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Abstract

Underwater position estimation is challenging due to the absence of Global Navigation
Satellite System (GNSS) signals. Underwater vehicles are typically equipped with a Doppler
Velocity Log (DVL) that measures the velocity relative to the seafloor. Aside from the
velocity, the DVL also measures the range of each of the four beams. When compared
against a bathymetry height map, these measured ranges provide additional information
enabling improving position estimates. Unfortunately, surveys often occur in areas where
detailed bathymetry maps are unavailable [29]. In these cases, bathymetry Simultaneous
Localization and Mapping (SLAM) could be used to improve the position estimates
compared to the velocity integration position. With SLAM, the map is being estimated
during the mission while at the same time using the map for position determination.

In this thesis, reduced rank Gaussian processes (GPs) are used as map representation for
SLAM. The downside of regular GPs is a time complexity of O

(
n3), reduced rank GPs

improve the computation performance. GPs provide Gaussian distributions at any point,
leading to a neat integration with probabilistic SLAM algorithms. To the best of the
author’s knowledge, this has not been used in bathymetry SLAM. This report investigates
how reduced rank approximated GPs, representing the bathymetry, can be integrated into a
SLAM algorithm to improve the position estimates of an underwater vehicle equipped with
a DVL and low-quality gyroscopes.

A squared exponential kernel is used as GPs model of the bathymetry. The reduced rank
approximation is vital for real-time SLAM performance. This map representation is integrated
with a Rao Blackwellized particle filter (RBPF) that estimates both the underwater vehicle’s
trajectory and the bathymetry map.

The SLAM algorithm is evaluated using data from an underwater vehicle operated at the
surface such that a GNSS reference position is available. Experiments of the SLAM algorithm
show a reduced position error compared to the GNSS reference. The resulting algorithm has
a computation time of up to 30 times faster than the Autonomous Underwater Vehicle (AUV)
collects data while improving position estimates. This concludes that the RBPF using reduced
rank GPs is capable of onboard improved position estimation on underwater vehicles.
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Chapter 1

Introduction

Oceans are ecosystems with an enormous impact on our lives. They determine the weather on
our planet to a large extent, and many communities rely on the oceans as a food supply [31].
Yet humanity causes severe problems in the oceans, such as ocean warming, acidification,
overfishing, and plastic pollution [31]. To mitigate the effects caused by these problem, it is
vital to have a good understanding of the oceans’ ecosystems to make rational decisions for
a sustainable future.

Detailed underwater exploration is complex since the rapid attenuation of electromagnetic
radiation limits both the range and field of view of high-resolution sensors [32]. The limited
sensing range requires these surveys to be conducted in the vicinity of the seafloor to get
detailed underwater information, such as visual data, detailed bathymetry data or magnetic
field data. 90% of the oceans have a depth exceeding one kilometer as measured by surface
area [6]. Reaching these deeper oceans is challenging due to hydrostatic pressures, severe
communications constraints and the high costs of the required surface vessel to reach these
remote areas. Due to these challenges, detailed deep ocean exploration is limited to some
research sites of interest and industries with an economic interest, such as the oil & gas
industry.

The technical challenges of the hydrostatic pressures and communications constraints are
solved by manufacturing high-quality pressure chambers and the increased autonomy of
underwater vehicles. However, as surveys have to be conducted near the seafloor, the
mapped area per second is inherently low. At the same time, the associated costs of the
surface vessel are high. Autonomous Underwater Vehicles (AUVs) are the preferred platform
for surveys of large areas over remotely operated vehicles and towed sensors due to their
autonomy. Also, AUVs are not subjected to the disturbances caused by a cable connected to
the surface ship and enable the vessel to execute other tasks in the meantime [29]. To
reduce the required costs of underwater surveys, a logical step forward would be to operate
multiple underwater vehicles simultaneously from a single surface ship to increase the
mapped area per second. One challenge is, that the current method of acoustic triangulation
is not scalable to a fleet of AUVs as update rates decrease linearly with the fleet size.
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2 Introduction

For most use-cases, gathered data has to be geo-referenced to be of value. The required
accuracy is application-dependent [5]. As Global Navigation Satellite System (GNSS) signals
are fully attenuated by the seawater with a couple of centimeters, other solutions of underwater
position estimation have been developed. Figure 1-1 shows the three main solutions for
determining the position as identified by [5, 15, 29].

Figure 1-1: The three main strategies of underwater position estimation underwater [5, 15, 29].

The first strategy is position dead-reckoning, which only uses onboard sensors. The sensors
used are a combination of inertial measurement units, a pressure sensor and a Doppler Velocity
Log (DVL). The DVL measures the body velocity vb relative to the seafloor. Together with
the orientation estimate of the inertial measurement unit, the velocity can be integrated to a
position estimate. All vehicle states are observable with this strategy, except the horizontal
position of the underwater vehicle. Dependent on the accuracy of the sensors, a long term
accuracy of less than 0.1% of distance traveled on the horizontal position estimate can be
obtained [19].

The second approach is to use acoustic position aiding with a beacon setup. This is the state
of the art approach to underwater position estimation as it is the most accurate due to the
direct position measurements. One of such methods is Long Base Line (LBL) triangulation
with 12 kHz acoustic beacons. This provides position accuracy of ±10 meters and has an
update rate of up to 20 seconds depending on the range [32]. Drawbacks of acoustic beacons
include limited range, acoustic blind spots, multi-path propagation, reduced accuracy when
used with multiple AUVs and setup time [23]. Prior to the underwater exploration mission,
the speed of sound in the full water column has to be determined in order to calibrate the
beacon system. These drawbacks limits the efficiency of offshore operations and motivate the
research into map based navigation strategies.

The third approach is to use information from the environment and compare it against a
reference map so one can localize itself on the map. Suitable environmental information are
temperature, ocean currents, bathymetric variations or the magnetic field. Combination can
be used as well, as long as the properties of interest has sufficient spatial variations. As
these maps are often not available, or do not contain enough detail they must be generated
beforehand with a surface vessel or an underwater vehicle aided by acoustic beacons. Another
solution is to generate the reference map, and use the map for localization at the same time.
This process is called Simultaneous Localization and Mapping (SLAM).

Danny Looman Master of Science Thesis
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1-1 Research topic

Terrain relative navigation uses bathymetric variations to determine the position of an AUV
and has been successfully used in practice [29]. Using terrain variability as information source
is a elegant solution as most underwater vehicles are readily equipped with range sensors to
operate safely near the seafloor. These sensors can be a single-point altimeter, a DVL, or a
multi-beam echo sounder. Most survey grade underwater vehicles have a DVL as the velocity
measurements are required for the accuracy of position dead-reckoning. As a byproduct of the
velocity measurement, the DVL also measures the ranges of each beam by using time of flight
calculations [4]. These range measurements are illustrated in Figure 1-2 in a birds-eye overview
of a part of a mission. From the integration of velocities of the DVL and gyroscopes, we have a
decent estimate about the traveled trajectory between any two measurements. Whenever the
vehicle revisits a previously visited area, the collection of old range measurements combined
with the trajectory estimate can be used to determine the most likely position based on the
current measurements. This is the basic working principle of bathymetry SLAM.

Figure 1-2: Birds eye overview of underwater vehicle performing a mission with the four DVL
beams. The opaque underwater vehicle represents the position somewhere in the past. When
revisiting positions, the old measurements can be used to evaluate the new measurements.

Bathymetric SLAM avoids the dependency on an available map by generating the map during
the mission. If the AUV is able run SLAM onboard and accurately determine the position,
no communication with the surface vessel or acoustic beacons is required. This makes the
navigational performance independent of the number of AUVs used simultaneously. Due to
these advantages, bathymetry SLAM could be a viable alternative to acoustic beacon systems
for suitable missions.

One of the main challenges of a SLAM algorithm is how to store the bathymetry information
effectively. Many SLAM algorithms uses a set of landmarks that are distinctive features in
the environment. Automatic landmark recognition is challenging underwater as the terrain is
typically sparse and simple geometric shapes cannot describe the variations accurately [29].
Therefore a featureless SLAM approach is preferred as landmark recognition is not required.

There are multiple ways to represent a featureless bathymetry map. One could use a full
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4 Introduction

3D occupancy gridmap representation, where each cube has a probability of being occupied.
This has been used in [8]. A occupancy gridmap has as disadvantage that the model of the
environment is discretized into cubes. As underwater vehicles operate in a 3D environment,
the number of cubes and thus memory scale to the third power. This is not desirable for long
range underwater missions as this can quickly become infeasible to store onboard.

An alternative map representation is to use a Gaussian process (GP) model, no discretization
is needed and thus the seafloor height can be described at any point. [25] gives an extensive
overview into GPs modeling and regression. A GP describes the probability over a distribution
of functions. By defining the bathymetry function b(·) as

snz = b
(
snx, sny

)
, (1-1)

which relates the horizontal seafloor coordinates snx and sny to the corresponding depth value
snz . If we model the function b(·) to be a realization of the GP, GP regression can be used
as a map representation. Most of the seafloor are planes with some smooth height variations
[6], this can be modeled as a 2D surface and is well described by Eq. (1-1). The fact that a
GP map representation does not suffer from discretization errors, and that depth predictions
from the GP model have a Gaussian distribution makes them interesting for SLAM.

The downside of the regular, dense GP implementation is that it is computationally
expensive. The time complexity scales O(n3), where n is the number of measurements, and
the memory complexity scales O(n2) [25]. Multiple approximations of GPs are developed to
reduce computation and memory requirements, a selection of these methods are discussed in
[25]. In [28], a reduced rank approximation was introduced that approximates the
covariance function of the GP with a truncated series expansion. This approximation step
leads to significant computational improvements that allow the processing of larger datasets.
This method has not yet been used in the context of bathymetry SLAM.

Collaboration with Lobster Innovations

This thesis is performed in collaboration with the company Lobster Innovations. Lobster
is a start-up company with as goal to simplify underwater data collections by rethinking
underwater vehicles. As a result, Lobster has developed a vertically integrated AUV which
is 10x lighter compared to competitors. This simplifies all operations with the AUV, leading
to reduced handling time and making offshore operations more efficient. Currently Lobster
is developing and testing an AUV for visual underwater surveys. This research is of interest
to Lobster as it could allow for better positioning accuracy, without an upgrade to expensive
navigation sensors.

Lobster’s AUV is called the Scout, Figure 1-3 shows a picture of the Scout during one of the
field tests. Datasets from those tests have been collected which allows for the independent
research and validation of bathymetry based navigation methods. The sensors used in the
Scout available to determine the position of the vehicle are:

• An inertial measurement unit consisting of a 3-axes accelerometer and gyroscope.
• An magnetometer for aiding the orientation estimation.
• A DVL for velocity aiding and range sensing.

Danny Looman Master of Science Thesis



1-1 Research topic 5

Figure 1-3: The Lobster Scout, the AUV used for experimental data collection for demonstration
and validation of the proposed algorithms.

• A pressure sensor for determining the depth.
• A GNSS sensor which is used for geo-referencing the position when the AUV is floating

at the surface.

Since the Scout employs low-cost micro-electro-mechanical systems (MEMS) gyroscopes, the
heading estimate is magnetically aided. During field tests is observed that the magnetically
determined heading suffers from distortions caused by systems in the vehicle. Based on other
papers and the observations of the field tests, it is expected the inaccuracy in magnetically
determined heading is the primary source of error in the position estimation filter [15, 18].

Research questions

To summarize, as part of making underwater data gathering more cost effective, the
position estimation accuracy has to become independent of from the number of AUVs
deployed. One potential solution is to use bathymetry SLAM. In order to verify the
algorithm on experimental data, the Lobster Scout AUV is considered as platform. The key
considerations are that the Scout has a DVL as range sensor and a magnetically determined
heading which is not of the desired accuracy. This thesis aims to take a step towards
accurate underwater position estimation capable of running in real-time by answering the
main research question

How can reduced rank GP bathymetry SLAM with MEMS gyroscopes
and DVL as main sensors be used to improve the position estimation
of underwater vehicles?
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6 Introduction

The following sub-questions support the answer to the main research question:

1. How can the bathymetry be estimated using reduced rank GP regression assumed with
known position and which sources of errors are present in the map?

2. How can the bathymetry be used to improve the position estimate and how influential
are the GP hyperparameters on the position estimation accuracy?

3. Is reduced rank GP SLAM able to run onboard of an underwater vehicle in real-time?

1-2 Organisation

The outline of the report is summarized in Table 1-1. Throughout this report, variable naming
conventions are used consistently unless stated otherwise. Bold variables indicate that the
variable is a vector x ∈ Rn. Capital letters indicate that the variable is a matrix R ∈ Rn×m.
Scalar variables are mostly indicated with a lowercase letter such as r ∈ R.

Chapter Contents Reading motivation

2 Relevant Work Discusses literature in the field of bathymetry based
navigation and other applications of reduced rank GPs.

3 Models Introduces the underlying models of the SLAM algorithm
including the dynamical and the measurement model.

4 Methodology Explains the reduced rank approximation of the GP model
and the integration with the SLAM algorithm.

5 Results Reports the experimental test based on AUV data.

6 Discussion &
Conclusions Evaluates results and answers research questions

Table 1-1: Report contents and reading motivation
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Chapter 2

Related Work

2-1 Position estimation based on bathymetry variations

The concept of using the seafloor depth profile as an information source for underwater vehicles
is a well-known application [13, 29]. Two factors mainly determine the performance that can
be obtained from any terrain navigation system, terrain variability and sensor capability
[21]. Using a single or a multi-beam echo sounder for navigation given a bathymetry map
is discussed in [13] where two different algorithms are suggested. First is the usage of a
so-called robust, non-statistical minimum average distance between the map depth and the
measured depth. The second, more sophisticated algorithm uses a point mass filter to estimate
the position probability density function on a deterministic grid. A particle filter is closely
related to the point mass filter and replaces the deterministic grid with a stochastic grid,
which is a more efficient representation according to [12]. The particle filter has been used
for bathymetry localization in [14]. All of these publications report an increase in navigation
accuracy, which is the reason why these methods are widely accepted and used in practice.
[29] even argues that localization on a known bathymetry map is the only suitable way for
long-range beacon-less accurate underwater positioning.

