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Abstract

Rotor imbalances—such as mass imbalance, pitch misalignment, and yaw misalignment—are critical
faults in wind turbine systems. These imbalances cause uneven load distribution on components, lead-
ing to excessive wear, failures, increased operational costs due to unplanned downtime, and reduced
energy output. Despite advancements in monitoring technologies, current maintenance strategies in
wind turbines still rely on time-based manual inspections, as they lack reliable automated detection
systems. This thesis addresses the need for a more efficient fault detection framework by integrating
already available drivetrain Condition Monitoring System (CMS) vibration signals— commonly used to
detect drivetrain component failures, like in gears and bearings— with traditional SCADA data. The
aim is to extract signal features that capture the system’s dynamic behavior and effectively detect and
diagnose rotor imbalances. Notably, this approach overcomes the limitation of current systems not hav-
ing direct measurements from the blades by leveraging operational data already collected from wind
turbines.

Building on prior research, the proposed approach combines frequency and time-domain analyses and
focuses on two key data sources: drivetrain vibration measurements and rotor speed data from the
SCADA system. A decoupled simulation framework integrates aeroelastic simulations from OpenFAST
with a multi-body drivetrain model in SIMPACK, specifically for the 10 MW DTU reference wind turbine.
The results show that drivetrain velocity signals, particularly in the side-to-side direction, are highly
sensitive to rotor imbalances, enabling accurate trend analysis. Features such as peak amplitudes
at 1P and 3P frequencies form the basis of the fault detection and diagnosis criteria proposed in this
thesis. By using the median values of their distributions, imbalances can be effectively detected and
diagnosed. This approach also supports the implementation of a decision tree framework for real-time
fault classification across various operating conditions.

The methodology was tested under both above and below-rated wind speeds, first in steady-state con-
ditions and then in turbulent inflow scenarios. Additionally, health state indicators are proposed to
recognize fault severity levels by clustering median value features within predefined ranges for low,
medium, and high severity. This comprehensive monitoring approach effectively tracks fault progres-
sion across the imbalance scenarios under study. As a result, the proposed method lays the foundation
for a future data-driven system that can reduce reliance on manual inspections and provide a scalable
solution for predictive maintenance in wind turbine operations.
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1
Introduction

The World Energy Transitions Outlook 2023 by the International Renewable Energy Agency (IRENA)
[1], presents a vision for transforming the global energy landscape in line with the goals of the Paris
Agreement. It outlines a pathway to limit global temperature rise to 1.5°C and achieve net-zero CO2
emissions by mid-century. This pathway necessitates a comprehensive transformation of energy con-
sumption and production. In 2022, approximately 300 GW of renewable energy was added worldwide,
constituting 83% of the new capacity, while fossil fuels and nuclear accounted for only 17%. By 2050,
the share of renewables in the global energy mix is expected to rise, from 16% in 2020, to 77%. This
scenario requires a twelve-fold increase in renewable electricity capacity by 2050, driven by high elec-
trification rates in transport and buildings and annual capacity additions need to average 1,066 GW
from 2023 to 2050 to stay on track for the 1.5°C target [1]. According to the statistics, the power sector
in particular, was responsible for 40% of global CO2 emissions in 2022 and, following the expected pro-
jection. It will experience substantial growth in solar PV and wind power share in the coming decades,
solidifying their role as pillars of the global energy transition [1].

Among the various renewable energy technologies, wind energy has shown significant growth and
potential. The Global Wind Report 2023 by the Global Wind Energy Council [2], revealed that in 2022,
77.6 GW of new wind power capacity was added to power grids worldwide, increasing the total installed
wind capacity to 906 GW, marking a year-on-year growth of 9%. Additionally, the report anticipates that
680 GW of wind capacity has to be added globally between 2023 and 2027, of which 130 GW offshore,
with an average annual installation rate of nearly 26 GW. The two projected percentage shares between
onshore and offshore are shown in Figure 1.1. The forecast predicts that the total installed wind capacity
will reach 2 TW by 2030.

