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ABSTRACT

Application Programming Interfaces (APIs) typically come with
(implicit) usage constraints. The violations of these constraints (API
misuses) can lead to software crashes. Even though there are sev-
eral tools that can detect API misuses, most of them suffer from a
very high rate of false positives. We introduce Catcher, a novel API
misuse detection approach that combines static exception propa-
gation analysis with automatic search-based test case generation
to effectively and efficiently pinpoint crash-prone API misuses in
client applications. We validate Catcher against 21 Java applications,
targeting misuses of the Java platform’s API. Our results indicate
that Catcher is able to generate test cases that uncover 243 (unique)
API misuses that result in crashes. Our empirical evaluation shows
that Catcher can detect a large number of misuses (77 cases) that
would remain undetected by the traditional coverage-based test
case generator EvoSuite. Additionally, on average, Catcher is eight
times faster than EvoSuite in generating test cases for the identi-
fied misuses. Finally, we find that the majority of the exceptions
triggered by Catcher are unexpected to developers, i.e., not only un-
handled in the source code but also not listed in the documentation
of the client applications.

CCS CONCEPTS

« Software and its engineering — Software libraries and repos-
itories; Error handling and recovery; Software testing and
debugging; Search-based software engineering.

KEYWORDS

API misuse, software crash, static exception propagation, search-
based software testing
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1 INTRODUCTION

Developers use external libraries to increase the velocity and reduce
the production cost of software projects [38]. While increasing pro-
ductivity, this form of software reuse comes with several challenges:
dependencies need to be kept up to date [15], developers must learn
the intricacies of each imported Application Programming Interface
(aP1), and resulting client programs should be robust, efficient, and
responsive. Correctly using third-party Apis is not an easy task;
many APIs are millions of lines of code large, interact with various
external systems and, importantly, they use stacks of software that
offer increasing levels of abstraction at the expense of observability
of the workings of the underlying layers.

The fact that Ap1s are opaque to developers is known to lead
to incorrect uses (or API misuses [3, 4]) since client applications
can violate the (implicit) usage constraints (often referred to as
contract) of those Ap1s. For example, a violation occurs when a
client application calls a method that expects a non-null constrained
formal parameter without validating (i.e., via null checks or error
handling) the references used as arguments. API misuses can cause
software reliability problems, originating from issues such as poor
handling of user input and resource misuses [3], or even increasing
the attack surface of client applications [18, 40]. Documentation is
not adequate, as it is usually either outdated [10], defective [64], or
just ignored by the developers of client applications [50].

While static Ap1 misuse detectors can successfully identify spe-
cific types of Ap1s misuses, they suffer from various limitations [4].
In particular, these approaches have a high rate of false positives,
requiring developers to manually inspect (via cross-checking [4]
or writing test cases [57]) and review large lists of candidate Ap1
misuses produced by static analysis. In fact, according to a recent
empirical study of Johnson et al. [28], who interviewed develop-
ers, false positives and developer overload are the main sources of
dissatisfaction with static analysis tools.
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Dynamic analysis tools [21, 34, 35] can pinpoint crash-related
bugs in the source code without any false positives. However, these
approaches have to compromise between the exploration of the vast
search space of possible execution paths of the application under
test and the time budget allowed for the discovery of the bugs. If an
API misuse requires an additional effort to get exposed (i.e., if only
a few execution paths contain it), the analysis may fail to detect it.
To overcome this, we can either set a larger search-time budget or
reduce the search space by including only potentially interesting
parts of the application under test.

The main idea of this paper is to restrict the search space of
automatic test case generators to crash-prone api-call locations
(candidate misuses), i.e., method calls that might throw exceptions
at runtime. To this end, we define a novel approach, CATCHER, that
combines static exception propagation analysis and test case gen-
eration to effectively and efficiently discover candidate misuses in
a software under test. CATCHER can help developers by automat-
ing (i) the detection of misuses of the Java platform’s ap1 that can
cause client application crashes and (ii) the generation of test cases
triggering such crashes.

CatcHER works as follows. First, static exception propagation [25,
51] (based on Soot [59]) identifies call paths that propagate runtime
exceptions raised by ApI methods but remained unhandled, in the
application call sites, potentially causing application crashes [19, 31].
The call sites to each one of those Ap1 methods represent candidate
misuses, defining the search space for the test case generation. Then,
traditional code coverage heuristics and the previously identified
candidate misuses are used for focusing the automatic test suite
generator EVOSUITE [20, 21] towards the generation of test cases
that trigger the candidates’ (propagated) exceptions.

To evaluate our approach, we initially examine whether existing
state-of-the-art test coverage-based approaches (here we consider
EvoSurTE) are effective and efficient in discovering API misuses
(RQ1). Then, we assess whether the performance of automatic test
suite generators, such as EVOSUITE, on detecting crash-prone aAp1
misuses can be improved by CATcHER (RQ2). Finally, we cross-
check whether the exceptions that CATCHER triggers are listed in
the documentation (i.e., are expected) of the Java platform’s Ap1
and client projects or not (RQ3).

We evaluate CATCHER by using 21 Java client applications and
targeting API misuses of the Java’s Jpk v. 1.8.0_181. We find that
CATCHER can automatically uncover 243 (unique) misuses of the
Java platform’s A1 in 21 client applications. The collected results
show that CATCHER revealed more API misuses (77 cases) that re-
mained undetected by plain EvoSurTE, while requiring less than
20% of the time.

In summary, we make the following contributions: (i) an inves-
tigation of state-of-the-art search-based test case generator (Evo-
Surte) for evaluating its efficiency and effectiveness on identifying
API misuses in client projects; (ii) a novel technique (CATCHER) that
combines static exception propagation analysis and search-based
software testing to maximize the number of found crash-prone ap1
misuses in a software under test and minimize the time needed for
discovering those misuses; (iii) an empirical evaluation involving 21
Java projects that shows the effectiveness and efficiency of the pro-
posed solution. Finally, we provide the data of our study as well as

Maria Kechagia, Xavier Devroey, Annibale Panichella, Georgios Gousios, and Arie van Deursen

class StringTokenizer implements Enumeration<Object> {

'/**

* Returns the next token from this string tokenizer.
* @return ..
* @exception NoSuchElementException if there are no
* more tokens in this tokenizer's string.
*/

334 public String nextToken() {

348 if (currentPosition >= maxPosition)

349 throw new NoSuchElementException();
}

}

(a) StringTokenizer class from the Java JpK (API)

public class ZoneInfoCompiler {
687 private static class Rule {

696 Rule(StringTokenizer st) {

697 iName = st.nextToken().intern();
698 iFromYear = parseYear(st.nextToken(), 0);
699 iToYear = parseYear(st.nextToken(), iFromYear);
}
}

(b) ZoneInfoCompiler class from joda-time (client)

Figure 1: JDK API misuse in joda-time, issue #319

the source code of CATCHER and the scripts for the postprocessing
of our results.!

