

Appendices Table of Contents

Number	Title	Page
1	Ammonia Mass in Ammonia Heat Pump	1
2	Preliminary Estimation for Ammonia Cycle	10
3	Economic Evaluation of Ammonia Heat Pump	14
4	Basis for The Compressors Simulation	33
5	Compressor Scheme	34
6	Piping Calculations	35
7	Estimation of The Enthalpy and Entropy of The Hot Tap	
	Water at 137 °C and 13 bar	39
8	Tera Joules Calculation	43
9	Overall Heat Transfer Coefficient	50
10	Estimation of The Natural Gas and Air Consumption in	
	The Fired Heater	51
11	Process Flow Scheme	54
12	Process Streams Summary	55
13	Equipment Summary and Spesification Sheet	59
14	Demand Fluctuation	78
15	Streams to The District	84
16	District Piping System Block Scheme	87
17	Hazard and Operability Study	88
18	Fire and Explosion Index Calculation	101
19	Heat Losses Calculation (Way In and Return)	103
20	Exergy Analysis of The Process	116
21	Exergy Losses Calculation	120
22	COP Calculation	128
23	Ammonia Heat Pump Aspen Flowsheet	130
24	District Pipeline Aspen Flwosheet	131
25	Total Investment of Ammonia Heat Pump	132
26	Production Cost of Ammonia Heat Pump	134
27	Production Cost of Furnace	135
28	Total Product Cost	136
29	Revenues	137
30	Chemical Heat Pump Simulation	138
31	Economic Evaluation of Chemical Heat Pump	142
32	Total Investment of Chemical Heat Pump	160
33	Production Cost of Chemical Heat Pump	162
34	T-xy Diagram for Acetone-Isopropanol	163
35	Utility Cost	164
36	Team Photograph	165

Appendix 1 Ammonia Mass in Ammonia Heat Pump

An estimative value for the inventory of ammonia in the cycle (equipment + pipes) is calculated here. The exact ammonia inventory should be provided in the detailed design.

Evaporator

Area of the evaporator:

 $AEVP := 7.927 \times 10^3 \text{ ft}^2$

The cost of this piece of equipment was calculated based on 3/4-in. or 1-in. O.D. 12ft long tubes on square or triangular pitch, thus:

```
Dtube := 1 in
Ltube := 12 ft
Aouttube := \pi \cdot Dtube \cdot Ltube \cdot 0.083
```

Heat transfer area for one tube is:

Aouttube = 3.129 ft²

The number of tubes is:

Ntube := $\frac{AEVP}{Aouttube}$

Ntube = 2.533×10^{3}

According to Table 13.6 of "Product and Process Design Principles" [1], the shell inner diameter is:

```
Dshell := 58 in
Lshell := 12 ft
```

In order to find the amount of ammonia in shell side:

$$Vtube := Ntube \cdot \frac{\pi \cdot Dtube^2 \cdot Ltube \cdot 0.083^2}{4}$$

$$Vshell := \frac{\pi \cdot Dshell^2 \cdot Lshell \cdot 0.083^2}{4}$$

$$Vshell = 218.415 \text{ ft}^3$$

$$Vtube = 164.485 \text{ ft}^3$$

$$VammoniaEVP := Vshell - Vtube$$

$$VammoniaEVP = 53.93 \text{ ft}^3$$

densityEVP :=
$$0.062 \cdot 18.05 \cdot \frac{\text{lb}}{\text{ft}^3}$$

MammoniaEVP := VammoniaEVP · densityEVP

MammoniaEVP = 60.286 lb

It is assumed that the volume of the vapor part in the kettle type evaporator is equivalent to the 1/2 of total shell volume in the evaporator, thus:

VvaporammoniaEVP= 109.208 ft³ densityEVP := 0.062 (4.989) $\frac{lb}{ft^3}$

MvaporammoniaEVP:= VvaporammoniaEVP densityEVP

MvaporammoniaEVP= 33.78 lb

Condenser

Area of the condenser:

ACOND := 2.496×10^3 ft²

The cost of this piece of equipment was calculated based on 3/4-in. or 1-in. O.D. 12ft long tubes on square or triangular pitch, thus:

Dtube := 1 in Ltube := 12 ft Aouttube := $\pi \cdot D$ tube · Ltube · 0.08:

Heat transfer area for one tube is:

ft²

Aouttube = 3.129

The number of tubes is:

$$Ntube := \frac{ACOND}{Aouttube}$$

Ntube = 797.692

According to Table 13.6 of "Product and Process Design Principles" [1], the shell inner diameter is:

Dshell := 37 in

Lshell := 12 ft

In order to find the amount of ammonia in shell side:

Vtube := Ntube $\cdot \frac{\pi \cdot \text{Dtube}^2 \cdot \text{Ltube} \cdot 0.083^2}{4}$ Vshell := $\frac{\pi \cdot \text{Dshell}^2 \cdot \text{Lshell} \cdot 0.083^2}{4}$ VammoniaCOND := Vshell - Vtube VammoniaCOND = 37.093 ft³ densityCOND := 0.062 \cdot 513.39: $\frac{\text{lb}}{\text{ft}^3}$ MammoniaCOND := VammoniaCOND densityCOND MammoniaCOND = 1.181 \times 10^3 \text{lb}}

It is assumed that the volume of the vapor part of the kettle type condenser is equivalent to the 1/2 of total shell volume in the condenser, thus:

VvaporammoniaCOND= $0.5 \cdot$ Vshell VvaporammoniaCOND= $44.443 \quad \text{ft}^3$ densityCOND := $0.062 \cdot (18.955) \quad \frac{\text{lb}}{\text{ft}^3}$

MvaporammoniaCOND= VvaporammoniaCONDdensityCOND

MvaporammoniaCOND= 52.23 lb

Intercooler

Area of the intercooler:

 $AHEX := 2.828 \times 10^3$ ft²

The cost of this piece of equipment was calculated based on 3/4-in. or 1-in. O.D. 12ft long tubes on square or triangular pitch, thus:

Dtube := 1 in Ltube := 12 ft Aouttube := $\pi \cdot Dtube \cdot Ltube \cdot 0.08$:

Heat transfer area for one tube is:

Aouttube = 3.129 ft²

The number of tubes is:

Ntube :=
$$\frac{AHEX}{Aouttube}$$

Ntube = 903.796

According to Table 13.6 of "Product and Process Design Principles" [1], the shell inner diameter is:

Dshell := 37 in Lshell := 12 ft

In order to find the amount of ammonia in shell side:

$$Vtube := Ntube \cdot \frac{\pi \cdot Dtube^2 \cdot Ltube \cdot 0.083^2}{4}$$
$$Vshell := \frac{\pi \cdot Dshell^2 \cdot Lshell \cdot 0.083^2}{4}$$
$$VammoniaHEX := Vshell - Vtube$$

VammoniaHEX=
$$30.204$$
 ft³
densityHEX := $0.062 (9.432)$ $\frac{lb}{ft^3}$

MammoniaHEX:= VammoniaHEX:densityHEX

lb

MammoniaHEX= 17.663

Low Pressure Compressor

The net volume for ammonia vapor in the compressor is assumed to be 0.7*2.0 m3:

Vcompressor1 :=
$$0.7 \cdot 2.0 \cdot 3.28^{3}$$

Vcompressor1 = 49.403 ft³
densityCOMP1 := $0.062 \cdot (9.034)$ $\frac{lb}{ft^{3}}$

MammoniaCOMP1 := Vcompressor1 · densityCOMP1

MammoniaCOMP1 = 27.671 lb

High Pressure Compressor

The net volume for ammonia vapor in the compressor is assumed to be 0.7*2.0 m3:

Vcompressor2 := $0.7 \cdot 2.0 \cdot 3.28^3$ Vcompressor2 = 49.403 ft³ densityCOMP2 := 0.062(18.955) $\frac{lb}{ft^3}$

 $MammoniaCOMP2 := Vcompressor2 \cdot densityCOMP2$

MammoniaCOMP2 = 58.058 lb

Pipe1

Pipe between condenser and evaporator is assumed to have the following length and diameter:

$$Lp := 20 \qquad ft$$
$$Dp := 5 \qquad in$$

To cross check the above figures, the velocity is calculated and then it is compared to the typical values for velocity according to rules of thumb:

Apipe :=
$$\frac{\pi \cdot \text{Dp}^2 \cdot (6.944 \times 10^{-3})}{4}$$

Apipe = 0.136 ft²

Volumetric flow in pipe:

$$Q := 7.575 \times 10^{-3} \cdot (35.288)$$

$$Q = 0.267 \qquad \frac{\text{ft}^3}{\text{sec}}$$

$$\text{Velpipe} := \frac{Q}{\text{Apipe}}$$

$$\text{Velpipe} = 1.961 \qquad \frac{\text{ft}}{\text{sec}}$$

This velocity complies with the range of medium viscosity liquid velocity. Therefore the ammonia inventory in this pipe is calculated as follows:

VammoniaPIPE1:= Apipe \cdot Lp VammoniaPIPE1= 2.727 ft³

MammoniaPIPE1:= densitypipe1 · VammoniaPIPE

 $\frac{1b}{ft^3}$

lb

MammoniaPIPE1 = 86.799

Pipe2

Pipe between evaporator and Compressor1 is assumed to have the following length and diameter :

$$Lp := 2C \quad ft$$
$$Dp := 7 \quad in$$

To cross check the above figures, the velocity is calculated and then it is compared to the rules of thumb for velocity:

Apipe :=
$$\frac{\pi \cdot Dp^{2} \cdot \left(6.944 \times 10^{-3}\right)}{4}$$

Apipe = 0.267 ft²

Volumetric flow in pipe:

$$Q := 0.779 (35.288)$$

$$Q = 27.489 \qquad \frac{\text{ft}^3}{\text{sec}}$$

$$\text{Velpipe} := \frac{Q}{\text{Apipe}}$$

$$\text{Velpipe} = 102.865 \qquad \frac{\text{ft}}{\text{sec}}$$

This velocity is within the range for a medium pressure vapor. Therefore the ammonia inventory in this pipe is calculated as follows:

VammoniaPIPE2:= Apipe · Lp
VammoniaPIPE2= 5.345
$$\text{ft}^3$$

densityPIPE2 := 0.062 (4.989) $\frac{\text{lb}}{\text{ft}^3}$

Mammonia PIPE2 := Vammonia PIPE2 density PIPE2

MammoniaPIPE2= 1.653 lb

Pipe3

Pipe between Compressor1 and intercooler is assumed to have the following length and diameter:

 $Lp := 6.5\epsilon \qquad ft$ $Dp := 7 \qquad in$

To cross check the above figures, the velocity is calculated and then it is compared to the rules of thumb for velocity:

Apipe :=
$$\frac{\pi \cdot \text{Dp}^2 \cdot (6.944 \times 10^{-3})}{4}$$

Apipe = 0.267 ft²

Volumetric flow in pipe:

$$Q := 0.43 (35.288)$$

$$Q = 15.174 \qquad \frac{\text{ft}^3}{\text{sec}}$$

$$\text{Velpipe} := \frac{Q}{\text{Apipe}}$$

$$\text{Velpipe} = 56.781 \qquad \frac{\text{ft}}{\text{sec}}$$

This velocity is within the range for a medium pressure vapor. Therefore the ammonia inventory in this pipe is calculated as follows:

VammoniaPIPE3:= Apipe · Lp
VammoniaPIPE3= 1.753
$$\text{ft}^3$$

densityPIPE3 := 0.062 (9.034) $\frac{\text{lb}}{\text{ft}^3}$

MammoniaPIPE3:= VammoniaPIPE3densityPIPE3

MammoniaPIPE3= 0.982 lb

Pipe4

Pipe between intercooler and Compressor2 is assumed to have the following length and diameter:

 $Lp := 6.5\epsilon \qquad ft$ Dp := 7

To cross check the above figures, the velocity is calculated and then it is compared to the rule of thumb for velocity:

Apipe :=
$$\frac{\pi \cdot Dp^2 \cdot (6.944 \times 10^{-3})}{4}$$

Apipe = 0.267 ft²

Volumetric flow in pipe:

$$Q := 0.412 (35.288)$$
$$Q = 14.539 \quad \frac{ft^3}{sec}$$
$$Velpipe := \frac{Q}{Apipe}$$
$$Velpipe = 54.404 \quad \frac{ft}{sec}$$

This velocity is within the range for a medium pressure vapor. Therefore the ammonia inventory in this pipe is calculated as follows:

VammoniaPIPE4:= Apipe · Lp
VammoniaPIPE4= 1.753
$$\text{ft}^3$$

densityPIPE4 := 0.062 (9.432) $\frac{\text{lb}}{\text{ft}^3}$
MammoniaPIPE4 := VammoniaPIPE4densityPIPE4

MammoniaPIPE4= 1.025 lb

Pipe5

Pipe between Compressor2 and condenser is assumed to have the following length and diameter:

$$Lp := 20 \qquad ft$$
$$Dp := 5 \qquad in$$

To cross check the above figures, the velocity is calculated and then it is compared to the rule of thumb for velocity:

Apipe :=
$$\frac{\pi \cdot \text{Dp}^{2} \cdot (6.944 \times 10^{-3})}{4}$$
Apipe = 0.136 ft²

Volumetric flow in pipe:

$$Q := 0.205 (35.288)$$
$$Q = 7.234 \qquad \frac{ft^3}{sec}$$
$$Velpipe := \frac{Q}{Apipe}$$
$$Velpipe = 53.057 \qquad \frac{ft}{sec}$$

This velocity is within the range for a medium pressure vapor. Therefore the ammonia inventory in this pipe is calculated as follows:

VammoniaPIPE5:= Apipe · Lp
VammoniaPIPE5= 2.727
$$\text{ft}^3$$

densityPIPE5 := 0.062 (18.955) $\frac{\text{lb}}{\text{ft}^3}$

MammoniaPIPE5:= VammoniaPIPE5densityPIPE5

Total amount of ammonia in the cycle:

SUM1 := MammoniaPIPE1 + MammoniaPIPE2 + MammoniaPIPE3 + MammoniaPIPE4

SUM2 := MammoniaPIPE5 + MammoniaEVP + MammoniaCOND + MvaporammoniaEVP

SUM3 := MvaporammoniaCOND + MammoniaCOMP1 + MammoniaCOMP2 + MammoniaHEX

Mtotal := SUM1 + SUM2 + SUM3

Mtotal = 1.524×10^3 lb

Mtotal := 0.454 Mtotal

The rough amount of ammonia inventory in the cycle is:

Mtotal = 691.921 kg

References

W. D. Seider, J.D. Seader, D.R. Lewin, "Product & Process Design Principles", John Wiley and Sons, Inc., 2004.

Appendix 2Preliminary Estimation for Ammonia Cycle

Estimating the vapor pressure of ammonia

(Ref: RPP, The properties of Gases and Liquids, 4th Edition)

Parameters for Wagner equation:

t := 15 C

pvap := 8 Initial guess to solve the nonlinear equation below (t in C and Ps in bar)

$$Ps(T) := root \left[ln(pvap) - \left[(VPA) - \frac{VPB}{t + 273} + VPC ln(t + 273) + \frac{VPD pvap}{(t + 273)^2} \right], pvap \right]$$

Ps(T) = 7.297 bar Saturation pressure at 15C

t := 15, 16..95 Temperature range (C) to construct the curve Pvap (bar) versus t (C)

pvap := 8 Initial guess to solve the nonlinear equation for all points

$$Ps(t) := root \left[ln(pvap) - \left[(VPA) - \frac{VPB}{t + 273} + VPC ln(t + 273) + \frac{VPD pvap}{(t + 273)^2} \right], pvap \right]$$

Calculating the mass flow rate of ammonia: energy balance in the ammonia evaporator:

mwastewater := 291800

kg/h Twastewaterin := 25 + 273

Twastewaterout := 18 + 273

Heuristics for heat exchangers: Considering minimum approach temperature of 3 C between water out and ammonia in, the vaporization of ammonia should occur at 15 C. The vapor pressure of ammonia at 15 C is 7.3 bar.

hvap := $627.3 \frac{0.252}{0.454}$	hvap = 348.193	kcal/kg	Ref : Smith & van Ness, 4th edition, Page 285, Table 9.2, Thermodynamic Properties of saturated ammonia
hliq := $109.2 \frac{0.252}{0.454}$	hliq = 60.613	kcal/kg	Values taken at 15.5C and 7.4 bar

Using a correlation CP(T) for water and ammonia

	Ref : Smith & van Ness, 4th edition,
Constants for water liquid	Page 114, Table 4.3, Heat capacity of liquids
	(Validity: T from 273.15 to 373.15 K)

CPAwliq := 8.712 CPBwliq := $1.25 \cdot 10^{-3}$ CPCwliq := $-0.18 \cdot 10^{-6}$

Constants for ammonia liquid

CPAamliq:= 22.62t CPBamliq:= -100.7510^{-3} CPCamliq:= $192.71 \cdot 10^{-6}$

 $R := 8.31^2$ J/(mol.K)

$$CPw(T) := R \cdot \frac{1000}{18} \cdot \left(CPAwliq + CPBwliqT + CPCwliqT^2 \right) \qquad J/(kg.K)$$

cpwastewater := $\frac{\int_{Twastewaterout}^{Twastewaterout} CPw(T) dT}{Twastewaterout}$

cpwastewater = 4.187×10^3 J/(kg.K)

 $mammonia:=\frac{mwastewater \cdot cpwastewater \cdot (Twastewaterin - Twastewaterout)}{(hvap - hliq) \cdot 10004.18}$

mammonia = 7.114×10^3 kg/h

This is the amount of ammonia that must be circulating in the heat pump cycle. This data serve as input for a tear stream required by Aspen for the simulation of the whole system.

Ammonia will be vaporizing at ~15 C and 7.4 bar and removing heat from the waste heat stream.

The clean water (tap water) will be upgraded in the ammonia condenser. Heuristic for the condenser: Minimum approach of \sim 3C. Therefore the condensation temperature will be 93-95C. Therefore the ammonia compressor must operate at a discharge pressure, which is correspondent to 93C(\sim 200F) via isentropic compression. According to Figure 9.4 - Pressure/enthalpy for ammonia (Smith & van Ness, 4th edition, Page 284), the pressure at the compressor discharge should be \sim 17.22 bar.

Preliminary calculation the mass flow rate of clean water: energy balance in the ammonia condenser (this value serves only as preliminary guess).

kg/h

hg := $685 \cdot \frac{0.252}{0.454}$		hg = 380.22	kcal/kg	Ref : Smith & van Ness, 4th edition, Page 284, Table 9.4 Pressure/enthalpy diagram for ammonia
$hL := 170 \frac{0.252}{0.454}$		hL = 94.361	kcal/kg	Values taken at ~17 bar
Tcleanwaterin := 60	С	Tcleanv	waterout $:= 90$	С
Using the same correlation CP(T) for water as above				

$$cpcleanwater := \frac{\int_{Tcleanwaterout}^{Tcleanwaterout} CPw(T) dT}{Tcleanwaterin}$$

$$cpcleanwater = 4.067 \times 10^{3} \qquad J/(kg.K)$$

$$mcleanwater := \frac{mammonia(hg - hL) \cdot 10004.18}{cpcleanwater \cdot (Tcleanwaterout - Tcleanwaterin)} \qquad kg/h$$

mcleanwater = 6.968×10^4

Appendix 3 Economic Evaluation of Ammonia Heat Pump

The Main Design

All the costs have been evaluated based on "Product and Process Design Principles" [1].

According to Chemical engineering Magazine (2), the Annual CE Plant Cost Index for 2000 (Base Case):

CE1:= 394.1

The Annual CE Plant Cost Index for 2004:

CE2:= 444.2

The cost of equipments are calculated, as follows:

Basis of Compressor Design:

- 1. Maximum discharge pressure of the compressor corresponds to a maximum temperature of 375 F (190 C) (heuristics #35, page 186 [1]).
- 2. Maximum compression ratio = 4 for each stage (Heuristics #36, page 186 [1]).

Psuction := 6.5 bar Pdischarge := 38 bar

These values are just initial guess for the simulation. Final values will be calculated via Aspen Simulation.

Ratio := $\frac{\text{Pdischarge}}{\text{Paractian}}$	
Psuction	Ratio > 4, 4 < Ratio < 16, from the table,
Ratio = 5.846	page 186, the number of stages must be 2.

nstages := 2

For equal compression ratios, yields:

1	
ratioperstage := Ratio	The pressure ratio in each
rationerstage -2.418	compression stage will be
1anoperstage - 2.416	2.32

There will be two compression stages with an inter-stage receiver between them. The initial guess pressure profile will be as follows:

Psucction 1 = 6.5 bar Pdischarge 1 = 14.6 bar Preceiver inlet = 14.6 bar Psucction 2 = 14.6 bar Pdischarge 2 = 38 bar

According to heuristics #31, the following applies: ΔP for condenser and evaporator = 1.5 psi (0.103 bar) for boiling and condensing fluids

Inter-stage receiver oulet temperature should be higher than 100 F (38C), according to heuristics #35 [1].

Low Pressure Compressor:

Reciprocating compressor has been selected. The points to be considered with regard to this type of compressor are:

- 1- High efficiency (80%-90%)
- 2-More expensive
- 3-Larger in size
- 4-More flexible in operation
- 5-Large foundation and more maintenance are required
- 6-Less noisy

7-Must be protected by a knock-out drum

It should be mentioned that the compressor type is in compliance with reference [3]

The compressor is driven by a electric motor with a typical efficiency of 95% for 1000 hp. Thus, the driven factor for electric motor is:

FD := 1

Carbon Steel material factor has been applied:

FM := 1.0

Low pressure compressor Break HorsePower is:

hp1 := 924.764 hp

 $CB1 := exp(7.6084 + 0.80 \ln(hp1))$

Capital Cost for low pressure compressor:

$$CpCOMP1 := FD \cdot FM \cdot CB \cdot \left(\frac{CE2}{CE1}\right)$$
$$CpCOMP1 = 5.359 \times 10^{5}$$

High Pressure Compressor :

Reciprocating compressor has been selected. The points to be considered with regard to this type of compressor are: 1- High efficiency (80%-90%) 2-More expensive 3-Larger in size 4-More flexible in operation 5-Large foundation and more maintenance are required 6-Less noisy 7-Must be protected by a knock-out drum

It should be mentioned that the compressor type is in compliance with reference [3].

The compressor is driven by a electric motor with a typical efficiency of 95% for 1000 hp. Thus, the driven factor for electric motor is:

FD := 1

Carbon Steel material factor has been applied:

FM := 1.0

High pressure compressor Break HorsePower is:

hp2 := 1.268×10^3 hp

 $CB2:= exp(7.6084 + 0.80 \ln(hp2))$

Capital Cost for high pressure compressor :

$$CpCOMP2 := FD \cdot FM \cdot CB2 \left(\frac{CE2}{CE1} \right)$$
$$CpCOMP2 = 6.898 \times 10^{5}$$

Air Blower:

This blower is overdesigned to cope with the fluctuations in the winter time.

```
hpBLOWER := 3.017 \times 10^3 hp
```

 $CBLOWER := exp(6.6547 + 0.79 \ln(hpBLOWER))$

For cast iron, the material factor is:

FM := 0.6

Capital Cost for air blower:

CpBLOWER := FM·CBLOWER
$$\left(\frac{CE2}{CE1}\right)$$

CpBLOWER = 2.945× 10⁵ \$

Evaporator :

Area of the evaporator:

AEVP:= 7.927×10^3 ft²

The material of construction of the shell and tube sides is carbon steel, thus:

$$FM := 0 + \left(\frac{AEVP}{100}\right)^0$$
$$FM = 1$$

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure factor based on the shell side pressure in psig is calculated as follows:

PEVPShell:= 81.025 psig
FP :=
$$0.9803 + 0.018 \left(\frac{\text{PEVPShell}}{100} \right) + 0.0017 \left(\frac{\text{PEVPShell}}{100} \right)^2$$

FP = 0.996

The evaporator is of Kettle Vaporizer type:

CBEVP:=
$$\exp\left[11.967 - 0.8709 \ln(AEVP) + 0.09005 (\ln(AEVP))^2\right]$$

The purchase cost of the evaporator is:

$$CpEVP := FP \cdot FM \cdot FL \cdot CBEVP \left(\frac{CE2}{CE1}\right)$$
$$CpEVP = 1.13 \times 10^{5}$$

Condenser:

Area of the condenser:

 $ACOND := 2.36 \times 10^3 \qquad \text{ft}^2$

The material of construction of the shell and tube sides is carbon steel, thus:

$$FM := 0 + \left(\frac{ACOND}{100}\right)^0$$
$$FM = 1$$

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure factor based on the shell side pressure in psig is calculated as follows:

$$FP := 0.9803 + 0.018 \left(\frac{PCONDShell}{100}\right) + 0.0017 \left(\frac{PCONDShell}{100}\right)^2$$
$$FP = 1.126$$

The condenser is of Kettle Vaporizer type:

CBCOND :=
$$\exp\left[11.967 - 0.8709 \cdot \ln(\text{ACOND}) + 0.09005 \cdot (\ln(\text{ACOND}))^2\right]$$

The purchase cost of the condenser is:

$$CpCOND := FP \cdot FM \cdot FL \cdot CBCOND \left(\frac{CE2}{CE1}\right)$$
$$CpCOND = 5.906 \times 10^{4}$$

Fired Heater:

The cost of the fired heater depends on absorbed heat. Since the operational pressure is not too high and the material of construction is carbon steel, there is no need to apply any correction factor.

This fired heater is designed in such a way to cope with the fluctuations in the winter time. Furthermore, the flue gas heat exchanger and the furnace are combined:

QFurnace :=
$$3.554 \times 10^{8}$$
 $\frac{Btu}{hr}$
QFGHX:= 1.449×10^{8} $\frac{Btu}{hr}$
Qduty := QFGHX + QFurnace
Qduty = 5.003×10^{8} $\frac{Btu}{hr}$
Pressure factor: FP := 1
Material Factor: FM := 1
CBFIRHEAT:= $0.512(Qduty)^{0.81}$
CpFIRHEAT := FP·FM·CBFIRHEAT $\left(\frac{CE2}{CE1}\right)$
CpFIRHEAT = 6.421×10^{6} \$

Pump:

Centrifugal pump is selected because all the requirments in terms of volumetric flow rate, developed head and NPSH are met.

Q :=
$$7.91 \times 10^3$$
 gpm
NPSH := 116.28 ; ft
H := 259.04 (ft
S := Q·(H)^{0.5}
S = 1.273×10^5 gpm·ft^{0.5}

The material of construction is cast iron, thus:

FM := 1.0

The type of pump is 1 stage radial centrifugal pump (HSC) with 3600 shaft rpm, thus:

FT := 1.70
CBPUMP :=
$$\exp\left(9.2951 - 0.6019\ln(S) + 0.0519\ln(S)^2\right)$$

CpPump := FT·FM·CBPUMP $\left(\frac{CE2}{CE1}\right)$

The cost of electric motor for pump is calculated as follows:

Pump brake horsepower: PB := 650.08! hp $\eta m := 0.80 + 0.0319 \ln(PB) - 0.00182 (\ln(PB))^2$ PC := $\frac{PB}{\eta m}$

The motor type of "Totally enclosed, fan-cooled enclosure" with 3600 rpm is selected, thus the type factor for the electric motor is:

FTmotor := 1.4

 $CBMOTOR := \exp\left[5.4866 + 0.13141\ln(PC) + 0.053255(\ln(PC))^{2} + 0.028628(\ln(PC))^{3} - 0.0035549(\ln(PC))^{4}\right]$

CpMotor := FTmotor · CBMOTOR · $\left(\frac{CE2}{CE1}\right)$ CpPumpTotal := CpPump + CpMotor CpPumpTotal = 6.267 × 10⁴ \$

A spare pump needs to be added.