Figure 1.1: Wind energy installation outlook 2022-2027 (GW) [2]

1
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In the European Union, it’s been determined that to meet the goals of the ”REPowerEU” plan—focused
on diversifying energy sources with more clean energy—there is an urgent need to add 30 GW of
wind energy capacity each year by 2030. However, progress is falling short, with only 16 GW installed
last year. The wind sector faces challenges such as rising costs due to inflation and slow permitting
processes, which have delayed around 80 GW of projects [2]. The EU aims to streamline these pro-
cesses by prioritizing renewable projects and passing new legislation like the ”Net-Zero Industry Act”
which focuses on simplifying permitting procedures for new factories to strengthen the supply chain.
Ultimately, the EU should create favorable market conditions and invest in industrial growth to secure
large-scale wind deployment and maintain global competitiveness in renewable energy. Wind turbine
system reliability is a critical factor in the success of a wind energy project.

This growth in wind energy capacity came alongside an increase in wind turbine’s rated capacity. This
upscaling over the last few years has not come without any challenges. From a design perspective, the
increase in size and complexity of wind turbines has introduced numerous technical difficulties. Among
the most critical components affected by these changes, we can find the blades. These larger struc-
tures are prone to a variety of reliability issues, which can significantly impact the overall performance
and lifespan of the turbines. Ensuring the structural integrity and durability of the blades has become
a paramount concern in the development of modern wind turbines. It has been noticed and analyzed
by many companies like DNV [3], that due to both their increase in size and operation in more harsh
environmental conditions, like the one experienced by offshore wind farms, wind turbine’s blade faults
is arising as one of the main contributors in the turbine’s operation and maintenance (O&M) costs. Fur-
thermore, those faults are responsible for causing imbalance issues in the turbines’ rotor affecting the
reliability of the whole system. Poor reliability directly affects both the wind project’s revenue stream
through increased operation and maintenance (O&M) costs and reduced availability to generate power
due to turbine downtime.
Therefore, it is of major importance when it comes to O&M, to be equipped with a robust condition
monitoring system (CMS), to detect, isolate, estimate, and perform prognoses on component degrada-
tion. It is a challenging procedure that is becoming essential to reduce unplanned maintenance and
downtime through predictive condition-based maintenance which can avoid severe failures.

In addition to optimizing costs and enhancing technical performance, addressing a crucial social aspect
of wind turbine operation and maintenance (O&M) is imperative: safeguarding worker safety by refining
maintenance strategies and reducing unplanned interventions caused by critical failures. Wind turbine
repairs require highly skilled technicians who are exposed to various hazards, including working at
significant heights, performing suspended tasks, handling electrical systems, and operating in confined
spaces. These risks are intensified by challenging environmental and weather conditions, particularly
in offshore operations where personnel transfers pose additional constraints.

A key example of these challenges is found in nacelle maintenance, which involves specific dangers
such as injury from moving parts if the nacelle rotates unexpectedly, burns from hot surfaces, and prox-
imity to high-voltage cables. Accessing the nacelle often necessitates climbing long vertical ladders,
especially when lifts are unavailable, placing considerable physical demands on technicians. These oc-
cupational hazards are highlighted by the European Agency for Safety and Health at Work (EU-OSHA)
[4], and a related exploratory study by Cunha et al. [5] further explores both the physical and psycho-
logical risks faced by workers in clean energy sectors. This study emphasizes the need to address the
unique safety challenges inherent to “green jobs,” ensuring comprehensive protection for technicians
in the wind energy industry.

1.1. Research Objective and Questions
Fault detection and diagnosis in industrial processes is a highly active research area, driven by the
potential to significantly reduce maintenance costs and improve system reliability through the imple-
mentation of advanced monitoring techniques and algorithms. In the context of mechanical faults, spe-
cific fault signatures can be observed in vibration signals, either in the time or frequency domain. This
research targets the application of these techniques to wind turbine systems by analyzing simulated
drivetrain condition monitoring system (CMS) vibration signals, combined with SCADA signal measure-
ments, to detect rotor imbalance scenarios. Rotor imbalances are well-known fault conditions that can
significantly compromise the operational efficiency, safety, and reliability of power generation. Imbal-
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ances induce excessive vibrations and loading, leading to accelerated wear, increased maintenance
costs, and potential system failures. In wind turbines, they can damage drivetrain components and
undermine structural integrity, resulting in costly repairs, operational downtime, and increased risk for
technicians working in potentially hazardous environments. Early detection of rotor imbalances is thus
critical, as it helps mitigate these risks and contributes to a reduction in the levelized cost of electricity
(LCOE) and the operation and maintenance (O&M) costs of wind turbines, ultimately supporting the
competitiveness of wind power as a renewable energy source.

