, the resistances using the model of Bentz et al. is compared 

to the resistance according to the MCFT for a membrane element with fcm = 60 N/mm2 

and dmax = 31.5 mm. The results are shown in Figure 6.10. The resistance τR calculated 
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with the MCFT is shown with a solid black trend line (and transparent dots). The con-

tribution of the aggregate interlock τci according to the MCFT is shown with a black 

dotted trend line (and transparent diamonds). The resistance according to the model of 

Bentz at al. is shown with a solid grey trend line (and grey dots). The model of Bentz 

assumes a constant value for the contribution of the aggregate interlock τci, which is 

shown with a grey dotted trend line (and grey diamonds). As appear from Figure 6.10, 

the model of Bentz et al. overestimates the resistance compared to the MCFT. This over-

estimation can be ascribed to an overestimation of the aggregate interlock for higher 

values of ψ.  

 

Figure 6.10. Comparison predicted resistances of MCFT with model of Bentz et al. for εx = 0 

In addition to the analysis for a membrane element with fcm = 60 N/mm2, the comparison 

is extended to all considered concrete strengths (fcm = 40, 60, 80 and 100 N/mm2, 40 

membranes).   

This comparison results in three findings.  

1. The model of Bentz et al. results in a mean value of the ratio of the calculated to 

approximated resistance of 0.94 and a coefficient of variation of 5% (Table 6.4, Ap-

pendix H). The coefficients of variation of the model of Bentz et al. and the 

approximation equations are comparable. However, the model of Bentz et al. overes-

timates the resistance for the considered εx = 0 mm/m. This is the case despite the 

lower values for dmax (19 mm) for which the model of Bentz et al. is derived.  

2. In contrast to the approximation equations in Section 6.4, the trend of a decreasing 

contribution of aggregate interlock at increasing values of ψ is not present. Hence, in 

the approximation equations of Bentz et al., a constant value is used.  

3. Using the model of Bentz et al., a mean value of the ratio of the calculated to approx-

imated resistance for fcm = 80 N/mm2 (in which dmax is just zero) is 0.91, with a lowest 
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value of 0.84. Using the approximation equations of Section 6.4, a mean value of the 

ratio of the calculated to approximated resistance is found of 1.00 with a lowest value 

of 0.93. The underestimation can be attributed to using a value of fcm = 65 N/mm2 in 

Equation 6.4 to account for the drop in the contribution of aggregate interlock for 

higher strength concrete (fcm ≥ 80 N/mm2), instead of limiting β in accordance with 

6.5 and 6.6.  

If only the regions without flexural cracks are considered, the approximation equations 

are capable to approach the shear resistance according to the MCFT more accurate than 

the model of Bentz et al.. It is noted that the approximation equations are only suitable 

to predict the resistance in regions without flexural cracks. The model of Bentz et al., on 

the other hand, is also suitable to predict the resistance for regions with flexural cracks.  

6.5.2 Variable angle truss model  

In Section 5.1.1 the hypothesis is made, that if the variable angle truss model is used, no 

limit is necessary for prestressed girders (Section 5.1.1 and Figure 5.2). In this section 

it is evaluated whether this can be confirmed, specifically for regions without flexural 

cracks, by using the resistances found from the MCFT. Therefore, the resistances calcu-

lated with the MCFT are compared to the resistances predicted with the variable angle 

truss model for the condition εx = 0 (in the equations and figures the variable angle truss 

model is abbreviated as VAT). Although the variable angle truss model (Section 5.1.1) 

is intended for girders, it is also possible to apply the theory to predict the resistance of 

membranes, by Equations 6.7 to 6.10.  

𝜏𝑢 = 𝜏𝑠 = 𝜌𝑧𝑓𝑦𝑧 cot 𝜃  (6.7) 

tan 𝜃 = √
𝜓𝑣𝑎𝑡

(1 − 𝜓𝑣𝑎𝑡)⁄  (6.8) 

𝜓𝑣𝑎𝑡 = 𝜌
𝑧
𝑓

𝑦𝑧
 𝜈 𝛼𝑐𝑤𝑓

𝑐𝑚
⁄  (6.9) 

𝜈 = 0.6 (1 −  
𝑓

𝑐𝑚
250)⁄  (6.10) 

As explained in Section 5.1.1, the factor αcw addresses the effect of prestressing on the 

strength of the compressive struts. The factor depends on the ratio of the stress in the 

concrete in longitudinal direction in the centre of gravity (σcp) and the cylinder compres-

sive strength of concrete (fcm). To be able to compare both models, it is necessary to 

assume a value for σcp. For the comparison it is assumed that σcp = 0.1fcm. According to 

the variable angle truss model, αcw equals to 1 + σcp/fcm (for 0 ≤ σcp/fcm ≤ 0.25fcm). The 

assumption σcp = 0.1fcm results in a factor αcw of 1.1. With this assumption the resistances 

can be predicted using the variable angle truss model. The resistances are determined 
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for the membranes for which the resistance were already calculated using the MCFT 

(Section 6.3). Note that the variable angle truss model assumes that the resistance is 

independent of sθ and dmax. Also the longitudinal strain (εx) is assumed to have no effect 

on the resistance, although one could argue that this is implemented to some extend by 

the factor αcw. It is noted that the version of the Eurocode that is currently under devel-

opment (CEN 2020), relates the limitation of the angle of the compressive struts to the 

average axial compressive stresses. 

To illustrate the differences, the resistances for the variable angle truss model is com-

pared to the resistance according to the MCFT for a membrane elements with fcm = 60 

N/mm2. In Figure 6.11 the resistance calculated with the MCFT (τR) is shown with a 

solid trend line (and black dots). The contribution of the aggregate interlock τci according 

to the MCFT is shown with a dotted trend line (and transparent diamonds). The contri-

bution of the transverse reinforcement according to the MCFT is the difference between 

τR and τci as illustrated with an arrow. The resistance according to the variable angle truss 

model is shown with a black dashed trend line (and black squares). It is shown that the 

variable angle truss model underestimates the resistance compared to the MCFT. This 

underestimation increases for decreasing values of ψ. 

 

Figure 6.11. Predicted resistances according to the MCFT and the variable angle truss model for εx = 0 

The underestimation was found to be related to the limitation of the angle of the com-

pressive struts. For the membranes in Figure 6.11, the variable angle truss model predicts 

only an angle of the compressive strut > 21.8° for values of ψ of 0.075 and 0.100. For 

these two membranes, the predictions using the variable angle truss model reasonable 

agree with the results of the MCFT. For lower values of ψ, the minimal angle of the 

compressive struts is governing and the predictions according to the variable angle truss 

model deviate from the resistances according to the MCFT. As explained in Section 

5.1.1, the effectiveness factor was derived for experiments with higher values for ψ. 
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Section 5.1.1 also explains that for lower values of ψ , the limit of θ = 21.8° is governing, 

which leads to (over)conservative predictions. 

Additionally to the results for the membrane elements with fcm = 60 N/mm2, for which 

the shear strength is shown in Figure 6.11, the comparison is extended to all the consid-

ered concrete strengths (fcm = 40, 60, 80 and 100 N/mm2, 40 membranes). A mean value 

of the ratio of the resistance according to the MCFT and according to the variable angel 

truss model is found of 1.89 and a coefficient of variation of 69% (Table 6.4). The results 

are shown in Appendix H. It appears that for 34 of the 40 membranes the lower limit of 

θ of 21.8° is governing.  

It is noted that for reinforced concrete the longitudinal strain in the critical cross-section 

will be significantly larger than zero. Large longitudinal strains result in low shear re-

sistance. For prestressed girders on the other hand, the longitudinal strains will be lower. 

In Section 5.1.1 it is shown that the resistance for the considered 76 prestressed girders 

could be estimated quite accurate without any limitation of θ (Figure 5.2). It is plausible 

that this can be attributed to the higher resistance due to smaller longitudinal strains. 

Therefore, it is investigated if the limitation is necessary for predicting the shear re-

sistance at zero longitudinal strain. This is done by comparing ναcw, that represents the 

effective strength of the concrete struts, for the MCFT and the variable angle truss model 

for the 40 considered membranes. Firstly, ναcw is determined that would result in the 

same resistances as calculated with the MCFT. For each membrane the resistance is 

known from the membrane analyses from Section 6.3 (Appendix G). Assuming this 

shear resistance, θ can be calculated using Equation 6.7, ψVAT using Equation 6.8 and 

ναcw using Equation 6.9. The results are the black dots in Figure 6.12. Secondly ναcw is 

determined according to the variable angle truss model, using Equation 6.10 and the 

assumption αcw = 1.1. This is shown as solid black lines in Figure 6.12. For the lower 

limit of θ of 21.8°, a value for ψVAT is found of 0.138 using Equation 6.8. From this 

value, ναcw associated with the minimal θ can be determined using Equation 6.9. This is 

shown as continuous grey lines in Figure 6.12. The lowest of both lines is the governing 

value according to the current variable angle truss model.  

As can be seen from Figure 6.12, the lower limit (if governing) results in lower ναcw 

than calculate with the MCFT (the black dots are all above the grey line representing the 

lower limit). As expected, the lower limit is found to be too strict. The variable angle 

truss model without limitation results for most membranes in higher values for ναcw than 

calculate with the MCFT (the black dots are frequently lower than the black continuous 

line representing the variable angle truss model without limitation of θ). The hypothesis 

that no limit is necessary (Section 5.1.1 and Figure 5.2) could not be confirmed based 

the comparison carried out in this section. On the other hand, it was confirmed that the 

currently used limitation of θ of 21.8°, is found to be too strict. Section 8.5, suggests an 
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alternative model in which a more suitable equation for the effective strength of the 

concrete struts is derived, based on ψ, for zero longitudinal strain. 

  

  

Figure 6.12.Comparison between ναcm according to MCFT & predicted with variable angle truss 

model 
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7 
Shear transfer along the crack and by uncracked concrete 

In this dissertation a model is derived for the shear resistance of prestressed girders with 

stirrups in regions without flexural cracks. The model describes the transfer of shear 

force by aggregate interlock, stirrups and uncracked concrete. Chapter 6 derives equa-

tions for the maximum shear stress that can be resisted at the mid-depth of the web by 

aggregate interlock and stirrups. The current chapter demonstrates that the shear stress 

that can be resisted at mid-depth of the web is representative for shear stress that can be 

resisted along the diagonal tension crack. Also the additional shear that can be trans-

ferred by uncracked concrete is described in the current chapter. Chapter 8 describes the 

proposed model and is based on the results of Chapter 6 and 7 (Figure 6.1). 

  

Figure 7.1. Overview and coherence of sections 

In Figure 7.1 an overview of the sections of this chapter and their relations is presented. 

Section 7.1 describes the mechanisms that can contribute to the transfer of the shear 

force in girders with stirrups in regions without flexural cracks. This section further de-

scribes equations to determine the contribution of each shear transfer mechanism to the 

total shear resistance. Section 7.2 investigates the distribution of aggregate interlock and 

stirrup stresses along the diagonal tension crack, using Response (Bentz 2000). Response 

is a non-linear sectional analyses programme based on the MCFT. Two girders from 

experiments, which are reported in literature, are analysed that are predicted to fail at a 

condition that no flexural cracks are present. The decisive failure mechanism of the first 

girder was crack slipping, while the decisive failure mechanism of the second girder was 

crushing of the compression field. For both girders, it will be investigated whether the 

resistance at mid-depth is representative for the resistance along the crack. Section 7.3 
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describes the contribution of the uncracked concrete to the total shear resistance. Also 

this contribution is analysed using Response. In the proposed model (Chapter 8), the 

contribution of uncracked concrete is not taken into account explicitly. Instead, it is 

taken into account by introducing the ‘effective shear depth’ in the calculation of the 

shear resistance. An equation is derived to determine the effective shear depth. Section 

7.4 summarizes the main results and evaluates to what extend the research questions are 

answered based on the analyses carried out in Chapter 6 and 7.  

7.1 Overview of shear transfer mechanism in a girder 

This section describes how shear is transferred in girders with stirrups in regions without 

flexural cracks. These shear transfer mechanism are illustrated with a free body diagram 

that is cut through at a diagonal tension crack (Figure 7.2). Shear can be transferred by 

three mechanism: 

1. Shear transfer along the diagonal tension crack by stirrups crossing the diagonal ten-

sion crack (Asw /(bw s)  σszcr,z  cotθz or ρz σszcr,z cotθz, left part of Figure 7.2) 

2. Shear transfer by aggregate interlock stresses (τci,z) along the diagonal tension crack 

(right part of Figure 7.2).  

3. Shear transfer by shear stresses in the uncracked concrete (τuncr,z) above and below the 

diagonal tension crack (right part of Figure 7.2). 

   

Figure 7.2. Possible shear transfer mechanism in regions without flexural cracks (girder with stirrups) 

In the description of the shear transfer by stirrups, Asw is the area of shear reinforcement, 

bw is the width of the web, s is the distance between the stirrups, σszcr,z is the stress in the 

stirrups in the crack and θz is the angle of the crack. To make the contributions compa-

rable, the shear transfer by stirrups is considered as distributed stress along the crack. 

Therefore, the width of the web section is part of the equation. Alternatively the shear 

transfer by stirrups could be expressed as ρz σszcr,z cotθz in which ρz is the shear reinforce-

ment ratio (As/(bw s)). The subscription z is used for the parameters that vary along the 

crack. 

For regions without flexural cracks, dowel action of the longitudinal reinforcement is 

not relevant. At least, as long as the longitudinal reinforcement is located in the flanges 
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that remain uncracked, which is a reasonable assumption for regions without flexural 

cracks.  

The vertical component of prestressing could be considered as a shear transfer mecha-

nism (cross sectional method). However, in this dissertation the equivalent prestressing 

method is used instead of the cross sectional method. Therefore, the vertical component 

of the prestress is considered as a reduction of the load instead of a shear transfer mech-

anism.  

To determine the contribution of each shear transfer mechanism, the stresses need to be 

integrated along the edge surface of the free body diagram (width and height). The con-

tribution of the three shear transfer mechanisms can be determined from the stresses 

using Equations 7.1 to 7.3.  

𝑉𝑠 =  
𝐴𝑠𝑤

𝑠⁄ ∫ 𝜎𝑠𝑧𝑐𝑟,𝑧 cot 𝜃𝑧 𝑑𝑧      (7.1) 

𝑉𝑐𝑖 =  ∫ 𝑏𝑧𝜏𝑐𝑖,𝑧 𝑑𝑧      (7.2) 

𝑉𝑢𝑛𝑐𝑟 =  ∫ 𝑏𝑧𝜏𝑢𝑛𝑐𝑟,𝑧 𝑑𝑧 (7.3) 

Equation 7.1 describes the contribution of the stirrups to the shear force (Vs). The 

stresses in the stirrups that cross the crack (σszcr,z) and the angle of the crack (θz) along 

the crack, need to be integrated over the height. Equation 7.1 is valid for a constant area 

of shear reinforcement (Asw) and a constant distance between the stirrups (s). Note that 

the stirrups contribution does not depend on bw. Equation 7.2 describes the contribution 

of the aggregate interlock to the shear force (Vci). This part is found by integrating the 

aggregate interlock stresses τci,z  along the crack multiplied with the associated width of 

the cross-section bz, over the height. The stirrups and aggregate interlock resist a part of 

the shear force only along the diagonal tension crack. For the part of the free body dia-

gram that is not cracked, shear force is resisted by uncracked concrete. The concrete 

remains uncracked as long as the principal tensile stress does not exceed the concrete 

tensile strength. Equation 7.3 describes the contribution of the uncracked concrete to the 

shear force (Vuncr). The shear is found by integrating the shear stresses transferred by 

uncracked concrete (τuncr,z) multiplied with the associated width of the cross-section, over 

the height. 

The equations are applicable to determine the contributions by the different load transfer 

mechanisms for an arbitrary load. For the shear force associated with the maximum load, 

the shear resistance, the subscript R is added to the shear forces (VRs, VRci, VR,uncr). 
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The three components will be presented in the next section as distributed shear force (V 

per h or τz times bz). By expressing all three contributions as shear force per unit height, 

they can be mutually compared. It is noted that, because the resistance is presented as 

distributed shear force (τzbz), the typical drop in shear stresses (τz) at the transition of the 

small web and the broad flange, observed if only the shear stresses are shown, is not 

present. The distributed shear force will show uninterrupted graphs instead (see as ex-

ample Figure 7.1). 

In this chapter Response will be used for the analyses (Bentz 2000). Response is a non-

linear sectional analyses programme based on the MCFT. In addition, Response assumes 

that the girder theory is valid (plane sections remain plane) and that there are no stresses 

present in traverse direction. Response uses a series of bi-axial nodes along the cross-

section. Response integrates the stresses along the height instead of along the cracks. As 

the diagonal cracks will form parallel of each other and the angle will not change sig-

nificantly it is assumed that the Response is suitable to analyse the stresses along the 

crack.  

7.2 Shear transfer along a diagonal tension crack 

This section investigates if the resistance at mid-depth is representative for the resistance 

along the entire crack surface. Chapter 6, derives equations for membrane elements that 

meet the condition εx = 0 at mid-depth. For the regions of a girder without flexural 

cracks, this assumption is conservative, as explained in Section 6.1. If the resistance at 

mid-depth can represent the resistance along the entire crack surface for regions of a 

girder without flexural cracks, Equations 6.4 to 6.6 can also be used to determine the 

maximum shear force that can be transferred by aggregate interlock and stirrups. This 

can be achieved by multiplying the shear resistance at mid-depth by the surface of the 

crack.  

A part of the height of the girder remains uncracked. Therefore, in addition to the part 

of the shear force that is transferred in the part of the section with diagonal cracks, also 

a part of the shear force is transferred by the uncracked parts (mainly the flanges). The 

contribution of the uncracked concrete to the shear resistance is further investigated in 

Section 7.3.  

The distribution along the diagonal tension crack of the aggregate interlock and stirrups 

is investigated. Two girders from the database (Section 5.3) are analysed, with two typ-

ical failures modes: a girder that was predicted to fail due to slipping of the crack (FX1-

A, Hanson 1964) and a girder that was predicted to fail due to crushing of the concrete 

(HCP1TE, Choulli 2005). The distributions of the shear stresses are analysed using the 
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programme Response (Bentz 2000). The results can be used to investigate the distribu-

tion of the aggregate interlock stresses, the stresses in the stirrups at the crack and the 

cracking angles, along the crack. Also the shear transferred by the uncracked concrete 

is analysed using Response. The distribution over the various transfer mechanism is in-

vestigated at maximum shear force predicted by Response (the shear resistance).  

The Response analyses are carried out based on the geometric an material properties 

which are described in the dissertations in which the experiments are described (Hanson 

1964, Choulli 2005, Appendix F). The stress strain diagrams (including the tensile 

strength of concrete) are derived from the measured cylinder compressive strength of 

concrete, using the default relations as described in the User Manuel of Response (Bentz 

et al. 2001). The analyses are based on the maximum aggregate size used in the girders. 

For the girder of Choulli, a maximum aggregate size of zero is used, as fcm ≥ 80N/mm2 

(Section 6.3). For the material properties of the reinforcing steel, the stress strain rela-

tions are based on data from the material tests. The reinforcing steel is characterised by 

the yield strength, the ultimate strength, the modulus of elasticity, the strain at strain 

hardening and the rupture strain. The material properties for the prestressing reinforce-

ment are based on data from material tests, as reported in the dissertations. The material 

of the prestressing reinforcement is characterised by the ultimate strength, the modulus 

of elasticity and the rupture strain in combination with the derived Ramsberg-Osgood 

parameters. The normal force caused by prestressing, as reported in the dissertations, is 

entered by defining pre-strains. Crack spacing (s) is automatically calculated using the 

CEB crack spacing equation (Equation 7.4). Response uses this equation to determine 

the crack spacing in the two orthogonal directions separately (sx an sz, Equation 5.28). 

In Equation 7.4, c is the diagonal distance from the considered depth to the nearest re-

inforcement in the section, db is the diameter of the nearest bar and ρ is the percentage 

of steel within a concrete area of 7.5db above and below a bar.  

𝑠 = 2𝑐 + 0.1 
𝑑𝑏  

𝜌⁄  (7.4) 

Analyses for the two simply supported girders are performed at cross-sections at a dis-

tance of ½ (h - hbf,str - hbf,skw) / tan30 to the point load. This is considered as the cross-

section that can be associated with the first possible diagonal tension crack. The terms 

hbf,str and hbf,skw are used for the height of respectively the straight and the skew part of 

the bottom flange. These terms are subtracted from the girder height as the crack through 

the bottom flange is about perpendicular to the longitudinal axis. For the two considered 

simply supported girders, the moment to shear ratio decreases in cross-sections closer 

to the support. Therefore, the cross-section at a distance of ½ (h - hbf,str - hbf,skw)  / tan30 

to the point load is assumed to be the most critical one. The location of the considered 

cross-section determines the used load increments. 
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In Figure 7.3 the results of the Response analyses are shown for girder HX1-A (Hanson 

1964). The light grey area shows the part of the cross-section that is cracked and the 

dark grey area shows the uncracked part. Whether a cross-section is cracked depends on 

whether the principal tensile stresses exceed the concrete tensile strength. As Response 

assumes that no transverse stresses are present, the principal tensile stress depends on 

the stress in longitudinal direction and the shear stress. The web is cracked because the 

shear stresses in the web are significantly higher than in the flange (due to the difference 

in the width) which increases the principal tensile stresses. The longitudinal stresses are 

affected by the bending moment. In the considered cross-section, the longitudinal stress 

is higher in the bottom part than in the top part, which increases the principal tensile 

stress. Therefore, a small part in the top of the web remains uncracked whereas a small 

part of the skew bottom flange is cracked (Figure 7.3). In the cracked part, shear force 

is transferred by aggregate interlock and stirrups, whereas in the uncracked part, shear 

force is transferred by uncracked concrete. 

