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Summary 

I t is shown that by the use of discrete axial distr ibutions of 

imaginary source discs i t is possible to generate a wide class of axi-

symmetric bodies. In particular thin bodies with b luf f ends may be 

obtained, as well as a variety of other shapes. These results, which were 

obtained by an " indirect" method, indicate that a re-formulation as a 

"direct" method is possible and this is being pursued. 

1, Introduction 

In an earlier paper, Ref.l, the method of complex sources, for 

generating axi-symmetric bodies in incompressible flow, was re-introduced. 

This technique was originally suggested by Bateman in Refs. 3 and 4 and, 

subsequently and independently by Armstrong in Ref. 5. 

The work described in Ref. 1 was aimed first at a re-capitulation of 

the basic method, as given by Armstrong, stressing the simplicity of the 

potential, stream-function and velocity relations, and second at an 

extension of the method to thin, missile-like bodies, particularly those 

with bluff ends. It was hoped to develop an "indirect" technique for 

generating such bodies which would, ultimately, lend itself to re-formulation 

as a "direct" method. 

In Ref. 1 several examples were shown in order to illustrate some 

possibilities of the indirect method, and these included thin bodies with 

very bluff ends. However, it was concluded that more work was required 

before a systematic indirect technique could be obtained. This method 

required to be such that it permitted a relatively simple and controlled 

shaping of the body, particularly at the ends. Further, the method had to 

be capable of being turned into a direct one by means of imposition of the 

known body boundary conditions. 

The present paper describes further research on this problem in 

which the use of discrete distributions of imaginary source discs is 

explored. 

2. Linear Distribution of Imaginary Sources (Imaginary Source Disc Type A) 

Before proceeding with our main aim, we need to return to Sections 

3.1 and 3.3 of Ref. 1 in order to rectify a shortcoming. If, as before, 
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we take a distribution 

g(n) = gin , (-ni ^ n < m ) , (2.1) 

which we will define as corresponding to an imaginary source disc of 

Type A, this produces a stream function, at a point P(x,r), 

^-(x,r) = 
91 i(x-in) J (2.2) 

Expanding the integral, we have 

Jl^ilHlh. dn = ix 
R(x,r,n) 

ndn 
^ R(x,r,n) jR(x,r,n) 

n^dn 

which, upon use of the integral Ii(m = 1,2) from Appendix 1 of Ref. 1, 

gives 

'̂ ''""'̂ ^̂ dn = -H(n-ix)R(x,r,n) - r^I } , 
-'R(x,r,n) 

where 

(2.3) 

dri 

R(x,r,n) 
(2.4) 

If now we substitute from (2.3) into (2.2) we get 

4T74;5(x,r) = ègi[(Ti-ix)R(x,r,n) - r̂ Î ^ 1 ^ 

- \ 

= ègi{(ni-ix)R(x,r,ni) + (ni+ix)R(x,r,-ni) 

Now, as shown in Ref. 1, page 30, 

(ni-ix)R(x,r,rii) + (ni+ix)R(x,r,-ni) = 2P0COS(Ü)+Y) , (2.5) 
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where 

p = {(x2+r2-ni2)2 + 4x2ni2}* , 

a = (x2+ni2)i , 

Sin 2u = 2xni/p2 , Cos 2a) = (x2+r2-Tii2)/p2 ̂  

Sin Y = x/o , Cos Y = \/^ . 

Thus 

47n(;5(x,r) = gi{paCos(a)+Y) - èr2[l^(ni) - Ijj(-ni)]} . (2.6) 

In order to determine <l̂ -(x,r) in (2.6) we need to obtain an expression 

for I. , and, in Ref. 1 this was done by reference to the table of integrals, 

Ref. 2, page 81, item 2.261. In the notation of Ref. 2 

R(x,r,n) = (cn2 + bn + a)^ , 

with 
2 2 

c = -1 , b = -2ix , a = X + r 

and 
A = 4ac - b2 = -4r2 . 