Most of the literature found on bathymetry variations assumes a known bathymetry map that
serves as reference. When narrowing the scope down to bathymetry Simultaneous Localization
and Mapping (SLAM) algorithms, it turns out that almost all bathymetry SLAM algorithms
use a featureless map representation. In [29], a reason for the featureless maps is presented,
reliable feature extraction from range data is difficult in underwater environments due to the
typically low resolution of sensors and amorphous shape of natural features.

In [30], a SLAM algorithm was tested based on feature locations extracted from sonar data.
The location of these features was stored as additional states in the Extended Kalman Filter
(EKF). To obtain the presented results, a side-scan sonar was used in this research that
provides much more detail. Using a side-scan sonar, it is possible to observe small ripples
in the sand, see Figure 2-2. Additionally, they manually checked all feature extractions for
research reasons to eliminate any wrong classifications. After a data smoothing step, the
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8 Related Work

maximum error is decreased by a factor of 10 compared to the smoothed dead-reckoned
trajectory. The results presented in [30] are not comparable to the research question posed
in this report. In this report, a Doppler Velocity Log (DVL) is considered as a range sensor.
The DVL has limited sensing capabilities with just four beams. The type of features one
can describe with four beams are very amorphous. Therefore, using a feature based SLAM
method with a DVL seems unrealistic.

In [8], the focus is a full 3D SLAM algorithm with the goal of providing position estimates
during a sinkhole inspection. Therefore a full 3D occupancy grid was chosen as map
representation. A Bresenham ray tracing algorithm was used to estimate the expected range
observation. Given the discretization of the voxel map, the usage of the ray tracing
algorithm is a logical choice since it depends on the discretization of the voxel map. The
downside of grid maps is the discretization of the volume into cubes, which causes a loss of
detail, and the associated cubic memory requirements with the represented volume.

To the best of the author’s knowledge, the work of Stephan Barkby [1] is the publication most
related to this research. It is the only publication that uses a Gaussian process (GP) model
for representing the bathymetry in a SLAM application. In [1], a Rao Blackwellized particle
filter (RBPF) is used as an algorithm for SLAM, and GP regression was used for a local map
reconstruction to obtain bathymetry predictions in overlapping areas. These predictions are
used in turn to update the particle weights. The used sensor for perceiving the seafloor is a
Reson 7125 400 kHz multi-beam sonar, which provides 480 beams uniformly distributed across
120◦. Furthermore, the Autonomous Underwater Vehicle (AUV) is equipped with high-quality
gyroscopes, providing an orientation accuracy of approximately 0.01◦ and a DVL for accurate
velocity measurements. These sensors deviate significantly from the setup of this research, as
this sensor setup allows for more accurate odometry information and more accurate sensing
of the environment.

In order to work efficiently with GPs in [1], two important complexity reductions steps were
made. Firstly, smart data storage was used that reduces duplicate storage between particles.
Secondly, a covariance function that introduces sparsity in the covariance matrix as

k
(
s, s′) =


σ0

2+cos
(

2π |s−s′|
l

)
3

(
1 − |s−s′|

l

)
+ 1

2π sin
(
2π |s−s′|

l

) if |s − s′| < l,

0 if |s − s′| ≥ l,

(2-1)

was used as GP model as this function transitions to precisely zero, where the regular squared
exponential (SE) covariance function never reaches zero. As a consequence of using the
sparse covariance function, only points within a certain distance have to be considered in the
calculations. Both covariance functions are visualized in Figure 2-1 to highlight the difference.
If the hyperparameters are adequately chosen, both functions will have similar shapes. As a
consequence, the assumptions placed on the seafloor are similar. The SLAM simulations are
run offline on experimental data and improve the dead-reckoned position estimate.

All of the mentioned publications used sensors of higher quality than the considered sensor
suite of this report. The underwater vehicles are employed with a high-quality inertial
measurement unit consisting of gyroscopes and accelerometers. Those systems are able to
determine its orientation with an accuracy of 0.01◦. This results in better odometry data,
and thus the particle filter can be configured accordingly where the particle spread grows
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2-1 Position estimation based on bathymetry variations 9

Figure 2-1: Comparison between: left, spare SE (2-1) covariance function; right, regular SE
covariance function (3-18). All hyperparameters are set with a value of 1.

slowly over time. A low-noise dynamic model of the particle filter results in a SLAM
algorithm that is more robust against slowly varying terrain. Apart from the high-quality
dead-reckoning sensors, these publications also have used a multi-beam or side-scan sonar
that senses 100 − 500 beams during each ping, providing much more detail in the
bathymetry information compared to a DVL, as illustrated in Figure 2-2.

(a) Beam pattern of a DVL. (b) Beam pattern of a multi-beam sonar.

Figure 2-2: Visualization of beam patterns of the DVL in Figure 2-2a, and of a multi-beam sonar
in Figure 2-2b. The number of beams used in a multi-beam echo sounder varies between 100 -
500, dependent on the model. Most of the DVL models have only four beams.

In [21], the trade-offs of using low-quality sensors were investigated on the performance of
bathymetry localization given a known map. The summarized conclusions are that fewer
beams lead to significantly longer convergence distance, and the increase in motion uncertainty
mainly lowered the maximum achievable accuracy. Numerical values obtained from field tests
of the convergence distance and achievable accuracy are reported in [21]. No convincing
argument was made against SLAM using a DVL. However, as the sensor setup is of lower
quality, the expected results should be lower than the mentioned SLAM studies.
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10 Related Work

2-2 Reduced rank GPs in magnetic field estimation

This section covers relevant literature for a reduced rank approximation of the covariance
matrix. A known disadvantage of using Gaussian process regression is the poor scalability
with increasing dataset size n. This is due to the inversion of the covariance matrix (3-17)
when evaluating test points, The covariance matrix K has size n×n and the time complexity
of matrix inversion is O(n3) [25].

In [25], multiple approximations are introduced to make GPs scalable to larger datasets where
n > 104. Reduced rank methods are approximating the covariance matrix K of the GP with
K̃ ∈ Rm×m, where K̃ is of lower rank m < n. An obvious approximation of K is to take the
m largest eigenvalues of K and construct K̃ = ΦΛΦ⊤ where Λ is an diagonal matrix with
the m largest eigenvalues and Φ are the corresponding eigenvectors. This decomposition has
to be recalculated each time the K matrix expands, and computing this decomposition is
also an O(n3) operation. Therefore the eigendecomposition is not beneficial to speed up the
calculations [25, 28].

One reduced rank approximation that can speed up the calculations is the reduced rank
approximation presented in [28]. This approximation has a computational cost of O(nm2)
and memory requirements of O(nm), which becomes beneficial when m < n. This reduced
rank approximation will be used in this report and will be covered in detail in Section 4-1.
This approximation has been applied for magnetic field modeling and estimation, and those
publications are discussed in the remainder of this chapter.

In [27], the reduced rank method was used for the modeling and interpolating of the
measured magnetic field. This paper extends the batch processing methods with a
sequential algorithm. Other methods only considered batch estimation, where the data is
first collected and then bundled and processed afterward. GP interference is the solution to
a linear Gaussian estimation problem. This type of problem has a commonly known
sequential solution in the form of a Kalman filter. The sequential algorithm converts the
estimation problem into Kalman filter equations and can be used for online applications
such as SLAM.

In [17], the reduced rank approximation of [27] was used to represent the magnetic field in
a SLAM algorithm. The SLAM algorithm uses particle filtering where the map state vector
is the largest part of the state vector. The map states enter conditionally linearly in the
measurement model, therefore a RBPF is used to reduce the sampling dimension. The map
state estimate can be estimated by the previously described sequential GP format. The result
of this formulation is a RBPF and a computationally tractable SLAM algorithm using GPs
as map representation.
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Chapter 3

Models

3-1 Scout Navigation System

The Scout is equipped with the sensor suite that includes a 3-axes accelerometer, 3-axes
gyroscope, 3-axes magnetometer, Global Navigation Satellite System (GNSS) antenna,
pressure sensor, and Doppler Velocity Log (DVL). These measurements are fused using an
Extended Kalman Filter (EKF) with a kinematic dynamic model to estimate the vehicle
state consisting of the pose and (angular) velocities. The EKF setup is similar to the filter
described in [22]. The main deviation is that the orientation is estimated using quaternions
instead of Euler angles, see Appendix A. The EKF outputs the vehicle’s estimated state
consistently at 300 Hz, these estimates are the inputs used for the control, mission planning,
and mission execution of the underwater vehicle. The estimated state is described in two
reference frames which are visualized in Figure 3-1. These frames are:

• The Earth fixed navigation frame {n} in North-East-Down (NED) configuration. The
x-axis points in the direction of the geodetic north, the y-axis points east, and the z-axis
points downwards. The origin is chosen to be near the mission start at the surface, such
that the horizontal plane is tangent with the Earth’s surface. Due to this convention,
one can approximate the local mission area as flat and use the {n} frame for locally
describing vehicle pose in the flat world. As Autonomous Underwater Vehicles (AUVs)
are typically battery powered, the operation range is inherently limited, and the flat
Earth approximation errors are negligible [10]. By saving the longitude and latitude
of the {n} frame origin, all positions described in the {n} frame can be converted to
longitude and latitude angles during post-processing, for example using the methods of
[10].

• The body-fixed reference frame {b} has its origin moving with the underwater vehicle
and is chosen to coincide with the vehicle’s center of mass. The x-axis points forwards,
the z-axis points downwards, and the y-axis points to the right to complete a right-
handed coordinate frame.
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12 Models

Figure 3-1: Illustration of the Earth fixed navigation {n} frame and the underwater vehicle’s
body fixed {b} frame.

The EKF’s estimated state is

xEKF
k =

[
pnk ϕnbk θnbk ψnbk vbk ωb

k

]⊤
. (3-1)

In Eq. (3-1), pnk ∈ R3 is the position of origin of the {b} frame. ϕnbk , θnbk and ψnbk are the roll,
pitch and yaw Euler angles, as introduced in Appendix A. vbk ∈ R3 is the linear velocity and
ωb
k ∈ R3 is the angular velocity of the AUV. After descending underwater, the GNSS antenna

no longer receives messages, and the horizontal position becomes unobservable. When relying
on the inertial sensors and DVL only, the horizontal position is estimated by integrating the
velocity, which results in the accumulation of integration errors. Note that the vertical position
pnk,z is observable by measuring the hydrostatic pressure with a pressure sensor.
Since this research considers low-quality gyroscopes, these sensors cannot distinguish the
Earth’s rotation from the bias drift of the gyroscope due to the relatively high noise and drift
levels. The EKF uses a magnetometer and accelerometer for aiding the orientation estimates
as described in [16]. The attitude update of the accelerometer only considers the gravity
vector, which is reasonable as the underwater environment is highly damped. The angles
relative to the gravity vector can be estimated, which results in aiding the roll ϕ and pitch θ
angles.
The magnetometer is modeled in the EKF only to measure the Earth’s magnetic field. With
this model, the orientation heading ψ angle is observable. However, the assumption that the
magnetometer only measures the Earth’s magnetic field is very restrictive. Ferromagnetic
material in the neighborhood of the sensor violates this assumption. Therefore, the magnetic
sensors have to be calibrated to reduce these unmodelled effects. In [24], multiple calibration
algorithms are described and compared. However, AUVs also emits varying magnetic fields
from high-power onboard equipment, such as thrusters and lights [3]. These are varying
distortions in the magnetic which can not be calibrated for using one of the methods presented
in [24]. The reason for using the magnetometer for heading estimation is practical. It is the
best solution given a limited budget. The typical accuracy of magnetically determined heading
is ± 5 degrees [18].
The velocity is accurately measured by the DVL. Therefore the heading inaccuracy can be the
primary source of position integration errors due to the rotation of the {b} to the {n} frame.
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3-2 Dynamic model 13

As the aim is to improve the position estimates, the heading angle should also be considered in
the estimation process. Although the ϕ and θ estimates of the EKF is influenced by magnetic
field variations, this effect is small as the accelerometer also estimates these states. For the
experiments in this report will be assumed that this influence is negligible and that the EKF
estimated states are deterministic.

To summarize, the full pose of an underwater vehicle is described with 6 states as

[
pnk,x pnk,y pnk,z ϕnbk θnbk ψnbk

]⊤
.

Part of these states are observable by the considered sensors and the EKF estimates pnk,z, ϕnbk
and θnbk with good accuracy. Therefore the estimation space can be reduced by considering
these EKF estimates as deterministic inputs for the Simultaneous Localization and Mapping
(SLAM) algorithm. The pose states that are not observable or inaccurate, are

xk =

 pnk,x
pnk,y
ψnbk

 . (3-2)

3-2 Dynamic model

The goal of the SLAM algorithm is to estimate the states of Eq. (3-2) using bathymetry
information. We know that a state in the future xk+1 is related to the previous state. This
section describes the describes the dynamical model describing the state evolution. The
standard form of a dynamical state space model is

xk+1 = f(xk, udyn
k , edyn

k ). (3-3)

Where in Eq. (3-3), udyn
k is the input vector of deterministic variables, and edyn

k is the process
noise input. A mathematical model never describes reality perfectly, the process noise is
modeled as a way to represent these inaccuracies. In the underwater vehicle, there is a
EKF estimating the observable vehicle states consistently at 300 Hz. In a loosely coupled
approach, the estimates of the EKF are used as inputs to the dynamical model as visualized
in Figure 3-2.