Rotor imbalances in the turbine’s blades can be categorized into two types: mass imbalance and aero-
dynamic imbalance [6]. Mass imbalance occurs when the rotor’s weight distribution is unevenly spread
around its center of gravity, often due to causes such as ice accumulation or blade damage. This imbal-
ance induces irregular centrifugal and inertial forces during rotation, which lead to increased vibrations
and oscillations. Aerodynamic imbalance, on the other hand, arises from deviations in the aerodynamic
properties of the rotor blades, such as those caused by pitch angle misalignment or yaw misalignment
of the turbine with respect to the wind direction.

As a result, to enable early and reliable detection of imbalance conditions, it is crucial to extract inter-
pretable features from CMS signal analysis. These features are key to developing an accurate decision
tree algorithm, which is essential for effective fault detection and diagnosis. This approach helps pre-
vent issues such as reduced component lifetime, increased safety risks, and reduction in energy yield.

Therefore, this thesis poses the following primary research question:

”Can rotor imbalance be efficiently detected and diagnosed using existing condition monitoring
sensors on the wind turbine drivetrain to prevent severe

component failures and ensure reliable power production?”

The presented research question can be further divided into more subquestions that will be addressed
through this thesis report:

1. Which signal analysis techniques are most suitable for detecting the presence of rotor imbal-
ances? Which drivetrain signals are the most effective and reliable for their detection and diag-
nosis?

2. Which signal features ensure robust fault detection?
3. Can a decision tree algorithm be developed for fault detection and classification?
4. Can health indicators be constructed for the specific imbalance scenarios under investigation?

To what extent can they identify fault severity levels?

1.2. Report outline
The report is structured as follows: Chapter 2 provides a theoretical background essential for this re-
search, covering O&M strategies, wind turbine monitoring systems, drivetrain components, rotor imbal-
ances, blade faults, and key signal processing techniques. Chapter 3 outlines the simulation framework
and presents a detailed explanation of the methodology and analysis procedures employed. Chapter
4 presents the results for steady-state input conditions, while Chapter 5 addresses results under tur-
bulent conditions. Chapter 6 includes an in-depth discussion of the results introducing a decision tree
framework for fault detection and diagnosis and health assessment. The study’s limitations and recom-
mendations are also explored. Finally, conclusions are provided in Chapter 7 that summarizes the key
findings and underlines areas for future research and improvements.



2
State of the Art

This chapter provides an overview of the current state-of-the-art relevant to this research and its as-
sociated framework. Section 2.1 focuses on existing wind turbine O&M strategies, while Section 2.2
outlines the various monitoring systems employed in wind turbines and the corresponding detection
techniques. Section 2.3 presents a summary of the key components constituting the wind turbine driv-
etrain, offering a foundation for understanding the drivetrain model used in the simulations discussed in
Chapter 3. Additionally, Section 2.4 briefly introduces the most common types of damage observed in
wind turbine blades. Section 2.5 delves into rotor imbalance cases, providing an overview of ongoing re-
search in the field, followed by a detailed discussion of their structural dynamics effects in Section 2.5.1.
Section 2.6 introduces the fundamentals of signal processing, with particular focus on the frequency
domain (Section 2.7 and its subsections) and time-domain analysis (Section 2.8). Finally, Section 2.9
summarizes various system data fusion approaches and their classifications.

2.1. An Overview of O&M
As wind power advances toward becoming a major utility source, reducing the LCOE is crucial for mak-
ing wind power competitive with conventional energy sources. A significant challenge with wind power
systems is the high cost of O&M, especially for offshore wind farms, which leads to power loss due to
the extended downtime of turbines. The O&M cost for offshore wind turbines, in particular, is estimated
to be around 20-25 % of the total income, up to three to five times greater than onshore due to the
difficult-to-access locations, the high cost of the specialist personnel and access equipment needed[7,
8], therefore robust condition monitoring systems (CMS) and fault diagnosis strategies of wind turbines
represent a high-level priority to reduce those high costs. The monitoring processes can be carried out
in two ways: online, which offers immediate feedback on the equipment’s status, or offline, where data
is gathered at regular intervals using separate measurement systems not integrated with the equip-
ment, it comprehends the whole system and equipment of sensors for data acquisition and processing.
The system provides continuous indications of components (and hence wind turbine) conditions based
on techniques that can include vibration analysis, acoustics, oil analysis, strain measurement, and
thermography. Wind turbines (WTs) in particular, utilize monitoring systems to evaluate the condition
of essential components such as blades, gearboxes, generators, main bearings, and towers. It has
been observed that large fault types such as gearboxes, generators, and blade systems are the ones
responsible for the greatest downtime together with complex and costly repair procedures [8].