2 BACKGROUND

API misuses occur when a developer of a client application vio-
lates an implicit (or explicit) usage constraint of an Ap1 [4]. Figure 1
presents a misuse of the Java StringTokenizer Arrin joda-time:?
the nextToken method might throw a NoSuchElementException
if the condition on the current position in the input string is not
satisfied (line 348). This post-condition is documented but not han-
dled by the constructor of the Rule class in joda-time. The client
(Figure 1(b)) neither performs any validation check for the input
(input sanitization) before calling the API nor uses any exception
handling mechanism for that Ap1 call. As a result, this AP1 misuse
propagates an exception from the Java platform’s Ap1 to the caller,
the Rule constructor, if the st parameter contains less than three
tokens (line 696).

In their recent work, Amann et al. [4] proposed a classification of
API misuses by identifying four missing and redundant Ap1-usage el-
ements: (i) missing (resp. redundant) method calls that should (resp.
should not) be called before (resp. after) calling an Ap1 method;
(ii) missing (resp. redundant) conditions that should (resp. should
not) be checked before (resp. after) calling an Ap1 method; (iii) miss-
ing iterations for methods that should be called in a loop, checking
a particular condition after each call, and redundant iterations for
methods that should never be called in a loop; and (iv) missing (resp.
redundant) exception handling that should (resp. should not) catch
exceptions after calling an Ap1 method. According to this classifica-
tion, the misuse in Figure 1(a) is both a missing condition misuse

! Available at https://github.com/mkechagia/Catcher.
2Also reported as a GitHub issue: https://github.com/JodaOrg/joda-time/pull/319.
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Figure 2: CATCHER approach overview

and a missing exception handling misuse: while the documentation
specifies that an exception might be thrown if the method is called
when the input string to tokenize is exhausted, the client neither
respects this implicit contract nor handle the thrown exception.

In this work, we look at crash-related misuses that can trigger
exceptions propagated to the client, as they represent the vast ma-
jority of misuses [4]. Various static analysis methods are able to
detect such kind of misuses, but they suffer from multiple limita-
tions, including a high number of false positives, preventing their
adoption in practice [4]. Moreover, even though some misuses can
be effectively prevented through static analysis (e.g., by checking
the presence of try—catch constructs to properly handle declared
exceptions), other misuses, such as those related to input sanitiza-
tion, require dynamic analysis (e.g., by using search-based testing)
to cover the input and output domains of a method.

Various search-based test case generation approaches and tools
have been proposed [20, 21, 35, 36] and shown effective in dis-
covering real faults [2, 47, 54]. Those approaches rely on various
kinds of criteria (like line and branch coverage [53], or input and
output value domains coverage [52]) and algorithms (like genetic
algorithms [22] or multi-objective algorithms [44, 45]) to explore a
(large) search space, i.e., all the possible test cases that one could
write for a given system under test. Furthermore, other approaches
related to ours include C'n’C [16], which combines static checking
and concrete test generation, and MutApi [37], which identifies
API misuses based on mutation analysis. To the best of our knowl-
edge, this work is the first that studies the relationship between
search-based test case generation and crash-related Ap1 misuses.

3 THE CATCHER APPROACH

CATCHER combines static exception propagation analysis [25, 51]
with search-based test case generation [20, 21] to provide evidence
of API misuses as a set of test cases. To achieve this, we use the
approach described in Figure 2: (i) the static exception propagation
analysis builds a call graph of the Ap1 under test with information
about exceptions that might be thrown at runtime; (ii) using this
graph, candidate misuses are identified by applying exception-flow
analysis to aPI calls in the client, where such exceptions may be
propagated; (iii) a rule set is then used to filter out propagated excep-
tions that are directly handled by the client (i.e., using try-catch
constructs or throws clauses in method signatures); (iv) the remain-
ing candidate misuses become coverage targets for the search-based
test case generation. The test suite generated, in the latest step, will
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contain test cases that cover the target ap1 calls in the client appli-
cation and trigger the propagated exceptions.

The implementation of CATCHER relies on Soot [59] for the
call-graph construction and the exception-flow analysis, and on
EvoSurtk [20] for the search-based test case generation. We choose
Soor for the following reasons: first, SooT is a well-known static
analysis tool used in several research studies [8, 12, 25]; second,
SooT’s soundness and precision have been evaluated by researchers
[49]; third, SooT can be easily used to analyze a Java program,
by receiving only the application’s . jar file as input; finally, the
produced output can be easily used in exception-flow analysis [12,
25, 42]. After filtering the candidate misuses, CATCHER relies on
EvoSurtk to focus the search-based test case generation process. We
detail hereafter the configuration of EvoSUITE, the modifications
made on the standard implementation of the DynaMOSA algorithm,
and the heuristics used for the test case generation.

3.1 Static Exception Propagation

3.1.1 Call-Graph Construction. The first step of our approach
refers to the analysis of the source code of a software platform’s
ApI for spotting runtime (i.e., unchecked) exceptions that may be
propagated to the callers of the ap1. This is done by building an
annotated call graph, whose nodes represent the methods in the
ApI and the edges denote the call dependency between each caller
(outgoing edge) and callee (ingoing edge). The nodes are annotated
with the list of runtime exceptions that might be thrown by the
corresponding methods. Then, we build the annotated call graph
for the client application under analysis and we connect it to the
call graph of the Ap1 based on the method calls between the client
and the AP1. On the resulting global call graph, we identify the first
set of candidate misuses, which are the client nodes that have out-
going edges to the AP1 nodes with annotated exceptions. Additional
misuses are detected through the exception propagation analysis
(see the next subsection 3.1.2).

For instance, the global call graph for the example in Figure 1
would contain two nodes: one is the method nextToken() from
the Ap1 and the other one is the constructor Rule from the client.
The two nodes are connected by an edge outgoing for the latter
and ingoing for the former. Based on our analysis, the constructor
Rule is a candidate misuse because it directly calls an Ap1 method
that can throw an exception at runtime.

3.1.2  Exception-flow Analysis. To enlarge the set of candidate mis-
uses, we use reachability analysis to propagate the exceptions from
the AP1 to the client. Specifically, for every node Ngp; of the APr, its
annotated exceptions are propagated backwards to all its adjacent
nodes N;j (depth 1). Then the propagation is done for each node
Nj recursively. The propagation path ends when the first client
node in the global graph is encountered (depth k). All client nodes
with exceptions propagated from ApI nodes are candidate misuses
because they may expose exceptions thrown by the ApI.

The number of candidate misuses grows exponentially with the
depth k that we consider. Buse and Weimer showed that exceptions
with propagation depths larger than three are rarely listed in the
documentation [12]. This possibly happens because it is not efficient
for developers to consider these exceptions for debugging. For
the sake of our study, focusing on the Java platform’s Apr1, we
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consider calls with depth k < 4 to balance scalability and usability
of CATCHER.