Based on the EKF estimates of Eq. (3-1), a change in position can be calculated by integrating
the velocity, and the change in heading can calculated by integrating the angular velocity.
The heading state is chosen to be modeled with a change in heading from the EKF. Since
the delta times are short, this is approximately equivalent to integrating the angular velocity.
The resulting dynamical model that describes the AUV’s motion is
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Figure 3-2: Schematic overview of the proposed implementation onboard an AUV. The SLAM
algorithm will run parallel to the EKF.

xk+1 = f(xk, udyn
k , edyn

k )

=


[

pnk,x
pnk,y

]
+
[
Tk 0 0
0 Tk 0

]
R(ϕnbk , θnbk , ψnbk )

(
∆vbk + ev,k

)
ψnbk + ∆ψk + eψ,k

 ,

edyn
k =

[
ev,k
eψ,k

]
∼ N

0, I4


σ2
v

σ2
v

σ2
v

σ2
ψ


 ,

udyn
k =

[
Tk ϕnbk θnbk (vbk)⊤ ∆ψk

]⊤
.

(3-4)

Where

• Tk is the time difference Tk = tk+1−tk, which is not constant due to the range dependent
update rates of the DVL.

• ev is the velocity noise, as modeled by Gaussian noise with the covariance of σ2
vI3.

• ∆ψk = ψk+1 − ψk is the heading difference between two consecutive heading angles as
stored in the dataset.

• eψ,k is the heading uncertainty, which is modeled by a Gaussian distribution with the
covariance of σ2

ψ.

Eq. (3-4) is a zero-order hold model, it is assumed that the velocity is constant over the time
period which is a simplification of reality. However, the proposed model results in nearly the
same trajectory as the dead-reckoned EKF trajectory.
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3-3 Preprocessing of range measurements 15

3-3 Preprocessing of range measurements

The DVL, or any other type of acoustic range sensor, measures the range r ∈ R by emitting
a narrow sound pulse and measuring the time ∆techo before an echo is detected. The range
is calculated from a time of flight calculation as

r = ∆techo
2c . (3-5)

In Eq. (3-5), c is the speed of sound in the local water conditions, and the time is divided by
two as the sound wave has traveled twice the distance in the measured ∆techo. The speed of
sound c is assumed to be known when using Eq. (3-5) and has to be configured within the
DVL before use. The sound speed depends significantly on the surrounding water’s salinity,
depth, and temperature. In [9], an empirically determined algorithm for calculating c based
on the environment’s salinity, depth, and temperature measurements.

The range r is modeled as the length of a vector parallel to unit vector αb ∈ R3. A DVL has
typically four beams j ∈ {1, 2, 3, 4} where each beam measures an independent range rk,j at
time instance k. The range measurement is modeled to be normally distributed with a mean
equal to the true range value rtrue

k,j and a standard deviation of σr as

rk,j ∼ N (rtrue
k,j , σ

2
r ). (3-6)

Figure 3-3: Visualization of range measurements and how they are related to seafloor points s.
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Figure 3-3 shows a schematic overview of the AUV and the modeled range vectors. The DVL
is mounted at location ℓbDVL ∈ R3, which is measured from the origin of the {b} frame. By
assumption that the sensor is rigidly mounted on the AUV, ℓbDVL and the beam direction
vectors αb

j are constant and known in the {b} frame. Table 3-1 lists the numeric values for
these constant parameters.

Variable Value Units

ℓbDVL

[
−0.226 0.0 0.098

]⊤
meters

αb
1

[
−0.271 0.271 0.924

]⊤
-

αb
2

[
−0.271 −0.271 0.924

]⊤
-

αb
3

[
0.271 −0.271 0.924

]⊤
-

αb
4

[
0.271 0.271 0.924

]⊤
-

Table 3-1: DVL mounting and direction vectors of the Scout with DVL-A50

The range vector points to the seafloor at locations snk,j ∈ R3, see Figure 3-3. The seafloor
point can be expressed as a geometric conversion consisting of translations and rotations. The
geometric conversion from a range rk,j to snk,j is

snk,j = pnk +R(ϕnbk , θnbk , ψnbk )
(
ℓbDVL + αb

jrk,j
)
. (3-7)

Note that Eq. (3-7) requires the knowledge of the vehicle states we wish to estimate from
Eq. (3-2). Therefore these states can not be used during preprocessing, as the measurements
should be independent of the state vector. However, due to the choice of the Euler
multiplication order

R(ϕnbk , θnbk , ψnbk ) = R(ψnbk )R(θnbk )R(ϕnbk ), (3-8)

the bathymetry depth snk,j,z is independent of the AUVs horizontal position and heading angle.
An element-wise expansion of Eq. (3-7) is shown in Appendix B, showing that this statement
holds. Therefore, the range measurement can be preprocessed to a bathymetry depth, defined
as measurement yk,j for the bathymetry SLAM algorithm. The preprocessing step of range
measurement to yk,j is

yk,j ≡ pnk,z +
[

sin θnbk cos θnbk sinϕnbk cos θnbk cosϕnbk
] (

ℓbDVL + αb
jrk,j

)
, (3-9)

where rk,j ∼ N (rtrue
k,j , σ

2
r ) and the range measurement is compensated for depth, offset and

leveled to the horizontal plane. As yk,j is a function of the range, which is a random variable,
yk,j will also be a random variable that is distributed as

yk,j ∼ N
(

pnk,z + dk
(
ℓbDVL + αb

jr
true
k,j

)
,
(
dkα

b
j

)2
σ2
r

)
, (3-10)

Where
dk =

[
sin θnbk cos θnbk sinϕnbk cos θnbk cosϕnbk

]
.
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3-4 Gaussian Process model for bathymetry 17

The measurement vector yk is the column vector containing each of the four bathymetry
measurements as

yk =


yk,1
yk,2
yk,3
yk,4

 . (3-11)

3-4 Gaussian Process model for bathymetry

For a SLAM setting, the bathymetry is unknown and has to be estimated. We can define and
assume the existence of a bathymetry function b(·) relating the horizontal position coordinate
to a seafloor depth as

sxy =
[

snx sny

]
,

snz = b (sxy) .
(3-12)

where sn are the seafloor points of Figure 3-3. A Gaussian process (GP) is a collection of
random variables, where any finite selection of the random variables has a joint Gaussian
distribution. A GP is a generalization of the Gaussian probability distribution. Where the
Gaussian distribution describes random variables, the GP describes the properties of unknown
functions. The function b (sxy) is modeled to be a realization of a GP as

b (sxy) ∼ GP
(
0, k

(
sxy, s′

xy

))
. (3-13)

In Eq. (3-13), k(sxy, s′
xy) is the covariance function and describes the spatial correlation

between inputs sxy and s′
xy. The covariance function is chosen in advance and models the

prior belief about the seafloor. The preprocessed measurement yk,j of Eq. (3-9) contains
information about the bathymetry. With the chosen models, yk,j is the output of the Gaussian
process.

As GPs describe relations between random variables where any selection is described by a
(joint) Gaussian distribution, the assumption is made that the m(·) function is unique as each
input will be described by a Gaussian that can only have a single mode. This assumption
will make it very difficult to apply GP bathymetry mapping in areas underwater when there
are caves or cliff overhangs. Since these scenes are assumed to be uncommon, the uniqueness
property is not considered restrictive.

The bathymetry function Eq. (3-13) is chosen to be time-invariant, which is a reasonable
assumption as the seafloor is not expected to change significantly over short time intervals.
Therefore the measurement time index is not relevant and the notation will be simplified to
yk,j = yi, where the relation between subscripts is i = 4k + j. The bathymetry measurement
is modeled to be the output of the GP as

yi = b (sxy,i) + ei, ei ∼ N
(

0,
(
diα

b
i

)2
σ2
r

)
. (3-14)

Master of Science Thesis Danny Looman



18 Models

Given a set of n measurements and corresponding inputs, the set

D = {(sxy,i, yi), ∀i = 1, ..., n} = {S, y}

can be constructed containing all the available information about the bathymetry function.
We want to predict unobserved inputs denoted by the asterisks s∗ based on other inputs
nearby. By definition of the GP the joint probability distribution between y and the
unobserved b(s∗) is Gaussian. The joint Gaussian distribution is

[
y

b(s∗)

]
∼ N

([
0
0

]
,

[
K(S, S) + Σmeas K(S, s∗)

K(s∗, S) K(s∗, s∗)

])
. (3-15)

Where in Eq. (3-15), K(S, S′) is the covariance matrix obtained by evaluating the covariance
function for each combination of the elements in S and S′ as

K(S, S′) =

 k(S1, S
′
1) · · · k(Sn, S′

1)
... . . . ...

k(S1, S
′
n′) · · · k(Sn, S′

n′)

 , (3-16)

and Σmeas is a diagonal matrix with all the corresponding variances of each measurement on
the diagonal.

In order to make the notation more compact, the following shorthand notation is used from
now on K = K(S, S), K∗ = K(S, S∗), and K∗∗ = K(S∗, S∗). Since (3-15) is jointly Gaussian,
the predictive distribution of the unobserved outputs is expressed as [25, 26]

p (b (s∗) | y, S, s∗) = N
(
K⊤

∗ [K + Σmeas]−1 y, K∗∗ −K⊤
∗ [K + Σmeas]−1K∗

)
. (3-17)

Eq. (3-17) allows for predictions of the output of the unknown function, given dataset D
and the covariance function k(sxy, s′

xy). In [1], the covariance function modeling prior
bathymetry information was chosen to be a modified squared exponential (SE) with a
non-zero mean function. The modified SE function was visualized in Figure 2-1 and results
in sparse covariance matrices as it decays to exactly zero. This optimizes calculations as
only non-zero components have to be evaluated.

As this research uses reduced rank GPs, there is no need for a sparse version of the SE
covariance function. The results presented in [1] are promising; therefore we will use a similar
prior for the GP, the addition between a constant covariance and a SE covariance function as

k(sxy, s′
xy) = σ2

const + σ2
SE exp

(
− 1

2ℓ2SE
∥sxy − s′

xy∥2
)
. (3-18)

The SE covariance function results in a high correlation between inputs sxy and s′
xy that

are close together. This leads that the type of functions that can be estimated is smooth
and continuous. The constant covariance part allows for a non-zero mean of the bathymetry
encoded in the kernel (see [25, 27]).
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3-5 Measurement model

The standard form of a measurement model is

ŷk = h(xk,umeas
k ) + emeas

k . (3-19)

Where ŷk is the prediction of the bathymetry measurements based on the current vehicle
state xk and input vector uk. The range measurement is the preprocessed bathymetry depth
as described in Eq. (3-9). As we want to improve the vehicle states based on the bathymetry
map, The measurement prediction is the expected value of the mapped bathymetry depth
value as described in Eq. (3-14). This results in the basis of the measurement model as

ŷk,j = E [b (sxy,k,j)] + ek,j , ek,j ∼ N
(

0,
(
dkα

b
j

)2
σ2
r

)
. (3-20)

Taking the expectation of a GP map is presented in Eq. (3-17), however due to the
implementation of the reduced rank GPs, the evaluation of the expected value is a
approximation of Eq. (3-17). This is addressed in Chapter 4, however, the underlying model
remains the same. The input sxy,k,j of the map function is the location where the beam j
intersects the seafloor at timestep k and is defined in Eq. (3-7), note that sxy,k,j is a
function of the state vector. The substitution of Eq. (3-7) in (3-20) leads to

ŷk,j = E
[
b

([
pnk,x
pnk,y

]
+
[

1 0 0
0 1 0

]
R(ϕnbk , θnbk , ψnbk )

(
ℓbDVL + αb

jrk,j
])]

+ ek,j . (3-21)

Note that, Eq. (3-21) is dependent on the range rk,j which is a stochastic variable. In order
to define the measurement model in the standard form of Eq. (3-19), the problem has to be
simplified by considering rk,j as deterministic input. By doing so, the input to the GP becomes
deterministic, which significantly simplifies the problem. The standard implementation of
GPs requires deterministic inputs for regression [25], GP modeling with noisy inputs requires
solving integrals that have to be approximated [11]. This is not desired as it increases the
computational requirements. Note that only approximately 27% of the range uncertainty is
decoupled in the horizontal component. Since bathymetry surveys require downward-facing
sensors, the roll and pitch angles are controlled to 0. Given the beam angles αbj which are
stated in Table 3-1, most of the range uncertainty will be in the vertical component, which is
taken into account in Eq. (3-9).

After simplifying the problem by assuming the ranges to be deterministic, Eq. (3-21) is in
standard form when rewritten in vector format. By taking the expected bathymetry depth
for each beam, the measurement model results in
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ŷk = h (xk,umeas
k ) + emeas

k

=



E
[
b

([
pnk,x
pnk,y

]
+
[

1 0 0
0 1 0

]
R(ϕnbk , θnbk , ψnbk )

(
ℓbDVL + αb

1rk,1
))]

...

