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HARDNESS AND EASE OF CURING THE SIGN PROBLEM FOR
TWO-LOCAL QUBIT HAMILTONIANS\ast 

JOEL KLASSEN\dagger \ddagger , MILAD MARVIAN\dagger \S , STEPHEN PIDDOCK\P , MARIOS IOANNOU\| ,

ITAY HEN\dagger \dagger , AND BARBARA M. TERHAL\ddagger 

Abstract. We examine the problem of determining whether a multiqubit two-local Hamiltonian
can be made stoquastic by single-qubit unitary transformations. We prove that when such a Hamil-
tonian contains one-local terms, then this task can be NP-hard. This is shown by constructing a
class of Hamiltonians for which performing this task is equivalent to deciding 3-SAT. In contrast, we
show that when such a Hamiltonian contains no one-local terms then this task is easy; namely, we
present an algorithm which decides, in a number of arithmetic operations over \BbbR which is polynomial
in the number of qubits, whether the sign problem of the Hamiltonian can be cured by single-qubit
rotations.

Key words. quantum, computational complexity, stoquastic, sign problem, quantum Monte
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1. Introduction. The sign problem in quantum physics has long been recog-
nized as one of the main impediments of efficient Monte Carlo simulation of quantum
many-body systems [33, 26]. Hamiltonians that do not suffer from the sign problem
have recently been given the name ``stoquastic"" [10], a term which aims to capture the
relationship between these Hamiltonians and stochastic processes. Many interesting
quantum models such as the transverse field Ising model, the Bose--Hubbard model,
and a collection of kinetic particles in a position-dependent potential are stoquastic.
However, stoquasticity, as introduced in [10], is a basis-dependent concept. It requires
that the Hamiltonian of the physical model in question be real and have nonpositive
off-diagonal elements in a given basis. For a many-body local Hamiltonian acting on
n qubits, this basis is typically a product basis on which the terms of the Hamilton-
ian act locally and can be efficiently described. The nonpositivity of the off-diagonal
elements of a stoquastic Hamiltonian matrix in a particular basis has important con-
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HARDNESS AND EASE 1333

sequences. It guarantees, via the Perron--Frobenius theorem, that there exists a set of
orthonormal states, spanning the ground state subspace, whose amplitudes are non-
negative in that basis [11]. In addition, the quantum partition function of a stoquastic
Hamiltonian can be expressed as a sum of nonnegative, easily computable weights,
which implies that Markov chain Monte Carlo algorithms can be used to perform im-
portance sampling of the quantum configuration space to calculate thermal averages
of physical observables, using these weights as (unnormalized) probabilities. For this
reason, it is said that stoquastic Hamiltonians do not suffer from the sign problem
[11, 10]. However, it is important to note that the absence of a sign problem does
not necessarily imply polynomial-time convergence of standard Monte Carlo methods
[16, 23, 12].

From a computational complexity perspective, the problem of estimating ground
state energies of stoquastic local Hamiltonians is considered easier than for general
Hamiltonians [10, 9]. Moreover, in the classification of the complexity of estimating
ground state energies of local Hamiltonians, stoquastic Hamiltonians appear as the
only intermediate class between classical Hamiltonians and general Hamiltonians [14].
Stoquastic local Hamiltonians are of interest not only in quantum complexity theory.
In [11] it was shown that deciding whether a stoquastic Hamiltonian is frustration-
free is an MA-complete problem. Recently [1] showed that the gapped version of this
question is in NP, linking derandomization of MA to NP to the possibility of gap
amplification of stoquastic local Hamiltonians.

Motivation for identifying classes of Hamiltonians that are stoquastic clearly
comes from both practical and complexity-theoretic perspectives. Given that stoquas-
ticity is basis-dependent, an interesting question arises: under what circumstances can
the sign problem be ``cured,"" as coined in [27], by performing local basis changes? This
is the main question explored in this paper.

It is worth noting that the sign problem may be resolved by means other than a
local basis transformation. Other methods for generating positive-valued decomposi-
tions of the partition function include, e.g., resummation techniques wherein negative-
valued weights in the decomposition are grouped together with positive ones to form
positive ``superweights"" that can in turn be treated as probabilities in a quantum
Monte Carlo algorithm [35, 13, 19]. Other methods also include applying a constant-
depth quantum circuit [32]. These other methods are beyond the scope of this paper.

Naturally, devising techniques for obviating or mitigating the sign problem has
been a focus of much research in the quantum Monte Carlo (QMC) community since
its inception [31, 25, 35, 13, 19]. In particular, the importance of basis choice has
been widely recognized (see, e.g., [8, 18, 17, 30]). Recognizing the key role that
stoquastic Hamiltonians play both in computational complexity and in physics, a
more general algorithmic approach has recently been launched to determine whether a
Hamiltonian can be made stoquastic [27, 24, 5]. In this paper we present an important
strengthening of these initial results.

Stoquasticity has also attracted attention from the experimental community. In
particular there has been a growing interest in engineering Hamiltonian interactions
that are not stoquastic [34, 29]. Some of the reasons for this include: enhancing
the performance of quantum annealer protocols for optimization [21, 28, 3], realizing
universal adiabatic quantum computers [4, 2, 7], and physically emulating quantum
many-body systems [29]. Here too, the question of whether and how local basis
changes can cure the sign problem is highly relevant, as experimental quantum ad-
vantages hinge on the inability to simulate nonstoquastic interactions on classical
computers.
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1334 KLASSEN ET AL.

2. Previous work. In what follows, we will refer to Hermitian matrices that
are real and have only nonpositive off-diagonal elements as symmetric Z-matrices [6].

A no-go result presented recently by some of the authors of this paper states
that the problem of determining whether there exists a sign-curing transformation for
general local Hamiltonians is NP-hard when one is restricted to applying particular
single-qubit transformations to the Hamiltonian [27]. This result can be summarized
as follows.

Theorem 2.1 (see [27]). Let H be a 3-local n-qubit Hamiltonian, and let Local-
CliffordSignCure be the problem of determining whether there exist single-qubit Clifford
transformations Cu with C =

\bigotimes n
u=1 Cu such that CHC\dagger is a symmetric Z-matrix.

LocalCliffordSignCure is NP-hard. Let H be a 6-local n-qubit Hamiltonian, and let Lo-
calRealRotSignCure be the problem of determining whether there exist real single-qubit
rotations Ru \in SO(2) with R =

\bigotimes n
u=1Ru such that RHRT is a symmetric Z-matrix.

LocalRealRotSignCure is NP-hard.

Remark. When dealing with k-local Hamiltonians with k > 2, it is important
to note that two distinct notions of stoquasticity have been defined in [10], namely,
there exist termwise-stoquastic Hamiltonians and globally stoquastic Hamiltonians. A
globally stoquastic Hamiltonian is a symmetric Z-matrix, while a Hamiltonian which
is k-local termwise-stoquastic is one which can be decomposed into k-local terms such
that each term is a symmetric Z-matrix. A globally stoquastic Hamiltonian need not
be termwise-stoquastic, while a termwise-stoquastic Hamiltonian is always globally
stoquastic. The results in Theorem 2.1 hold for both definitions. For the two-local
Hamiltonians in this paper one can prove [10] that these notions coincide, and hence
we do not distinguish between these two definitions in this paper. We provide a proof
of this equivalence in Proposition 4.3 for completeness.

It was also recently shown, by other authors of this paper, that for a particularly
broad family of two-local Hamiltonians, namely, arbitrary XYZ Heisenberg Hamilto-
nians, there is an efficient procedure for determining whether the sign problem can
be cured by single-qubit unitary transformations.

Theorem 2.2 (see [24]). Let H =
\sum 

u,vHuv, u = 1, . . . , n, v = 1, . . . , n, be an
n-qubit Hamiltonian with Huv = auvXXXuXv + auvY Y YuYv + auvZZZuZv, where each auvkk
is given with O(1) bits. There is an efficient algorithm, which we call the XYZ-
algorithm, that runs in time O(n3) to decide whether there are single-qubit rotations
Uu \in SU(2) with U =

\bigotimes n
u=1 Uu such that UHU\dagger is a symmetric Z-matrix.

An essential step in the proof of Theorem 2.2 was to show that single-qubit Clifford
transformations suffice as basis changes, reducing the problem to an optimization
problem over a discrete set of degrees of freedom.

3. Main results. This paper aims to bridge the gap between these two previous
results, and to identify the boundary between classes of Hamiltonians for which curing
the sign problem by local basis transformations is hard and those for which this
problem is easy. The main results of this paper address the following problem.

Definition 3.1 (LocalSignCure). Given a two-local n-qubit Hamiltonian, Local-
SignCure is the problem of determining whether there exists a set of single-qubit unitary
transformations Uu \in SU(2) with U =

\bigotimes n
u=1 Uu such that UHU\dagger = \~H is a symmetric

Z-matrix.

We colloquially refer to such unitary transformation U as a sign-curing trans-
formation and say that the sign problem of a Hamiltonian can be cured if such a
transformation exists.
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HARDNESS AND EASE 1335

The main results of this paper are the following two theorems and constitute a
strengthening of Theorems 2.1 and 2.2 to two-local Hamiltonians. In section 5 we will
prove the following theorem.

Theorem 3.2. There exists a family of a two-local n-qubit Hamiltonians for which
LocalSignCure is NP-complete.

To prove this, we modify the constructions introduced in [27], thereby reducing the
locality of Hamiltonians from three-local (in the case of the single-qubit Clifford group)
and six-local (in the case of the single-qubit orthogonal group) to two-local. This
result demonstrates that LocalSignCure is hard in general. Theorem 3.2 additionally
demonstrates that deciding whether a multiqubit two-local Hamiltonian can be sign-
cured by single-qubit Clifford transformations is hard. We show in Appendix B that,
in the absence of one-local terms, this task is easy. We should stress here that it is
not clear that LocalSignCure is a problem in NP for general Hamiltonians. We expand
on this point in section 7.

For a relatively broad subclass of two-local Hamiltonians we can, however, show
that finding local basis changes is easy.

Theorem 3.3. Let H be an exactly two-local n-qubit Hamiltonian, meaning a
Hamiltonian of the form H =

\sum 
u,vHuv with Huv =

\sum 
k,l\in \{ X,Y,Z\} (\beta uv)kl\sigma 

u
k \otimes \sigma v

l

with \sigma u
k a Pauli matrix of type k, acting on qubit u, and (\beta uv)kl is given with O(1)

bits. There is an efficient algorithm, using O(n3) arithmetic operations over \BbbR , which
solves LocalSignCure for H.

This algorithm is presented in section 6. It employs the XYZ-algorithm, referred
to in Theorem 2.2, as a subroutine. It is important to note that, just as in the XYZ-
algorithm, this algorithm makes no guarantee that H can be cured; it only efficiently
decides whether or not H can be cured. An important difference between the new
algorithm in Theorem 3.3 and the XYZ-algorithm is that the new algorithm requires
finding singular value decompositions of matrices specified by O(1) bits, as well as
intersections of vector subspaces, while the XYZ-algorithm requires solving a discrete
optimization problem. Since we do not address the question of how a finite-precision
implementation of these standard linear algebra operations affects the accuracy with
which we decide whether the sign problem of H can be cured, we state our theorem
in terms of arithmetic operations over \BbbR . However, the algorithm is expected to be
numerically stable insofar as repeated composition of orthogonal rotations, and inter-
sections of vector spaces, are numerically stable. A rigorous account of the complexity
of this problem would require a finite precision formulation. We will not attempt to
do this here.

The upshot of these results is that the presence of local fields can change the
complexity class of curing the sign problem of two-local Hamiltonians by single-qubit
unitaries from P to NP-complete.

4. Preliminaries. For ease of exposition and reference we start by stating the
following observation about two-qubit Hamiltonians.