Heat Exchanger Inter-Cooler:

Area of the inter-cooler: $AHXINCOOLER:= 2.828 \times 10^3$ ft²

The material of construction of the shell and tube sides is carbon steel, thus:

$$FM := 0 + \left(\frac{AHXINCOOLER}{100}\right)^{0}$$
$$FM = 1$$

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure factor based on the shell side pressure in psig is calculated as follows:

PHXINCOOLERShell= 202.861 psig

$$FP := 0.9803 + 0.018 \left(\frac{PHXINCOOLERShell}{100}\right) + 0.0017 \left(\frac{PHXINCOOLERShell}{100}\right)^2$$

FP = 1.024

The heat exchanger is of floating head type:

CBHXINCOOLER=
$$\exp\left[11.667 - 0.8709 \ln(AHXINCOOLER) + 0.09005 (\ln(AHXINCOOLER))^2\right]$$

The purchase cost of the heat exchanger is:

Ammonia Collector Vessel:

The amount of ammonia in the cycle is calculated to be:

mammonia := 700 kg

Therefore, considering an over design factor of 0.15, the volume of the collector vessel is calculated as follows:

densityammonia := 513.4
$$\frac{\text{kg}}{\text{m}^3}$$

vol := $\frac{\text{mammonia 1.15}}{\text{densityammonia}}$
vol = 1.568 m^3

The ratio of length to diameter is assumed to be 2.5:

D := 1
L := 2.5
Given
L = 2.5 D
vol =
$$\frac{\pi \cdot D^2 \cdot L}{4}$$

y := Find(D,L)
y = $\begin{pmatrix} 0.928\\ 2.319 \end{pmatrix}$

Therefore vessel's dimensions are as follows:

$$D := 0.9283.28$$
 ft
 $L := 2.3193.28$ ft

Density of carbon steel:

density := 490
$$\frac{10}{ft}$$

Since the operating pressure of vessel is 37.5 bar, the design pressure is calculated as:

P := 537 psig
Pd := exp
$$\left[0.60608 + 0.91615 \ln(P) + 0.0015655 (\ln(P))^2 \right]$$

Pd = 618.227 psig

The operating temperature of vessel is 160 F, thus the design temperature is:

Td := 230 F

For SA-387B which is a commonly used low-alloy (1%Cr and 0.5% Mo) steel for non-corrosive environment including the presense of hydrogen, operating at this design temperature the maximum allowable stress is:

S := 1500(psi

For carbon steel the value of welding efficiency is:

E := 0.85

Based on the above values, the cylindrical shell wall thickness is computed from ASME pressure-vessel code as follows:

$$tp := \frac{Pd \cdot D \cdot 12}{2 \cdot S \cdot E - 1.2 Pd}$$
$$tp = 0.912 \qquad \text{inch}$$

The weight of the shell and the two heads is approximately:

W :=
$$\pi \cdot \left(D + \frac{tp}{12} \right) \cdot (L + 0.8 \cdot D) \cdot \frac{tp \cdot density}{12}$$

W = 3.665× 10³ lb

The material of construction is carbon steel:

FM := 1.0

 ft^2

The cost of horizental vessels are estimated by:

 $Cv := \exp\left[(8.717 - 0.2330 \ln(W)) + 0.0433 (\ln(W))^2 \right]$

The added cost for platforms and ladders is given by:

 $Cp := 1580 D^{0.20294}$

Therefore the cost of this vessel is;

 $CpVESSEL := FM \cdot Cv + Cp$

CpVESSEL= 1.865×10^4 \$

Heat Exchanger District 1:

Area of the HXDIS1:

AHXDIS1 := 1.676×10^4

The material of construction of the shell side and the tube side is carbon steel, thus:

$$FM := 0.00 + \left(\frac{AHXDIS1}{100}\right)^{0.00}$$

FM = 1

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure factor based on the shell side pressure in psig is calculated as follows:

PHXDIS1Shell:= 170.98: psig

$$FP := 0.9803 + 0.018 \left(\frac{PHXDIS1Shell}{100}\right) + 0.0017 \left(\frac{PHXDIS1Shell}{100}\right)^2$$
$$FP = 1.016$$

The heat exchanger is of floating head type:

CBHXDIS1:= $\exp\left[11.667 - 0.8709 \ln(AHXDIS1) + 0.09005 (\ln(AHXDIS1))^2\right]$

The purchase cost of the heat exchanger is:

CpHXDIS1:= FP·FM·FL·CBHXDIS1
$$\left(\frac{CE2}{CE1}\right)$$

CpHXDIS1= 1.571× 10⁵ \$

Heat Exchanger District 2:

Area of the HXDIS2:

$$AHXDIS2 := 1.676 \times 10^4 \qquad \text{ft}^2$$

The material of construction of the shell side and the tube side is carbon steel, thus:

$$FM := 0.00 + \left(\frac{AHXDIS2}{100}\right)^{0.00}$$

FM = 1

The tube length was assumed to be 12 ft, thus:

FL := 1.12 The pressure factor based on the shell side pressure in psig is calculated as follows:

PHXDIS2Shell:= 168.11: psig
FP :=
$$0.9803 + 0.018 \left(\frac{\text{PHXDIS2Shell}}{100} \right) + 0.0017 \left(\frac{\text{PHXDIS2Shell}}{100} \right)^2$$

FP = 1.015

The heat exchanger is of floating head type:

CBHXDIS2:= $\exp\left[11.667 - 0.8709 \ln(AHXDIS2) + 0.09005 (\ln(AHXDIS2))^2\right]$

The purchase cost of the heat exchanger is:

$$CpHXDIS2 := FP \cdot FM \cdot FL \cdot CBHXDIS2 \left(\frac{CE2}{CE1} \right)$$

$$CpHXDIS2 = 1.57 \times 10^{5}$$

Heat Exchanger District 3:

Area of the HXDIS3: AHXDIS3 := 1.676×10^4 ft²

The material of construction of the shell side and the tube side is carbon steel thus:

$$FM := 0.00 + \left(\frac{AHXDIS3}{100}\right)^{0.00}$$

FM = 1

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure factor based on the shell side pressure in psig is calculated as follows:

```
PHXDIS3Shell:= 127.73e psig
```

$$FP := 0.9803 + 0.018 \left(\frac{PHXDIS3Shell}{100}\right) + 0.0017 \left(\frac{PHXDIS3Shell}{100}\right)^2$$

FP = 1.006

The heat exchanger is of floating head type:

CBHXDIS3:=
$$\exp\left[11.667 - 0.8709 \ln(AHXDIS3) + 0.09005 (\ln(AHXDIS3))^2\right]$$

The purchase cost of the heat exchanger is:

$$CpHXDIS3 := FP \cdot FM \cdot FL \cdot CBHXDIS3 \left(\frac{CE2}{CE1}\right)$$
ft²

CpHXDIS3 = 1.555×10^5 \$

Heat Exchanger District 4:

Area of the HXDIS4:

AHXDIS4 := 1.676×10^4

The material of construction of the shell side and the tube side is carbon steel thus:

$$FM := 0.00 + \left(\frac{AHXDIS4}{100}\right)^{0.00}$$
$$FM = 1$$

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure factor based on the shell side pressure in psig is calculated as follows:

PHXDIS4Shell:= 127.101 psig

 $FP := 0.9803 + 0.018 \left(\frac{PHXDIS4Shell}{100}\right) + 0.0017 \left(\frac{PHXDIS4Shell}{100}\right)^2$

FP = 1.006

The heat exchanger is of floating head type:

CBHXDIS4:=
$$\exp\left[11.667 - 0.8709 \ln(AHXDIS4) + 0.09005 (\ln(AHXDIS4))^2\right]$$

The purchase cost of the heat exchanger is:

$$C_{pHXDIS4} := FP \cdot FM \cdot FL \cdot CBHXDIS4 \left(\frac{CE2}{CE1} \right)$$

$$C_{pHXDIS4} = 1.555 \times 10^{5}$$

Heat Exchanger District 5:

Area of the HXDIS5:

AHXDIS5 := 1.676×10^4 ft²

The material of construction of the shell side and the tube side is carbon steel thus:

$$FM := 0.00 + \left(\frac{AHXDIS5}{100}\right)^{0.00}$$
$$FM = 1$$

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure factor based on the shell side pressure in psig is calculated as follows:

$$FP := 0.9803 + 0.018 \left(\frac{PHXDIS5Shell}{100}\right) + 0.0017 \left(\frac{PHXDIS5Shell}{100}\right)^2$$

FP = 1.006

The heat exchanger is of floating head type:

CBHXDIS5:= exp $\left[11.667 - 0.8709 \ln(AHXDIS5) + 0.09005 (\ln(AHXDIS5))^2 \right]$

The purchase cost of the heat exchanger is:

CpHXDIS5:= FP·FM·FL·CBHXDIS5
$$\left(\frac{CE2}{CE1}\right)$$

CpHXDIS5= 1.555× 10⁵ \$

Total Purchase Cost (The main case):

$$\begin{split} & \text{SUM1} \coloneqq \text{CpCOMP1} + \text{CpCOMP2} + \text{CpEVP} + \text{CpCOND} + \text{CpHXINCOOLEF} \\ & \text{SUM2} \coloneqq \text{CpFIRHEAT} + \text{CpBLOWER} + 2 \cdot \text{CpPumpTotal} + \text{CpVESSEI} \\ & \text{SUM3} \coloneqq \text{CpHXDIS1} + \text{CpHXDIS2} + \text{CpHXDIS3} + \text{CpHXDIS4} + \text{CpHXDIS5} \\ & \text{capitalcost} \coloneqq \text{SUM1} + \text{SUM2} + \text{SUM3} \\ & \text{capitalcost} = 9.082 \times 10^6 \quad \$ \end{split}$$

Costs of the Alternative Design

The costs were also calculated for an alternative case in which two tanks and a smaller furnace were used to cope with the demand fluctuations.

Air Blower:

This blower is overdesigned to cope with the fluctuations in the winter time.

hpBLOWER := 1.81×10^3 hp

 $CBLOWER := exp(6.6547 + 0.79 \ln(hpBLOWER))$

Capital Cost for air blower:

FM := 0.¢
CpBLOWER := FM·CBLOWER
$$\left(\frac{CE2}{CE1}\right)$$

CpBLOWER = 1.967× 10⁵ \$

Fired Heater:

The cost of the fired heater depends on absorbed heat. Since the operational pressure is not too high and the material of construction is carbon steel, there is no need to apply any correction factor.

The flue gas heat exchanger and the furnace are combined:

QFurnace :=
$$2.132 \times 10^{8} \frac{Btu}{hr}$$

QFGHX:= $1.449 \times 10^{8} \frac{Btu}{hr}$
Qduty := QFGHX + QFurnace
Qduty = $3.581 \times 10^{8} \frac{Btu}{hr}$
Pressure factor: FP := 1
Material Factor: FM := 1
CBFIRHEAT:= $0.512 (Qduty)^{0.81}$
CpFIRHEAT:= FP·FM·CBFIRHEAT $\left(\frac{CE2}{CE1}\right)^{0.81}$

Tank 1 (Before Condenser) :

The volume of the tank was claculated to be as follows (10% overdesign):

Vtank := 4200 m³

According to rules of thumb the length and diameter ratio is 2.5. For a vertical tank:

initial values:
D := 1
L := 3
Given
L = 2.5 D
Vtank =
$$\frac{\pi \cdot D^2 \cdot L}{4}$$

dim := Find(D,L)
dim = $\binom{12.885}{32.212}$

thus the diameter and length of the tank are:

 $D := 12.8853.281 \quad \text{ft} \\ L := 32.2123.281 \quad \text{ft}$

In order to evaluate the cost of this tank, first the weight of the tank should be found:

Density of carbon steel: density := 490 $\frac{1b}{f_3}$

Since the operating pressure of the tank is approximately 6 atm (adjusted by a valve before the tank), the design pressure is calculated as follows:

```
P := 73.5 \quad \text{psig}
Pd := \exp\left[0.60608 + 0.91615\ln(P) + 0.0015655\left(\ln(P)^2\right)\right]
Pd = 96.732 \quad \text{psig}
```

The operating temperature of the column is approximately 150.8 F, thus the design temperature is:

Td := 200 F

For SA-387B which is a commonly used low-alloy (1%Cr and 0.5% Mo) steel for noncorrosive environment including the presense of hydrogen, operating at this design temperature the maximum allowable stress is:

S := 1500(psi

For carbon steel the value of welding efficiency is:

E := 0.85

Based on the above values, the cylindrical shell wall thickness is computed from ASME pressure-vessel code as follows:

$$tp := \frac{Pd \cdot D \cdot 12}{2 \cdot S \cdot E - 1.2 \cdot Pd}$$
$$tp = 1.933 \quad \text{inch}$$

The weight of the shell and the two heads is approximately:

W1 :=
$$\pi \cdot \left(D + \frac{tp}{12} \right) \cdot (L + 0.8 \cdot D) \cdot \frac{tp \cdot density}{12}$$

W1 = 1.468× 10⁶ lb

 $CvTANK1 := exp(6.775 + 0.18255ln(W1) + 0.02297ln(W1)^2)$

\$

 $CvTANK1 = 1.201 \times 10^6$

The cost of ladders and platforms is:

Cp1TANK := $285.1 \cdot D^{0.73960} \cdot L^{0.70684}$

Cp1TANK = 1.226×10^5 \$

For material of construction of carbon steel:

Fm := 1.0

thus the total cost of this tank is:

 $CpTANK1 := (Fm CvTANK1 + Cp1TANK) \cdot \left(\frac{CE2}{CE1}\right)$

CpTANK1 = 1.492×10^{6} \$

Tank 2 (Before Furnace) :

The volume of the tank was claculated to be as follows (10% overdesign):

Vtank := 4200 m³

According to rules of thumb the length and diameter ratio is 2.5. For a vertical tank: initial values: D := 1 L := 3

Given $L = 2.5 \cdot D$ $V tank = \frac{\pi \cdot D^2 \cdot L}{4}$ dim := Find(D, L) $dim = \begin{pmatrix} 12.885 \\ 32.212 \end{pmatrix}$

thus the diameter and length of the tank are:

$$D := 12.8853.281 ft L := 32.2123.281 ft$$

In order to evaluate the cost of this tank, first the weight of the tank should be found:

Density of carbon steel: density := 490
$$\frac{10}{\text{ft}^3}$$

Since the operating pressure of the tank is approximately 3.5 atm (adjusted by a valve before the tank), the design pressure is calculated as follows:

P := 36.75 psig
Pd := exp
$$\left[0.60608 + 0.916151n(P) + 0.0015655(ln(P)^2) \right]$$

Pd = 50.823 psig

F

The operating temperature of the column is approximately 280 F, thus the design temperature is:

Td := 320

For SA-387B which is a commonly used low-alloy (1%Cr and 0.5% Mo) steel for noncorrosive environment including the presense of hydrogen, operating at this design temperature the maximum allowable stress is:

S := 15000 psi

For carbon steel the value of welding efficiency is:

E := 0.85

Based on the above values, the cylindrical shell wall thickness is computed from ASME pressure-vessel code as follows:

$$tp := \frac{Pd \cdot D \cdot 12}{2 \cdot S \cdot E - 1.2 \cdot Pd}$$
$$tp = 1.014 \qquad \text{inch}$$

The weight of the shell and the two heads is approximately:

W2 :=
$$\pi \cdot \left(D + \frac{\mathrm{tp}}{12} \right) \cdot (L + 0.8 \cdot D) \cdot \frac{\mathrm{tp} \cdot \mathrm{density}}{12}$$

$$W2 = 7.683 \times 10^5$$
 lb

The cost of the tank is:

$$CvTANK2 := exp(6.775 + 0.18255 ln(W2) + 0.02297 ln(W2)^{2})$$

CvTANK2 = 7.061× 10⁵ \$

The cost of ladders and platforms is:

Cp2TANK :=
$$285.1 \cdot D^{0.73960} \cdot L^{0.70684}$$

$$Cp2TANK = 1.226 \times 10^5$$
 \$

For material of construction of carbon steel:

Fm := 1.0

thus the total cost of this tank is:

$$CpTANK2 := (FmCvTANK2 + Cp2TANK) \cdot \left(\frac{CE2}{CE1}\right)$$

CpTANK2 = 9.34×10^5 \$

Total Purchase Cost (The alternative case):

SUM1 := CpCOMP1 + CpCOMP2 + CpEVP+ CpCOND+ CpHXINCOOLER+ CpVESSEI SUM2 := CpFIRHEAT + CpBLOWER + 2·CpPumpTotal + CpTANK1 + CpTANK2 SUM3 := CpHXDIS1 + CpHXDIS2 + CpHXDIS3 + CpHXDIS4 + CpHXDIS5

> capitalcost := SUM1 + SUM2 + SUM3capitalcost = 9.886×10^6 \$

References

1- W. D. Seider, J.D. Seader, D.R. Lewin, "Product & Process Design Principles", John Wiley and Sons, Inc., 2004.

2- Economic Indicators (July 2005): www.che.com

3-W. Dimoplon,"What process engineers need to know about compressors", Hydrocrabon Processing, May 1978.

Appendix 4Basis for The Compressors Simulation

Reference: Seider, W.D., Seader, J.D., Lewin, D. R., Product and Process Design Principles

- 1. Maximum discharge pressure of the compressor corresponds to a maximum temperature of 375 F (190 C) (heuristics #35, page 186, from the reference mentioned above).
- 2. Maximum compression ratio = 4 for each stage (Heuristics #36, page 186, from the reference mentioned above).

Psuction := 6.5 bar Pdischarge := 35 bar

These values are just initial guess for the simulation. Final values will be calculated via Aspen Simulation.

 $Ratio := \frac{Pdischarge}{Psuction}$ Ratio = 5.385 Ratio > 4, 4 < Ratio < 16, from the table, page 186, the number of stages must be 2.

nstages := 2

For equal compression ratios, yields:

ratioperstage := Ratio^{nstages} ratioperstage = 2.32 The pressure ratio in each compression stage will be 2.32

There will be two compression stages with an inter-stage receiver between them. The initial guess pressure profile will be as follows:

Psucction 1 = 6.5 bar Pdischarge 1 = 14.6 bar Preceiver inlet = 14.6 bar Psucction 2 = 14.6 bar Pdischarge 2 = 38 bar

According to heuristics #31, the following applies: ΔP for condenser and evaporator = 1.5 psi (0.103 bar) for boiling and condensing fluids

Inter-stage receiver oulet temperature should be higher than 100 F (38C), according to heuristics #35.

Appendix 5 Compressor Scheme

An illustration of a two-stage compressor unit with intermediate cooling system is shown in Figures A5.1 and Figure A5.2

Figure A5.1 Simplified scheme of two-stage compressor with intermediate gas cooling

Figure A5.2 Two stage compressor unit model TSMC 108 with intermediate cooling system

<u>**Reference :**</u> http://www.mmrefrigeration.com/mmsite/recip_cooling.html

Appendix 6 Piping Calculations

References:

- 1. Crane, Flow of Fluids Through Valves, Fittings and Pipe Technical Pape No. 410, 25th Printing, Technical1988- Crane Co.
- 2. Coulson, J.M., Richardson, J.F., Chemical Engineering; Volume 6 (SI Units), BPCC Wheatons Ltd. Exeter: 1991
- 3. Coulson, J.M., Richardson, J.F., Chemical Engineering; Volume 1; Flow, Heat Transfer and Mass Transfer, Sixth edition The Bath Press, Bath:1999
- 4. Walas, Stanley M., *Chemical Process Equipment*, Butterworth-Heinemann, Series in Chemical Engineering, USA, 1983

Preliminary Assumptions :

- 1. Total pipe length from the Upgrading Unit to districts (**main header of hot tap water pipe**) : 10 km (taking into consideration the distribution of districts to be connected over the area shown in the maps of Delft available on the net [http://www.map24.nl].
- 2. Total pipe length from the districts to the Upgrading Unit (main header of cold tap water pipe) : 10 km.
- 3. This calculation does not take into consideration the branching for pipes inside the districts. Futher detailed calculations in this regard must be carried during the detailed design phase.
- 4. Maximum tap water flow rate 5.32 *10⁶ kg/h. Calculated based on the worst case scenario (two furnaces operating in winter time)
- 5. Minimum tap water flow rate $2.13 * 10^5$ kg/h. Calculated based on the highest demand peak in the summer.

Piping calculations for the maximum capacity:

Estimating the piping diameter for hot tap water:

Wmflowrate := 5.32×10^6	kg/h	Water mass flow rate
photwaterin := 963.68'	kg/m ³	Density of water at 92 C = 963 kg/m ³
	92.1.8 + 32 = 197.6	$60.107 \frac{0.454}{0.3048^3} = 963.687$
ρ hotwaterout := 967.519	kg/m ³	Density of water at 90 C = 967.519 kg/m ³
	90 1.8 + 32 = 194	$60.343 \frac{0.454}{0.3048^3} = 967.471$

e		
ρ hotwater := ρ hotwaterin + ρ hotwaterout 2	ρhotwater = 965.603	kg/m ³
Qhotwater := $\frac{\text{Wmflowrate}}{\rho \text{hotwater}}$ Qhotwater = 5.	51×10^3 m ³ /h	
waterflowrate := Wmflowrate $\frac{1}{3600}$	waterflowrate = $1.478 \times$	10 ³ kg/s
d := 260(waterflowrate) ^{0.52} · ρ hotwater ^{-0.3}	$d = 1.471 \times 10^3$	mm
The first estimation for internal diameter of the hot tap water header is 1471 mm (58 inch). This diameter exceeds the maximum commercial pipe dimension available in the PIPE data bank	$\frac{1.471 \times 10^3}{25.4} = 57.91$	3 inch
from Crane [1]. According to this databank, the maximum commercial diameter is 36" (894.1mm or 35.2in).	35.2 25.4 = 894.0	3 mm
Obotwater		
velocity := $\frac{1}{\left[\left(\frac{2}{2} \right)^2 \right]}$ velocity	= 4.737 m/s	
$\pi \cdot (641.410^{-3})$		

Data gathered from Crane:

Rule of thumb: for water (pump discharge line - long line), velocity ranging from 4-7 ft/s (1.22 -.2.13 m/s). Let's calculate the diameter for 7 ft/s (2.134m/s).

4.37.0.3048 = 1.332

ft/s

·3600

4

$$m/s$$
velocity := 2.134
$$D := 1000 \sqrt{\frac{4 \cdot \text{waterflowrate}}{\pi \cdot \rho \text{ hotwater } \cdot \text{ velocity}}} \qquad D = 955.571 \quad \text{mm} \qquad \frac{955}{25.4} = 37.598 \text{ inch}$$

This diameter is also higher than the maximum available in Crane [1] databank. Let's use the maximum diameter, i.e., 36" (914.4mm).

Rule of thumb. Ref: Chemical Process Equipment, Schedule number=1000*PSIG/St

Psig is the internal pressure, in psig, St is the allowable working stress \sim 10000 psig for A120 carbon steel at 500F (932 C)

Psig := 7.14.7Psig = 102.9psigConsidering the pressure in the pipeline ~8 baraSt := 1000(psigSchedulenumber := $\frac{1000 \operatorname{Psig}}{\operatorname{St}}$ Schedulenumber = 10.29

The chosen commercial external diameter is: 914.4 mm (36 in), Schedule 10, with internal diameter of 898.6 mm (35.376 in), wall thickness 7.92 mm (0.312 in)

Estimating the piping diameter for cold tap water:

Wmflowrate := $5.32 \times 10^{\circ}$	kg/h	Water mass flow rate	
ρ coldwaterin := 977.844	kg/m ³	Density of water at $70 \text{ C} = 977$.	8 kg/m ³
	70 1.8 + 32 = 158	$60.99 \frac{0.454}{0.3048^3} = 977.84$	14
pcoldwaterout := 981.2	kg/m ³	Density of water at $68 \text{ C} = 981$.	2 kg/m ³
	68·1.8 + 32 = 154.4	$61.2 \frac{0.454}{0.3048^3} = 981.211$	l
	Data gathered	from Crane:	
ρ coldwater := ρ coldwater in	$+ \rho coldwaterout$	ρ coldwater = 979.522	kg/m ³
$Qcoldwater := \frac{Wmflowrate}{\rho coldwater}$	Qcoldw	ater = 5.431×10^3 m ³ /h	
waterflowrate := Wmflowrat	$e \cdot \frac{1}{3600}$	waterflowrate = 1.478×10^3	kg/s
$d := 260 (waterflowrate)^{0.52}$	ocoldwater - 0.3	$d = 1.465 \times 10^3$ mm	

The first estimation for internal diameter of the	$\frac{1465}{25.4} = 57.677$	inch
The first estimation for internal diameter of the cold tap water header is 1465 mm (57.7 inch). This diameter exceeds the maximum commercial pipe dimension available in the PIPE data bank from Crane [1]. According to this databank, the maximum commercial diameter is 36" (894.1mm or 35.2in).		mm
velocity :=Qcoldwater		
velocity .= $\left[\frac{\pi \cdot (894.0810^{-3})^2}{4}\right] \cdot 3600$ velocity = 2 4.6690.30	.403 m/s 48= 1.423 ft/s	

Rule of thumb: for water (pump discharge line - long line), velocity ranging from 4-7 ft/s (1.22 -.2.13 m/s). Let's calculate the diameter for 7 ft/s (2.134m/s).

velocity := 2.134 m/s

 $D := 1000 \sqrt{\frac{4 \cdot \text{waterflowrate}}{\pi \cdot \rho \text{ coldwater} \cdot \text{velocity}}} \qquad D = 948.758 \qquad \text{mm} \qquad \frac{948.758}{25.4} = 37.353 \quad \text{inch}$

This diameter is also higher than the maximum available in Crane [1] databank. Let's use the maximum diameter, i.e., 36" (914.4mm).

Rule of thumb. Ref : Chemical Process Equipment, Schedule number=1000*PSIG/St

Psig is the internal pressure, in psig, St is the allowable working stress \sim 10000 psig for A120 carbon steel at 500F (932 C)

Psig := 7.14.7Psig = 102.9psigConsidering the pressure in the pipeline ~8 baraSt := 1000(psigSchedulenumber := $\frac{1000 \operatorname{Psig}}{\operatorname{St}}$ Schedulenumber = 10.29

The chosen commercial external diameter is: 914.4 mm (36 in), Schedule 10, with internal diameter of 898.6 mm (35.376 in), wall thickness 7.92 mm (0.312 in)

Appendix 7Estimation of The Enthalpy and Entropy of
The Hot Tap Water at 137 °C and 13 bar

Ref: Program termoprop1 from Sandler http://www.che.udel.edu/thermo

The program was adapted with respect to the input data entry method, which here uses a matrix other than a data file as in the original program.