  

Figure 7.3. Distributed shear force & parameters per shear transfer mechanism (HX1-A, Hanson 1964) 

The failure of girder HX1-A is caused by slipping of the crack. This is shown in Figure 

7.3, where τci equals τci,max at a height just below mid-depth, at the maximum shear force 

(shear resistance). At this location the crack width (w) is at its maximum. As shown in 

Figure 7.3, the maximum aggregate interlock stresses decrease with increasing crack 

widths (Equation 5.29). The distribution of the aggregate interlock stresses is not af-

fected by the distribution of the crack width, as the cracks widths only determines τci,max. 

Along the crack, τci follows from equilibrium (Equation 5.25 and 5.26) as explained in 

Section 5.1.3. As shown in Figure 7.3, it is a plausible assumption for this girder to 

consider the aggregate interlock stress at mid-depth as representative for the entire crack 

surface (see bz τ  for aggregate interlock). 

As shown in Figure 7.3, the stresses of the stirrups at the crack (σszcr) were found to be 

equal to the yielding strength over the entire cracked height. Moreover, Figure 7.3 shows 

that the crack angle θ is rather constant over the cracked height. Only in the bottom 
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flange the crack angle is higher than average, what causes a decrease in the contribution 

of the stirrups. This decrease in contribution of the stirrups is compensated by an in-

crease of the contribution of aggregate interlock as result of the increasing width of the 

cross-section. As shown in Figure 7.3, is a plausible assumption for this girder to con-

sider the contribution of the stirrups at mid-depth as representative for the entire crack 

surface (see bz τ for stirrup contribution). 

At the maximum shear force (shear resistance) the associated stresses in the compression 

field (σ2) are not governing, as these are smaller than the maximum (σ2,max, Figure 7.4). 

It is found that HX1-A is predicted to fail as result of slipping of the crack (Figure 7.3) 

instead of crushing of the compression fields (Figure 7.4).  

  

Figure 7.4. Stresses and strength of compression field at maximum shear (HX1-A, Hanson 1964) 

The second girder, that is analysed with Response, concerns HCPT1E (Choulli 2005). 

In Figure 7.5, the stresses in the compression field (σ2) at maximum shear (shear re-

sistance) and the maximum compressive stresses of the compression field (σ2,max) are 

shown. The stresses in the compression field (σ2 = σ2,max) are found to be governing for 

the shear resistance and therefore, HCPT1E is predicted to fail as result of crushing of 

the compression fields.  

  

Figure 7.5. Stresses and strength of compression field at maximum shear (HCP1TE, Choulli 2005) 

Figure 7.6 shows the distributed shear force and associated parameters per shear transfer 

mechanism for HCP1TE. Just like girder HX1-A, the cracked area extends more into 
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the bottom of the cross-section than the top of the cross-section, because the moment 

affects the longitudinal stresses.  

  

Figure 7.6. Distributed shear force & parameters per shear transfer mechanism (HCP1TE, Choulli 

2005) 

As described, crushing of the concrete was found governing for girder HCP1TE. In con-

trast to the girder HX1-A, the girder HCP1TE could resisted additional shear force after 

τci = τci,max. As a consequence, τci,max is decisive for the distribution of τci for a consider-

able part of the cross-section, as shown in Figure 7.6 (area where τci = τci,max). The 

maximum aggregate interlock stresses decreases if the crack width increases (Equation 

5.29). The crack width increases toward the mid span preliminarily due to the increase 

of the principal tensile strain ε1. Hence, it is found that the diagonal crack spacing sθ 

remains rather constant (Equation 5.27) . The principal tensile strain ε1 increases because 

the transverse tensile strain εz increases towards the mid-depth (Equation 5.19). There-

fore, τci,max and consequentially τci, are minimum around mid-depth. Based on these 

finding, one could argue that the aggregate interlock at mid-depth is less representative 

for the entire crack surface. Assuming the aggregate interlock at mid-span as representa-

tive for the entire crack could lead to an underestimation of contribution of the aggregate 

interlock. However, considering τci in Figure 7.6 it is appears that this effect is less sig-

nificant. Hence, for a part of the cross-section τci,max is not limiting τci (area where τci < 

τci,max). Moreover, because the crack penetrates into the bottom flange, the contribution 

of the aggregate interlock increases toward the bottom surface due to an increasing width 

of the cross-section. Considering the distribution of the distributed aggregate interlock 

force over the crack (see bz τ for aggregate interlock in Figure 7.6), the assumption to 

consider the aggregate interlock stress at mid-depth as representative for the entire crack 

surface is also plausible for this girder.  

The stresses of the stirrups at the crack (σszcr) were found to be equal to the yielding 

strength over almost the entire cracked height. Locally the stresses were about two per-

cent higher because of tension hardening. This is caused by high transverse strains εz 

that are associated with failure due to concrete crushing. It is noted that Equations 6.4 
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to 6.6 are derived assuming no tension hardening. Using these equations could poten-

tially lead to underestimation of the capacity. However, for the considered girders, the 

effect is negligible as appears from the distribution of σszcr in Figure 7.6. Just like for 

HX1-A, also for HCP1TE the crack angle was found as rather constant over the cracked 

height with only some increase in the part of the bottom flange that is cracked. To con-

sider the contribution of the stirrups at mid-depth as representative for the entire crack 

surface is a plausible assumption also for this girder (see bz τ for stirrup contribution in 

Figure 7.6). 

Based on the results of the Response analyses, the assumption that the resistance of the 

aggregate interlock and the stirrups at mid-depth represents the entire crack surface, was 

found appropriate for the considered girders and associated failure mechanism. The con-

tributions of the aggregate interlock and the stirrups together was found rather constant 

along the diagonal tension crack (see vertical dotted lines in Figure 7.3 and 7.6). But 

even for the parts of the web that are not cracked, the distributed shear force is about the 

same magnitude as for the cracked part. This corresponds to the linear elastic stress dis-

tribution for a girder with an I-shape and a thin web, in which the distributed shear stress 

is rather constant in the web. Hence, due to the thin web the first moment of area will 

hardly increase between the intersection of the flange and the web and the centre of 

gravity. Based on these two observations the resistance of only the web could be pre-

dicted by multiplying the resisted shear stress at mid-depth, the web height and the web 

width.  

Both considered girders failed because the ultimate resistance of the web was reached, 

due to slipping of the crack or crushing of the compression field in the web. At failure, 

also the flanges resisted a significant part of the shear force, mainly by shear transfer of 

the uncracked concrete. Although failure of the flange was not governing, the contribu-

tion by the flanges was found to be significant (Figure 7.3 and 7.6). In Section 7.3 it is 

investigated how the additional contribution of the flanges can be accounted for.  

7.3 Shear transfer in uncracked concrete 

At a maximum shear force (the shear resistance) the shear is not only resisted by aggre-

gate interlock and stirrups but also by a contribution of uncracked concrete. The 

contribution by the uncracked concrete was found to be significant, as shown in Figures 

7.3 and 7.6. This section analyses the contribution of the uncracked concrete to the shear 

resistance. 

The model that is proposed in this dissertation (Chapter 8) to determine the contribution 

of the uncracked concrete to the shear resistance is simple, to make the model more 

appealing for engineering practice. The contribution of uncracked concrete will not be 
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accounted for explicitly. Instead, the contribution of the uncracked concrete is accounted 

for by increasing the contribution of the aggregate interlock and the stirrups.  

In the Section 7.2 it was found that the resistance of the web could be approached by 

multiplying the shear stress that can be resisted by aggregate interlock and stirrups at 

mid-depth (τR,md) with the web height (hw) and the web width (bw). To determine the total 

resistance for a girder, this resistance should be increased with the shear transferred by 

the uncracked flange. In the proposed model (Chapter 8), this is accounted for by re-

placing the web height (hw) by the effective shear depth (z’). The total shear resistance 

of a girder, based on z’, is shown in Equation 7.5. The increase from hw to z’ concerns 

the contribution of the shear transferred by the flanges. In the proposed model τRmd is 

determined using Equations 6.4 – 6.6. The apostrophe used in the parameters, indicates 

that the equations are derived for regions without flexural cracks.  

𝑉′𝑅 =  𝑏𝑤  𝑧′𝜏𝑅𝑚𝑑 (7.5) 

The effective shear depth is derived from the assumption that the shear resistance found 

using Equation 7.5 equals the shear resistance found from Response according to Equa-

tion 7.6. In Equation 7.6 the distribution of τR,R2k along the diagonal crack is considered. 

The associated shear resistance (VR,R2k) is determined by integrating the distributed shear 

force (τR,R2k,z bz) over the height. Equation 7.5 also assumes τR,md equals τR,R2k so the ef-

fective shear depth is the only unknown. 

𝑉𝑅,𝑅2𝑘 = ∫ 𝜏𝑅,𝑅2𝑘,𝑧 𝑏𝑧𝛿𝑧 (7.6) 

Figures 7.3 and 7.6 show the distribution of the total distributed shear force (continuous 

lines) and the contributions of aggregate interlock (fine dashed lines) and the stirrups 

(course dashed lines) over the height of the cross-section as found from the Response 

analyses, for the two girders analysed in Section 7.2.  

Figure 7.7 show the total distributed shear force (τR2k,z bz, continuous lines) for both gird-

ers and the proposed approximation Equation 7.5 (τR,md bz, dashed line). Equation 7.5 

assumes a constant distributed shear force over a limited height of the cross-section, 

whereas the distribution varies over the total height according to Equation 7.6. This fig-

ure also shows the linear elastic distributed shear force (τLE,zbz), which is the dotted line 

(which is hardly to see because it almost coincides with the continuous line). These lin-

ear elastic distributions are derived, assuming a linear elastic stress distribution that 

results in the same shear resistance as found from Response (VR,LE = VR,R2k). As can be 

seen the shape of the linear elastic distributed shear force and the distributed shear force 

as found from Response are very similar. In literature examples are found of Response 

analyses for cross-sections with flexural cracks (Esfandiari et al. 2009). It is found that 
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the shear stress distribution according to Response of girders with flexural cracks can 

deviate strongly from the linear elastic distribution. For the current dissertation, inves-

tigating the shear resistance in regions without flexural cracks, the observation that both 

shear force distributions (Response and linear elastic) are similar, is used for the deriva-

tion of z’ for regions without flexural cracks.  

  

Figure 7.7. Distributed shear force R2k (continuous), linear elastic (dotted) and approached with 

z’(dashed) 

The method to derive z’ is explained in Figure 7.8. As the shapes of both the Response 

distribution and the linear elastic distribution are similar, z’ is derived assuming a linear 

elastic distribution. With this assumption, the shape of the distribution only depends on 

the geometric proportions of the cross-section. Therefore, it is possible to investigate the 

effect of the geometric properties on the shear resisted by the uncracked concrete. A 

parametric study is carried out, considering geometric properties, and the results are 

used for the derivation z’. For the parametric study, the relative properties of various 

cross-sections are considered, that are representative for Dutch Highway bridges. Even-

tually, the predicted resistance based on the effective shear depth is compared with the 

predicted resistance according to Response. The resistances are compared for 26 girders 

of the database, which is described in Section 5.2. In this way it can be determined to 

what extend the proposed simple equation for the effective shear depth can accurately 

approximate the resistance found with R2K. 

   

Figure 7.8. Method to derive the effective shear depth for regions without flexural cracks 

It is assumed that the effective shear depth equals the height of the web increased with 

a contribution of the flanges. The linear elastic stress distribution is used to determine 
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the distribution of the contributions of the web and the flanges. These contributions de-

pend on geometric properties. The effective shear depth is derived by multiplying the 

web height (hw) with the ratio of total shear (Vtot,LE) and the shear transferred by the web 

(Vw,LE, Equation 7.7).  

𝑧′ =
𝑉𝑡𝑜𝑡,𝐿𝐸

𝑉𝑤,𝐿𝐸
⁄  ℎ𝑤 (7.7) 

An example how z’ is derived is shown in the left part of Figure 7.9. 

   

Figure 7.9. Example of distribution of shear force over the web and the flanges and definition of the 

geometric properties 

The effective shear depth, based on the linear elastic stress distribution, is determined 

for several relative combinations of the geometric properties (Table 7.1).  

Table 7.1. Considered geometric ratios 

Figure 7.10 line a line b line c line d line e 

htf,str / h 0.05-0.30 0.05-0.30 0.05-0.30 0.05-0.30 0.05-0.30 

htf,str / hbf,str 1 1 1 3 1 

htf,skw / htf,str 0 0 0 0 1 

bw / btf 0.1 0.3 0.2 0.2 0.2 

bbf / btf 1 1 0.3 0.3 1 

The results of each combination is shown in Figure 7.10 with a line indicated with a 

letter. The height of the top flange is varied between 0.05 and 0.30 of the girder height 

for al considered combinations. This range covers all possible practical girder types. For 

the web width the extremes of 0.1 (line a) and 0.3 (line b) times the width of the top 

flange are used (and 0.2 for the other combinations). The width of the bottom flange can 

be smaller than the width of the top flange. This can be combined with equal heights of 

the flanges (line c, typically for an edge girder of a box-girder bridge) or with dissimilar 
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heights of both flanges (line d, typically for a bulb T-girder). Also the presence of skew 

sides of the flanges is investigated (line e). 

  

Figure 7.10. Effective shear depth versus half of average equivalent flange heights both as ratio of 

girder height 

The results of the parameter study are shown in Figure 7.10. On the vertical axis, the 

calculated effective shear depth is shown as ratio of the height of the girder. On the 

horizontal axis the ratio of the average equivalent flange height and the girder height is 

plotted. The equivalent flange height is defined as the height of the straight flanges in-

creased with a half of the heights of the skew flanges, which is present over the width 

of the flange (Equations 7.8 and 7.9). If the skew flange is only present for a (small) part 

of the flange, the presence can be ignored. For a symmetric I shaped girder without skew 

heights, the equivalent flange height corresponds to the flange height.  

All considered combinations of geometric parameters show a comparable trend. The 

trend can be approached with Equation 7.10. The predictions of the effective shear depth 

according to this equation is also shown in Figure 7.10 (continuous line). Although the 

predicted line is somewhat steeper than the average trend of the other lines, the equation 

is attractive because of its simplicity.  

If the intend use is out of the range of the investigated parameters, the effective shear 

depth can be calculated from the distribution of the contributions of the web and the 

flanges assuming a linear elastic shear stress distribution (Equation 7.7).  

ℎ𝑡𝑓,𝑒𝑞 =  ℎ𝑡𝑓,𝑠𝑡𝑟 +
ℎ𝑡𝑓,𝑠𝑘𝑤

2
⁄  (7.8) 

ℎ𝑏𝑓,𝑒𝑞 =  ℎ𝑏𝑓,𝑠𝑡𝑟 +
ℎ𝑏𝑓,𝑠𝑘𝑤

2
⁄  (7.9) 

𝑧′ = ℎ −
(ℎ𝑡𝑓,𝑒𝑞 +  ℎ𝑏𝑓,𝑒𝑞)

2
⁄  (7.10) 
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Finally the proposed equations for the effective shear depth are validated by comparing 

the resistances calculated using Response and the resistances determined using the pro-

posed equations for the effective shear depth (Equations 7.8 to 7.10). The resistances are 

compared for 26 girders (Appendix I). This concerns girders of experiments of Elzanaty 

et al. (1986), Choulli (2005), Hanson (1964) and Leonhardt (1973), with the exception 

of CW17 and ŢP4. The properties of the girders, necessary for the comparison, are listed 

in Appendix I. The Response analyses are carried out for cross-sections at a distance of 

½ (h - hbf,str - hbf,skw) / tan30 from the point load (x = a - ½ (h - hbf,str - hbf,skw) / tan30). 

However, if flexural cracks were predicted in the bottom flange, the load increments 

were adjusted in a way that no flexural cracks were predicted in the bottom flange. 

Hence, the effective shear depth for regions without flexural cracks is investigated. The 

shear resistance VR,R2k follows directly from Response. To determine the resistance V’R 

according to Equation 7.5, both the effective shear depth z’ and τR,md are needed. The 

effective shear depth is found using Equations 7.8 to 7.10. To determine the equivalent 

flange height, only the heights of the skew flanges (htf,skw, hbf,skw) are considered which 

are present over the full width of the flanges (Equations 7.8 and 7.9). The shear stress at 

mid-depth τR,md is found from the Response analyses (τR,md = τR,R2k at mid-depth). Based 

on τci, fywm, and θ at mid-depth, τR,R2k is determined. Eventually, the ratio VR,R2k /V’R is 

determined (Appendix I).  

The results are shown in Figure 7.11. Based on the analyses for 26 girders, a mean ratio 

of VR,R2k /V’R was found of 0.99 and a coefficient of variation of 2%. Apparently, the 

simplifications of determining the resistance on the effective shear depth and assuming 

a constant shear resistance, hardly effects the accuracy, in comparison with a Response 

analysis. Therefore, it is justifiable to determine the resistance based on z’, bw and the 

shear stress that can be resisted at mid–depth. 

   

Figure 7.11. Ratio of resistances found from R2K and approached using Equations 7.5 and 7.8 to 7.10. 
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8 
Proposed model for shear resistance of girders with stirrups 

In this dissertation a model is derived for the shear resistance of prestressed girders with 

stirrups in regions without flexural cracks. The model describes the transfer of shear 

force by aggregate interlock, stirrups and uncracked concrete. Chapter 6 derives equa-

tions for the maximum shear stress that can be resisted at the mid-depth of the web by 

aggregate interlock and stirrups. Chapter 7 demonstrates that the shear stress that can be 

resisted at mid-depth of the web is representative for shear stress that can be resisted 

along the diagonal tension crack. Also the additional shear that can be transferred by 

uncracked concrete is described in Chapter 7. The current chapter describes the proposed 

model, referred to as model B1, and its application conditions and is based on the results 

of Chapter 6 and 7 (Figure 6.1). 

Section 8.1 describes the method to determine the regions of the girder without flexural 

cracks in the ultimate limit state for which he model is intended. Section 8.2 describes 

the models that can be used to determine the maximum and minimum shear resistances. 

The minimum shear resistance concerns the resistance to diagonal tension cracking and 

can be governing for girders with a low amount of shear reinforcement. The maximum 

resistance concerns the shear resistance to crushing of the concrete before the stirrups 

yield and can be governing for girders with a high amount of shear reinforcement. Sec-

tion 8.3 summarizes the proposed model using the equations derived in the previous 

chapters. Section 8.4 evaluates the accuracy of the proposed model, using test data from 

the database on shear failure for girders with stirrups (Section 5.3). The effect of various 

parameters on the accuracy is also described in this section. Additionally, the accuracy 

is compared to the accuracy of models from literature. Section 8.5 determines the design 

value of the proposed model. Section 8.6 describes an alternative for the proposed 

model. This concerns the variable angle truss model which is modified for regions with-

out flexural cracks. Just like the proposed model in Section 8.3, this alternative model 

is based on the resistances of membranes at zero longitudinal strain that are determined 

using the MCFT (Section 6.3).  

8.1 Method to determine the regions without flexural cracks 

The model that is proposed to determine the shear resistance of girders with stirrups is 

applicable for regions without flexural cracks. In this section a method is proposed to 

determine this region.  
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A distinction should be made between whether diagonal tension cracking is governing 

or additional shear can be resisted after diagonal tension cracking. If diagonal tension 

cracking is governing, the presence of flexural cracks can be determined by assuming a 

linear stress distribution. Subsequently, it can be verified whether the tensile stress in 

the ultimate fibre exceeds the flexural tensile strength. However, if additional shear force 

can be resisted after diagonal tension cracking, diagonal tension cracks will be present, 

and the stresses are no longer linear distributed. Therefore, another method is necessary 

to determine whether flexural cracks are present. 

A more appropriate method to determine the presence of flexural cracks, assuming that 

the lower limit of the resistance is not governing, is described in Section 5.1.5 (Bentz et 

al. 2006a). This method assumes a compression chord and tension chord at a vertical 

distance of the internal lever arm. Both chords are connected by a compression field. 

This method assumes the presence of diagonal cracks. This approach is adopted in the 

method proposed in the current section. However, in two aspects the proposed method 

deviates from the method described in Section 5.1.5: 

1. According to the method described in Section 5.1.5, the compression chord is located 

at a vertical distance of 0.1h from the most compressed side. The tension chord is 

located at the centre of the tensile forces, which is determined based on the forces in 

both the prestressing steel and the reinforcing steel (Figure 5.15). However, in regions 

without flexural cracks, the centre of the tensile forces is unsuitable as chord as only 

a compression chord is present. It could be considered to locate both the most com-

pressed chord and the least compressed chord at a distance of 0.1h from the most and 

least compressed sides. However, a more accurate predicting can be expected if both 

chords are assumed to be located at the centre of the concrete compressive stresses in 

the flanges. If this approach is followed, than the lever arm almost corresponds to the 

suggested equations for the effective shear depth (Equations 7.8 to 7.10). Therefore, 

it is proposed to use a lever arm equal to the effective shear depth (as derived in 

Section 7.3) and use the symbol z’ for both parameters. At the end of this section, the 

proposed method to determine whether flexural cracks are present will be evaluated. 

This way also the suitability to use the effective shear depth as lever arm is evaluated. 