Proposition 4.1. A two-qubit Hamiltonian H =
\sum 

k,l=I,X,Y,Z akl\sigma k \otimes \sigma l is a
symmetric Z-matrix if and only if aIY = aY I = aXY = aY X = aZY = aY Z = 0 (the
matrix is real) and aXX \leq  - | aY Y | and aIX \leq  - | aZX | , aXI \leq  - | aXZ | (the matrix
has nonpositive off-diagonal elements).
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Proposition 4.2 (see [24]). Consider a two-qubit Hamiltonian

H =
\sum 

k,l=I,X,Y,Z

akl\sigma k \otimes \sigma l,

where the two-local term can be concisely represented by the 3\times 3 matrix

\beta =

\left(  aXX aXY aXZ

aY X aY Y aY Z

aZX aZY aZZ

\right)  .

A pair of single-qubit unitary transformations U1 and U2 with action H \rightarrow (U1 \otimes 
U2)H(U1 \otimes U2)

\dagger corresponds to a pair of SO(3) rotations O1, O2 acting on the \beta -
matrix: \beta \rightarrow O\sansT 

1 \beta O2.

For the curious reader, an example of a Hamiltonian which is not stoquastic under
any single-qubit unitary transformations is provided in Appendix A.

It was claimed in [10], without proof, that a two-local Hamiltonian which is
globally stoquastic with respect to a basis is also termwise-stoquastic. We include the
proof here.

Proposition 4.3 (see [10]). A two-local Hamiltonian H acting on n qubits is a
symmetric Z-matrix in the computational basis if and only if H =

\sum 
u<vDuv, where

each Duv acts nontrivially on at most two qubits, namely, qubits u and v, and Duv is
a symmetric Z-matrix.

Proof. Let | x\rangle , with x \in \{ 0, 1\} n, denote a computational basis state. If there
exists a decompositionH =

\sum 
u<vDuv such thatDuv is real and \forall x \not = y, \langle x| Duv | y\rangle \leq 

0, then H is real and \forall x \not = y, \langle x| H | y\rangle =
\sum 

u,v \langle x| Duv | y\rangle \leq 0. This proves one
direction of the biconditional; we now prove the other direction. Since H is real,
H = H\sansT . Therefore every Pauli operator P in the Pauli expansion of H must satisfy
P = P\sansT , and so H does not contain any Pauli operators with odd numbers of Y terms.
Let dH(x, y) denote the Hamming distance between bit strings x and y. Since H is
two-local, H =M (0) +M (1) +M (2), where \langle x| M (m) | y\rangle = 0 whenever dH(x, y) \not = m.
In other words the Hamiltonian decomposes into three sets: M (0) contains all terms
which are diagonal (i.e., terms of the form ZI, IZ, and ZZ), M (1) contains all terms
that flip one bit (i.e., of the form XZ, ZX, XI, and IX), andM (2) contains all terms
that flip two bits (of the form XX and Y Y ). There is no particular condition which
has to be fulfilled for the diagonal group M (0), and so we ignore it. Furthermore,
from the condition \forall x \not = y, \langle x| H | y\rangle \leq 0, it follows that \forall x \not = y, \langle x| M (1) | y\rangle \leq 0 and
\langle x| M (2) | y\rangle \leq 0, since M (1) and M (2) are nonzero at different off-diagonal positions.

For any potential decomposition H =
\sum 

u<vDuv we can similarly write Duv =

D
(0)
uv +D

(1)
uv +D

(2)
uv , grouping diagonal, one-qubit flipping, and two-qubit flipping terms.

SinceM (m) contains all terms which flip m-qubits,M (m) =
\sum 

u,vD
(m)
uv . In the case of

m = 2, D
(2)
uv and D

(2)
wr are nonzero at different off-diagonal positions when u, v \not = w, r,

and so \forall x \not = y, \langle x| M (2) | y\rangle \leq 0 implies \forall x \not = y,\forall u < v, \langle x| D(2)
uv | y\rangle \leq 0.

In the case of m = 1, D
(1)
uv and D

(1)
wx may both be nonzero on the same off-

diagonal position, and so we must use a different argument. We can write M (1) =\sum 
u,v : u<v[a

uv
XZXuZv + auvZXZuXv] +

\sum 
u a

u
XXu. By writing out matrix elements one

can show that

\forall x \not = y, \langle x| M (1) | y\rangle \leq 0 \Rightarrow \forall u auX +
\sum 

v : v>u

\Delta vauvXZ +
\sum 

w : w<u

\Delta wawu
ZX \leq 0
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for all choices of sign-patterns \Delta u = \pm 1. Note that \Delta u = \pm 1 since Zu is applied on
the identical uth bit in x and y, which can be either 0 or 1. This implies that \forall u we
have

(4.1) auX \leq  - 
\Biggl( \sum 

v : v>u

| auvXZ | +
\sum 

w : w<u

| awu
ZX | 

\Biggr) 
.

A local term is of the form D
(1)
uv = auvXZXuZv + auvZXZuXv + auvXIXuIv + auvIXIuZv,

where the coefficients auvXI , a
uv
IX can be freely chosen up to the overall constraint

auX =
\sum 

v : v>u a
uv
XI +

\sum 
w : w<u a

wu
IX . Now, clearly, if (4.1) holds, then one can al-

ways distribute auX into a sum over auvXI (for v > u) and awu
IX (for w < u) such that

each auvXI \leq  - | auvXZ | and each awu
IX \leq  - | awu

ZX | . Hence, by Proposition 4.1 there is a

decomposition with terms Duv such that D
(1)
uv is a symmetric Z-matrix, and so Duv

is a symmetric Z-matrix.

5. LocalSignCure for a class of two-local Hamiltonians is NP-complete.
In this section we present a family of Hamiltonians for which solving LocalSignCure is
NP-complete, and thus show that LocalSignCure is NP-hard.

We will first show that LocalSignCure for this class of Hamiltonians is in NP.
This is not immediately apparent, since local basis transformations have a continu-
ous parametrization, and hence one either has to allow for approximate sign-curing
transformations or prove that for this particular class of Hamiltonians any sign-curing
transformation is a member of a discrete subset of transformations. We settle this
problem by proving in Lemma 5.1 that with the addition of ancilla qubits and ``gad-
get"" interactions, any Hamiltonian in this class can be converted into one for which
any sign-curing transformation must consist of either Hadamard gates or the identity
operation. In order to prove that the problem is NP-hard, we show how to encode
any 3-SAT instance into the problem of curing a corresponding Hamiltonian using
the identity or Hadamard gates. In Lemma 5.4 we prove that such a curing transfor-
mation exists if and only if the corresponding 3-SAT instance is satisfiable. A proof
of Theorem 3.2 follows straightforwardly by considering LocalSignCure for the family
of Hamiltonians constructed by adding the gadgets (Lemma 5.1) to the Hamiltonians
corresponding to 3-SAT instances (Lemma 5.4).

5.1. Hadamard sign-curing gadget. In this section we introduce the ``gad-
get"" interactions which will effectively force any sign-curing transformation to be from
a discrete subset of transformations. Let Wu be a single-qubit Hadamard on qubit u;
this is a convention we will use throughout this section and the next.

Lemma 5.1. Let H be a two-local Hamiltonian on n qubits. For each qubit u \in 
\{ 1, . . . , n\} , add three ancilla qubits au, bu, cu and define the two-local gadget Hamil-
tonian G and the total Hamiltonian HHad as

G =

n\sum 
u=1

\bigl[ 
 - (Xcu + Zcu) - (XuXau + YuYau + ZuZau)

 - (3Xau
Xbu + Yau

Ybu + 2Zau
Zbu) - (XbuXcu + YbuYcu + ZbuZcu)

\bigr] 
,

HHad = H +G.(5.1)

Then the following are equivalent:
1. There exists a unitary U =

\bigotimes n
u=1(Uu\otimes Uau

\otimes Ubu \otimes Ucu) such that UHHadU
\dagger 

is a symmetric Z-matrix.
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2. There exists x \in \{ 0, 1\} n such that W(x)\dagger HW(x) is a symmetric Z-matrix,
where W(x) =

\bigotimes n
u=1W

xu
u .

Proof. First we prove 2 \rightarrow 1. If there exists x \in \{ 0, 1\} n such that W(x)HW(x)\dagger is
a symmetric Z-matrix, then it is easy to check that UHHadU

\dagger is a symmetric Z-matrix
with

U =

n\bigotimes 
u=1

(Wu \otimes Wau
\otimes Wbu \otimes Wcu)

xu .

To prove the other direction, we will show that if 1 holds, each of the single-qubit
unitaries U\alpha (\alpha \in \bigcup n

u=1\{ u, au, bu, cu\} ) must be from the discrete set \{ I,W,X,XW\} .
This fact will suffice by the following reasoning. First note that conjugating by local
X matrices permutes the off-diagonal matrix entries of the Hamiltonian among them-
selves [27]. So if UHHadU

\dagger is a symmetric Z-matrix and U\alpha \in \{ I,W,X,XW\} , then
\=UHHad

\=U\dagger is also a symmetric Z-matrix, where \=U =
\bigotimes 

\alpha 
\=U\alpha and

\=U\alpha =

\biggl\{ 
I, U\alpha = I or X,
W, U\alpha =W or XW,

since UHHadU
\dagger and \=UHHad

\=U\dagger are related by conjugation by local X matrices. Using
the fact that the partial trace of a symmetric Z-matrix is also a symmetric Z-matrix,
and noting that by tracing out the ancilla qubits of \=UHHad

\=U\dagger we get \=UH \=U\dagger , we
conclude that if \=UHHad

\=U\dagger is a symmetric Z-matrix, then so is \=UH \=U\dagger , and \=U = W(x)
for some x.

We now proceed with proving that U\alpha \in \{ I,W,X,XW\} given item 1 of Lemma 5.1.
Here we make use of the picture of orthogonal rotations on \beta matrices, as mentioned
in Proposition 4.2. For a given u we note that there are no one-local terms involving
qubits au and bu, and that the matrix \beta aubu is diagonal and has 3 distinct nonzero sin-
gular values. In the absence of one-local terms, it follows directly from Proposition 4.1
that \beta aubu has to remain diagonal for HHad to be a symmetric Z-matrix. Therefore,
the only possible transformations are signed permutations (of the Paulis) on qubits
au and bu with the permutations being the same to maintain the diagonality of \beta aubu .
This implies that there exists a single-qubit Clifford transformation C (correspond-
ing to the permutation) and Pauli matrices Pau

and Pbu such that Uau
= Pau

C and
Ubu = PbuC.

We now consider the interaction between qubits u and au. For the overall Hamil-
tonian to be real, the coefficients of XuYau , YuXau , ZuYau , YuZau must all be zero.
Since there are no one-local terms acting on qubit au, the coefficient of ZuXau must
also be zero and so the rotated matrix \beta \prime uau

must have zeros in the following positions:

\beta \prime uau
= O\sansT 

u\beta uau
Oau

=

\left(  \ast 0 \ast 
0 \ast 0
0 0 \ast 

\right)  .

Note that  - \beta uau is the identity matrix in (5.1), so \beta \prime uau
= O\sansT 

u\beta uauOau =  - O\sansT 
uOau

is an orthogonal matrix. The only orthogonal matrix with zeros in these positions is
a diagonal matrix (with \pm 1 on the diagonal). Therefore Ou must equal Oau

up to
signs; that is, Uu = PUau

for some Pauli P .
Since the matrix \beta bucu is identical to \beta uau and also there are no one-local terms

acting on qubit bu, an identical argument shows that any curing transformation Ubu

and Ucu must satisfy Ubu = PUcu for some Pauli matrix P . Thus \forall \alpha \in \{ u, au, bu, cu\} ,
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HARDNESS AND EASE 1339

we have U\alpha = P\alpha C for some Pauli matrix P\alpha and a single-qubit Clifford transformation
C.