Since c < 0, A < o, then the appropriate form of the integral is, apparently, 

the third of the alternative forms given, which is 

I^ = -Sin { p — } = Sin {-p—} (2.7) 

It follows that 

•bCi) - Ib(-"i) " sin-'(::iiii i) - s i n - ' ( ; : ^ ) 

which, by use of the identity 

Sin'^zi ± Sin"^Z2 = Sin"^{Zi(l-z23^ ± Z2(l-z2)^} , 

can be written as 
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S i n ' ^ { i ^ Cos(a)+Y)} . 

Subst i tu t ion in to (2.6) then gives 

4TT-J; ( x , r ) = gi{pCTCos(u+Y) - è r 2 S i n " ^ [ - ^ Cos(a)+Y)] } (2.8) 
s If 

Examination of the second term in (2.8) shows that it can only be 

meaningful if 

-1 < ^^ COS(U)+Y) .< 1 (2.9) 

and, therefore, raises the question of the validity of (2.8). Let us 

check this by first determining the shape of the stagnation streamline for 

certain cases. The total stream function is given by 

^ = iUr^ + ̂ g , (2.10) 

and the equation of the stagnation streamline, ^ = 0, becomes 

or 
4TrUr2 

91 

where 

= F(x,r) = Fi + F2 . (2.11) 

Fj = -2paC0S(a)+Y) 
and } (2.12) 

F2 = r2Sin"t%^ COS(Ü)+Y)1. 

Fixing a point x^,r^ on this streamline then gives, as in Ref. 1, 

r2 = h(x^,r^,ni)F(x,r,Tii) , (2.13) 

where 
h(x^,r^,rii) = r2/F(x^,r^,ni) (2.14) 



_i 2p-ra^ 
F(x^,r^,ni) = -2p^a^ Cos(w^ + Y^) + r^ Sin {-p-^- COS(Ü)^ + y^)} 

(2.15) 

Some numerical solutions of (2.13) have been obtained by iteration. 

This was done by re-writing (2.13) in the form 

G(x,r,nJ = h(x^,r^,ni)F(x,r,n) - r2 = 0 = H(x,r,rii) - r2 = 0 

(2.16) 

and employing the approximate Newton-Raphson algorithm 

V i = \ - V ^ n ' (2.17) 

where G G H H 
^ ' _ dG , n n-i _ n n- i _ „ , /? TON 
^n - ïï^ - X - x„ , - X - x„ , - "n ' ^^. IS) 

n n-i n n-i 

The cases taken were 

x^ = 0 , r^ = 0.1 , 

with 

n̂  = 0.08 , 0.09 and 0.099. 

The oblate bodies generated are shown in Fig. 1 and correspond exactly 

with those obtained by the use of the transformation of equation (3.12) 

of Ref. 1, i.e. they are oblate spheroids of a family spanning the range 

between a flat disc (n^ ̂  r(x=0)) and a sphere (n^ -*• 0). This has, there­

fore, demonstrated that, for the numerical values chosen, the inequality 

(2.9) is, apparently, satisfied, i.e. the ijj = 0 streamline lies in a region 

of the x,r space for which condition (2.9) is met. 

If we were interested, only, in the generation of oblate spheroids 

the use of (2.8) might well prove to be satisfactory for all cases, in the 

sense that the i|j = 0 streamline lies in the domain defined by (2.9). On 

the other hand we may be interested in taking a number of distributions of 

the type described by (2.1) and distributing these along the x (or E,) axis, 

with a view to generating thin bodies with blunt ends. Such a procedure 

would almost certainly require a knowledge of the value of 4)5 at more distant 

positions from the origin of the individual distributions and certainly 

require us to know whether condition (2.9) is violated in some parts of the 

flow field. The validity of (2.9) may be readily checked by first noting 

that 
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^Cos(a)+Y) = 4^ni(p2+x2+r2.nf)^ - x(p2-x2-r2+n^)^} , (2.19) 
r r 

which upon squaring gives 

{2 |£ Cos(a)+Y)}^ - ^ { n ^ (p2+x2+r2-ni) + x2(p2-x2-r2+nj) 

- 2xni(p2+x2+r2-n^)^(p2-x2-r2+n2)J} 

= ^ {n j (p2+x2+r2-n^) + x2(p2-x2-r2+n^) 