3.2 Filtering

The previous step identifies all Ap1 calls annotated with propagated
exceptions. However, not all the identified calls are necessarily Ap1
misuses. In fact, API usage constraints can be satisfied at the client
side through a combination of programming language elements [3].
A try-catch construct can be used to handle an exception prop-
agated from the API to recover the client from the corresponding
error state. Furthermore, the client application may include the
propagated exception in the throws clause in the method signa-
ture of the caller. This postpones the exception handling to occur
in other client methods and classes that exist later in the stack.
These two types of programming language elements (i.e., try—
catch constructs and throws clause in method signatures) can be
easily identified via static analysis rules. To this aim, CATCHER uses
a rule set to filter out Ap1 calls with propagated exceptions that are
correct API usages: (i) calls made by the client to the ap1 within a
try-catch construct catching the propagated exception. Moreover,
(ii) calls made by the client to the ap1 within a method itself declar-
ing a propagation of the exception using a throws clause. Besides,
the rule set takes the Java Exception hierarchy into account. For
instance, if an Ap1 method throws an IOException and the client
has a catch clause for Exception, our rule set filters out the related
candidate misuse. The list of the remaining candidate misuses is
the input of the CATCHER’s search-based test case generation.

3.3 Focused Search-based Test Generation

Given the list of candidate misuses identified in the previous steps,
the generation of a test suite can be formulated as a search problem:

PROBLEM 1. Let M = {my,...,mu} be a set of candidate misuses
(test targets) for a client class C. Our problem is to find a test suite
T ={t1,...,tn} for C that identifies as many API misuses in M as
possible by triggering the corresponding propagated exceptions.

A candidate misuse m; € M is successfully identified by a test case
tj € T if the following conditions hold: (1) t; covers the candidate
API call in the client class C (the call site), (2) t; triggers the propa-
gated exception, and (3) the last stack trace element in the crash
stack trace is the (misused) Apr method. To solve the aforemen-
tioned problem, we need an adequate heuristic to guide a search
algorithm toward covering the candidate misuses in M.

3.3.1 Heuristic. We consider three state-of-the-art search heuris-
tics. First, we use line coverage, which is defined as the sum of the
approach level (al) and the normalized branch distance (bd) [36]:
bem, = al(tj, by) + norm (bd(tj, by)) for test case ¢; and branch by.
Such a heuristic is widely applied in white-box testing and, in our
case, it measures how far a test case t; is to cover the apr call site.

Additionally, we also consider input coverage icm,(tj, by) and
output coverage ocp; (tj, b for the client method (caller) containing
the potential Ar1 misuse. These two heuristics are black-box and
aim to increase the input and the output data diversity during the
test generation process. More diverse input/output can increase
the likelihood of triggering unexpected behaviors [52], such as
triggering the propagated exceptions.
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For M, we have the following set of objectives to optimize:

f(m1) = min(bem, ), max(icm, ), max(ocm, )

f(mn) = min(bcy,, ), max(icp,, ), max(ocp,,,)

3.3.2  Search Algorithm. As in other search-based test case genera-
tion problems, covering as many candidate misuses as possible with
CATCHER is a multi-target problem since a client class can contain
multiple candidate misuses (targets) to be covered. Therefore, as a
search algorithm, we choose the Dynamic Many-Objective Sorting
Algorithm (DynaMOSA) [44], a state-of-the-art many-objective al-
gorithm that optimizes multiple coverage targets, simultaneously.
We opted for DynaMOSA since recent studies [13, 47] showed its
better effectiveness and efficiency compared to other multi-target
approaches, such as the whole-suite approach, random search, evolu-
tion strategies, and other many-objective algorithms.

In DynaMOSA, coverage targets (e.g., branches) correspond to
search objectives, which are prioritized based on their structural
dependencies in the control dependency graph of the class under
test. The search starts by optimizing coverage targets positioned
higher in the hierarchy; the other targets are incrementally rein-
serted in the search when their parent targets are satisfied (for
instance, reach branch n before trying to reach branch n + 1). Using
our heuristic, the algorithm executes as follows:

Initialization. The search starts by identifying a pool of client
call sites (containing the candidate misuses) from M. Next, it gener-
ates a set of random test cases to produce an initial population.

Selection. To form the next generation, DynaMOSA applies
elitism by using a preference sorting function [44]. For each candidate
misuse m;, the preference sorting function takes the test cases with
the best individual objective scores and inserts them into the next
population. The remaining test cases are then sorted and selected
by the non-dominated sorting algorithm proposed in NSGA-II [17].

Reproduction. In each generation, parents are selected using
the tournament selection and new test cases (offspring) are created
by applying crossover and mutation operators [20].

Objective update. Once a test case reaches the ap1 call site, the
exception in m; has to be thrown and propagated through the same
methods. Thus, we ensure that the test ¢; is archived to be part of
the final test suite only if ¢; triggers and propagates the exception
through the same methods as m;. When m; is successfully detected,
the list of objectives is (dynamically) updated by removing the
corresponding objectives bcy,;, icm;, and ocm;.

Termination. The iteration process continues until M is covered
or the search time is over.

4 EVALUATION PROTOCOL
4.1 Study Context

The context of our study consists of Java client applications and the
third-party Aprs they use. We selected the latest version of 21 open-
source Java projects, whose names and characteristics are reported
in Table 1. We chose these projects because they are well-known,
regularly maintained, and have been already used in the related
literature to assess the performance of testing tools (e.g., [44, 45]) or
to build datasets of known bugs (e.g., [29]). Also, they have different
sizes, development teams, and application domains (e.g., byte code
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Table 1: Java projects in our Benchmark

D Name Version Files LOC  # Candid. Misuses
BCEL beel 6.2 489 39K 223
CLI commons-cli 14 50 7K 114
CODEC  commons-codec 1.12 124 20K 580
COLL commons-collections 4.2 535 63K 213
COMP commons-compress 1.17 352 43K 587
LANG commons-lang 3.7 323 76K 1024
MATH commons-math 3.6.1 1617 209K 411
EASY easymock 3.6 204 14K 217
GSON gson 2.8.5 206 25K 157
HAMC hamcrest-core 1.3 152 7K 34
JACK jackson-databind 2.9.6 919 114K 251
JAVS javassist 3.23.1 527 82K 313
JCOM jcommander 1.71 139 6K 68
JFCH jfreechart 1.5.0 990 134K 681
JODA joda-time 2.10 330 86K 1053
JOPT jopt-simple 5.0.4 192 9K 107
NATT natty 0.13 27 3K 33
NEO4 neodj-java-driver 1.6.2 510 52K 784
SHIRO shiro-core 1.3.2 653 31K 223
XJOB xwiki-commons-job 10.6 67 3K 616
XTEX xwiki-commons-text 10.6 3 101 11

manipulation, math library, command line parser), forming a well-
diversified benchmark. Their source code and documentation are
publicly available for the reproducibility of our results.