Figure 2.1 shows that after extracting and analyzing the monitoring system’s signal data outputs, two
main categories of maintenance strategies can be recognized in the literature [9]: Corrective Mainte-
nance and Preventive Maintenance. The former is mainly adopted onshore and is being performed
when a fault already occurred and has been located. When the fault is detected two main approaches
can be applied depending on the severity and the importance of the component, namely, Palliative
Maintenance for provisional rehabilitation or Curative Maintenance for permanent rehabilitation. On
the other hand, preventive maintenance instead is planned to prevent the actual failure from occurring
in advance. Different strategy cases can be identified like time-based, which means that regular main-
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tenance visits are planned or parameter prevision-based interventions that are scheduled depending
on the relative component lifetime information rather than present operations. They can be recognized
under the names of Systematic Maintenance and Forecast Maintenance. Secondly,Conditional Mainte-
nance (CBM), depends on a CMS that involves the acquisition, processing, analysis, and interpretation
of data and the selection of optimal maintenance actions after detecting the present health conditions
of the components. Lastly, Proactive Maintenance can be applied which provides condition-based
intervention.

Condition monitoring:
determination of the current state

Signal processingData Acquisition
(sensors)

Feature Extraction
(time, frequency)

Diagnostic
(Fault detection)

Prognostic
(Fault prevision)

Corrective Maintenance
(After the fault occurring)

Preventive Maintenance:
(time based or condition-based)

- Palliative maintenance
- Curative Maintenance

- Systematic and Forecast Maintenance
- Conditional and Proactive Maintenance

Figure 2.1: Condition monitoring categorization overview, inspired by Tchakoua et Al. [9]

2.2. Wind Turbines Monitoring: Systems and Techniques
As introduced in the previous section, many studies report that 25% up to 35% (offshore) of the LCOE
is represented by O&M of wind turbines during their lifetime [8]. Therefore modern WTs are outfitted
with systems for active remote monitoring and control of their components in real-time. These systems
provide valuable data that can be used to predict, detect, and diagnose faults as they arise.
Wind turbine components can be classified according to multiple criteria and different main subsystems
can be identified. First of all, we can find the rotor system, which includes blades and the hub, and
then there is the drivetrain which includes the power transmission systems with low-speed shaft (LSS),
bearings, couplings, gearbox, high-speed shaft (HSS), and brakes. The electrical setup includes the
generator and the power electronics and the control system includes the pitch motor and gears, they
allow blade positioning to maximize the energy capture for lower wind speeds or limit it for higher ranges.
The yaw system tracks the incoming wind direction and includes gears, brakes, and sensors. Finally,
the support structures are represented by the nacelle and the tower. Figure 2.2 gives an overview of
the mentioned subsystem components.

CMSs are positioned in the drivetrain of the wind turbines and provide high-resolution monitoring for
diagnosis and prognosis of faults before catastrophic damage occurs. They help to increase the reliabil-
ity of the WT system giving the possibility to schedule maintenance sessions in advance and reducing
downtime and lost revenue. It can be both online providing instantaneous feedback information or of-
fline in which data are collected at regular time intervals using measurement systems. Multiple CMS
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Figure 2.2: Wind turbine components (source: https://windmillstech.com/wind-turbine-components/)

concepts are currently available and reported below [10, 11].

• The first most common low-resolution system is represented by Supervisory Control and Data
Acquisition (SCADA) whose output data are typically sampled at 1 Hz frequency and averaged
every ten minutes. These signals are collected using sensors fitted on the WT and can include
data from environmental parameters, electrical outputs, control variables like shaft speeds and
pitch/yaw system angles data, or thermal data linked to machinery health state. SCADA provides
a valuable low-cost monitoring system usually connected to centralized monitoring centers oper-
ated by turbine manufacturers or service providers. The large volume of generated SCADA data
needs a deep analysis to interpret them due to their low acquisition rate, machine learning tech-
niques are often employed for this purpose. One classification of machine learning techniques
for wind turbine condition monitoring is to divide them into supervised and unsupervised learning.
A possible categorization of the different SCADA-based monitoring methods is with the following
five classes [12]:

i. trending, which uses statistical methods for setting alarming thresholds
ii. clustering, which is suitable for a wind farm implementation in order to automatically detect

and distinguish between ’healthy’ and ’faulty’ conditions,
iii. normal behavior modeling (NBM), which involves the use of regression models that fit mea-

sured data and predict future value behavior,
iv. Damage modeling uses physical failure modes of interest to estimate failure probability, and

finally
v. Assessment of alarms and expert systemswhich involvesmachine learning and AI knowledge-

based systems.
• Vibration Analysis: it is the most important method used for WTs with a 58% share of the total
CM market [10], in particular for high frequency rotating machinery components, i.e. the drive-
train. Multiple sensor types are available for this purpose and the type of sensors used essentially
depends on the frequency range of interest, the stiffer the sensor mounting position the higher its
accuracy [13]. The most widely spread sensor types are accelerometer, velocity, and displace-
ment sensors. Accelerometers can be further divided into piezoelectric and MEMS sensors, the
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former relies on the piezoelectric effect of crystals to generate electrical output proportional to
the applied acceleration, and the latter relies on the inertia of a movable proof mass supported
to the frame by a mechanical suspension system. Velocity transducers are based on the electro-
magnetic induction effect which results in a voltage production proportional to the velocity of the
vibration that causes the magnet movement. Displacement sensors use non-contact methods
like eddy currents or capacitive sensing. Alternative concepts are also available like LDV (non-
contact optical sensors) which use the laser Doppler phenomena.
Vibration techniques were initially adopted for WT CM. The underlying principle relies on two
fundamental observations [14, 15]:

i. Each drivetrain component possesses a characteristic vibration frequency, which maintains
a steady amplitude under normal operating conditions, albeit varying with drivetrain speed.

ii. The vibration profile alters when a component begins to deteriorate, with the nature of these
changes being dependent on the specific failure mode.

Output signal analysis needs specific knowledge which can be divided into two main groups
of processing categories: time domain and frequency domain. Time domain analysis relies on
statistical parameter detection of the signal like peak value, root-mean-square, crest factor, and
kurtosis. On the other hand, frequency domain analysis relies on techniques like the Fast Fourier
Transform (FFT) algorithm and vibration amplitude with power spectrum (PSD) to isolate the
frequencies of interest. These analyses will be the main focus of this research work, both the
mentioned techniques will be explored and further explained in more detail in sections 2.7 and
2.8.

• Oil Analysis: Mechanical components like gears in the gearbox are subject to wear due to several
factors like temperature, contact pressure between the teeth, and high operating speeds. In order
to reduce this effect lubricants are used during operations and their chemical composition quality
monitoring can help in detecting imminent failures by performing a particle contamination analysis
and providing early warnings [11, 16].

• Acoustic Emissions & Ultrasonic Analysis Strong non-stationary signals like sudden crack
propagation cause a rapid release of strain energy and due to the altered metal structure, elastic
waves are generated. This method has been proven to be successful in blade crack detection
and monitoring of bearing and gearbox together with vibration-based analysis. Although their
application results to be quite expensive it is gaining more attention in the field of condition mon-
itoring for its ability to detect faults also in slowly rotating machines. Additionally, the ultrasonic
emission method is also known as an extension of the acoustic emissions analysis for structural
evaluations, with the advantage that ultrasonic waves experience less noise than acoustic ones.
They both proved to be useful for inner structure damage investigation but still need complicated
and time-consuming signal processing techniques [11, 16].

• Electrical Parameters Analysis: For proper condition monitoring planning also the electrical
system can be monitored through online and offline techniques but this is rarely implemented.
Methods like the Motor Current Signal Analysis rely on high-frequency acquisition of voltage and
current signals. These techniques are at the moment confined to research-related activities but
there is significant potential for applying them successfully in the field [11].

• Strain Measurements: the implementation of this technique is highly spread in the rotor blade
monitoring field, it can be performed with the use of strain gauges (more common) or optical fiber
sensors which are still too expensive. They detect if the blade structure deforms under the applied
loads, with accuracy dependent on the sensor mounting position. The resulting fault indicators will
be peak strain values for damage location and strain rate analysis for failure and crack prognosis
[11, 16].