2xn jp ' * - ( x2+ r2 -n ' ) 2 ] h 

^ {n ' (p2+x2+r2.^2^ + x2(p2-x2-r2+^2^ - 4x2^2} 

V ^ ( p ' - x ' + ^ ^ - ^ i ) + x2(p2-x2-r2.n2)} . (2.20) 
r 

and observing that (2.9) corresponds to the condit ion 

0 ;f { ^ Cos(a)+Y)}^.< 1 (2.21) 
r^ 

Utilizing (2.20), and taking 

r = 0.08 , n^ = 0.09 

with x various, it is not difficult to show that for values of x > 20 the 

value of 

{2p£ COS(U)+Y)}^ < 0 , 
r'̂  

implying that (2.21) is violated. As a result it is clear that we require 

an expression for I. which has a general validity for all points of the flow 

field. This we will now develop. 

3. An Alternative Form for I. . 

Recapitulating, we have, from Appendix 1 of Ref. 1, that 

I - r . dn 
^b - Jïïi:77FrnT 

where 

R(x, r , n) = (cn2 + bn + a)^ 
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and 

c = - 1 , b = - 2 i x , a = x2+r2, A = -4r2. 

However, we may re-wr i te th is in tegra l i n the form 

lu = i 
dn 

. i(cn^+bn+a)^ 

dn 

(-cn2-b2-a)^ 
= 1 

dn 

(n2+2ixnr^x2-r2)^ ' 
(3.1) 

which is in the f i r s t of the a l te rna t i ve forms given in Ref. 2 , page 8 1 , 

item 2.261 and is given by 

I j j = i ln{2(n2+2ixn-x2-r2)^ + 2n + 2 ix} 

= i ln {2 i (x2-2 ixn-n2+r2)^ + 2(n+ix)} 

= i l n { 2 i R ( x , r , n ) + 2(n+ix)} (3.2) 

I t fol lows that 

^ \ dn 
R(x,r ,n7 

n. 

= I K C ^ I ) - I K ( - ^ I ) 

= i [ l n { 2 i R ( x , r , n ) + 2(n + i x ) } ] 
^1 

ni 

= i { l n ( 2 i p e " ' " ' + 2ae^^) - ln(2ipe^*"-2ae"' '^)} 

ipe - ae 

i l ,ip(Cosa)-iSincü) + a(CosY+iSinY). 
ip(Cosw+iSinü)) - a(CosY-iSinY) 

. I T 
, 2 1 T = i l n ( - H ^ ) = i l n ( -e ' ^ ' ^ ) 

Be 

21T 
= i { l n ( - l ) + ln(e )}= K- i r i + 2iT} = -(2T-Tr) , (3.3) 

where 

B = {(pSinto+aCosY)^ + (pCosw+aSinY)^}^ (3.4) 

and 
Tor,~irpCosü)+aSinY-, 

^ " ' ^ " V'Sinco+aCosY^ 
(3.5) 
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Note. The choice of In(-l) = -iri in (3.3) is not obvious but was found to 

be appropriate in numerical calculations. 

Substitution into (2.6) then gives 

47rij;̂ (x,r) = gi{paCos(ü)+Y) + èr2(2T-Tr)}. (3.6) 

The solution for the ^p = 0 streamline may be obtained as before, using (2.13) 
and (2.14), but with 

2paCos(w+Y) 

(3.7) 

F2 = - r2(2T-TT) 

Computations were performed for the cases shown in Fig. 1 and these 

agree exactly with those obtained using the expressions for Fi, F2 given 

in (2.12) 

Having rectified this shortcoming in the expression for 4/ for a 

Type A source disc, we may return to our main aim of seeking to generate 

body shapes using axial distributions of imaginary source discs. 

4. Constant Distribution of Imaginary Sources (Imaginary Source Disc Type B) 

For convenience we recapitulate the results for the constant 

distribution of imaginary sources 

g(n) = g n/ |nl . (" n̂  ,< n ̂  T\^) (4.1) 

which we now define as corresponding to an imaginary source disc of Type A. 