THERMODYNAMIC PROPERTIES CALCULATION USING THE PENG-ROBINSON EQUATION OF STATE FOR A GIVEN T AND P

Property Data given in the matrix M. Tc (in K), Pc (in bar), omega, Tb Cp1, Cp2, Cp3, Cp4 Tref (in K), Pref (in bar), Tref, Pref The matrix should be as follows (last entry is not used, but must be there) (In eqn Cp=Cp0+Cp1*T+Cp2*T^2+Cp3*T^4) (reference conditions, last two entries are there because MATHCAD requires all matrix elements to be filled.)

$$\mathbf{M} := \begin{pmatrix} 647.3 & 220.5 & 0.344 & 373.2 \\ 32.24 & 0.001924 & 1.05510^{-5} & -3.59610^{-9} \\ 298.15 & 1 & 298.15 & 1 \end{pmatrix}$$

 $\begin{array}{ll} {\rm Tc} := {\rm M}_{0,0} & {\rm Pc} := {\rm M}_{0,1} & {\rm om} := {\rm M}_{0,2} \\ {\rm Cp}_{\rm i} := {\rm M}_{1,{\rm i}} & {\rm Trs} := {\rm M}_{2,0} & {\rm Prs} := {\rm M}_{2,1} \end{array}$

kap := 0.37464+ 1.54226 om - 0.26992 om²

Peng-Robinson Constants: R := 0.0000831 b := 0.07780
$$\frac{R \cdot Tc}{Pc}$$
 ac := 0.45724 $\frac{R^2 \cdot Tc^2}{Pc}$

Note that these are being defined as a function of temperature since we will need to interate on temperature.

$$\operatorname{alf}(T) := 1 \cdot \left[1 + \operatorname{kap} \cdot \left(1 - \sqrt{\frac{T}{Tc}} \right) \right]^2 \quad a(T) := \operatorname{ac} \cdot \operatorname{alf}(T)$$

$$CA(T,P) := \frac{a(T) \cdot P}{(R \cdot T)^2}$$
 $CB(T,P) := \frac{P \cdot b}{R \cdot T}$ $Da(T) := \frac{d}{dT}a(T)$

$$\begin{split} Z(T,P) &\coloneqq \begin{array}{ll} A \leftarrow CA(T,P) \\ B \leftarrow CB(T,P) \\ & \\ V \leftarrow \begin{bmatrix} -\left(A \cdot B - B^2 - B^3\right) \\ A - 3 \cdot B^2 - 2 \cdot B \\ -(1 - B) \\ 1 \\ \end{array} \right) \\ ZZ \leftarrow polyroots (V) \\ for \ i \in 0..2 \\ (ZZ_i \leftarrow 0) \ if \ \left(Im(ZZ_i) \neq 0\right) \\ ZZ \leftarrow sort(ZZ) \\ \end{array} \begin{array}{ll} Subroutine \ for \ solving \ the \ cubic \ equation \ of \ state. \\ Vector \ of \ coefficients \ in \ the \ PR \ equation \\ in \ the \ form \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (1 - B)^*Z^*2 + Z^*3 \\ 0=-(A^*B - B^*2 - B^*3) + (A - 3^*B^*2 - 2^*B)^*Z - (A - 3^*B^*2 - 2^*B)^*Z - (A - 3^*B^*2 - 2^*B)^*Z$$

Enter temperature T, and pressure P for thermodynamic properties calculation.

Fugacity expressions [actually In(f/P)] for the liquid fl and vapor fv

$$fl(T,P) := \left(Z(T,P)_0 - 1\right) - \ln\left(Z(T,P)_0 - CB(T,P)\right) - \frac{CA(T,P)}{2\cdot\sqrt{2}\cdot CB(T,P)} \cdot \ln\left[\frac{Z(T,P)_0 + \left(1 + \sqrt{2}\right)\cdot CB(T,P)}{Z(T,P)_0 + \left(1 - \sqrt{2}\right)\cdot CB(T,P)}\right]$$

$$fv(T,P) := \left(Z(T,P)_2 - 1\right) - \ln\left(Z(T,P)_2 - CB(T,P)\right) - \frac{CA(T,P)}{2\cdot\sqrt{2}\cdot CB(T,P)} \cdot \ln\left[\frac{Z(T,P)_2 + \left(1 + \sqrt{2}\right)\cdot CB(T,P)}{Z(T,P)_2 + \left(1 - \sqrt{2}\right)\cdot CB(T,P)}\right]$$

Fugacity

Fugacity coefficient

fugl :=
$$P \cdot exp(fl(T, P))$$
 fugl = 3.18716 $fl(T, P) = -1.40582$ phil := $\frac{fugl}{P}$ phil = 0.24517

fugv :=
$$P \cdot exp(fv(T, P))$$
 fugv = 11.88924 $fv(T, P) = -0.08932$ phiv := $\frac{fugv}{P}$ phiv = 0.91456

Residual entropy for liquid (DELSL) and vapor (DELSV) phases

$$DELSL := \left[R \cdot \ln \left(Z(T,P)_0 - CB(T,P) \right) + \frac{Da(T)}{2 \cdot \sqrt{2} \cdot b} \cdot \ln \left[\frac{Z(T,P)_0 + \left(1 + \sqrt{2} \right) \cdot CB(T,P)}{Z(T,P)_0 + \left(1 - \sqrt{2} \right) \cdot CB(T,P)} \right] \right] \cdot 10^5$$
$$DELSV := \left[R \cdot \ln \left(Z(T,P)_2 - CB(T,P) \right) + \frac{Da(T)}{2 \cdot \sqrt{2} \cdot b} \cdot \ln \left[\frac{Z(T,P)_2 + \left(1 + \sqrt{2} \right) \cdot CB(T,P)}{Z(T,P)_2 + \left(1 - \sqrt{2} \right) \cdot CB(T,P)} \right] \right] \cdot 10^5$$

Residual enthalpy for liquid (DELHL) and vapor (DELHV) phases

$$DELHL := \left[R \cdot T \cdot \left(Z(T,P)_0 - 1 \right) + \frac{T \cdot Da(T) - a(T)}{2 \cdot \sqrt{2} \cdot b} \cdot \ln \left[\frac{Z(T,P)_0 + \left(1 + \sqrt{2} \right) \cdot CB(T,P)}{Z(T,P)_0 + \left(1 - \sqrt{2} \right) \cdot CB(T,P)} \right] \right] \cdot 10^5$$
$$DELHV := \left[R \cdot T \cdot \left(Z(T,P)_2 - 1 \right) + \frac{T \cdot Da(T) - a(T)}{2 \cdot \sqrt{2} \cdot b} \cdot \ln \left[\frac{Z(T,P)_2 + \left(1 + \sqrt{2} \right) \cdot CB(T,P)}{Z(T,P)_2 + \left(1 - \sqrt{2} \right) \cdot CB(T,P)} \right] \right] \cdot 10^5$$

Ideal gas property changes relative to the reference state

$$DELHIG:= Cp_{0} \cdot (T - Trs) + \frac{Cp_{1} \cdot (T^{2} - Trs^{2})}{2} + \frac{Cp_{2} \cdot (T^{3} - Trs^{3})}{3} + \frac{Cp_{3} \cdot (T^{4} - Trs^{4})}{4}$$
$$DELSIG:= Cp_{0} \cdot \ln\left(\frac{T}{Trs}\right) + Cp_{1} \cdot (T - Trs) + \frac{Cp_{2} \cdot (T^{2} - Trs^{2})}{2} + \frac{Cp_{3} \cdot (T^{3} - Trs^{3})}{3} - R \cdot 10^{5} \cdot \ln\left(\frac{P}{Prs}\right)$$

Total entropy and enthalpy relative to ideal gas reference state

SL := DELSIG+ DELSI SV := DELSIG+ DELSV HL := DELHIG+ DELHI HV := DELHIG + DELHV

SUMMARY OF RESULTS

T = 410.15 K Pressure, bar P = 13

	LIQUID	VAPOR
Compressibility	$Z(T, P)_0 = 8.90988 \times 10^{-3}$	$Z(T, P)_2 = 0.90689$
Enthalpy, J/mol	$HL = -3.64797 \times 10^4$	$HV = 2.94801 \times 10^3$
Entropy, J/mol K	SL = -97.02364	SV = -11.83908
Fugacity coefficient	phil = 0.24517	phiv = 0.91456
Fugacity, bar	fugl = 3.18716	fugv = 11.88924

Note: If the chosen temperature and pressure are near the saturation conditions, results for both the vapor and liquid phases will be reported. The phase with the lower fugacity, and therefore lower Gibbs free energy, is the equilibrium phase. If the temperature and pressure are far away from the saturation conditions, the properties only the equilibrium state are reported for both both phases.

Appendix 8 Tera Joules Calculation

1. Calculating the TJ for the waste water (291800 kg/h) stream at 27.5 C.

Using a correlation CP(T) for water

Constants for water liquidRef : Smith & van Ness, 4th edition,
Page 114, Table 4.3, Heat capacity of liquids
(Validity: T from 273.15 to 373.15 K)
T in KCPAwliq :=
$$8.712$$
CPBwliq := $1.25 \ 10^{-3}$ CPCwliq := $-0.18 \ 10^{-6}$ R := 8.314 J/(mol.K)

$$CPw(T) := R \cdot \frac{1000}{18} \cdot \left(CPAwliq + CPBwliq T + CPCwliq T^2 \right) \qquad J/(kg.K)$$

Waste water stream at 27.5 C (range: 25-30C, 27.5C was taken as the value for calculations)

Wastewater := 29180(kg/h Value provided by the Principal

The reference temperature was taken as 0 C (273 K)

Twastewaterin := $27.5 + 273$	Twastewaterin $= 300.5$	K
Treference := 273	Treference = 273 K	
Twastewaterout := $18 + 273$	Twastewaterout $= 291$	K

Evaluating Cp water within the range: 25 - 0 C

cpwastewater := $\frac{\int_{\text{Treference}}^{\text{Twastewaterin}} \text{CPw(T) dT}}{\text{Twastewaterin} - \text{Treference}}$

cpwastewater = 4.183×10^3 J/(kg.K)

TJwastewater := Wastewater \cdot cpwastewater \cdot (Twastewaterin – Twastewaterout) \cdot 365-24 10⁻¹²

TJwastewater = 101.571 TJ/year

This is the heat content of the waste water stream at 27.5 C, considering 0 C as the reference temperature

2. Estimation of the temperature of the returning tap water from the Districts:

Assumptions :

 1. 10% energy losses in the pipeline from the Upgrading Unit to the district (typical value of energy losses in similar systems).
 2. 20^oC temperature approach bewteen IN and OUT tap water stream in the district

10% energy losses represents 2° C difference, which added to the desired temperature, 90° C, yields to 92° C for the tap water outlet stream from the Upgrading Unit. Following the same reasoning, the tap water returning temperature will be 68° C.

Considering the proportionality between the temperature differences and the amount of energy at the Upgrading Unit and at the Central Grid, the TJ/annum to be delivered at the Upgrading Unit can be estimated as follows:

$$\frac{TJ_{CentralGrid}}{TJ_{UpgradingUnit}} = \frac{\Delta T_{CentralGrid}}{\Delta T_{UpgradingUnit}}$$

 $TJUU := TJCG \frac{\Delta TUU}{\Delta TCG}$ TJUU = 936TJ

3. Calculating the clean water (hot tap water) flow rate in order to achieve 936 TJ/annum considering that the clean water will reach the battery limit (Central Grid) at 90 C in order to compensate any heat losses in the pipeline. The temperature of the cold tap water that reaches the Upgrading Unit is 68 C.

TJproduct := 93ϵ TJ/year		
Tproductout := $92 + 273$	Tproductout = 365	к
Treference := 273	Treference $= 273$	K
Tproductin := $68 + 273$	Tproductin $= 341$	к

Product := $\frac{\text{TJproduct}}{\text{cpproduct} \cdot (\text{Tproductout} - \text{Tproductin}) \cdot 365 \cdot 24 \cdot 10^{-12}}$

Product = 1.056×10^6 kg/h

This is the flow rate of hot tap water (936TJ/annum, at 92 C), which is going to be sent through pipelines to the District Buildings.

4. Estimation of the temperature of the returning tap water from the Districts:

Assumptions :

 1. 10% energy losses in the pipeline from the Upgrading Unit to the district (typical value of energy losses in similar systems).
 2. 20^oC temperature approach bewteen IN and OUT tap water stream in the district

10% energy losses represents 2° C difference, which added to the desired temperature, 90° C, yields to 92° C for the tap water outlet stream from the Upgrading Unit. Following the same reasoning, the tap water returning temperature will be 68° C.

Considering the proportionality between the temperature differences and the amount of energy at the Upgrading Unit and at the Heat Stations, the TJ/annum to be delivered at the Upgrading Unit can be estimated as follows:

$$\frac{TJ_{CentralGrid}}{TJ_{UpgradingUnit}} = \frac{\Delta T_{CentralGrid}}{\Delta T_{UpgradingUnit}}$$

$$TJUU := TJCG \frac{\Delta TUU}{\Delta TCG}$$
$$TJUU = 858 \qquad TJ$$

5. Estimating the clean water (hot tap water) flow rate in order to achieve 858 TJ/annum considering that the clean water will reach the battery limit (Heat Stations) at 130 C in order to compensate any heat losses in the pipeline. The temperature of the cold tap water that reaches the Upgrading Unit is 67 C.

TJproduct := 858 TJ/year		
Tproductout := $133 + 273$	Tproductout = 406	K
Tproductin := $67 + 273$	Tproductin $= 340$	K

Since the equation Cp(T) is not valid for temperature above 100C, the specific heat of water at 133 was taken from the book Transport Phenomena Data Companion, L.P.B.M. Janssen, M.M.C.G. Warmoeskerken.

cpproductout := 423ϵ J/(k	(g.K)	Cp water at 133C
cpproductin := $CPw(67 + 273)$		
cpproductin = 4.211×10^3	J/(kg.K)	Cp water at 67C calculated with the correlation
cpproduct := $\frac{\text{cpproductout} + \text{cpprod}}{2}$	ductin	
cpproduct = 4.223×10^3	J/(kg.K)
Product :=TJ	product	
cpproduct ·(Tproductout	– Tprodu	$1 \text{ term}) \cdot 365 \cdot 24 \cdot 10^{-12}$
Product = 3.514×10^5 kg/h		

This is the flow rate of hot tap water (858TJ/annum, at 133 C), which is going to be sent through pipelines to the District Buildings.

6. Estimation of the temperature of the returning tap water from the Districts taking into consideration the heat losses

After calculating the heat losses in the pipelines, an approximate temperature profile was obtained and the hot tap water outlet temperature in the Upgrading Unit was iteratively adjusted and a final value of 137 C was achieved. The same procedure was applied to the cold tap water inlet temperature at the Upgrading Unit. Therefore, the tap water temperatures to be used to calculate the required TJ in the Upgrading Unit, are: Tout=137 C, Tin=67 C. The TJ at UU=923 TJ

Considering the proportionality between the temperature differences and the amount of energy at the Upgrading Unit and at the Heat Stations, the TJ/annum to be delivered at the Upgrading Unit can be estimated as follows:

$$\frac{TJ_{CentralGrid}}{TJ_{UpgradingUnit}} = \frac{\Delta T_{CentralGrid}}{\Delta T_{UpgradingUnit}}$$

$TJUU := TJCG \frac{\Delta TUU}{\Delta TCG}$		
TJUU = 923 TJ	$\frac{923}{365} \cdot \frac{1}{24} \cdot \frac{1}{3600} \cdot 10^{12} = 2.927 \times 10^{7}$	Watt

This is the energy content of the hot tap water that exits the Upgrading Unit

7. Estimating the hot tap water flow rate in order to achieve 923 TJ/annum considering that the clean water will reach the battery limit (Heat Station) at 130 C in order to compensate any heat losses in the pipeline. The temperature of the cold tap water that reaches the Upgrading Unit is 67 C.

TJproduct $:= 923$	TJ/year		
Tproductout := 137 +	- 273	Tproductout = 410	K
Tproductin := $66 + 2$	73	Tproductin $= 339$	Κ

Since the equation Cp(T) is not valid for temperature above 100C, the specific heat of water at 133 was taken from the book Transport Phenomena Data Companion, L.P.B.M. Janssen, M.M.C.G. Warmoeskerken.

cpproductout := 423ϵ	J/(kg.K)	Cp water at 133C
cpproductin := $CPw(67 + 273)$		
cpproductin = 4.211×10^3	J/(kg.K)	Cp water at 67C calculated with the correlation
cpproduct := $\frac{\text{cpproductout} + \text{cp}}{2}$	pproductin	
cpproduct = 4.223×10^{-10}	0 ³ J/	(kg.K)
Product :=	TJproduct	
cpproduct ·(Tproduc	ctout – Tprodu	actin) $\cdot 365.24.10^{-12}$

Product = 3.514×10^5 kg/h

This is the flow rate of hot tap water (923TJ/annum, at 137 C), which is going to be sent through pipelines to the District Buildings.

Appendix 9 Overall Heat Transfer Coefficient

Reference : R.K. Sinnott, *Coulson & Richardson's Chemical Engineering*, Volume 6. Butterworth Heinemann, Great Britain, 2003

Appendix 10Estimation of The Natural Gas and Air
Consumption in The Fired Heater

The fired heater is the heat load necessary to increase the temperature of the tap water from 60 C to 97 C.

Qduty := $9.355 \times 10^{7} \cdot 1.15$ BTU/h

Pfurnace := 1.3 bar Considering Furnace within the range 1.0-1.6 bar (~1.3 bar)

Heatvalue := 100(BTU/ft³ at 60F (15.5C), 14.7 psia (1.013 bar), this serves as initial input further calculations. The natural gas flowrate will be actually calculated via Aspen Simulation and will change if any heat integration is considered.

$$vNG := \frac{Qduty}{Heatvalue}$$
 $vNG = 1.076 \times 10^5$ ft³/h Volumetric flow rate of NG at 60F, 14.7 psia

North Sea (Netherlands- Groningen) non-associated natural gas composition:

Components	Concentration
Mathana	(/0 VOL) <u> </u> <u> </u>
Iviculatic	01.3
Ethane	2.9
Propane	0.4
N-butane	0.1
C5 ⁺	0.1
Nitrogen	14.3
Carbon Dioxide	0.9

Ref: Chemical Process Technology, Moulijn et al. Wiley & Sons, 2001 which refers to the following literature sources:

1. Our Industry: Petroleum (1977), 5th ed., London, The British Petroleum Company 2. WoodCock KE, Gottlieb M (1994) 'Natural Gas' in Kroschwitz JI and Howegrant M (eds.) Kirk Othmer Encyclopedia of Chemical Technology vol.12, 4th ed., Wiley, New York, pp 318-340.

Via Aspen simulation based on the composition above the average molecular weight, density, the total mole flow rate and the mole flow rates for each component were calculated. The Aspen reference file is: CP.apw The results are presented below:

Density at 60F(15.5C) and 14.7 psia (1.013bar) = 0.00078820 g/cm³

MW = 18.623 kg/kmol

Total NG mass flow rate =2343.48 kg/h (125.8379 kmol/h). It was calculated with Aspen (RSTOIC) in order to satsify the conditions imposed by the fired heater and air demand. Considering the over design of 15% in order to use this fired heater as the backup system, the final values to be used for the design are: NG=2695.00 kg/h (144.829 Kmol/h). The amounts of each combustible components in NG are the following:

nCH4 := 117.64;	kmol/h	nC2H6 := 4.197; kmol/h
nC3H8 := 0.5784;	kmol/h	nC4H10 := 0.1495 kmol/h
nC5H12 := 0.1495	kmol/h	Considering C5 ⁺ as N-pentane
nN2 := 20.694	kmol/h	nCO2 := 1.30238 kmol/h

Estimating the air flow rate:

The air flow rate is calculated considering 20% excess air for the combustion being added to the stoichiometric air flow:

Air stoichiometric:		
O2methane := $2 \cdot nCH4$	O2methane $= 235.29$	kmol/h
O2ethane := $3.5 \cdot nC2H\epsilon$	O2ethane = 14.691	kmol/h
O2propane := 5·nC3H8	O2propane = 2.892	kmol/h
O2butane := 6.5 nC4H1(O2butane = 0.972	kmol/h
O2pentane := 8·nC5H12	O2pentane $= 1.196$	kmol/h

TotalO2stoich := O2methane + O2ethane + O2propane + O2butane + O2pentane

TotalO2stoich = 255.041 kmol/h

The actual flow rate of oxygen to be fed into the furnace is:

```
O2actual := 1.2 TotalO2stoich O2actual = 306.049 kmol/h
```


Taking into account that O2 molar concentration in air is 21%, yields:

Airmoleflowrate :=
$$\frac{O2actual}{0.21}$$

Airmoleflowrate = 1.457×10^3 kmol/h

KIIIO//II

With the estimated air flow rate riquered for the combustion, the final blower capacity was calculated by Aspen.

The blower BHP is calculated:

BlowerBHP:= $602.037 \frac{0.0018182}{1.356 \times 10^{-3}}$

BlowerBHP = 807.245 HP

Also via Aspen CP.apw , Toulet blower = 50 C $\frac{tr}{tt}$

This capacity takes into consideration the fact that this blower can be also used to supply the heating demand as back up system.

Appendix 11Process Flow Scheme

The Process Flow Scheme for this project design are shown in the A3 format as can be seen in the following A3 paper.

Appendix 12Process Streams Summary

STREAM Nr. :	1	2	3	4	5
Name :	WW IN	WW OUT	COMP1 IN	COMP1 OUT	COMP2 IN
COMP MW	kg/s kmol/s				
Ammonia 17.03	0 0	0 0	3.89 0.23	3.89 0.23	3.89 0.23
Water 18.02	81.06 4.50	81.06 4.50	0 0	0 0	0 0
Total	81.06 4.50	81.06 4.50	3.89 0.23	3.89 0.23	3.89 0.23
Enthalpy kW	-1293746.38	-1297281.97	-10711.64	-10063.36	-10266.24
Phase	L	L	V	V	V
Press. Bara	3.00	2.50	6.50	15.00	14.70
Temp. °C	27.50	18.00	12.00	93.25	70.85

STREAM Nr. :	6	7	8	9	10
Name :	COMP2 OUT	ACOND OUT	EVAP IN	UU IN	WCOOLER IN
COMP MW	kg/s kmol/s				
Ammonia 17.03	3.89 0.23	3.89 0.23	3.89 0.23	0 0	0 0
Water 18.02	0 0	0 0	0 0	97.39 5.41	2.00 0.11
Total	3.89 0.23	3.89 0.23	3.89 0.23	97.39 5.41	2.00 0.11
Enthalpy kW	-9414.74	-14220.52	-14220.52	-1537130.33	-31566.49
Phase	V	L	L+V	L	L
Press. Bara	38.00	37.90	6.60	9.00	9.00
Temp. °C	179.32	75.60	12.00	66.50	66.50

STREAM Nr. :	11	12	13	14	15
Name :	WCOND IN	WCOOLER OUT	WCOND OUT	FURNACE IN	FURNACE OUT
COMP MW	kg/s kmol/s				
Ammonia 17.03	0 0	0 0	0 0	0 0	0 0
Water 18.02	95.39 5.30	2.00 0.11	95.39 5.30	97.39 5.41	97.39 5.41
Total	95.39 5.30	2.00 0.11	95.39 5.30	97.39 5.41	97.39 5.41
Enthalpy kW	-1505563.84	-31363.67	-1500759.33	-1532123.02	-1505416.93
Phase	L	L	L	L	L
Press. Bara	9.00	8.50	8.50	8.00	6.20
Temp. °C	66.50	88.78	77.59	77.83	137.15

STREAM Nr. :	16	17	18	19
Name :	NGSTD	AIR IN	AIR OUT	EMISSIONS
COMP MW	kg/s kmol/s	kg/s kmol/s	kg/s kmol/s	kg/s kmol/s
Ammonia	0 0	0 0	0 0	0 0
Water	0 0	0 0	0 0	1.15 0.06
Methane	0.50 0.03	0 0	0 0	0 0
Ethane	0.03 1.06e-3	0 0	0 0	0 0
Propane	6.46e-3 1.46e-4	0 0	0 0	0 0
n-Butane	2.12e-3 3.66e-5	0 0	0 0	0 0
n-Pentane	2.64e-3 3.66e-5	0 0	0 0	0 0
Oxygen	0 0	2.41 0.08	2.41 0.08	0.36 0.01
Nitrogen	0.15 5.23e-3	7.94 0.28	7.94 0.28	8.09 0.29
Dioxide carbon	0.01 3. 30e-4	0 0	0 0	1.45 0.03
Total	0.71 0.04	10.35 0.36	10.35 0.36	11.05 0.39
Enthalpy kW	-2577.23	-55.31	275.37	-29021.06
Phase	V	V	V	V
Press. Bara	1.00	1.00	1.3	1.3
Temp. °C	15.56	20.00	51.59	79.85

STREAM Nr. :	20	21	22	23	24
Name :	UU OUT	TO ST. I	FROM ST. I	TO DIS. I	FROM DIS.I
COMP MW	kg/s kmol/s				
Ammonia 17.03	0 0	0 0	0 0	0 0	0 0
Water 18.02	97.39 5.41	19.49 1.08	19.49 1.08	47.34 2.63	47.34 2.63
Total	97.39 5.41	19.49 1.08	19.49 1.08	47.34 2.63	47.34 2.63
Enthalpy kW	-1505356.65	-300288	-305651	-737887	-743126
Phase	L	L	L	L	L
Press. Bara	10.00	10.00	9.50	1.00	1.00
Temp. °C	137.22	133.79	68.48	91.42	65.00
	1				1
STREAM Nr. :	25	26	27	28	29
Name :	TO ST. IV	FROM ST. IV	TO DIS. IV	FROM DIS.IV	TO CG II
COMP MW	kg/s kmol/s				
Ammonia 17.03	0 0	0 0	0 0	0 0	0 0
Water 18.02	19.49 1.08	19.49 1.08	47.34 2.63	47.34 2.63	58.47 3.25
Total	19.49 1.08	19.49 1.08	47.34 2.63	47.34 2.63	58.47 3.25
Enthalpy kW	-300553	-305774	-738409	-743126	-901012
Phase	L	L	L	L	L
Press. Bara	10.00	9.50	1.00	1.00	9.85
Temp. °C	130.60	66.97	88.80	65.00	133.20
STREAM Nr. :	30	31	32	33	34
Name :	FROM CG II	TO ST. II	FROM ST. II	TO DIS. II	FROM DIS.II
COMP MW	kg/s kmol/s				
Ammonia 17.03	0 0	0 0	0 0	0 0	0 0
Water 18.02	58.47 3.25	19.49 1.08	19.49 1.08	47.34 2.63	47.34 2.63
Total	58.47 3.25	19.49 1.08	19.49 1.08	47.34 2.63	47.34 2.63
Enthalpy kW	-917639	-300812	-305781	-738350	-743126
Phase	L	L	L	L	L
Press. Bara	9.10	9.80	9.30	1.00	1.00
Temp. °C	05.08	128.20	07.04	89.09	65.00
		0		-	
STREAM Nr. :	35	36	37	38	39
Name :	TO ST. V	FROM ST. V	TO DIS. V	FROM DIS.V	TO ST. III
COMP MW	kg/s kmol/s				
Ammonia 17.03	0 0	0 0	0 0	0 0	0 0
Water 18.02	19.49 1.08	19.49 1.08	47.34 2.63	47.34 2.63	19.49 1.08
Total	19.49 1.08	19.49 1.08	47.34 2.63	47.34 2.63	19.49 1.08
Enthalpy kW	-300747	-305700	-738376	-743126	-300780
Dhaca	T T	I	L	L L	L

STREAM Nr. :	4	0		41		42
Name :	FROM	ST. III	TO	DIS. III	FROM	A DIS. III
COMP MW	kg/s l	kmol/s	kg/s	kmol/s	kg/s	kmol/s
Ammonia 17.03	0	0	0	0	0	0
Water 18.02	19.49	1.08	47.34	2.63	47.34	2.63
Total	19.49	1.08	47.34	2.63	47.34	2.63
Enthalpy kW	-305716		-73840)9	-74312	26
Phase	I	_		L		L
Press. Bara	9.30		1.00		1.00	
Temp. °C	67.31		88.80		65.00	

9.30 67.50

1.00 88.96

1.00 65.00

9.80 127.5

9.80 127.90

Bara °C

Press.