E
[
b

([
pnk,x
pnk,y

]
+
[

1 0 0
0 1 0

]
R(ϕnbk , θnbk , ψnbk )

(
ℓbDVL + αb

4rk,4
))]


+ emeas

k ,
(3-22)
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Chapter 4

Methodology

4-1 Reduced Rank approximation of GP model

A known disadvantage of using Gaussian process regression is the poor scalability with
increasing dataset size n. This is due to the inversion of the covariance matrix (3-17) when
evaluating test inputs, the covariance matrix K has size n × n and the time complexity of
matrix inversion is O(n3) [25]. This sections explains how the Gaussian process (GP)
bathymetry model introduced in Section 3-4 can be approximated using the reduced rank
algorithm presented in [28].

4-1-1 Covariance function approximation

For the approximation of [28] is assumed that the chosen covariance function k(·) is stationary,
meaning it only depends on the distance between the inputs and not the absolute values of the
inputs. If k(·) is stationary, it has an equivalent representation in terms of spectral density.
This property is exploited in the reduced rank approximation of [28]. Note that the modeled
covariance function in Eq. (3-18) only depends on the distance ∥sxy − s′

xy∥2, therefore the
stationary assumption holds.
The approximation method is performed on an eigenfunction expansion of the Laplace
operator ∇2 subjected to a Dirichlet boundary condition in a compact set Ω ⊂ R2 of the
input space as

{
−∇2ϕj(s) = λjϕj(s), s ∈ Ω,
ϕj(s) = 0, s ∈ ∂Ω.

(4-1)

Where in (4-1), λj the jth eigenvalue is and ϕj(·) the eigenfunction of the Laplace operator
within the given domain Ω. Using this eigendecomposition, the covariance function can be
approximated as

k
(
s, s′) ≈

m∑
j

S (λj)ϕj(s)ϕj
(
s′) , (4-2)
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where S(·) is the spectral density function of the covariance function. By truncating the
series of (4-2) at m < n, the rank of the problem is reduced. This leads to the desired
effect of improving time complexity and memory complexity. The advantages of the reduced
rank approximation of [28] is that Eq. (4-2) can often be solved by evaluating closed-form
expressions, and that the eigenfunctions ϕ(·) are independent of the hyperparameters [28].
This reduced rank method has a computational cost of O(nm2) and memory requirements of
O(nm).

In order to implement the reduced rank approximation, a compact domain of the input space
has to be chosen. This domain is also referred to as the tile. For the bathymetry GP model,
a square tile formal is chosen centered at zero stile

center = 0 with size of 2ℓtile as

Ω = [−ℓtile, ℓtile] ∪ [−ℓtile, ℓtile]. (4-3)

Both input axes have the same prior covariance function modeled. Therefore a square tile
format is chosen. Also, square tiles allow for fast implementation when aligned with the axes
of the {n} frame as the tiles corresponding to an input si can be looked up without evaluating
trigonometric functions.

On the square domain, the analytical expressions for the basis functions ϕ(·) and eigenvalues
λ that solve (4-1) are [27]:

ϕj(s) =
2∏
d=1

1√
ℓtile

sin
(
πZj,d (sd + ℓtile)

2ℓtile

)
,

λ2
j =

2∑
d=1

(
πZj,d
2ℓtile

)2
.

(4-4)

where Z ∈ Rm×2 is a matrix containing permutation integers [27] which correspond to the
eigenvalues with the largest spectral densities. Note that the eigenvalues are independent
of the GP inputs. Therefore they remain constant throughout the estimation. The spectral
density of a two-dimensional input squared exponential (SE) covariance function is [25, 27]

SSE(λ) = 2πσ2
SEℓ

2
SE exp

(
−1

2λ
2ℓ2SE

)
. (4-5)

In order to have an efficient approximation, q = 5m eigenvalues can be selected, and the
spectral density can be evaluated. Then the m largest spectral densities of the eigenvalues
have to be selected of SSE(λj). Finally, the corresponding indices from Z that were used to
obtain the m largest spectral densities have to be stored to evaluate the basis functions ϕj(s)
during the approximation. In Appendix C-1 sample python code is listed for determining the
m largest spectral densities and corresponding indices.

The modeled covariance function for bathymetry mapping Eq. (3-18) can be approximated
as

k
(
s, s′) = σ2

const + kSE
(
s, s′)

≈ σ2
const +

m∑
j=1

SSE (λj)ϕj(s)ϕj
(
s′) . (4-6)
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The approximation of the covariance function Eq. (4-6) is only valid within the chosen domain
Ω Eq. (4-3). At the edge of the domain, the approximation will revert to the boundary
condition Eq. (4-1). Therefore even if m → ∞ Eq. (4-6) remains an approximation of the true
GP. The corresponding approximation of the covariance matrix is K(S, S′) ≈ Φ(S)ΛΦ(S′)⊤.
Where Λ ∈ Rm+1×m+1 is a diagonal matrix with the σ2

const and m largest spectral densities of
the eigenvalues on the diagonal. Φ ∈ Rn×m+1 is a matrix containing the stacked eigenvectors
of the points in D as

Φ(S) =

 1 ϕ1(s1) . . . ϕm(s1)
...

... . . . ...
1 ϕ1(sn) . . . ϕm(sn)

 ,

Λ =


σ2

const 0 . . . 0
0 SSE(λ1) . . . 0
...

... . . . . . .
0 0 . . . SSE(λm)

 .
(4-7)

Using the matrix inversion lemma, the standard GP interpolation equations of the (3-17) can
be rewritten to [28]

E [b(s∗)] ≈ ϕ⊤
∗

(
Φ⊤Φ + σ2

rΛ−1
)−1

Φ⊤y,

V [b(s∗)] ≈ σ2
rϕ

⊤
∗

(
Φ⊤Φ + σ2

rΛ−1
)−1

ϕ∗.
(4-8)

Where in Eq. (4-8) ϕ∗ = ϕ(s∗) and σ2
r the modeled output variance. The interpolation

equations of Eq. (4-8) are well suited for the batch estimation. However, the goal is to use the
reduced rank approximation in a Simultaneous Localization and Mapping (SLAM) algorithm.
The map has to be updated with every new measurement, and the interpolation is part of
the measurement model defined in Eq. (3-22). Therefore Eq. (4-8) is not the most efficient
implementation for real-time applications.
In [27] a sequential format for real-time applications of Eq. (4-8) is presented that is similar to
the Kalman filter notation where the map state vector is defined as µi and the corresponding
covariance defined as Σi. When initializing µ0 = 0 and Σ0 = Λ, the map estimated can be
updated with each new observation pair of si and yi as

qi = ϕ (si) Σi−1ϕ (si)⊤ + σ2
i

Ki = Σi−1ϕ (si)⊤

qi

µi = µi−1 +Ki (yi − ϕ (si) µi−1)
Σi = Σi−1 − qiKiK

⊤
i

(4-9)

After the sequential update, predictions for unseen input s∗ can be made by taking into
account all observations up to measurement i, and the approximate predictive distribution
with the sequential implementation is

E [b (s∗)] ≈ ϕ(s∗)µi,

V [b (s∗)] ≈ ϕ(s∗)Σiϕ(s∗)⊤.
(4-10)
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The computational complexity of the sequential implementation is O(m3) for each update.
This has to be updated with each measurement. Therefore, the total computational
complexity is O(nm3). The memory requirements are reduced to O(m2) as only the Σi

matrix and µi vector has to be stored. The resulting expected bathymetry function value of
Eq. (4-10) can be directly substituted into the measurement model defined in Section 3-5
which leads to

ŷk = h (xk,umeas
k ) + emeas

k

=



ϕ(
([

pnk,x
pnk,y

]
+
[

1 0 0
0 1 0

]
R(ϕnbk , θnbk , ψnbk )

(
ℓbDVL + αb

1rk,1
))

µk

...

ϕ

([
pnk,x
pnk,y

]
+
[

1 0 0
0 1 0

]
R(ϕnbk , θnbk , ψnbk )

(
ℓbDVL + αb

4rk,4
))

µk


+ emeas

k .
(4-11)

Where µk in Eq. (4-11) is the map state vector at time instance k that will be estimated in
SLAM simultaneously with the vehicle states. Eq. (4-11) can be efficiently evaluated since it
makes use of reduced rank GPs and the ϕ(·) is a function known in closed form as defined in
Eq. (4-4).

4-1-2 Tile layout over input domain

The GP input domain of interest can be large in underwater applications and unknown at the
start of the algorithm. Note that the reduced rank approximation is defined on a square subset
Eq. (4-1) of the GP input domain and is zero outside the domain. One solution would be to
define a single large tile covering the entire seafloor space which the Autonomous Underwater
Vehicle (AUV) is expected to enter. However, this is not desirable as a large domain requires
many basis functions m in order to get good approximations of the GP model, which defeats
the purpose of using an approximation in the first place. Another solution is to divide the
seafloor input domain into multiple independent tiles with stile

center ̸= 0 that each estimate
the bathymetry. Since the used covariance function is stationary, meaning that k(·, ·) only
depends on the distance between inputs, the origin of the inputs may be freely translated as
the distance remains the same. Therefore each tile has it’s own GP approximation with the
corresponding µk and Σk, however the Λ matrix and the ϕ(·) function are the same. This
means we can divide the whole input space into independent tiles, which can be initialized if
required.

For a tile to approximate the dense GP, the effects caused by the zero boundary condition
Eq. (4-1) are undesirable as the dense GP is not subjected to these effects. To reduce these
effects, adjacent tiles overlap, which is visualized in Figure 4-1.
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Figure 4-1: Illustration of how 9 tiles are placed in such a way to have no overlap between the
main tile areas. The blue point represents a location of an observation.

The red main tile areas in Figure 4-1 indicate the area where the tile has a good approximation
of the dense GP. The overlapping distance is called ℓoverlap and is the distance between the
edge of the tile and the edge of the main tile area. In order to produce a good transition, 2

3 of
the ℓoverlap is being used for updating the tile if a measurement is observed in this area. The
last 1

3 of the ℓoverlap is used as transition area from the GP approximation to the boundary
condition. If the blue point in Figure 4-1 would represent the seafloor point sxy where a
measurement intersects with the seafloor, 4 tiles would have to be updated using Eq. (4-9).
When the estimated bathymetry value of the blue point is desired, only the corresponding
main tile has to be evaluated.

Variable Size Description
stile

center R2 Center location of tile for shifting inputs.
µ Rm+1 State vector of GP in tile.
Σ Rm+1×m+1 Covariance matrix of GP in tile.

Table 4-1: Variables that are initialized with each new tile.

Each tile has only to keep track of a few properties, which are listed in Table 4-1. The tiles
can share all other parameters, such as tile dimensions and the initial Λ matrix. The required
memory for each unique tile is, therefore only a function of m as
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RequiredBytes = 4 ·
(
m2 + 3m+ 5

)
. (4-12)

Where in Eq. (4-12) the number of variables is multiplied by 4 since there are 4 bytes in
a single precision floating point number. Note that Eq. (4-12) is not optimized to take into
account the symmetry of the Σ matrix. Therefore the memory requirements could potentially
be halved. For example, by choosing m = 256 each extra tile requires 0.27 Mb of memory.

Algorithm 1 contains the pseudo-code required for generating a bathymetry map using the
reduced rank approximated GPs.

Algorithm 1 Bathymetry map estimation pseudo code
Given dataset D, ℓtile, ℓoverlap, m, ℓSE, σSE and σconst.

1: Calculate Λ0 and Z from Eq. (4-1) and (4-5) using ℓtile, m, ℓSE, σSE and σconst; for code
example see Appendix C-1.

2: Set of initialized tiles: tiles = ∅
3: for each element of {si, yi, σi} ∈ D do
4: Find activeT iles based on input location si, ℓtile, and ℓoverlap
5: for tile ∈ activeT iles do
6: if tile /∈ tiles then
7: Initialize tile with µ0 = 0, Σ0 = Λ.
8: Extend tiles = {tiles, tile}
9: end if

10: Update local GP estimate of tile using sequential estimation of Eq. (4-9) as

ϕ = ϕ
(
si − stile

center

)
qi = ϕΣi−1ϕ⊤ + σ2

i

Ki = Σi−1ϕ⊤

qi

µi = µi−1 +Ki (yi − ϕµi−1)
Σi = Σi−1 − qiKiK

⊤
i

11: end for
12: end for

13: for tile ∈ tiles do
14: Interpolate main area of tile using Eq. (4-10)
15: end for
16: Return joined interpolation values of each tile to create a bathymetry map.
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4-2 Bathymetry GP SLAM algorithm

In order to truly improve the operational capabilities of underwater vehicles, we want to
estimate the map and the vehicle’s position simultaneously. The previous section described
how a seafloor map using reduced rank GPs could be made. The algorithm in the previous
section assumed known si GP input points for each measurement. This requires knowledge
about the vehicle’s state. This section describes the methodology of the SLAM algorithm.