From Ref. 1, Section 3.2, we have 

n 
^ (x-in) nd n 

^^R(x,r,n) Inl (4.2) 

which gives 
9 

i|̂ s(x,r) = -^ {pCosu, - p(ni=0)} , (4.3) 

where p, u are defined in Section 2. 
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The total stream function is, therefore, 

ij;(x,r) = JUr2 + l^pCoso) - p(ni=0)} (4.4) 

and the stagnation streamline,)!; = 0, is given by 

TTUr2 

90 
p( ̂ 1=0) - pCosco (4.5) 

5. Axial Distributions of Imaginary Source Discs - Stream Function 

Formulation. 

We consider now a discrete axial distribution of imaginary source 

discs. That is imaginary source discs,described by 

9j(^j) . (-n,j < n < n ^ . ) . 

are placed at discrete points x = 5. on the proposed body axis. See Fig. 3. 

The stream function at x,r for a single type B source disc, of 

strength g Sign(n). located at E,. is 

go,-
'('s(x,r) = -^{pjCosoij - PJ(TIJ=0)} , (5.1) 

where , 

Pj =L{(x-Cj)2 + r2 -n2^}2 + 4(x-Cj)'ny (5.2) 

and 

Cos2a). = i{x-K.f + r2 -nj }x p^ , (5.3) 
J J j '̂  

which are obvious generalizations of the expressions, for the case 

E,. = 0, given in Section 2. Using linear superposition, a discrete 

distribution of n Type B source discs produces a stream function at x,r of 

J J 

In a similar way a discrete distribution of m type A source discs, of 

strength g n, located at i^ produces a stream function of 



- 10 -

m 1 
^Sfl^'^''^) " "ZPT ^ 9ik{PkakCos(ü)|^+Y,^) + èr2(2T,^-w)} , (5.5) 

'^ k=i 

where p. , Cos2u, have s imi la r forms to (5.2) and (5 .3 ) , 

Or .̂  = H^-\f + n?̂ }̂  , (5.6) 

SinY,̂  = (x-5|^)/a|^ 

C°^^k = ' i k / ^ k 

(5.7) 

_Jp|̂ C0SW|̂  + cr|_,SinYJ 

""k = "̂ "̂ [p^Sinco^ + ^k^°^^kj (^-^^ 

Adding the various stream functions then produces a total stream 

function 

ij;(x,r) = JUr2 + 4, (x,r) + 1̂ . (x,r) (5.9) 
^A ^B 

and an equation defining the stagnation streamline, ^ = 0, which is 

M D 

6. Some Bodies Generated by Discrete Axial Distributions of Type A 

and B Source Discs. 

In Ref. 1 body shapes generated by single Type A and Type B source 

discs were explored, as well as bodies arising from combinations of these. 

Other bodies were generated by means of conjugate imaginary source pairs 

on a specified surface = (5). See Ref. 1, Section 4. We shall now 

demonstrate some of the range of bodies that may be generated by discrete 

axial distributions of Type A and Type B source discs using the expressions 

developed in Section 5. In so doing it is hoped to obtain some insight 

into the flexibility of the method and the extent to which controlled 

shaping of the body is possible. 

The computations described in Ref. 1 never specified the strengths 

g or gi, since the manner in which the stagnation streamline was determined 

did not require it. However, for the multi-discrete distributions we are 
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now using, and bearing in mind the ultimate goal of a direct method, this 

procedure has to be modified and all the ĝ .̂ and gi. will have to be 

specified. Thus we may solve (5.10) by means of a fixed point iteration, 

where x and all the strength coefficients q^. and g^ are known, to 
J k 

give the value of r at a particular, chosen, value of x. Stepping, in 

an appropriate manner, along the x-axis then allows a solution for the 

body shape r^Q^^{x). 

As a first step in these numerical exercises, it was decided to 

determine the magnitudes of go, gi required to produce bodies whose 

maximum radius is approximately unity. Thus by taking a single Type B 

distribution with c = 0, nj = 0.8 and fixing one point on the stagnation 

streamline at x = 0, r = 1.0, then (4.5) or (5.10) may be solved to give 

go = 2.5TrU. Replacing the Type B distribution with a Type A then gives 

gi = 4.47132^U. 