The projects in our benchmark use various third-party ap1s. How-
ever, we consider only the Ap1s of the Java jpx (version 1.8.0_181)
rather than all possible third-party Apis used by these projects. We
do this guided by the fact that the Java platform’s Ap1 is extensively
documented, more than other third-party aris [30] (e.g., Android,
Apache commons). Having well-documented APIs is critical for
us to classify and understand the detected misuses (see Section
5). Furthermore, the Java platform is well-known and millions of
developers use it to build their programs. While in our study we
focus on the Java platform’s Ap1, our approach can be applied to
verify the usages of other third-party Apis, including those that are
not as extensively documented as the Java ApI.

4.2 Research Questions

We investigate the following research questions:

RQ1: How do existing unit level coverage-based test generation tools
perform in discovering API misuses?

With this first research question, we aim to examine the effective-
ness and efficiency of existing state-of-the-art automatic test suite
generators regarding their capability to generate test cases able
to expose API misuses. We are interested in investigating this re-
search question because AP1 calls are statements in the source code
of the client applications and they can be covered by traditional
unit-test generation tools (such as EvoSUITE) tailored to maximize
coverage-based criteria (e.g., branch coverage). However, covering
ApI call sites does not necessarily imply that the corresponding tests
can trigger the exceptions propagated from the Ap1s, exposing the
misuses. To the best of our knowledge, we are the first to apply and
evaluate such tools to study how they help to expose ApI misuses.

RQ2: Does CATCHER improve the performance of existing test
coverage-based approaches on detecting API misuses?
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With this second research question, we investigate the impact of
reducing the search space in test case generation by using informa-
tion from the static exception propagation. Namely, we examine
whether we can get test cases that expose more API misuses, and
in less time, by considering only particular paths with candidate
misuses identified by CATCHER during the search. To this extent, we
compare the effectiveness and efficiency of CATCHER and EvOSUITE
for API misuses detection.

RQ3: What types of ap1 misuses does CATCHER expose?

Using CATCHER, we can argue about particular ApI misuses (related
to constraint misuses and exception handling misuses) at the code
level. Ap1s also come with their reference documentation, which can
significantly affect the robustness of client applications [12, 14, 31].
If an exception that might throw at runtime is not listed in the
documentation (i.e., it is unexpected), developers stay unaware
of the possible manifestation of that exception at runtime. Then,
developers usually leave these exceptions unhandled decreasing the
robustness of their programs. Based on that, we want to examine
whether the exceptions triggered by CATCHER are documented (and
therefore expected) or not.

4.3 Baseline Selection and Parameter Setting

To answer RQ1, we select EVOSUITE [20, 21] as our baseline. Evo-
SUITE is a state-of-the-art testing framework for generating unit
test suites for Java classes. It won the latest two editions of the sBsT
tool context [39, 48], which showed its ability to produce tests with
higher code coverage and better fault detection capability compared
to alternative tools (e.g., RANDOOP [43]). EVOSUITE implements var-
ious search algorithms for test case generation. In our study, we use
the Dynamic Many-objective Sorting Algorithm (DynaMOSA) pro-
posed by Panichella at al. [44], which is the same many-objective
genetic algorithm used in CATCHER. We select DynaMOSA because
it outperforms other multi-target and single-target approaches as
demonstrated by recent studies [13, 44, 45, 47] that compare differ-
ent algorithms in test case generation.

EvoSUITE optimizes eight test criteria simultaneously as they
are described by Rojas et al. [52]: branch, line, weak mutation, input,
output, method, and exception coverage. In this study, we consider
all these criteria as recent studies showed that their combination
increases the fault detection capability of the generated test suites
[27, 46]. Suites with higher fault detection capability are likely
able to detect more crash-related aAp1 misuses. When enabled with
exception coverage, EVOSUITE archives all test cases that (i) trigger
an exception and (ii) are created when trying to maximize the
other aforementioned coverage criteria. The archived test cases are
included in the final test suite, which contains test cases that allow
reaching high code coverage plus all test cases generated during
the search that trigger an exception. Some of these crashes might
be related to propagated exceptions due to API misuses.

To answer RQ2, we compare EvOSUITE and CATCHER. Both
EvoSurTe and CATCHER share the same search algorithm (i.e., Dy-
naMOSA) and the same test case generation engine (e.g., genetic
operators, chromosome representation). The differences between
the DynaMOSA algorithm in EvoSurTe and CATCHER regard the
objectives they optimize. The former targets all source code ele-
ments (e.g., branches, lines) for code coverage optimization. Instead,
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as explained in Section 3.3, the latter targets only candidate Ap1s
misuses (that are specific lines in the source code) as well as input
and output coverage for the client methods (callers) containing
candidate misuses.

Parameter Setting. Search algorithms have various parame-
ters to set, which may potentially impact the results of our study.
However, Arcuri and Fraser [7] showed that parameter tuning
in search-based software engineering is extremely expensive and
does not provide substantial improvements compared to default
parameter values. We use the default parameter values suggested
in the literature [7, 21, 45]: EvoSUITE and CATCHER were config-
ured with a population size of 50 test cases; test cases are selected
using the tournament selection, with tournament size s=10. Each
newly generated test t is mutated through a uniform mutation with
the probability p,,=1/n, where n is the number of statements in ¢.
EvoSurte and CATCHER were configured with a search budget of
three minutes per each class under test. We use this setting because
it represents a reasonable compromise between running time and
coverage as reported in the related literature [22, 47].

4.4 Experimental Protocol

The number of candidate misuses for each project in our benchmark
is reported in the rightmost column of Table 1. Then, test cases are
generated only for classes that, according to the first two steps in
CATCHER, contain candidate Ap1 misuses. Therefore, classes with no
candidate misuses are not targeted by CATCHER during the test case
generation phase. Instead, EvOSUITE does not identify candidate
API misuses before starting the test case generation process.

To address the random nature of EvoSuITE and CATCHER, we
ran each tool 25 times on each class under test. For EvOSUITE, the
classes under test are all the classes in the benchmark projects. For
CATCHER, the classes under test are only those classes identified as
having candidate AP1 misuses. In total, for CATCHER, we performed
905 (classes) X 25 (repetitions) ~ 22,625 search executions, with
three minutes of search budget per each execution. For EVOSUITE,
the number of classes increases to 8,409 corresponding to ~ 210,225
search executions, with three minutes of search budget each. All
executions were performed on a two node cluster. Each cluster
node ran a GNU/Linux system (Ubuntu 16.04 LTs) with Linux kernel
4.4.0, on a dual 8-core 2.4GHz Intel E5-2630v3 cpus with 64GB of
RAM. We used Oracle’s Java vm (Jvm) version 1.8.0_181, allocating
up to 12GB for the yvm.