The apostrophe in z’ indicates that the parameter is only applicable for regions with-

out flexural cracks. It is noted that, as a consequence of this adapted approach, the 

internal lever arm can significantly deviate between the proposed method and the 

method described in Section 5.1.5.methods.  

2. In this dissertation prestress is considered as part of the external load. This is called 

the ‘equivalent load prestressing method’ (Walraven et al. 2018). Therefore, the pro-

posed method is based on the equivalent load prestressing method. This is in contrast 
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to the method described in Section 5.1.5, which does consider prestressing as part of 

the resistances, instead of part of the external load.  

The application of the equivalent load prestressing method is demonstrated in Figure 

8.1. The applied prestress results in a horizontal force P (prestressing force), a moment 

P ep0 (ep0 is the eccentricity of the prestressing steel at the end of the girder relative to 

the centroidal axis) and a distributed load qp, which is the result of the curvature of the 

prestressing steel. Because the prestressing steel is at an angle at the girder end, the 

prestress can be decomposed into a horizontal force somewhat smaller than P and a 

small vertical force. For small angles, the effect of decomposing the prestress force is 

usually not significant. As simplification only a horizontal force is shown in Figure 8.1 

with the magnitude P.  

 

Figure 8.1. Derivation of the force in least compressed chord based on equivalent load prestressing 

method 

A cross-section can be represented by a slice (right part of Figure 8.1). The cross sec-

tional forces on the slice (ME, VE, P) can be determined from the external loads and the 

prestress loads on the considered free body diagram (left part of Figure 8.1). Hence, ME 

includes the moment as result of RE, qE, qp and Pep0. Subsequently, the force T in de least 

compressed chord can be found from moment equilibrium around point a. Note that the 

component VE cotθ is located at a vertical distance of ½ z’ from point a, which corre-

sponds to the centre of the web, whereas P is located a vertical distance of ec from point 

a, which is the distance from the most compressed chord to the centre of gravity of the 

cross-section (these distances coincide for the I shaped cross-section of Figure 8.1 be-

cause it is a symmetrical cross-section). The result is shown in Equation 8.1.  

𝑇 =  
𝑀𝐸

𝑧′
⁄ +

1

2
 𝑉𝐸 cot 𝜃 + 

𝑒𝑐
𝑧′⁄  𝑃 (8.1) 

If it is assumed that ½ cotθ = 1 (this corresponds to θ = 26.6°), the equation can be 

simplified to Equation 8.2. 

𝑇 =  
𝑀𝐸

𝑧′
⁄ +  𝑉𝐸 + 

𝑒𝑐
𝑧′⁄  𝑃 (8.2) 
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For the ease of use in engineering practice, it is proposed to simply assume that flexural 

cracks are present in a cross-section if the force in the least compressed chord T is larger 

than zero (this corresponds to the method described in Section 5.1.5).  

The method to determine whether flexural cracks are present as described in this section, 

is evaluated. For this purpose the longitudinal strains at the least compressed chord εt 

are calculated accurately using the programme Response (R2k). The longitudinal strains 

according to R2k are compared to the strains derived using the proposed method. For 

the comparison, strains are used instead of forces, because only these are determined by 

Response. The strains are calculated for the same 26 experiments that were used to val-

idate the effective shear depth in Section 7.3. Also the same load increments are used 

that result in a bottom flange without flexural cracks. Appendix J illustrates how T is 

determined using the proposed method. The strain εt is subsequently determined using 

the stiffness of the chords according to CSA code (CSA 2006), as explained in Section 

5.1.5. 

 

Figure 8.2. Longitudinal strain at tensile chord according to method proposed in this section and R2K 

The results are also shown in Figure 8.2. The least compressed (or most tensioned) 

flange remains uncracked if εt is smaller than the cracking strain εcr, which is equal to 

fctm,fl / Ec. For commonly used concrete strengths (40 ≤ fcm ≤ 100 N/mm2), the cracking 

strain εcr is about 0.1 mm/m. As can be seen (Figure 8.2), the proposed method results 

in the prediction of flexural cracks for three of the experiments. This is more conserva-

tive than Response, for which the load increments were adapted to ensure that no flexural 

cracks would be present (Section 7.3). For almost all experiments a higher longitudinal 

strain  is predicted compared to Response. For the few experiments for which the aver-

age strain according to Response is higher, the underestimation is insignificant. For the 

considered experiments it can be concluded the proposed method is conservative. This 
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also confirms the suitability of the use z’ and the assumption ½ cotθ = 1 in the proposed 

method.  

In section 8.4 the accuracy of the proposed model will be evaluated. Experiments of the 

database (Section 5.3) will be selected that meet the condition εx ≤ 0. To determine if 

this condition is met, also the strains in the most and the least compressed chord are 

considered (Appendix L). Therefore, for the selection of experiments, also the force in 

the most compressed chord C is needed. The force C in de most compressed chord, 

found from moment equilibrium around point b, equals ME/z’ + VE + (z’ ec)/z’ P (Fig-

ure 8.1).  

8.2 Minimum and maximum shear resistance 

The model derived in Chapter 6 is intended to determine the shear resistance of the web 

in which shear is transferred by stirrups and aggregate interlock. The model covers fail-

ure due to crushing of the concrete or slipping of the crack, after the stirrups start to 

yield. However, also uncracked concrete can resist shear. This corresponds to the re-

sistance to diagonal tension cracking as described in Chapters 2 to 4. For higher amounts 

of shear reinforcement the resistance after diagonal tension cracking, by aggregate in-

terlock, stirrups and the uncracked flanges, will be higher than the resistance to diagonal 

tension cracking. However, if the amount of shear reinforcement is low, it is possible 

that the resistance of after diagonal tension cracking is lower than the resistance to di-

agonal tension cracking. The highest of both resistances will be governing. It is not 

necessary to determine a minimum shear reinforcement ratio (or minimum ψ) to deter-

mine which failure mode is governing. It is sufficient to determine the resistance using 

the proposed model for cracked concrete and subsequently verify if the found resistance 

is higher than the resistance to diagonal tension cracking. Therefore, the resistance to 

diagonal tension cracking is defined as the minimum shear resistance for girders with 

stirrups in regions without flexural cracks (V’R,c). The apostrophe indicates that the 

model is only applicable for regions without flexural cracks. 

For the regions in which no flexural cracks are present in the ultimate limit state, the 

maximum principal tensile stress σ1E(z) should be limited by the tensile strength of the 

web fctm,web (Equation 8.3). The shear force at which this condition is just met, corre-

sponds to the minimum shear resistance V’R,c. For girders that remain free of flexural 

cracks in the ultimate limit state, fctm,web corresponds to 0.89fctm (model A1, Section 3.4). 

For girders with flexural cracks in the ultimate limit state, fctm,web corresponds to 1.01fctm 

(Section 3.5, model A2). In Equation 8.3, σ1E,max is the maximum principal tensile stress 

in the regions without flexural cracks. The principal tensile stress can be determined 

using Equation 8.4. In Equation 8.4, σx,E (z) is the normal stress in the longitudinal di-

rection and τE (z) is the shear stress, assuming a linear elastic stress distribution. The 
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parameter z indicates that the associated parameter varies, or could vary, over the height 

z of the cross-section. If the cross-section opposite the support remains free of flexural 

cracks, σ1E(z) is considered as not critical between a vertical line through the support 

and a vertical line through a point that is the intersection of the elastic centroidal axis 

and a line inclined from the inner edge of the support at an angle of 45°(Figure 3.7 and 

Figure 4.1). These regions do not have to be considered for the determination of σ1E,max. 

𝜎1max,𝐸 ≤  𝑓𝑐𝑡𝑚,𝑤𝑒𝑏  (8.3) 

𝜎1𝐸(𝑧) =
𝜎𝑥,𝐸 (𝑧)

2
+ √(

𝜎𝑥,𝐸(𝑧)

2
)

2

+ 𝜏𝐸(𝑧)2 (8.4) 

As described earlier in this section, the proposed model is intended to determine the 

shear resistance to crushing of the  concrete or to slipping of the crack, both while the 

stirrups yield simultaneously. For girders with a high amount of shear reinforcement, it 

is possible that the resistance is limited because the concrete crushes before the stirrups 

yield. Using a model that assumes that the stirrups yield would lead to an overestimation 

of the shear resistance. The proposed model does not cover this failure mode. Therefore, 

it should be verified if resistance found with the proposed model is lower than the re-

sistance to crushing of the concrete before the stirrups yield. The resistance to crushing 

of the concrete before the stirrups yield is defined as the maximum shear resistance 

(V’Rmax). The apostrophe indicates that the derived model is only applicable for regions 

without flexural cracks. 

Section 5.1.4.2 already derived the upper limit of the shear force VRmax using the MCFT 

(Equation 5.31, Bentz et al. 2006b). This derivation conservatively assumed that εx = 

0.002. For regions without flexural cracks, it can be assumed that εx is zero. Zero longi-

tudinal strain can still be considered as a rather conservative assumption as explained in 

Section 6.1. If the other assumptions of the derivation remain the same, Equation 8.5 

can be derived using the same approach. As the condition concerns crushing of the con-

crete, ε2 is assumed to be -2 mm/m. Because the transverse reinforcement is not yielding, 

the strain εz is lower than 2 mm/m. As a lower strain increases the maximum capacity, 

conservatively 2 mm/m is assumed for εz. These values are used sequentially in Equa-

tions 5.18, 5.19, 5.23, 5.24 and 5.17. Based on these values for the strains, an associated 

value for the maximum shear stress τRmax is found of 0.32fcm as average for all concrete 

strengths. For lower strengths of concrete a maximum shear stress is found of 0.33fcm, 

which is conservatively neglected. Equation 8.5 is found if τRmax is multiplied with the 

width of the web bw and the effective shear depths z’.  

𝑉′𝑅max =  0.32 𝑓𝑐𝑚  𝑏𝑤 𝑧′ (8.5) 
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It is found that the strength of the compression field in a region without flexural cracks 

is higher than in a region with flexural cracks (Hence, in Section 5.1.2 a factor of 0.28 

was found instead of 0.32). This is caused by smaller longitudinal strains, that are asso-

ciated with regions without flexural cracks, that consequentially result in smaller 

principal tensile strains and therefore higher values of σ2,max (Equation 5.23). 

8.3 Model B1: shear resistance of prestressed girders with stirrups 

This section summarizes the model proposed to determine the shear resistance of pre-

stressed girders with stirrups in regions without flexural cracks, referred to as model B1. 

Equations from previous chapters are repeated (and renumbered) to get a clear overview. 

Model B1 is derived for normal weight concrete. 

For regions of prestressed girders without flexural cracks the shear resistance can be 

determined using Equations 8.6 to 8.12. The apostrophe used in the parameters, indi-

cates that the equations are only applicable for regions without flexural cracks 

(Section 8.1). The first term in Equation 8.6 represents the contribution of the aggregate 

interlock. The contribution depends on ψ, which equals ρw fywm / fcm. In this equation, ρw 

is the shear reinforcement ratio, fywm is the yielding strength of the stirrups and fcm the 

concrete cylinder compressive strength. In the equation for ρw, Asw is the area of the 

stirrups, bw is the width of the web and s is the centre to centre distance of the stirrups. 

The contribution of aggregate interlock reduces if ψ increases (Equations 8.7 and 8.8). 

The aggregate interlock contribution is also lower for fcm ≥ 60 N/mm2. This is because 

in higher strength concrete the cracks run through the aggregates due to the strong paste 

(Bentz et al. 2006a). Therefore, the aggregate interlock contribution reduces for higher 

strength concrete.  

𝑉′𝑅 =  𝛽 √𝑓𝑐𝑚  𝑏𝑤𝑧′ +  𝐴𝑠𝑤 𝑠⁄
  𝑓𝑦𝑤𝑚  𝑧′ cot 𝜃 (8.6) 

𝛽 = 0.38 –  2.5𝜓 for fcm ≤ 60 N/mm2 (8.7) 

𝛽 = 0.30 –  2.5𝜓 for fcm ≥ 80 N/mm2 (8.8) 

With 𝜓 = 𝜌𝑤𝑓𝑦𝑤𝑚  𝑓𝑐⁄ , 𝜌𝑤 = 𝐴𝑠𝑤  (𝑏𝑤 𝑠) ⁄ and 𝜃 = 26°. 

For 60 < fcm < 80 N/mm2, β can be interpolated linearly. 

The second part of Equation 8.6 represents the contribution of stirrups to the shear re-

sistance. The cracking angle (θ) that would have been found using the MCFT could 

deviate from 26° as described in Section 6.4. Nevertheless, it is demonstrated in Section 

6.4 that the total shear resistance corresponds to the total shear resistance as found from 

the MCFT, using an angle of 26°. 
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The contribution of aggregate interlock and stirrups is attributed to the web as the diag-

onal tension crack will be primarily located in the web. Even if a part of the web remains 

uncracked, it was found that the shear resisted by the web could be determined assuming 

aggregate interlock and stirrups along a crack over the height of the web (Section 7.2). 

The additional contribution due to shear transfer in uncracked concrete (mainly the 

flanges) is accounted for by replacing the web height by the effective shear depth z’ 

(Section 7.3). The effective shear depth in regions without flexural cracks can be deter-

mined from Equations 8.9 – 8.11, for which the parameters are shown in Figure 8.3. The 

equivalent flange height in Equations 8.10 and 8.11 is defined as the height of the 

straight flanges increased with a half of the heights of the skew flanges. Only, the heights 

of skew flanges need to be considered, that are present over the full width of the flanges. 

Alternatively, the effective shear depth can be calculated from the distribution of the 

contributions between the web and the flanges assuming a linear elastic shear stress 

distribution (Section 7.4). 

𝑧′ = ℎ −
1

2
(ℎ𝑡𝑓,𝑒𝑞 +  ℎ𝑏𝑓,𝑒𝑞)  (8.9) 

ℎ𝑡𝑓,𝑒𝑞 =  ℎ𝑡𝑓,𝑠𝑡𝑟 +
1

2
ℎ𝑡𝑓,𝑠𝑘𝑤  (8.10) 

ℎ𝑏𝑓,𝑒𝑞 =  ℎ𝑏𝑓,𝑠𝑡𝑟 +
1

2
ℎ𝑏𝑓,𝑠𝑘𝑤 (8.11) 

 

Figure 8.3. Effective shear depth z’ 

Model B1 is derived for a diagonal crack spacing sθ of 300 mm. If the diagonal crack 

spacing is significant larger, the contribution for the aggregate interlock reduces and 

model B1 could overestimate the resistance. The orthogonal crack spacing for each of 

the directions (sx and sy) can be determined using Equation 7.4. The diagonal crack spac-

ing can be determined from the cracks spacing in orthogonal directions using Equation 

5.28. Only if the centre to centre distances of both the longitudinal reinforcing steel and 
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the stirrups (s) is large (for instance both larger than 400 mm) the diagonal crack spacing 

sθ will be larger than 300 mm. For elements that contain both stirrups and longitudinal 

reinforcing steel, the crack spacing will be typically less than 300 mm (Bentz et al. 

2006a, b). Therefore, for simplicity, the application of model B1 is limited for centre to 

centre distance (s) between the stirrups of maximum 300 mm (so the associated sx ≤ 300 

mm). For larger values of s the limit of the diagonal crack spacing of 300 mm should be 

verified when the newly  proposed model is used to determine the shear resistance.  

The method to determine the regions without flexural cracks is described in Section 8.1. 

The shear resistance is limited by V’R,c and V’Rmax (Equation 8.12) as described in section 

8.2. 

𝑉′𝑅,𝑐 ≤ 𝑉′𝑅 ≤ 𝑉′𝑅max (8.12) 

8.4 Accuracy of the proposed model 

In this section, the accuracy of model B1  (Section 8.3) is evaluated, based on test data 

from the database described in Section 5.3. In this evaluation, the shear resistance de-

termined with model B1 is compared to resistance obtained from experiments. The 

accuracy is expressed in terms of a test-to-predicted shear resistance ratio. A model is 

accurate if the mean value of the test-to-predicted shear resistance ratio is close to one 

and the associated coefficient of variation is low.  

Section 8.4.1. describes the experiments from the database that are used to evaluate the 

accuracy. Section 8.4.2 describes the accuracy found for model B1. Also the effect of 

the parameters shear span to depth ratio, the maximum aggregate size, the diagonal crack 

spacing and the longitudinal strain on the accuracy is investigated in this section. Finally 

in Section 8.4.3, the accuracy of the proposed model is compared to the accuracy found 

using other models from literature. The results are reflected with earlier findings from 

literature regarding the accuracy of the models from literature. 

8.4.1 Selection of experiments for the evaluation of the accuracy 

The accuracy of model B1 evaluated by the test data from the experiments from the 

database on shear failure of girders with stirrups (Section 5.3). Model B1 is derived 

assuming a longitudinal strain at mid-depth equal to or smaller than zero (εx ≤ 0, Sec-

tion 6.1). The database, on the other hand, is compiled of experiments on prestressed 

girders with stirrups for which failure could be related to diagonal tension cracks (Sec-

tion 5.3). Whether the experiments also meet the condition of a longitudinal strain at 

mid-depth smaller zero is uncertain. Therefore, only experiments that meet this condi-

tion are selected for the evaluation of the accuracy. Whether the condition εx ≤ 0 is met, 
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is based on calculations with the proposed method as described in Section 8.1. A second 

selection criterion is that only experiments with predicted resistances between V’R,c and 

V’Rmax (Equation 8.5) are selected to evaluate the accuracy. The selection will be carried 

out by the following steps considering both selection criteria: 

1. For all experiments in the database described in Section 5.3 the resistance V’R is de-

termined using Equations 8.6 to 8.11 (Appendix K). 

2. For all experiments in the database described in Section 5.3 the strain at mid-depth εx 

associated with V’R is calculated and it is determined whether εx ≤ 0 (Appendix L).  

3. For the experiments that meet the condition εx ≤ 0, the resistances V’R,c and V’Rmax are 

determined (Appendix M). Experiments that meet both conditions εx ≤ 0 and 

V’R,c ≤ V’R ≤ V’Rmax are used for the evaluation of the accuracy of the model (Appen-

dix N). 

In the first step, resistances V’R are determined for all the experiments of the database 

on shear failure related to diagonal tension cracks of girders with stirrups (Section 5.3, 

Appendix F). The used parameters, intermediate results and the resulting resistances V’R 

are listed in Appendix K ‘Shear resistance according to proposed model for prestressed 

girders with stirrups’. The effective shear depth z’ is determined using Equations 8.9 to 

8.11. As the cross-section of the experiments of Choulli were found to be irregular (Sec-

tion 7.3), z’ was calculated from the linear elastic shear stress distribution, using 

Equation 7.7, instead of using Equations 8.9 to 8.11. Subsequently, the shear reinforce-

ment ratio ρw and, ψ and β (using Equations 8.7 or 8.8) were determined. Finally, V’R 

was determined using Equation 8.6. Although the resistance for all experiments of the 

initial database are shown, the experiments that were eventually not selected are struck 

through in Appendix K (as these don’t meet the criteria of Appendices L and N). It is 

further noted that all experiments of the initial database meet the condition s ≤ 300 mm 

(Section 8.3). 

In step 2, the strain at mid-depth εx at V’R is determined for all experiments. As model 

B1 is derived for experiments with εx ≤ 0, only experiments that meet this condition are 

used in the evaluation. To determine εx, it is necessary to assume a critical cross-section. 

For the selection, the cross-section at location x = a – (h - hbf,str - hbf,skw) cotθ is assumed 

to be critical. In this equation a is the shear span, h the height of the girder, hbf,str is the 

height of the straight parts of the bottom flange and hbf,skw is the height of the skew part 

of the bottom flange. For continuously supported girders, where the most tensioned 

chord will be at the top flange, htf,str and htf,skw will be used instead of hbf,str and hbf,skw. 

The location of the critical cross-section is determined from subtracting the longitudinal 

projection of the diagonal crack (h - hbf,str - hbf,skw) cotθ, from the shear span. The terms 
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hbf,str and hbf,skw are subtracted as the crack through the bottom flange is about perpen-

dicular to the longitudinal axis.  

The location x is used to determine the strain in the chord at the location of the least 

compressed flange (εt). Cracks at a distance further away from the support than x are 

assumed to be flexural cracks and do not concern the shear resistance (‘Shear critical 

region’ in Figure 8.4). The angle is found based on the analyses of photos and figures of 

crack patterns of the 25 experiments, both simply and continuously supported, for which 

clear cracking patterns were present. These experiments are CW10, CW11, CW13, 

CW14, CW16 (Elzanaty et al. 1986), HCP2TE, HCP2TW, HAP2TW, HCP1TE, 

HCP1TW, HAP1TE, HAP1TW (Choulli 2005), F1B, F3A, F3B, F5A, F5B,F19A (Han-

son 1964), ŢP2 (Leonhardt 1973), LB2, LB3, LB6, LB7, LB8, LB10 (Xie 2009). It is 

conservatively assumed that shear failure could be related to the diagonal crack at x. The 

analyses of data from the observations result in an average angle of the first diagonal 

crack of 30°. 