In order to avoid the need to specify the stream velocity U and, 

thereby, non-dimensionalize the velocity relations given later, it is 

convenient to define 

^0 " IfU ' ^1 " ¥U (6.1) 

Thus the values quoted in the paragraph immediately above are 

f„ = 2.5, fi = 4.47132. 

Let us consider a first example of body generation using the Type B 

source disc defined by ni = 0.8, fo = 2.5 and placing three discs at 

E = -0.8, 0 and 0.8, respectively. The resultant shape is shown in Fig. 4 

and is encouraging in that the shape is prolate with a nose shape which 

is blunter than an hemisphere. 

Note. As in Figs. 1 and 2 the body generated is symmetrical with respect 

to both the x and r axes, and only one-quarter of the body is 

illustrated. This also applies to Figs. 5-10, but not to Fig. 11. 

Intuitively we might reasonable expect that if the spacing between 

the source discs were increased then the body shape would undulate, and 

this is borne out in Fig. 5. 

By returning the spacing to a smaller value we would expect to 

remove the undulation, and this is demonstrated in Fig. 6. 



- 12 -

We have already observed that bodies generated by Type A source 

discs, in isolation, may be made arbitrarily thin in the x-sense, by 

allowing m to approach the maximum body radius. See Fig. 1. In contrast 

to this an isolated Type B disc has a definite lower limit to its thickness 

in the x-sense, and as n̂  is allowed to approach the maximum radius a 

cusp develops in the body shape. As a result it is reasonable to think 

that by placing Type A discs at the extremes, in the x-sense, we might be 

able to generate bluffer body shapes. 

Bearing in mind the results of our first three exercises, two longer 

bodies were generated. Fig.7. Both bodies used constant f factors and ni 

along their length, but one used Type B discs and the other Type A. As 

can be seen from Fig. 7 the body generated by Type B discs is smooth, whereas 

that obtained from Type A discs developed ripples just behind the nose, 

this nose being considerably blunter than the other. If we take the above 

Type B distribution and replace the discs at the extremities (i.e. at -10 

and in) with Type A discs we again obtain a bluffer nose. See Fig. 8. 

Undulations in the body surface, due to having too large a disc 

spacing, were shown in Fig. 5. This is demonstrated more dramatically 

in Fig. 9, which is the body generated by Type B discs having the same 

strength and n^ as Fig. 7, but with AC = 0.8. These ripples may be 

removed by reducing the disc spacing and/or increasing f^. See for compar­

ison Fig. 6 where AC = 0.8, fo = 2.5 and ij = 0.8. 

In Fig. 10 the effect of linearly reducing n^, in order to produce 

taper, is illustrated. In this the body taper closely follows the reduction 

of ni over the interval 6.0 <: |c| ̂  9.6. Some rippling just behind the 

nose was also evident. 

So far the bodies generated have all been synmetrical with respect 

to both the x and r axes. Provided the influence of the individual source 

discs is reasonably localised, discs placed on the negative portion of the 

X-axis should have little effect on the body shape generated about the 

positive branch of the x-axis, and vice-versa. To check this a body was 

generated, using a similar distribution to that used in the previous 

example but with the discs confined to the positive branch of the x-axis 

only. If we align the stagnation points of Figs. 10 and 11, we obtain 

correspondence between the body profiles back to about 60 per cent of 

the body as shown in Fig. 11. 
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7. V e l o c i t y r e l a t i o n s . 

In order to obtain the pressure distributions over the bodies 
generated by the imaginary source disc technique we shall, in addition, 
need velocity relations. 