• Thermography: this technique relies on the measurement of temperature gradient for damage
detection but is not useful for early detection conditions due to its slow development and relation
to failure severity level. The infrared radiations emitted by the objects are captured by a ther-
mographic camera, and this process is suitable only for offline detections. It is often used for
monitoring electronic components. The drawbacks of this method are the requirement of thermal
image processing which can be costly and can also be affected by external conditions [11, 16].
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2.2.1. Vibration-based CMSs
Given its widely spread use in wind turbines, it is of interest to mention that in such systems the most
important variations concern the sensor’s quantity and positioning and the analytical algorithms em-
ployed. Usually, all CMS systems rely on accelerometers as core measurement instruments. The
typical sensor layout along the wind turbine drivetrain is depicted in figure 2.3 showcasing the archi-
tecture of the Gram & Juhl (an industry leader in wind turbine condition monitoring solutions) turbine
CMS [17]. Sensors are mounted on the drivetrain side of the wind turbine energy conversion system
to detect characteristic vibration signatures for each component. The installation of vibration sensors
for CMS is described in ISO 10816-2 [18]. The standard recommends the placement of piezo-resistive
or capacitive accelerometers on the housing of the main bearings, the gearbox, and the generator, in
both radial and axial directions. The vibration signals shall be analyzed in the frequency band of 10
Hz to 5 kHz. The signature for each gear mesh or bearing is unique and depends on the geometry,
load, and speed of the involved components. Insights about the drivetrain state of the art and related
components are given in Section 2.3.

Figure 2.3: Sensor position in drive train vibration-based condition monitoring system [17]

2.3. Drivetrain Systems State of the Art
This section gives an overview of drivetrains and their general characteristics. However, it should be
noted, that is not the purpose of this research to dive into the details of their respective technical aspects
and more information can be found in the literature.

Drivetrains are the systems that convert the wind’s kinetic energy to electrical energy, including in
this context the whole power conversion components: main bearing, shafts, gearbox, generator, and
power converter. Various wind turbine drivetrain technologies exist, each with distinct advantages and
disadvantages concerning factors such as cost, weight, dimensions, manufacturing processes, material
usage, efficiency, reliability, and operational and maintenance requirements [12].

The two most common drivetrain systems layouts are represented in Figure 2.4 which include two
different concepts: geared drive and direct drive systems. Drivetrain design trends do not rely, like other
components, on the wind and site conditions but mainly on costs, logistics and service, and operational
monitoring [12]. Geared turbines account for the use of the gearbox, which increases the low speed
of the wind-driven rotor several hundred-fold considerably reducing the size of the required generator.
This category usually involves induction generators or synchronous generators. However, the presence
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of a gearbox can impact the reliability of the wind turbine increasing the percentage of outage time. The
secondmost common option, especially offshore, is the direct drive systemwhich requires the presence
of a bigger generator to produce a higher torque. It operates at the same speed as the turbine’s rotor
with the advantage of eliminating gearbox failure and transmission losses. This technology comes with
disadvantages like heavy mass due to the large size and diameter and higher cost compared to geared
drive systems generators. The direct drive layout usually involves two systems layout: the permanent
magnet direct drive and the electrically excited direct drive.

Figure 2.4: Schematic layout of the two most common drivetrain configurations (a) with and (b) without gearbox (illustration by
Amir Nejad [12])

The loads and operational conditions the drivetrains must endure are determined by the design load
cases specified in the International Electrotechnical Commission (IEC) standards: IEC 61400-1 for
land-based wind turbines, and IEC 61400-3-1 and IEC 61400-3-2 for offshore fixed and floating wind
application, respectively.

Gaining a more detailed understanding of the specific components that constitute the drivetrain [12], it
is known thatmain bearings are one of the components with higher cost implications per fault’s severity,
existing commercially available designs currently in use are rolling element bearings. These compo-
nents undergo repeating large-scale fluctuations in loads, and depending on the degree of machinery
integration (i.e. the bearing supporting both turbine rotor and generator like in direct drive structures)
the severity of a possible failure increases. The main adopted design especially for higher-power wind
turbines is a tapered roller main bearing, which has truncated cones roller structures that support both
radial and axial loads. Two different drivetrain designs are possible depending on whether they involve
a single or double main bearing corresponding to a three-point or four-point support structure. The
former configuration will result in a lighter structure due to the lack of a second bearing which also
results in a shorter low-speed shaft (LSS), the latter on the other hand, has been demonstrated to be
less sensitive to loads as it has been analyzed by Guo et al. in [19].