Due to the one-local terms  - (Xcu + Zcu), if C maps X \rightarrow Y or Z \rightarrow Y , the
Hamiltonian will have imaginary matrix entries and so, up to multiplication by a
Pauli, C must be I or W . Incorporating any such Pauli into Pcu , we may assume
w.l.o.g. that C \in \{ I,W\} . Furthermore, if Pcu is Y or Z, there will be a positive
+Xcu term, so Pcu \in \{ I,X\} . Finally, if any of the other P\alpha are Y or Z, there
will be a positive +X \otimes X term, and so \forall \alpha we must have P\alpha \in \{ I,X\} , and so
U\alpha = P\alpha C \in \{ I,W,X,XW\} .

The following Lemma was proved in [24, 27] by formulating an efficient strategy
which finds a two-local termwise-stoquastic decomposition which is equivalent to H
being a symmetric Z-matrix by Proposition 4.3.1

Lemma 5.2 (see [24]). Given a two-local Hamiltonian H on n qubits, one can
decide whether H is a symmetric Z-matrix in the given basis in a number of steps
polynomial in n.

Corollary 5.3 now follows immediately from Lemmas 5.1 and 5.2, because the
string (x1, . . . , xn) is an efficiently checkable witness in the case that HHad is sign-
curable by a local unitary transformation.

Corollary 5.3. If H is a two-local Hamiltonian, then for Hamiltonians HHad

of the form in (5.1), LocalSignCure is in NP.

5.2. LocalSignCure is NP-hard. Now we will show how to reduce 3-SAT to
LocalSignCure and hence show that LocalSignCure is NP-hard. At the heart of the
construction is a Hamiltonian HOR which acts on four qubits labeled d, 1, 2, 3:

(5.2) HOR =  - (Xd + Zd + I)\otimes (Z1 + Z2 + Z3 + 2I).

Thanks to Lemma 5.1 it suffices to consider a local basis change of the form W(x) =\bigotimes 
j\in \{ d,1,2,3\} W

xj

j . Note that  - (Xd + Zd + I) has nonpositive matrix entries and is

invariant under conjugation by Wd. Therefore W(x)HORW(x)\dagger is a symmetric Z-
matrix if and only if the bit string x is such that all the matrix entries of

W x1
1 Z1W

x1
1 +W x2

2 Z2W
x2
2 +W x3

3 Z3W
x3
3 + 2I

are nonnegative. Recalling that WZW = X, one can see that for any x, all the
off-diagonal matrix entries are nonnegative. In addition, the diagonal entries are
nonnegative unless (x1, x2, x3) = (0, 0, 0). Therefore W(x)HORW(x)\dagger is a symmetric
Z-matrix if and only if x1 \vee x2 \vee x3 evaluates to true.

Let C be a 3-SAT Boolean formula of the form

C =

m\bigwedge 
k=1

Ck =

m\bigwedge 
k=1

(ck,1 \vee ck,2 \vee ck,3) ,

with m clauses and n variables, where each ck,j is equal to xi or \=xi for some i \in 
\{ 1, . . . , n\} .

1More generally, one can note that it is easy to decide whether a k-local Hamiltonian is k-local
termwise-stoquastic, as this is a linear programming problem. This can be seen by noting that the
number of parameters needed to specify a local decomposition is polynomially dependent on the
number of qubits, and the number of conditions to test on each term is dependent on the locality of
the term. Furthermore, all of the conditions are linear [27, 22].
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b

b

b

b

b

b

b

1

2

3

4

5

C = C1 ∧ C2 = (x1 ∨ x̄2 ∨ x3) ∧ (x̄3 ∨ x4 ∨ x5)

H2H1
b b

b

b

b

b

b

b

d1 d2

HC = H1 +H2

−(X + Z + I)⊗ (Z + 2
3I)

−(X + Z + I)⊗ (X + 2
3I)

Fig. 1. An encoding of a 3-SAT Boolean formula C, with two clauses and five variables, into
a Hamiltonian HC as prescribed by (5.3).

Let HC be the Hamiltonian on m + n qubits (labeled \{ 1, . . . , n\} \cup \{ d1, . . . , dm\} )
defined by

(5.3) HC =

m\sum 
k=1

Hk =

m\sum 
k=1

 - (Xdk
+ Zdk

+ I)\otimes (S(ck,1) + S(ck,2) + S(ck,3) + 2I) ,

where

S(c) =

\biggl\{ 
Zi if c = xi for some i,
Xi if c = xi for some i.

An instance of such a Hamiltonian is illustrated in Figure 1. For x \in \{ 0, 1\} n and
y \in \{ 0, 1\} m, define

W(x, y) =

\Biggl( 
n\bigotimes 

i=1

W xi
i

\Biggr) 
\otimes 

\left(  m\bigotimes 
j=1

W
yj

dj

\right)  .

Lemma 5.4. Let C be a 3-SAT Boolean formula, let HC be the corresponding
Hamiltonian defined in (5.3), and let x \in \{ 0, 1\} n. C(x) evaluates to true if and only
if \forall y \in \{ 0, 1\} m, W(x, y)HCW(x, y)\dagger is a symmetric Z-matrix.

Proof. Note that (Xak
+ Zak

+ I) is invariant under conjugation by Wdk
, so the

choice of y leavesHC unchanged. Furthermore (Xak
+Zak

+I) has nonnegative matrix
entries (with some positive off-diagonal matrix entries). Therefore W(x, y)HkW(x, y)\dagger 

is a symmetric Z-matrix if and only if all the matrix entries of

(5.4) W(x, y)
\bigl( 
S(ck,1) + S(ck,2) + S(ck,3) + 2I

\bigr) 
W(x, y)\dagger 

are nonnegative. As discussed above, S(c) has been defined so that the matrix entries
of (5.4) are nonnegative exactly when (ck,1 \vee ck,2 \vee ck,3) is true.

Since each Hk is the only interaction acting on qubit dk, and Hk can only
fail to be a symmetric Z-matrix due to terms which act nontrivially on dk, it fol-
lows that W(x, y)HkW(x, y)\dagger must be a symmetric Z-matrix for all k in order for
W(x, y)HCW(x, y)\dagger to be a symmetric Z-matrix. Since C =

\bigwedge m
k=1 Ck, this happens

exactly when C(x) is true.

This leads to the main result of this section.
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HARDNESS AND EASE 1341

Corollary 5.5. There exists a class of two-local Hamiltonians for which Local-
SignCure is NP-complete.

Proof. For any 3-SAT formula C, we construct the two-local Hamiltonian HC,Had

by adding the gadget interactions G of (5.1) for each qubit in the Hamiltonian HC

in (5.3). Using Lemmas 5.1 and 5.4, we conclude that satisfying a family of 3-SAT
formulae C is equivalent to LocalSignCure for the corresponding family of HC,Had

Hamiltonians, from which we conclude that LocalSignCure is NP-hard. The inclusion
of LocalSignCure for HC,Had in NP follows from Corollary 5.3.

Let us briefly comment on the question of how hard determining the ground state
energy of HC,Had may be. We observe that the qubits di and the triples of ancilla
qubits au, bu, cu for each u only couple to the n qubits on which the clauses act. In
particular, if we would fix the state of these ancillary qubits to \psi , then the resulting
Hamiltonian \langle \psi | HC,Had | \psi \rangle acting only on the clause qubits would be purely one-local.
It is, however, not a priori clear that the minimal energy is obtained when the state \psi 
is a product state; if this were the case, then the ground state energy problem would
be in NP as a prover could provide a description of this product state. However,
even the problem of finding such a product ground state is not guaranteed to have an
obvious polynomial-time classical algorithm. It would be worthwhile to investigate
this further.

6. An efficient algorithm for LocalSignCure for exactly two-local Hamil-
tonians.

6.1. Preliminaries. In this section we prove Theorem 3.3 by presenting an effi-
cient algorithm for solving LocalSignCure when H is an exactly two-local Hamiltonian.

We represent an exactly two-local Hamiltonian by a graphG with matrix-weighted
edges. Each qubit in the Hamiltonian corresponds to a vertex in the graph, and each
edge corresponds to a term Huv \not = 0. Every edge is weighted by the 3\times 3 real matrix
\beta uv associated with Huv, as discussed in Proposition 4.2.

In this picture, LocalSignCure reduces to the following problem. Consider a graph
G = (V,E) with n vertices in V and a set of directed matrix-weighted edges E. Each
edge (u, v) with direction u\rightarrow v is weighted by a 3\times 3 real matrix \beta uv, and we define
\beta vu = \beta \sansT 

uv.
2 Given G, find a set of SO(3) rotations \{ Ou\} nu=1 which have the action

O\sansT 
u\beta uvOv = \Sigma uv \forall \beta uv, such that for all edges (u, v),

(6.1) \Sigma uv is a diagonal matrix,

(6.2) | (\Sigma uv)11| \geq | (\Sigma uv)22| \forall \beta uv,

(6.3) (\Sigma uv)11 \leq 0 \forall \beta uv.

Otherwise prove that no such set exists.
Note that we have rephrased the conditions in Proposition 4.1 according to the

labeling X \rightarrow 1, Y \rightarrow 2, Z \rightarrow 3. One can argue (see [24]) that if there exist O(3)
rotations that perform this task, then one can easily construct a set of SO(3) rotations
that do the same. Therefore any orthogonal rotations will suffice.

2The purpose of the direction is merely to allow the matrix weight to be well defined. Throughout
the text we will ignore the directedness of the graph and treat the edge as though it is weighted by
\beta uv or \beta vu, depending on our purpose.
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1342 KLASSEN ET AL.

If all matrices \beta uv are diagonal, then the XYZ-algorithm in Theorem 2.2 can be
applied. Naively, our problem could then be reduced to the question, Is there a set of
rotations \{ Ou\} that has the action O\sansT 

u\beta uvOv = \Sigma uv \forall \beta uv, such that condition (6.1)
is satisfied, and what are those rotations? If this problem is efficiently solved, one
may incorporate the algorithm for finding the set of rotations as a subroutine of the
XYZ-algorithm and solve the entire problem. However, we show in Appendix D that
deciding the existence of such a set of rotations on \beta uv such that condition (6.1) is
satisfied is an NP-hard problem.

Thus a different approach must be taken; namely, we focus on condition (6.2) in
order to prune the set of solutions which needs to be considered. More concretely, we
will present an algorithm which solves the following problem.

Problem 1 (No-Lone-YY and diagonal). Is there a set of orthogonal rotations
\{ Ou \in O(3)\} that have the action O\sansT 

u\beta uvOv = \Sigma uv \forall \beta uv, such that

(6.4) \Sigma uv is a diagonal matrix,

(6.5) (\Sigma uv)22 = 0, \forall \beta uv for which Rank (\beta uv) = 1?

If yes, what is that set? Note here that condition (6.4) is identical to condition (6.1),
and condition (6.5) is precisely condition (6.2) restricted to rank-1 matrices.

Note that an efficient algorithm for this problem can be incorporated into the
XYZ-algorithm to produce an efficient algorithm for LocalSignCure for exactly two-
local Hamiltonians, thus directly proving Theorem 3.3. More precisely, a solution to
this problem prescribes a transformation of our Hamiltonian into an XYZ-Heisenberg
Hamiltonian, in which case the XYZ-algorithm can be used to decide if the Hamilton-
ian can be rotated into a symmetric Z-matrix by single-qubit unitary transformations.
Furthermore, if no solution exists to this problem, then rotating the Hamiltonian into
a symmetric Z-matrix by single-qubit transformations is impossible, since both of the
above conditions are necessary conditions.

An orthogonal transformation Ou can be written as Ou = (e1u, e
2
u, e

u
3 ), where the

eiu are three real orthonormal column vectors. We can thus view selecting Ou as
selecting a basis bu = (e1u, e

2
u, e

3
u) at vertex u.