As the name suggest, SLAM estimates both the vehicle state and the bathymetry map state.
In Section 3-1 the uncertain pose of the vehicle was denoted by xk and contained the horizontal
position and the heading angle. In the previous section, we saw how the GP model is estimated
by a Kalman filter with state vector µk for each tile d. The joint SLAM state vector is thus

xSLAM
k =

[
xk

{µk}
Ntile,k

d=1

]
. (4-13)

Where in Eq. (4-13), Ntile,k is the number of tiles initialized up to time instance k. In Section 3-
2, the dynamic model of the vehicle states was introduced, and recall that in Section 3-4 we
placed the assumption that the bathymetry has no time-related dynamics. Only the estimates
of µk change each time step as more observations are available. The xSLAM

k state vector will
be split into the map state vector and the vehicle state vector for the remainder of this report
as

xk =

 pnx,0:k
pny,0:k
ψnb0:k

 , ηk = {µk}
Ntile,k

d=1 . (4-14)

Where ηk is defined for notational brevity as the growing in size, combined tile state vector.
The joint probability distribution that we aim to estimate is the probability distribution of
the current position and the distribution of the bathymetry as

p (xk, ηk | Y0:k, U0:k, x0) . (4-15)

There are two main methods of estimating Eq. (4 − 15) [7], EKF based SLAM and particle
filter SLAM. The Extended Kalman Filter (EKF) approximates the joint state xSLAM

k with
a Gaussian distribution. Therefore it cannot accurately represent the joint state distribution
in situations where the terrain is locally similar at different locations. This leads to multi-
modal probability distributions, which can not be represented accurately with a Gaussian
distribution. For this reason, SLAM based on particle filtering will be used. A particle filter
has a stochastic adaptive grid of Np evaluation points, also called the particles. The particles
are chosen in such a way that they represent the relevant part of the state space. Each particle
i has an corresponding state variable xSLAM,i

k , and an associated importance weight wik that
indicate the relative accuracy of xSLAM,i

k compared to the other particles states.

The joint SLAM state vector contains the bathymetry state ηk that has the dimension of
mNtile,k. As m is of high dimension, typically m > 50, the joint state vector is of high
dimension. It is computationally unfeasible to sample the joint state xSLAM

k as the required
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particles to accurately represent the state space scale exponential with the state dimension [7].
Rao-Blackwellization of the join SLAM state vector reduced the sample space by rewriting a
joint probability distribution into two components using the conditioning rule as

p(x1, x2) = p(x2 | x1)p(x1). (4-16)

In case that p(x2 | x1) can be solved analytically, the joint sample space of p(x1, x2) can
be reduced by only sampling p(x1) and using the analytical relation to represent the joint
distribution. This process is called Rao-Blackwellization of the sample space [7]. This sample
space reduction is applied in the Rao Blackwellized particle filter (RBPF), which is also known
as FastSLAM and is key for computational viability [7].

Eq. (4-15) can also be conditioned into two components. Note that in Section 4-1, an
analytical algorithm was introduced which estimates ηk and requires as an input si which is
the point where the beam intersects the seafloor in the {n} frame. This depends on the
vehicle state, and this relation is described in Eq. (3-7). Due to the the analytical formulas
of Eq. (4-9), it is possible to partition the probability distribution of Eq. (4-15) as

p (X0:k, ηk | Y0:k, U0:k,x0) = p (ηk | X0:k, Y0:k, U0:k) p (X0:k | Y0:k, U0:k,x0) . (4-17)

Where in Eq. (4-17), the estimation has to be extended to depend on the whole vehicle
trajectory X0:k = {x0, ...,xk} instead of the single pose xk. The conditional probability
p (µk | X0:kY0:k, U0:k) represents the bathymetry map given the AUV states, this estimation
problem is extensively discussed in Chapter 4-1 and can be estimated analytically using the
Kalman filter updates of Eq. (4-9). When using the partitioning of Eq. (4-17), the whole
trajectory X0:k has to be sampled. This can be sampled recursively as

p (X0:k | Y0:k, U0:k,x0) = p (X0:k | ·)
= p (x0,x1, . . . ,xk | ·)
= x0p (x1, | x0, ·) . . . p (xk, | X0:k−1, ·)

(4-18)

At each time step, the samples are drawn from a proposal distribution q(·) which approximates
the probability distribution p (xk, | X0:k−1, Y0:k, U0:k,x0). An AUV typically has accurate
state predictions due to the accurate velocity measurements. Therefore a prior sampling
particle filter is chosen as it performs well for the case where the state prediction is accurate,
as stated in [12]. The proposal distribution of the prior sampling particle filter is the dynamical
model presented in Eq. (3-4) as

q(xk | X0:k−1, Y0:k, U0:k,x0) = p(xk | xik−1,uk),

∼ f(xik−1, udyn
k−1, edyn

k−1).
(4-19)

The sampling of the dynamic model results in the random behavior of the particle states.
Given the proposal distribution of (4-19), the importance weight is then updated with the
probability of the current measurement given the state and map as

w̃ik ∝ wik−1p(yk | xik,η
i
k). (4-20)
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Where in Eq. (4-20), the w̃ik represents the unnormalized weights, and have to be normalized
in order for the samples to approximate the true probability distribution of Eq. (4-15). Weight
normalization is performed as

wik = w̃ik∑Np

i=1 w̃
i
k

, i = 1, . . . , Np. (4-21)

The probability p(yk | xik,η
i
k) indicates the likelihood of a bathymetry measurement. The

measurement model of Eq. (4-11) calculates an expected measurement ŷk given the map for
each Doppler Velocity Log (DVL) beam as ŷk = h(xk,umeas

k )+emeas
k . Since each of the beams

is assumed to be statistically independent and subjected to Gaussian noise, the probability
of a measurement given the bathymetry can be evaluated as [1]

p(yk | xik,ηk) = p
(
yk − h

(
xik,u

meas
k

)
= 0

)
,

=
4∏
j=1

1√
2π
(
σ2
r + σ2

map,j

) exp

− (yk,j − ŷk,j)2

2
(
σ2
r + σ2

map,j

)
 . (4-22)

In Eq. (4-22), σ2
map,j = V [b (sk,j)] obtained as part of the map interpolation in Eq. (4-10). As

a validation step, a deterministic grid of particles with evenly spaced positions was created.
The probability for each particle was calculated using Eq. (4-22) for a certain bathymetry
measurement yk and bathymetry map ηN and is shown in Figure 4-2. The bathymetry map
ηN is created using Algorithm 1 using the integration of the dynamical model up to k = N .
The selected measurement and the map are taken from the same dataset. Therefore the true
position pnk,true of the measurement is known. pnk,true is indicated in Figure 4-2 as the red dot
on the bathymetry map. The area around pnk,true also has a high value evaluated probability
of Eq. (4-22).

In Figure 4-2, it can be seen that there is a whole area of locations where the corresponding
probability is high. This is caused since the DVL has limited beams and sensing accuracy,
and the seafloor has similar characteristics in different areas of the map. Therefore a Gaussian
distribution would be a poor approximation of Figure 4-2. This is the motivation for using the
particle filters as it does not rely on Gaussian assumptions of the probability distributions.

A crucial part of the particle filter is to resample the current particle set for a new particle
set. This is because the likely particles have a large weight and a higher chance of being
selected than the particles with low relative weight. The resample step results in good
coverage of particles in the state space in the most probable region. During the resampling
step, copies are created from particles with a uniform weight of wik = 1

Np
. This also involves

copying the bathymetry map and other variables, which are stated in Table 4-2. The
resampling can be implemented in numerous ways. In Section C-2, a code example of how
to implement the resampling process is presented. The particles are resampled when the
number of effective particles Np,eff is below a threshold. An effective particle is a particle
whose weight is significantly above zero. Np,eff can be approximated as [12]

Np,eff ≈ 1∑Np

i=1(wik)2
. (4-23)
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Figure 4-2: Evaluation of probability metric over whole bathymetry map. On the left-hand side
the corresponding true position pn

k,true is indicated with the red dot.

Resampling takes place whenever the following condition is true

Np,eff < cresampleNp, (4-24)

where 0 < cresample < 1 is the resample threshold.

Variable Size Description
wik R Relative importance weight
X0:k R3×k+1 Current and past vehicle trajectory

{µi
k}
Ntile,k

d=1 R(m+1)×Ntile,k State of bathymetry for each tile
{Σi

k}
Ntile,k

d=1 R(m+1)×(m+1)×Ntile,k Covariance matrix of bathymetry for each tile

Table 4-2: Local variables for each particle.

In Algorithm 2, the reduced rank bathymetry RBPF is described in detail. The RBPF can
is summarized in 4 main steps given a particle set [7, 12]:

1. Propagate particle states xik trough dynamic model of Eq. (3-4) and sample the motion
noise to introduce randomness.

2. Update each particle’s weights using Eq. (4-11), based on current measurement yk.
3. Perform resampling if Np,eff < cresampleNp.
4. Update each particle’s map estimate by executing Eq. (4-9) for each tile in each map.
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Algorithm 2 Bathymetry SLAM algorithm
Given Np, x0, cresample, σv, σψ, σr, ℓtile, ℓoverlap, m, Λ, Z

1: Initialize Np particles with xi0 = x0 and wi0 = 1
Np

2: X∗
0 = {} ▷ Best state estimates at each time step

3: M∗
0 = {} ▷ Best map estimates at each time step

4: k = 0
5: while k < N do
6: k = k + 1
7: for each particle i ∈ Np do
8: Propagate xik−1 trough the motion model to obtain xik (3-4).
9: Store xik in the particles state history Xi

k = {Xi
k−1,x

i
k}.

10: for each beam j ∈ {1, 2, 3, 4} do
11: Calculate sk,j,∗ based on umeas

k and xik using Eq. (3-7).
12: Find tile based on sk,j,∗ and extract µi

k and Σi
k.

13: Calculate ŷk,j = ϕ(sk,j,∗)µi
k and σ2

map,j = ϕ(sk,j,∗)Σi
kϕ(sk,j,∗)⊤

14: end for
15: Update wik by using Eq. (4-20) and (4-22).
16: end for

17: Normalize particle weight for each particle (4-21).
18: Resample if Np,eff < cresampleNp based on weight of each particle.

19: for each particle i ∈ Np do
20: Update bathymetry estimate ηik and {Σi

k}
Ntile,k

d using Algorithm 1
21: end for

22: Find the particle with the largest weight i∗ = argmaxi
({
w0
N , ..., w

i
N , ...w

Np
N

})
.

23: Append current best state and map as X∗
k = {X∗

k−1, xi
∗
k }, M∗

k = {M∗
k−1, ηi

∗
k }

24: end while

25: Return SLAM state trajectory X∗
N and the observed bathymetry M∗

N as output.
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Chapter 5

Results

5-1 Used datasets

During each mission of the Scout Autonomous Underwater Vehicle (AUV), all raw sensor
data and the Extended Kalman Filter (EKF) fused state estimates are logged in a dataset.
Figure 5-1 shows a diagram of the state estimation and control of the AUV. The Doppler
Velocity Log (DVL) measurement message contains the body velocity and range
measurements of each beam. The velocity measurement is used in the EKF, while the range
information is not taken into account.

Figure 5-1: Data flow diagram during operation of Scout missions.

Two specially designed missions were conducted for the experiments in this report. The
first is called Dataset 1 and is a larger lawnmower mission of 50 × 50 meters at a constant
altitude of 3 meters. The lawn velocity was 0.5ms and the total mission took around an
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hour to complete. As the Scout has been underwater, there are no independent position
measurements from the Global Navigation Satellite System (GNSS) antenna for this mission.
The second mission is referred to as Dataset 2 and is a smaller lawnmower mission at the
surface with GNSS reference measurements. This mission was challenging to execute since
the Scout is less reliable when operating at the surface as air gets sucked into the thrusters.
As a consequence, the thrusters produce unreliable thrusts. Dataset 2 is the best dataset
with GNSS reference measurements.

Apart from the Scout datasets, the open-source AURORA dataset is used to test the reduced
rank mapping algorithm. This dataset is two orders of magnitude larger in terms of range
measurements than the other datasets [2]. In the Aurora dataset, the range measurements
were captured with a multi-beam echo sounder. The multi-beam’s range measurements are
similar to range measurements of the DVL only the multi-beam captures with each ping up to
520 measurements. Unfortunately, this dataset was unsuitable for Simultaneous Localization
and Mapping (SLAM) experiments since the beams suffer from some significant inaccuracies
due to ray bending in the overlap area. When ray bending occurs, the assumption that each
acoustic beam can be modeled with a straight vector no longer holds. Specific data post-
processing is required to eliminate the effects, which was not possible during this research. Key
properties of the datasets are summarized in Table 5-1, and the simulation of the dynamical
model of dataset 1 and dataset 2 are visualized in Figure 5-2.

Dataset name
Distance
traveled

Number of
range measurements Other relevant information

Dataset 1 1.1 km 6.9 · 104 Large lawnmower pattern

Dataset 2 0.17 km 1.5 · 104 Surface mission with GNSS
measurements as reference

AURORA 25 km 7.9 · 106 Range measurements collected
with a multi-beam

Table 5-1: The different datasets used in this report with some key properties of each dataset.

The simulated trajectory in Figure 5-2 is obtained using the dynamical model Eq. (3-4), which
approaches the xEKF estimates. The simulated trajectory of both datasets looks structured
and does not seems to contain any drift. However, note that xEKF is being used as input to
the control algorithm, and the robot is controlled to follow the mission plan (which is a typical
lawnmower pattern). Due to this closed-loop setup, the estimated states xEKF are similar to
the mission plan. However, in reality the AUV drifts away from the mission plan. This can
be seen in Figure 5-2b where the GNSS points are measurements from the actually traveled
trajectory. Since the used GNSS antenna is a basic model, the obtained measurements contain
some noticeable noise. Also, there is one large jump in the measured position, likely caused
by the loss of connection with one satellite. Nevertheless, the GNSS measurements more
accurately indicate the actual trajectory and can be treated as a reference.

From the simulations of the dynamical model in Figure 5-2, one can see there is no overlap in
the trajectory of the dynamic model. However, due to the combination of DVL beam angles,
lawn spacing, and altitude, there is an overlap in the points sxy where the beams intersect
the seafloor.
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(a) Dataset 1 (b) Dataset 2

Figure 5-2: Visualization of the traveled trajectory of the two datasets, dataset 2 is executed at
the surface with GNSS measurements.