 

Figure 8.4. Considered cross-section for determination the strains 

Assuming the critical cross-section at x = a – (h –  hbf,str – hbf,skw) results in an overesti-

mation of εc. Hence, the top of the diagonal crack will be more compressed than the top 

of the assumed cross-section. This is conservative, as an overestimation εc results in an 

overestimation of εx. One could argue to assume the critical cross-section at 

x = a – ½ (h – hbf,str – hbf,skw) so the overestimation of εc would be compensated by an 

underestimation of εt. However, the effect of εt on εx can be much more significant than 

the effect of εc on εx. This is because the stiffness of the chord reduces significantly if εt 

is positive. Hence, if the most tensile chord is under tension, only the stiffness of steel 

is ascribed to the chord. Therefore, the critical cross-section is chosen at 

x = a – (h – hbf,str – hbf,skw) and the effect of underestimating εc is considered acceptable. 

Hence, the overestimation of εx only results in a stricter selection. 
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 Based on V’R, z’ (Appendix K) and x, the strain εx can be determined for all experiments 

of the database described in Section 5.3. Appendix L lists the determined strains and the 

conclusion whether experiments meet the condition εx ≤ 0, including intermediate re-

sults. The longitudinal strain of εx is determined in accordance to Section 8.1. Based on 

the distance x and V’R, the moment due to the external load MF is determined. Based on 

ep, which is the vertical distance between location of the centroidal axis and the prestress 

force P, the moment due to the prestressing MP is determined. The continuously sup-

ported girders required more extensive calculations to determine Mp and MF than the 

simply supported girders. The internal lever arm z’ is already determined in Appendix 

K. Based on these values, the forces in the compression chord (C) and tension chord (T) 

are determined using respectively equations T = ME/z’ + VE + ec / z’ P and C = ME/z’ + 

VE + (z’ ec)/z’ P (Section 8.1). Subsequently, εt and εc are determined from the forces in 

the compression chord (C) and tension chord (T) and the stiffness of the chords. The 

stiffness of the least compressed chord and the most compressed chord are determined 

based on the defined steel areas and the measured stiffness of the reinforcement and the 

prestressing steel. The stiffness of the concrete is calculated from area of the associated 

chord (Figure 5.15) and the measured compressive strength fcm, using the equation Ec 

=3000 √fcm + 6900 as described in the CSA (2006). For positive values of C and T the 

stiffness of the concrete and steel are added together. For negative values of C and T, the 

stiffness equals the stiffness of the steel. The strain at mid-depth, εx, equals the mean of 

εt and εc. Eventually, experiments are selected that meet the condition εx ≤ 0. 

It was found that of the 57 experiments of the initial database for shear failure of girders 

with stirrups, 28 experiments meet the condition εx ≤ 0 (of which 19 also meet the con-

dition εt ≤ 0) and 29 do not meet the condition εx ≤ 0. It is noted that the selection is strict 

as consequence of the assumption that the most tensioned chord is immediately cracked 

when T > 0 (tensile strength of zero).  

The third step concerns the selection of the experiments that meet the condition 

V’R,c ≤ V’R ≤  V’Rmax for the 28 experiments that meet the condition εx ≤ 0 (Appendix M). 

V’R,c is determined using Equations 8.3 and 8.4. For some of the experiments diagonal 

tension cracking is predicted before flexural cracking. For these experiments V’R,c is 

found by adapting V’E until the condition σ1E,max equals 0.89fctm is met (Section 3.4) in 

the considered region (Figure 3.5). Other experiments are predicted to have flexural 

cracks before diagonal tension cracking. For these experiments, both V’E and the dimen-

sion of the region without flexural cracks (Figure 3.11) are adapted until the condition 

σ1E,max equals 1.01fctm is met (Section 3.5). Appendix M lists both whether flexural cracks 

are predicted at diagonal tension cracking and the determined V’R,c.  

Using these models results in a mean value of the ratio experimentally found to predicted 

resistance for diagonal tension cracking of about unity (Section 4.3). The mean value of 
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the ratio experimentally found to predicted resistance for girders with stirrups is about 

30% higher than unity (Section 8.4.2). Therefore, some of the experiments are selected 

despite V’R,c / V’R exceeds unity but for which V’R,c / V’R ≤ 1.3. Eventually it could be 

confirmed for these experiments that V’R,c was indeed not governing, by increasing V’R 

with a factor depending on a/d (Section 8.4.2). One experiment is not used to evaluate 

the accuracy of model B1 because it is likely that it failed as result of diagonal tension 

cracking (CW17). Although in the experiment additional shear could be resisted after 

diagonal tension cracking (the shear force could be raised from 123kN to 142 kN), the 

predictions made it likely that the additional resistance could not be ascribed to the pres-

ence of stirrups. Hence, considering the contribution of stirrups after diagonal tension 

cracking a resistance was predicted of 81kN, whereas a resistance to diagonal tension 

cracking was predicted of 123kN (Appendix M). In Section 2.1 it is explained that also 

girders without stirrups can sometimes resist some additional shear force after diagonal 

tension cracking.  

V’Rmax is determined using Equation 8.5. For none of the experiments V’Rmax is predicted 

to be governing (Appendix M).  

Experiment ŢP4 is further considered, although the predicted εx is larger than zero, and 

the experiment was not used for the evaluation of the accuracy of model B1. This ex-

periment contains a high amount of shear reinforcement (ρw= 2.32%). The 

experimentally found resistance (VRexp = 883 kN) reasonably agrees with the maximum 

predicted resistance (V’Rmax = 770 kN, predicted using Equation 5.31 as εx is larger than 

zero). From the experimentally measured stirrup strains it was found that the maximum 

resistance was reached before the stirrups yielded (Leonhardt et al. 1973). This shows 

that the maximum shear resistance can be governing and that the maximum resistance 

is reasonably predicted using the applicable equation.  

Eventually, 26 of the 57 experiments of the database described in Section 5.3 meet all 

selection criteria and will be used for the evaluation of model B1. 

8.4.2 Accuracy of model B1 

To evaluate the accuracy, the shear resistance determined with the proposed model (Ap-

pendix K) is compared to the experimentally found resistance (Appendix N). The 

accuracy is expressed in terms of the test-to-predicted shear resistance ratio. The results 

in terms of mean value of the test-to-predicted shear resistance ratio and the associated 

coefficient of variation are listed in Table 8.1 and shown in Figure 8.5.  
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Table 8.1. Statistical properties of test-to-predicted shear resistance ratio for model B1 

  a/d > 2.5 a/d > 5.0 

Number of experiments 26 21 6 

Mean 1.39 1.33 1.12 

Coefficient of variation 17.5% 14.6% 8.5% 

 

Figure 8.5. Test-to-predicted shear resistance ratio versus the ratio a/d for proposed model 

Model B1 assumes sectional behaviour and conservatively neglects the contribution of 

direct load transfer mechanism. The proposed model further assumes that the shear force 

is only resisted by aggregate interlock, stirrups and the uncracked flanges. In literature 

it is frequently assumed that direct load transfer contributes to the shear resistance up to 

a value of a/d of 2.4. The value a/d of 2.4 is assumed for instance as selection criterion 

for the Reineck database for slender girders (Reineck et al. 2012). The value is also used 

as selection criterion to evaluate the accuracy of the sectional analyses programme Re-

sponse (Bentz 2000). In this dissertation, also experiments with a/d smaller than 2.4 are 

selected in the current research to be able to investigate the effect of a/d on the accuracy 

(Section 5.3.2). Figure 8.5 and Table 8.1 show that the test-to-predicted shear resistance 

ratio strongly depends on the a/d ratio. For decreasing values of a/d, the test-to-predicted 

shear resistance ratio increases, which indicates that the actual resistance is underesti-

mated when a/d is low. This observed trend corresponds well to the theory of arch action 

models (Section 5.1.8), that predict that a larger part of the shear will be resisted by 

direct load transfer if a/d decreases. When a/d is smaller than 5, direct load transfer will 

already increase the shear resistance. An adaption of model B1 to account for this addi-

tional resistance is a promising topic to further reduce the conservatism for low a over 

d ratios. However, this topic will not further be addressed in the current research.  
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Also the effect of crack spacing sθ and the maximum aggregate size dmax on the accuracy 

of the proposed model is considered. Table 8.2 lists the maximum aggregate size as used 

in the experiments. The maximum aggregate size as used in the experiments is often 

smaller than 31.5 mm which is used to derive the proposed model (Section 6.3). As a 

result the contribution of aggregate interlock is overestimated (Equation 5.29). This is 

only the case for experiments with fcm smaller than 80 N/mm2, because above this value 

the aggregate size is assumed to have no effect (Equation 6.3a). Table 8.2 also lists the 

diagonal crack spacing at mid-depth as measured from photos or crack diagram figures. 

Crack patterns were not available for all experiments. Therefore, the average of the di-

agonal crack spacing based on the experiments for which photos or crack diagram 

figures were available was assumed to be representative for the whole test series. As 

shown in Table 8.2, the diagonal crack spacing found from observations was much lower 

than the assumed value of 300 mm. Because a too large diagonal cracking spacing is 

assumed, the contribution of aggregate interlock is underestimated (Equations 5.27 and 

5.29) when the proposed model is used. This in contrast to the effect of assuming a to 

large assumed maximum aggregate size, which causes an overestimation of the aggre-

gate interlock contribution.  

Table 8.2. dmax and sθ as assumed in models and as used in experiments and found from measurements 

 
 Model  

(Section 8.3) 

Elzanaty et al. 

(1986) 

Choulli 

(2005) 

Hanson  

(1964) 

Rupf et al.  

(2013) 

Xie 

(2009) 

dmax (mm) 31.5 12.7 12.0 19.1 16.0 10.0 

sθ (mm) 300 90 100 70 75 90 

The shear stress that can be resisted is determined using Equations 6.4 to 6.6. The equa-

tions are derived assuming a diagonal cracking spacing of 300 mm and a maximum 

aggregate size dmax of 31.5 mm. The maximum shear stress that can be resisted can also 

be determined using the MCFT by using the programme Membrane (Section 6.3). This 

way, dmax and sθ can be explicitly considered. The resistances are determined using both 

approaches and they are listed in Appendix O. The resistances using Membrane are de-

termined for fcm, fyz and ρw associated with each experiment. To consider the fact that in 

high strength concrete, cracks go through the coarse aggregates, the maximum aggregate 

size is linearly reduced from dmax (Table 8.2) at fcm = 60 N/mm2 to 0 mm at fcm = 80 

N/mm2 (Bentz et al. 2001). The aggregate size which is adjusted at high fcm is also listed 

in Appendix O and defined as dmax(fcm). Membrane determines the diagonal crack spac-

ing from the longitudinal crack spacing sx and the vertical crack spacing sz. As a 

simplification, sx is equalized to the vertical distance between the bars in longitudinal 

direction (at mid-depth) and sz is equalized to the centre to centre distance of the stirrups 

(Bentz et al. 2006b).  
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Figure 8.6 shows the ratio of τ’R,Eq6.4-6.6, which is the shear resistance according to the 

proposed model, assuming sθ =300 mm and dmax = 31.5 mm, and τ’R,M2k which is the 

shear resistance according to Membrane at εx = 0, using the actual dmax and resulting sθ, 

as function of sθ (Appendix O). Figure 8.6 shows that assuming a constant diagonal 

crack spacing of 300 mm leads to a more conservative prediction of the shear resistance 

compared to the smaller values of the diagonal crack spacing calculated using the 

MCFT. When the smaller dmax as used in the experiments (Table 8.2) would not have 

been considered, the predictions would have become even more conservative.  

      

Figure 8.6. Ratio τ’R,Eq.6.4-6.6 (sθ =300 mm and dmax = 31.5 mm) and τ’R,M2K (calculated sθ and dmax) 

The predicted V’R for the model that explicitly considers dmax and sθ can be found by 

multiplying the resistance found for the proposed model with τ’R,M2k / τ’R,Eq6.4-6.6. Based 

on the predicted V’R , and considering the 21 experiments with a/d > 2.5 (Table 8.3), a 

mean value of 1.28 is found for the test-to-predicted shear resistance ratio and an asso-

ciated coefficient of variation of 14.1%.  

The assumption of a diagonal crack spacing of 300 mm turns out to be rather significant 

according to Figure 8.6. The assumed sθ clearly contributes to the conservatism found 

in the predictions of the proposed model. On the other hand, the coefficient of variation 

is not significantly reduced when sθ and dmax are explicitly considered. This could pos-

sibly be ascribed to the poor prediction of the diagonal crack spacing. This is evident if 

the average diagonal crack spacing of 82 mm found in the experiments (Table 8.2) is 

compared to the average diagonal crack spacing of 149 mm found from the Membrane 

calculations (Appendix O). Nevertheless, an adaption of the model to account for this 

additional resistance is a promising topic to further reduce the conservatism of the pro-

posed model, but will not be further addressed in the current research. 

Finally the effect of the longitudinal strain εx is investigated. The models of Bentz et al. 

(2006b) and Esfandiari (2009) explicitly consider εx. This is logical, as these models are 
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also applicable for the regions with flexural cracks where εx > 0. It is however question-

able whether considering values of εx smaller than zero contributes to more accurate 

predictions of the resistance. As described in Section 6.1, the model is developed for εx 

= 0. This significantly simplifies the application of the model, as extensive calculation 

in which the areas, the locations and the stiffness of the concrete, the prestressing- and 

reinforcing steel, have to be considered are not necessary. As shown in Figure 8.5, a/d 

significantly affects the accuracy. Therefore, to be able to analyse the effect of the lon-

gitudinal strain, the test-to-predicted shear resistance ratio is divided by αad and plotted 

versus the longitudinal strain (Figure 8.7). The factor αad equals the second degree pol-

ynomial for the trend line as shown in Figure 8.5 as a function of a/d (dashed black line). 

Figure 8.7 shows that no significant effect of εx on the test-to-predicted shear resistance 

ratio is observed. Based on this observation it is plausible that considering the strain will 

not significantly improve the accuracy of the proposed model for regions without flex-

ural cracks. 

 

Figure 8.7. Test-to-predicted shear resistance versus the longitudinal strain 

8.4.3 Comparison with models from literature  

The accuracy of model B1 is compared to other models from literature using the test 

data. To compare the accuracy of the models, the accuracy of model B1 for the 21 ex-

periments with an a/d > 2.5, is listed in Table 8.3 as reference. Additionally, the accuracy 

of the model of Bentz et al. (Section 5.1.5), the model of Esfandiari (Section 5.1.6) and 

the Variable Angle Truss model (Section 5.1.1) are listed in Table 8.3. The steps neces-

sary to predict the resistance for each of these models are listed in Appendix P. Section 

8.6 derives the variable angle truss model modified for regions without flexural cracks 

(also referred to as model B2). Also the accuracy of this model is listed in Table 8.3. The 

test-to-predicted shear resistance ratio for all models, including some intermediate re-

sults, are listed in Appendix N. 



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 190PDF page: 190PDF page: 190PDF page: 190

174 

Table 8.3. Accuracy prop. model compared to models from literature for 21 experiments with a/d > 2.5 

 

 Model B1: 

Proposed 

model 

(Section 8.3) 

Model of  

Bentz et al.  

(Section 5.1.5) 

Model of  

Esfandiari  

(Section 5.1.6)  

Variable angle 

 truss model  

(Section 5.1.1) 

 Model B2:  

Modified variable  

angle truss model  

(Section 8.6) 

Mean  1.33 1.25 1.41 2.04  1.36 

CoV  14.6% 16.9% 12.8% 32.6%  13.0% 

For the model of Bentz et al., a mean value for the test-to-predicted shear resistance ratio 

of 1.25 was found for the 21 experiments that failed in regions without flexural cracks, 

with an associated coefficient of variation of 16.9% (Appendix N). This matches the 

results described in Section 5.1.5 reasonably, where a mean value for the test-to-pre-

dicted shear resistance ratio of 1.31 was found for 88 simply supported prestressed 

girders that failed in shear, with an associated coefficient of variation of 15.8%. Appar-

ently the accuracy for regions with and without flexural cracks is about equal using the 

model of Bentz et al.. The mean value of the test-to-predicted shear resistance ratio is 

somewhat lower compared to model B1. This corresponds to the finding of Section 6.5. 

Hence, in Table 6.4, a lower mean value was found for test-to-predicted resistance for 

membrane elements at a longitudinal strain of zero using the model of Bentz et al. than 

using the proposed approximation equations. The found coefficient of variation using 

the model of Bentz et al., is higher than for model B1, despite that the longitudinal strain 

is explicitly calculated. This finding confirms that it is plausible that considering the 

strain will not significant improve the accuracy of model B1 for regions without flexural 

cracks (as also found from Figure 8.7). 

For the model of Esfandiari, a mean value for the test-to-predicted shear resistance ratio 

of 1.41 was found for the 21 experiments that failed in regions without flexural cracks 

with an associated coefficient of variation of 12.8%. Section 5.1.6 describes the accu-

racy for 88 simply supported prestressed girders that failed in shear. For these 

experiments, a mean value for the test-to-predicted shear resistance ratio of 1.27 was 

found with an associated coefficient of variation of 16.7%. Esfandiari (2009) already 

concluded that the prediction became more conservative for values of the longitudinal 

strain smaller than 0.1 mm/m. Also for the current selection with a longitudinal strain 

smaller than 0 mm/m conservative predictions were found. The coefficient of variation 

of the model of Esfandiari is somewhat lower than the coefficient of variation of model 

B1.  

For the variable angle truss model, a mean value for the test-to-predicted shear resistance 

ratio was found of 2.04 for the 21 experiments that failed in regions without flexural 

cracks with an associated coefficient of variation of 32.6%. The predictions are found 

to be extremely conservative and inconsistent, which can be attributed to the limitation 
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of angle of the compressive struts to 21.8° for low values of ψ (Section 5.1.1). In Section 

8.6 a modified variable angle truss model is suggested for regions without flexural 

cracks, in which the strength of the compressive struts depends on ψ (model B2). With 

the modified variable angle truss model, the limitation of 21.8° is not necessary any-

more. The predictions with this modified model become much more accurate, as shown 

in Table 8.3. 

8.5 Design value of model B1 

The design value of model B1 is determined by using the simple approach described in 

Annex D7.3 of the NEN (2011), with the statistical properties of V’Rexp/V’R as described 

in Appendix N as the basic input. These statistical properties concern the uncertainty of 

the proposed model with respect to the experimentally result, which therefore implicitly 

include the uncertainties regarding the model, the geometry and the material. This sec-

tion determines the design value for the proposed model, for a failure probability of 10-4 

for a 50 year reference period (the target reliability index βt = 3.8). If another failure 

probability is envisaged, the same approach can be used to determine the associated 

partial factors.  

The design value Xd for the basic variable X (in which X equals V’Rexp/V’R) can be deter-

mined using Equation 8.13 as described in NEN (2011). X is assumed to follow a 

lognormal distribution, which is a common distribution function for the resistance and 

is also used in the design value format of the Eurocode. 

𝑋𝑑 =  𝜂𝑑𝑒(𝑚𝑦− 𝑘𝑑,𝜂𝑠𝑦) (8.13) 

Equation 8.14 concerns the equation for my, which is the mean of the basic variable in a 

lognormal distribution. As the number of experiments is 21, and ∑ln(V’Rexp/V’R) = 5.77, 

my = 0.275 (Table 8.4).  

𝑚𝑦 =  1
𝑛⁄ ∑ ln(

𝑉′𝑅𝑒𝑥𝑝

𝑉′𝑅
) (8.14) 

Equation 8.15 concerns the equation for sy which is the coefficient of variation of the 

basic variable in a lognormal distribution. In this equation Vx is the coefficient of varia-

tion. The coefficient of variation is listed in Table 8.1, which results in sy = 14.5% (Table 

8.4). 

𝑠𝑦 =  √ln (𝑉𝑥
2 + 1) (8.15) 
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Table 8.4. Derivation of design value Xd 

 n my sy kd,η Xd 

All experiments 21 0.275 14.5% 3.16 0.833 

The design value for the fractile factor, kd,η, is found from Table D2 in NEN (2011). The 

value corresponds to 1.04αRβt, in which αR = 0.8 and βt = 3.8. The factor αR is the first-

order reliability method sensitivity factor for the resistance and βt concerns the target 

reliability index. Given the limited number of experiments (n = 21), an additional factor 

of 1.04 is required according to the referred Table D2.   

In Equation 8.13, ηd is de design value of the conversion factor and should cover all 

uncertainties in a real structure that are not covered by the considered experiments. To 

be consistent with the design value format of the Eurocode ηd is equated to 1/1.15 for 

concrete and to 1.00 for reinforcing steel. Besides, an additional factor of 1/1.05 is in-

troduced to ensure that the conservative that was intended by assuming sθ of 300 mm is 

maintained and not included in the bias. Section 8.4.2 demonstrates that the resistances 

would have been average 5% higher if diagonal crack spacing and the maximum aggre-

gate size would have been explicitly considered (Appendix O). The additional factor of 

1/1.05 also covers a smaller dmax in the experiments than assumed for model B1. This 

avoids, on contrast to sθ, that the design values becomes too conservative. 

The mean value for the shear resistance for regions of prestressed girders with stirrups 

in regions without flexural cracks can be determined using Equation 8.6. The design 

value is found by multiplying Equation 8.6 with Xd = 0.833 and the additional factor 

1/1.05 and fcm and fywm with ηd, which results in Equation 8.16. Xd is the partial factor of 

the whole equation which already covers the uncertainty of the material properties and 

other uncertainties, it is sufficient to use the mean value of the material properties. How-

ever, this equation has to be converted into a design equation using fcd and fywd instead 

of respectively fcm and fywm (Equation 8.17). Accordingly, the correction factors α1 and 

α2 are introduced in the equation. Both α1 and α2 are derived by equalizing Equation 8.16 

and 8.17.  