Definition 6.1 (No-Lone-YY basis). Given a matrix-weighted graph G with
weights \beta uv, an ordered assignment of basis vectors bu = (eu1 , e

u
2 , e

u
3 ) to each ver-

tex in the graph is called a No-Lone-YY basis (NLY basis) B = \{ bu\} , when evi is a
right singular vector of \beta uv with corresponding left singular vector equal to \pm eui , i.e.,

(6.6) \forall u, v, i : \beta uvevi = \pm \sigma eui , \beta \sansT 
uve

u
i = \pm \sigma evi ,

and for all rank-1 matrices \beta uv,

(6.7) \beta uve
v
2 = 0, \beta \sansT 

uve
u
2 = 0.

It is not hard to see that solving Problem 1 is equivalent to finding an NLY basis,
or showing that none exists.

It is important to note that if we flip the signs on our basis elements, this will
have no bearing on the problem. We formally define this equivalence under sign flips
as follows.
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HARDNESS AND EASE 1343

Definition 6.2. Two ordered bases bu and b\prime u are equivalent modulo signs:

bu = b\prime u modulo signs

if bu = (eu1 , e
u
2 , e

u
3 ), and b

\prime 
u = (\delta u1 e

u
1 , \delta 

u
2 e

u
2 , \delta 

u
3 e

u
3 ) with \delta 

u
i \in \{ +1, - 1\} .

Thus throughout the text we will often talk about a basis modulo signs, meaning
a basis choice where the signs have not been specified. The premise is that the choice
of signs is irrelevant for the purposes of the problem. This will prove to be a useful
fact in the proofs of Lemma 6.13 and Theorem 6.14.

A final comment on notation. In the next two subsections we will make use
of sets of subspaces of \BbbR 3. We wish to hold onto the notion that these are sets
of subspaces, but make use of natural set notation in terms of the elements of the
subspaces. Consequently, for ease of exposition, we will abuse notation in the following
ways. We denote a set of subspaces by \BbbS = \{ Si| Si \subseteq \BbbR 3\} . We denote the entrywise
intersection of sets of subspaces by

\BbbS 1 \cap \BbbS 2 := \{ Si \cap Sj | Si \in \BbbS 1 , Sj \in \BbbS 2\} .

We denote the span of the union of the subspaces by

span(\BbbS ) := span

\Biggl( \bigcup 
Si\in \BbbS 

Si

\Biggr) 
.

We say a set of vectors b = \{ \nu | \nu \in \BbbR 3\} is in a set of subspaces \BbbS , with the notation
b \subseteq \BbbS , if every vector in b belongs to a subspace in \BbbS . Furthermore, we say a set of
subspaces \BbbS 1 is contained in another set of subspaces \BbbS 2, with the notation \BbbS 1 \subseteq \BbbS 2, if
every subspace in \BbbS 1 is contained in a subspace in \BbbS 2. The reason these two notations
coincide is because it can be helpful for our purposes to conceptualize the vectors in b
as one-dimensional subspaces, since we do not care about the sign of the vector. We
denote the transformation on each of the subspaces by an orthogonal rotation O as

O\BbbS := \{ OSi| Si \in \BbbS \} .

6.2. XOR-SAT. In the next two subsections we will make repeated use of a
subroutine for solving the 2-XOR-SAT problem. XOR-SAT is a Boolean satisfiability
problem in which one has a set of Boolean variables \{ xu\} and a set of clauses consisting
of not operations and xor operations, e.g., \=xu \oplus xv, and one asks if there exists an
assignment to the Boolean variables which satisfies all of the clauses. XOR-SAT is
known to be solvable in polynomial time. 2-XOR-SAT is quite trivially solvable in
time O(N2), where N is the number of variables: the assignment of one variable in
the clause uniquely determines the assignment of the other variable in the clause.
Thus one varies the assignment of one variable, and propagates that choice through
the clauses (of which there are worst case N2), until all variables are assigned or a
contradiction is found (if there are disconnected sets of variables, one does the same
thing for each disconnected cluster).

6.3. Illustrative subcase: Graphs with rank-1 edges. We begin by consid-
ering an illustrative subcase in which each edge in the graph is weighted by a rank-1
matrix (i.e., a rank-1 edge). The significance of rank-1 edges is that their matrix
weights have a two-dimensional null space, which implies an additional freedom in
the choice of basis that is not present in edges weighted by rank > 1 matrices (i.e.,
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1344 KLASSEN ET AL.

rank > 1 edges), which have at most a one-dimensional null space. This difference
will become more apparent when we consider the general case of a graph with both
rank > 1 and rank-1 edges.

For a graph with only rank-1 edges the algorithm for solving Problem 1 breaks
up into two parts. In the first part we impose some of the necessary constraints for
the basis assignment to be NLY, formulating a candidate basis B. In the second part
we permute the vectors of the candidate basis so that it could become an NLY basis.

Definition 6.3 (candidate basis of a rank-1 graph). A candidate basis of a rank-
1 graph is a basis assignment B = \{ bu\} such that for every edge e = (u, v), the
basis vectors bu = (eu1 , e

u
2 , e

u
3 ) are eigenvectors of \beta uv\beta 

\sansT 
uv and the basis vectors bv =

(ev1, e
v
2, e

v
3) are eigenvectors of \beta \sansT 

uv\beta uv.

Proposition 6.4. Given a rank-1 matrix \beta uv, if the basis vectors bu are eigen-
vectors of \beta uv\beta 

\sansT 
uv and the basis vectors bv are eigenvectors of \beta \sansT 

uv\beta uv, then there exists
a single index i such that \beta \sansT 

uve
u
i \not = 0 and a single index j such that \beta uve

v
j \not = 0. Fur-

thermore, \exists \sigma \not = 0 such that \beta uve
v
i = \pm \sigma euj and \beta \sansT 

uve
u
j = \pm \sigma evi .

Proof. Since \beta uv is rank-1 it follows that \beta uv\beta 
\sansT 
uv and \beta \sansT 

uv\beta uv are also rank-1.
Thus only single basis vectors eui \in bu and evj \in bv will be eigenvectors with nonzero

eigenvalue of \beta uv\beta 
\sansT 
uv and \beta \sansT 

uv\beta uv, respectively. Therefore eui and evj are the only
singular vectors in bu and bv which have nonzero singular values for \beta uv. Since the
column and row spaces of \beta uv are both one-dimensional, it must be the case that
\beta uve

v
i = \pm \sigma euj and \beta \sansT 

uve
u
j = \pm \sigma evi for some \sigma \not = 0.

Note that given a candidate basis (and the corresponding orthogonal rotations
\{ Ou\} ) the matrix O\sansT 

u\beta uvOv has exactly one nonzero entry but isn't necessarily diag-
onal. An example of a matrix of this form would be

(6.8) O\sansT 
u\beta uvOv =

\left[  0 0 4
0 0 0
0 0 0

\right]  .
Therefore a candidate basis is close to being an NLY basis, except the ordering of

the basis vectors in bu and bv may not be correct. In order to remedy this, we need to
permute orderings of the various bu. To help visualize this, we may consider the edge
(u, v) to be labeled i on the u side, and j on the v side, where i and j are the indices
specified in Proposition 6.4. For example, the matrix in (6.8) would correspond to
the edge in Figure 2. In this picture the candidate basis B thus specifies a bilabeled
graph, i.e., a graph where every edge has two labels (denoted by different colors in
the article's electronic version, and by solid and broken lines in the print version).

b bu v1 3

Fig. 2. Bilabeling of a rank-1 edge.

Definition 6.5 (basis permutation). Given a basis b = (e1, e2, e3) and permu-
tation \pi , the permuted basis b\pi u is defined as b\pi u := (eu\pi  - 1(1), e

u
\pi  - 1(2), e

u
\pi  - 1(3)). Given

a basis assignment to every vertex B = \{ bu\} and an assignment of permutations to
every vertex \Pi = \{ \pi u\} , the permuted basis assignment is defined as B\Pi := \{ b\pi u

u \} .
Given that the candidate basis B specifies a bilabeled graph, we can think of the

action of basis permutations bu \rightarrow b\pi u as a transformation on the labeling, i\rightarrow \pi (i), of
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every label adjacent to u, as illustrated in Figure 3. The premise is then that the only

b

2 b
u 1 32b
3

1

b

b

1 b
u 2 32b
3

1

b

πu = (12)(3)

Fig. 3. Action of permutations on a bilabeled graph.

remaining task is to find a set of permutations \{ \pi u \in S3\} to apply to every vertex so
that

\bullet the bilabeling is uniform on an individual edge (i.e., i = j), corresponding to
condition (6.6);

\bullet no edge is labeled by the (green/dashed) value 2, corresponding to condi-
tion (6.7).

If we are unsuccessful in finding either a candidate basis B or an appropriate
permutation \Pi , then we will argue that no NLY basis exists.

Algorithm 1: Algorithm for finding a candidate basis of a rank-1 graph

Input : Graph G = (V,E), rank-1 matrix edge weights \{ \beta uv\} .
Output: A candidate basis B = \{ bu\} , if one exists. Otherwise False,

indicating no candidate basis exists.
1 for v \in V do
2 \BbbS v = \{ \BbbR 3\} 
3 for u \in V such that e = (u, v) \in E do
4 \BbbS ev = the set of orthogonal maximal eigenspaces associated with every

eigenvalue of \beta \sansT 
uv\beta uv

5 \BbbS v = \BbbS v \cap \BbbS ev
6 if span(\BbbS v) \not = \BbbR 3 then
7 return False;

8 Choose orthonormal basis bv = (ev1, e
v
2, e

v
3) \subseteq \BbbS v.

9 return B = \{ bv\} 

Lemma 6.6. Algorithm 1 efficiently finds a candidate basis for a rank-1 graph, or
otherwise shows that no such candidate basis exists.

Proof. Any vectors we choose from \BbbS v must simultaneously be eigenvectors of
\beta \sansT 
uv\beta uv for all edges e = (u, v) adjacent to v, since they must simultaneously belong

to every \BbbS ev. Furthermore, the spaces in \BbbS v contain all vectors that are simultaneously
eigenvectors of \beta \sansT 

uv\beta uv for all edges e = (u, v) adjacent to v. Therefore if \BbbS v does not
span \BbbR 3, then we cannot possibly choose a set of orthonormal vectors bv which are
simultaneous eigenvectors of all neighboring edges.

The number of elements in any set of eigenspaces \BbbS ev is upper bounded by 3,
corresponding to 3 orthogonal one-dimensional subspaces. The same is true for any
intersection of any number of these sets. Thus computing any intersection between
these sets of subspaces takes O(1) time. Therefore one may iteratively construct \BbbS v
in time proportional to the number of edges. Thus the algorithm is efficient.
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1346 KLASSEN ET AL.

We now describe in words the algorithm (Algorithm 2) for finding permutations
\Pi such that B\Pi is an NLY basis. This algorithm takes a candidate basis B of a rank-1
graph and finds a set of permutations \Pi such that B\Pi is an NLY basis, or otherwise
indicates that no such set of permutations exists.

For each edge (u, v), identify the left singular vector eui \in bu and corresponding
right singular vector evj \in bv which are not in the null space of \beta uv, which must exist
by Proposition 6.4. Label each rank-1 edge (u, v) with an ordered pair of labels (i, j),
as illustrated in Figure 2. We say that an edge e = (u, v) with labeling (i, j) connects
to u with label i and connects to v with j.

If for any vertex v there are at least three edges, each connected to v by a different
label, then terminate and indicate that the desired set of permutations does not exist.

If the algorithm has not terminated, then for every vertex v there exist two labels
i and j such that every edge adjacent to v connects to v with one of those two labels.
This holds even if every edge connects to v with the same label. Identify a pair of
permutations \pi 0

v and \pi 1
v such that \pi 0

v(i) = 1, \pi 0
v(j) = 3 and \pi 1

v(i) = 3, \pi 1
v(j) = 1.