In each run, we collected the generated test suite and the total
running time needed for completing the search. We use the col-
lected data to answers RQ1 and RQ2. In particular, we re-executed
the generated test suites (by CATCHER and EvoSuITE) at the end of
each search, to identify test cases that triggered an exception. Then,
we compared the corresponding crash stack traces with the list of
candidate API misuses identified with the exception propagation
analysis. CATCHER and EVOSUITE expose a target misuse m; if they
generate a test case #; that triggers an exception propagating from
the AP1 to the client in the same way as m;. In other words, the de-
tection requires that the following two conditions hold: (i) the name
of the exception triggered by t; and the name of the propagated
exception m; coincide; (ii) the chain of call sites of m; appears in
the stack trace of the exception triggered by ¢;.
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To evaluate the effectiveness in RQ1 and RQ2, we compute the
number of misuses exposed by CATCHER and EVOSUITE in each in-
dependent run. To measure the efficiency, we compute the total
execution time taken by CATCHER and EvoSulte for each project in
each independent run. The running time for CATCHER is measured
by taking into account (1) the time required by the static exception
propagation analysis (for all steps in Section 3.1) to identify poten-
tial API misuses, (2) the test case generation time (i.e., up to three
minutes) and (3) the post-processing. For EVOSUITE, the running
time includes (1) the search budget (up to three minutes) and (2)
the post-processing. More specifically, we post-processed the test
suites generated by the two tools to remove statements in the test
cases that do not contribute to coverage or trigger the exceptions
(test suite minimization); furthermore, assertions are automatically
generated using mutation analysis [24]. Notice that CATCHER uses
the post-processing engine of EVOSUITE.

We compare both approaches (CATcHER and EvoSuUITE) by con-
sidering the median and the interquartile range (IQR) of the number
of exposed API misuses and the running time over 25 independent
repetitions. Due to space limitation, the results are reported at the
project level. We use the non-parametric Wilcoxon Rank Sum test
with a confidence level a = 0.05 to assess the statistical significance
of the differences (if any). Besides, we use the Vargha-Delaney Ay
statistic [60] to measure the effect size of such differences.

To address RQ3, we inspect the AP1 misuses detected by CATCHER
by analyzing and re-executing the generated tests, and inspecting
the source code and the documentation (Javadoc) of both the ar1
callers in the client applications and the misused apr1s themselves.
To reduce biases, we partially automated the analysis using a script
which checks whether the propagated exceptions were adequately
documented (e.g., reported in the Javadoc with the @throws or
@exception tags) (i) in the apis of the Java jpk and (ii) in the
documentation or the source code comments of the callers (call
sites) in client applications. The output of this analysis resulted in
a classification of three types of API misuses that are discussed at
the end of Section 5.

5 RESULTS

Results of RQ1. Table 2 reports, for each project, the median, the
interquartile range (IQR), and the total number of unique ApI mis-
uses detected by EVOSUITE across 25 runs. EVOSUITE can detect, on
average, 123 crash-related Ap1 misuses in the 21 benchmark projects.
If we consider all ApI misuses that are detected at least once across
25 runs, the total number of detected misuses is 166. While Evo-
SUITE can detect some misuses by maximizing code coverage, the
variability of the results is very high for some projects. For example,
if we consider the project Gson, we notice that EvOSUITE detects on
average two misuses. However, if we run EvoSUITE multiple times,
the total number of unique misuses being detected is eight. There-
fore, the set of discovered misuses differs substantially between two
independent runs. To have more reliable results, we would need
to run EvoSuUITE multiple times, with a corresponding increment
of the overall running time. A similar observation can be done
for other projects, such as apache-commons-compress (COMP),
jackson-databind (JACK), JFreeChart (JFCH), and joda-time
(JODA).
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Table 2: Statistics on the comparison between the number of
crash-related Ap1 misuses exposed by CATCHER and EVOSUITE.

Catcher EvoSuite Significance
Project Median IQR Total | Median IQR Total p-value A1z
BCEL 8 1.5 9 7 1 7 <0.0001 | 0.87 (L)
CLI 0 - 0 0 - 0 1.0000 -
CODEC 9 - 9 9 1 9 <0.0004 | 0.72 (M)
COLL 10 - 10 6 2 9 <0.0001 | 1.00 (L)
COMP 28 7 34 10 3 18 <0.0001 | 0.99 (L)
LANG 30 1 32 20 3.75 23 0.0052 0.83 (L)
MATH 10 2 12 9 - 9 <0.0001 | 0.88 (L)
EASY 11 1.25 16 9 1.75 11 <0.0001 | 0.96 (L)
GSOM 12 4 16 2 6 8 <0.0001 | 1.00 (L)
HAMC 0 - 0 0 - 0 1.0000 -
JACK 5 1 6 2 5 <0.0001 | 0.95 (L)
JAVS 4 - 4 2 - 2 <0.0001 | 1.00 (L)
JCOM 1 - 2 1 - 1 0.0810 0.56
JFCH 21 5 27 14 3 23 <0.0001 | 0.99 (L)
JODA 20 1 25 5 1 11 <0.0001 | 1.00 (L)
JOPT 3 - 3 3 - 3 1.0000 0.50
NATT 4 - 4 3 - 4 <0.0001 | 0.96 (L)
NEO4 14 1 17 8 8 0.0219 0.91 (L)
SHIRO 7 - 7 6 - 6 <0.0001 | 1.00 (L)
XJOB 10 0.75 10 7 3 9 <0.0001 | 0.96 (L)
XTEX 0 - 0 0 - 0 1.0000 0.50
Total 207 243 123 166

Table 3: Execution time (in s) for CarcHeR and EVOSUITE.