𝑉′𝑅𝑑 =  0.833
1

1.05
𝛽 √𝜂𝑑𝑓𝑐𝑚  𝑏𝑤𝑧′ + 0833

1

1.05
𝐴𝑠𝑤 𝑠⁄

 
𝜂𝑑𝑓𝑦𝑤𝑚  𝑧′ cot 𝜃 (8.16) 

𝑉′𝑅𝑑 =  𝛼1 𝛽 √𝑓𝑐𝑑 𝑏𝑤𝑧′ + 𝛼2 𝐴𝑠𝑤 𝑠⁄
  𝑓𝑦𝑤𝑑  𝑧′ cot 𝜃 (8.17) 

with 𝑓𝑐𝑑 =  
𝑓𝑐𝑘

𝛾𝑐
  and 𝑓𝑦𝑤𝑑 =  

𝑓𝑦𝑤𝑘

𝛾𝑠
    

The correction factor α1 for concrete is derived by equating the first part of Equation 

8.16 and the first part of Equation 8.17. The ratio between fck / fcm , which is necessary to 

derive α1, depends on the mean value of the concrete compressive strength. Therefore, 
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α1 is derived for a range of concrete strengths (Table 8.4). Table 8.4 show that the deter-

mined values of α1 vary between 1.00 and 0.95. For simplicity it is proposed to 

conservatively use a α1 of 0.95 for all concrete compressive strengths. The correction 

factor is taken into account by reducing β according to Equation 8.7 and 8.8 which will 

be explained hereafter. It is noted that, when a design code is compiled, fcm in Equation 

8.16 is frequently replaced by fck for practical considerations, but given the approach 

used in this section this is not considered as necessary for this dissertation.  

Table 8.4. Correction factor for design value of concrete based on fcm = fck + 8 (NEN 2005) 

fck fcm fck /fcm α1  

N/mm2 N/mm2 - - 

35 43 0.81 1.00 

45 53 0.85 0.98 

55 63 0.87 0.97 

65 73 0.89 0.96 

75 83 0.90 0.95 

85 93 0.91 0.95 

The correction factor α2 for the reinforcing steel is derived by equating the second part 

of Equation 8.16 and the second part of Equation 8.17. The ratio between fywk / fywm, 

which is necessary to derive α2, depends on the characteristic value of the yield strength 

of the reinforcing steel. Therefore, α2 is derived for a range of yields strengths (Table 

8.5). A partial factor for the reinforcing steel γs is assumed of 1.15. This partial factor 

covers the uncertainties regarding the model, the geometry and the material. Table 8.5 

show that the determined values of α2 vary between 1.16 and 1.02. For simplicity it is 

proposed to conservatively use α2 of 1.00 for all yield strengths.  

Table 8.5. Correction factor for design value of reinforcing steel based on fywm = fywk + 60 (JCSS 2002) 

fywk fywm fywk/fywm α2  

N/mm2 N/mm2 - - 

220 280 0.79 1.16 

300 360 0.83 1.09 

400 460 0.87 1.05 

500 560 0.89 1.02 

Equations 8.18 to 8.20 concern the design value for model B1. Only α1 has to be con-

sidered because a value for α2 of unity is used. Equations 8.19 and 8.20 are found by 

multiplying Equations 8.7 and 8.8 with α1= 0.95. This reduces the first parts of β from 

respectively 0.38 (Equation 8.7) and 0.30 (Equation 8.8) to 0.36 (Equation 8.19) and 

0.28 (Equation 8.20). The second parts of equations 8.7 and 8.8 are conservatively not 

multiplied with α1, because -2.5 is a nicely rounded value. Equation 8.18 should be used 
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in combination with γc = 1.5 and γs = 1.15, for a target reliability index βt = 3.8 for a 50 

year reference period. 

𝑉′𝑅𝑑 =  𝛽 √𝑓𝑐𝑑 𝑏𝑤𝑧′ + 𝐴𝑠𝑤 𝑠⁄
  𝑓𝑦𝑤𝑑  𝑧′ cot 𝜃 (8.18) 

𝛽 = 0.36 –  2.5𝜓 for fcm ≤ 60 N/mm2 (8.19) 

𝛽 = 0.28 –  2.5𝜓 for fcm ≥ 80 N/mm2 (8.20) 

With 𝜓 = 𝜌𝑤𝑓𝑦𝑤𝑚  𝑓𝑐𝑚⁄ , 𝜌𝑤 = 𝐴𝑠𝑤  (𝑏𝑤 𝑠)⁄  and 𝜃 = 26° 

8.6 Model B2: modified variable angle truss model 

Section 8.3 proposes a model for the shear resistance for prestressed girders with stirrups 

in regions without flexural cracks, referred to as model B1. Model B1 explicitly takes 

into account the contribution of aggregate interlock and stirrups. In the current section 

an alternative presentation of model B1 is described. This concerns a modification of 

the variable angle truss model specifically intended for regions without flexural cracks, 

referred to as model B2. Model B2 ascribes the shear resistance completely to the stir-

rups. The contribution of aggregate interlock is taken into account implicitly by using a 

smaller angle of the compressive struts than the cracking angle.  

Like model B1 (Section 8.3), model B2 is based on the resistances determined for mem-

brane elements at a longitudinal strain of zero (Section 6.3). This approach solves the 

following two issues regarding the application of the currently used variable angle truss 

model (Section 5.1.1) in regions without flexural cracks: 

1. The currently used variable angle truss model does not distinguish between regions 

with and without flexural cracks. The additional resistance due to the smaller longi-

tudinal strains and smaller crack width, is not considered. This additional resistance 

is however considered in the modified model described in this section, because the 

model is based on membrane resistances at a longitudinal strain of zero (Sections 6.1 

to 6.4). It is noted that the version of the Eurocode that is currently under development 

(CEN 2020), relates the limitation of the angle of the compressive struts to the aver-

age axial compressive stresses. 

2. The effective concrete strength of the struts according to the current variable angle 

truss model is derived for high values of ψ, for which crushing of the struts is gov-

erning. For lower values of ψ, for which sliding of the crack can be governing, the 

derived effective concrete strength of the struts is not suitable and could lead to an 

overestimation of the shear resistance. Therefore, the angle of the compression strut 

is limited to a minimum of 21.8° in the current model. However, this limitation results 
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in extremely conservative predictions for values of ψ for which the limit is governing, 

as shown in Table 5.1. In contrast to the current variable angle truss model, the mod-

ified version is based on membrane resistances based on the resistance associated 

with the governing failure mode. Thus both crushing of the compression fields and 

sliding of the cracks can be governing and the model is capable of determining asso-

ciated resistances.  

In the modified variable angle truss model, model B2, the effective strength of the com-

pression struts is back calculated from the resistance for membrane elements as 

determined in Section 6.3. For the modified model, the effectiveness factor of the con-

crete strength in regions without flexural cracks is defined as one parameter ν’ (instead 

of ναcw, which is used in the current variable truss model). In Section 6.3, the values for 

ναcw (replaced in the proposed model by ν’) are calculated and related to fcm and ψ. The 

concrete effectiveness factor ν’, found from back calculations of the resistances of the 

MCFT, is shown in Figure 8.8 with black bullets (notice that of ναcw is replaced by ν’). 

It is noted that the angle of the compressive struts follows from the back calculations 

and therefore there is no need to limit this angle. 

  

  

Figure 8.8. Comparison of ν’ according to MCFT and predicted with the variable angle truss model . 
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As shown in Figure 8.8, the highest values for ν’ are found, for the lowest values of ψ. 

This is explained considering Figure 6.11. For values of ψ approaching zero, the contri-

bution of aggregate interlock can still be significant, whereas the contribution for the 

stirrups approaches zero. As the shear resistance is fully ascribed to the stirrups, the 

effective strength of the compressive struts must be significantly increased to find the 

associated resistance. The observation that the highest values for ν’ are found for the 

lowest values of ψ, is not considered in model B2. Hence, for values of ψ that approach 

zero, the resistance to diagonal tension cracking (V’R,c) will be governing.  

To derive an approximation equation for the effectiveness factor of the concrete strength, 

an equation ν’ = (a – b fcm)+c ψ fcm is assumed. The part a – b fcm accounts for the differ-

ent values of ν’ for the considered values of fcm, at ψ = 0. The part c ψ fcm accounts for 

the different slopes of the graphs for the considered values of fcm. For a combination of 

a, b and c it is possible to determine the ratio of the approached resistance and the re-

sistance according to the MCFT. For the 32 membranes that meet the condition ψ ≥ 

0.010, the mean values of the ratio of both resistances are determined with the associated 

coefficient of variation. The values of a, b and c are adapted until the mean value of the 

ratio of the resistances approaches 1.00 (eventually 1.03) and a minimum coefficient of 

variation is found (eventually 6%). This results in values for a, b and c of respectively 

0.54, -0.004, 0.04 (Equation 8.21, with fcm and fywm in N/mm2). Eventually, ψ fcm Is re-

written as  ρw fywm. 

The concrete effectiveness factor according to Equation 8.21 is shown in Figure 8.8 with 

a continuous black line for each concrete strength. Note that this equation is only valid 

for regions without flexural cracks, because the equation is based on the resistance of 

membrane elements with εx = 0. For regions with flexural cracks in the ultimate limit 

state, for which εx > 0, lower resistances will be found for the membranes elements. 

Therefore, if flexural cracks are present, the effective strength of the concrete ν’ will 

also be lower than follows from Equation 8.21. 

𝜈′ = 0.54 –  0.004𝑓
𝑐𝑚

+ 0.04𝜌
𝑤

𝑓
𝑦𝑤𝑚

 (8.21) 

The modified variable angle truss model, model B2, is summarized in the following text. 

For regions of prestressed girders without flexural cracks the shear resistance can be 

determined using model B2 according to Equation 8.21 – 8.24. The apostrophe used in 

the parameters, indicates that the equations are derived for regions without flexural 

cracks. In these equations, θ is the angle of the compressive strut (this in in contrast to 

model B1, in which θ represents the angle of the cracks). The angle of the compressive 

strut is steeper than the cracking angle. This is possible because aggregate interlock en-

ables shear transfer across the crack. The resistance by the aggregate interlock and 
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stirrups is expressed as a resistance by the stirrups only, as appears from Equation 8.22. 

In this equation Asw is the area of shear reinforcement, s is the distance between the 

stirrups and fywm the yielding strength of the stirrups. The effective shear depth z’ in 

regions without flexural cracks can be determined from Equations 8.9 – 8.11.  

𝑉′𝑅 =  𝐴𝑠𝑤 𝑠⁄
  𝑓𝑦𝑤𝑚 𝑧′cot 𝜃 (8.22) 

tan 𝜃 = √
𝜓𝑉𝐴𝑇

(1 − 𝜓𝑉𝐴𝑇)⁄  (8.23) 

𝜓𝑉𝐴𝑇 = 𝜌
𝑧
𝑓

𝑦𝑤
 𝜈′ 𝑓

𝑐𝑚
⁄  (8.24) 

With 𝜌𝑧 = 𝐴𝑠𝑤 (𝑏𝑤 𝑠) ⁄   

Equation 8.21 is found from the assumption that the struts fail due to or concrete crush-

ing or crack sliding, after the stirrups start to yield. Note that in Equation 8.24 for ψVAT, 

the strength of the compressive struts ν’fcm comprises the denominator whereas in the 

equation for ψ (Equation 8.8), the concrete cylinder compressive fcm comprises the de-

nominator. Equation 8.21 is found from back calculations of the resistance determined 

with the MCFT (Section 6.5.2).  

The conditions regarding the diagonal crack spacing, as described at the end of Section 

8.3, are also applicable for model B2. Also V’R,c and V’Rmax should be considered if the 

resistance is determined with model B2 (Section 8.2). 

Finally, the accuracy is evaluated for model B2. The shear resistance determined with 

model B2 is compared to the experimentally found resistance (Appendix N). To deter-

mine the shear resistance, firstly, the internal lever arm (which equals the effective shear 

depth) is determined from Equations 8.9 – 8.11. Secondly, ν’ is determined using Equa-

tion 8.21. Thereafter, ψVAT, θ and V’R are determined using successively Equations 8.24, 

8.23 and 8.22. Note that the angles of the compressive struts, determined with model 

B2, vary between 9.0° and 20.8° (Appendix N). Using the variable angle truss model, a 

mean value for the test-to-predicted shear resistance ratio was found, for 21 experiments 

that failed in regions without flexural cracks, of 1.36 and an associated coefficient of 

variation of 13.0%. The accuracy is comparable with model B1 (Table 8.3). The predic-

tions are a little more conservative compared to model B1, which can be ascribed to the 

conservative approximation of ν’ for low values of ψ. (Figure 8.8). The coefficient of 

variation is found to be somewhat lower than for model B1.  

The design value for model B2 can be determined in the same way as for model B1 

(Section 8.5). Again the statistical properties of V’Rexp/V’R as described in Appendix N 

can be used as the basic input. Equation 8.14 results in a mean of the basic variable in a 

lognormal distribution (my) of 0.298, as the number of experiments = 21 and 
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∑ln(V’Rexp/V’R) = 6.25. Equation 8.15 results in a coefficient of variation of the basic 

variable in a lognormal distribution (sy) of 12.9%, as Vx = 13.0%. The design value for 

the fractile factor kd,η = 3.16, considering the number of experiments. Equation 8.13 re-

sults in Xd = 0.896. As for reinforcing steel ηd = 1, only the additional factor of 1/1.05 is 

used that ensures that the conservative that was intended by assuming sθ of 300 mm is 

maintained and not included in the bias. By equating the second part of Equation 8.16 

and the second part of Equation 8.17, a correction factor for the reinforcing steel (α2) of 

1.10 is found for a yield strength fywk = 500 N/mm2 (which is the yield strength that 

results in a minimum α2, Table 8.5). For simplicity it is proposed to conservatively use 

α2 = 1.00 for all yield strengths. The design value, which can be used with a partial factor 

for the reinforcing steel γs of 1.15, is shown in Equation 8.25.  

𝑉′𝑅𝑑 =  𝐴𝑠𝑤 𝑠⁄
  𝑓𝑦𝑤𝑑 𝑧′cot 𝜃 (8.25) 

8.7 Minimum shear reinforcement ratio  

A minimum amount of shear reinforcement should ensure that failure does not occur 

immediately upon shear cracking and that truss action can develop (fib 2012, article 

7.13.5.2). Based on this definition, the minimum shear reinforcement ratio for regions 

without flexural cracks (ρ’w,min) can be derived by equating the shear resistance of gird-

ers with stirrups (V’R) and the resistance to diagonal tension cracking (V’R,c). The 

apostrophes indicate that the parameters are applicable for regions without flexural 

cracks.  

The most consistent way to determine both resistances is by using models A1, A2 and 

B1 (respectively in sections 4.1, 4.2 and 8.3). In engineering practice, both resistances 

will be determined and the highest of both resistances will be governing. Therefore, 

there is no need to have an equation for ρ’w,min for engineering practice. Nevertheless, 

an equation for ρ’w,min will be derived because it provides insight in the conditions under 

which diagonal tension cracking is governing and when additional shear can be resisted 

after diagonal tension cracking. 

Because the equation for ρ’w,min is only derived to provide insight, models from literature 

will be used that are further simplified and lead to a simple equation for ρ’w,min. To de-

termine V’R,c, Equation 8.26 is used which combines Equations 2.19 and 2.20 (ACI 

2008). Furthermore, the effective height of the prestressing steel (dp) is assumed to be 

0.9h, as investigated in Section 2.1.5. To determine V’R, Equation 8.27 is used, which 

combines Equations 5.30, 5.36 and 5.37 (Bentz et al. 2006a). Furthermore, εx is assumed 

to be zero and z is assumed to be 0.8h, as investigated in respectively Sections 6.1 and 

7.3. 
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𝑉′𝑅,𝑐 =  0.9ℎ 𝑏𝑤 (0.291√𝑓𝑐𝑚 + 0.3 𝜎𝑐𝑝) (8.26) 

𝑉′𝑅 =  0.8ℎ 𝑏𝑤  (0.4√𝑓𝑐𝑚 + 
𝜌𝑤𝑓𝑦𝑤𝑚

tan 29°
) (8.27) 

The experimentally found resistances will not exactly match the predicted shear re-

sistances. To get a realistic value for ρ’w,min, the predicted resistances will be multiplied 

by the mean value of the test-to-predicted shear resistance ratio. The mean values are 

determined for the 26 experiments which were found suitable to evaluate models for 

regions without flexural cracks of girders with stirrups (Section 8.4.1). Considering ex-

periments without stirrups is not useful to determine ρ’w,min. A mean value for V’R,c,exp / 

V’R,c(Eq8.26) was found of 1.01, which is in line with the earlier found values for the pro-

posed models A1 and A2 for diagonal tension cracking (Table 3.8). A mean value for 

V’Rexp / V’R(Eq8.27) was found of 1.27, which is also in line with the earlier found values 

for model B1 for girders wit stirrups (Table 8.1). The equation for the minimum shear 

reinforcement ratio (Equation 8.28) is found by equating 1.27V’R and 1.01V’R,c. It is 

noted the associated coefficients of variation for the simple models are both 18%, which 

is indeed more than for models A1, A2 and B1. 

𝜌′𝑤,min =  
(0.15𝜎𝑐𝑝 − 0.08√𝑓𝑐𝑚)

𝑓𝑦𝑤𝑚
 (8.28) 

For the selected 26 experiments ρ’w,min is determined using equation 8.28. This is also 

done for experiment CW17, that was not selected because the experiment was consid-

ered to have failed due to diagonal tension cracking (Section 8.4.1). In Figure 8.9 the of 

ratio ρ’w and ρ’w,min is plotted versus the ratio of the experimentally found ultimate re-

sistance and the experimentally found resistance to diagonal tension cracking. For all 

experiments, except CW17, it is found that V’R,exp / V’R,c,exp is indeed larger than unity if 

ρ’w is larger than ρ’w,min (shown with a grey area). For values of ρ’w / ρ’w,min that decrease 

towards unity, also V’Rexp / V’R,c,exp approaches unity. This trend confirms that Equation 

8.28 is suitable to determine ρ’w,min.  

For experiment CW17, it was found that V’Rexp / V’R,c,exp > 1 despite that ρ’w < ρ’w,min. In 

Section 2.1 is it shown that also girders without stirrups can sometimes resist some ad-

ditional shear force after diagonal tension cracking (Figure 2.2). It is plausible that this 

is the case for CW17. It is noted that regarding the selection criterion V’R > V’R,c (Section 

8.4.1), the same experiments would have been selected if Equation 8.28 was used instead 

of considering the highest resistance determined with the more accurate models (A1, A2 

and B1, Appendix M). 



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 200PDF page: 200PDF page: 200PDF page: 200

184 

For one experiment (SR23) a negative value for ρ’w,min was found (this result is not 

shown in Figure 8.9). This negative value was caused by the ratio V’Rexp and V’R(Eq8.27) 

of 0.96 which was substantial lower than the mean value of 1.27. If a test to predict 

resistance ratio of 0.96 was used instead of 1.27, a positive value for ρ’w,min would have 

been found and a ρ’w / ρ’w,min of 1.3, which fits well into the range of ρ’w / ρ’w,min shown 

in Figure 8.9. 

     

Figure 8.9. ratio of ρ’w and ρ’w,min versus V’R,exp / V’R,c,exp for selected 26 experiments & CW17 

Figure 8.10 shows ρ’w,min according to Equation 8.28 versus σcp for some combinations 

of fcm and fywm that are representative for practice (Table 1.1).  

    

Figure 8.10. ρ’w,min versus σcp for combinations of fcm and fywm representative for practice.  

It is noted that for low values of σcp the minimum shear reinforcement approaches zero. 

A value of zero means that the resistance by the aggregate interlock in the diagonal 

tension crack (after diagonal tension cracking) equals the resistance to diagonal tension 

cracking. That these values could be equal follows from Equations 8.26 and 8.27. For 

low values of σcp, diagonal tension cracking occurs at a lower load, and V’R,c will be 
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small (Equation 8.26). On the other hand, low values of σcp will not affect V’R (Equation 

8.27). There is however another phenomenon that reduces the chance that both values 

could be equal. This is because the aggregate interlock part of V’R remains high accord-

ing to Equation 8.27, because it is located in a region without flexural cracks (εx = 0). 

For low values of σcp, the chance that a regions remains uncracked reduces. Therefore, 

the chance that the equations are applicable reduces if σcp reduces. 

Figure 8.10 shows that diagonal tension cracking is governing for high values of σcp and 

low values of ρ’w. For low values of σcp and high values of ρ’w additional shear can be 

resisted after diagonal tension cracking. 
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9 
Conclusions and recommendations 

This chapter summarizes the results of this dissertation and gives recommendations re-

garding the use of the proposed models in practice and for future research. Section 9.1 

summarizes the main scientific results and Section 9.2 addresses the answers to the re-

search questions. Section 9.3 summarizes the proposed models and their application 

conditions. Section 9.4 describes the implications of the use of the proposed models for 

the structural assessments of bridges. Finally, Section 9.5 suggests topics for further re-

search.  

9.1 Scientific results 

This dissertation investigated two aspects of the shear resistance of prestressed girders 

in regions without flexural cracks: (i) the resistance to diagonal tension cracking and (ii) 

the shear resistance after diagonal tension cracking. The latter is only relevant if stirrups 

are present. The main scientific results for these two topics are described in respectively 

Sections 9.1.1 and 9.1.2. 