The task now becomes assigning a binary value xv to each v so that for every
edge (u, v) with label (i, j) the binary assignments satisfy

\pi xu
u (i) = \pi xv

v (j).

By virtue of \pi never mapping any label to the value 2, and ensuring the uniform
bilabeling of each edge, such an assignment will specify an NLY basis.

This problem reduces straightforwardly to an XOR-SAT problem. Each edge
(u, v) corresponds to an XOR clause: \=xu \oplus xv if i = j, and xu \oplus xv if i \not = j. If there
is a solution, then this specifies an NLY basis, namely, B\Pi with \Pi = \{ \pi xu

u \} . If there
is no solution, then the desired set of permutations does not exist.

Theorem 6.7. Given a graph with only rank-1 edges, one can efficiently find an
NLY basis, or otherwise show that no such basis exists.

Proof. The algorithm for finding an NLY basis in this case proceeds by first finding
a candidate basis B using Algorithm 1, and then finding a set of permutations \Pi such
that B\Pi is an NLY basis using Algorithm 2. It should be clear that the basis B\Pi 

is an NLY basis, since for every edge (u, v) Algorithm 2 has explicitly paired those
two vectors in bu and bv not in the null space of \beta uv, and ensured that they are not
the second entry. Additionally, Algorithm 2 is efficient, since solving 2-XOR-SAT is
efficient.

If Algorithm 1 fails, then by Lemma 6.6 no candidate basis exists, and since any
NLY basis must satisfy the conditions of being a candidate basis, no NLY basis exists.
Furthermore, when given a candidate basis B, if Algorithm 2 fails, then clearly no set
of permutations \Pi exists such that B\Pi is an NLY basis. In one case this is because
there are three edges connected to a vertex by a different label, and thus the label
2 cannot be removed by any permutation. In the other it is because there is no
solution to the 2-XOR-SAT problem, which rules out all potential permutations for
those vertices connected to exactly two labels, while in the case of vertices connected
to exactly one label, there are other possible permutations, but they would have the
same action, and are thus also ruled out.

The only nontrivial fact left to prove is that if, given a candidate basis B, Al-
gorithm 2 fails, then no NLY basis exists. Naively once could imagine that, given
some alternative candidate basis, Algorithm 2 might succeed. Here we prove that this
cannot happen, using proof by contradiction.
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Algorithm 2: Algorithm for finding permutations \Pi such that B\Pi is an
NLY basis
Input : Graph G = (V,E), rank-1 matrix edge weights \{ \beta uv\} , candidate

basis B = \{ bu\} .
Output: A set of permutations \Pi = \{ \pi u\} such that B\Pi is an NLY basis, if

one exists. Otherwise False.
1 for v \in V do

/* Label all incident edges according to which basis vector

in bv is not in the null space of \beta uv. These always exist

by Proposition 6.4. */

2 L(v) = \{ \} 
3 for u \in V such that e = (u, v) \in E do
4 for i \in \{ 1, 2, 3\} do
5 evi = bv[i]
6 if \beta uve

v
i \not = 0 then

7 L(v, e) = i
8 L(v) = L(v) \cup \{ i\} 

/* If a vertex is incident on more than two different labels,

then return False. */

9 if | L(v)| = 3 then
10 return False

/* If the algorithm has not terminated, then for every vertex

v there exist at most two labels such that every edge

incident on v connects to v with one of those two labels.

*/

/* Define permutations so that all incident edge labels are

mapped to either 1 or 3. */

11 Choose permutation \pi 0
v such that \pi 0

v(L(v)[1]) = 1, and if | L(v)| > 1, then
\pi 0
v(L(v)[2]) = 3.

12 Choose permutation \pi 1
v such that \pi 1

v(L(v)[1]) = 3, and if | L(v)| > 1, then
\pi 1
v(L(v)[2]) = 1.

/* For each edge define a 2-XOR-SAT clause. */

13 for e = (u, v) \in E do
14 if L(v, e) = L(u, e) then
15 Ce(xu, xv) = xu \oplus xv
16 else
17 Ce(xu, xv) = \=xu \oplus xv

/* The solution to the associated 2-XOR-SAT problem specifies

which permutations to apply at each vertex so that

\pi xu
u (i) = \pi xv

v (j). By virtue of \pi never mapping any label to the

value 2, and ensuring the uniform bilabeling of each edge,

such an assignment will specify an NLY basis. */

18 success= 2-XOR-SAT(ref \{ xv | \forall v \in V \} , \{ Ce | \forall e \in E\} )
19 if success then
20 return \Pi = \{ \pi xv

v | \forall v \in V \} 
21 else
22 return False
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1348 KLASSEN ET AL.

Assume that, given a candidate basis B, Algorithm 2 fails and there does not
exist a permutation \Pi such that the basis B\Pi is an NLY basis. Suppose, however,
that there exists an NLY basis \=B. If for some edge (u, v) adjacent to u the basis vector
eui \in bu satisfies \beta \sansT 

uve
u
i \not = 0, then there must exist a unique vector \=euj \in \=bu such that

\beta \sansT 
uv\=e

u
j \not = 0. Furthermore eui = \pm \=euj , since \beta uv is rank-1. Therefore for every index

i \in \{ 1, 2, 3\} there exists an index j \in \{ 1, 2, 3\} such that for every edge e = (u, v)
adjacent to u, if eui satisfies \beta \sansT 

uve
u
i \not = 0, then \=euj satisfies \beta \sansT 

uv\=e
u
j \not = 0. Let \pi u be the

permutation with the mapping: \pi u(i) = j, and \Pi = \{ \pi u\} . Then the bilabeled graph
associated with B\Pi must be identical to the bilabeled graph associated with \=B, and
therefore B\Pi must be an NLY basis, which is a contradiction.

6.4. Graphs with both rank > 1 and rank-1 edges. We will now show how
the intuition and arguments given in subsection 6.3 translate into the case where the
matrix weights may have any rank. First we outline the structure of the argument.
Just as in subsection 6.3, we will first search for a candidate basis B for the graph, and
then search for an appropriate set of permutations \Pi to apply to the basis vectors.

Definition 6.8 (candidate basis of a graph). A candidate basis B = \{ bu\} is an
assignment of basis vectors bu = (eu1 , e

u
2 , e

u
3 ), to each vertex u, satisfying the following

two conditions:
1. For every rank-1 edge (u, v) adjacent to the vertex u, the basis vectors bu are

eigenvectors of \beta uv\beta 
\sansT 
uv.

2. For every rank > 1 edge (u, v), the basis vectors of bu and bv are left and
right singular vectors of \beta uv, respectively, and satisfy the following: \exists \sigma \in \BbbR 
such that \beta uve

v
i = \pm \sigma eui and \beta \sansT 

uve
u
i = \pm \sigma evi .

The candidate basis has the same requirements on rank-1 edges as in the previous sec-
tion; however, it satisfies more stringent requirements on rank > 1 edges, namely, that
the transformed matrix weights O\sansT 

u\beta uvOv are diagonal under the prescribed orthogo-
nal rotations \{ Ou\} . The most significant difference between the algorithms presented
in this section is the procedure for finding a candidate basis (Algorithm 3). However,
once a candidate basis has been found, the procedure for finding an appropriate set
of permutations (Algorithm 4) will have the same essential form as Algorithm 2 with
one difference: Instead of individual vertices being the sites to which permutations
are assigned, we will instead assign permutations to subgraphs whose vertices are
connected by rank > 1 paths (Definition 6.11), so that each vertex in such a subgraph
is permuted uniformly. This is illustrated in Figure 4, in contrast to Figure 3. It
will be straightforward to see that if Algorithms 3 and 4 succeed, then they will have
produced an NLY basis. The only significant subtle point that remains, and will be
argued in Theorem 6.14, is that if Algorithm 4 is given a candidate basis and fails to
find a set of permutations which produces an NLY basis, then no NLY basis exists,
and in particular no other candidate bases need to be considered.

Before proceeding with the description of the algorithm for finding a candidate
basis, we must establish some facts about rank > 1 edges, and the structure they
impose on the problem.

Lemma 6.9. Given a rank > 1 edge (u, v), and bases bu, bv which are eigen-
vectors of \beta uv\beta 

\sansT 
uv and \beta \sansT 

uv\beta uv, respectively, the vectors eui \in bu and evi \in bv satisfy
\beta uve

v
i = \pm \sigma ieui and \beta \sansT 

uve
u
i = \pm \sigma ievi , \sigma i \in \BbbR , if and only if, for every singular value

decomposition \beta uv = Oe
u\Sigma 

SVD
uv (Oe

v)
\sansT , the operator defined as

(6.9) Ov\leftarrow u = O\sansT 
u\leftarrow v := Oe

v(O
e
u)

\sansT 
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b

b

b
b

1
2

1

3

RCC Γ

rank> 1 edge

rank-1 edge

πΓ = (12)(3)

b

b

b
b

1
2

2

3

Fig. 4. Action of a permutation (12)(3) on a rank > 1 connected component (RCC) in black.

satisfies Ov\leftarrow ue
u
i = \pm evi , Ou\leftarrow ve

v
i = \pm eui \forall i. In other words,

(6.10) Ov\leftarrow ubu = bv modulo signs, and equivalently Ou\leftarrow vbv = bu modulo signs.

Proof. First we prove the only if condition. Given that \beta \sansT 
uve

u
i = \pm \sigma ievi and

\beta uv\beta 
\sansT 
uve

u
i = \sigma 2

i e
u
i we have

Oe
v\Sigma 

SVD
uv (Oe

u)
\sansT eui = \pm \sigma ievi , (\Sigma SVD

uv )2(Oe
u)

\sansT eui = \sigma 2
i (O

e
u)

\sansT eui .

If a real matrix A is nonnegative and diagonal, then any eigenvectors of A2 with
eigenvalues \lambda are also the eigenvectors of A with eigenvalues | 

\surd 
\lambda | . Since \Sigma SVD

uv is non-
negative and diagonal, we see that (Oe

u)
\sansT eui is an eigenvector of \Sigma SVD

uv with eigenvalue
| \sigma i| . It follows that

Oe
v\Sigma 

SVD
uv (Oe

u)
\sansT eui = \pm \sigma ievi \Rightarrow | \sigma i| Oe

v(O
e
u)

\sansT eui = \pm \sigma ievi .

If \sigma i \not = 0, then Oe
v(O

e
u)

\sansT eui = \pm evi . Suppose \sigma i = 0; then since Rank(\beta uv) > 1 there is
a single i for which this holds. Since \forall j \not = i, Oe

v(O
e
u)

\sansT euj = \pm evj , it follows that evi must

lie in the one-dimensional subspace spanned by Oe
v(O

e
u)

\sansT eui , and so Oe
v(O

e
u)

\sansT eui = \pm evi .
Now we prove the if condition. Given that \beta uv\beta 

\sansT 
uve

u
i = \sigma 2

i e
u
i and Oe

v(O
e
u)

\sansT eui =
\pm evi ,

\beta uv\beta 
\sansT 
uve

u
i = \sigma 2

i e
u
i ,

Oe
u\Sigma 

SVD
uv (Oe

v)
\sansT Oe

v\Sigma 
SVD
uv (Oe

u)
\sansT eui = \sigma 2

i e
u
i ,

(\Sigma SVD
uv )2(Oe

u)
\sansT eui = \sigma 2

i (O
e
u)

\sansT eui .

Since \Sigma SVD
uv is a positive diagonal matrix we have

(\Sigma SVD
uv )(Oe

u)
\sansT eui = | \sigma i| (Oe

u)
\sansT eui ,

Oe
v(\Sigma 

SVD
uv )(Oe

u)
\sansT eui = | \sigma i| Oe

v(O
e
u)

\sansT eui ,

\beta \sansT 
uve

u
i = \pm \sigma ievi .