Catcher EvoSuite Catcher
Exc. Search Total Search is %
Project Prop. Median IQR Median IQOR faster
BCEL 621 5,430 2 6,051 93,879 783 94%
CLI 318 2,353 5 2,671 5,475 21 52%
CODEC 327 6,878 3 1,014 17,418 41 95%
COLL 348 6,154 2 6,502 117,995 508 95%
COMP 339 13,780 17 14,119 87,029 400 86%
LANG 343 12,552 72 12,895 30,634 196 58%
MATH 593 12,252 162 12,845 91,825 456 87%
EASY 642 8,879 6 9,521 152,679 533 94%
GSON 333 3,105 181 3,438 17,775 52 81%
HAMC 306 1,086 - 1,392 8,598 7 84%
JACK 371 8,636 1,203 9,007 123,999 698 93%
JAVS 587 9,786 222 10,373 58,331 234 83%
JCOM 317 2,353 - 2,670 14,228 51 82%
JFCH 633 26,488 113 27,121 72,139 319 63%
JODA 540 5,977 175 6,517 46,007 220 86%
JOPT 314 3,085 2 3,399 12,294 9 73%
NATT 759 1,267 - 2,026 45,314 6 96%
NEO4 542 13,972 1,739 13,983 157,081 803 88%
SHIRO 582 5,979 1 6,561 71,270 129 91%
XJOB 591 5,558 158 6,149 100,829 222 94%
XTEXT 299 362 - 661 862 0.33 24%
Total 9,716 149,741 159,457 1,327,080 81%
(~ 2 days) (~ 15 days) (mean)

This variability is due to the fact that, in each generation, Evo-
Surtk focuses the search on the uncovered targets (e.g., branches
and mutants). Indeed, as soon as a new coverage target b is covered,
the corresponding test case is stored in the final test suite, and b
is removed from the set of objectives to optimize [44, 53]. While
this heuristic has been proven to lead to a higher overall coverage
[44, 53], it is not suitable for detecting ApI misuses. Covering the
API call site is a necessity but not a sufficient condition to expose
the Ap1 misuses and trigger the propagated exception.

Concerning running time, EVOSUITE requires on average 17
hours to complete the test generation for one project. The overall
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running time is proportional to the number and the complexity of
classes in the project under test. Indeed, it varies from 14 minutes
(xwiki-text has three classes) to 1 day, 19 hours, and 38 minutes
(for EasyMock) on average. This highlights the need for test case
generation approaches that focus on AP misuses.

Results of RQ2. Table 2 shows that CATCHER detects on average
84 (+68%) AP1 misuses compared to EVOSUITE across the 25 runs.
In total, the number of unique API misuses detected by CATCHER
in all runs is 243, i.e., +77 unique misuses over EVOSUITE. These
differences are also confirmed by the statistical analysis reported
on the right side of Table 2: for 16 projects out of 21 (76%), CATCHER
identifies significantly more AP1 misuses than EvoSurTe. The effect
size is always large (in 15 projects out of 16) and medium (in one
project).

Let us consider the example in Figure 3 of an API misuse detected
by CATCHER but not by EvoSurTE for the class KthSelector from
the project apache-commons-math. The ArrayIndexOutOfBounds-
Exception is thrown at line 120 of the Ap1 Arrays.rangeCheck
and propagated back to the client application in the method select.
An excerpt of the code of this method is reported in Figure 3-
(a) while Figure 3-(c) reports the test case generated by CATCHER.
When executing the test case, the client method select invokes the
method Arrays. sort using as parameters an array of size 17 and
the variables begin=12 and end=19. The value of the variable end is
larger than the size of the array and, thus, the exception is thrown
in Arrays.rangeCheck, which is indirectly invoked. Notice that
the value of these two variables is computed within the while loop
in lines 84-113. This example is an API misuse because the client
method select should validate the input data (e.g., the length of
the array) before invoking the Ap1.

Table 4 reports the number of ApI misuses detected by both
approaches, CATCHER and EVOSUITE, as well as the number of mis-
uses detected by one approach (e.g., CATCHER) but not by the other
one (e.g., EVOSUITE). We observe that 163 unique API misuses are
detected by both approaches; 80 unique API misuses are detected
only by CATCHER; two unique misuses are detected only by Evo-
Surte. Through manual investigation, we discovered that these two
misuses are detected by EvoSUITE thanks to the weak mutation
coverage, which leads to generating input data able to weakly kill
mutants (infection state). This input data might increase the likeli-
hood of exposing misuses, although it happens for only two cases
in our benchmark. Future work will be devoted to investigating
other coverage criteria in CATCHER, including the weak mutation
coverage.

Finally, Table 3 reports the running time of CATCHER and Evo-
SurTe. CATCHER requires less than 20% of the time spent by Evo-
SUITE in total. On a per project basis, CATCHER is on average 80%
faster, with a maximum speedup of 96% for project natty. The
smallest difference is observed in the case of xtext: as xtext is
a very small library comprising only 100 Loc, the setup cost for
the static analysis phase in CATCHER dominates the total execution
time. For all projects, the differences are statistically significant
according to the Wilcoxon test (p-values<0.0001) with a large effect
size (A1z > 0.90).

Results of RQ3. Based on the results of our qualitative anal-
ysis (whose procedure is discussed in Section 4.4), we identified
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Table 4: Overlap between CATCHER and EvOSUITE regarding
the unique crash-related Ar1 misuses detected across 25 rep-
etitions.

Project Catcher () EvoSuite Catcher \ EvoSuite EvoSuite \ Catcher

BCEL 7 2 B
CODEC 9 - -
COLL 9 1 -
COMP 16 18 1
LANG 23 9 -
MATH 8 4 1
EASY 11 5 -
GSON 8 -
JACK 5 1 -
JAVS 2 2 -
JCOM 1 1 -
JFCH 23 4 -
JODA 11 14 -
JOPT 3 - -
NATT 4 - -
NEO4 8 9 -
SHIRO 6 1 -
XJOB 9 1 -
Total 163 30 2

public double select(final double[] work, final int[] pivotsHeap, final int k) {
80 int begin = 0;

81 int end = work.length;

84 while (end - begin > MIN_SELECT_SIZE) {
3}

113 Arrays.sort(work, begin, end);

114 return work[k];

3

(a) Class KthSelector from apache-commons-math

java.lang.ArrayIndexOutOfBoundsException:
at java.util.Arrays.rangeCheck(Arrays.java:120)
at java.util.Arrays.sort(Arrays.java:440)
at org.apache.commons.math3.util.KthSelector.select(KthSelector.java:113)

(b) ArrayIndexOutOfBoundsException occurs in the method select

@Test
public void test12() throws Throwable {
double[] doubleArray® = new double[17];
KthSelector kthSelector@ = new KthSelector();
int[] intArray@ = new int[3];
intArraye[@] = 19; intArray@[1] = 11; intArraye[2] = 15;
kthSelector0.select(doubleArray@, intArray@, 15);

(c) The test that is generated by Catcher

Figure 3: Example of Ap1 misuse detected by CATCHER but not
by EvoSuITE.

three types of misalignment between the A1 reference documenta-
tion and the API usages in the client applications. The numbers of
misuses for each type are reported in Table 5.

Type#1. The first type of misuses is Complete ApI documentation—
Inconsistent client. This category includes propagated exceptions
that are listed in the documentation of an Ap1 method. However,
these exceptions are neither handled in the caller methods, e.g.,
via check conditions or try-catch constructs to handle the raised
(yet documented) exceptions, nor documented in the Javadoc of the
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Table 5: Categories of triggered crashes per project.