Temp.

Overall Component Mass Balance & Stream Heat Balance

STREAM Nr. :	1	2 OUT	OUT-IN]
Name :	IN	WW OUT		
	WW IN			
COMP MW	kg/s kmol/s	kg/s kmol/s	kg/s kmol/s	
Ammonia 17.03	0 0	0 0		
Water 18.02	81.06 4.50	81.06 4.50		
Total	81.06 4.50	81.06 4.50		
Press. Bara	3.00	2.50		
Temp. °C	27.50	18.00		
Enthalpy kW	-1293746	-1297282	-3535	
	16 DI	17 DI	10 01/17	
STREAM Nr. :	16 IN	1/ IN	19 001	OUT-IN
Name :	NGSTD	AIR IN	EMISSIONS	
COMP MW	kg/s kmol/s	kg/s kmol/s	kg/s kmol/s	kg/s kmol/s
Ammonia	0 0	0 0	0 0	
Water	0 0	0 0	1.15 0.06	
Methane	0.50 0.03	0 0	0 0	
Ethane	0.03 1.06e-3	0 0	0 0	
Propane	6.46e-3 1.46e-4	0 0	0 0	
n-Butane	2.12e-3 3.66e-5	0 0	0 0	
n-Pentane	2.64e-3 3.66e-5	0 0	0 0	
Oxygen	0 0	2.41 0.08	0.36 0.01	
Nitrogen	0.15 5.23e-3	7.94 0.28	8.09 0.29	
Dioxide carbon	0.01 3. 30e-4	0 0	1.45 0.03	
Total	0.71 0.04	10.35 0.36	11.05 0.39	
Press. Bara	1.00	1.00	1.3	
Temp. °C	15.56	20.00	79.85	
Enthalpy kW	-2577	-55	-29021	-26388

STREAM Nr. :	24 IN	23 OUT	OUT-IN
Name :	FROM DIS.I	TO DIS. I	
COMP MW	kg/s kmol/s	kg/s kmol/s	kg/s kmol/s
Ammonia 17.03	0 0	0 0	
Water 18.02	47.34 2.63	47.34 2.63	
Total	47.34 2.63	47.34 2.63	
Press. Bara	1.00	1.00	
Temp. °C	65.00	91.42	
Enthalpy kW	-743126	-737887	5239

STREAM Nr	34 IN	33 OUT	OUT-IN
Name :	FROM DIS.II	TO DIS. II	
COMP MW	kg/s kmol/s	kg/s kmol/s	kg/s kmol/s
Ammonia 17.03	0 0	0 0	
Water 18.02	47.34 2.63	47.34 2.63	
Total	47.34 2.63	47.34 2.63	
Press. Bara	1.00	1.00	
Temp. °C	65.00	89.09	
Enthalpy kW	-743126	-738350	4776

STREAM Nr. :	42 IN	41 OUT	OUT-IN
Name :	FROM DIS. III	TO DIS. III	
COMP MW	kg/s kmol/s	kg/s kmol/s	kg/s kmol/s
Ammonia 17.03	0 0	0 0	
Water 18.02	47.34 2.63	47.34 2.63	
Total	47.34 2.63	47.34 2.63	
Press. Bara	1.00	1.00	
Temp. °C	65.00	88.80	
Enthalpy kW	-743126	-738409	4717

STREAM Nr. :	28 IN	27 OUT	OUT-IN
Name :	FROM DIS.IV	TO DIS. IV	
COMP MW	kg/s kmol/s	kg/s kmol/s	kg/s kmol/s
Ammonia 17.03	0 0	0 0	
Water 18.02	47.34 2.63	47.34 2.63	
Total	47.34 2.63	47.34 2.63	
Press. Bara	1.00	1.00	
Temp. °C	65.00	88.80	
Enthalpy kW	-743126	-738409	4717

STREAM Nr. :	38 IN	37 OUT	OUT-IN
Name :	FROM DIS.V	TO DIS. V	
COMP MW	kg/s kmol/s	kg/s kmol/s	kg/s kmol/s
Ammonia 17.03	0 0	0 0	
Water 18.02	47.34 2.63	47.34 2.63	
Total	47.34 2.63	47.34 2.63	
Press. Bara	1.00	1.00	
Temp. °C	65.00	88.96	
Enthalpy kW	-743126	-738376	4750

Appendix 13Equipment Summary & Spesification Sheets

In this appendix, the summary of all of the equipment and its specification sheets are made available.

REACTORS, COLUMNS & VESSELS _

SUMMARY

EQUIPMENT NR. :	V-01			
NAME :	Ammonia			
	Collector			
	Vessel			
	Vertical			
Pressure [bara]	37.5			
Temp. [°C]	75.60			
Volume[m ³]	: 1.60			
Diameter [m]	. 0.93			
L or H [m]	2.32			
Internals				
- Tray Type	n a			
- Tray Number	na na			
- Fixed Packing	i iii.u.			
Туре	n.a.			
Shape	n.a.			
- Catalyst				
Туре	n.a.			
Shape	n.a.			
<u>Number</u>				
- Series	1			
- Parallel	-			
Materials of	CS			
Construction (1)				
Other				
Remarks:				
(1) CS : Carbon Steel.				
Designers · DW Ent	cao A Mashah	Project ID Numbe	r · CDD 2270	
Designers : P.W. Fal	cao A. Mesbah	Project ID-Numbe	r : CPD-3328	er 13 st 2005

HEAT EXCHANGERS & FURNACES	-	SUMMARY
----------------------------	---	---------

EQUIPMENT NR.	:	E-01	E-02	E-03	E-04	E-05
NAME	:	Ammonia	Ammonia	Intercooler	Heat Exchanger	Heat Exchanger
		Evaporator	Condenser		District 1	District 2
Туре		Kettle Vaporizer	Kettle Vaporizer	Floating	Floating	Floating
JI	-	_	-	Head	Head	Head
Substance						
- Tubes	:	Water	Water	Water	Water	Water
– Shell	:	Ammonia	Ammonia	Ammonia	Water	Water
Duty [kW]		3,535	4,804	203	23,277	23,277
Heat Exchange						
area [m ²]	:	737	232	292	1,557	1,557
Number						
- Series	:	1	1	1	1	1
- Parallel :		-	-	-	-	-
Pressure [bara]						
- Tubes	:	3.00	9.00	9.00	4.00	4.00
- Shell	:	6.60	38.00	15.00	12.80	12.60
Temperature						
In / Out [°C]						
- Tubes	:	27.50 / 17.87	66.50 / 77.59	66.50 / 88.78	65.00 / 91.42	65.00 / 90.09
- Shell	:	12.35 / 12.35	179.32 / 75.60	93.25 / 70.85	133.79 / 70.00	133.60 / 70.00
Special Materials of		Tubes : CS	Tubes : CS	Tubes : CS	Tubes : CS	Tubes : CS
Construction (1)	:	Shell : CS	Shell : CS	Shell : CS	Shell : CS	Shell : CS
Other	:	-	-	-	-	-
Remarks:						

(1) CS = Carbon Steel.

Designers	:	P.W. Falcao A. Mesbah	Project ID-Number :	CPD-3328
-		M.V. Suherman S. Wennekes	Date	: December 13 st 2005

HEAT EXCHANGERS & FURNACES	_	
----------------------------	---	--

SUMMARY

EQUIPMENT NR. :	E-06	E-07	E-08	F-01	
NAME :	Heat Exchanger	Heat Exchanger	Heat Exchanger	Natural Gas	
	District 3	District 4	District 5	Furnace	
Type :	Floating	Floating	Floating	Fired	
v 1	Head	Head	Head	Heater	
Substance					
- Tubes :	Water	Water	Water	Water	
- Shell :	Water	Water	Water	na	
Duty [kW] :	23,285	23,277	23,279	136,899 (1)	
Heat Exchange					
area [m ²] :	1,557	1,557	1,557	- (2)	
Number					
- Series :	1	1	1	1	
- Parallel :	-	-	-	-	
Pressure [bara]					
- Tubes :	4.00	4.00	4.00	8.00	
- Shell :	9.82	9.77	9.80	1.30	
Temperature					
In / Out [°C]					
- Tubes :	65.00 / 89.09	65.00 / 88.79	65.00 / 88.98	77.83 / 137.15	
- Shell :	128.20 / 70.00	127.50 / 70.00	127.90 / 70.00	526.85 / 79.85	
Special Materials of	Tubes : CS	Tubes : CS	Tubes : CS	Tubes : CS	
$Construction \qquad (3):$	Shell : CS	Shell : CS	Shell : CS	Shell : na	
Other :	-	-	-	-	

Remarks:

(1) This value is obtained based on the peak demand.
 (2) To be specified in detailed design.
 (3) CS = Carbon Steel.

Designers	:	P.W. Falcao A. Mesbah	Project ID-Number :	CPD-3328
-		M.V. Suherman S. Wennekes	Date	: December 13 st 2005

EQUIPMENT NR.	:	K-01	K-02	K-03	P-01 A/B	
NAME	:	Low Pressure	High Pressure	Air Blower	Hot Water	
		Compressor	Compressor		Pump	
Туре	:	Reciprocating	Reciprocating	Centrifugal	Centrifugal	
Number	:	1	1	1	2	
Medium						
Transferred	:	Ammonia	Ammonia	Air	Water	
Capacity						
[kg/s]	:	3.89	3.89	57.04	438.25	
$[m^{3}/s]$:	0.78 (1)	0.41 (1)	48.16 (1)	0.50	
Density [kg/m ³] :		4.99 (1)	9.43 (1)	1.18 (1)	878	
Pressure [bara]						
Suct. / Disch.	:	6.50 / 15.00	14.50 / 38.00	Atm. / 1.30	4.00 / 13.00	
Temperature						
In / Out[°C]	:	11.91 / 93.25	70.85 / 179.32	20.00 / 50.33	136.76 / 136.90	
Power [kW]						
- Theor.	:	621 852		1822	485	
- Actual	:	690	946	2025 (3)	539	
Number						
- Theor.	:					
- Actual	:	1	1	1	2 (1)	
Special Materials of						
Construction	:	Carbon Steel	Carbon Steel	Cast Iron	Cast Iron	
Other	:	-	-	-	Shaft: HT Steel	

PUMPS, BLOWERS & COMPRESSORS SUMMARY _

Remarks:

(1) Calculated at inlet condition.
 (2) One installed spare included.
 (3) This value is obtained based on the peak demand.

(4) HT = High Tensile.

Designers	:	P.W. Falcao A. Mesbah	Project ID-Number :	CPD-3328
_		M.V. Suherman S. Wennekes	Date	: December 13 st 2005

EQUIPMENT NUMBER : E-01				In Series	: 1
NAME : Ammonia	Evapo	orator		In Parallel :	none
		General	Data		
Service	: -	- Heat Excha	nger	- Vaporizer	
	-	- Cooler -		- Reboiler	
		- Condenser ((Air c	ooled)	
Туре	: -	- Fixed Tube	Sheet	s - Plate Heat Exchange	f
	-	 Floating He 	ad	- Finned Tubes	
	-	Hair Pin		- Thermosyphon	
D	<u> </u>	<u>- Double rup</u>	e	- Kettle vaporizer	
Position	: -	- Horizoniai - Vortical			
Canacity [kW]		• 3 535	(1) (Calc.))
Heat Exchange Area [m ²]		· 3,335 · 737	($\frac{1}{1}(2) \qquad (Calc.)$	
Overall Heat Transfer Coefficient [W/m ²	•°C1 :	550	1	(Approx.))
Log. Mean Temperature Diff. (LMTD) [°C		9.7		(rr)	
		-		(2)	
Passes 1 upe Side	•	-		(3)	
Passes Shen Side	•	-		(3)	
Correction Factor LMTD (min. 0.75)	:	. 0.9			
Corrected LMTD [°C]	:	8.7	(1)	(Calc.)	
		Process Co	nditio	ons	
			ļ	Shell Side	Tube Side
Medium			:	Ammonia	Water
Mass Stream	[[kg/s]	:	3.89	81.06
Mass Stream to					
- Evaporize	[kg/s	5]	:	2.84	-
- Condense	-[kg/s	;]	:		
Average Specific Heat	[kJ/]	kg.⁰C]	:	-	4.18
Heat of Evap. / Condensation	[kJ/ł	kg]	:	380	-
	г ⁰ С1	8.		10.25	27.50
Temperature IN			:	12.35	27.30
Temperature 001	[C]		•	12.55	17.87
Pressure	[bara	a]	:	6.60	3.00
Material (4)			:	CS	CS
Remarks:					
(1) Calculation is done by Aspen Plus Simula (2) $T_{\rm el}$ is 12% OD 1%	tion.	D' 1 11/4"			
(2) Tubes: $L = 12$ ft; $OD = 1^{\circ}$ on Square Pitc.	n; Tub	e Pitch= $11/4^{\circ}$.			
(3) To be specified in the detailed design. (4) CS -Carbon Steel					
(4) CS-Carbon Steel.					

Designers :	P.W. Falcao A. Mesbah	Project ID-Number :	CPD-3328
_	M.V. Suherman S. Wennekes	Date	: December 13 st 2005

EQUIPMENT NUMBER : E-02			In Series	; 1
NAME : Ammo	nia Condenser		In Parallel	none
Service	Ge : - Heat I - Cooler - Conde	eneral Data Exchanger e enser	- Vaporizer - Reboiler	
Туре	: - Fixed - Floatii - Hair I - Doubl	Tube Sheet ng Head ² in e Tube	s - Plate Heat Exchang - Finned Tubes - Thermosyphon - Kettle Vaporizer	çer
Position	: - Horizo - Vertica	ntal 1		
Capacity Heat Exchange Area Overall Heat Transfer Coefficient Log. Mean Temperature Diff. (LMTD)	[kW] [m ²] [W/m ² .⁰C] [⁰C]	: 4,8 : 23 : 600 : 38.3	04 (1 2 (1 7	(1) (Calc.)),(2) (Calc.) (Approx.)
Passes Tube Side Passes Shell Side		: - : -	(3) (3)	
Correction Factor LMTD (min. 0.75) Corrected LMTD	[°C]	: 0.9 : 34.5	53 (1)	
	Proce	ess Condition	ons an a succession of the suc	
Medium		:	Ammonia	Tube Side Water
Mass Stream Mass Stream to	[kg/s]	:	3.89	95.39
- Evaporize - Condense	[kg/s] [kg/s] [:	3.89	-
Average Specific Heat Heat of Evap. / Condensation	[kJ/kg·°C] [kJ/kg]	:	550	4.18
Temperature IN Temperature OUT	[°C] [°C]	:	179.32 75.60	66.50 77.59
Pressure Material (4)	[bara]	:	38.00 CS	9.00 CS
Remarks: (1) Calculation is done by Aspen Plus Si (2) Tubes: L = 12 ft; OD = 1" on Square (3) To be specified in the detailed design (4) CS = Carbon Steel.	mulation. Pitch; Tube Pitch 	=11/4".		
Designers : PW Ealcao A Mesh	a h	Г	Project ID Number · Cl	DD 2228

Passes Tube Side

Passes Shell Side

(3)

(3)

EQUIPMENT NUMBER	:	E-03				In Series	: 1
NAME	:	Intercooler				In Parallel : none	
				General	Data		
Service		:	-	Heat Excha	nger	- Vaporizer	
			-	Cooler		- Reboiler	
			-	Condenser			
Туре		:	-	Fixed Tube	Sheets	- Plate Heat Exchanger	
			-	Floating He	ad	- Finned Tubes	
			-	Hair Pin		- Thermosyphon	
			-	Double Tub	e	- Kettle Vaporizer	
Position		:	-	Horizontal			
			-	Vertical			
Capacity		[]	(W] :	203	(1)	(Calc.)
Heat Exchange Area		[r	n ²]	:	292	(1),(2)	(Calc.)
Overall Heat Transfer Coe	effici	ent [W/m	².⁰C	C] :	175		(Approx.)

4.41

:

: _

: _

HEAT EXCHANGER - SPECIFICATION SHEET

Correction Factor LMTD (min. 0.75) : 0.9 Corrected LMTD [°C] : 3.97 (1)**Process Conditions** Shell Side Tube Side Medium Ammonia Water : Mass Stream [kg/s] : 3.89 2.00 Mass Stream to - Evaporize : - Condense [kg/s] : **Average Specific Heat** [kJ/kg·⁰C] 4.18 : 2.40 (4)Heat of Evap. / Condensation [kJ/kg] : **Temperature IN** [°C] 93.25 66.50 : **Temperature OUT** [°C] 70.85 88.78 : Pressure 15.00 9.00 [bara] : Material (5) CSCS

Remarks:

(1) Calculation is done by Aspen Plus Simulation.

Log. Mean Temperature Diff. (LMTD) [°C]

(2) Tubes: L = 12 ft; OD = 1" on Square Pitch; Tube Pitch=11/4".

(3) To be specified in the detailed design.

(4) The value estimated by Aspen Plus.

(5) CS = Carbon Steel.

Designers	:	P.W. Falcao A. Mesbah	Project ID-Number :	CPD-3328
		M.V. Suherman S. Wennekes	Date	: December 13 st 2005

EQUIPMENT NUMBER : E-04				In Series	: 1
NAME : Heat Exc	hanger District	1		In Parallel : no	one
	Ge	neral	Data		
Service	: - Heat E	Exchar	nger	- Vaporizer	
	- Cooler	<u>.</u>		- Reboiler	
ra	- Conde	nser Tho	01 4 a	DI-4- II- 24 Euchone	
Туре	: - Flasti	Tube a	Sheets	- Plate Heat Exchange Finned Tubes	Y
	- Floan - Hair P	lig Hea Bin	40	- Filmeu Tuves - Thormocynhon	
	- Doubk	e Tube	e	- Kettle Vaporizer	
Position	: - Horizo	ntal	-		
	- Vertica	1]			
Capacity	[kW]	:	23,277	(1),(2)	(Calc.)
Heat Exchange Area	[m ²]	:	1,557	(1),(2),(3)	(Calc.)
Overall Heat Transfer Coefficient	<i>N</i> /m ² ⋅ ^o C]	:	1000		(Approx.)
Log. Mean Temperature Diff. (LMTD) ["	C]	:	14.95		
Passes Tube Side		:	-	(4)	
Passes Shell Side		:	-	(4)	
Correction Factor LMTD (min. 0.75)		:	0.9		
Corrected LMTD	[°C]	:	13.45	(1)	
	Proce	ss Cor	nditions		
				Shell Side	Tube Side
Medium			:	Water	Water
Mass Stream	[kg/s]		:	19.48	47.33
Mass Stream to					
- Evaporize	<u>[kg/s]</u>		:		
- Condense	<u>[kg/s]</u>		:		
Average Specific Heat	[kJ/kg·⁰C]		:	4.18	4.18
Heat of Evap. / Condensation	[kJ/kg]		:	-	-
Temperature IN	[°C]		•	133.79	65.00
Temperature OUT	[°C]		:	70.00	91.42
Programo	[bowo]			12.80	4.00 (5)
Material (6)	[Dara]		•	CS	4.00 (J) CS
 Remarks: (1) Calculation is done by Aspen Plus Simu (2) This value is obtained for the peak dema (3) Tubes: L = 12 ft; OD = 1" on Square Pi (4) To be specified in the detailed design. (5) It is assumed that the tap water is delive (6) CS = Carbon Steel. 	lation. nd. tch; Tube Pitch= red at this press	=11/4″. sure.			

Designers:P.W. FalcaoA. MesbahProject ID-Number:CPD-3328M.V. SuhermanS. WennekesDate:December 13st 2005

EQUIPMENT NUMBER : E-05			In Sei	ries : 1			
NAME : Heat E	xchanger Distrie	et 2	In Parallel :	none			
	G	eneral Data					
Service	: - Heat	Exchanger	- Vaporizer				
	- Cool	e r	- Reboiler				
_	- Cone	lenser					
Туре	: - Fixed	1 Tube Sheets	- Plate Heat Exch	anger			
	- Float	ing Head	- Hinned Lubes				
	- Han	T III Ja Tuba	- Kottle Venerize				
Position	: - Horiz	ontal	- Kettle Vaporize	<u> </u>			
	- Verti	eal					
Capacity	[kW]	: 23,277	(1),(2)	(Calc.)			
Heat Exchange Area	[m ²]	: 1,557	(1),(2),(3)	(Calc.)			
Overall Heat Transfer Coefficient	[W/m ² ·⁰C]	: 1000		(Approx.)			
Log. Mean Temperature Diff. (LMTD)	[°C]	: 16.97					
Passes Tube Side		: -	(4)				
Passes Shell Side		: -	(4)				
Correction Factor LMTD (min. 0.75)		: 09					
Corrected LMTD	[°C]	: 15.27	(1)				
	Proc	cess Conditions					
			Shell Side	Tube Side			
Medium		:	Water	Water			
Mass Stream	[kg/s]	:	19.48	47.33			
Mass Stream to							
- Evaporize	<u>[kg/s]</u>	:					
- Condense	<u>[kg/s]</u>	:					
Average Specific Heat	[kJ/kg.⁰C]	:	4.18	4.18			
Heat of Evap. / Condensation	[kJ/kg]	:	-	-			
Temperature IN	[⁰ C]		133.60	65.00			
Temperature OUT	[°C]	•	70.00	90.09			
	[]	•	10.00	4.00 (5)			
Pressure Material (6)	[bara]	:	12.60	4.00 (5)			
Pomorka:		•	C3	6			
(1) Calculation is done by Aspen Plus Si	mulation						
(2) This value is obtained for the peak der	mand.						
(3) Tubes: $L = 12$ ft: OD = 1" on Square	(3) Tubes: $L = 12$ ft: OD = 1" on Square Pitch: Tube Pitch=11/4".						

(4) To be specified in the detailed design.
(5) It is assumed that the tap water is delivered at this pressure.
(6) CS = Carbon Steel.

Designers	:	P.W. Falcao A. Mesbah	Project ID-Number :	CPD-3328
-		M.V. Suherman S. Wennekes	Date	: December 13 st 2005

EQUIPMENT NUMBER : E-06			In Series	: 1
NAME : Heat Exe	changer Distric	t 3	In Parallel : n	one
	Ge	eneral Data		
Service	: - Heat l	Exchanger	- Vaporizer	
	- Coole	F	- Reboiler	
	- Conde	enser		
Туре	: - Fixed	Tube Sheets	- Plate Heat Exchang	er
	- Fload Hoir I	lig Heau Pin	- Finneu Tubes - Thormosynhon	
	- Doubl	- Tube	- Kettle Vanorizer	
Position	: - Horizo	ontal		
	- Vertic	al		
Capacity	[kW]	: 23,28	5 (1),(2)	(Calc.)
Heat Exchange Area	[m ²]	: 1,557	(1),(2),(3)	(Calc.)
Overall Heat Transfer Coefficient	[W/m ² ⋅ ^o C]	: 1000		(Approx.)
Log. Mean Temperature Diff. (LMTD)	[°C]	: 16.58		
Passes Tube Side		: -	(4)	
Passes Shell Side		: -	(4)	
Correction Factor I MTD (min 0.75)		• 00		
Corrected LMTD	[°C]	• 14.92	(1)	
	Proce	ess Conditions	(1)	
			Shell Side	Tube Side
Medium		:	Water	Water
Mass Stream	[kg/s]		19.48	17 33
Mass Stream to	[16/5]		17.40	+7.55
- Evaporize	<u>[kg/s]</u>	:		
- Condense	<u>[kg/s]</u>	:		
Average Specific Heat	[]r I/lra ⁰ C]		4.18	4 18
Heat of Evan / Condensation	[KJ/Kg· C] [k I/kg]	•	4.10	4.10
ficut of Evup. / Condensation		•		
Temperature IN	[°C]	:	128.20	65.00
Temperature OUT	[°C]	:	/0.00	89.09
Pressure	[bara]	:	9.82	4.00 (5)
Material (6)		:	CS	CS
 Remarks: (1) Calculation is done by Aspen Plus Sim (2) This value is obtained for the peak dem (3) Tubes: L = 12 ft; OD = 1" on Square F (4) To be specified in the detailed design. (5) It is assumed that the tap water is delive (6) CS = Carbon Steel. 	ulation. and. Pitch; Tube Pitch Pered at this press	=11/4". sure.		

Designers	:	P.W. Falcao A. Mesbah	Project ID-Number :	CPD-3328
_		M.V. Suherman S. Wennekes	Date	: December $13^{st} 2005$

EQUIPMENT NUMBER : E-07			In Series	: 1
NAME : Heat E	xchanger District	4	In Parallel : no	one
	Ge	neral Data		
Service	: - Heat F - Cooler - Conde	Exchanger : e nser	- Vaporizer - Reboiler	
Туре	: - Fixed - Floatin - Hair F - Doubl	Tube Sheets ng Head Pin e Tube	- Plate Heat Exchang - Finned Tubes - Thermosyphon - Kettle Vaporizer	27
Position	: - Horizo - Vertica	ntal 1		
Capacity Heat Exchange Area Overall Heat Transfer Coefficient Log. Mean Temperature Diff. (LMTD)	[kW] [m ²] [W/m ² .ºC] [ºC]	: 23,277 : 1,557 : 1000 : 14.95	(1),(2) (1),(2),(3)	(Calc.) (Calc.) (Approx.)
Passes Tube Side Passes Shell Side		: - : -	(4) (4)	
Correction Factor LMTD (min. 0.75) Corrected LMTD	[°C]	: 0.9 : 13.45	(1)	
	11000		Shell Side	Tube Side
Medium		:	Water	Water
Mass Stream Mass Stream to - Evaporize	[kg/s] [kg/s]	:	19.48	47.33
- Condense Average Specific Heat Heat of Evap. / Condensation	[kg/s] [kJ/kg.⁰C] [kJ/kg]	:	4.18	4.18
Temperature IN Temperature OUT	[°C] [°C]	:	127.50 70.00	65.00 88.79
PressureMaterial(6)	[bara]	:	9.77 CS	4.00 (5) CS
Remarks: (1) Calculation is done by Aspen Plus Si (2) This value is obtained for the peak det (3) Tubes: $L = 12$ ft; $OD = 1''$ on Square (4) To be specified in the detailed design (5) It is assumed that the tap water is del (6) CS = Carbon Steel.	mulation. mand. Pitch; Tube Pitch= a. ivered at this press	=11/4". sure.		