By a symmetric argument \beta uve
v
i = \pm \sigma ieui .

It is important to note that the construction of Ov\leftarrow u in (6.9) is not unique. One
could find a different singular value decomposition and construct a different operator
O\prime v\leftarrow u. However, as proven above, for any such operator its action on a singular
vector eui of \beta uv is identical, up to a difference in the sign, which has no bearing on
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the problem. In light of this, for the remainder of the text we will treat the operator
Ov\leftarrow u as a well-defined orthogonal operator, with the implicit assumption being that
any such operator suffices.

The above lemma has two important consequences.

Corollary 6.10.
1. Condition 2 in Definition 6.8 is equivalent to the condition that for every

rank > 1 edge (u, v) and any operator Ov\leftarrow u,

Ov\leftarrow ubu = bv modulo signs.

2. If B = \{ bu\} is a candidate basis, then given a path p = (u, x, . . . , y, w, v) of
rank > 1 edges going from vertex u to v, for any orthogonal rotation defined
by Op = Ov\leftarrow wOw\leftarrow y . . . Ox\leftarrow u, which we call a rank > 1 path operator, it
must be the case that Opbu = bv modulo signs.

Proof. The first statement follows trivially by the definition of the candidate basis.
The second statement follows by induction from the first.

We see that if for some vertex u we choose a basis bu which happens to belong
to a yet unknown candidate basis B, then this fixes, via the rank > 1 path operators,
all of the bases bv \in B, modulo signs, for all vertices v connected to u by rank > 1
paths. This motivates the following definition.

Definition 6.11 (rank > 1 connected component (RCC)). Remove all rank-1
edges from the graph G. What remains is a family of distinct connected components
which are composed entirely of rank > 1 edges. Define the rank > 1 connected
component (RCC) as the subgraph \Gamma associated with such a connected component.

Note that in the case where some vertex v is connected to only rank-1 edges, v on
its own still constitutes an RCC. Therefore by construction every vertex is in exactly
one RCC. Note also that any two vertices connected by a path of rank > 1 edges
belong to the same RCC.

Definition 6.12 (candidate basis on an RCC). Given an RCC \Gamma , a candidate
basis of an RCC B\Gamma on the vertices of \Gamma is the assignment of a basis bu to each vertex
u \in \Gamma which satisfies all the conditions of a candidate basis for all of the rank > 1
edges in \Gamma , as well as for the rank-1 edges (which are not in \Gamma ) which are adjacent to
the vertices in \Gamma .

Clearly, if we combine all the candidate bases for the RCCs \Gamma , we obtain a can-
didate basis for the vertices of the whole graph G. So the task of finding a candidate
basis B for the whole graph breaks down into finding a candidate basis B\Gamma for each
RCC \Gamma , so that B =

\bigcup 
\Gamma B\Gamma . Furthermore, if we can correctly choose a basis bu at

one vertex u in \Gamma , then, due to Corollary 6.10, we will have successfully specified all
of B\Gamma . The primary challenge is making the right choice of bu.

Lemma 6.13. Given a matrix-weighted graph, Algorithm 3 efficiently finds a can-
didate basis B or otherwise shows that no such candidate basis exists. The algorithm
takes O(N3) steps, where N is the number of vertices.

Proof. Let us first prove that if the algorithm returns B, then B is a candidate
basis. To show that B is a candidate basis, we need only show that \forall \Gamma , B\Gamma is a
candidate basis.

The first fact to note is that for every vertex v \in \Gamma , and for every edge (v, w)
adjacent to v, the basis vectors bv are eigenvectors of \beta vw\beta 

\sansT 
vw, and so the first condition
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Algorithm 3: Algorithm for finding a candidate basis

Input : Graph G = (V,E), matrix edge weights \{ \beta uv\} , RCCs \{ \Gamma \} .
Output: A candidate basis B = \{ bu\} , if one exists. Otherwise False,

indicating no candidate basis exists.
1 for \Gamma \in RCCs do

/* Construct the Ov\leftarrow u operators for all the edges in \Gamma */

2 for e = (u, v) \in \Gamma do
3 (Oe

u,\Sigma 
SVD
uv , Oe

v) = SVD(\beta uv) s.t. O
e
u\Sigma 

SVD
uv (Oe

v)
T = \beta uv

4 Ov\leftarrow u = Oe
v(O

e
u)

\sansT 

5 Ou\leftarrow v = O\sansT 
v\leftarrow u

/* At each vertex take intersection of eigenspaces associated

with immediately neighboring edges, as in Algorithm 1. */

6 for v \in \Gamma do
7 \BbbS v[0] = \{ \BbbR 3\} 
8 for u \in V such that e = (u, v) \in E do
9 \BbbS ev = the set of orthogonal maximal eigenspaces of \beta \sansT 

uv\beta uv
10 \BbbS v[0] = \BbbS v[0] \cap \BbbS ev

/* For each vertex, iteratively take the intersection of the

subspaces at that vertex, with the appropriately rotated

subspaces of the neighboring vertices. */

11 i = 0
12 while True do
13 for v \in \Gamma do
14 \BbbS neighbors = \{ \BbbR 3\} 
15 for u \in \Gamma such that (u, v) \in \Gamma do
16 \BbbS neighbors = \BbbS neighbors \cap (Ov\leftarrow u\BbbS u[i])
17 \BbbS v[i+ 1] = \BbbS v[i] \cap \BbbS neighbors

/* Conclude the iterative process when it reaches a fixed

point. Note that since every subspace in \BbbS v[i+ 1] is

contained in a subspace of \BbbS v[i], this process must

reach a fixed point. */

18 if \BbbS v[i+ 1] = \BbbS v[i] \forall v \in \Gamma then
19 \BbbS v[f ] := \BbbS v[i] \forall v \in \Gamma 
20 break

21 i++

/* Choose a spanning tree and construct the intersection of

the eigenspaces of the rank > 1 path operators associated

with the fundamental cycles. Take the intersection of

this with the set of subspaces at the root vertex. */

22 T = spanning tree of \Gamma with root vertex r
23 \BbbS loops = \{ \BbbR 3\} 

[Continued below]

necessary for B\Gamma to be a candidate basis is satisfied. To see that this is true, it suffices
to show that bv \in \BbbS v[f ], since \BbbS v[f ] \subseteq \BbbS v[0], and \BbbS v[0] by construction only contains
eigenvectors of all neighboring edges, including rank-1 edges. For all w \in \Gamma , since
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Algorithm 3 continued

24 for edge e \in \Gamma such that e \not \in T do
25 Get Ce, the fundamental cycle associated with e.
26 Let pe = (r, u, v, . . . , w, r) be the ordered vertex sequence of Ce.
27 Construct Ope = Or\leftarrow uOu\leftarrow v . . . Ow\leftarrow r, the associated rank > 1 path

operator.
28 Find \{ \lambda i\} and \BbbS pe

= \{ Spe

i \} , the eigenvalues and maximal eigenspaces
of the orthogonal matrix Ope

. (Note that every orthogonal matrix is
diagonalizable.)

29 if \exists i such that \lambda i \not \in \BbbR then
30 return False

31 \BbbS loops = \BbbS loops \cap \BbbS pe

32 \BbbS \ast r = \BbbS r[f ] \cap \BbbS loops
33 if span(\BbbS \ast r) \not = \BbbR 3 then
34 return False

/* Note that the intersection of sets of orthogonal subspaces

is also a set of orthogonal subspaces. Thus if

span(\BbbS \ast r) = \BbbR 3, then one can always choose an orthogonal

basis from it. */

35 Choose orthonormal basis br = (er1, e
r
2, e

r
3) \subseteq \BbbS \ast r .

/* Propagate the choice of basis at the root vertex out to

the rest of the vertices in the tree. */

36 def propagate(u, bu):
37 for vertex v \in T that are children of u do
38 bv = Ov\leftarrow ubu
39 propagate(v, bv)

40 propagate (r, br)
41 B\Gamma = \{ bu : \forall u \in \Gamma \} 
42 return B =

\bigcup 
\Gamma B\Gamma 

\BbbS w[f ] is a fixed point of the equation on line 17 of Algorithm 3, we have

(6.11) \BbbS w[f ] = \BbbS w[f ] \cap 
\Biggl( \bigcap 

x

Ow\leftarrow x\BbbS x[f ]

\Biggr) 
,

where x runs over rank > 1 edges adjacent to w. Thus for all rank > 1 edges (w, x) in
\Gamma , \BbbS w[f ] \subseteq Ow\leftarrow x\BbbS x[f ] . Consequently, given a vertex w in the spanning tree T , and
a child vertex x, if bw \subseteq \BbbS w[f ], then since bx = Ox\leftarrow wbw \Rightarrow Ow\leftarrow xbx = bw it follows
that bx \subseteq \BbbS x[f ]. Since br \subseteq \BbbS r[f ], and r is the root node of T , it follows by induction
that \forall v \in \Gamma , bv \subseteq \BbbS v[f ].

The second fact to note is that for every rank > 1 edge (w, v) in \Gamma , bw = Ow\leftarrow vbv,
modulo signs. This is clearly true for every rank > 1 edge in T by construction, as
specified in line 38 of Algorithm 3. All that remains are those rank > 1 edges not
in T . Consider an edge e = (v, w) not in T . There is a fundamental cycle Ce, with
a path pe which goes from the root vertex r, up to v, entirely along paths in the
spanning tree, then from v to w, and then from w back to r. Thus the associated
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rank > 1 path operator is

Ope
= Or\leftarrow x . . . Oy\leftarrow wOw\leftarrow vOv\leftarrow z . . . Oq\leftarrow r.

Furthermore, the bases bv and bw are, by construction,

bv = Ov\leftarrow z . . . Oq\leftarrow rbr,

bw = Ow\leftarrow y . . . Ox\leftarrow rbr \rightarrow bw = O\sansT 
y\leftarrow w . . . O

\sansT 
r\leftarrow xbr.

By construction, every element in br must be an eigenvector of Ope with real eigenval-
ues (equal to +1 or  - 1 since Ope is an orthogonal matrix) (see line 35 of Algorithm 3).
Thus br = Ope

br modulo signs. Therefore

br = Or\leftarrow x . . . Oy\leftarrow wOw\leftarrow vOv\leftarrow z . . . Oq\leftarrow rbr modulo signs,

O\sansT 
y\leftarrow w . . . O

\sansT 
r\leftarrow xbr = Ow\leftarrow vOv\leftarrow z . . . Oq\leftarrow rbr modulo signs,

bw = Ow\leftarrow vbv modulo signs.

Thus for every rank > 1 edge (w, v) in \Gamma , bw = Ow\leftarrow vbv, modulo signs. Combining
this fact with claim 1 of Corollary 6.10, it is clear that the second condition necessary
for B\Gamma to be a candidate basis is satisfied. Therefore B\Gamma is a candidate basis.

Now we will prove that if Algorithm 3 returns False, then no candidate basis
exists. First we note that obviously if for any \Gamma there does not exist a candidate basis
B\Gamma , then no candidate basis exists for the whole graph.

There are two places where the algorithm returns False: once on line 30, and once
on line 34. This happens on line 30 if some Ope

has any nonreal eigenvalues. Note
that by claim 2 in Corollary 6.10, if there existed a candidate basis B = \{ bu\} , then
Ope

br = br, modulo signs, since Ope
is a rank > 1 path operator. In other words, the

eigenvalues of Ope should be either +1 or  - 1.3

The algorithm indicates on line 34 that no candidate basis exists if, for a given
RCC \Gamma with root vertex r, span (\BbbS \ast r) \not = \BbbR 3. This happens if and only if there does not
exist a set of three orthogonal vectors such that each of them belongs to a subspace
in \BbbS r[f ] as well as a subspace in every \BbbS pe

. We prove by contradiction that in this
case B\Gamma must not exist.