9.1.1 Resistance to diagonal tension cracking 

1. This dissertation provides an overview of models from literature for the resistance of 

prestressed girders to diagonal tension cracking (Section 2.1). The models, as applied 

in the Eurocode (NEN 2005), the Model Code 2010 (fib 2012) and the ACI (ACI 

2008), all assume diagonal tension cracking at the instant the maximum principal 

tensile stress equals the tensile strength of the web. However, different simplifica-

tions are used to determine the maximum principal tensile stress. Also, different 

models use different values for the tensile strength of the web. These two issues are 

further investigated. 

2. In this dissertation a database is composed, containing 70 experiments from seven 

test series of prestressed girders (Appendix A), in which diagonal tension cracking 

was reported. The main parameters of the experiments vary between the ranges: -11.3 

≤ σcp ≤ -2.3 N/mm2, -0.23 ≤ σcp / fcm ≤ -0.05, 24 ≤ fcm ≤ 99 N/mm2. These ranges of 

parameters are reasonably representative for the parameters of existing bridges (Ta-

ble 1.1). 
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3. Diagonal tension cracking occurs at a principal tensile stress lower than the uniaxial 

tensile strength of concrete. This can be ascribed to the presence of principal com-

pressive stresses that reduce the tensile strength of concrete (bi-axial behaviour, 

Section 3.2). 

4. The tensile strength of the web relates to the size of the region exposed to high prin-

cipal tensile stresses (statistical size effect). This dissertation derives an equation for 

the tensile strength of the web that combines the statistical size effect and the effect 

of bi-axial behaviour (Equation 3.10). Using Equation 3.10 to determine the tensile 

strength of the web for the 14 experiments without flexural cracks, instead of the 

uniaxial tensile strength, results in a reduction of the bias of the mean ratio of σ1max / 

fctm,web from 0.84 to 1.01 and reduction of the associated coefficient of variation from 

6.7% to 2.3% (Section 3.2).  

5. The maximum principal tensile stresses are not present in the disturbed area around 

the support, as long as no flexural cracks are present in this disturbed area. This is 

due to the vertical stresses and the more favourable distribution of the longitudinal 

and shear stresses in the disturbed areas (Section 3.3). 

6. The distribution of principal tensile stresses in the region without flexural cracks 

cannot be considered as independent of flexural cracks on the edge of this region. 

This is because the formation of a flexural crack on the edge of the region without 

flexural cracks can increase the principal tensile stresses in the uncracked region and 

trigger diagonal tension cracking (Section 3.5).  

7. When the maximum principal tensile stresses σ1max are based on σ1 along the cen-

troidal axis instead of over the web area (light grey area of Figure 3.7), the 

consistency of the predicted resistance to diagonal tension cracking decreases signif-

icantly. 

8. This dissertation proposes a model to predict the resistance to diagonal tension crack-

ing for girders in which no flexural cracks are present, referred to as model A1 

(Section 3.4). The accuracy of model A1 is investigated considering 16 experiments 

in which no flexural cracks are present. A mean value of the test-to-predicted shear 

resistance ratio was found of 1.00 and an associated coefficient of variation of 5.2% 

(Section 3.4). 

9. This dissertation proposes a model to predict the resistance to diagonal tension crack-

ing for girders in which flexural cracks are present, referred to as model A2 (Section 

3.5). The accuracy of model A2 is investigated considering 37 experiments in which 

flexural cracks are present. A mean value of the test-to-predicted shear resistance 

ratio was found of 1.01 and an associated coefficient of variation of 12.3% (Section 

3.5). 
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9.1.2 Shear resistance of prestressed girders with stirrups 

1. This dissertation provides an overview of models from literature that are intended to 

determine the shear resistance of prestressed girders with stirrups for regions without 

flexural cracks (Section 5.1). These concern empirical models as derived by Mac-

Gregor et al. (1960) and Leonhardt (1973), the variable angle truss model, which is a 

lower bound approach based on the theory of plasticity (Walraven 2002), models 

based on the MCFT (Bentz et al. 2006a, Esfandiari 2009) and the arch action model 

as proposed by Huber (2016). Based on a comparative study of the models (Section 

5.2) and an evaluation of the models (Section 5.4), it was decided to base the proposed 

model on the MCFT theory (Section 5.1.3). This is because the MCFT is capable to 

predict the shear resistance for the low longitudinal strains that are present in regions 

without flexural cracks and for low shear reinforcement ratios that are present in ex-

isting bridges (Tables 1.1 and 6.3). 

2. In this dissertation a database is composed, containing 57 experiments of prestressed 

girders with stirrups that failed in shear and for which the shear failure could be re-

lated to diagonal tension cracks. Of these 57 experiments, 21 are considered suitable 

to use for the validation of the proposed model because it could be demonstrated that 

(i) the failure occurred in the region without flexural cracks, (ii) sufficient stirrups 

were present to prevent instant failure at diagonal tension cracking and (iii) the shear 

span to depth ratio was larger than 2.5 (Section 8.4.1). These 21 experiments consist 

of five test series, containing both simply as well as continuously supported girders, 

containing experiments with post-tensioned and pre-tensioned prestressing steel with  

straight, draped and curved geometries of the prestressing steel. The main parameters 

vary as follows: 0.06% ≤ ρw ≤ 0.79%, 28 ≤ fcm ≤ 91 N/mm2, 298 ≤ fywm ≤ 585 N/mm2. 

These ranges of parameters are representative for the parameters of existing bridges 

(Table 1.1). 

3. This dissertation derives an equation to determine the shear resistance by aggregate 

interlock and stirrups at mid-depth of the web (Section 6.4) which will be used in the 

model proposed in this dissertation (model B1). This equation (Equation 6.4) is based 

on the resistances found for a series of membranes for a range of parameters, which 

are determined using the MCFT (Section 6.3). It was found possible to cover the 

possible failure modes with just this one equation. Equation 6.4 determines the re-

sistances found from the MCFT more accurately (Table 6.4) than equations used in 

existing models (Bentz et al. 2006a, Esfandiari 2009) and is also more simple to use. 

For the considered 40 membranes, the mean value of the ratio of the resistance ac-

cording to the proposed equation and the MCFT was found to be 1.00 and an 

associated coefficient of variation of 4%. The proposed equation differs in a number 

of aspects from equations used in these cited existing models:  
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a. The range of parameters considered for the determination of the re-

sistances of the membranes is extended to become representative for the 

intended application of the proposed model (Table 1.1). This implies that 

the lowest value for ρw has been reduced from 0.2% to 0.1% and the high-

est value for fcm has been increased from 60 N/mm2 to 100 N/mm2. 

Moreover a value for dmax is used of 31.5 mm, which is a common value 

for dmax applied in Dutch bridges up to 2000. 

b. The proposed model assumes a longitudinal strain of zero as it is specifi-

cally intended to predict the shear resistance in regions without flexural 

cracks. It was found that explicitly considering the longitudinal strain for 

this condition did not increase the accuracy (Figure 8.7).  

c. The way in which the decreasing contribution of aggregate interlock for 

higher strength concrete (fcm ≥ 80 N/mm2) is taken into account, is adapted 

(Section 6.4).  

4. The model of Bentz et al. (2006b) assumes that the resistance of the aggregate inter-

lock and stirrups at mid-depth is representative for the resistances along the entire 

crack surface. The validity of this assumption is demonstrated for regions without 

flexural cracks (Section 7.2).  

5. For the parts of the web that are not cracked, the distributed shear force is approxi-

mately the same magnitude as for the cracked part of the web. Therefore, the 

resistance of the web in the regions without flexural cracks can be accurately pre-

dicted by multiplying the shear resistance at the web at mid-depth, the web height 

and the average web width.  

6. The contribution of the uncracked concrete to the shear transfer was found to depend 

mainly on the height of the straight and skew flanges (Section 7.3). It was found that 

the effect of the width of the flanges on the contribution by uncracked concrete was 

insignificant. Based on these findings, an equation for the effective shear depth was 

derived (Equation 7.10). The effective shear depth accounts for an increase of the 

shear that can be resisted by aggregate interlock and stirrups along the crack, by shear 

transferred in the uncracked concrete. This is in contrast to the existing models (Bentz 

et al. 2006a, Esfandiari 2009) which relate the effective shear depth to the effective 

depth of the reinforcing steel and prestressing steel, which are irrelevant if no flexural 

cracks are present.  

7. The shear resistance calculated with a non-linear sectional analyses programme based 

on the MCFT, that predicts the shear flow over the height (Response), can be pre-

dicted accurately by using the simple equation proposed for the effective shear depth 

(Equation 7.10), which will be used in the model proposed in this dissertation. This 
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is evaluated by comparing the resistances determined using the proposed equations 

for the effective shear depth for 26 experiments of the database, for cross-sections in 

which no flexural cracks were predicted. A mean value of the ratio of both resistances 

was found of 0.99 and a coefficient of variation of 2% (Section 7.3, Figure 7.11).  

8. This dissertation proposes a model, referred to as model B1, to predict the shear re-

sistance of prestressed girders with stirrups in regions without flexural cracks, based 

on the derived equations for the shear resistance at mid-depth and the effective shear 

depth (Chapter 8). The accuracy of the model is evaluated by comparing the shear 

resistance determined with the proposed model (Appendix K) and the experimentally 

found resistance (Appendix N). For the 21 experiments that are considered suitable 

for the evaluation (Section 8.4.1), a mean value of the test-to-predicted shear re-

sistance ratio was found of 1.33 with an associated coefficient of variation 14.6% 

(Table 8.1).  

9. Neglecting the effect of direct load transfer in the proposed model was found to affect 

the accuracy of the predictions significantly. The influence appears from Figure 8.5, 

which shows that, despite the observation that the level of conservatism reduces for 

increasing shear span to depth ratios, the effect remains significant even for higher 

shear span to depth ratios.  

10. This dissertation also offers an alternative for the proposed model B1. This alterna-

tive is the variable angle truss model modified for regions without flexural cracks 

(Section 8.6), which is referred to as model B2. This model ascribes the shear re-

sistance completely to the stirrups. The contribution of aggregate interlock is taken 

into account implicitly by using a smaller angle for the strut angle than the cracking 

angle. In the modified variable angle truss model, the effective strength of the com-

pression struts is determined from back calculations of the resistances found from 

the MCFT for the considered series of membrane elements (Section 6.3). The effec-

tive concrete strength (ν’) was found to depend not only on the mean compressive 

strength of the concrete (Equation 5.4), but also on the mean yielding strength of the 

stirrups and the shear reinforcement ratio (Equation 8.21). As this equation is also 

applicable for low shear reinforcement ratios, it is no longer needed to limit the angle 

of the compressive strut as prescribed in the current variable angle truss model (Sec-

tion 5.1.1).  

11. Model B2, the variable angle truss model modified for regions without flexural 

cracks, is found to be slightly more accurate than model B1 and significantly more 

accurate than the currently used variable angle truss model (Table 8.3). The accuracy 

of model B2 is evaluated using the 21 experiments that are considered suitable for 

the evaluation (Section 8.4.1). As a result, the mean value of the test-to-predicted 
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shear resistance ratio was found to be 1.36 and the associated coefficient of variation 

of 13.0% (Table 8.3).  

9.2 Answers to research questions 

This section explicitly addresses the answers to the research questions as posted in Sec-

tion 1.4.  

Research question A: ‘Does the accuracy of the predictions increase if bi-axial behav-

iour and statistical size effect are taken into account?’  

Related part of dissertation: Sections 3.2, 3.4 and 3.5 

The accuracy of the predictions was found to increase if the bi-axial behaviour and sta-

tistical size effect are taken into account (Table 3.5). Moreover, the bi-axial behaviour 

was found as the main explanation for the finding that diagonal tensile cracking occurred 

at stresses below the uniaxial tensile strength (Equation 3.8). Nevertheless, for girders 

without flexural cracks, diagonal tension cracking can be predicted accurately based on 

a fraction of the uniaxial tensile strength, without considering bi-axial behaviour and 

statistical size effect (Table 3.7). Also for girders with flexural cracks, diagonal tension 

cracking could be predicted consistently without considering bi-axial behaviour and sta-

tistical size effect (Table 3.8, Appendix E).  

Research question B ‘How are the principal stresses distributed around the supports 

and the concentrated loads and is it possible to determine the maximum principal tensile 

stress using the Euler-Bernoulli girder theory and neglecting the vertical stresses?’ 

Related part of dissertation: Sections 3.3 and 3.5 

To answer research question B, a distinction should be made between girders with and 

without flexural cracks in the flange opposite to the concentrated load (Figures 3.7, 4.1 

and 4.2).  

For girders without flexural cracks in the flange opposite to the concentrated load, the 

maximum principal tensile stresses are found in the undisturbed regions (Section 3.3). 

Therefore, the maximum principal tensile stress can be fairly accurate approached using 

the Euler-Bernoulli girder theory in the undisturbed regions. Moreover, it is appropriate 

to neglect the influence of the vertical stresses to the principal tensile stresses, as at the 

governing location, the vertical stresses are relatively small. Because the maximum prin-

cipal tensile stresses are not present around the support, a region is defined around the 

support (Figure 3.5) which can be neglected when determining the maximum principal 

tensile stress. In Appendix C, column σ1max (Eq. 3.1, 3.2 and 3.4)/ σ1max(LEFEA)), it is 
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demonstrated that the maximum principal tensile stresses can be accurately determined 

using this approach.  

For girders with flexural cracks in the flange opposite to the concentrated load , it was 

found that also the formation of a flexural crack at the edge of the region without flexural 

cracks can initiate diagonal tension cracking in the regions without flexural cracks (Sec-

tion 3.5). Whether this is the case, can be rather accurately determined by assessing the 

principal tensile stresses in the web in the cross-section at the edge of the uncracked 

region. The principal tensile stresses in this cross-section can be approximated using the 

Euler-Bernoulli girder theory and neglecting the vertical stresses. Although assuming a 

linear elastic stress distribution in the vicinity of a flexural crack might seem question-

able, it was found that diagonal tension cracking can be predicted accurately by using 

this assumption (Table 3.8, Appendix E).  

Research question C ‘How does the presence of flexural cracks affect the distribution of 

principal tensile stresses?’  

Related part of dissertation: Section 3.5 

It was found that for experiments with flexural cracks, diagonal cracking occurred at 

higher ratios of σ1max and fctm than for the experiments without flexural cracks (Table 3.8, 

Appendix E). The principal tensile stresses are overestimated in the regions without 

flexural cracks, if these are determined with the Euler-Bernoulli girder theory, when 

flexural cracks are present. Nevertheless, it was found that diagonal tension cracking 

can be predicted accurately for girders with flexural cracks by using the approach de-

scribed above (see answer to research question B). 

Research question D ‘What are the possible shear failure modes for prestressed girders 

with stirrups in the regions without flexural cracks and is it possible to relate the shear 

resistance to the potential failure modes?’  

Related part of dissertation: Chapters 6 and 7 

When sufficient stirrups are present to prevent instant failure after diagonal tension 

cracking, two failure modes are possible in regions without flexural cracks. The two 

failure modes are sliding of the crack and crushing of the compression field, after the 

stirrups start to yield (Section 6.2.1). Sliding of the crack is predicted as governing fail-

ure mode for low concrete strengths (Figure 6.7). Also for high concrete strengths in 

combination with low values of ψ (= fywm ρw/ fcm) sliding of the crack is found governing 

(Figure 6.7). Crushing of compression field is predicted as the governing failure mode 

for high concrete strength in combination with high values of ψ (Figure 6.7). The shear 

resistance can be found for both failure modes and the higher resistance is considered to 

be governing (Section 6.2). However, the difference between the resistances associated 
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with the two failure modes is found to be limited (Figure 6.7). Therefore, it is proposed 

to determine the shear resistance using just one set of equations, that covers both failure 

modes. Theoretically, failure due to crushing of the compression field could also occur 

without yielding of the stirrups. However, this is only relevant for girders with a very 

high shear reinforcement ratio. It is unlikely that this will be the case for existing bridges. 

Nevertheless, an equation for this maximum shear resistance is derived for regions with-

out flexural cracks (Section 8.2). 

Research question E ‘How does the low longitudinal strain, that is associated with re-

gions without flexural cracks, affect the shear force transfer mechanism along the 

diagonal tension crack?’  

Related part of dissertation: Chapter 5 

It was found that the low longitudinal strain results in high contributions of aggregate 

interlock and stirrups to the shear resistance (Table 5.6). It is noted that the high contri-

butions are considered in the proposed model B1, because the contributions of aggregate 

interlock and stirrups are derived at a longitudinal strain of zero (Section 6.1 and 6.3).  

Research question F ‘How can the contribution of the shear force transferred by the 

uncracked flanges be determined and how is this contribution affected by the cross sec-

tional properties?’  

Related part of dissertation: Chapter 7 

For regions without flexural cracks, the ratio of the shear transferred by the web and the 

flange at failure reasonably corresponds to the ratio of the shear transferred by the web 

and the flange assuming uncracked concrete. The proposed model B1 includes the ef-

fects of uncracked concrete in the flanges by the ‘effective shear depth’, which replaces 

the height of the web (Section 7.3). This effective shear depth is mainly determined by 

the relative height of the straight and skew flanges. It was further found that the width 

of the flanges does not significantly affect the contribution of the uncracked concrete to 

the shear resistance (Figure 7.10). The scientific conclusions about the shear transfer by 

the uncracked flanges are already discussed in Section 9.1.2. 

9.3 Summary of proposed models and their application conditions 

Section 9.3.1 provides an overview of the models for the determination of the shear 

resistance of prestressed girders and describes a step wise procedure to apply the differ-

ent models. Section 9.3.2 describes the model to determine the resistance of prestressed 

girders to diagonal tension cracking. Section 9.3.3 describes the model to determine the 

shear resistance of prestressed girders with stirrups for regions without flexural cracks 

after diagonal tension cracking. 
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9.3.1 Overview shear resistance models for a prestressed girder 

This dissertation proposes a model for the shear resistance of girders with stirrups in 

regions without flexural cracks, referred to as model B1 (Section 8.5, V’Rd). As an ex-

ample for how to determine the shear resistance for the regions of girders with flexural 

cracks(VRd), the equations given by the Eurocode (NEN 2005) are used (for which the 

partial factors should be applied for a reliability class 2 to achieve βt = 3.8 for a 50 year 

reference period). The equations that are applicable for this combination of models are 

shown in Figure 9.1 for girders with stirrups. Figure 9.1 also shows the equation pro-

posed to determine the regions with and without flexural cracks (Section 8.1), so it is 

clear in which region each model is applicable.  

This dissertation also proposes a model that can be applied to determine the resistance 

to diagonal tension cracking of girders without stirrups (V’Rd,c, Section 4.3), referred to 

as model A. This model is applicable for the regions in which σx,Ed < fctd,fl. For the regions 

(of a girder without stirrups) with flexural cracks, the shear resistance (VRd,c) can be 

determined with, for example, the equations given by the Eurocode (NEN 2005). The 

equations that are applicable for this combination of models are shown in Figure 9.2.  

For girders that contain nonconforming shear reinforcement (Figure 1.3), it is unknown 

to what extend the stirrups contribute to the shear resistance. In practice, the shear re-

sistance is usually determined neglecting the contribution of nonconforming shear 

reinforcement. For that assumption, the models for a girder without stirrups are applica-

ble (Figure 9.2).  

For girders that contain (conforming) shear reinforcement (Figure 1.3), the resistance 

can be determined by using the following step wise procedure: 

1. verify whether sufficient shear resistance is present if the resistance models for gird-

ers with stirrups are used (Figure 9.1). If this does not result in sufficient shear 

resistance: 

2. neglect the presence of stirrups and verify whether sufficient shear resistance is pre-

sent if the resistance models for girders without stirrups are used (Figure 9.2). If this 

also does not result in sufficient shear resistance: 

3. verify whether sufficient shear resistance is present in the region with flexural cracks 

using the resistance model for girders with stirrups (Figure 9.1) and verify whether 

sufficient shear resistance is present in the region without flexural cracks using the 

resistance model for girders without stirrups (Figure 9.2).  
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Figure 9.1. Model B1 combined with Eurocode model for girders with stirrups3 

 

     

Figure 9.2. Model A combined with Eurocode model for girders without stirrups 

Sufficient shear resistance is present if this is demonstrated for all cross sections by one 

of these steps. Sufficient resistance to diagonal tension cracking should be considered 

for the whole region without flexural cracks. This is because diagonal tension cracks 

itself can cause an increase of the principal tensile stresses, leading to new diagonal 

tension cracks (Section 3.5). 

The proposed models are validated for both simply supported and continuously sup-

ported girders (Section 3.5 and 8.4.2). Girders without stirrups do not have the 

possibility to redistribute stresses before failure. Therefore, the failure mode is brittle 

                                                             
3 Model B2 (Equation 8.25) can be used as an alternative for Model B1.  Equation 8.25 is 

𝑉𝑅𝑑,𝑠 =  𝐴𝑠𝑤 𝑠⁄
 
 𝑓𝑦𝑤𝑑  𝑧′ cot 𝜃, in which θ can be determined from Equations 8.21, 8.23 and 8.24 

(Section 8.6).   
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and these girders could instantly fail at diagonal tension cracking (Section 2.1). Conse-

quently, also the effect of imposed deformations and transverse bending should be 

considered when determining the maximum principal tensile stress. Especially in the 

regions around the point of contraflexure on both sides of the mid support, imposed 

deformations could affect the maximum principal tensile stress (Figure 9.2 ‘σ1max sensi-

tive to imposed deformations’). For the continuously supported girders it is therefore 

preferable to only use the model proposed for girders with stirrups (Figure 9.1) to 

demonstrate sufficient shear resistance. Otherwise, it is less certain that all load effects 

can be adequately considered when determining the maximum principal tensile stress.  