If u., V are the velocity perturbations induced by an isolated 
Type A source disc in a uniform stream U, then we have from equations 
(3.34) and 3.35) of Ref. 1 that 

UA = - |^(2ia - Sin2y) - -lM[ni(l- ^ ) - ix]R(x.r,ni) 

+ ['^1(1--^) + ix]R(x.r,-ni)} (7.1) 
and 

Â = S ^ ^ - ^ ^ ^ T ^ ^ rR(x.^.ni) - R(x,r,-ni)] . (7.2) 

where y is defined in equation (3.15) of Ref. 1. 
Now the incremental stream function, i|;̂  , produced by this source disc is, 

A 
from equation (3.6), 

^^ = - ^ {2paCos(io+Y) + r2(2T-^)} , (7.3) 
O A Oil 

whereas the alternative expression for this quantity is, from equation 
(3.17) of Ref. 1, 

- - _ L 
'SA ~ 
h. = - ^ (2y - Sin2M) (7.4) 

It follows that 
2y - Sin2M = - -^ {2paCos((i)+Y) + r2(2T-TT)} (7.5) 

r 

Making use of (7.5 and (6.1), together with the relations for p,ü) and 
R(x,r,ni), then (7.1) and (7.2) become 

U/\ f 2 
jr- = -L- {2praCos(to+Y) + r]-.{I— -1 )COSÜ) + x S l n J + r2(2T-7r)} (7 .6 ) U 4^2 pz 

and 

A _ f i P r i x2+r2+ni ,^.. ,y -,. 
T = -r^ (1 5 — i - j S i n w (7 .7 ) 

V . . , , 2 
:^+r2-( 

IT ~ T̂T" " ^ 
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The corresponding expressions for a discrete distribution of Type A 

source discs, as in Section 5oO, are 

"A " ^ik 
-jp = z — I {2p|̂ [0̂ Cos(a)|̂ +Y|̂ ) + '^ik(-^ -l)Cosw^ + xSincüJ 

k=i 4r 

+ T2(2T,^-7r)} (7.8) 

and 

^ A _ " ^ik' r, x2+r2+ni,] 
• Sinü), (7.9) 

The incremental stream function, ^ , produced by a Type B source 
^B 

disc is, from (4.3), 

90 
'̂ SR " 7^ ^P^^^"" • P('^i=0)^ 

which may be differentiated appropriately to give the corresponding 

velocity relations defined by 

r 3r (*s.) . "B 
"I 3 /, ^ 
7-3X (̂ SB̂ ' 

(7.10) 

Now 

iKJ = 9r ^ S B ' Z-ÏÏ '3r 
^ { ^ Cos.. pSino) 

3w 9 
9r 9r 

(ni=0)} (7.11) 

Also 

pU = (x2+r2_^2j2^ 4^2^2 ^ 

which, upon differentiation with respect to r, gives 

4p3|£= 4r(x2+r2.n2) 

or 
o 

9p _ r(x2+r2- n^) 
9r 

(7.12) 

which gives 
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In addition, 

2. = Tan-^{_ilIL_^} , 
x2+r2- if 

which, upon differentiation with respect to r, gives 

^ = I ^ i _ [ 2xni , 
9̂  {1 + [ ^̂ ^̂  ]2T 9̂  i^^:X7 

x2+r2.nf ^ 

or 
3(0 2xrni 
9r ^ " ~p^ (7.14) 

Substituting from (7.12) - (7.14) into (7.11) and (7.10) then gives 

" B , . r /X2+r2-nJ 2X^1 . 1 ,-, i cx 
TT— = if {( —K—*-)Cosa) + —9-t- Sinw r {/.\0) 
U 2 o V p3 / p3 (j(2+^2)2 

Now 

9 ,̂,. \ rr ̂  /IPrr^c, _ „Qir,,.^ _ i. 

whilst 

|£ = A_(x2..2,,2) , (7.17) 

^ .('̂ 1=0) - ^ 

and 

sF^ ' ' - - " - - ^ ; ; ^ ; ; : ? ^ (7.18) 

H = ̂  ĉ  - "̂  -1) o.m 

Hence 

B̂ fo fx(x2+r2+nj) ni(r2-x2-ni) ̂. x 1 

The corresponding expressions for a discrete distribution of Type B 

source discs are 
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2 

and 

Un m ' x2+r2-ni. 2xn,, -, 
_E = z K o J ( 5 i) Coso). + —=-il Sino). 1 r'>(7.21) 
^ j = i J P'j J P'j J (x2+r2)^ ' 