Project Type#1  Type#2  Type#3
BCEL 9 0 0
CODEC 4 2 3
COLL 8 2 0
COMP 23 5 6
LANG 25 4 3
MATH 9 1 2
EASY 16 0 0
GSON 10 0 6
JACK 4 2 0
JAVS 4 0 0
JcoM 1 1 0
JFCH 26 1 3
JODA 21 4 0
JOPT 3 0 0
NATT 4 0 0
NEO4 17 0 0
SHIRO 6 1 0
XJOB 9 1 0
Total 199 24 20

client application. We found that the large majority (82%) of mis-
uses exposed (triggered) by CATCHER falls in this category. For one
project, neo4j-java-driver, we also submitted and received con-
firmation by developers for such relevant identified issues, which
were actually fixed.? This result highlights the practical usefulness
of automated tools, such as CATCHER, to notify developers of client
applications about possible misuses of an Ap1 method.

Type#2. The second type of misuses is Incomplete ApI documenta-
tion—Unaware client. This category includes propagated exceptions
that are not listed in the Ap1 reference documentation of the Ap1s
and possibly this leads developers of client applications to ApI
misuses. From our analysis, we discovered that around 10% of the
detected misuses falls in this category. This is in line with empirical
studies that argue about the impact of undocumented exceptions
on applications’ robustness [14, 31].

Type#3. The third type of misuses refers to the Complete Apr do-
cumentation—Consistent client. This category includes propagated
exceptions that are listed in the documentation of an Ap1 method,
but the client chooses explicitly not to handle them in the source
code. Consider the following scenario. The developers of a client
application are aware of a propagated exception and list this in the
application’s documentation. A generated test exercises an expected
behavior of the client method. Nevertheless, the ApI misuse remains
in the source code and can lead to crashes. Then, the generated test
can still be added to the existing test suite of the client application
and can be used in later regression testing activities. From our
investigation, we found that around 8% of the detected misuses falls
in this category.

6 DISCUSSION

Research implications. The findings of RQ2 indicate that focused
testing of API uses is not equivalent to merely maximizing tradi-
tional coverage criteria, although candidate misuses are statements
in the source code of the client applications. The better detection
capability and performance of CATCHER compared to plain Evo-
SUITE is due to the heuristics (focusing the search-based test case

Shttps://github.com/neo4j/neo4j-java-driver/issues/520


https://github.com/neo4j/neo4j-java-driver/issues/520

Effective and Efficient APl Misuse Detection via Exception Propagation and Search-Based Testing

generation) of CATCHER. We hope that our study draws new re-
search directions towards the evaluation of the benefits of focused
search-based test case generation. New studies could possibly con-
sider the detection of different types of ApI misuses e.g., ones that
are related to security and energy efficiency issues.

It is worth noting that EvoSUITE combined with the static ex-
ception propagation analysis as implemented in CATCHER is more
effective and efficient than using only its default criteria. In partic-
ular, in CATCHER, we run EVOSUITE by targeting only the classes
for which static analysis provided a list of (filtered) candidate mis-
uses and considering only a subset of the coverage targets, i.e.,
API call sites, input, and output coverage for the caller methods.
Furthermore, the exception propagation chains generated by the
static analysis help us to automate the test oracle, i.e., to discover
which generated tests can detect the misuses. In the traditional set-
ting, plain EvoSuITE should target all the classes of the examined
projects, resulting in thousands of test suites (with multiple test
cases each) that should be manually evaluated by developers [21]
to identify those cases able to trigger the misuses. Therefore, we
opt for more studies that combine the strengths of static analysis
and automated search-based test case generation.

Practical implications. CATCHER can identify API misuses in client
programs. Both developers of client programs and developers of
APIs can use this information to make their programs more robust.

Developers of client programs can use CATCHER to correctly
identify, handle and recover runtime errors caused by combinations
of wrong inputs. The test cases that CATCHER generates can be used
as a safety net against regressions in both the client and the ap1 code.
The runtime cost of CATCHER makes it suitable for use in release
pipelines: CATCHER could in less than 4 hours examine a 250k
LOC program (for commons-math). As part of an automated release
process, CATCHER could be proven useful to identify last minute
issues. Finally, CATCHER could be further improved to examine
changes on a per commit basis: this would allow it to run as part
of continuous integration pipelines, in order to support interactive
quality assurance processes, such as code review.

Moreover, the information that CATCHER produces can be used
upstream by developers of APis, to help them improve the robust-
ness of error-prone methods against wrong or adversary inputs.
ApI developers can make their code less susceptible to runtime
exceptions by guarding against inputs that CATCHER identifies as
erroneous. CATCHER tests encode an implicit invocation protocol.
Ap1 developers can inspect such tests to identify and fix initialization
or ordering issues that may lead their Apis to fail. If corrective ac-
tion is not possible, documentation can be used to make invocation
protocols explicit to clients.

7 THREATS TO VALIDITY

Internal validity. State-of-the-art mining and static analysis de-
tectors for ApI misuses suffer from low precision [4]. Instead, our
results show that CATCHER can precisely detect actual misuses and
provide empirical evidence of such misuses through generated test
cases. However, we acknowledge that we cannot make any claim
about the completeness of CATCHER because there is no ground
truth for the projects in our benchmark. Further investigation in

ISSTA *19, July 15-19, 2019, Beijing, China

that regards is part of our future agenda. Furthermore, the auto-
mated analysis we performed to evaluate whether the exceptions
triggered by CATCHER are listed in the documentation of the Java
platform’s Ap1 and the projects can also suffer from imprecision.
Even though we have also manually inspected and confirmed the
results, maybe a few exceptions found to be as undocumented could
finally be listed in the documentation. Another potential threat to
internal validity is the randomized nature of the genetic algorithms
and the seeding-based random search. To address this threat, we
followed the guidelines from the related literature[6]: we launched
each algorithm 25 times, and we used sound statistical tests, namely
the Vargha-Delaney A1, statistic and the Wilcoxon Rank Sum test,
to draw any conclusion. Another threat is related to the parameter
setting of the search algorithms. We used the parameter values
suggested by the related literature [7, 45, 55].

External validity. We acknowledge that our results regard one
particular A1, i.e., the Java 8 platform’s ap1. Future work includes
the analysis of other Java AP1 versions, as well as additional third-
party Java libraries used by client applications. Additionally, even
though our results are related to specific client applications, we used
a large benchmark of well-diversified and well-known software
projects. Thus, we expect that our main conclusions can also apply
to other benchmarks.

Reliability validity. For the reproducibility of our study, we have
made the source code (CATCHER), the processing scripts, and our
data publicly available.* Specifically, in the data, we include the
examined projects and AP1s (input), as well as the found test cases
(output).