5-2 Reduced rank mapping algorithm

In bathymetry mapping algorithm using reduced rank Gaussian processes (GPs) was described
in Algorithm 1. The underlying GP bathymetry model is discussed in Section 3-4. In this
section, results of the mapping algorithm are demonstrated and compared against the dense
version of the GP model. Throughout this section, the EKF state xEKF

k of the log file
will be assumed to be deterministic, including the position. This is needed to calculate the
corresponding intersection point sk,j for each range measurement.

When running algorithm 1 with fixed hyperparameters of ℓSE = 1.0, σSE = 1.0 and σconst =
10.0. The resulting bathymetry plots are visualized in Figure 5-3. Full page copies of these
images are placed in Section D.

Algorithm
Computation

time
Total memory

required
Dense GP 420 sec 3.8 Gb

Reduced rank GP m = 256 2.0 sec 70 Mb

Table 5-2: Computational improvements of using approximate GPs over dense GP using dataset
2 with 1.5 · 104 bathymetry measurements.

In Table 5-2, the computational improvements are stated of using the reduced rank
approximation over the dense GP implementation. In the SLAM algorithm, each particle
estimates a local version of the bathymetry map. A particle filter can require 100 or more
particles to represent the posterior distribution accurately. Therefore the map estimation
will quickly become a bottleneck for achieving real-time performance. Apart from
computational performance, the accuracy of the approximation is as least as important. To
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(a) Dense GP implementation (b) Reduced rank GP implementation with
m = 256 basis functions

Figure 5-3: Comparison of the dense GP bathymetry map and the reduced rank approximation.
The map is generated using the odometry trajectory as deterministic input to the mapping
algorithm.

measure the accuracy of the reduced rank GP map, the map predictions are compared to
the map predictions of the dense GP, and a root mean squared error (RMSE) value is
calculated. The RMSE values are visualized over a range of number of basis functions m in
Figure 5-4, and we see that the approximation approaches the dense GP model. These
results indicate that the reduced rank GP approximation of the model presented in
Section 3-4, significantly improves computational performance while having only a slightly
worse prediction accuracy.
The mapping algorithm scales well to larger datasets such as Dataset 1 and the Aurora
dataset. As a dense GP algorithm is incapable of processing these datasets due to the number
of measurements, no reference map is available for comparison. As the resulting bathymetry
maps are primarily an illustration of the algorithm, the figures are placed in Section D. The
used constants stated in Table 5-3. The parameters of Table 5-3 are chosen based on the
visual consistency of the produced bathymetry map. The tile size of the Aurora dataset is
chosen to be larger because of memory constraints. As the surveyed area is roughly 800×5000
meters, the required amount of tiles became problematic.

Variable ℓSE σSE σconst m σr ℓtile ℓoverlap

Dataset 1 1.0 1.0 10.0 256 0.2 6.25 m 2.5 m
Aurora dataset 3.0 1.0 10.0 256 0.2 22.5 m 7.5 m

Table 5-3: Constants used for the mapping of the other datasets.

Although the obtained computational performance depends significantly on the
implementation, it is the primary motivation for using reduced rank GP approximation.
The results presented in Table 5-4 are obtained with an implementation in C++ of the
reduced rank GPs run on a single core of a modern notebook. In the next section, the

Danny Looman Master of Science Thesis



5-3 Position improvement using a known map 37

Figure 5-4: RMSE in meters between dense GP predictions and reduced rank GP over varying
number of basis functions m.

influence of some of these parameters on the localization performance is evaluated.

Dataset
Number of

tiles
Computation

time
Total memory

required Figure number
Dataset 1 120 7 sec 102 Mb D-3

Aurora 5116 801 sec 2.0 Gb D-5

Table 5-4: Computational costs of Algorithm 1, run on a notebook single core C++

implementation.

5-3 Position improvement using a known map

In this section, results are reported of using the SLAM Algorithm 2 to estimate the vehicle
trajectory and using a previously determined bathymetry map as input to the algorithm.
When the bathymetry map is used as input, each particle uses this as a map, and the map
estimation step is skipped. This results in an Algorithm which is also known as localization.
The reason for wanting a bathymetry map as input is that when noisy odometry data is
simulated as input to the particle filter, the output should converge to the odometry trajectory
used for generating the map. Therefore the original odometry trajectory can be used as a
reference trajectory and can be used to make conclusions about the filter’s performance. The
experimental setup is visualized in Figure 5-5, where the map generation uses the reference
trajectory for determining the beam intersection points and running Algorithm 1.

The noisy odometry data ṽb1:N and ∆ψ̃1:N , is created by corrupting the dataset’s odometry
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Figure 5-5: Simulation setup localization experiments from the logged dataset.

data with additional additive Gaussian noise, as

ṽbk = vbk + ẽv,k, ẽv,k ∼ N (0, σ2
ṽI3),

∆ψ̃k = ∆ψk + ẽ∆ψ,k, ẽ∆ψ,k ∼ N (0, σ2
∆ψ̃). (5-1)

Based on observations from missions, the odometry uncertainty that results in a realistic
simulated odometry errors are chosen to be σṽ = 0.05 m

s and σ∆ψ̃ = 0.002 rad. All the
simulations of the particle filter in this section are performed using the same noisy odometry
data as input. Figure 5-6 shows the noisy odometry trajectory obtained by simulating the
motion model using the noisy odometry inputs. The noisy odometry is subsequently used as
an input to the dynamical model in the particle filter. The only knowledge the particle filter
gets about the reference trajectory is via the bathymetry map, as the reference trajectory is
used to generate the input bathymetry map.

In practical applications, localization on a known map is functional whenever bathymetry
data is available. A reduced rank GP bathymetry map can be estimated from the available
data. We may therefore assume that whenever the AUV starts a mission, it has a GNSS lock
before submerging underwater. The initial particle spread can thus be limited to the area
around the GNSS lock, and the initial heading may be determined with the magnetometer
as is done in the EKF filter. Note that this heading estimate is subjected to magnetic field
distortions of the AUV itself. To take this uncertainty into account, the initial heading
distribution is modeled as a uniform distribution centered around ψEKF

0 . The initial particle
state distribution is chosen as:

p(pn0,x) = N (pn,EKF
0,x , 4)

p(pn0,y) = N (pn,EKF
0,y , 4)

p(ψ0) = U(ψEKF
0 − 10◦, ψEKF

0 + 10◦)

(5-2)

The initial position uncertainty values of (5-2) are chosen based on the accuracy of the GNSS
signals. The initial heading uncertainty is based on tests’ observations and accuracy reporting
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in the publication of [18]. Due to computing time constraints, all simulations are done with
100 particles unless otherwise specified.

5-3-1 Demonstration of particle filter

This section investigates the resulting trajectory of the particle filter for a specific set of
parameter choices. The choice of these parameters is to a large extent arbitrary. The chosen
parameters are listed in Table 5-5. In later experiments, these variables are varied and there
will be shown that the particle filter converges for a large range of values.

Variable σr cresample ℓSE σSE σconst m ℓtile ℓoverlap σψ σv

Value 0.4 0.6 1.5 1.0 10.0 256 9.0 3.0 0.004 0.1

Table 5-5: Parameters used for demonstration of the particle filter.

The particle filter, as described in Algorithm 2, uses the information from the bathymetry
map to evaluate the incoming measurements based on map predictions. This way, the
position estimates are improved over the simulated odometry. Figure 5-6 shows an overview
with the bathymetry map, the simulated odometry trajectory (indicated as odometry), the
reference trajectory, and the particle filter estimated trajectory. The main difference
between the odometry and the particle filter is, that the particle filter evaluates the
incoming range measurements against the bathymetry map. The estimated trajectory from
the particle filter is close to the reference trajectory. This indicates that the bathymetry
data contains helpful information for underwater position estimation.

In Figure 5-7, the error of the position and heading estimates with respect to the reference
trajectory are shown over time. It can be seen that the filter is also able to correct the
drift in the heading estimates of the odometry. However, the heading estimates are noisy,
which can be improved by lowering the motion noise in the particle filter. Nevertheless,
the heading estimates correspond better to the reference than the odometry. Only at the
beginning of the mission the odometry has a better position and heading estimates. This is
due to similar terrain in the initial spread of the particles Eq. (5-2), after the initial wrong
belief, the particle filter output does converge towards the reference trajectory. This shows
that by using bathymetry as an information source, both the position and heading estimates
of underwater vehicles can be improved.

Master of Science Thesis Danny Looman



40 Results

Figure 5-6: Output trajectory of the particle filter, odometry, and reference trajectory. After an
initial error due to locally similar terrain, the trajectory converged towards the reference trajectory.

Figure 5-7: Distance of odometry and particle filter trajectories compared to the reference
trajectory.
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5-3-2 Varying the motion noise

In this section, the motion model noise levels of the particle filter are varied to see the
influence on the filter’s performance. The positions of the output trajectory from the particle
are consequently evaluated against the reference positions, and the resulting RMSE of the
last half of the trajectory is chosen as an evaluation metric. Figure 5-6 showed there could be
an initial wrong belief about the AUV’s position. Therefore, only the last half is taken into
account; otherwise, the initial wrong belief will dominate the RMSE values. The initial belief
depends on the initial particle distribution. The initial particle spread is a random sample
over quite a large area, many simulations would be required to get a meaningful average.
Except for the motion noise parameters, all other used parameters are the same as stated in
Table 5-5. Table 5-6 shows the resulting last half RMSE values of the particle filters trajectory
averages over 5 independent runs.

RMSE LH
σψ [rad] σv = 0.01

[
m
s

]
σv = 0.02

[
m
s

]
σv = 0.04

[
m
s

]
σv = 0.08

[
m
s

]
σv = 0.16

[
m
s

]
0.000 4.00 3.17 1.94 2.56 1.82
0.001 0.428 0.576 0.144 0.168 0.220
0.002 0.554 0.186 0.142 0.170 0.218
0.004 0.157 0.142 0.146 0.173 0.224
0.008 0.158 0.158 0.156 0.185 0.229
0.016 0.187 0.173 2.354 0.200 0.245

Table 5-6: RMSE of the last half of the particle filter’s output position, compared to the reference
position.

Due to the lack of high-quality gyroscopes, the odometry heading angle has to be determined
using the magnetic field. This introduces heading errors due to magnetic field distortions
of the AUV. As these errors can be dominant in the position estimation, in Chapter 3 was
argued that the heading should be added to the sampled states. From the results in Table 5-6
it is clear that sampling the heading (σψ ̸= 0) improves the estimation accuracy significantly
when such a heading uncertainty is present, as is the case in the simulated odometry.

More generally, there seems to be an optimum present for the used motion uncertainties. A
too low uncertainty will restrict the particles from deviating from the odometry, and a too
high uncertainty will cause the sample spread to be larger, resulting in a lower probability
that a sample is near the reference trajectory. Large uncertainties can even cause the filter
to diverge, as happens once for the run configuration of σψ = 0.016 and σv = 0.04, this has
caused the RMSE value to be significantly larger other runs.

5-3-3 Varying the map parameters

In this section, the simulations of the previous section are repeated, only now the map
hyperparameters and number of basis functions are varied while the remaining parameters
are equal to the reported values in Table 5-5. As this thesis aims to investigate how reduced
rank Gaussian processes that represent the bathymetry can be used for improved position
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estimation of underwater vehicles, the relation between hyperparameters and filter
performance is particularly interesting.

The map parameters that are varied are the hyperparameters ℓSE, σSE and σconst, number of
basis functions m and range expected standard deviation level σr. The resulting RMSE of
the last half of the mission are stated in Table 5-7.

hyperparameters values RMSE LH
lSE σSE σconst σr m = 128 m = 256 m = 512
1.0 1.0 1.0 0.2 0.169 0.124 0.119
1.0 1.0 1.0 0.4 0.161 0.124 0.122
1.0 1.0 1.0 0.8 0.159 0.139 0.138
1.0 1.0 10.0 0.2 0.165 0.123 0.117
1.0 1.0 10.0 0.4 0.159 0.125 0.120
1.0 1.0 10.0 0.8 0.159 0.137 0.139
1.0 2.0 1.0 0.2 0.162 0.119 0.110
1.0 2.0 1.0 0.4 0.156 0.118 0.114
1.0 2.0 1.0 0.8 0.160 0.131 0.129
1.0 2.0 10.0 0.2 0.165 0.117 0.109
1.0 2.0 10.0 0.4 0.157 0.117 0.115
1.0 2.0 10.0 0.8 0.157 0.131 0.129
2.0 1.0 1.0 0.2 0.265 0.258 0.266
2.0 1.0 1.0 0.4 0.275 0.273 0.270
2.0 1.0 1.0 0.8 0.280 0.278 0.277
2.0 1.0 10.0 0.2 0.259 0.262 0.264
2.0 1.0 10.0 0.4 0.278 0.270 0.271
2.0 1.0 10.0 0.8 0.272 0.273 0.273
2.0 2.0 1.0 0.2 0.241 0.240 0.248
2.0 2.0 1.0 0.4 0.241 0.242 0.241
2.0 2.0 1.0 0.8 0.250 0.251 0.250
2.0 2.0 10.0 0.2 0.242 0.238 0.241
2.0 2.0 10.0 0.4 0.242 0.247 0.243
2.0 2.0 10.0 0.8 0.240 0.244 0.245

Table 5-7: RMSE values of the last half for the given hyperparameters and number of basis
functions. RMSE values indicate the accuracy of the best particle trajectory compared to the
reference trajectory. All RMSE values are averaged over five runs.