9.3.2 Model A: resistance to diagonal tension cracking 

The proposed model, referred to as model A, assumes that diagonal tension cracks form 

when the maximum principal tensile stress in the web equals the tensile strength of the 

web. Although potentially some redistribution of stresses can occur before a diagonal 

tension crack forms, it is not necessary to consider this phenomenon in the proposed 

model, given the accuracy found.  

According to model A, the maximum principal tensile stress σ1Ed,max is determined as 

follows: 

 The Euler-Bernoulli girder theory can be used and the longitudinal stresses and shear 

stresses can be determined using Equations 4.3 and 4.4. The principal tensile stress 

can be determined from the longitudinal stresses and shear stresses by Equation 4.2. 

The effect of vertical stresses on the principal tensile strength can be neglected. The 

cross-sectional properties of the concrete can be used in Equations 4.3 and 4.4. It is, 

given the accuracy found, not necessary to consider the effect of the stiffness of the 

reinforcing steel and prestressing steel to determine the stresses.  

 The principal tensile stresses in the entire web area should be considered to determine 

the maximum principal tensile stress. The accuracy significantly decreases if only the 

principal tensile stresses along the centroidal axis are considered (Section 3.4).  

 Under the condition that the flange opposite to the support remains free of flexural 

cracks, the maximum principal stress can be accurately determined by considering 

the principal tensile stresses (determined with Equations 4.2 to 4.4) in the undisturbed 

areas such as defined in Figures 4.1 and 4.2 (light grey). The principal tensile stresses 

in the disturbed areas around the supports do not have to be considered. 

 The principal tensile stresses in the web area should be considered up to and including 

the cross-section at the edge of the uncracked region such as defined in Figure 4.2 

(light grey). The maximum principal tensile stress in this cross-section is decisive for 
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whether a diagonal tension crack occurs that is caused by the formation of a flexural 

crack (Section 3.5).  

To achieve a target reliability index βt of 3.8 for a 50 year reference period, a design 

value for the tensile strength of the web should be used of 0.599fctm (thus σ1Ed,max ≤ 

0.599fctm). If the relations fctk = 0.7fctm, fctd = fctk / γc and γc = 1.5 are used, this could also 

be written as σ1Ed,max ≤ 1.28fctd (Equation 4.9, see also Figure 9.2). The design value is 

derived for the model for girders in which flexural cracks are present (Section 3.5). As 

the design value for the model without flexural cracks (Section 3.4) is just a bit higher 

(0.652fctm, see Table 4.1), it is proposed to use 1.28fctd regardless of whether flexural 

cracks are present. Some conservatism is desirable for girder without flexural cracks, to 

compensate for the less favourable distribution of the shear stresses in bridges, which 

are loaded with distributed loads, compared to the experiments used to derive the design 

value, which are loaded with a concentrated load.  

If diagonal tension cracking is predicted by a (linear elastic) finite element analysis, bi-

axial behaviour should be considered by using the Mohr-Coulomb approximation 

(Equation 2.7), to prevent an overestimation of the resistance to diagonal tensile crack-

ing (Section 3.1). 

9.3.3 Model B1: shear resistance of prestressed girders with stirrups 

The proposed model, referred to as model B1,  should be applied in combination with 

the ‘equivalent load prestressing method’. This means that the prestress should be con-

sidered as part of the load instead of part of the resistance (Section 8.1). 

The proposed model is applicable for regions without flexural cracks. A simple method 

is proposed to determine this region (Section 8.1). The method assumes two longitudinal 

chords, which can be under compression or tension, at a vertical distance of the internal 

lever arm. The internal level arm is equated to the effective shear depth and both chords 

are connected by a compression field (Figure 8.1). The force in the least compressed 

chord can be determined using Equation 8.1. It is assumed that the region is free of 

flexural cracks when the force in the least compressed chord is negative. This simple 

method leads to a conservative prediction of the region without flexural cracks (Figure 

8.2). 

Model B1 is given by Equations 8.18 to 8.20 (see also Figure 9.1). These equations 

concern the design value of the model to achieve a target reliability index βt of 3.8 for a 

50 year reference period. The proposed model assumes a diagonal tension crack in the 

web and describes the shear force that can be transferred by aggregate interlock (first 

part of Equation 8.18) and stirrups (second part of Equation 8.18). This resistance is 

further increased with the contribution of the uncracked flanges to the shear transfer. 
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The contribution of the uncracked concrete is incorporated in Equation 8.20 by using 

the effective shear depth instead of the height of the cracked web. Model B1 is based on 

the Modified Compression Field Theory (Section 5.1.3). The shear resistance is based 

on failure of the web, either by crushing of the concrete compression fields or slipping 

along the diagonal tension crack (Section 6.2). For both failures modes, the stirrups yield 

simultaneously. 

As shown from Equation 8.19 and 8.20, the aggregate interlock contribution decreases 

for increasing shear reinforcement ratios, for increasing yielding strengths of the stirrups 

and for decreasing concrete compressive strengths (Figure 6.8). According to Equations 

8.19 and 8.20, the contribution of the aggregate interlock is lower for fcm ≥ 80 N/mm2 

than for fcm ≥ 60 N/mm2. This is because for fcm ≥ 80 N/mm2 the cracks are assumed to 

run through the aggregates, due to the strong paste. Model B1 is intended for girders 

with dmax = 31.5 mm. The model should only be used for girders with a centre to centre 

distance of the stirrups s ≤ 300 mm. Larger centre to centre distances can cause larger 

cracking distances which causes wider cracks and reduces the contribution of aggregate 

interlock. In such a case, the proposed model is still applicable when it can be verified 

with more refined calculations (Equation 7.4) that the diagonal crack spacing sθ at mid-

depth is less than 300 mm (Section 8.3).  

For the cracking angle, a fixed value of 26° is used. This angle belongs to the failure 

mode crack sliding (Figure 6.9), which is the most likely failure mode for regions with-

out flexural cracks (Figure 6.7). For conditions in which crushing of the compression 

field is found to be the governing failure mode, lower values for the cracking angle are 

found. However, for this failure mode, the overestimation of the cracking angle is com-

pensated by an overestimation of the aggregate interlock contribution (Figure 6.7). 

Therefore, if a cracking angle of 26° is assumed, the prediction of the total resistance 

along the diagonal tension crack still remains accurate.  

For girders with a high shear reinforcement ratio a model is proposed to determine the 

maximum shear resistance in the region without flexural cracks (Section 8.2). The pro-

posed model for girders with stirrups (Equation 8.18) is intended to determine the shear 

resistance to crushing of the concrete or to slipping of the crack, after the stirrups start 

to yield (Section 6.4). However, it is possible that the resistance for these assumed fail-

ure mechanisms should be limited because the concrete crushes before the stirrups yield. 

This maximum resistance (Equation 8.5) limits the shear resistance for model B1 for 

girders with stirrups (Equation 8.18). 
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9.4 Implications for the structural assessments of bridges 

This section describes the implications of the use of the proposed models for the struc-

tural assessments of bridges. Section 9.4.1 describes the implications that apply for both 

models. Section 9.4.2 describes the implications regarding the proposed model for di-

agonal tension cracking, model A. Section 9.4.3 describes the implications regarding the 

proposed model for shear resistance of prestressed girders with stirrups for regions with-

out flexural cracks, model B1. 

9.4.1 Implications for both proposed models 

The main implication of this research for the assessment of bridges in practice is that 

models have become available that are capable to accurately determine the shear re-

sistance in regions without flexural cracks.  

This dissertation also provides insight into which parameters and conditions signifi-

cantly affect the accuracy of the shear resistance and should be considered to ensure an 

accurate determination of the resistance. Accordingly, the study indicates the parameters 

that affect the accuracy of the shear resistance less significantly. Because these less in-

fluential parameters are omitted from the proposed models, the application in 

engineering practice becomes more simple than models in which these parameters are 

considered. 

Another important result is that design values of the models are derived. This makes it 

possible to relate the results of assessments to a target level of safety. This is not possible 

with the currently used models as data about the accuracy of the models is lacking. 

As the proposed models are shown to be accurate, these models allow substantiated de-

cisions about whether to maintain, strengthen or replace prestressed bridges and viaducts 

with a thin web. 

Commissioned by RWS, an engineering company assessed 15 bridges using the models 

for shear resistance as proposed in this dissertation (De Boer 2020). This concerns the 

15 bridges for which the shear resistance was insufficient in the regions without flexural 

cracks according to the current guideline for the assessment of existing structures (Sec-

tion 1.1, RWS 2013). In these assessments, the resistance to diagonal tension cracking 

was conservatively determined assuming a reduction of the tensile strength of concrete 

with 15% because of the sustained loading. By using the newly proposed models it was 

found possible to demonstrate sufficient shear resistance for 13 of these 15 bridges. For 

7 bridges sufficient shear resistance could be demonstrated using the proposed model 

for diagonal tension cracking, model A (Section 9.3.2). For 6 bridges sufficient shear 

resistance could be demonstrated using the proposed model for prestressed girders with 
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stirrups for regions without flexural cracks, model B1 (Section 9.3.3). Chapter 1 indi-

cated that for approximately 75 of the entire group of 540 older bulb-T-girders and 

precast girders, it will not be possible to demonstrate sufficient shear resistance in the 

regions without flexural cracks if the current assessment guideline (RWS 2013) is used. 

Based on the additional assessments, it can be expected, by extrapolation, that by using 

the proposed models it will be possible to demonstrate sufficient shear resistance for 

another 65 of these 75 bridges. 

9.4.2 Implications for resistance to diagonal tension cracking 

The proposed model for diagonal tension cracking, model A, approximately corresponds 

to the model used in current assessments (Section 1.2, Chapter 2). An important result 

is that, given the gained insights, the doubts about the applicability of the model can be 

dispelled.  

As model A was found to predict the resistance to diagonal tension cracking fairly ac-

curate, the currently used design value for the tensile strength of the web was found to 

be too strict. Therefore, the target level of safety can be obtained with an increase of 

28% compared to the currently used design value of the concrete tensile strength of the 

web. As a consequence, it is possible to demonstrate the structural safety of more pre-

stressed bridges by using the proposed model, as found from the additional assessments 

(De Boer 2020). Especially for the bridges that consist of girders with a low shear rein-

forcement ratio and a high prestress level. For these conditions, diagonal tension 

cracking is the governing failure mode as no additional shear force can be resisted after 

diagonal tension cracking (Figure 8.10).  

9.4.3 Implications for girders with stirrups  

The proposed model for prestressed girders with stirrups, model B1, concerns a newly 

developed model for regions without flexural cracks based on the principles as described 

by Bentz et al. (2006a) and Esfandiari (2009). In contrast to the currently used variable 

angle truss model (Sections 1.3 and 5.1.1), the proposed model is suitable to predict the 

shear resistance for regions without flexural cracks and is suitable for all shear reinforce-

ment ratios present in existing bridges. Model B1 is based on the Modified Compression 

Field Theory and it was not necessary to calibrate the model with experimental data.  

As an alternative to model B1, a modified version of the variable angle truss model is 

derived for regions without flexural cracks, model B2 (Section 8.6). The accuracy of 

model B2 is about the same as for model B1 (Table 8.3). Nevertheless, model B1 is 

preferred above model B2 because the physical phenomena ‘aggregate interlock’ and 

‘shear transfer by the stirrups in the crack’ are explicitly part of the proposed model, 

which contributes to a better insight of how the shear force is transferred.  
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The proposed model B1 is shown to be considerably less conservative than the currently 

used variable angle truss model (Sections 1.3, 5.1.1 and Table 8.3). In current assess-

ments, also another model is used to determine the shear resistance for regions without 

flexural cracks, which is actually intended for the regions with flexural cracks (Section 

1.3, RWS 2013). This is considered an conservative approach because the shear re-

sistance in regions without flexural cracks is assumed to be higher than in the regions 

with flexural cracks (Section 1.3). Therefore, it is likely that the currently used model 

(intended for the regions with flexural cracks) is more conservative for regions without 

flexural cracks than model B1. This is indeed confirmed with the results of the additional 

assessments (De Boer 2020). In summary, it can be concluded that it will be possible to 

demonstrate the structural safety of more prestressed bridges by using model B1. Espe-

cially for the bridges that consist of girders with a high shear reinforcement ratio and a 

low prestress level. For these bridges, additional shear force can be resisted after diago-

nal tension cracking (Figure 8.10).  

9.5 Future research 

The following topics are suggested either to further improve the accuracy of the pro-

posed models or to investigate adjacent topics which could contribute to make better 

substantiated decisions about the structural safety of existing prestressed bridges: 

1. For girders with a low shear reinforcement ratio, which is the case for most of the 

existing bridges in the Dutch Highways (Table 1.1, Table 6.3), the contribution of 

aggregate interlock to the total shear resistance is significant (Figure 6.11). The ag-

gregate interlock resistance depends on the diagonal crack spacing sθ (Equation 5.29), 

which is assumed to be 300 mm for model B1 (Section 6.3). It is suggested to inves-

tigate whether the experimentally found diagonal crack spacing can be predicted 

more accurately and whether explicitly considering the diagonal cracking improves 

the accuracy of the proposed model.  

2. Due to direct load transfer, model B1 is still found to be conservative for lower shear 

span to effective depth ratios (Figure 8.5). It is suggested to investigate whether this 

additional resistance can be quantified.  

3. Instead of neglecting the contribution of non-conforming stirrups, it is suggested to 

investigate to what extent the nonconforming stirrups contribute to the shear re-

sistance. 

4. Model B1 is derived for regions without flexural cracks. It is suggested to extend this 

model to regions with flexural cracks using the same approach as used in this disser-

tation for regions without flexural cracks. Ideally, future study should lead to one 
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model which is capable of predicting the shear resistance for prestressed girders with 

stirrups, irrespectively of whether flexural cracks are present. 

5. It is suggested to further investigate the uncertainties that are present in real bridges 

which are not covered by experiments. An overview of these uncertainties and their 

magnitude will help to substantiate and improve the currently used conversion factors 

which are used to determine the design value of resistance models. 
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Appendix P 
 

Steps to determine shear resistance for models from literature 

The predicted resistance using the model of Bentz et al. (Section 5.1.5) is determined 

iteratively. This is because the resisted load depends on the strain at mid-depth and the 

strain at mid-depth depends on the applied load. The predicted resistance is determined 

by the following steps: 

1. The effective depth d is determined using a weighted mean of the effective depth of 

the reinforcing steel and the prestressing steel. For the internal lever arm z, the max-

imum of 0.9d and 0.72h is used (CSA 2006).  

2. The stiffness of the most tensioned chord and the most compressed chord are deter-

mined based on the defined steel areas and the measured stiffness of the reinforcement 

and the prestress tendons. The stiffness of the concrete is calculated from the defined 

area and the measured compressive strength fcm, using the equation Ec =3000 √fcm + 

6900 as described in the CSA (2006). Because it is unclear in advance if a cracked or 

uncracked most tensioned flange should be assumed, both a cracked stiffness and 

uncracked stiffness are determined. 

3. The resistance is determined for both a cracked most tensioned chord as an uncracked 

most tensioned chord. 

4. As initial resistance, the experimentally found resistance is used. 

5. The strain at mid-depth εx is calculated for the initially resistance using the equations 

from Section 5.1.5. The strain at mid-depth εx is the minimum of the calculated strain 

and -2 mm/m (Section 5.1.5).  

6. β and θ are determined using the determined value of εx, using Equations 5.36 and 

5.37 

7. The resisted shear force is calculated using Equation 5.30. A maximum value of 65 

N/mm2 is used for fcm (CSA 2006).  

8. The assumed resistance is adapted until the assumed and calculated resistances 

match. Both resistances are assumed to match if the difference between both is less 

than 0.1%.  

9. The sign of the force in the most tensioned flange associated with the calculated re-

sistance determines which of the both calculated resistances is applicable for the 

considered experiment (a cracked or an uncracked most tensioned chord). 

 

The predicted resistance using the model of Esfandiari (Section 5.1.6) is determined 

iteratively. The predicted resistance is determined by the following steps: 

1. The effective depth d is determined identical as for the model of Bentz et al.. 
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2. The stiffness’s of the most tensioned chord and the most compressed chord are de-

termined identical as for the model of Bentz et al.. 

3. The resistances are determined for both the failure mode yielding of the stirrups and 

crushing of the concrete. 

4. For each failure mode, the resistance is determined for both a cracked most tensioned 

chord as an uncracked most tensioned chord. 

5. As an initial resistance, the experimentally found resistance is used. 

6. The strain at mid-depth εx is calculated identical as for the model of Bentz et al.. 

7. For each failure mode, β and θ are determined using the determined value of εx, using 

Equations 5.38–5.44. 

8. The resisted shear force is calculated from Equation 5.30. A maximum value for fcm 

is used of 65 N/mm2.  

9. The assumed resistance is adapted for each failure mode until the assumed and cal-

culated resistances matches. Both resistances are assumed to match if the difference 

between both is less than 0.1%.  

10. The sign of the force in the most tensioned flange associated with the calculated 

resistance determines which of the both calculated resistances is applicable for the 

considered experiment (a cracked or an uncracked most tensioned chord). 

11. Finally, the highest of the resistances to yielding of the stirrups and crushing of the 

concrete is considered governing. 

The predicted resistance for the variable angle truss model is determined by the follow-

ing steps:  

1. The internal lever arm is determined assuming zs = 0.9ds and zp = 0.95dp and using 

Equation 5.2 (as described in Section 5.1.1).   

2. The factor ν, which accounts for the reduced strength, is determined using equation ν 

= 0.6 (1  fcm/250). The factor αcw, which addresses the effect of prestressing, is de-

termined as described in Section 5.1.1.  

3. The parameter ψVAT and successively angle of the compressive struts θ was deter-

mined using Equations 5.5 and 5.6. If cable ducts were present it is assumed that these 

are fully filled. Hence, the resistance is predicted using a non-reduced web width bw. 

4. If the angle of the compressive struts θ determined with Equation 5.5 is lower than 

21.8°, a value of 21.8° is used (which appear to be the case for all experiments, see 

Appendix N) 

5. The shear resistance VR,s is predicted using Equation 5.1.  

  



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 273PDF page: 273PDF page: 273PDF page: 273

 

257 

Notations 

Roman lower case letters 

a  Shear span 

b  Width of cross section 

bbf   Width of bottom flange 

btf Width of top flange  

bw  Width of web on T or I girders 

c Diagonal distance from the considered depth to the nearest reinforcement in the 

section 

d Effective height, distance from extreme compression fiber to centroid of longi-

tudinal tension reinforcing steel 

db Diameter of the nearest bar 

dmax Maximum aggregate size 

dp Effective depth for prestressing steel 

ds Effective depth of longitudinal reinforcing steel 

ec Distance from the most compressed chord to the centre of gravity of the cross-

section 

ep0 Eccentricity of the prestressing steel at the end of the girder relative to the cen-

troidal axis 

f’c Specified compressive strength of concrete (ACI) 

fc,cu,200 Concrete compressive strength determined for a cube with a rib length of 

200 mm 

fcm,red Reduced value of the cylinder compressive strength of concrete depending on 

principal tensile strain 

fcd Design value of concrete cylinder compressive strength 

fck Characteristic value of concrete cylinder compressive strength 

fck Characteristic value of concrete cylinder compressive strength 

fck.cube Characteristic value of cube compressive strength of concrete 

fcm Mean value of concrete cylinder compressive strength  

fcr  Cracking strength of concrete  

fct,eff Effective tensile strength of concrete depending on principle compression 

stresses 

fctd Design value of axial tensile strength of concrete 

fctd,fl Design value of flexural tensile strength of a concrete member 

fctk Characteristic value of axial tensile strength of concrete 

fctm  Mean value of axial tensile strength of concrete 
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fctm,eff  Mean value of tensile strength considering bi-axial behaviour 

fctm,fl  Mean value of flexural tensile strength of a concrete member 

fctm,2s Mean value of tensile strength considering bi-axial behaviour and the statistical 

size effect 

fctm,sp Mean value of splitting tensile strength of concrete 

fctm,web  Mean value of tensile strength of concrete in a web used to predict diagonal ten-

sile cracking 

fywd Design value of yield strength of shear reinforcing 

fywk Characteristic value of yield strength of shear reinforcing 

fywm  Mean yield strength of shear reinforcing  

fyx  Yield strength of reinforcing in longitudinal direction (MCFT) 

fyz  Yield strength of reinforcing in vertical direction (MCFT) 

h  Overall depth of member 

hbf,eq Equivalent height of the bottom flange 

hbf,skw Height of the skew part of the bottom flange 

hbf,str   Height of the straight part of the bottom flange 

hcr  Depth of the crack 

hf  Depth of flange 

hfc Height of the compression flange 

htf,eq Equivalent height of the top flange 

htf,skw Height of the skew part of the top flange 

htf,str   Height of the straight part of the top flange 

hw Web height  

l0 Value of lσ1 for which no size effect is present. 

lσ1 The length along the longitudinal axis over which the principal tensile stresses 

are between 90% and 100% of the maximum principal tensile stresses   

n Number of experiments 

qp Distributed load which is the result of the curvature of the prestressing steel 

s  Spacing of stirrups, spacing of bars  

sx  Spacing of cracks in longitudinal direction (MCFT) 

sz  Spacing of cracks in vertical direction (MCFT) 

sθ  Diagonal crack spacing (MCFT) 

w  Crack width 

xcrit Distance from critical cross section to support  

z  Internal lever arm, the vertical distance to the centroidal axis 
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z’ Effective shear depth in regions without flexural cracks, the level arm in regions 

without flexural cracks 

zc,0 Distance between ultimate top fibre and the centre of gravity  

zFc Distance between ultimate top fibre and centre of concrete compressive force 

zp  Internal lever arm of prestressing 

zs  Internal lever arm of longitudinal reinforcing steel 

Greek lower case letters 

kd,η Design value for the fractile factor 

αcc Angle of the compressive strut in arch action model 

αcw Factor intended to address the effect of prestressing on maximum compressive 
stress in compressive struts 

αR First-order reliability method sensitivity factor for the resistance 

β  Concrete contribution factor 

βt  Target reliability index 

γc Partial factor for concrete 

γs Partial factor for the reinforcing steel  

γxz  Shear strain relative to x- z axis (MCFT) 

ε1  Principle tensile strain in concrete (MCFT) 

ε2  Principle compressive strain in concrete (MCFT) 

εc  Concrete strain in a concrete cylinder at peak stress 

εc  Strain at the flexural compressive side of a member 

εcr  Cracking strain of concrete  

εs  Steel strain 

εt  Strain at the flexural tension side of a member 

εx  Strain in x-direction (MCFT), strain at mid-depth of a section (MCFT) 

εy  Yielding strain of the transverse reinforcing steel 

εz  Strain in z-direction (MCFT) 

ηd Design value of the conversion factor which should cover all uncertainties in a 
real structure that are not covered by the considered experiments 

θ  Inclination of the compressive struts (Variable Angle Truss model) or angle of in-
clination of compressive stresses in concrete to x-axis (MCFT, original notation 
θc). 