Designers	:	P.W. Falcao A. Mesbah	Project ID-Number :	CPD-3328
-		M.V. Suherman S. Wennekes	Date	: December 13 st 2005

EQUIPMENT NUMBER : E-08			In Series	: 1
NAME : Heat E	xchanger Distric	t 5	In Parallel : no	ne
	Ge	eneral Data		
Service	: - Heat l	Exchanger	- Vaporizer	
	- Coole	r	- Reboiler	
	- Conde	enser		
Туре	: - Fixed	Tube Sheets	- Plate Heat Exchange	r
	- Floati Hoin I	ng Head	- Hinned Lubes	
	- Hair I	- III o Tubo	- Thermosyphon - Kattla Vanarizar	
Position	· - Horizo	ntal	- Kettle vaporizer	
	- Vertic	al		
Capacity	[kW]	: 23,279	(1),(2)	(Calc.)
Heat Exchange Area	[m ²]	: 1,557	(1),(2),(3)	(Calc.)
Overall Heat Transfer Coefficient	[W/m ² ·⁰C]	: 1000		(Approx.)
Log. Mean Temperature Diff. (LMTD)	[°C]	: 16.54		
Passes Tube Side		: -	(4)	
Passes Shell Side		: -	(4)	
Correction Factor LMTD (min. 0.75)		: 0.9		
Corrected LMTD	[°C]	: 14.89	(1)	
	Proce	ess Conditions		
			Shell Side	Tube Side
Medium		:	Water	Water
Mass Stream	[kg/s]	:	19.48	47.33
Mass Stream to				
- Evaporize	<u>[kg/s]</u>	:		
- Condense	<u>[kg/s]</u>	:		
Average Specific Heat	[kJ/kg.⁰C]	:	4.18	4.18
Heat of Evap. / Condensation	[kJ/kg]	:	-	-
Tomporature IN	[⁰ C]	•	127.00	65.00
Temperature OUT	[°C]	•	70.00	88.96
	[0]	•	70.00	00.90
Pressure	[bara]	:	9.80	4.00 (5)
Material (6)		:	CS	CS
Kemarks: (1) Coloulation is done by Asner Place Si	mulation			
(1) Calculation is done by Aspen Plus SI (2) This value is obtained for the peak day	mand			
(2) Tubes: $I = 12$ ft: OD = 1" on Square	Ditch: Tube Ditch	-11///"		
(3) Tubes. $L = 12 \text{ it}$, $OD = 1$ off square	Then, Tube Plich	-11/4 .		

(4) To be specified in the detailed design.
(5) It is assumed that the tap water is delivered at this pressure.
(6) CS = Carbon Steel.

Designers :	:	P.W. Falcao A. Mesbah	Project ID-Number :	CPD-3328
0		M.V. Suherman S. Wennekes	Date	: December 13 st 2005

EQUIPMENT NUMBER : F-01 NAME · Nature			In Series	: 1		
	Ger	neral	Data	in raranci . ne	lic	
Service : Burning Natural Gas				(1)		
Type : Fired Heater						
Capacity	[kW]	:	136899	(2),(3)	(Calc.)	
Heat Exchange Area	[m ²]	:	-	(4)		
Overall Heat Transfer Coefficient	$[W/m^2 \cdot C]$:	-	(4)		
Log. Mean Temperature Diff. (LMT1	<u>הן ר</u>	:	80.77			
Passes Tube Side		:	-	(4)		
Passes Shell Side		:	na			
Correction Factor LMTD (min. 0.75)		:	0.9			
Corrected LMTD	[°C]	:	72.69	(2)		
	Proces	ss Cor	nditions	al hat		
Madium			. —	Shell Side	Tube Side	
			•	Flue Gas	water	
Mass Stream	[kg/s]		:	11.06	97.39	
Mass Stream to						
- Condense	[kg/s]		•			
			•	1.00 (0) (5)	4.40	
Average Specific Heat	[kJ/kg·°C]		:	1.23 (2),(5)	4.18	
Heat of Evap. / Condensation	[KJ/Kg]		•	-	-	
Temperature IN			:	526.85 (6)	77.83	
Temperature OUT	[°C]		:	79.85	137.15	
Pressure	[bara]		:	1.30 (7)	8.00	
Material (8) ,(9)			:	CS .	CS	
Pressure[bara]: 1.30 (7) 8.00 Material (8) , (9) :CSCSRemarks:(1) Natural gas composition (mole percent): $C_1=81.3$, $C_2=2.9$, $C_3=0.4$, $C_4=0.1$, $C_5=0.1$, $CO_2=0.9$, $N_2=14.3$; temperature: 60° F, pressure: 14.7 psia.(2) Calculation is done by Aspen Plus Simulation.(3) This value is obtained based on the peak demand.(4) To be specified in the detailed design.(5) Calculated at outlet condition.(6) Flue gas temperature.(7) Flue gas pressure.(8) CS = Carbon Steel.(9) Insulation should be provided.						

FURNACE – SPECIFICATION SHEET

Designers	:	P.W. Falcao A. Mesbah	Project ID-Number :	CPD-3328
_		M.V. Suherman S. Wennekes	Date	: December 13 st 2005

EQUIPMENT NUMBER	: K-01		In Series : 1	
NAME	: Low F	ressure Compressor	In Parallel : none	
Service : Compress Amn	nonia			
Type : Reciprocati	ng		0.01. 1.0.4	
Compressor Model		Operating Conditions &	& Physical Data	
Compressed Cas		· Ammonia		
Cn/Cv at inlet condition		: 1.39		
Cp/Cv at outlet condition		: 1.38		
Density at inlet condition	[kg/m ³]	: 4.99		
Density at outlet condition	[kg/m ³]	: 9.03		
	_ 1	Power		
Suction Capacity	$[m^{3}/s]$: 0.78		
Discharge Capacity	[m ⁻ /s]	: 0.43		
Discharge Pressure	[bara]	• 15.00		
	[0010]	. 13.00		
Suction Temperature	[°C]	: 11.91		
Discharge Temperature	[°C]	: 93.25		
Isentropic Temperature	[°C]	: 76.61		
Isentropic Efficiency	[-]	: 0.75		
Mechanical Efficiency	[-]	: 0.90		
Power	[kW]	: 690 (1)		
		Construction	Details (2),(3),(4)	
Drive		: Electrical		
Material	:	CS (5)		
Remarks: (1) Calculation is done by Aspen Plus simulation. (2) Further details are provided by the manufacturer. (3) The maximum allowable noise level is 50 db. (4) A knockout drum should be provided with the compressor. (5) CS: Carbon Steel.				

RECIPROCATING COMPRESSOR –SPECIFICATION SHEET

Designers	:	P.W. Falcao A. Mesbah	Project ID-Number :	CPD-3328
		M.V. Suherman S. Wennekes	Date	: December 13 st 2005

RECIPROCATING COMPRESSOR -SPECIFICATION SHEET

EQUIPMENT NUMBER NAME	: K-02 : High	Pressure Compressor	In Series : 1 In Parallel : none
Service : Compress Amm	ionia		
Type : Reciprocati	ng		
		Operating Conditions &	Physical Data
Compressor Model		: Isentropic	
Compressed Gas		: Ammonia	
Cp/Cv at infet condition		· 1.40 · 1.39	
Density at inlet condition	$[kg/m^3]$: 9.43	
Density at outlet condition	$[kg/m^3]$: 18.96	
		Power	
Suction Capacity	[m ³ /s]	: 0.41	
Discharge Capacity	[m ³ /s]	: 0.21	
Suction Pressure	[bara]	: 14.50	
Discharge Pressure	[bara]	: 38.00	
Suction Temperature	[°C]	: 70.85	
Discharge Temperature	[°C]	: 179.32	
Isentropic Temperature	[°C]	: 159.03	
Isentropic Efficiency	[-]	: 0.75	
Mechanical Efficiency	[-]	: 0.90	
Power	[kW]	: 946 (1)	on Dataila $(2)(2)(4)$
Drive		Flectrical	OII Details (2),(5),(4)
Material	:	CS (5)	
Remarks:			
(1) Calculation is done by A	spen Plus si	mulation.	
(2) Further details are provid	led by the m	anufacturer.	
(3) The maximum allowable	noise level	is 50 db.	
(4) A knockout drum should	be provided	d with the compressor.	
(5) CS: Carbon Steel.			
Designers : P.W. Falcad	A. Mes	sbah	Project ID-Number : CPD-3328
M.V. Suher	man S. We	ennekes	Date : December 13 st 2005

CENTRIFUGAL BLOWER – SPECIFICATION SHEET

EQUIPMENT NUMBER	: K-03		In Series : 1
NAME	: Air Bl	ower	In Parallel : none
Service : Blow Air to the	Furnace		
Type : Centrifugal		On and the Constant	
Compressor Model		Uperating Conditions Isentropic	s & Enysical Data
Compressed Gas		· isenuopie · Air	
Cp/Cy at inlet condition		: 1.41	
Cp/Cv at outlet condition		: 1.41	
Density at inlet condition	[kg/m ³]	: 1.18	
Density at outlet condition	[kg/m³]	: 1.39	
	- 3	Powe	r
Suction Capacity	$[m^{3}/s]$: 48.16	
Discharge Capacity	[m ⁻ /s]	: 40.88	
Discharge Pressure	[Dara] [bara]	• 1 30	
	[ມແ ແ]	• 1.50	
Suction Temperature	[°C]	: 20.00	
Discharge Temperature	[°C]	: 50.33	
Isentropic Temperature	[°C]	: 42.77	
Isentropic Efficiency	[-]	: 0.75	
Mechanical Efficiency	[-]	: 0.90	
Power	[kW]	: 1944 (1	(2)
Drivo		Construction Det	ans (3), (4)
Material	•	Cast Iron	
Remarks	•	Cust II OII	
(1) Calculation is done by A	spen Plus sin	mulation.	
(2) This value is obtained ba	sed on the p	eak demand.	
(3) Further details are provid	led by the m	anufacturer.	
(4) The maximum allowable	noise level	is 50 db.	
Designers · PW Falca	o A Mes	bab	Project ID_Number CPD_3328

Designers	:	P.W. Falcao A. Mesbah	Project ID-Number :	CPD-3328
-		M.V. Suherman S. Wennekes	Date	: December 13 st 2005

CENTRIFUGAL PUMP – SPECIFICATION SHEET

EQUIPMENT NUMB	ER :	P-01	A/I	3	Operating : 1
NAME	:	Hot Wate	er Pu	mp	Installed Spare : 1
Service : Water Pum	ıp				
Type : 1 Stage	e Radial	Centrifugal	Pumj	o (HSC)	
Number : 2					
			Oper	ating Condit	ions & Physical Data
Pumped liquid			:	Water	
Temperature	(T)	[°C]	:	137.0	
Density	(p)	[kg/m ³]	:	878	
Viscosity	(η)	$[N \cdot s/m^2]$:	0.0002	
Vapour Pressure	$(\mathbf{p}_{\mathbf{v}})$	[bara]	:	3.3	at Temperature [°C] : 137.0
				P	ower
Capacity	$(\mathbf{\Phi}_{v})$	$[m^3/s]$:	0.50	
Suction Pressure	(p _s) [b	ara]	:	4.0	(1)
Discharge Pressure	$(p_{\rm d})$ [b	ara]	:	13.0	(1)
Brake Power		[kW]	:	453	(1),(2)
Pump Efficiency		[-]	:	0.7	
Power at Shaft			÷	503	(1).(2)
rower at blatt		[,]	•	Constru	$\frac{(1),(2)}{(1)}$
RPM		•	3600)	
Drive			Elec	trical	
Type electrical motor		:	Tota	llv Enclosed.	Fan-Cooled Enclosure
Tension	ſV	1:	_	,	
Rotational direction	•	:	Cloc	k / Counter	Cl.
Foundation Plate		:	Com	bined / two 	parts
Flexible Coupling		:	Yes		•
Pressure Gauge Suction	on	:	No		
Pressure Gauge Disch	arge	:	Yes		
N.P.S.H.	[m]	:	31.9		(1), (2)
				Construct	ion Materials
Pump House			:	Cast Iron	
Pump Rotor		(5)	:	HT Steel	
Shaft		(5)	:	HT Steel	
Special provisions			:	none	
Operating Pressure	[b	ara]	:	13.0	
Remarks: (1) This value is obtained (2) Calculation is done (3) Further details to be (4) The maximum allo (5) HT Steel: High Ter	ed based by Aspen e specific wable no nsile Stee	on the peak n Plus Simu ed by Rotati bise level is el	t dema lation ing Ec 50 db	and. quipment spec	cialist.

Designers	:	P.W. Falcao A. Mesbah	Project ID-Number :	CPD-3328
		M.V. Suherman S. Wennekes	Date	: December 13 st 2005

FOLIDMENT NUMPED	• V 01		In Coming	. 1
EQUIPMENT NUMBER	: V-UI : Ammonia Collecto	r Vessel	In Series In Parallel • none	: 1
	. Annionia Concea	General Data	in raranci . none	
Service	:	Ammonia Collec	tor	
	•			
Туре	:	- Buffer	- Separation	
D 1/1		- Storage	- Reaction	
Position	:	- Horizontal Vortical		
Intornals	•	- Vertical	a / Coil	
Heating/Cooling medium	•	- none / Open / C	Closed / External Hyd	IF.
- Type	:	n.a.	Stosed / External fing	<u>,</u>
- Quantity	[kg/s] :	n.a.		
- Press./Temp.'s	[bara/°C] :	n.a.		
Vessel Diameter (ID)	[m] :	0.93		
Vessel Height	[m] :	2.32		
Vessel Tot. Volume	[m ³] :	1.60		
Vessel Material	:	CS (1)		
Other	:	-		
		Process Condition	26	
Stream Data		F F	'eed	Bottom
Stream Data		-	ccu	Dottom
Tomponotuno	r ⁰ C1	7	5.60	
Temperature	[U] :	7.	5.00	-
Pressure	[bara] :	3'	7.50	-
Density	[kg/m ³] :	51	3.40	-
Mass Flow	[kg/s] ·	2	89	_
	[Kg/5]		,	
Remarks:				
(1) CS: Carbon Steel.				
Designers : P.W. Falca	ao A. Mesbah	Pr	roject ID-Number :	CPD-3328
M.V. Suhe	erman S. Wennekes	D	ate	: December 13 st 2005

VESSEL – SPECIFICATION SHEET

Appendix 14 Demand Fluctuations

A maximum annual demand of 780 TJ at the districts was assumed. This demand is not constant and obviously depends very much on the season and the time of the day. Thus, there are big fluctuations in both monthly and hourly demand and they should be taken into consideration. Our design was made for the average heat consumption, i.e. assuming a constant heat demand (approximately 371 m^3/h of hot tap water or 0.09 TJ/h) and adjusting the design afterwards with the over-design factor to correct for monthly and hourly peaks.

Monthly fluctuations

Figure 1 shows the monthly consumption of hot tap water and central heating and was used as basis.

Figure 1. Monthly consumption for hot tap water and central heating, adopted from: <u>http://www.bertie.joan.freeler.nl/totaaloverzichten_MHWC.htm#MHWCsmall</u>

Figure 2. Monthly consumption for hot tap water and central heating

The data for the year 2004 in Figure 2 were used to calculate the ratios (month usage/year usage) and to estimate how the usage of 780 TJ would be distributed over the year based on similar ratios. The results are shown in Table 1.

2004- 2005	Fraction of 780T.I/annum	Average	T.J/month	Over design
Oct	0.03	0.08	25	0.4
Nov	0.10	0.08	77	1.2
Dec	0.25	0.08	198	3.0
Jan	0.18	0.08	137	2.1
Feb	0.16	0.08	123	1.9
Mar	0.12	0.08	94	1.5
Apr	0.04	0.08	28	0.4
May	0.03	0.08	25	0.4
Jun	0.02	0.08	16	0.2
Jul	0.02	0.08	13	0.2
Aug	0.03	0.08	24	0.4
Sep	0.03	0.08	21	0.3
Total	1	1	780TJ/annum	

Table 1. Monthly hot water consumption, hot tap water and central heating, derived from 2

The figures in Table 1 show that a design for a constant energy demand will certainly not fulfill the requirements. The furnace should be over-designed for a factor of 3 in comparison with the average usage (0.08 TJ/month) to overcome the monthly fluctuations in heat usage by the district.

Hourly fluctuations

As it was mentioned before there are not only monthly fluctuations, but also hourly fluctuations during the day in the heat demand by the district. People will use less heat during night and more during daylight and evening, with maximum peaks during rush hours.

In order to fulfill this peak demands, there should be another over design, to compensate for the hourly fluctuations and peaks. To deal with these fluctuations one has to know something about the daily characteristics of the heat demand in heating districts.

Figure 3 shows the mean monthly and peak load fluctuation and was used as basis.

Figure 3. Mean monthly and peak load fluctuations, adopted from: http://www.opetchp.net/download/wp7/WP7_presentation_paper_CERTH_%20ISFT A.pdf

Figure 4. A Daily demand distribution

Figure 4 was used to define the ratios for the hourly energy demand in the district. The biggest peak in the graph deviates from the daily average with a factor of 1.48.

Two options were considered to overcome the hourly fluctuations:

Option 1.

The first option to overcome these fluctuations was by means of a big buffer tank. The volume of this buffer tank should be big enough to store the energy amount of the usage above the average demand, which is approximately the accumulation from 07:00 till 22:00 o'clock.

According to figures presented in Table 2, two buffer tanks with capacity of 3.57 hours are needed. It means a volume of 3.57 times the hourly average flow rate of a certain day a year. In the worst case, the monthly demand is the highest. Therefore, it is 3 times as much the average monthly demand, and this all leads to a total volume of approximately 4200 m^3 . Designing a tank for 4200 m^3 and assuming H/D ratio of 2.5 yields a tank with a height of 32 m and a diameter of 13 meter. The use of two buffer tanks will also provide the system with flexibility, especially in case of maintenance. The maximum time available for maintenance (tank volume over the lowest flow rate) is approximately 50 hours. Appendix 3 shows the tank dimension calculations, as well as its cost estimation.

	Factor of	Difference from average	Buffer utilization
Hour	over design	(relative)	(hr)
1	0.44	-0.56	
2	0.44	-0.56	
3	0.44	-0.56	
4	0.44	-0.56	
5	0.52	-0.48	
6	0.89	-0.11	
7	1.18	0.18	0.18
8	1.40	0.40	0.40
9	1.48	0.48	0.48
10	1.33	0.33	0.33
11	1.21	0.21	0.21
12	1.15	0.15	0.15
13	1.06	0.06	0.06
14	1.09	0.09	0.09
15	1.12	0.12	0.12
16	1.05	0.05	0.05
17	1.05	0.05	0.05
18	1.18	0.18	0.18
19	1.33	0.33	0.33
20	1.43	0.43	0.43
21	1.39	0.39	0.39
22	1.11	0.11	0.11
23	0.81	-0.19	
24	0.44	-0.56	3.57

Table 2. Hourly over-design factors, derived from Figure 4

Option 2.

Another option and probably a better way to overcome the above average usage is to increase the capacity of the fired heater again, but now with respect to the hourly fluctuations. The hourly peaks are not that big relatively to the average usage; only a maximum factor of 1.48. Therefore, the fired heater capacity should in this case be increased in order to overcome both monthly and daily fluctuations. This is the best option due to the fact that the tanks will be big like shown before. This is a problem because in this area space is not infinitely available, and so making it an expensive solution.

One big fired heater should be used, with an over capacity with a factor of 5, to compensate monthly fluctuations, hourly fluctuations and serve as a back-up system for the ammonia loop. If the demand of the district is lower than the capacity of the MHP, the unloading/loading capacity of the compressors will lower the ammonia flow in the MHP and shut down the fired heater.

The disadvantage of this option is the presence of a fired heater that is not efficiently used; that is, only 20% of its capacity is utilized over the year. The idleness of the furnace is higher during the summer time, when only approximately 5% of the capacity is used. That is why the majority of DHS's in Europe are combined with a power station, the so called combined heat and power.

Results of Fluctuations and Operability

Since the average heating demand is approximately 9 times as much as the average energy input from DSM waste heat stream and the peak demand is approximately 25 time as much of this value, it is impossible to avoid the usage of a gas-fired heater to overcome this situation.

Given the required plant capacity and the results of the evaluation of the demand fluctuations and studies on heat losses in the pipelines, the outputs of our design were mostly established. As a result of heat losses calculations in the pipeline network, the Upgrading Unit has to be designed for 922 TJ/annum in order to compensate the heat losses on the network.

veen the district
<u> </u>

Appendix 15 **Streams To The District**

Insulation type: PUR	Q (TJI) Q (TJI)	1 2 3 4 1 2 3 4	181 167 11 5 162 159 3 1	183 168 12 5 162 159 3 1	180 167 11 5 161 159 3 1	180 164 8 0 162 158 2 0	168 160 4 0 159 157 1 0		Q (TJI) Q (TJI)	Toog1 From og1 To og1 From og1	14 544 3 465	Q (TJI)) Q (TJI)	To W To cg 2 From W From cg 2 From www. From cg 2 From www. From cg 2	0 574 922 0 0 492 813 0
Insulation type: PUR		2 3	11 167 11	3 168 12	0 167 11	0 164 8	8 160 4			2g1 From og 1	4 S44	0	W Toog2 From W	574 922
	0 (LI)	-	sub grid 5 18	sub grid 4 18	sub grid 3 18	sub grid 2 18	sub grid 1 16	 	0 (LI)	Toc	5 grid 2 1	o (TJ)	2	grid 1 0

Appendix 16 District Piping System Block Scheme

Insulation Material : PUR Thickness : 50 mm

Apparatus No. : -	Intention of appara	rıs: -		
Line No. 6	Intention of line: tra	nsfer ammonia from the discharge	: of 2 nd compressor to the condense	ĸ
Guide Word	Deviation or	Possible	Consequences	Action Required
	disturbance	Causes		
Not, No	FLOW	1)Failure in the compressor	1)The whole loop is down	1)Maintenance
More	FLOW	Not applicable	None	None
	PRESSURE	3)Plugging in the condenser	Piping failure	2) Maintenance
		Block valve closed in the	The whole cycle gets	
		condenser while the	affected	
		compressor is running		
	TEMPERATURE	 High pressure in the suction and discharge of the 	4) Maximum allowable temperature of the 2 nd	3) Maintenance
		compressor	compressor can b achieved	
		6) High suction temperature		
Less	FLOW	7) Compressor failure	Less heat delivered	4)Maintenance
	PRESSURE	8)Compressor failure	6) Less heat delivered	5)Maintenance
	TEMPERATURE	9)Low suction temperature	7) Less heat transferred in	6)Maintenance
		10)Compressor failure	the condenser	

Appendix 17 Hazard and Operability Study

Apparatus No. : -	Intention of appara	tus: -		
Line No. 3	Intention of line: tra	insfer ammonia from the eva	porator to compressor1	
Guide Word	Deviation or disturbance	Possible Causes	Consequences	Action Required
Not, No	FLOW	1)Plugging in the	1) The cycle does not work	1)Stop the compressor from
		condenser or in the pipe		running 2)Close the waste water valve
		 Pipe fracture Control valve failure 		3)Provide a small tank to collect
More	FLOW	4)Not applicable	2) None	4)None
	PRESSURE	5)Compressor suction	3)High pressure in the whole	5)Maintenance
		valve fails closed	cycle	
		while the compressor is		
		running		
	TEMPERATURE	High heat transfer	High temperature at the	Process Control of waste water
		rate in the evaporator	compressor discharge	-by pass
Less	FLOW	 Plugging in the 	No big deal	7)Compressor control loops
		evaporator or in the		adjustment.
		pipe		
		Control valve failure		
	PRESSURE	Expansion valve	Low heat transfer in the	Proper Maintenance in the
		failure	condenser	control valve
	TEMPERATURE	10) Expansion valve	7) Low heat transfer in the	Proper Maintenance in the
		failure	condenser	control valves
		11) Waste water		
		control valve fails		
		closed		

Intention of line: tra Deviation or disturbance	nsfer ammonia from the 1 st (Possible causes	compressor to the intercooler Consequences	Action required
٨	 Failure in the compressor valves 	1)The whole loop is down	1)Maintenance
N	2) Not applicable	2)None	2)None
SURE	3)Plugging in downstream	 Piping failure Low pressure in the 	3) Maintenance
	4)Block valve closed	suction of the 2 nd	
	while compressor is	compressor	
	running	The whole cycle gets affected	
PERATURE	High pressure in the	6) Maximum allowable	4) Maintenance
	suction and	suction temperature of the	
	discharge of the	2nd can be achieved	
	compressor 6) High suction		
	temperature		
W	 Not applicable 	7)None	5)None
SSURE	8)Compressor failure	8)Low pressure in the suction of the 2 ^{ed}	6) Maintenance
		compressor	
PERATURE	9)Low suction	Less heat transfer in the	7) Maintenance
	temperature	intercooler	
	10) Compressor failure		

Apparatus No. : -	Intention of appara	tus: -		
Line No. 5	Intention of line: Fe	ed ammonia into compressor 2		
Guide Word	Deviation or disturbance	Possible Causes	Consequences	Action Required
Not, No	FLOW	1)Pipe fracture	1)The cycle does not work	1)Shutdown the compressor
		2) 1st compressor failure	2)Compressor 2 runs empty	
More	FLOW	3)Not applicable	3)None	2) None
	PRESSURE	4)Compressor suction	4)High pressure in the	3) Maintenance
		valve fails closed while	whole cycle	
		the compressor is		
		running		
	TEMPERATURE	5)Intercooler does not	High temperature at the	 Process Control of tap cold
		work properly	compressor discharge	water
Less	FLOW	6) Low flow down	6) No big deal	Compressor control loops
		upstream		adjustment.
	PRESSURE	 Compressor 1 failure 	7) Low heat transfer in the	Proper Maintenance in the
			condenser	compressor
	TEMPERATURE	7) Failure in the control	8) Low heat transfer in the	7) Maintenance in the control
		system failure	condenser	loop of the intercooler

Apparatus No. : -	Intention of appara	tus: -		
Line No. 7	Intention of line: tra	insfer ammonia liquid to the exp	ansion valve	
Guide Word	Deviation or	Possible causes	Consequences	Action required
	disturbance			
Not, No	FLOW	1)Compressor failure	 No ammonia enters the 	1)Maintenance
		2)Block valve fails	evaporator	
		closed upstream the	The whole cycle gets	
		control valve	affected	
More	FLOW	3)Not applicable	3)None	2) None
	PRESSURE	4)Plugging in	 High temperature in the 	3)Check lines
		downstream	evaporator and in the	4)Maintenance
		5)Block valve	suction of the 1 st	
		downstream the	compressor	
		expansion closed while		
		compressor is running		
	TEMPERATURE	6) High temperature at	Two-phase flow	Process Control loop at the
		compressor		condenser
Less	FLOW	 Flange leak 	Covered by (1), (2)	Covered by (1)
	PRESSURE	8)Compressor failure	6)Two-phase flow	Covered by (1)
	TEMPERATURE	9) Insulation failure	7) No major consequences	Covered by (1)