Suppose there does not exist a set of three orthogonal vectors such that each of
them belongs to a subspace in \BbbS r[f ] as well as a subspace in every \BbbS pe

. Suppose a
candidate basis B\Gamma does exist; then by the argument made for the case of line 30 in
the preceding paragraph, the basis vectors br must be eigenvectors of every Ope

, and
thus each vector in br belongs to a subspace in \BbbS pe

for every pe. Therefore it must be
that br \not \subseteq \BbbS r[f ]. However, this is contradicted by the following argument.

First note that \forall bv \in B\Gamma and for every adjacent edge (v, x), the basis vectors bv
must be eigenvectors of \beta vx\beta 

\sansT 
vx, and thus bv \subseteq \BbbS v[0]. Second note that if \forall bv \in B\Gamma ,

bv \subseteq \BbbS v[i], then \forall bv \in B\Gamma , bv \subseteq \BbbS v[i+1]. This follows from the fact that for all vertices
v \in \Gamma , and for all rank > 1 edges (v, x) adjacent to v, bv = Ov\leftarrow xbx, modulo signs,
by Corollary 6.10, and thus bv \subseteq Ov\leftarrow x\BbbS x[i]. Since \BbbS v[i+ 1] = \BbbS v[i] \cap (

\bigcap 
xOv\leftarrow x\BbbS x[i])

it follows that bv \subseteq \BbbS v[i + 1]. Thus, by induction, \forall bu \in B\Gamma , bu \subseteq \BbbS u[f ], which is a
contradiction.

3For an example of where such a loop operation becomes important, see Appendix C.
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1354 KLASSEN ET AL.

Finally we prove that the algorithm runs in O(N3) steps, where N is the number
of vertices in the graph. The most costly part of the algorithm is the while loop on
line 12. Let n\Gamma be the number of vertices in the RCC \Gamma . Constructing all \BbbS u[0] runs in
worst case O(n\Gamma N). Each iterative step runs in worst case O(n\Gamma N). At each iterative
step the subspaces of \BbbS u[i+1] must be contained in the subspaces in Su[i]. Therefore
if we have not reached a fixed point, then at each iterative step there is at least one
\BbbS u[i + 1] for which the dimensions of the subspaces have decreased when compared
to \BbbS u[i]. If \BbbS u[i] spans \BbbR 3, then the dimensions of its mutually orthogonal subspaces
must be either (3), (2, 1), or (1, 1, 1). Thus for every vertex u, the iterative process
can only decrease the dimensionality of the subspaces in \BbbS u[i] at most three times
before \BbbS u[i] no longer spans \BbbR 3. So the maximum number of iterations is 3n\Gamma .

Therefore the naive worst case runtime of this step is O(n2\Gamma N). However, we
expect that a more careful analysis would find the runtime to be closer to O(n\Gamma N),
since the runtime of each iterative step is proportional to the connectivity of the
graph, while the number of iterative steps required should be inversely proportional
to the connectivity.

On line 24 the algorithm iterates over edges in \Gamma , not in T , the number of which
is upper bounded by O(n2\Gamma ). All other steps in the algorithm iterate over vertices in
\Gamma , or edges adjacent to those vertices, and so have runtime at most O(n\Gamma N).

Since the whole algorithm iterates over all RCCs, it follows that the runtime is
O
\bigl( \sum 

\Gamma n
2
\Gamma N
\bigr) 
, which, by the triangle inequality, is upper bounded by O(N3).

Theorem 6.14. Given a matrix-weighted graph, one can efficiently find an NLY
basis, or else show that no such basis exists.

Proof. The procedure for finding an NLY basis is to first find a candidate basis
B using Algorithm 3, and then find a set of permutations \Pi such that B\Pi is an NLY
basis using Algorithm 4.

If Algorithm 4 is successful, then B\Pi is an NLY basis by the following reasoning.
For every rank > 1 edge an identical permutation is applied to its adjacent vertices,
and so the diagonality of the matrix weights is preserved, while for the rank-1 edges,
the matrix weights are diagonal, and by construction every matrix weight is zero in
its second diagonal entry, as per arguments made in subsection 6.3.

Algorithm 4 is efficient, since the number of variables in the 2-XOR-SAT problem
is the number of RCCs, and in the worst case this is the number of vertices N , so it
runs in time O(N2). Combining this with Lemma 6.13, the worst case runtime of the
whole algorithm is O(N3).

Finally, if either of these algorithms fails, then by the following two arguments we
claim that no NLY basis exists. First, if Algorithm 3 fails, then by Lemma 6.13 no
candidate basis exists, and since an NLY basis must satisfy the conditions for being
a candidate basis, no NLY basis exists. Second, we must establish the nontrivial fact
that if Algorithm 4 fails, then no NLY basis exists. In other words, we need to rule
out the possibility that Algorithm 4 might have succeeded had we supplied it with an
alternative candidate basis. The rest of our exposition is devoted to proving this fact.

First note that, given a candidate basis B, if Algorithm 4 fails, then no set of
permutations exists such that B\Pi is an NLY basis. This follows from the fact that if
a permutation were to exist, it must be uniform on every RCC in order to preserve
the diagonality of the rank > 1 edges. Given this, the argument reduces to the same
one made in Theorem 6.7, where we treat RCCs as sites, since every rank-1 edge is
adjacent to RCCs.
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Algorithm 4: Algorithm for finding permutations \Pi such that B\Pi is an
NLY basis
Input : Graph G = (V,E), rank > 1, and rank-1 matrix edge weights

\{ \beta uv\} , RCCs \{ \Gamma \} , and candidate basis B = \{ bu\} .
Output: A set of permutations \Pi = \{ \pi u\} such that B\Pi is an NLY basis, if

one exists. Otherwise False, indicating none exists.
1 for \Gamma \in RCCs do

/* Label all rank-1 edges incident to vertices v in \Gamma 
according to which basis vector bv is not in the null

space of \beta uv. These always exist by Proposition 6.4. */

2 L(\Gamma ) = \{ \} 
3 for e = (u, v) \in E such that v \in \Gamma , and rank(\beta uv) = 1 do
4 for i \in \{ 1, 2, 3\} do
5 eui = bu[i]
6 if \beta uve

v
i \not = 0 then

7 L(v, e) = i
8 L(\Gamma ) = L(\Gamma ) \cup \{ i\} 

/* If \Gamma is incident on more than two different labels, then

return False. */

9 if | L(\Gamma )| = 3 then
10 return False

/* Define permutations so that all incident edge labels are

mapped to either 1 or 3. */

11 Choose perm. \pi 0
\Gamma such that \pi 0

\Gamma (L(\Gamma )[1]) = 1, and if | L(\Gamma )| > 1, then
\pi 0
\Gamma (L(\Gamma )[2]) = 3.

12 Choose perm. \pi 1
\Gamma such that \pi 1

\Gamma (L(\Gamma )[1]) = 3, and if | L(\Gamma )| > 1, then
\pi 1
\Gamma (L(\Gamma )[2]) = 1.

/* The task now becomes assigning a binary value x\Gamma to each \Gamma 
so that for every rank-1 edge e = (u, v), with labels L(u, e) = i
and L(v, e) = j, which has vertices in \Gamma u and \Gamma v, the binary

assignment x\Gamma u to \Gamma u and x\Gamma v to \Gamma v satisfies \pi 
x\Gamma u

\Gamma u
(i) = \pi 

x\Gamma v

\Gamma v
(j).

*/

/* For each rank-1 edge define a 2-XOR-SAT clause on Boolean

variables associated with the RCCs on which the edge is

incident. */

13 for e = (u, v) \in E such that rank(\beta uv) = 1 do
14 Find \Gamma u \in RCCs such that u \in \Gamma u.
15 Find \Gamma v \in RCCs such that v \in \Gamma v.
16 if L(v, e) = L(u, e) then
17 Ce(x\Gamma u

, x\Gamma v
) = x\Gamma u

\oplus x\Gamma v

18 else
19 Ce(x\Gamma u

, x\Gamma v
) = \=x\Gamma u

\oplus x\Gamma v

[Continued below ]D
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Algorithm 4 continued

/* The solution to the associated 2-XOR-SAT problem specifies,

for each RCC \Gamma , which permutations to apply in a uniform

fashion to all vertices in \Gamma . */

20 variables = \{ x\Gamma | \forall \Gamma \in RCCs\} 
21 clauses = \{ Ce | \forall e = (u, v) \in E such that rank(\beta uv) = 1\} 
22 success= 2-XOR-SAT(ref variables, clauses)
23 if \neg success then
24 return False

25 for \Gamma \in RCCs do
26 for vertex v \in \Gamma do
27 \pi v = \pi x\Gamma 

\Gamma 

28 return \Pi = \{ \pi v | \forall v \in V \} 

Given that if the procedure in Algorithm 4 fails, then there does not exist a
permutation \Pi such that the basis B\Pi is an NLY basis, we use proof by contradiction
to show that in this case no NLY basis exists.

Suppose there exists an NLY basis \=B = \{ \=bu\} . We now argue that for a fixed RCC
\Gamma , for every index i \in \{ 1, 2, 3\} there exists an index j \in \{ 1, 2, 3\} such that for every
vertex u \in \Gamma , if eui \in bu corresponds to a left singular vector, with nonzero singular
value, of a rank-1 edge adjacent to u, then eui = \pm \=euj \in \=bu.

Given an index i, consider any two vertices u, v \in \Gamma for which eui , e
v
i correspond to

singular vectors, with nonzero singular values, of some rank-1 edges adjacent to u and
v. Consider that \=bu must also contain a vector \=euju at some particular index ju, which
is also a singular vector with nonzero singular value of the same rank-1 edge adjacent
to u. Since that edge is rank-1, it follows that eui = \pm \=euju . A similar argument can be
made for v so that evi = \pm \=evjv for some index jv. There must exist a rank > 1 path
p connecting u to v, and by Corollary 6.10, Ope

u
i = \pm evi . Similarly, Op\=e

u
ju

= \pm \=evju .

Therefore \pm \=evju = \=evjv and since each vector in \=bv is orthogonal we have ju = jv = j.
Since this is true for any such pair of vertices u, v, there must exist an index j such
that for every vertex u \in \Gamma , if eui corresponds to a left singular vector, with nonzero
singular value, of a rank-1 edge adjacent to u, then eui = \pm \=euj \in \=bu.

We can now proceed by the same reasoning used in the proof of Theorem 6.7.
Let \pi \Gamma be the permutation with the mapping \pi \Gamma (i) = j, and let \pi u = \pi \Gamma \forall u \in \Gamma ,
and define \Pi = \{ \pi u\} . Then the bilabeled graph associated with B\Pi must be identical
to the bilabeled graph associated with \=B (i.e., the action on the rank-1 edges is the
same), and therefore B\Pi must be an NLY basis, which is a contradiction.

7. Discussion. It is clear from the work presented here that in the case of
two-local qubit Hamiltonians, the hardness of curing the sign problem by local basis
transformations is determined by the presence or absence of one-local terms in the
Hamiltonian.

The question of whether the general LocalSignCure is a problem in NP for general
two-local n-qubit Hamiltonians is not clear, as the set of local unitary transformations
is a continuous parameter space, and a prover would need to specify a sign-curing
solution with a polynomial number of bits, and such exact sign-curing transformations
may not exist. A natural relaxation would be to demand that the transformation be
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approximately sign-curing, a direction of research that is explored in [15], so that the
problem would be contained in MA.

We do not know the complexity of determining the ground state energy for the
family of Hamiltonians presented in section 5. It may be that finding the ground state
energy is easy, thus obviating any interest in a curing transformation. It would be
interesting to show that a family of Hamiltonians exists for which deciding sign-curing
and determining ground state energy are both hard. It would be very surprising indeed
if the hardness of deciding a curing transformation only appears when the ground state
energy is efficiently computable.