From the results presented in Table 5-7 some interesting observations can be made. Firstly,
the hyperparameter σconst seems to have little influence on the position accuracy performance.
Secondly, the length scale seems to be the most influential on the filter performance, the RMSE
approximately halves when choosing ℓSE = 1.0 relative to ℓSE = 2.0. However, we must be
careful about this observation as both the particle filter and map generation are based on the
same range measurements, as illustrated in Figure 5-5. Therefore the particle filter could be
over-fitted to the measurements. A third observation is that the number of basis functions
m used in the reduced rank approximation has more influence on the filter performance for
the lower length scale. This could be explained since a smaller length scale allows for a more
detailed map. Thus, more basis functions are required to represent the map and provide

Danny Looman Master of Science Thesis



5-4 SLAM results 43

improved interpolation values. The increase in basis functions could have reduced the GP
approximation errors, leading to better interpolation values that improve the positioning. For
ℓSE = 2.0 the increase in basis functions does not lead to better positioning performance for
the given tile size. This is an important observation as the number of basis functions is one
of the main drivers of the required computation time and memory.

5-3-4 Varying particle filter tuning

Finally, the particle filters main tunings parameters cresample and σr are varied over multiple
values. cresample determines how often the filter resamples are based on the spread between
particle weights. A higher value results in more often resampling. σr determines the extent
to which the current observation is considered relative to the weight at the previous time. A
higher value of σr means that the particle weights change more gradually and thus that the
spread of particles is more extensive before resampling.

Simulations are run with varying values of cresample and σr. As the particle filter is stochastic,
each parameter configuration is repeated 10 times. The average of 10 runs of RMSE values
over varying particle filter tuning parameters are stated in Table 5-8.

RMSE LH
σr [m] cresample = 0.5 cresample = 0.6 cresample = 0.7 cresample = 0.8

0.1 0.178 0.182 0.182 0.182
0.2 0.175 0.180 0.185 0.190
0.4 0.182 0.185 0.195 0.203
0.8 0.191 0.196 0.204 0.213
1.6 0.262 0.272 0.268 0.292
3.2 0.507 0.470 0.478 0.524
6.4 0.756 0.804 0.945 0.943

Table 5-8: Root Mean Square Values of the last half (LH) of the particle filters trajectory
compared to the reference trajectory. Values are averaged over 10 simulations.

The primary observed trend over different tuning parameters is that an increased noise level
leads to worse position estimation, given a known map. The resample threshold does not
seem to affect positional accuracy significantly.

5-4 SLAM results

Dataset 2 is collected by operating the AUV at the surface of a lake. Therefore GNSS
measurements are collected by the AUV are measurements of its actual trajectory
throughout the mission. These GNSS measurements serve as reference trajectory. The
trajectory estimated by the SLAM algorithm can thus be compared against the reference
trajectory. The GNSS measurements have an assumed standard deviation of
σtextGNSS = 2 meter when the measurements are transformed to the {n} frame using the
methods in [10]. Both for the odometry trajectory and the SLAM estimated trajectory, a
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RMSE can be calculated compared to the GNSS measurements. A decrease in RMSE is
expected for SLAM estimated trajectory as it considers the bathymetry information.

The SLAM algorithm presented in Section 4-2 is set up with the initial position and heading
from the dataset. For online algorithm implementations, the initial position can be
determined from an initial GNSS position and the heading from the fusion of the gyroscope
and magnetometer. The other parameters used are stated in Table 5-9. A high noise value
σr was found to produce the best results as the amount of resamples was reduced, and thus
more candidate trajectories were kept. Based on the results of Table 5-7, the number of
basis functions was set to 256 to ensure sufficient detail in the map.

Variable Np cresample σv σψ σr ℓtile ℓoverlap m ℓSE σSE σconst

Value 200 0.7 0.02 0.001 2.0 9.0 3.0 256 1.0 1.0 10.0

Table 5-9: Used parameters for running the SLAM algorithm.

Figure 5-8: Experimental setup using real AUV data SLAM experiments.

Algorithm 2 is simulated on Dataset 2, the mission stored in Dataset 2 took 900 seconds to
execute and consists of 4700 DVL messages of 4 beams each. The average sample rate is
thus 5 Hz. The resulting final trajectory is shown in Figure 5-9, and the evaluation RMSE
metric is stated in Table 5-10 for the SLAM estimated trajectory and the odometry integrated
trajectory. The RMSE metric has been reduced by 31% compared to the odometry trajectory.

Odometry trajectory SLAM trajectory
RMSE 1.9 m 1.3 m

Table 5-10: SLAM output trajectory compared to odometry as measured by the evaluation
metric.

The required computation time and memory of the SLAM algorithm is stated in Table 5-11.
These experiments have been conducted on a modern notebook using the setup of Table 5-9.
The SLAM algorithm runs approximately 5 times faster than real-time using this setup. When
running the algorithm with m = 128, the algorithm is 29 times faster than real-time. Besides
the number of basis functions, another critical factor is the number of particles Np, which
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Figure 5-9: Resulting best trajectory and map of SLAM algorithm visualized against the GNSS
measurements and odometry trajectory.

influences these parameters approximately linear. When taking half the number of particles,
the run time and the memory required decrease by 50%. In Figure 5-10, intermediate outputs
of the particle filter are shown. Both the bathymetry and the trajectory are visualized for six
intermediate steps.

Number of
basis functions

Computation
time

Total memory
required

Real-time
factor

m = 128 31.2 sec 254 Mb 28.8
m = 256 171.1 sec 560 Mb 5.2

Table 5-11: Computational costs of Algorithm 2, run multi-threaded a notebook with C++

implementation with 200 particles.
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(a) SLAM output at k = 700 (b) SLAM output at k = 1400

(c) SLAM output at k = 2100 (d) SLAM output at k = 2800

(e) SLAM output at k = 3500 (f) SLAM output at k = 4200

Figure 5-10: Intermediate outputs of the SLAM algorithm.
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Chapter 6

Discussion & Conclusions

6-1 Discussion

As stated in the introduction, the main identified problem is that the current way of accurate
underwater positioning relies on acoustic beacons or existing detailed bathymetry maps. Both
methods pose operational requirements for the ocean exploration mission, contributing to the
high cost of underwater data gathering. Bathymetry Simultaneous Localization and Mapping
(SLAM) could lower the threshold for underwater data gathering, as it has been shown to
improve the position estimates without topside communication or existing bathymetry maps
[23].
This research focused on a bathymetry map representation that has not been used before in
underwater position estimation, to the author’s best knowledge. Significant computational
performance is gained by approximating Gaussian Processes with the reduced rank
approximation of [28]. The reduced rank approximation has been applied in other fields,
such as magnetic field mapping and SLAM [16, 27], and precipitation level mapping [28].
The research question posed in this report is how the computational efficient reduced rank
bathymetry map representation could be used in a SLAM algorithm for position estimation
of the Scout Autonomous Underwater Vehicle (AUV). The SLAM algorithm was tested on
experimental data from the Scout. The main sensors used for the position estimation are a
Doppler Velocity Log (DVL) and a micro-electro-mechanical systems (MEMS) gyroscope.
The key results presented in this report are that the reduced rank approximation can yield
significant computational improvements while only suffering from a slight accuracy loss
compared to the dense Gaussian process (GP). Also, there was shown how the reduced rank
approximation can be consequently used to evaluate the incoming measurements. Finally,
these two elements were combined in Rao Blackwellized particle filter (RBPF) and tested on
a dataset of the Scout with Global Navigation Satellite System (GNSS) measurements as
the reference position. The SLAM algorithm estimated a trajectory closer to the GNSS
measurements.
Due to the implementation of reduced rank GPs, it is possible to store the bathymetry
information efficiently. This differs from the SLAM algorithm of [1], where all measurements
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were stored in a central log that each particle has access to save memory. Instead, a local
GP map is created with a selection of measurements based on the distance to the current
measurement. The reduced rank implementation might be more straightforward as the
evaluation of measurements can be selected based on the uncertainty of the map to prevent
extrapolating information. The GP model in [1] of the bathymetry contained a constant
mean function which was occasionally updated by averaging the bathymetry measurements.
In this report, the mean function is not necessary as the GP model includes a constant
covariance (4-6). This allows for non-zero means away from the measurement points. As the
non-zero mean is taken care of automatically, the constant covariance model appears to be
the favorable approach.

A 3D occupancy gridmap based bathymetry SLAM is presented in [8]. This map
representation differs as it does not put uniqueness assumptions on the seafloor terrain.
Therefore a 3D occupancy grid map is well suited to navigate an underwater vehicle in a
vertical water shaft, as is shown in this research. The primary drawback of the 3D
occupancy grid maps is the cubic memory requirement. The required memory was improved
by utilizing smart sharing of regions between particles, however it remains a cubic
requirement. Al tough the use case is slightly different, using reduced rank Gaussian
processes, the memory requirements scale quadratically, as each tile has a required memory
of O(m2) and the required tiles increase quadratically with the mission area.

The reduced rank GP approximation of the bathymetry model contributes to the existing
publications, as it enables memory and time optimization while it is a non-discretized map
representation. There was shown that the model can be implemented efficiently in a RBPF
algorithm as the position estimates improved and the RBPF runs 30 to 5 times faster than
real-time, depending on the parameters. The resulting accuracy improvement is hard to
compare against other publications as it depends on the alignment of sensors, sensor quality,
and terrain variability. Therefore no meaningful comparisons can be made based on the
estimation accuracy results presented in this thesis.

The limitation of this research is that the SLAM algorithm is tested on a single dataset.
There exist a chance that the results presented are not an accurate representation of the
behavior of the algorithm. Nevertheless, the proposed SLAM algorithm does produce an
increased positional accuracy over the dead-reckoned odometry trajectory. Another practical
aspect is that the proposed method is sensitive to outliers; too many outliers could cause the
algorithm to diverge. Therefore the outlier rejection of range measurements should be done
before running the algorithm. For the results in this thesis, information about the entire
dataset was used to remove the outliers and was manually checked, which is not possible
for online applications. Any bathymetry SLAM depends on the significance of bathymetric
variations in the observed terrain. Therefore the algorithm should be tested on various seafloor
terrains to assess the robustness of the proposed algorithm. On a completely flat seafloor, the
bathymetry will not provide any information at all. For real-world applications, the seafloor
variations could be checked by learning the GP hyperparameters from a selection of the data
and making decisions based on the length scale, similarly as proposed in [1].

Danny Looman Master of Science Thesis



6-2 Research Questions 49

6-2 Research Questions

Before answering the main research question, as stated in the introduction, the sub-questions
will be answered first.

Sub-question 1

How can the bathymetry be estimated using reduced rank GP regression assumed
with known position, and which sources of errors are present in the map?

In Chapter 3 the models for processing range measurements to bathymetry measurements
and the GP prior model were presented. The reduced rank approximation of the GP model
is discussed in Section 4-1, and a mapping algorithm is presented in Algorithm 1. In order
to execute the mapping algorithm, several assumptions were made about the inputs. If these
assumptions do not hold, the estimated bathymetry will be prone to errors compared to
the real world. The known AUV pose assumption is an obvious source of error. The pose is
necessary for converting range measurements to bathymetry points Eq. (3-7). Part of the pose
is subsequently estimated with the SLAM algorithm that aims to lower this error by learning
from the map. Other sources of error are related to the determination of the measured range.
These include the incorrect speed of sound, varying speed of sound over the traveled acoustic
path, and bending of acoustic paths.

Sub-question 2

How can the bathymetry map be used to improve the position estimate, and how
influential are the GP hyperparameters on the position estimation accuracy?

In Section 4-2 is shown how knowledge about the bathymetry map can be used for evaluating
the likelihood of measurements. This is realized by a particle filter where each particle has
a local estimate of the current position and heading. At each intersection point of a DVL
beam, the map is evaluated. Since all uncertainties are assumed to be Gaussian, a probability
that indicates the particle’s likelihood can be evaluated. Simulations based on experimental
data from a AUV show that the AUV trajectory consistently converged towards the reference
trajectory used for map generation. Numerous simulations were run with different sets of
hyperparameters. These experiments indicate that the most influential on the performance
is the length scale of the squared exponential (SE) covariance function. Another important
parameter is the number of basis functions used in the approximation. More basis functions
can lead to better position estimation Table 5-7, at the cost of increased computational
complexity.

Sub-question 3

Is a reduced rank GP SLAM algorithm viable to run on an underwater vehicle in
real-time?
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The algorithm’s speed mainly depends on the number of basis functions and particles. By
using 200 particles and 128 or 256 basis functions, the computation time is 30 and 5 times
faster than real-time respectively, on a modern notebook. As underwater vehicles can have
similar computing performance, running this SLAM implementation should be viable
onboard the Scout or other underwater vehicles. In order to reach this performance level, an
implementation in a compiled programming language like C or C++ was used, and the
number of copied variables during resampling must be kept to a minimum.

Main research question

The main research question posed is

How can reduced rank GP bathymetry SLAM with MEMS gyroscopes and DVL
as main sensors be used to improve the position estimation of underwater vehicles?

In Chapters 3 and 4 of this report the models and methods of a reduced rank approximation
of GP bathymetry SLAM were presented. The underlying algorithm for SLAM is a RBPF
which samples the vehicle states. A particle filter is chosen as the bathymetry can be locally
similar and thus lead to multi-modal state distributions. In Chapter 5 was shown that the
algorithm could reduce position estimation errors relative to using the odometry model
referenced against GNSS measurements. The computational requirements are modest, so it
can potentially improve position estimation in real-time on AUV.