Apparatus No. : -	Intention of appara	tus: -		
Line No. 8	Intention of line: tra	unsfer ammonia from the expan	ision valve to the evaporator	
Guide Word	Deviation or disturbance	Possible Causes	Consequences	Action Required
Not. No	FLOW	1) Plussing in the	1)The cycle does not work	1)Ston the compressor from
		condenser or in the pipe		nuning
		2) Pipe fracture		2)Close the waste water valve
		3) Control valve failure		 Provide a small tank to collect ammonia
More	FLOW	 Not applicable. The 	2)None	4)None
		compressor delivers a		
		certain amount that is		
		adjusted		
	PRESSURE	5)Control valve failure	3)Two-phase flow to the	Waste water by-pass control
			compressor	loop linked to the control valve
	TEMPERATURE	6)Control valve failure	4)Two-phase flow to the	Covered by (4)
			compressor	
Less	FLOW	 Plugging in the 	5)High temperature at	6)Maintenance
		condenser or in the pipe	compressor suction	7)Slow down the compressor
	DDDCCTDD	o) Compresses feilure	6.1 arrise cristian seconds of	0) Maintenanaa
	TUDESTUF	 Compressor ranue Pine leak 	o)Lower succourpressure at the 1st compressor	
	TEMPERATURE	11) Compressor failure	7)Lower suction pressure at	9) Maintenance
		vear the reav	nes 1 combresso	

T UDelft
Delft University of Technology

Apparatus No. : -	Intention of appara	- :snj		
Line No. 17	Intention of line: tra	insfer air from the blower to the	e fired heater	
Guide Word	Deviation or	Possible	Consequences	Action Required
	disturbance	Causes		
Not, No	FLOW	 Blower failure 	 No combustion 	1)Maintenance
			Natural gas sent to the	2)Proper ratio air: NG control
			atmosphere	
			3) Explosion	
More	FLOW	Failure in the flow	 Inefficient combustion 	Maintenance
		control valves	5) Uncontrolled emissions	
	PRESSURE	3)Not likely to occur	6) None	4) None
	TEMPERATURE	4)Not applicable	7) None	5) None
		considering the		
		temperature range of		
		the fired heater		
Less	FLOW	Piping fracture	Poor combustion	6) Maintenance
		Flange leak		
	PRESSURE	7)Blower failure	Mal function of the	7) Maintenance
			burner	
	TEMPERATURE	8)Insulation failure	10) No hazardous for the	8) Maintenance
			process	

-

Г

Apparatus No. : -	Intention of appara	tus: -		
Line No. 16	Intention of line: tra	nsfer natural gas to the fired he	eater	
Guide Word	Deviation or	Possible	Consequences	Action Required
	disturbance	Causes		
Not, No	FLOW	 Control valve failure 	 No proper heat released 	1)Maintenance
		(fails closed)	to tap water	
More	FLOW	2) Failure with flow	No proper heat released	2) Maintenance
		control valve	to tap water	
	PRESSURE	Only likely if there is	Piping failure	3) None
		higher pressure in the		
		NG supply		
	TEMPERATURE	4) Not applicable	4) None	4) None
Less	FLOW	Failure with flow	No proper heat released	5) Maintenance
		control valve	to tap water	
	PRESSURE	6)Leak in the supply	Mal function of the	6) Maintenance
		header or in the	burner	
		pipeline		
	TEMPERATURE	7)Insulation failure	7) Minor hazardous for the	7) Maintenance
			process	

aratus No. : -	Intention of appara	- :sn		
No. 21	Intention of line: tra	nsfer hot tap water from the Ce	ntral Grid 1 to the heat station (HI	(X1)
uide Word	Deviation or disturbance	Possible causes	Consequences	Action Required
Not, No	FLOW	1) Plugging	1)No heat distribution,	1)Close the bock valve to the
		Piping fracture	freezing of the equipment	district
		Pump failure		
		 Block valve closed 		
More	FLOW	5) Failure in the flow	2) Increasing in the	2)Proper maintenance
		control valves	outcoming temperature	
	PRESSURE	6)Plugging in	Piping failure	3)Pipe should be designed to
		downstream	 Line subjected to full 	maximum value
		7)Block valve closed	pump delivery or surge	4) Check lines
		while pump is running	pressure	
	TEMPERATURE	 Furnace control system 	Line fracture or flange	5)Install thermo-expansion relief
		failure (both	leak	valve
		temperature and flow)	6) Two-phase flow	
				Covered by (1), (2), (3) in the UU-
				IN file
Less	FLOW	Piping fracture	7) Low heat distribution	6)Maintenance
		10) Flange leak		
	DDDCCTTDD	11) Fump tature	0\Tura abaca flam	7) Browner Meintenenen
	LILESSURE	12)rump tanute	o) I wo-priase now	/)rtoper maintenance
			9)Pump cavitation	
			10)Less heat transfer	
			(gastiguid)	
	TEMPERATURE	13)Furnace failure	11) Low heat distribution	8)Maintenance
		14)Insulation failure		

T UDelft
Delft University of Technology

Conceptual	Process	Design	Report
------------	---------	--------	--------

Apparatus No. : -	Intention of appara	us: -		
Line No. 22	Intention of line: tra	nsfer hot tap water from Hea	t Station 1 (HEX1) to the Central	Grid 1(CG1)
Guide Word	Deviation or	Possible	Consequences	Action Required
	disturtoance	Causes		
Not, No	FLOW	Briggul 4(1	I)No heat distribution,	 Close the bock valve to the district
		2)Piping fracture	freezing of the equipment	
		3)Pump failure		
		4)Block valve closed		
More	FLOW	5)Failure in the flow	2)Increasing in the	2)Proper maintenance
		control valves	out coming temperature	
	PRESSURE	6)Plugging in	3)Piping failure	Pipe should be designed to
		downstream	Line subjected to full	maximum value
		7)Block valve closed	pump delivery or surge	4)Check lines
		while pump is running	pressure	
	TEMPERATURE	8)Furnace control	5)Line fracture or flange	5) Install thermo-expansion relief
		system failure (both	leak	valve
		temperature and flow)	6)Two-phase flow	
		9)Failure in the heat		Covered by (1), (2), (3) in the UU-IN
		exchanger control		file
		system		
Lezz	FLOW	10)Piping fracture	7)Low heat distribution	6)Maintenance
		11)Flange leak		
		12)Pump failure		
		13)Scaling in heat		
		exchanger		
	PRESSURE	14)Pump failure	8)Two-phase flow	7)Maintenance
			9)Pump cavitation	
			10)Less heat transfer	
			(gas+liquid)	
	TEMPERATURE	15)Fumace failure	 Low heat distribution 	8)Maintenance
		16)Insulation failure		

Annaratus No. : -	Intention of annara	- au		
Li-N-10	Intention of line, tes	nsfer mid ten weter to the inter	emoter	
Guide Word	Deviation or disturbance	Possible Causes	Consequences	Action Required
Not, No	FLOW	 Control valve failure Failure in the upstream pipeline Block valve closed 	 High temperature in the suction of the 2nd compressor 	1)Shut down the compressor(Trip) 2)Maintenance
More	FLOW	4)Failure in the flow control valves	 No hazardous consequences to the process 	3)Maintenance
	PRESSURE	5)Plugging in downstream 6)Block valve closed while pump is running	 Piping failure Line subjected to full pump delivery or surge pressure 	4)Maintenance 5)Check lines
	TEMPERATURE	7)Furnace control system failure (both temperature and flow) 8)Failure in the heat exchanger control system	5)Line fracture or flange leak 6)Two-phase flow	6)Install thermo-expansion relief valve Covered by (1), (2), (3) in the UU- IN file
Less	FLOW	9)Piping fracture 10)Flange leak 11)Scaling in heat exchanger	7)Low heat distribution	7)Maintenance
	PRESSURE	12)Pump failure	8)Two-phase flow 9)Pump cavitation 10)Less heat transf a (gas+liquid)	Covered by (6)
	TEMPERATURE	13)Fumace failure 14)Insulation failure	11) Low heat distribution	Covered by (6)

Apparatus No. : -	Intention of appara	tus: -		
Line No. 14	Intention of line: tra	nsfer tap water from the mix	cer to the furnace	
Guide Word	Deviation or disturbance	Possible Causes	Consequences	Action Required
Not, No	FLOW	 Control valve failure Failure in the upstream pipeline 	 No heat supplied to the districts 	1)Shut down the compressor 2)Maintenance
	ET OW	(block valve closed)	2)Mot succession	2.W
More	PDD0011DD	5 JINOT APPLICABLE	2)Not applicable over 6.3	enon(c
	FKESSUKE	4.)Plugging in downstream	 Priping tailure Line subjected to full 	4)Mantenance 5)Check lines
		5)Block valve closed	pump delivery or surge	
		while pump is running	pressure	
	TEMPERATURE	6)Furnace control	5)Two-phase flow	6) Install thermo-expansion relief
		eyeren ranue (bour temperature and flow)		DATP A
		7)Failure in the heat		Covered by (1), (2), (3) in the UUI-IN
		exchanger control		file
		system		
Less	FLOW	8)Piping fracture 9)Flange leak	Low heat distribution to the districts	7)Maintenance
		10)Scaling in heat		
		exchanger (condenser and intercooler)		
	PRESSURE	11)Pump failure	6)Two-phase flow	Covered by (6)
		12)Flange leak		
	TEMPERATURE	13)Inefficient heat	7)Low heat distribution	Covered by (6)
		transfer in the		
		condenser		
		14)Insulation failure		

	grading Unit to the Central Grid 2	Consequences Action Required	1) No heat distribution, 1)Shut-down the furnace freezing of the equipment 2)Shut-down the compressor 2)Local hot spot in 3)Waste water inlet should by-pass the evaporator 3)Race in the temperature of 2)	4)Not Applicable 4)Not Applicable	5)Piping failure 5)Pipe should be designed to 6)Line subjected to full maximum value pump delivery or surge 6)Check lines pressure	7)Line fracture or flange 7)Install thermo-expansion relief leak 8)High pressure in transfer line	9)Low heat distribution 8)Maintenance	10)Two-phase flow 9)Proper Maintenance 11)Pump cavitation 12)Less heat transfer (gastiquid)	13) Low heat distribution 10 Maintenance
us: - 1sfer hot tap water from the Upg	Possible Causes	1)Plugging 2)Piping fracture 3)Pump failure	4)Not Applicable (Closed-loop)	5)Plugging in the downstream 6)Block valve closed while pump is running	7)Furnace control system failure (both temperature and flow) 8)Failure in the district distribution system	9)Piping fracture 10)Flange leak 11)Pump failure	12)Pump failure	13)Fumace failure	
Intention of appara	Intention of line: tra	Deviation or disturbance	FLOW	FLOW	PRESSURE	TEMPERATURE	FLOW	PRESSURE	TEMPERATURE
Apparatus No. : -	Line No. 29	Guide Word	Not, No	More			Less		

Appendix 18Fire and Explosion Index Calculation

Area/Country:		Division:		Location		Date	
The Netherlands		-				12/1/2005	
Site	Manufacturin	g Unit		Process U	Init		
-	Upgrading Uni	t of District		Heat Upgra	ading Unit		
	Heating System	m (DHS)					
Materials in Process Unit							
Ammonia, Natural Gas,	Air and Water						
State of Operation			Basic Mate	rials for Ma	terial Factor	r	
Ammonia Thermal Cycl	e, Water Fired		Ammonia				
Heater and Water Pipel	ine Network						
Material Factor					-		4.00
1. General Process Ha	zards				Penalty	/ Factor	Penalty
					Ra	nge	Used
Base Factor					1.	00	1.00
A. Exothermic Chemica	I Reactions				0.30	- 1.25	-
B. Endothermic Processes 0.20 - 0.40							-
C. Material Handling and Transfer 0.25 - 1.05						-	
D. Enclosed or Indoor Process Units 0.25 - 0.90						0.30	
E. Acces 0.20 - 0.35						0.35	
F. Drainage and Spill Control 0.25 - 0.50						0.25	
General Process Hazards Factor (F1)						1.90	
2. Special Process Hazards						y Factor	Penalty
			Ra	nge	Used		
Base Factor				1.	00	1.00	
A. Toxic Material(s)		0.20	- 0.80	0.60			
B. Sub-Atmosferic Pressure (< 500 mm Hg)						50	-
C. Operation In or Near Flammable Range							
1. Tank Farms Storage Flammable Liquids 0.50						50	-
2. Fa	ailure	of Pulge			0.	30	0.30
3.	Always in Flam	mable Range			0.	80	0.80
D. Dust Explosion					0.25	- 2.00	-
E. Pressure	Operating Pres	ssure:	3800	kPa			-
	Relief Setting:			kPa			-
F. Low Temperature	U				0.20	- 0.30	-
G. Quantity of Flammat	le Material:		2195	kg			
		Hc =	11315.6	kcal/kg			
1.	Liquids or Gase	es in Process					0.16
2.	Liquids or Gase	es in Storage					-
3.	Combustible So	olids in Storage,	Dust in Proce	ess			-
H. Corrosion and Erosic	on				0.10	- 0.75	-
I. Leakage - Joints and	Packing				0.10	- 1.50	0.30
J. Use of Fired Equipme	ent						-
K. Hot Oil Heat Exchange	ge System				0.15	- 1.15	-

Conceptual Process Design Report

L. Rotating Equipment	0.50	0.50
Special Process Hazards Factor (F2)		3.66
Process Units Hazards Factor (F1 x F2) = F3		6.95
Fire and Explosion Index (F3 x MF = F&EI)		28

Appendix 19 Heat Losses Calculation (Way In and Return)

WAY IN (hot tap water) at 133C

Nominal diameters: 16" and 14" Schedule 40 carbon steel pipes

Pipe internal and external diameters for each branch, inches

	(15)		(16)
	13.124		14
d:	13.124		14
um .–	13.124	dext :=	14
	13.124		14
	(13.124)		(14)

Mass flowrate in each branch, kg/s

The diameters and flow rates in each branch were calculated with Aspen Pipeline model.

Pipe length in each branch, m

Length :=
$$\begin{pmatrix} 3000\\ 900\\ 1800\\ 1400\\ 1600\\ 1500 \end{pmatrix}$$
 m

Calculating the diameters in meter

din := din
$$\cdot 2.54 \, 10^{-2}$$
 din = $\begin{pmatrix} 0.381 \\ 0.333 \\ 0.333 \\ 0.333 \\ 0.333 \\ 0.333 \end{pmatrix}$ m dext := dext $\cdot 2.54 \, 10^{-2}$ dext = $\begin{pmatrix} 0.406 \\ 0.356 \\ 0.356 \\ 0.356 \\ 0.356 \\ 0.356 \end{pmatrix}$ m

Physical Properties of water at bulk temperature, T=133°C:

T := 133 C Bulk temperature

Density

urce: Aspen

Dynamic viscosity

 $\mu := 0.25 \cdot 10^{-2}$ g/(cm.s) Source: Aspen

Thermal conductivity

kw := 0.685t Watt/(m.K) Source: Aspen

Specific heat

		Source: Transport Phenomena Data Companion
cp := 4253	J/(kg.K)	L.P.B.M. Janssen, M.M.C.G. Warmoeskerken

Dimensionless Numbers (Re, Pr, Nu) were calculated at the bulk temperature, T=133 C

Pr := 1.325	Pr = 1.325	Prandtl Number at bulk temperature
		Source: Transport Phenomena Data
		Companion

Velocity in the pipe, m/s

Reference :

Coulson and Rihardson s, Chemical Engineering, Flow, Heat Transfer and Mass Transfer, 6th edition

x := 0.05 m Insulation thickness was taken as 5 cm

Convective heat transfer coefficient

$$h := \overrightarrow{\left(\frac{kw}{dext} \cdot Nu\right)} \qquad h = \begin{pmatrix} 3.318 \times 10^{3} \\ 1.752 \times 10^{3} \end{pmatrix} \qquad Watt/(m^{2}.K)$$

Appendix - 105 -

Insulation thermal conductivity		For Micro-PUR packed with cyclopenthane gas, $K=0.031$ Watt/(m K)
ki := 0.031	Watt/(m.K)	Source: Article "Evolutie in buizen voor stadsverwarming, 2003"
		For PUR,Polyurethane, K=0.36 Watt/(m.K) Source: Transport Phenomena Data Companion
		For Glass wool, K=0.041 Watt/(m.K) Source:Coulson and Richardson s

Estimation of the insulation outlet temperature:

 $T_g := 15$ C Ground surface temperature, average over the year

$$TL := \frac{\overline{T + aa \cdot Tg}}{aa + 1} \qquad TL = \begin{pmatrix} 15.02\\ 15.037\\ 15.037\\ 15.037\\ 15.037\\ 15.037\\ 15.037 \end{pmatrix} C$$

Ref: Coulson and Richardson s, Chemical Engineering, Flow, Heat Transfer and Mass Transfer,6th edition

Estimation of the heat losses through the insulation only (considering pipe located in a pipe way on the ground):

Estimation of the heat losses through the insulation and the ground (pipe insulated and undergrounded):

There are two layers: insutation (5cm) + ground (80cm deep)

hb := 0.8 m Height buried

hb : height buried dex : pipe external diameter x : insulation thickness

Source: Kreith, F. Principles of Heat Transfer, 2nd edition, International Textbok Company, Scranton, Pa,1965

Soil thermal conductivity is strongly dependent on the kind of soil (e.g. dry or wet) For wet soil, k=1.5 BTU/(h.ft.F), which was the type of soil considered.

The resistance to heat transfer in the film as well as in the pipe wall were considered to be negligible.

Estimation of final temperature in each branch considering T initial as 133 C

$$tf := \overrightarrow{\left(T - \frac{QLoss}{massflowrate \cdot cp}\right)} \qquad tf = \begin{pmatrix} 132.31\\ 132.445\\ 131.89\\ 132.137\\ 132.014\\ 132.075 \end{pmatrix} C$$

$$\Delta T := \overrightarrow{\left(T - tf\right)} \qquad \Delta T = \begin{pmatrix} 0.69\\ 0.555\\ 1.11\\ 0.863\\ 0.986\\ 0.925 \end{pmatrix} C \qquad \Delta T \text{ per branch, C}$$

Branch from CG1 to CG2:

TfinalCG1CG2= tf_0	TfinalCG1CG2= 132.31	C
$\Delta TCG1CG2 = \Delta T_0$	ΔTCG1CG2= 0.69 C	
QLossCG1CG2=QLoss ₀	$QLossCG1CG2=2.858\times 10^5$	Watt

Branch from CG1 to HEX1:

TfinalCG1HEX1:= tf ₁	TfinalCG1HEX1= 132.445 C	
Δ ThotCG1HEX1:= Δ T ₁	Δ ThotCG1HEX1= 0.555 C	
QLhotCG1HEX1:= QLoss 1	QLhotCG1HEX1= 7.662×10^4	Watt

Branch from CG1 to HEX2:

TfinalCG1HEX2= tf_2	TfinalCG1HEX2= 131.89 C	
Δ ThotCG1HEX2:= Δ T ₂	Δ ThotCG1HEX2= 1.11 C	
QLhotCG1HEX2=QLoss ₂	QLhotCG1HEX2= 1.532×10^5	Watt

Branch from CG2 to HEX3:

TfinalCG2HEX3= tf_3	TfinalCG2HEX3= 132.137 C
Δ ThotCG2HEX3:= Δ T ₃	Δ ThotCG2HEX3= 0.863 C
QLhotCG2HEX3:= QLoss ₃	QLhotCG2HEX3= 1.192× 10 ⁵ Watt

Branch from CG2 to HEX4:

TfinalCG2HEX4= tf_4	TfinalCG2HEX4= 132.014	С	
Δ ThotCG2HEX4:= Δ T ₄	ΔThotCG2HEX4= 0.986	С	
QLhotCG2HEX4=QLoss ₄	QLhotCG2HEX4= 1.362× 10 ⁵		Watt

Branch from CG2 to HEX5:

$TfinalCG2HEX5 = tf_{5}$	TfinalCG2HEX5= 132.075 C	
Δ ThotCG2HEX5:= Δ T ₅	ΔThotCG2HEX5= 0.925 C	
QLhotCG2HEX5:= QLoss ₅	QLhotCG2HEX5= 1.277× 10 ⁵	Watt

Total heat losses in the pipeline (hot tap water stream) = 1671.3×10^3 Watt

Total content of hot tap water leaving the Upgrading Unit = $2.927*10^7$ Watt

Percentage of the energy content lost in the pipeline is the following:

1671.310^3	5.7% of the input energy available
1000000000000000000000000000000000000	in the hot tap water exiting the
2.92710	Upgrading Unit is lost in the pipeline

Returning (cold tap water) at 70 C

All pipe data (i.e., diameter, length, insulation thickness), mass flowrates, etc, are the same as in the Way In branch (hot tap water)

Physical Properties of water at bulk temperature, T=70°C:

T := 70 C Bulk temperature

Density

 $\rho := 977.9$: kg/m³ Source: Transport Phenomena Data Companion L.P.B.M. Janssen, M.M.C.G. Warmoeskerken

Dynamic viscosity

$\mu := 0.404 10^{-2}$	$\sigma/(cm s)$	Source: Transport Phenomena Data Companion
μ. ο.ιοτιο	<u> 5</u> /(em.s)	L.P.B.M. Janssen, M.M.C.G. Warmoeskerken

Thermal conductivity

kw := 0.665Watt/(m.K)Source: Transport Phenomena Data Companion
L.P.B.M. Janssen, M.M.C.G. Warmoeskerken

Specific heat

Dimensionless Numbers (Re, Pr, Nu) were calculated at the bulk temperature, T=70 C

Velocity in the pipe, m/s

vel :=
$$\overrightarrow{\frac{\text{massflowrate}}{\rho \cdot \pi \cdot \frac{\text{din}^2}{4}}}$$
 vel = $\begin{pmatrix} 0.874 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \\ 0.38 \end{pmatrix}$ m/s

$$Re := \frac{\overrightarrow{din \cdot vel \cdot \rho}}{\mu} \cdot \frac{1000}{100} \qquad Re = \begin{pmatrix} 8.056 \times 10^{5} \\ 3.07 \times 10^{5} \\ \end{pmatrix} \qquad Since Re > 10^{4}, there is turbulent flow
Nu := 0.023 Re^{0.8} \cdot Pr^{0.33} \qquad Nu = \begin{pmatrix} 1.667 \times 10^{3} \\ 770.362$$

x := 0.05 m Insulation t

Insulation thickness was taken as 5 cm

Convective heat transfer coefficient

Estimation of the heat losses through the insulation only (considering pipe located in a pipe way on the ground):

Qlossinsulation :=
$$\overrightarrow{\frac{2 \cdot \pi \cdot \text{ki} \cdot (T - T\text{L})}{\ln\left(\frac{\frac{\text{dext}}{2} + x}{\frac{\text{dext}}{2}}\right)}}$$
 Qlossinsulation = $\begin{pmatrix} 48.687\\ 43.214\\ 43.214\\ 43.214\\ 43.214\\ 43.214 \end{pmatrix}$ W/m

Estimation of the heat losses through the insulation and the ground (pipe insulated and undergrounded):

There are two layers: insutation (15cm) + ground (80cm deep)

hb := 0.8 m Height buried

 $QLoss := (QT \cdot Length)$

$$QT := \frac{T - Tg}{\left[\frac{1}{2 \cdot \pi} \cdot \ln \left(\frac{\frac{dext}{2} + x}{\frac{dext}{2}}\right) + \frac{1}{ksoil} \cdot \ln \left[\left[\frac{hb}{\left(\frac{dext}{2} + x\right)} + \left[\frac{hb}{\left(\frac{dext}{2} + x\right)} - 1\right]^{2}\right]\right]\right]}$$

QLoss =

 7.214×10^{4}

5.611× 10⁴

6.413× 10⁴

 6.012×10^4

Watt

Branch from CG1 to CG2:

TfinalCG1CG2= tf_0	TfinalCG1CG2= 69.67	С	
Δ TcoldCG1CG2:= Δ T ₀	Δ TcoldCG1CG2= 0.33	С	
QLcoldCG1CG2=QLoss ₀	QLcoldCG1CG2= 1.349×10^5		Watt

Branch from CG1 to HEX1:

TfinalCG1HEX1:= tf_1	TfinalCG1HEX1= 69.735 C	
Δ TcoldCG1HEX1:= Δ T ₁	Δ TcoldCG1HEX1= 0.265 C	
QLcoldCG1HEX1:= QLoss 1	QLcoldCG1HEX1= 3.607×10^4	Watt

Branch from CG1 to HEX2:

TfinalCG1HEX2= tf_2	TfinalCG1HEX2= 69.47 C
Δ TcoldCG1HEX2:= Δ T ₂	Δ TcoldCG1HEX2= 0.53 C
QLcoldCG1HEX2=QLoss ₂	QLcoldCG1HEX2= 7.214×10^4 Watt
Branch from CG2 to HEX3:	

TfinalCG2HEX3= tf_3	TfinalCG2HEX3= 69.588 C
Δ TcoldCG2HEX3:= Δ T ₃	ΔTcoldCG2HEX3= 0.412 C
QLcoldCG2HEX3= QLoss ₃	QLcoldCG2HEX3= 5.611×10^4 Watt

Branch from CG2 to HEX4:

TfinalCG2HEX4= tf ₄	TfinalCG2HEX4= 69.529 C	
Δ TcoldCG2HEX4:= Δ T ₄	ΔTcoldCG2HEX4= 0.471 C	
QLcoldCG2HEX4=QLoss ₄	QLcoldCG2HEX4= 6.413× 10 ⁴	Watt

Branch from CG2 to HEX5:

TfinalCG2HEX5= tf_5	TfinalCG2HEX5= 69.559 C	
Δ TcoldCG2HEX5= Δ T ₅	ΔTcoldCG2HEX5= 0.441 C	
QLcoldCG2HEX5:= QLoss ₅	QLcoldCG2HEX5= 6.012×10^4	Watt

Reference used :

- 1. Neher, J.H., 1949, The temperature rise of burried cables and pipes.Trans.A.I.E.E. 68, (1):9-21
- 2. Sissom, L.E., Pitts, D. R., Elements of Transport Phenomena, 1972, McGraw-Hill, Inc.
- 3. Kreith, F. Principles of Heat Transfer, 2nd edition, International Textbok Company, Scranton, Pa,1965
- 4. Coulson and Richardson s, Chemical Engineering, Flow, Heat Transfer and Mass Transfer, 6th edition
- 5. Transport Phenomena Data Companion,L.P.B.M. Janssen, M.M.C.G. Warmoeskerken
- 6. Article: Evolutie in buizen voor stadsverwarming, 2003

Appendix 20 Exergy Analysis of The Process

References:

Smith, J.M., Van Ness, H.C., Introduction to Chemical Engineering Thermodynamics 4th edition, 1987, McGraw-Hill, USA.