A natural extension of sign-curing transformations beyond single-qubit unitary
transformations is transformations which first embed each qubit into a d-dimensional
system and then allow for local basis changes in this d-dimensional system. The
power of such ``lifting"" basis changes is completely unexplored, even in the two-qubit
case. Another class of sign-curing transformations are Clifford circuits which map
a Hamiltonian composed of poly(n) k-local Pauli's onto a sum of poly(n) nonlocal
Pauli's. The power of these transformations is also largely unexplored, but some first
results are reported in [22]. Recently, it was demonstrated [19] that even when there
is an essential sign problem in the Hamiltonian, there are ways to group terms in the
expansion of the Gibbs state to avoid the sign problem. It would be interesting to
better understand how these techniques relate to stoquastic Hamiltonians.

Another strand of interesting future research concerns the distinction between
termwise and globally stoquastic Hamiltonians. Examples can be constructed of 3-
local globally stoquastic but not termwise-stoquastic Hamiltonians, and the complex-
ity of deciding global stoquasticity can be analyzed.

Appendix A. A simple example of nonstoquastic two-local Hamilton-
ian. Here we present a two-qubit Hamiltonian that cannot be transformed into
a symmetric Z-matrix by any single-qubit unitary transformations. Consider the
Hamiltonian

H =  - ZZ  - 2XX + 3Y Y + IX + IZ + ZI +XI.

The \beta -matrix of this Hamiltonian is of the form

\beta =

\left(   - 2 0 0
0 3 0
0 0  - 1

\right)  .

First note that this Hamiltonian is not stoquastic in this basis because aXX >  - | aY Y | .
The orthogonal rotations on the \beta -matrix must be confined to the XZ plane in order
to avoid complex terms like IY or XY . Any pair of such orthogonal transformations
(given by angles \theta 1 and \theta 2) will keep the \beta -matrix in a block-diagonal form, and the
new a\prime XX entry will be

a\prime XX =  - 2 cos(\theta 1) cos(\theta 2) - sin(\theta 1) sin(\theta 2) >  - 3.

Therefore a\prime XX >  - | aY Y | for all values of \theta 1 and \theta 2, and so H cannot be transformed
into a symmetric Z-matrix by single-qubit unitary transformations.

Appendix B. Curing the sign problem for strictly two-local Hamilto-
nians by single-qubit Clifford transformations is easy. Suppose that instead
of single-qubit unitaries, one is interested in curing a strictly two-local Hamiltonian
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by single-qubit Clifford transformations. Using arguments similar to those outlined
in section 6, we now show that such a problem is easy.

First, we know that the transformations that are employed in the XYZ-algorithm
are single-qubit Clifford transformations. Furthermore, single-qubit Clifford transfor-
mations correspond to signed permutations on the matrix-weighted graph. Therefore,
by the same logic as for the one-local unitary case, it suffices to find an algorithm
which answers Problem 1, where instead of searching for a set of orthogonal rotations
\{ Ou\} , one instead seeks a set of signed permutations \{ \Pi u\} .

Now, instead of being able to consider any basis B = \{ bu\} , we only consider bases
which are related to the standard basis by signed permutations:

bu = \{ \Pi ue1,\Pi ue2,\Pi ue3\} .

Again, the signs are irrelevant, and therefore we are looking for bases which are related
to the standard basis by a permutation.

We say a matrix is quasi-monomial if for each row and column of that matrix
there is at most one nonzero entry.4 A matrix \beta uv for an edge e = (u, v) which is
quasi-monomial admits a singular value decomposition of the form

\beta uv = \Pi u\Sigma 
SVD
uv (\Pi v)

\sansT ,

where \Pi u and \Pi v are signed permutations. This can be seen by noting that by an
appropriate permutation of columns and rows, the nonzero entries of \beta uv can be made
positive and put on the diagonal in descending order, which corresponds to the singular
value decomposition of \beta . It follows by definition that any Ov\leftarrow u, as defined in (6.9),
is also a signed permutation. It is not difficult to see that if any edge in the matrix-
weighted graph of our Hamiltonian has a weight \beta uv which is not quasi-monomial,
then there can be no set of signed permutations which simultaneously diagonalize
the weights of the graph. This is because a diagonalized matrix is quasi-monomial,
and it is impossible to transform a non-quasi-monomial matrix into a quasi-monomial
matrix by permuting the rows and columns.

We now describe the algorithm for answering Problem 1 in the case where we are
interested in signed permutations instead of orthogonal rotations. First check that
every matrix weight \beta uv is a quasi-monomial matrix, as this is a necessary condition
by the arguments above. If any of these matrices are not, then we return False.

We then identify a candidate basis B\Gamma for each RCC such that the bases bu \in B\Gamma 

are permutations of the standard basis. For each RCC construct the set of subspaces
\BbbS \ast u as described in Algorithm 3. Then check if the standard basis belongs to \BbbS \ast u. By
the same arguments made in Lemma 6.13 it is clear that if the standard basis is not
in \BbbS \ast u, then no permutations of the standard basis are in \BbbS \ast u, and so no candidate basis
exists for \Gamma which is a permutation of the standard basis, and so we must return False.
If the standard basis is in \BbbS \ast u, then we choose the standard basis for bu, and construct
a candidate basis B\Gamma for \Gamma as per step 8 of Algorithm 3. Since every operator Ov\leftarrow u

is a signed permutation, it follows that all other bases bv \in B\Gamma are permutations of
the standard basis. Let B =

\bigcup 
\Gamma B\Gamma .

Equipped now with a candidate basis for the graph, we can proceed with Algo-
rithm 4. Noting that the only transformations being performed in this section are
permutations on the candidate basis, we know that any NLY basis that is found will

4In a monomial matrix each row and column have exactly one nonzero entry, hence the ``quasi-""
prefix.
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be a permutation of the standard basis. As such, whichever answer it gives will be
the answer to our problem.

We remark that even when the graph is weighted by only quasi-monomial matri-
ces, it is generally not sufficient to consider only single-qubit Clifford transformations
as curing transformations. This is proved in Appendix C.

Appendix C. Single-qubit Clifford transformations do not suffice to
cure the sign problem for a quasi-monomial matrix-weighted graph. In
this appendix we show that when the \beta -matrices associated with a graph are quasi-
monomial, as introduced in Appendix B, then, even if there does not exist a set of
signed permutations \{ \Pi u\} such that \Pi \sansT 

u\beta uv\Pi v is diagonal, there may still exist a set of
orthogonal transformations \{ Ou\} such that O\sansT 

u\beta uvOv is diagonal. This is in contrast
to the XYZ-algorithm. In the XYZ-algorithm all \beta -matrices are diagonal, a subclass
of quasi-monomial matrices. In that case it was shown in [24] that if there does not
exist a set of signed permutations \{ \Pi u\} such that \Pi \sansT 

u\beta uv\Pi v is diagonal, then there
also does not exist a set of orthogonal transformations \{ Ou\} such that O\sansT 

u\beta uvOv is
diagonal, and so it is sufficient to consider signed permutations.

This insight is somewhat surprising for the following reason. If one considers
a single quasi-monomial matrix \beta , it holds that all other quasi-monomial matrices
\beta \prime which can be obtained by orthogonal transformations O\sansT 

1 \beta O2 = \beta \prime can also be
obtained by signed permutations \Pi \sansT 

1\beta \Pi 2 = \beta \prime . One can see this by noting that the
absolute values of the nonzero entries of \beta are its singular values, and so the singular
value decomposition of \beta is related to all of the quasi-monomial matrices by shuffling
and by flipping the signs of the rows and columns. The problem is coordinating these
permutations.

Consider a matrix-weighted graph whose matrix weights are monomial matrices;
in particular consider a triangle with three qubits and Hamiltonian of the form

H = H12 +H23 +H31 , Huv = XuYv + YuXv.

The corresponding matrix weights of our graph are thus of the form

\beta uv =

\left(  0 1 0
1 0 0
0 0 0

\right)  .

It is not hard to see that no permutations exist which simultaneously diagonalize all
three matrices. However, if we apply the rotation

(C.1) O =
1\surd 
2

\left(  1  - 1 0
1 1 0
0 0 1

\right)  
at every vertex, then every matrix is diagonalized. Translating back to the application
of basis changes, this transformation corresponds to applying T-gates, of the form
( 1 0
0 ei\pi /4 ), on all the qubits.

We see that in the case of quasi-monomial matrix-weighted graphs, the family
of graphs which are equivalent under orthogonal transformations are not equivalent
under signed permutations, and instead form sectors which depend on the graph topol-
ogy. It is precisely the rank > 1 loops considered in our algorithm in section 6 which
captures this nontrivial topological structure. In Algorithm 3, one needs to check the
loop operators OPe

(Algorithm 3, line 27)) in order to identify the rotation (C.1).
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Appendix D. Heisenberg form under local unitaries is NP-hard. In this
appendix we argue that deciding if a 2-local Hamiltonian can be put into Heisenberg
form by single-qubit unitary rotations is NP-hard. Equivalently, for the case of a
matrix-weighted graph of the kind considered in section 6, finding a set of orthogonal
rotations \{ Ou\} that diagonalize every matrix weight is NP-hard.

Definition D.1 (Heisenberg form). A Hamiltonian of the form

H =
\sum 
\langle uv\rangle 

Juv
x XuXv + Juv

y YuYv + Juv
z ZuZv

is said to be in Heisenberg form.

Definition D.2 (cubic graph). A cubic graph is a graph in which all vertices
have degree three.

Definition D.3 (chromatic index). The chromatic index of a graph is the mini-
mum number of colors required to color the edges of the graph in such a way that no
two adjacent edges have the same color.

Theorem D.4 (see [20]). It is NP-complete to determine whether the chromatic
index of a cubic graph is 3 or 4.

Corollary D.5 (Heisenberg form is NP-hard). It is NP-hard to determine if a
2-local Hamiltonian can be put into Heisenberg form by applying single qubit unitary
rotations.

Proof. The proof proceeds by reduction.
Consider a cubic graph G = (E, V ). Consider a two-local Hamiltonian HG, acting

on qubits associated with the vertices V . For every edge e = (u, v) \in E, HG consists
of a two-local term PuQv, P,Q \in \{ X,Y, Z\} , with the restriction that \forall u \in V , Xu,
Yu, and Zu appear in exactly one such term. This last restriction is always possible
because every vertex has degree 3.

If G has chromatic index 3, then HG can be put into Heisenberg form by single-
qubit unitaries. Let the coloring be given by the Pauli operators X, Y , and Z. For
every edge e = (u, v) colored by the Pauli operator R, map the Hamiltonian term
PuQv to the term RuRv. Since every term in HG acting on a given qubit acts with a
different Pauli operator, and every edge incident on a vertex is given a different color,
each Pauli operator acting on a given qubit is mapped to a unique Pauli operator,
and so such a mapping can be given in terms of single-qubit Clifford operators.

For the reverse direction, we prove that if HG can be put into Heisenberg form
H \prime G by single-qubit unitary rotations, then G has chromatic index 3. Putting HG

into Heisenberg form by single-qubit unitary rotations is equivalent to diagonalizing
all \beta uv matrices by orthogonal transformations, as defined in Proposition 4.2, for all
edges (u, v). Consider that for a given edge (u, v), the matrix \beta uv is rank-1. Thus for
every edge (u, v), H \prime G contains a single two-qubit term of the form XuXv, YuYv or
ZuZv. Furthermore, all edges incident on a vertex must be associated with a different
Pauli operator, since the transformation is unitary. Thus H \prime G prescribes a 3 coloring,
and G has chromatic index 3.

Note that the above proof applies regardless of whether or not the Hamiltonians
are restricted to being exactly two-local. Note also that problems of this type are
ruled out by the No-Lone-YY condition introduced in section 6.

Acknowledgments. The authors would like to thank Sergey Bravyi and Daniel
Lidar for their thoughtful comments on this work.
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