8 RELATED WORK

Static A1 misuse detection. To assist developers to detect API
misuses, researchers have proposed tools that leverage techniques
including mining of software repositories and static analysis [1,
33, 41, 57, 58, 61]. In general, these tools work as follows. Start
by mining correct API usage patterns, from existing code bases,
and continue by classifying infrequent patterns observed in target
projects as candidate misuses. The produced candidates should be
then manually reviewed by developers. The available techniques
mainly differ on: (i) the representation (e.g., via graphs [41, 61],
formal concepts [33]) of the method call usages and (ii) the mining
algorithms (e.g., frequent-itemset mining [58], model checking [1],
frequent-subgraph mining [41]) used to detect infrequent patterns
(outliers)—based on thresholds defined a priori.

Recently, Amann et al. [4] compared 12 state-of-the-art misuse
detectors on a set of known Ap1s misuses collected from existing
bug datasets. They found that all detectors suffer from a number of
limitations. Initially, all detectors have low precision (below 12%)
as they produce a large number of false positives. This means that,
on average, the tools report less than 1.5 API misuses in the top-
20 of their results. Yet these tools typically produce an extensive
list of candidate AP1s misuses, which developers have to manually
check and approve. Also, most tools require large code bases to
distinguish uncommon—but correct usages—from actual misuses.

4 Available at https://github.com/mkechagia/Catcher
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Contrary to previous approaches, CATCHER (i) effectively and
efficiently identifies crash-related Ap1 misuses eliminating the need
for the manual assessment of the candidate Ap1 misuses produced
by the static analysis—it applies filtering and search-based test
case generation to validate these candidates automatically; (ii) it
does not need a code base for learning to distinguish good from
bad Ap1 usage patterns—it uses exception propagation analysis to
automatically pinpoint candidate Ap1 misuses. In essence, CATCHER
sacrifices recall (it does not report all possible misuses) for achieving
high precision (all reported misuses are indeed misuses).

Static exception propagation. Several tools exist for statically
identifying possible exceptions that a method can throw at run-
time [56]. Robillard and Murphy implemented Jex that applies inter-
procedural analysis and finds all the exception types that a specific
method of a Java program can generate at runtime [51]. Vallée-Rai
et al. developed the SooT Java byte code optimization framework
that can identify might-thrown exceptions for Ap1 methods, using
(in the first instance) intra-procedural static analysis [59]. Fu and
Ryder presented an inter-procedural exception-flow analysis tech-
nique, based on Soor, for the examination of the exception handling
architecture of software systems [25]. Bravenboer and Smaragdakis
combined inter-procedural exception-flow analysis and points-to
analysis for better precision in call-graph construction [11]. Garcia
and Cacho introduced an inter-procedural exception-flow analy-
sis tool (eFlowMining) for .NET, which visualizes error handling
constructions [26].

The exception propagation of CATCHER is inter-procedural and
mainly differs from peer approaches in the filtering (Section 3.2) of
the found ap1-misuse candidates coming from the initial stage of
the static exception propagation analysis (Section 3.1). Our filtering
approach helps us to keep in the candidate misuses’ list only the real
API misuses that refer to: (i) uncaught exceptions and (ii) undeclared
exceptions in the throws clause of the method signature of a caller.

Search-based software testing. Most of the research effort in
search-based software testing (sBST) has been devoted to three
main aspects: (i) evaluating fault detection capability of generated
tests (e.g., [23, 27]), (ii) defining heuristics to guide the search pro-
cess (e.g., [32, 62]), (iii) designing and evaluating different search
algorithms (e.g., [5, 44, 45]). The goal of sBST tools consists in gen-
erating test cases/suites maximizing some coverage criteria (e.g.,
branch, line, and statement coverage) [21]. Recent studies [27, 52]
empirically investigated the effect of combining multiple coverage
criteria on the quality of the generated test suites and showed a
positive impact on the fault detection capability.

sBST techniques use heuristics that are specific to each coverage
criterion and measure how far a candidate test case/suite is from
covering each coverage target (e.g., branches). For example, com-
mon heuristics for branch coverage include the branch distance [32]
and the approach level [62].

These heuristics are then used to guide search algorithms to-
wards generating tests with higher coverage. The earliest search
strategy is the single-target approach, which attempts to satisfy
one coverage target (e.g., one branch) at a time through multiple
re-executions of the search (e.g., genetic algorithms). More recent
approaches [20, 21, 44, 45] handle all coverage targets (e.g., all
branches) at once with one single execution of the search. Rojas
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at al. [53] showed that multi-target approaches are superior to the
single-target ones, while Panichella at al. [44, 45] demonstrated the
higher capability of many-objective search compared to alternative
multi-target approaches in reaching higher code coverage.

Compared to the advances of sBsST mentioned above, in this paper,
we use exception propagation to identify candidate ApI misuses in
the source code of client applications. Then, we use both coverage-
based heuristics to guide a many-objective search toward covering
the identified AP1 call sites and expose the propagated exceptions.
Therefore, compared to existing techniques, our approach focuses
the search on the candidate API misuses rather than targeting all
code elements (e.g., branches) of client applications.

Hybrid approaches. Several hybrid (static and dynamic) analysis
approaches have been developed in the past for software verifica-
tion. For instance, Babi¢ et al. used static analysis to guide their
symbolic-execution based automated test generation tool to iden-
tify vulnerabilities [9]. Additionally, Zhang et al. combined static
and dynamic automated test generation approach to identify bugs
related to the sequence of method calls among the classes of a
Java project [63]. Also, Ma et al. developed a hybrid technique that
uses static analysis to extract knowledge from a project under test
to guide the run-time test generation [34]. Finally, Csallner and
Smaragdakis developed C'n’C that automatically detects errors by
combining static checking, based on theorem proving, and test
generation [16].

To the best of our knowledge, CATCHER is the first that combines
static exception propagation and search-based testing focusing on
the identification of dependency-related bugs, in client programs,
caused by misuses of the Java platform’s Ap1.

9 CONCLUSIONS

We introduce a verification technique, CATCHER, that combines
static exception propagation analysis and search-based testing to
effectively and efficiently identify and expose ApI misuses in client
programs. We validate CATCHER against 21 Java applications, tar-
geting misuses of the Java platform’s ap1. Our results show that
CATCHER is able to efficiently generate test cases that uncover 243
API misuses leading to crashes. The collected results indicate that
CATCHER can reveal more API misuses (77 cases) that would remain
undetected by plain EvoSurTe, while also requiring less than 20%
of the time spent by EvoSurTE. Overall, static exception propaga-
tion analysis and search-based testing combined can significantly
improve the detection capability of Ap1 misuses, thereby improving
the robustness of applications.

In the future, we aim to extend CATCHER along the following
dimensions: (i) introduce support for longer exception propagation
chains to cover deeply nested api calls, (ii) consider third-party
libraries in the analysis to cover the runtime exceptions they intro-
duce, and (iii) extend CATCHER to cover other types of API misuses
(e.g., API initialization violations).
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