Since ammonia undergoes a cyclic process, the only changes that need to be considered for calculation of the ideal work are those of the gases passing through the furnace.

a

Ideal work is calculated by the following expression:

		Source: Asp	en
EXEMISSION:= -2.65310^6	J/kg	massflowgases := 11.05	kg/s
$ExNGSTD := -2.53410^{6}$	J/kg	massflowair := 10.346	kg/s
$ExAIRIN := -4.529510^4$	J/kg	massflowNG := 0.7130	kg/s
Wideal := -[massflowgases ·	ExEMISS	ON– (massflowNG ExNGSTD+ 1	massflowair·ExAIRIN)]
Wideal = 2.704×10^{7}	Watt	Eq.16.5 Van Ness	

Calculating the rate of entropy generation for each of the units of the cycle:

T0 := 298.1: K

W lost at the furnace

SEMISSION := 98.1459	J/(kg.K)
SNGSTD:= -3674.03	J/(kg.K)
SAIRIN := 133.997(J/(kg.K)

SgenerationFurnace := massflowgases ·SEMISSION - (massflowNG·SNGSTD + massflowair·SAIRIN)

SgenerationFurnace = 2.318×10^3 Watt/K

WlostFurnace := T0·[massflowgases ·SEMISSION - (massflowNG·SNGSTD + massflowair·SAIRIN)]

Eq 16.15 Van Ness

WlostFurnace = 6.91×10^5

Watt

W lost at the compressors

massflowrateammonia := 3.89 kg/s SCOMP10UT:= -6.75310^3 J/(kg.K) $SCOMP1IN := -6.86510^3$ J/(kg.K) SgenerationCompr1 := massflowrateammonia (SCOMP10UT - SCOMP1IN) Watt/K SgenerationCompr1 = 435.68WlostCompr1 := massflowrateammonia · T0 · (SCOMP10UT - SCOMP1IN) WlostCompr1 = 1.299×10^5 Watt SCOMP2OUT := $-6.761 \cdot 10^3$ J/(kg.K) SCOMP2IN := $-6.885 \cdot 10^3$ J/(kg.K) SgenerationCompr2 := massflowrateammonia ·(SCOMP2OUT - SCOMP2IN) SgenerationCompr2 = 482.36Watt/K WlostCompr2 := massflowrateammonia · T0 · (SCOMP2OUT - SCOMP2IN) WlostCompr2 = 1.438×10^{5} Watt SgenerationCompression := SgenerationCompr1 + SgenerationCompr2 SgenerationCompression = 918.04Watt/K WlostCompression := WlostCompr1 + WlostCompr2 WlostCompression = 2.737×10^{3} Watt

W lost at the control valve

Svout := $-1.006 10^4$ J/(kg.K)Svin := $-1.0197 10^4$ J/(kg.K)SgenerationCvalve := massflowrateammonia · (Svout - Svin)SgenerationCvalve = 532.93Watt/K

WlostValve := massflowrateammonia \cdot T0 \cdot (Svout – Svin)

WlostValve = 1.589×10^5 Watt

W lost at the pump

SCWOUT := -7.858710^3 J/(kg.K) SFURNOUT := -7.859210^3 J/(kg.K)

SgenerationPump := massflowrateammonia ·(SCWOUT - SFURNOUT)

SgenerationPump = 1.945 Watt/K

WlostPump := massflowrateammonia · T0· (SCWOUT - SFURNOUT)

WlostPump = 579.902 Watt

STotal := SgenerationPump + SgenerationCvalve + SgenerationCompression + SgenerationFurnace

 $SP\% := \frac{SgenerationPump}{STotal} \cdot 100 \qquad SP\% = 0.052$

 $SCV\% := \frac{SgenerationCvalve}{STotal} \cdot 10($ SCV% = 14.134

$$SCompr\% := \frac{SgenerationCompression}{STotal} \cdot 100 \qquad SCompr\% = 24.347$$

SFurn% := $\frac{\text{SgenerationFurnace}}{\text{STotal}} \cdot 100$ SFurn% = 61.468

WlostPump% := $\frac{\text{WlostPump}}{\text{Wideal}} \cdot 100$ WlostPump% = 2.145× 10⁻³

Conceptual Process Design Report

WlostFurn% := $\frac{\text{WlostFurnace}}{\text{Wideal}} \cdot 100$	WlostFurn% = 2.556
WlostComp% := $\frac{\text{WlostFurnace}}{\text{Wideal}} \cdot 100$	WlostFurn% = 2.556
WlostCvalve% := $\frac{WlostValve}{Wideal} \cdot 100$	WlostCvalve% = 0.588

Appendix 21 Exergy Losses Calculation

References :

- 1. Article: Comakli, K. Yuksel, B., Camakli, O., Dept. f Mechanical Engineering, Ataturk University, Turkey, *Evaluation of energy and exergy losses in district heating network*, 2003, Applied Thermal Engineering 24(2004) 1009-1017.
- 2. K. Iyer, C. Van Wijmen, E. Babbe. *Feasibility Study of District Heating of Delft Using Residual Waste Heat of DSM*. 3 June 2004. TU Delft, The Netherlands
- 3. Kotas, T.J., The Exergy Method of Thermal Plant Analysis, 2nd edition, Kriger Publishing, Company, USA, 1995

The average pressure in the main network is approximately 13 bar.

The exergy balance is written as follows:

Exergy of hot water = Exergy lost in the pipeline due to heat losses + Exergy lost due to hot water transportation + Exergy lost during the heat transfer in the heat exchangers

Heat losses were calculated in Appendix 19, considering the Micro-PUR as insulation and insulation thickness of 50mm

Exergy Losses in the main pipeline PPG2 branch - From central grid 1 (CCG1) to central grid 2 (CCG2) (16'' Sch 40, 3000m), both ways

Exergy losses due to heat losses in the pipe:

LosshotCG1CG2 := 2.858×10^5	Watt
LosscoldCG1CG2:= 1.349×10^5	Watt

Qlossesmain := LosshotCG1CG2 + LosscoldCG1CG2

Qlossesmain = 4.207×10^5 Watt

T0 := 25 + 273 $T0 = 29$	8 K	Average temp	perature o	of the surroundings taken as 25C
Thotwater := 133 + 273	Tł	notwater $= 406$	K	
THotwaterin := 133 + 273	TI	Hotwaterin = 406	Κ	Hot stream (IN)
THotwaterout $:= 70 + 273$	TI	Hotwaterout $= 343$	Κ	Cold stream (Return)

Appendix - 120 -

$$Tw := \frac{THotwaterin + THotwaterout}{2} Tw = 374.5 K 372.5 - 273 = 99.5$$

ExLossmain := Qlossesmain $\cdot \left(1 - \frac{T0}{Tw}\right)$
ExLossmain = 8.594× 10⁴ Watt

Exergy Losses in the pipeline #1 PHEX1 branch - From CCG1 to heat exchanger 1 (HEX1) (14" Sch 40, 900m), both ways

Exergy losses due to heat losses in the pipe:

LosshotCG1HEX1 := 7.662×10^4	Watt		
LosscoldCG1HEX1 := 3.607×10^4	Watt		
Qlosses1 := LosshotCG1HEX1 + Loss	scoldCG1HEX1		
$Qlosses1 = 1.127 \times 10^5 \qquad Wa$	tt		
THotwaterin := 133 + 273	THotwaterin = 406	K	Hot stream (IN)
THotwaterout := $66 + 273$	THotwaterout = 339	K	Cold stream (Return)
$Tw := \frac{THotwaterin + THotwaterout}{2}$	Tw = 372.5	K	
$ExLoss1 := Qlosses1 \cdot \left(1 - \frac{T0}{Tw}\right)$			
$ExLoss1 = 2.254 \times 10^4 \qquad W$	att		

Exergy Losses in the pipeline #2 PHEX2 branch - From CCG1 to heat exchanger 2 (HEX2) (14" Sch 40, 1800m), both ways

Exergy losses due to heat losses in the pipe:

LosshotCG1HEX2 := 1.532×10^5 Watt LosscoldCG1HEX2 := 7.214×10^4 Watt

Qlosses2 := LosshotCG1HEX2 + LosscoldCG1HEX2

$$Qlosses2 = 2.253 \times 10^5$$
 Watt

THotwaterin := 133 + 273 THotwaterin = 406 K Hot stream (IN)
THotwaterout := 66 + 273 THotwaterout = 339 K Cold stream (Return)
Tw :=
$$\frac{\text{THotwaterin + THotwaterout}}{2}$$
 Tw = 372.5 K
ExLoss2=Qlosses2 $\left(1 - \frac{T0}{Tw}\right)$

$$ExLoss2 = 4.507 \times 10^4$$
 Watt

Exergy Losses in the pipeline #3 PHEX3 branch - From CCG2 to heat exchanger 3 (HEX3) (14'' Sch 40, 1400m), both ways

Exergy losses due to heat losses in the pipe:

LosshotCG1HEX3 :=
$$1.192 \times 10^{5}$$
 Watt
LosscoldCG1HEX3 := 5.611×10^{4} Watt
Qlosses3 := LosshotCG1HEX3 + LosscoldCG1HEX3
Qlosses3 = 1.753×10^{5} Watt
THotwaterin := $133 + 273$ THotwaterin = 406 K Hot stream (IN)
THotwaterout := $66 + 273$ THotwaterout = 339 K Cold stream (Return)
Tw := $\frac{\text{THotwaterin + THotwaterout}}{2}$ Tw = 372.5 K
ExLoss3 := $\text{Qlosses3} \cdot \left(1 - \frac{\text{T0}}{\text{Tw}}\right)$

 $ExLoss3 = 3.506 \times 10^4$ Watt

Exergy Losses in the pipeline #4 PHEX4 branch - From CCG2 to heat exchanger 4 (HEX4) (14'' Sch 40, 1600m), both ways

Exergy losses due to heat losses in the pipe:

LosshotCG1HEX4:=
$$1.362 \times 10^{5}$$
 Watt
LosscoldCG1HEX4:= 6.413×10^{4} Watt
Qlosses4 := LosshotCG1HEX4 + LosscoldCG1HEX4
Qlosses4 = 2.003×10^{5} Watt
THotwaterin := $133 + 273$ THotwaterin = 406 K Hot stream (IN)
THotwaterout := $66 + 273$ THotwaterout = 339 K Cold stream (Return)
Tw := $\frac{\text{THotwaterin + THotwaterout}}{2}$ Tw = 372.5 K
ExLoss4 := Qlosses4 $\cdot \left(1 - \frac{T0}{Tw}\right)$
ExLoss4 = 4.007×10^{4} Watt

Exergy Losses in the pipeline #5 PHEX5 branch - From CCG2 to heat exchanger 5 (HEX5) (14'' Sch 40, 1500m), both ways

Exergy losses due to heat losses in the pipe:

LosshotCG1HEX5 := 1.277×10^5	Watt		
LosscoldCG1HEX5:= 6.012×10^4	Watt		
Qlosses5 := LosshotCG1HEX5 + I	LosscoldCG1HEX5		
THotwaterin := 133 + 273	THotwaterin = 406	K	Hot stream (IN)
THotwaterout $:= 66 + 273$	THotwaterout $= 339$	K	Cold stream (Return)

$$Tw := \frac{THotwaterin + THotwaterout}{2} \qquad Tw = 372.5 \qquad K$$

ExLoss5 := Qlosses5 $\cdot \left(1 - \frac{T0}{Tw}\right)$
ExLoss5 = 3.756× 10⁴ Watt

Exergy losses due to hot water transportation

Electric-driven pumps are used transport hot water from the Upgrading Unit to the Districts.

Electrical energy is pure exergy and such exergy is used to overcome the flow resistance in the pipeline network, which is actually transformed into heat.

Wp := 107824.64 Watt
ELossTransport := Wp
$$\cdot \left(\frac{T0}{Tw}\right)$$
 ELossTransport = 8.626 × 10⁴ Watt

Exergy losses during heat transfer in the heat exchangers (5 heat exchangers in total)

Heat transfer in a heat exchanger is an irreversible process and as a consequence exergy losses occur. The total exergy losses in the process is due to irreversibility in heat transfer

in addition to friction of both flows. According to Kotas [68], exergy losses due to friction in liquid flow are small due to small specific volume of the compressible fluids.

$Qc := 2.33 \cdot 10^7$	Watt	Heat duty of each heat exchanger (5 in total)
Thotin := 133 + 273	K	This temperature changes depending on the heat losses. Let's assume Thotin as 133 C.
Thotout := $70 + 273$	K	Taken based on approach rules of thumb for heat exchangers.
Tcoldin := 60 + 273	K	Taken based on approach rules of thumb for heat exchangers.
Tcoldout := $90 + 60$	K	Required temperature at the districts

That :=
$$\frac{\text{Thotin} + \text{Thotout}}{2}$$

Thot = 374.5 K
Tcold := $\frac{\text{Tcoldin} + \text{Tcoldout}}{2}$
Tcold = 241.5 K
4219.3(133 - 70).32.47 = 8.631 × 10⁶
Qc := 8.631 × 10⁶

ELossHeatExchangers := $5T0 \cdot (-Qc) \cdot \left(\frac{1}{Thot} - \frac{1}{Tcold}\right)$

ELossHeatExchangers = 1.891×10^7 Watt

Total Exergy Losses

ELossPipe := ExLossmain + ExLoss1 + ExLoss2 + ExLoss3 + ExLoss5

ELossPipe = 2.662×10^5 Watt TExergyLoss := ELossPipe + ELossTransport + ELossHeatExchangers TExergyLoss = 1.926×10^7 Watt

Total exergy input to hot water

Estimating the exergy of the hot water stream (discharge of the pump) exiting the Upgrading Unit

Using Peng Robinson EoS

From Program Prop Mathcad at 137C and 13 bar, Tref=298K, PR EoS: H=-36479.7 J/mol S=-97.02364 J/(mol.K)

$H := -36479.7 \frac{1}{18} \cdot 1000$	$H = -2.027 \times 10^{6}$	J/Kg
$S := -97.02364 \frac{1}{18} \cdot 1000$	$S = -5.39 \times 10^3$	J/(kg.K)
massflowrate := 97.39	massflowrate $= 97$.39 kg/s

 $Ex := massflowrate \cdot (H - T0 \cdot S)$

$$E_x = -4.094 \times 10^7$$
 J/s $E_x = -4.094 \times 10^7$ Watt

TotalExergyinput := 4.094×10^7 Watt

Taken as positive value

Percentage of exergy losses:

 $RatioELossPipeExergyinput := \frac{ELossPipe}{TotalExergyinput}$

RatioELossPipeExergyinput = 6.503×10^{-3} fraction of input exergy lost in the pipeline due to heat losses

 $RatioELossTransportExergyinput := \frac{ELossTransport}{TotalExergyinput}$

RatioELossTransportExergyinput = 2.107×10^{-3} fraction of input exergy lost in the pipeline due to flow, friction, etc

 $RatioELossHeatExchangersExergyinput := \frac{ELossHeatExchangers}{TotalExergyinput}$

RatioELossHeatExchangersExergyinput = 0.462fraction of input exergy lost in the heat exchangers

Result from Aspen AVAILMX for stream CWOUT: Exergy=-1.277*10^9 Watt

Method 2. Lee-Kesler EoS

From the tables Ref: RPP, 4th edition: H=-2445.43 J/mol S=-27.203 J/(mol.K)

Appendix 22 COP Calculation

Calculating the coefficient of performance of the MHP (mechanical heat pump) and for the CHP (chemical heat pump).

Mechanical heat pump (MHP):

From the simulation with Aspen the following data were gathered:

Qhigh := 4.804×10^6 Watt Qintercooler := 2.028×10^5 Watt

 $Qlow := 3.535 \times 10^6$ Watt

We compression := $9.4583 \times 10^5 + 6.896 \times 10^5$ Watt

Energy input as work by the compressors

1. Coefficient of Performance (COP)

 $COP := \frac{Qhigh + Qintercooler}{Wcompression}$

COP = 3.061

COP = 3.1, ratio useful heat output to energy input (work). Qintercooler was included since it was recovered at high tempertaure (discharge of the first compressor)

2. Exergy Efficiency (η_E)

Tlow := $12.0 + 273$	Tlow $= 285$	Κ	Evaporator temperature
Thigh := $76.0 + 273$	Thigh $= 349$	K	Condenser temperature
Tc := 0 + 273	Tc = 273	K	Reference temperature, taken as 0 C (must be lower than Tlow)

$$COPideal := \frac{1 - \frac{Tc}{Thigh}}{1 - \frac{Tc}{Tlow}}$$

$$COPideal = 5.172$$
This is Carnot COP
$$\eta E := \frac{COP}{COPideal}$$

$$\eta E = 0.592$$

This parameter indicates the quality and quantity of the upgraded heat.

Chemical heat pump (CHP):

From the simulation with Aspen the following data were gathered:

Qreboiler := 7973.71	k	W	Qexo := 1788.5	kW
Qcondenser := 8687.81	k	W	Qendo := 2318.82	kW
Qlow := Qreboiler + Qe	ndo			
$Qlow = 1.029 \times 10^4$	kW	Qlow is the amour endothermic reacti distillation column	nt of heat absorbed that is ion and the products sepan.	s used for both the aration in the
Qhigh := Qexc		Qhigh is the amount that s to say the exec	nt of upgraded heat at the othermic reaction heat du	e highest temperature, ity

The COP can be calculated by the following equation:

CC	$P := \frac{Qhigh}{Qhigh}$	COP = 0.174	COP = 17.4	%. It is the enthalpy efficiency
	Qlow		of the system	n

The ideal COP is limited by type conservation law of heat and entropy:

Thigh := $200 + 273$	temperature of the exothermic reactor
Tc := 43.73 + 273	temperature of the condenser
Tlow := $82.5 + 273$	temperature of the exothermic reactor

COPideal = 0.33

COPideal = 33.3%. It is the maximum fraction of the recovered waste heat that can be upgraded.

Description	Fraction	Amount
Total investment		\$ 29,264,054
Fixed capital	1.00	\$ 24,512,821
Direct costs	0.79	\$ 19,291,590
Onsite costs		\$ 16,043,641
Purchased equipment	0.37	\$ 9,082,000
Purchased-equipment installation	0.17	\$ 4,081,385
Instrumentation and control	0.05	\$ 1,164,359
Piping UU	0.04	\$ 980,513
Electrical equipment and materials	0.03	\$ 735,385
Offsite costs		\$ 3,247,949
Buildings	0.03	\$ 735,385
Yard improvement	0.03	\$ 796,667
Service facilities	0.04	\$ 980,513
Land	0.03	\$ 735,385
Indirect costs	0.21	\$ 5,221,231
Engineering and supervision	0.08	\$ 1,961,026
Construction expenses	0.05	\$ 1,176,615
Contractor's fee	0.03	\$ 612,821
Contingency	0.06	\$ 1,470,769
Working capital		\$ 1,463,203
Raw material, finished products,		
accounts receivable, cash on hand.		
account payable and taxes payable		
15% of total capital investment.	0.05	\$ 1,463,203
Costs for transport pipelines *		\$ 16,953,225
One time revenues (minus)		-\$ 13,665,194
Start-up costs		\$ 1,470,769
Process modifications. start-up labo	or,	
loss in production	0.06	\$ 1,470.769
		. ,

Appendix 25 Total Investment of Ammonia Heat Pump

Prices from (NAP prijzenboekje 20e editie februari 1999)		
The price for total steel underground transport pipelines are (1999)(16inch):	440	€ /m
The material price for under ground steel transport pipes (DN350),		
included average discount of 45%	88	€ /m
Price for laying the pipes:	352	€ /m
Index correction of 4 % per year:	445	€ /m
Prices for the pipes (by Marcel Verboven, Weijers-Waalwijk BV)		
DN350 – 355,6x5,6 / 500 (staal – PUR – PE) Standaard PUR schuim	117.68	€/m
DN350 – 355,6x5,6 / 500 (staal – PUR – PE) MicroPUR schuim	156.98	€/m
In the first case we used Standaard PUR, resulting at a length of 21 km in:	11,824,518	€
Including tax	\$ 16,953,225	6

Appendix 26 Production Cost of Ammonia Heat Pump

		Water		Ammonla			Natural Gas				Electricity	
	price	1.28	euro/m^3	307.85	euroton		0.18	euro/m ⁴ 3			10	euro/k/Mh
	BTW	1.06					1.19				1.19	
	tax	0.146	euro/m^3	1.19			00	euro/m^3			0.0086	euro/k/Mh
							0.0057	euroMJ				
	km								0	omp 1	691	kW
V pipe 16 Inch	14.4	1368	m^3	20	g	Fumace	115000	ft ⁴ 3/hr				
V pipe 14 Inch	9	596	m^3				3256	m^3/hr	0	omp2	946	kW
									0	lean w pump 2	67	kW
										lower	367	kW
	total amountly	2464	m^3	8	9		35,667,930	m^3			18, 138, 982	kWh
	costs/y	€ 3,703		€ 256.44			7,994,508				E 2,314,534	
	Intal crists	6 10 313 001							+			
		\$ 12.311.091										
1m^3gas	31.7	W										
exchange course	0.8377	euro for 1 dollar										

	euro/k/Mh		euro/k/Mh	cW		W					cMh						
Electricity	01	1.19	0.0086	ន		378					3,776,524	€ 481,884					
				Clean w pump 1		Blower											
	Evm/onue		euro/m^3	ft ^e Shr	m^3/hr						m^3						
Natural Gas	0.18	1.19	0.01	125000	3540						38,758,620	€ 8,689,683					
				Fumace													
	E^W/W/OIN9		euro/m ⁴ 3		m^3	m^3					m^3						
Water	1.28	1.06	0.146		1368	<u>596</u>					2,464	€ 3,703	€ 9,175,270	\$ 10,952,930		M	Seuro
	price	BTW	tax	km	14.4	9					total amount/y	costs/y	total costs			31.7	0.8377
					V pipe 16 Inch	V pipe 14 Inch										1m^3gas	exchance course:

Appendix 27Production Cost of Furnace

Appendix 28 Total Product Cost

	Fraction	of	Amount
Total product costs			\$ 20,314,787
Manufacturing costs			\$ 19,958,957
Direct production cost	0.73	Total product costs	\$ 14,786,715
Raw materials		Gas, waste water	\$ 9,743,402
Utilities		Electricity NH3 H2O	\$ 2,766,279
Maintenance	0.04	Fixed capital	\$ 980,513
Operating sup	plies 0.15	Maintenance	\$ 147,077
Labor	*	Operators	\$ 450,000
Supervision	0.2	Labor	\$ 90,000
Laboratory cha	arges		\$-
Royalties	0.03	Total product costs	\$ 609,444
Fixed charges	0.21	Total product costs	\$ 4,259,934
Depreciation	0.1	Fixed capital	\$ 2,451,282
Local taxes	0.025	Fixed capital	\$ 612,821
Insurance	0.007	Fixed capital	\$ 171,590
Rent	0		
Interest	0.035	Total cap invest.	\$ 1,024,242
		L. L.	
Plant OVHD	0.04	Total product costs	\$ 912,308
	0.72	Labor	\$ 324,000
	0.024	Fixed capital	\$ 588,308
SARE	0.025	Revenue	\$ 355,830
	· · ·		

* The plant will be controlled by a 5 shifts, each shift consists of 2 persons. The salary of an operator is assumed to be \notin 45,000 per year. Supervision is supposed to be 1/5 of the labor costs, equals 1 supervisor.

Appendix 29 Revenues

City heating rates for small users and small business-like users from 1 oct 2005

BTW	19%
Energy tax	6.32€/ GJ
exchange course:	0.8377 \$/euro
Annual consumption	780000 GJ
Houses connected	11000

Heat price for heating and hot tap water		Fraction		Inc tax	I	Ex tax
Consumption less than	119 GJ per GJ	0.8	€	22.04	€	12.20
Consumption from	119 GJ per GJ	0.2	€	19.59	€	10.14
Right for usage (yearly)			€	295.07	€	247.96
One time connection contribution			€	3,715.18	€	3,122.00

Total yearly revenues		€	11,923,148	\$ 14,233,196
		c	0.405.040	
	Consumption	€	9,195,610	
	Connections	€	2,727,538	
1/3 of the one time connection revenues		€	11,447,333	\$ 13,665,194

Source: http://gemeente.purmerend.nl/smartsite.html?id=3923

Appendix 30 Chemical Heat Pump Simulation

In order to validate the previously done feasibility study, the Chemical Heat Pump (CHP) process was simulated in Aspen Plus. The simulation flowsheet and the distillation profiles are presented here.

It should be noted that both endothermic and exothermic reactors were modeled by using the equilibrium reactor models (conversions were specified based on data gathered from the literature/simulation studies). The conditions of the reactors were also specified so that only the corresponding reactions were taking place. Unlike the endothermic reaction, which was simulated in the liquid phase (at boiling point), the exothermic reaction was simulated in the gas phase following the information gathered from the articles that report similar studies [10],[12],[13]. The conversions were predicted according to the chemical equilibrium conditions mentioned in the articles [10],[12],[13],[14]. The molar ratio hydrogen to acetone was set as 1.0 in accordance with the article [12].

Moreover, the distillation column was modeled with rigorous multi component distillation with partial condenser. The purity of acetone in the bottom and isopropanol in the top were specified and determined the reflux ratio and the reboiler duty.

The remaining equipments (compressor and heat exchanger) were straight forwardly modeled.

Only one tear stream (the feed to the exothermic reactor, FEEDEXO) was used to perform the simulation within the cycle. It serves as input for the total flow rate, which remains constant as the simulation runs. However, its composition, temperature, and pressure are automatically updated as a result of each run.

Based on heat integration studies, other simulations were run in order to better evaluate the technical feasibility of this system. However, due to low temperature level of DSM waste water, there is no way to use this stream as the heating source of isopropanol-acetone chemical heat pump.

Considering the design specifications of 2.3% mole fraction of isopropanol at distillate and 1.0% mole fraction of acetone at bottoms, the distillation profiles were found to be as follows:

Appendix 31 Economic Evaluation of Chemical Heat Pump

All the costs have been evaluated based on "Product and Process Design Principles" [1]. According to Chemical engineering Magazine (2), the Annual CE Plant Cost Index for 2000 (Base Case):

hp

CE1:= 394.1

The Annual CE Plant Cost Index for 2004:

CE2:= 444.2

The cost of equipments are calculated separately, as follows:

Blower:

Pc := 501.96

Blower horsepower:

The cost of centrifugal (turbo) blower including the cost of electric motor is:

 $CB := exp(6.6547 + 0.7900 \ln(Pc))$

For cast iron as material of construction:

FM := 1.0
CpBlower := FM
$$\cdot$$
 CB $\left(\frac{CE2}{CE1}\right)$
CpBlower = 1.19× 10⁵ \$

Air Blower:

This blower is overdesigned to cope with the fluctuations in the winter time.