θcr  Angle of diagonal crack to the longitudinal axis 

θε  Angle of inclination op principle strains to x-axis (MCFT, original notation θ) 

ν  Effectiveness factor for concrete  

ν’ Effectiveness factor of the concrete strength in regions without flexural cracks  

νc Strength reduction factor by micro cracks 
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νs Strength reduction factor by sliding  

ρ  Ratio of (longitudinal) tension reinforcing steel  

ρ’w,min Minimum shear reinforcement ratio for regions without flexural cracks 

ρw  Reinforcement ratio of shear reinforcement 

ρx  Ratio of reinforcing steel in x direction 

ρz  Ratio of reinforcing steel in z direction 

σ1   Highest principle stress, principal tensile stress in concrete (MCFT, original nota-
tion f1) 

σ1Ed,max Design value of the maximum value of the highest principle stress for a consid-
ered area 

σ1m Principal tensile stress at the point at the mid-length of lσ1 and at mid-height of the 
points defining lσ1  

σ1max   Maximum value of the principle tensile stress for a considered area 

σ1R Principle tensile stress resistance according to Leonhardt 

σ2   Lowest principle stress, principal compressive stress in concrete (MCFT, original 
notation f2) 

σ2,max   Maximum stress in compression field 

σ2m Principal compressive stress at the point at the mid-length of lσ1 and at mid-height 
of the points defining lσ1  

σc  Concrete compression stress 

σcp  Stress in the concrete in longitudinal direction in the centre of gravity  

σcR Reduction parameter indicating the difference between the stresses in the stirrups 
and the principle tensile stresses in the centre of gravity (Leonhardt, original nota-
tion σ1D) 

σp’0  Initial stress in prestressed reinforcing steel at the compression side of a member 

σp0  Initial stress in prestressed reinforcing steel at the tensile side of a member 

σpe  Compressive stress in the concrete from effective prestressing force only at the 
extreme fibre 

σsw  Stress in the stirrups 

σsx  Average stress in x-reinforcing steel (MCFT, original notation fsx) 

σsx,cr  Stress in x-reinforcing steel at crack location (MCFT, original notation fsxcr) 

σsz  Average stress in z-reinforcing steel (MCFT, original notation fsz) 

σsz,cr  Stress in z-reinforcing steel at crack location (MCFT, original notation fszcr) 

σx  Stress in the longitudinal direction, stress in x-direction (MCFT, original notation 
fx) 

σxEd  Design value of the stress in the longitudinal direction 

σz Stress in the vertical direction 

σz  Stress in the depth direction (MCFT, original notation fz) 

τ Shear stress (MCFT, original notation ν) 
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τ’R,c Maximum shear stress that can be resisted for diagonal tension cracking 

τci Shear stress on crack surface (MCFT) 

τci,max Maximum shear stress on crack surface (MCFT) 

τR Maximum shear stress that can be resisted 

τR,c Concrete contribution to shear strength   

τR,max Maximum shear strength associated with crushing of the concrete without yield-
ing of the stirrups 

τ’REq6.4-

6.6 
Maximum shear stress that can be resisted according to Equations 6.4 to 6.6 

τ'R,M2k Maximum shear stress that can be resisted according to membrane at εx = 0 

τR,R2k Maximum shear stress that can be resisted according to Response 

τR,s Steel contribution to shear strength 

τRmd Maximum shear stress that can be resisted at mid-depth 

τs  Shear stress resisted by transverse reinforcement 

τuncr Shear transferred by uncracked concrete 

φcr Angle of the principal stresses at a diagonal tension cracking  

ψ ρsw fywm / fcm 

ψvat ρsw fywm / ν fcm 

Roman capital letters 

A’s  Area of reinforcing steel on the flexural compression side of a member 

Ac  Area of concrete cross section 

Acc  Area of concrete cross section on the flexural compression side of a member 

Act  Area of concrete cross section area of concrete on the flexural tension side of a 
member 

Ap  Area of prestressing steel on the flexural tensile side of a member 

Ap’  Area of prestressing steel on the flexural compression side of a member 

As  Area of reinforcing steel on the flexural tensile side of a member 

Asw  Area of shear reinforcing steel  

Asz Area of transverse reinforcement 

C  Force in the compressive chord of a girder 

Ec  Modulus of elasticity of concrete 

Ep  Modulus of elasticity of prestressing steel 

Es  Modulus of elasticity of reinforcing steel 

F  Applied load  

Fc  Strut force (compression force), resulting concrete compressive force (Fc) in 
cross section 

Ft  Tie force (tension force) 
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I Second moment of area of the uncracked concrete cross section (including rein-
forcement) 

Ic  Second moment of area of the uncracked concrete cross section (excluding rein-
forcement) 

Mct Moment required to cause cracking in the ultimate fiber 

ME  Applied internal; bending moment  

Mr  Cracking moment 

NE  Applied axial force 

P  Prestressing force 

Px Component of the prestressing force parallel to the girder axis 

S  First moment of area of the uncracked concrete cross section (including rein-
forcement) 

Sc  First moment of area of the uncracked concrete cross section (excluding rein-
forcement) 

Sc,cg  First moment of area of the uncracked concrete cross section in the centre of 
gravity (excluding reinforcement) 

T  Force in the tensile chord of a girder 

V’R Shear resistance in a region without flexural cracks 

V’R,c Resistance to diagonal tension cracking, the minimum shear resistance for gird-
ers with stirrups in regions without flexural cracks 

V’R,c,exp Experimentally obtained resistance to diagonal tension cracking 

V’R,exp Experimentally obtained ultimate shear resistance in a regions without flexural 
cracks 

V’Rmax Resistance to crushing of the concrete before the stirrups yield in regions with-
out flexural cracks 

VE  Applied shear force   

VR  Shear resistance 

VR,cc Vertical component of compressive arch 

VR,ci Shear that can be resisted by aggregate interlock 

VR,DC Shear resistance to diagonal cracking 

VR,DTC Shear resistance to diagonal tension cracking 

VR,exp Experimentally obtained ultimate shear resistance  

VR,FC Shear resistance to flexural cracking 

VR,FS Shear resistance to flexural shear failure 

VR,FSC Shear resistance to flexural shear cracking 

VR,max Resistance to crushing of the concrete before the stirrups yield  

VR,p Vertical component of prestress force  

VR,R2k Shear resistance according to Response 

VR,s Shear that can be resisted by shear reinforcing steel 
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VR,strut Maximum shear force which can be sustained by the member, limited by crush-
ing of the compression struts with yielding of stirrups 

VR,uncr Shear resistance by the uncracked concrete 

Vtot,LE Total shear force associated with a linear elastic stress distribution  

Vw,LE Shear force associated with a linear elastic stress distribution transferred by the 
web 

Vx Coefficient of variation. 

Xd Design value  

Others 

Ф Diameter of a prestressing duct 
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Dankwoord 

Mijn dank gaat op de eerste plaats uit naar mijn werkgever Rijkswaterstaat. Rijkswater-

staat heeft, gedurende de duur van het promotieonderzoek (April 2015 – September 

2020), twee dagen per week beschikbaar gesteld voor het promotieonderzoek, waarvoor 

ik de organisatie zeer erkentelijk ben. Mijn bijzondere dank gaat hierbij uit naar Marès 

van den Hark en Albert Manenschijn. Ook mijn voormalig collega Ane de Boer wil ik 

bedanken voor de bemiddelende rol die hij heeft willen vervullen richting de TU Delft 

bij het opstarten van het promotieonderzoek. 

Ik heb het geluk gehad promotoren en begeleiders te hebben die zeer betrokken waren 

bij het onderzoek, waarvoor ik hen zeer erkentelijk ben. Mijn dank gaat uit naar mijn 

promotor Max Hendriks. Max heeft de logische structuur van het proefschrift bewaakt 

en hij heeft me gedurende het onderzoek steeds het vertrouwen gegeven dat ik op de 

goede weg was. Halverwege het promotietraject was Max bereid de rol als promotor 

over te nemen, wat ik erg heb gewaardeerd. Ik heb Max’ begeleiding als heel plezierig 

en effectief ervaren. Ik heb van Max verder ontzettend veel geleerd over niet-lineaire 

analyses, wat waardevol voor me is geweest tijdens het promoveren, maar nog meer 

voor mijn werk bij Rijkswaterstaat.  

Verder gaat mijn dank uit naar mijn copromotor Yuguang Yang. Naast zijn rol als docent, 

onderzoeker en inhoudelijk coördinator van vrijwel alles binnen de groep betoncon-

structies, heeft Yuguang altijd tijd weten te vinden, meestal in de avond maar soms tot 

diep in de nacht, om de hoofdstukken van het proefstuk te lezen en van commentaar te 

voorzien. Als expert op het gebied van dwarskracht kon ik bij Yuguang altijd terecht 

voor de meest complexe vraagstukken over dwarskracht. Daarnaast heeft hij rapporten 

en artikelen aangedragen die erg relevant zijn gebleken voor het onderzoek. De vele 

vragen die hij heeft gesteld en de discussies die we samen hebben gevoerd, hebben veel 

bijgedragen aan het uiteindelijke resultaat en de onderbouwing van het proefschrift.  

Zeker ook gaat mijn dank uit naar mijn begeleider Cor van der Veen. Zijn uitgebreide 

en brede kennis op het gebied van betonconstructies waren erg waardevol voor het on-

derzoek. Cor heeft er steeds voor gezorgd dat de focus van het onderzoek op de meest 

essentiële vraagstukken bleef liggen, de aandacht uitging naar het meest geschikte mo-

del en dat de onderzoeksresultaten praktisch toepasbaar zouden zijn. Ook ben ik Cor 

dankbaar voor zijn motiverende begeleiding en zijn bereidheid om mij te blijven bege-

leiden zelfs na zijn pensioen.  

Verder gaat mijn dank uit naar Dick Hordijk die gedurende de eerste helft van het on-

derzoek mijn promotor was. Dick heeft de gave om de juiste vragen te stellen die het 

onderzoek verder helpen en ik heb zijn begeleiding als zeer inspirerend ervaren.  



557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen557250-L-bw-Roosen
Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021Processed on: 15-3-2021 PDF page: 282PDF page: 282PDF page: 282PDF page: 282

 

266 

Ik ben mijn promotoren en begeleiders verder erkentelijk voor de vrijheid die ik heb 

gekregen om het onderzoek naar eigen inzicht in te vullen.  

Mijn dank gaat uit naar Maaike Ritzen van Rijkswaterstaat. Dat het onderzoek binnen 

de beschikbare tijd is afgerond is mede te danken aan de aandacht die Maaike hiervoor 

bij ieder voortgangsoverleg heeft gevraagd. Verder wil ik haar danken voor het bewaken 

van de zichtbaarheid van de onderzoeksresultaten binnen Rijkswaterstaat. Ik ben Dick 

Schaafsma van Rijkswaterstaat dankbaar voor het reviewen van de algemene hoofdstuk-

ken van het proefschrift. Dat de modellen nu direct voor de praktijk toepasbaar zijn is 

vooral dankzij zijn reviewopmerkingen. Ook ben ik hem dankbaar voor het laten uit-

voeren van de aanvullende beoordelingen door het ingenieursbureau waardoor inzicht 

kon worden gegeven in de aantallen bruggen en viaducten waarvoor het promotieonder-

zoek gevolgen heeft. Als laatste collega van Rijkswaterstaat wil ik Christien Mak 

bedanken voor de prettige afspraken die we hebben kunnen maken rondom de afronding 

van het promotietraject. 

Daarnaast wil ik Gerrie Dieteren van TNO bedanken voor de feedback die hij heeft wil-

len geven op de gebruikte methode voor het vaststellen van de rekenwaarden van de 

modellen. Ook wil ik Joost Walraven bedanken voor de ideeën die heeft aangedragen en 

de vakliteratuur die ik van hem heb gekregen. Ik heb het heel bijzonder gevonden om af 

en toe onverwachts bezoek te krijgen van de hoogleraar waarbij ik in 1996 ben afgestu-

deerd.   

Mijn dank en waardering gaat verder uit naar de afstudeerders die met hun onderzoeken 

hebben bijgedragen aan de onderzoeksresultaten. Het promotieonderzoek is extra ple-

zierig geweest door met hen gezamenlijk aan het onderzoek te werken. De volgende 

afstudeerders hebben bijgedragen aan het onderzoek: 

 Maciej Kraczla, die onderzoek heeft verricht met de titel: ‘Analytical and Numerical 

Analysis of the Shear Tension Critical Prestressed Beams’ (Kraczla 2016). 

 Sijtse Jan Kroeze, die onderzoek heeft verricht met de titel: ‘Resistance to Diagonal 

Tension Cracking in Prestressed Beams’ (Kroeze 2018). 

 Andrew Sugianto, die onderzoek heeft verricht met de titel: ‘Numerical Investigation 

into Size Effect on Prestressed Concrete Beam Resistance to Shear Tension Cracking’ 

(Sugianto 2019). 

 Marieke Vergeer, die onderzoek heeft verricht met de titel: ’Shear tension resistance 

of prestressed concrete beams with shear reinforcement, Based on the MCFT’ (Ver-

geer 2019).  

 Mathijs Tuitjer, die onderzoek heeft verricht met de titel: ‘Effect of Flexural Cracks 

on web-shear cracking of prestressed concrete continuous members’ (Tuitjer 2019). 
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Ik wil verder de vele mensen bedanken die tijdens mijn promotie met me hebben mee-

geleefd en belangstelling hebben getoond voor het onderzoek. Mijn kinderen Ilse en 

Floris die als een van de weinigen de titel van het proefschrift feilloos uit hun hoofd 

kennen. Mijn ouders en broer, mijn andere familieleden, schoonfamilie en vrienden. 

Mijn goede vriend Erwin van Aalst wil ik bedanken voor het meedenken over het ont-

werp van de omslag. Ook wil ik alle collega’s van Rijkswaterstaat danken voor alle 

interesse die zij hebben getoond. Ik heb het ontzettend gewaardeerd dat de afdeling 

Bruggen en Viaducten tijdens het promoveren op bezoek is geweest bij de groep beton-

constructies van de TU Delft.  

Ook wil ik de collega’s van de afdeling betonconstructies van de TU Delft danken voor 

de fijne tijd die ik daar heb gehad. Ik kijk met plezier terug op de vele etentjes, uitjes, 

de ‘dangerous sports’ activiteiten en de lunch- en koffiemomenten. De hoogtepunten in 

deze periode waren voor mij de week dat we Vechtbrug hebben laten bezwijken, de 

experimenten die ik samen met Rutger Koekkoek en Albert Bosman heb uitgevoerd met 

de prefab ZIP-liggers, het fib congres in Maastricht en het SEMC congres in Zuid Afrika. 

Met mijn leeftijds- en kamergenoot Sebastiaan Ensink heb ik het promoveren als geza-

menlijk avontuur mogen beleven wat de promotie een extra plezierige ervaring heeft 

gemaakt. 

Maar mijn meeste dankbaarheid gaat uit naar mijn partner Riemke Overal. Vanwege 

haar positieve reactie op het idee om naast het werk een promotieonderzoek te beginnen 

en mijn niet meer zo nodige ‘pappadag’ in te ruilen voor een ‘promotie dag’. Vanwege 

alle klussen die ze heeft gedaan in ons nieuwe huis terwijl ik weer eens een weekend 

doorwerkte aan mijn promotie. Omdat ze alle belangrijke teksten nog heeft willen con-

troleren op spellingsfouten voordat het proefschrift naar de drukker is gegaan. Maar 

vooral vanwege de vele uren waarin ze de verhalen over het onderzoek heeft willen 

aanhoren en heeft willen meedenken over alle vraagstukken die niet inhoudelijk waren. 

Ik heb het erg getroffen met haar. 
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Curriculum Vitae 

2008 – heden 

 

Senior Adviseur/ Specialist, Rijkswaterstaat, Grote Projecten en Onder-

houd, afdeling Bruggen en Viaducten, Utrecht 

  Trekker beoordeling van de bestaande voorgespannen liggerbruggen en 

viaducten in het areaal RWS, m.n. de aansturing van het numerieke en 

experimentele onderzoek door kennisinstituten en de beoordelingen 

door ingenieursbureaus  

 Promovendus aan de TU Delft, faculteit Civiele Techniek en Geoweten-

schappen, Afdeling ‘Engineering Structures’, groep betonconstructies, 

voor 3 dagen per week (April 2015 – September 2020) 

 Opsteller PvA ter beoordeling van betonnen bruggen en viaducten 

 Adviseur techniek bij realisatieprojecten 

 Beheerder richtlijn niet-lineaire eindige-elementen analyses (RTD1016) 

 Beheerder Richtlijnen Ontwerp Kunstwerken (RTD1001, v1.1) 

 Beheerder kader borging constructieve veiligheid in de realisatiefase  

 Detachering als constructeur bij Volker Infra Design  

 Trekker kennisveld (programma) constructieve veiligheid 

 Lid van het Kernteam Bouwtechnologie 

 Deelname werkgroepen: Betonvereniging ‘Compendium Aanpak Con-

structieve Veiligheid (editie 2011), CUR Platform Constructieve 

Veiligheid, CUR rapport ‘Borging constructieve veiligheid bij geïnte-

greerde contracten‘, CROW College van Deskundigen TIS 

2005 - 2008 Principal Engineer bij VECTRA Group Ltd., Utrecht  

  Safety Manager, Beveiligingssysteem EBS+, IPS Deventer (ProRail) 

 Safety Engineer, Beveiligings- en beheersysteem Amsterdam-Utrecht 

(ProRail, project BB21) 

2002 –2005  Lead Auditor, Lloyd’s Register Rail B.V., Rotterdam  

  Projectleider veiligheidsaudit bij de Belgische Spoorwegen (NMBS) 

 Auditor projecten, organisaties, kwaliteitsmanagementsystemen 

 Independent Safety Assessor Randstad Rail, Notified Body HSL Zuid 

2000 – 2002 

 

Constructeur van kantoorgebouwen en gevangenissen Rijksgebouwen-

dienst, Den Haag 

1996 – 2000 Constructeur van spoorviaducten, perrontunnels, stationskappen, voetgan-

gersbruggen en technische gebouwen, Holland Railconsult, Utrecht 

1990 - 1996 Technische Universiteit Delft, Faculteit der Civiele Techniek, vakgroep me-

chanica en constructies, sectie betonconstructies, Delft, 

afstudeeronderzoek: ‘het genereren van benodigde wapeningshoeveelheden 

met behulp van de eindige elementen methode’ 

1984 - 1990 Carolus Borremeus College, VWO, Helmond 

1972 Geboren op 23 februari in Helmond 
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In the design process of prestressed bridges and viaducts, the 
required amount of shear reinforcement is determined with a model 
that assumes the presence of flexural cracks. In order to keep the 
design process simple, this model is also prescribed to determine 
the amount of shear reinforcement for the regions of the structure 
in which, at the ultimate load, no flexural cracks are present. This 
is a conservative approach, as the conditions for shear transfer are 
more favourable in the regions without flexural cracks. 

From structural assessments of existing prestressed bridges 
and viaducts, it is found that the amount of shear reinforcement 
is frequently too low in the regions that remain free of flexural 
cracks. Accordingly, these structures are considered as unqualified, 
although the actual shear resistance could possibly be sufficient. 
This is the prime motivation for this research, in which the shear 
behaviour of prestressed girders in regions without flexural cracks 
is investigated.

Two models are proposed in this dissertation for the determination 
of the shear resistance in the regions without flexural cracks: 
- a model for diagonal tension cracking and 
- a model that considers the contributions of stirrups, aggregate 
interlock and uncracked flanges after diagonal tension cracking. 

Depending on the amount of shear reinforcement and the level of 
prestressing, the governing resistance will be present in either one 
of these stages. 

With the proposed models it has become possible to determine 
the shear that can be resisted in regions without flexural cracks more 
accurately. The use of the proposed models will therefore prevent 
that numerous bridges and viaducts are strengthened or replaced 
while the actual shear resistance is sufficient.
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