V m f o / • -̂  " '̂  - '-' ^ -̂  

^ - j = i ^ 

x(x2+r2+n2,., ^ii(r2-x2-n^ ) 
--̂^ 5r—-0^ Cosü), ^ n ^ Si no). ^ p3j j ^ j 

For any finite discrete distribution of Type A and Type B source 

discs, as envisaged in Sections 5 and 6, the components of the velocity 

will be 

u^ = U + u^ + Ug 

and \ , (7.23) 

^ = Â -̂  ̂ B 

where u^, Ug, v^ and Vg are obtained from (7.8), (7.9),(7.21) and (7.22) 

respectively. The corresponding pressure coefficient is then 

u-p 2 V 2 
Cp = 1 - (-̂ ) - (-̂ ) . (7.24) 

8. Discussion and Conclusions. 

From the limited number of examples presented in the previous section 

a number of useful pointers toward the establishment of a 'direct' method 

have been gained. 

Whichever way we express the boundary conditions on the known body 

shape, i.e. streamline shape or local surface slope, we shall have to 

satisfy these conditions at a discrete number of points, and this number 

will determine the number of source discs to be employed. For each disc 

the value of n^ the disc radius; c , the disc axial position, and f, 

the non-dimensionalized strength parameter, will have to be determined. 

On the basis of the previous examples, particularly those shown 

in Figs. 7,8,10 and 11, it could be a reasonable strategy to set ni(c) 

as a fixed fraction of the local radius rg(c). Also, they provide a guide 

to the number, and spacing, of the discs. For parallel sections of the 
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body a fixed value of AC might be used, chosen so as to exclude the 

situation of Fig. 9, whilst at corners (e.g. cone-cylinder junction) and 

at body ends, particularly blunt ends, the discs would probably need closer 

packing in a manner related to the body surface curvature in the meridian 

plane. With n^ and c thus pre-determined, the discretely fixed boundary 

conditions then allow a system of simultaneous linear equations in the 

unknown parameters fo.:9 fiî  to be established. Inversion of the system 

matrix then allows a determination of the fo-, fi^. 

Implicit in this strategy is the decision as to the type of source 

disc to use as a building-block for the bodies. On the basis of the 

previous examples it appears that the Type B is the best choice since it 

produces smoother body shapes and is simpler to ctompute. The role of 

the Type A disc lies in its ability to produce blunter end shapes and 

sharper corners. 

Whether this strategy is successful remains to be seen. More 

complicated strategies concerning the choice of c and ni(c) are clearly 

possible. Work is proceeding on this topic and the aim is to make the 

method as computationally efficient and economic as possible. 
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Figure 2. Body shapes produced by an 
imaginary source disc , type B. 
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Figure 3. Discrete distribution of imaginary source discs. 
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Figure 7. Comparison between bodies generated by type B and type 
A source discs. ( T]^=1.0 , A^ = O.A over -10 ^ ? ̂  10 ) 
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Figure 9. Surface ripples caused by having too great a disc spacing. 
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Figure 10. A body having a tapered blunt nose. 

U k e . O , A^=O.A , f,= 0.7 , r),= 1.0 , Type B 

6.0^1^1^9.6 , A^=0.4 , fo=0.75 , 1̂ =̂ 1.0 - 1/6(1̂ 1 - 6.0 ) , Type B 

1̂ 1 =10 , f, = 1.2 , n = O.A , Type A 
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Figure 11. A body which is not symmetric in the x sense. 

0 : $ ^ ^ 6 . 0 , A^ = O.A , fo=0.7 , 'n=^.0 , Type B 
6 . 0 ^ ^ < 9.6 , A^ = 0.A , fo=0.75 , r),= 1.0 - Ve ( ^ - 6.0) , Type B 

^ =10 , f, = 1.2 , n=O.A , Type A 
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Figure 11. A body which is not symmetric in the x sense. 

0 :^ ^ ^ 6.0 , A^ = O.A , fo=0.7 , r),= 1.0 , Type B 

6 . 0 ^ i ^ S.e , A | = O.A , fo=0.75 , r),= 1.0-Ve ( ^ - 6.0) , Type B 

^ =10 , f, = 1.2 , r)̂  = O.A , Type A 