Blower horsepower: $Pc := 2.575 \times 10^3$ hp

The cost of centrifugal (turbo) blower including the cost of electric motor is:

 $CB := \exp(6.6547 + 0.7900 \ln(Pc))$

For cast iron as material of construction:

FM := 1.0
CpAIRBlower :=
$$FM \cdot CB\left(\frac{CE2}{CE1}\right)$$

CpAIRBlower = 4.331×10^5 \$

Heat Exchanger:

Shell side :Tcompout := 334.4!KTfeedexo := 460.07!KTube side :Texoout := 473.1!KTfeeddis2 := 348.1!K $\Delta THEX := \frac{[(Tfeedexo - Tcompout) - (Texoout - Tfeeddis2)]}{ln[\frac{(Tfeedexo - Tcompout)}{(Texoout - Tfeeddis2)}]}$ $\Delta THEX = 125.292$ K $\Delta THEX := 2.694 \times 10^6$ Watt

According to Coulson & Richardson [3], the heat coefficient is:

$$U := 200 \qquad \frac{Watt}{m^2 \cdot K}$$

thus, the heat exchanger area is:

AHEX :=
$$\frac{\text{QHEX 10.764}}{\text{U} \cdot \Delta \text{THEX}}$$

AHEX = 1.157× 10³ ft²

The material of construction of the shell side and the tube side is carbon steel, thus

$$FM := 0.0 + \left(\frac{AHEX}{100}\right)^{0.0}$$

FM = 1

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure based on the shell side pressure in psig is calculated as follows:

```
PHEX:= 1.5 bar

PHEXShell:= PHEX 14.5 - 14.7

PHEXShell= 7.05 psig

FP := 0.9803 + 0.018 \left( \frac{\text{PHEXShell}}{100} \right) + 0.0017 \left( \frac{\text{PHEXShell}}{100} \right)^2

FP = 0.982
```


The heat exchanger is of floating head type:

CBHEX:=
$$\exp\left[11.667 - 0.8709 \ln(AHEX) + 0.09005 (\ln(AHEX))^2\right]$$

The purchase cost of the heat exchanger is:

CpHEX := FP·FM·FL·CBHEX
$$\left(\frac{CE2}{CE1}\right)$$

CpHEX = 2.741× 10⁴ \$

Distillation Condenser:

Shell side (process fluid):Tcond := 316.88. KTcwout := 302.1. KTube side (cooling water) :Tcwin := 293.1. K

$$\Delta \text{TCOND} := \text{Tcond} - \left(\frac{\text{Tcwin} + \text{Tcwout}}{2}\right)$$

 $\Delta TCOND = 19.232$ K

$$QCOND := 8.694 \times 10^6$$
 Watt

According to Coulson & Richardson [3], the heat coefficient is:

$$U := 600 \qquad \frac{Watt}{m^2 \cdot K}$$

thus, the heat exchanger area is:

ACOND :=
$$\frac{\text{QCOND 10.764}}{\text{U} \cdot \Delta \text{TCOND}}$$

ACOND = $8.11 \times 10^3 \text{ ft}^2$

The material of construction of the shell side and the tube side is carbon steel, thus

$$FM := 0.0 + \left(\frac{ACOND}{100}\right)^{0.0}$$

FM = 1

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure based on the shell side pressure in psig is calculated as follows:

PHEX:= 1.15 bar
PHEXShell:= PHEX:14.5 - 14.7
PHEXShell= 1.975 psig
FP :=
$$0.9803 + 0.018 \left(\frac{\text{PHEXShell}}{100} \right) + 0.0017 \left(\frac{\text{PHEXShell}}{100} \right)^2$$

FP = 0.981

The heat exchanger is of floating head type:

CBCOND:=
$$\exp\left[11.667 - 0.8709 \ln(\text{ACOND}) + 0.09005 (\ln(\text{ACOND}))^2\right]$$

The purchase cost of the heat exchanger is:

 $CpCOND := FP \cdot FM \cdot FL \cdot CBCOND \left(\frac{CE2}{CE1}\right)$

 $CpCOND = 8.387 \times 10^4$

Distillation Reboiler:

Shell side (process fluid): Treb := 358.19: K Tube side (LPsteam) : Tsteam := 399.82 K

\$

 $\Delta TREB := Tsteam - Treb$

 $\Delta TREB = 41.625$ K

QREB:=
$$7.972 \times 10^6$$
 Watt

According to Coulson & Richardson [3], the heat coefficient is:

$$U := 1000 \qquad \frac{Watt}{m^2 \cdot K}$$

thus, the heat exchanger area is:

$$AREB := \frac{QREB 10.764}{U \cdot \Delta TREB}$$
$$AREB = 2.062 \times 10^{3} \text{ ft}^{2}$$

The material of construction of the shell side and the tube side is carbon steel, thus

$$FM := 0.0 + \left(\frac{AREB}{100}\right)^{0.0}$$
$$FM = 1$$

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure based on the shell side pressure in psig is calculated as follows:

PHEX:= 1.1 bar
PHEXShell:= PHEX:14.5 - 14.7
PHEXShell= 1.25 psig
FP :=
$$0.9803 + 0.018 \left(\frac{\text{PHEXShell}}{100} \right) + 0.0017 \left(\frac{\text{PHEXShell}}{100} \right)^2$$

FP = 0.981

The heat exchanger is of floating head type:

CBREB:=
$$\exp\left[11.667 - 0.8709 \ln(AREB) + 0.09005 (\ln(AREB))^2\right]$$

$$CpREB := FP \cdot FM \cdot FL \cdot CBREB \left(\frac{CE2}{CE1}\right)$$
$$CpREB = 3.554 \times 10^{4}$$

Distillation Column:

Column diameter: Di := 13.1 ft Number of trays: Nt := 23

Tray spacing: Ts := 2 ft

Length of column expect the heads:

 $L := Nt \cdot Ts$

L = 46 ft

Density of carbon steel:

density := 490
$$\frac{lb}{ft^3}$$

Since the operating pressure of column is between 0 and 5 psig, the design pressure is:

Pd := 10 psig

The operating temperature of the column is 180 F, thus the design temperature is:

Td := 230 F

For SA-387B which is a commonly used low-alloy (1%Cr and 0.5% Mo) steel for

non-corrosive environment including the presense of hydrogen, operating at this

design temperature the maximum allowable stress is:

S := 1500(psi

For carbon steel the value of welding efficiency is:

E := 0.85

Based on the above values, the cylindrical shell wall thickness is computed from ASME pressure-vessel code as follows:

$$tp := \frac{Pd \cdot Di \cdot 12}{2 \cdot S \cdot E - 1.2 Pd}$$
$$tp = 0.062 \quad inch$$

Since the operational pressure is low, this thickness is small to give sufficient rigidity to column, according to column diameter the following wall thickness is used:

$$tp := \frac{5}{16} \quad inch$$

The weight of the shell and the two heads is approximately:

W :=
$$\pi \cdot \left(\text{Di} + \frac{\text{tp}}{12} \right) \cdot (\text{L} + 0.8 \cdot \text{Di}) \cdot \frac{\text{tp} \cdot \text{density}}{12}$$

W = 2.972× 10⁴ lb

since the material of construction is carbon steel:

FM := 1.0

$$Cv := exp \left[7.0374 + 0.18255 \ln(W) + 0.02297 (\ln(W))^2 \right]$$

 $Cpl := 237.1 (Di)^{0.63316} (L)^{0.80161}$

Thus, the cost of the column includingnozzles, manholes, a skirt, internals, platforms, and ladders is:

 $CP := FM \cdot Cv + Cpl$

 $CP = 1.113 \times 10^5$ \$

The cost of trays should be included:

The number of trays is greater than 20: Fnt := 1.0

Valve tray is used: Ftt := 1.18

The material of construction of trays is carbon steel: Ftm := 1.0

 $Cbt := 369 \exp(0.1739 Di)$

Thus the cost of trays is:

 $Ct := Nt {\cdot} Fnt {\cdot} Ftt {\cdot} Ftm {\cdot} Cbt$

$$Ct = 9.772 \times 10^4$$
 \$

The total cost of distillation column, including trays and internals is:

$$CpDIS := (CP + Ct) \cdot \left(\frac{CE2}{CE1}\right)$$

 $CpDIS = 2.356 \times 10^{2}$ \$

Endo Reactor:

Since the waste water temperature is lower than the process stream temperature in the endo reactor, low pressure steam with equivalent energy content as waste water has been considered as the energy resource for the endothermic reaction. Moreover, the reactor is considered to be a shell-tube heat exchanger:

Shell side (steam) : Tsteam := 399.8.' K Tfeeddis1 := 336.58.' K Tube side : Tfeedendo := 358.19.' K $\Delta TENDREAC$:= Tsteam $-\left(\frac{Tfeedendo + Tfeeddis1}{2}\right)$ $\Delta TENDREAC$ = 52.43 K QENDREAC:= 2.326× 10⁶ Watt

According to Coulson & Richardson [3], the heat coefficient is:

$$U := 1000 \qquad \frac{Watt}{m^2 \cdot K}$$

thus, the heat exchanger area is:

AENDREAC:= $\frac{\text{QENDREAC10.764}}{\text{U} \cdot \Delta \text{TENDREAC}}$ AENDREAC = 477.529 ft²

The material of construction of the shell side and the tube side is carbon steel, thus

$$FM := 0.0 + \left(\frac{AENDREAC}{100}\right)^{0.0}$$

FM = 1

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure based on the shell side pressure in psig is calculated as follows:

```
PHEX:= 1.1 c bar
PHEXShell:= PHEX:14.5 - 14.7
PHEXShell= 2.12 psig
```


$$FP := 0.9803 + 0.018 \left(\frac{PHEXShell}{100}\right) + 0.0017 \left(\frac{PHEXShell}{100}\right)^2$$

FP = 0.981

The heat exchanger is of floating head type:

CBENDREAC:= $\exp\left[11.667 - 0.8709 \ln(AENDREAC) + 0.09005 (\ln(AENDREAC))^2\right]$

The purchase cost of the endo reactor is:

$$CpENDREAC := FP \cdot FM \cdot FL \cdot CBENDREAC \left(\frac{CE2}{CE1}\right)$$

$$CpENDREAC = 2.064 \times 10^{4}$$

$$\$$$

Exo Reactor:

The reactor is considered to be a shell-tube heat exchanger:								
Shell side :	Tfeedexo := 460.07; K	Texoout := 473.15 K						
Tube side (clean water) : Tcleanwin := 333.15 K Tcleanwout := 335.36								
$\Delta \text{TEXOREAC:} = \frac{\left[(\text{Texoout} - \text{Tfeedexo}) - (\text{Tcleanwout} - \text{Tcleanwin})\right]}{\ln \left[\frac{(\text{Texoout} - \text{Tfeedexo})}{(\text{Tcleanwout} - \text{Tcleanwin})}\right]}$								

 $\Delta TEXOREAC = 6.12$ K

QEXOREAC:= 1.789×10^6 Watt

According to Coulson & Richardson [3], the heat coefficient is:

$$U := 600 \qquad \frac{Watt}{m^2 \cdot K}$$

thus, the heat exchanger area is:

$$AEXOREAC:=\frac{QEXOREAC10.764}{U \cdot \Delta TEXOREAC}$$

AEXOREAC = 5.244×10^3 ft²

The material of construction of the shell side and the tube side is carbon steel, thus

$$FM := 0.0 + \left(\frac{AEXOREAC}{100}\right)^{0.0}$$

FM = 1

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure based on the shell side pressure in psig is calculated as follows:

PHEX:= 1.15 bar
PHEXShell:= PHEX:14.5 - 14.7
PHEXShell= 1.975 psig
FP :=
$$0.9803 + 0.018 \left(\frac{\text{PHEXShell}}{100} \right) + 0.0017 \left(\frac{\text{PHEXShell}}{100} \right)^2$$

FP = 0.981

The heat exchanger is of floating head type:

$$CBEXOREAC:= exp \left[11.667 - 0.8709 \ln(AEXOREAC) + 0.09005 (\ln(AEXOREAC))^2 \right]$$

The purchase cost of the endo reactor is:

$$CpEXOREAC := FP \cdot FM \cdot FL \cdot CBEXOREAC \left(\frac{CE2}{CE1}\right)$$

 $CpEXOREAC = 6.152 \times 10^4$

Pump:

Centrifugal pump is selected because all the requirments in terms of volumetric flow rate, developed head and NPSH are met.

Q :=
$$7.91 \times 10^3$$
 gpm
NPSH := 116.28; ft
H := $259.04($ ft
S := Q \cdot (H)^{0.5}
S = 1.273×10^5 gpm \cdot ft^{0.5}

The material of construction is cast iron, thus:

FM := 1.0

The type of pump is 1 stage radial centrifugal pump (HSC) with 3600 shaft rpm, thus:

FT := 1.70
CBPUMP :=
$$\exp\left(9.2951 - 0.6019\ln(S) + 0.0519\ln(S)^2\right)$$

CpPump := FT·FM·CBPUMP $\left(\frac{CE2}{CE1}\right)$

The cost of electric motor for pump is calculated as follows:

```
Pump brake horsepower: PB := 650.089 hp

\eta m := 0.80 + 0.0319 \ln(PB) - 0.00182 (\ln(PB))^2

PC := \frac{PB}{\eta m}
```

The motor type of "Totally enclosed, fan-cooled enclosure" with 3600 rpm is selected, thus the type factor for the electric motor is:

FTmotor := 1.4
CBMOTOR :=
$$\exp\left[5.4866 + 0.13141 \ln(PC) + 0.053255(\ln(PC))^2 + 0.028628(\ln(PC))^3 - 0.0035549(\ln(PC))^4\right]$$

CpMotor := FTmotor CBMOTOR $\left(\frac{CE2}{CE1}\right)$
CpPumpTotal := CpPump + CpMotor
CpPumpTotal = 6.267 × 10⁴ \$

A spare pump needs to be added.

Fired Heater:

The cost of the fired heater depends on absorbed heat. Since the operational pressure is not too high and the material of construction is carbon steel, there is no need to apply any correction factor.

This fired heater is designed in such a way to cope with the fluctuations in the winter time. Furthermore, the flue gas heat exchanger and the furnace are combined:

Btu QFurnace := 3.554×10^8 hr Btu QFGHX:= 1.449×10^{8} hr Qduty := QFGHX+ QFurnace Btu $Qduty = 5.003 \times 10^{8}$ hr Pressure factor: FP := 1 Material Factor: FM := 1 CBFIRHEAT:= 0.512(Qduty)^{0.81} $CpFIRHEAT := FP \cdot FM \cdot CBFIRHEAT \left(\frac{CE2}{CE1}\right)$ $CpFIRHEAT = 6.421 \times 10^{6}$ \$

 ft^2

Heat Exchanger District 1:

Area of the HXDIS1:
$$AHXDIS1 := 1.676 \times 10^4$$

The material of construction of the shell side and the tube side is carbon steel, thus:

$$FM := 0.00 + \left(\frac{AHXDIS1}{100}\right)^{0.00}$$

FM = 1

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure factor based on the shell side pressure in psig is calculated as follows:

$$FP := 0.9803 + 0.018 \left(\frac{PHXDIS1Shell}{100}\right) + 0.0017 \left(\frac{PHXDIS1Shell}{100}\right)^2$$

FP = 1.016

The heat exchanger is of floating head type:

CBHXDIS1:=
$$\exp\left[11.667 - 0.8709 \ln(AHXDIS1) + 0.09005 (\ln(AHXDIS1))^2\right]$$

$$CpHXDIS1 := FP \cdot FM \cdot FL \cdot CBHXDIS1 \left(\frac{CE2}{CE1} \right)$$

$$CpHXDIS1 = 1.571 \times 10^{5}$$

Heat Exchanger District 2:

Area of the HXDIS2:

AHXDIS2 := 1.676×10^4 ft²

The material of construction of the shell side and the tube side is carbon steel, thus:

$$FM := 0.00 + \left(\frac{AHXDIS2}{100}\right)^{0.00}$$

FM = 1

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure factor based on the shell side pressure in psig is calculated as follows:

PHXDIS2Shell:= 168.11: psig

$$FP := 0.9803 + 0.018 \left(\frac{PHXDIS2Shell}{100} \right) + 0.0017 \left(\frac{PHXDIS2Shell}{100} \right)^2$$
$$FP = 1.015$$

The heat exchanger is of floating head type:

CBHXDIS2:=
$$\exp\left[11.667 - 0.8709 \ln(AHXDIS2) + 0.09005 (\ln(AHXDIS2))^2\right]$$

CpHXDIS2:= FP·FM·FL·CBHXDIS2
$$\left(\frac{\text{CE2}}{\text{CE1}}\right)$$

CpHXDIS2= 1.57× 10⁵ \$

Heat Exchanger District 3:

Area of the HXDIS3:

AHXDIS3 := 1.676×10^4 ft²

The material of construction of the shell side and the tube side is carbon steel thus:

$$FM := 0.00 + \left(\frac{AHXDIS3}{100}\right)^{0.00}$$

FM = 1

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure factor based on the shell side pressure in psig is calculated as follows:

$$FP := 0.9803 + 0.018 \left(\frac{PHXDIS3Shell}{100}\right) + 0.0017 \left(\frac{PHXDIS3Shell}{100}\right)^2$$

FP = 1.006

The heat exchanger is of floating head type:

CBHXDIS3:=
$$\exp\left[11.667 - 0.8709 \ln(AHXDIS3) + 0.09005 (\ln(AHXDIS3))^2\right]$$

CpHXDIS3:= FP·FM·FL·CBHXDIS3
$$\left(\frac{CE2}{CE1}\right)$$

CpHXDIS3 = 1.555 × 10⁵ \$

Heat Exchanger District 4:

Area of the HXDIS4:

AHXDIS4 := 1.676×10^4 ft²

The material of construction of the shell side and the tube side is carbon steel thus:

$$FM := 0.00 + \left(\frac{AHXDIS4}{100}\right)^{0.00}$$

FM = 1

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure factor based on the shell side pressure in psig is calculated as follows:

PHXDIS4Shell:= 127.101 psig

$$FP := 0.9803 + 0.018 \left(\frac{PHXDIS4Shell}{100}\right) + 0.0017 \left(\frac{PHXDIS4Shell}{100}\right)^2$$

FP = 1.006

The heat exchanger is of floating head type:

CBHXDIS4:=
$$\exp\left[11.667 - 0.8709\ln(AHXDIS4) + 0.09005(\ln(AHXDIS4))^2\right]$$

The purchase cost of the heat exchanger is:

$$CpHXDIS4 := FP \cdot FM \cdot FL \cdot CBHXDIS4 \left(\frac{CE2}{CE1}\right)$$

CpHXDIS4 = 1.555×10^5 \$

Heat Exchanger District 5:

Area of the HXDIS5:

AHXDIS5 := 1.676×10^4 ft²

The material of construction of the shell side and the tube side is carbon steel thus:

$$FM := 0.00 + \left(\frac{AHXDIS5}{100}\right)^{0.00}$$

FM = 1

The tube length was assumed to be 12 ft, thus:

FL := 1.12

The pressure factor based on the shell side pressure in psig is calculated as follows:

$$FP := 0.9803 + 0.018 \left(\frac{PHXDIS5Shell}{100} \right) + 0.0017 \left(\frac{PHXDIS5Shell}{100} \right)^2$$
$$FP = 1.006$$

The heat exchanger is of floating head type:

CBHXDIS5:=
$$\exp\left[11.667 - 0.8709 \ln(AHXDIS5) + 0.09005 (\ln(AHXDIS5))^2\right]$$

$$CpHXDIS5 := FP \cdot FM \cdot FL \cdot CBHXDIS5 \left(\frac{CE2}{CE1}\right)$$

$$CpHXDIS5 = 1.555 \times 10^{5}$$

Total Purchase Cost:

SUM1 := CpBlower + CpAIRBlower + CpHEX + CpREB + CpCONE SUM2 := CpDIS + CpFIRHEAT + 2CpPumpTotal + CpENDREAC+ CpEXOREAC SUM3 := CpHXDIS1 + CpHXDIS2 + CpHXDIS3 + CpHXDIS4 + CpHXDIS5

CpTOTAL := SUM1 + SUM2 + SUM3

 $CpTOTAL = 8.344 \times 10^{6}$ \$

References

- 1- W. D. Seider, J.D. Seader, D.R. Lewin, "Product & Process Design Principles", John Wiley and Sons, Inc., 2004.
- 2- Economic Indicators (July 2005): www.che.com

3- R.K. Sinnott, "Coulson & Richrdson & Chemical Engineering", Vol 6, Butterworth-Heinemann Publisher, Oxford.

Appendix 32Total Investment of Chemical Heat Pump

Description	Fraction	Amount
Total investment		\$ 27,155,950
Fixed capital	1.00	\$ 22,510,121
Direct costs	0.79	\$ 17,715,466
Onsite costs		\$ 14,732,874
Purchased equipment	0.37	\$ 8,340,000
Purchased-equipment installation	0.17	\$ 3,747,935
Instrumentation and control	0.05	\$ 1,069,231
Piping UU	0.04	\$ 900,405
Electrical equipment and material	s 0.03	\$ 675,304
Offsite costs		\$ 2,982,591
Buildings	0.03	\$ 675,304
Yard improvement	0.03	\$ 731,579
Service facilities	0.04	\$ 900,405
Land	0.03	\$ 675,304
Indirect costs	0.21	\$ 4,794,656
Engineering and supervision	0.08	\$ 1,800,810
Construction expenses	0.05	\$ 1,080,486
Contractor's fee	0.03	\$ 562,753
Contingency	0.06	\$ 1,350,607
Working capital		\$ 1,357,797
Raw material, finished products,		
accounts receivable, cash on han	ıd,	
account payable and taxes payab	ble	
15% of total capital investment.	0.05	\$ 1,357,797
Costs for transport piping *		\$ 16,953,225
One time revenues (minus)		-\$ 13,665,194
Start-up costs		\$ 1,350,607
Process modifications, start-up la	bor,	
loss in production	0.06	\$ 1,350,607

Prices from (NAP prijzenboekje 20e editie februari 1999)		
The price for total steel underground transport pipelines are (1999)(16inch):	440	€/m
The material price for under ground steel transport pipes (DN350),		
included average discount of 45%	88	€/m
Price for laying the pipes:	352	€/m
Index correction of 4 % per year:	445	€/m
Prices for the pipes (by Marcel Verboven, Weijers-Waalwijk BV)		
DN350 – 355,6x5,6 / 500 (staal – PUR – PE) Standaard PUR schuim	117.68	€/m
DN350 – 355,6x5,6 / 500 (staal – PUR – PE) MicroPUR schuim	156.98	€/m
In the first case we used Standaard PUR, resulting at a length of 21 km in:	11,824,518	€
Including tax	\$ 16,953,225	5

Appendix 33Production Cost of Chemical Heat Pump

		Water			Natural Gas			Electricity			Cooling water	
	price	1.28	euro/m/3		0.18	euro/m^3		0.1	euro/k//h		0.0041885	4W/y/ane
	BTW	1.06			1.19			1.19			1.19	
	tax	0.148	euro/m^3		0.01	euro/m^3		0.0086	euro/k//h			
	m			reboiler	28,705	h/h	duco	374	kW	condenser	8,688	kW
V pipe 16 inch	14.4	1868	m^3		7,932,458	m^3ly	blower air	378	kW			
V pipe 14 inch	8	969	m^3	fumace	120,000	ft^3/h	pump1	53	kW			
					29,766,620	m^3ly						
	total amount/year	2,484	m^3		47,123,846	m^3		7,055,488	kWh		78105128	kWh
	costs/y	€ 3,703			€ 10,585,16			€ 900,280			€ 379,332	
	total costs/y	€ 11,469,149										
		\$ 13,691,237										
1m^3gas	31.7	ſW										
exchange course	E 0.8377	euro for 1 dollar										

opar		C ₃ H ₈ O								C ₃ H ₆
A	1			-		DIFF YI	0.8 -0.8655 -0.83655 -0.8378 -0.8378 -0.8261 -0.8259 8.8	0.0335	0.0655	
-			-	-SON = 2.98	= 2.27	DIRF P	-12.78 -6.19 -2.25 -2.59 14.59 3.00	7.68	14.59	
	1			H	10 rX	TL DIFF Y1	8.8 -9.8654 -9.8338 -9.8376 -9.8376 -9.8257 8.8	0.0383	Ø.8654	7.19876 8.88729
Ħ						DIFF P	0.88 -12.66 -6.33 -2.51 2.35 2.35 8.68	7.66	14.46	1 A= 2 A=
1.00	1 0.00-		0.40	02.0	8.0	ON DIFF Y1	8.8 -8.8657 -8.8342 -8.8342 -8.8253 -8.8253	0.0371	0.0657	COMPONENT
		STENCY				DIFF P	-13.54 -5.35 -1.15 -1.15 3.35 14.92 0.00	7.66	14.92	DATA:
3860	380	CONST CONST				LAAR DIFF Y1	0.0 -0.0383 -0.0375 -0.0375 -0.0375 -0.0258 0.0	0.0387	0.0653	FTING THE
0	0	METH METH				VAN DIFF P	0.00 -12.60 -5.28 -2.40 2.49 14.55 0.00	7.66	14.55	D FOR FIT
		510N +++++ -13- 55 C -26- 83 C		ALPHAJ2	8.3028	SULES DIFF Y1	6.8 -8.8652 -8.8399 -8.8333 -8.8333 -8.8256 -8.8256	0.0391	0.0652	A WERE USEI
		229.664	2 .	927). A21	0.8496 0.8414 13.5618 64.9895 82.0923	MAR(DIFF P	0.00 -12.42 -6.57 -2.80 2.28 14.42 0.00	7.68	14.42	ISTANT (S)
	i i	0	E CH	139 (1	35140	VTA Y1	0.0 0.7350 0.7350 0.7982 0.8558 0.9198 1.0008	TION:	TION:	INE CON
		00057ANTS 1210.595 2010.330	CHAFFE	M.31,	974 992 992 .027	T DI		VIA	VIA	NTO
ONE	OPANOL	TOTME CONSTANTS .11714 1210.595 .87829 2010.330	URE 23.00 U	HYS.CHEM.31, S: A12	8.974 8.992 548.827 134.756 -25.537	RIMENTAL D	0.8 0.1758 0.3398 0.5148 0.8598 0.8398 1.8688	MEAN DEVIA	MAX. DEVIA	OWING ANTO

Appendix 34 T-xy Diagram for Acetone-Isopropanol

Appendix 35 Utility Cost

Appendix 36 Team Photograph

		Process Equip	ment S	Summary	Designers		P	Process Flo
E01	:	Ammonia Evaporator	K02	: Second Ammonia Compressor	P.W.C. Falcao	Project	:	Design of A
E02	:	Intercooler	V01	: Ammonia Collector Vessel	A. Mesbah			Including T Industrial V
E03	:	Ammonia Condenser			M.V. Suherman	Proj. ID Number	:	CPD3328
K01	:	First Ammonia Compressor			S. Wennekes	Completion Date	:	December
						Stream number		Te

ow Scheme

A District Heating System The Upgrading of Residual Waste-Heat

· 13th, 2005

emp. (K)

Pressure (Bara)

Process Equipment Summary	Designers	Proces
F01 : Furnace	P.W.C. Falcao	Project : Desig
K01 : Air Blower	A. Mesbah	Indus
P01 : Clean Water Pump	M.V. Suherman	Proj. ID Number : CPD
	S. Wennekes	Completion Date : Dece
		Stream number