6-3 Recommendations

In future research, it might be interesting to research some of the following aspects of
bathymetry SLAM using reduced rank GPs:

• There is a large influence of the GP hyperparameters on the prediction quality, as
seen in Table 5-7. Therefore it would be interesting to research how to handle terrain
variations in the GP prior. As the underwater vehicle enters unknown terrain in a
SLAM algorithm, setting the hyperparameters fixed prior to the mission might not be
the best solution. Also, when operating on a flat seabed, the SLAM algorithm should
not get overconfident. It might be wise to make the resample policy dependent on the
currently observed length scale.

• Another interesting future research is to evaluate how the proposed SLAM algorithm
compares against other bathymetry SLAM algorithms. A dataset with accurate heading
estimates and an acoustic beacon trajectory for comparison would be best suited as this
provides the accurate reference position. An interesting dataset that might be suitable
is recently published in the work of Kristopher Krasnosky [18].

• Multi-beam or side scan sonars provide a larger swath width than the DVL, which
is ideal for overlap during a typical lawnmower mission pattern. However, the areas
with overlap will be mainly at the end of the swath, where the αbj angles have a more
significant component in the horizontal plane. Research on how to consider the GP input
uncertainty will be more relevant here, as the effects of neglecting the input uncertainty
are larger.
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• For practical applications, the development of bathymetry smoothing would be
interesting as post-processing step. This also allows information from resurfacing
GNSS measurements to be taken into account. By taking into account the
bathymetry, the required resurfacing steps might be reduced.

For real-world implementations, keep in mind the following recommendations.

• Due to the high overhead costs of a support vessel, it quickly makes sense to spend
additional money for a higher grade IMU capable of accurately determining the heading.
If this is the case, the algorithm can be easily changed by considering the heading
estimate of the Extended Kalman Filter (EKF) as deterministic input and changing
the corresponding dynamic model. Due to the reduced sample dimension and the more
accurate odometry predictions, the algorithm would deliver improved results in terms
of positional accuracy.

• For fast SLAM implementations, shared pointers for tiles are key to copying the map
efficiently during resampling.
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Appendix A

Rotations

Rotations are used to represent the orientation of the different reference frames. A rotation
can be represented in multiple formats, this section introduces the rotation matrix, the Euler
angles, and the quaternion.

A-1 Rotation matrices

Rotation matrices R ∈ R3×3 are parametrized with 9 parameters as

R =

 R11 R12 R13
R21 R22 R23
R31 R32 R33

 . (A-1)

These parameters are related to each-other based with the following properties of rotation
matrices:

RR⊤ = R⊤R = I3, det(R) = 1. (A-2)

Vector v defined in the {b} frame can be rotated to the {n} frame as

vn = Rnbvb. (A-3)

The reverse rotation of Rnb is related as: Rbn = (Rnb)⊤ based the same rotation matrix

vb = (Rnb)⊤vn = Rbnvn. (A-4)

The rotation matrix is can represent any rotation and is a unique parametrization of the
rotation.
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A-2 Unit quaternions

Unit quaternions represents the rotation between two reference frames. An unit quaternion
q ∈ R4 is parametrized as:

q =
[
qx qy qz qw

]⊤
, ||q||2 = 1. (A-5)

Unit quaternions are well suited in attitude estimation algorithm as quaternions only have 4
parameters for a singularity free parametrization [20]. An unit quaternion can be converted
to a rotation matrix is calculated as

Rnb(qnb) =

 1 − 2(q2
y + q2

z) 2(qxqy − qzqw) 2(qxqz + qyqw)
2(qxqy + qzqw) 1 − 2(q2

x + q2
z) 2(qyqz − qxqw)

2(qxqz − qyqw) 2(qyqz + qxqw) 1 − 2(q2
x + q2

y)

 . (A-6)

A-3 Euler angles

Euler angles are a rotation parametrization that are defined as three consecutive rotations
around three axes. Euler angles are defined by three angles, the roll angle ϕ ∈ [−π, π], the
pitch angle θ ∈ [−π

2 ,
π
2 ], and the heading angle ψ ∈ [−π, π]. There are many different Euler

angle conventions, which differ in multiplication order and axes conventions. This report uses
right handed coordinate frames and right handed rotations. Each of the roll, pitch and yaw
rotations can be described by a rotation matrix

R (ψ) =

 cosψ − sinψ 0
sinψ cosψ 0

0 0 1

 ,
R (θ) =

 cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 ,
R (ϕ) =

 1 0 0
0 cosϕ − sinϕ
0 sinϕ cosϕ

 .
(A-7)

Using the multiplication order of (A-8), Euler angles can be converted to a rotation matrix
as

R(ϕ, θ, ψ) = R (ψ)R (θ)R (ϕ) ,

=

 cosψ cos θ − cosψ sin θ sinϕ− sinψ cosϕ sinψ sinϕ− cosψ sin θ cosϕ
sinψ cos θ cosψ cosϕ− sinψ sin θ sinϕ − cosψ sinϕ− sinψ sin θ cosϕ

sin θ cos θ sinϕ cos θ cosϕ

 .
(A-8)
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Wrapping of the Euler angels has to be taken into account as they are only defined on a
bounded domain. The Euler angles are not unique and suffer from gimbal lock at θ = π

2 ,
for more detail see [16]. The representation is therefore not numerically stable, however the
Euler angles have an intuitive physical interpretation.

Based on the choice of Euler angle multiplication order of Eq. (A-8), a rotation matrix R is
converted to Euler angles as

ψ = tan−1
(
R21
R11

)
,

θ = sin−1 (R31) ,

ϕ = tan−1
(
R32
R33

)
.

(A-9)

Based on equations Eq. (A-6) and Eq. (A-9), we can also specify the conversion from unit
quaternion to our definition of Euler angles as

ψ = tan−1
(

2(qxqy + qzqw)
1 − 2(q2

y + q2
z)

)
,

θ = sin−1 (2 (qxqz − qyqw)) ,

ϕ = tan−1
(

2(qyqz + qxqw)
1 − 2(q2

x + q2
y)

)
.

(A-10)
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Appendix B

Element-wise expansion of geometric
conversion

This chapter writes out the geometric conversion of Eq. (3-7) element-wise for the z-component
and concludes that the z-component is independent of heading and horizontal position.

Let’s take a vector a ∈ R3 with nonzero components as

a = ℓbDVL + αb
jrk,j ,

=

 k
l
m

 . (B-1)

Then the pose transformation of Eq. (3-7) for rotating and translating the vector a is

sn = pn +R (ϕ, θ, ψ) a. (B-2)

In Eq. (A-8) the rotation matrix for the considered Euler angle multiplication order is derived.
Here the shorthand notation of sinψ = sψ is be used for brevity, the rotation matrix Eq. (A-8)
using this shorthand notation is

R (ϕ, θ, ψ) = R (ψ)R (θ)R (ϕ) ,

=

 cψcθ −cψsθsϕ− sψcϕ sψsϕ− cψsθcϕ
sψcθ cψcϕ− sψsθsϕ −cψsϕ− sψsθcϕ

sθ cθsϕ cθcϕ

 . (B-3)
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58 Element-wise expansion of geometric conversion

Writing out Eq. (B-2) using the short hand notation results in

sn = pn +R (ψ)R (θ)R (ϕ) a

=

 pnx
pny
pnz

+

 cψcθ −cψsθsϕ− sψcϕ sψsϕ− cψsθcϕ
sψcθ cψcϕ− sψsθsϕ −cψsϕ− sψsθcϕ

sθ cθsϕ cθcϕ


 k

l
m

 ,
=

 ·
·

pnz + ksθ + lcθsϕ+mcθcϕ

 .
(B-4)

Where in Eq. (B-4) the z-component of sn is independent of pnx, pny and ψ for any a. Note
that this is dependent on Euler angle conventions and is not the case in general. Any
parametrizations will work as long as first the vector is rotated to the horizontal plane and
then rotated in the horizontal plane.
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Appendix C

Code snippets

C-1 Reduced rank approximation

Python code for determining the N and Λ matrix for the reduced rank approximation of the
Gaussian process (GP) model and calculate the eigenvectors ϕ(si).

1 from typing import Tuple
2 import numpy as np
3 from math import pi
4
5
6 def sorted_sd_eigenvalues ( m : int ,
7 L_tile : float ,
8 sigma_se : float ,
9 sigma_const : float ,

10 L_se : float ,
11 max_test_values : int = 20) −> Tuple [ np . ndarray ,

np . ndarray ] :
12 """
13 Function that calculates the m largest spectral densities of the

covariance function
14 :param m: number of basis function used in approximation
15 :param L_tile: half of the square tile domain.
16 :param sigma_se: hyperparameter of SE
17 :param sigma_const: hyperparameter of constant covariance
18 :param L_se: hyperparameter of SE
19 :param max_test_values: number of test values , typically set to 5 * m

.
20 :return: Diagonal matrix Lambda containing spectral densities in

descending order and the corresponding sorted
21 indices for eigenfunction calculation
22 """
23 test_integers = np . arange (1 , max_test_values + 1)
24
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60 Code snippets

25 # create all possible combinations between test_integer array in
Z_unsorted

26 test_integer_mesh = np . meshgrid ( test_integers , test_integers ,
indexing="ij" )

27 Z_unsorted = np . column_stack ( [ matrix . flatten ( ) for matrix in
test_integer_mesh ] )

28
29 eigenvalues = np . sqrt ( np . square ( pi / (2 ∗ L_tile ) ∗ Z_unsorted [ : , 0 ] )
30 + np . square ( pi / (2 ∗ L_tile ) ∗ Z_unsorted [ : ,

1 ] ) )
31
32 sd_eigenvalues = spectral_density_se ( eigenvalues , sigma_se=sigma_se ,

L_se=L_se )
33
34 # sort in decreasing order and take m largest corresponding indices
35 m_largest_idxs = np . argsort ( sd_eigenvalues ) [ : : − 1 ] [ : m ]
36
37 Lambda = np . diag ( [ sigma_const ∗∗ 2 , ∗sd_eigenvalues [ m_largest_idxs ] ] )
38 Z = Z_unsorted [ m_largest_idxs , : ]
39 return Lambda , Z
40
41
42 def spectral_density_se ( eigv : np . ndarray , sigma_se , L_se ) −> np . ndarray :
43 """
44 Spectral density of Squared Exponential kernel with 2 inputs
45 """
46 return 2 ∗ pi ∗ sigma_se ∗∗ 2 ∗ L_se ∗∗ 2 ∗ np . exp ( −0.5 ∗ L_se ∗∗ 2 ∗

np . square ( eigv ) )
47
48
49 def get_phi ( s : np . ndarray , m : int , Z : np . ndarray , L_tile : float ) −> np .

ndarray :
50 """
51 Calculate eigenvector phi based on permutation integers matrix Z.
52 """
53 phi = np . ones ( m + 1)
54 phi [ 1 : ] = 1 / L_tile
55 for d in range (2 ) :
56 phi [ 1 : ] ∗= np . sin ( pi ∗ Z [ : , d ] ∗ ( s [ d ] + L_tile ) / 2 ∗ L_tile )
57 return phi
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C-2 Resampling of particle filtering 61

C-2 Resampling of particle filtering

Example code for creating a resampled particle set based on a single evaluation of a random
number and using standard increments to select all new particles.

1 #include <random>
2 #include "../slam/slamParticle.h"
3
4 std : : vector<slamParticle> Resample ( const std : : vector<slamParticle>&

old_particles ) {
5 std : : vector<slamParticle> new_particles ;
6
7 int Np = old_particles . size ( ) ;
8
9 // Generate a random number between 0.0 and 1 / (Np + 1)

10 std : : uniform_real_distribution<> resampleRNG {0 . 0 , ( 1 . 0 f /( float ) ( Np +
1) ) } ;

11 std : : random_device rd {} ;
12 std : : mt19937 gen{rd ( ) } ;
13 auto random_number_weight = resampleRNG ( gen ) ;
14
15 float particle_weight_sum = . 0 f ;
16 int number_of_new_particles = 0 ;
17
18 for ( auto &particle : old_particles ) {
19 particle_weight_sum += particle . weight ;
20
21 while ( random_number_weight < particle_weight_sum &&

number_of_new_particles < Np ) {
22 new_particles . emplace_back ( particle ) ;
23 number_of_new_particles++;
24 random_number_weight += 1.0 f / ( float ) Np ;
25 }
26 }
27 return new_particles ;
28 }
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Appendix D

Full page mapping images
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64 Full page mapping images

Figure D-1: Dense Gaussian process (GP) bathymetry of dataset 2

Danny Looman Master of Science Thesis



65

Figure D-2: Reduced rank GP bathymetry of dataset 2
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66 Full page mapping images

Figure D-3: Bathymetry map of Dataset 1 obtained by Algorithm 1, the edges are determined
based on a maximum uncertainty threshold.
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Figure D-4: Standard deviation associated with bathymetry map of Figure D-3.
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68 Full page mapping images

(a) Bathymetry map (b) Standard deviation map

Figure D-5: Bathymetry map of Aurora open-source dataset [2]. There are some blind spots
due to lack of valid measurements in these areas.
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Glossary

List of Acronyms

AUV Autonomous Underwater Vehicle
GP Gaussian process
RBPF Rao Blackwellized particle filter
MEMS micro-electro-mechanical systems
DVL Doppler Velocity Log
LBL Long Base Line
SLAM Simultaneous Localization and Mapping
RMSE root mean squared error
GNSS Global Navigation Satellite System
EKF Extended Kalman Filter
SE squared exponential
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