Due to the increasing trend in wind turbine size and power rating, multiple gearbox designs with higher
torque densities and speed ratios are currently present. Gearboxes are designed for a minimum of a
20-year life, as specified in the IEC 61400-4 design standards but, it has been observed that reliabil-
ity during operations results to be lower than the one calculated in reference through the standards.
Important is the use of lubricants for gears to reduce the level of wear arising during the operations.
To achieve the large step-ups required by high-rated machines like WT (rotational speed must be in-
creased by a factor close to 100), usually, three separate stages in the gearbox are required. The first
one attached to the LSS is usually planetary to achieve a sufficiently high ratio and spread the high
torque load on multiple contacts due to its higher density [12]. This stage comprises three planet gears
in a planet carrier coaxial with a sun gear and a ring gear with the planet gear rotating at the constant
centers of the planet carrier. On the other hand, two parallel stages are present which use helical gears
that can handle lower torque densities and are implicated both in the intermediate speed shaft (ISS)
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and high-speed shaft (HSS) which is then coupled to a generator drive end.

Regarding generator systems, direct-drive systems, especially those utilizing rare-earth permanent
magnet synchronous generators (PMSGs), are favored for offshore applications due to their high ef-
ficiency and reliability. In contrast, geared systems are additionally divided into doubly-fed induction
generators (DFIGs) with partial-power converters and brushless generators with full-power converters
(GFPCs). DFIG systems are commonly used in medium-sized turbines ranging from 3–6 MW. Both
squirrel cage induction generators and PMSGs are employed by GFPC systems. Induction generators
generate rotor magnetic fields via rotor currents, resulting in joule rotor losses and decreased efficiency.
PMSGs, using rare-earth permanent magnets, avoid these additional losses by directly producing the
rotor magnetic field. DFIG systems use carbon brushes and slip rings to conduct currents between
the rotor and stator. These components are prone to wear and require frequent maintenance. PMSGs,
however, eliminate the need for these elements, leading to lower maintenance demands. Studies have
shown that PMSGs have a 40% lower failure rate than comparable DFIGs during the early operational
stages. Concerns over the availability of rare-earth elements, which are crucial for PMSGs, have driven
the wind industry to explore innovative technologies [12].

Positioned between the generator and the power grid, the power converter must meet the operational
requirements of both interfaces. The initial common layout for smaller power ratings was constituted by
a diode rectifier with a DC/DC boost converter and a two-level voltage source converter. Then it was
improved in a back-to-back converter structure which instead of the first two stages listed components
can be implemented with multiple parallel two-level voltage source inverters for higher power ratings.
Attention also needs to be paid to thermal loading with adequate cooling systems and grid integration

2.4. Damage of Wind Turbine Blades
The increasing trend of global wind energy installation led to a respective increasing trend in blade size,
resulting in more challenging design requirements for the loads that the structure needs to withstand
and aerodynamic performance. Blades have significant effects on the overall performance of the wind
turbine and are costly to manufacture, reaching 25-35 % of the total costs and maintenance [20]. The
main manufacturing materials of wind turbine blades are glass-fiber-reinforced polymer (GFRP) and
carbon-fiber-reinforced polymer (CFRP). Figure 2.5 shows an overview of the terminology linked to all
the blade’s parts. The complete blade is formed by the bonding of two half shells along the trailing edge.
The occurrence of damages or faults is often caused by extreme weather conditions in harsh environ-
ments like storms, lightning strikes, and sudden strong wind phenomena like gusts. DNV observed [3]
that the blade damages caused by lightning phenomena originate from the increasing blade tip height
and carbon fiber spar caps adoption in manufacturing processes, while leading-edge erosion (gradual
wear and damage of the blade’s leading edge caused by continuous exposure to operational stresses)
phenomena arise in particular due to the increased tip speed of higher power-rated wind turbines. Lo-
cation regions for most usual damage or failure along the blades are the edges, both near the root and
near the tip side, the trailing edge on the high-pressure side, and the leading edge.

Lightning strikes will cause damages, especially at the outmost part of the turbine blade trailing edge,
such as delamination, debonding, shell, and tip detachment. Delamination phenomena need particular
attention during the manufacturing process since composite materials such as the one used for wind
turbine blades are prone to this type of defects that can be responsible for triggering also local buckling
modes, these combined effects can lead to the failure of the entire structure. Strong winds will cause
blade breakage, cracks (longitudinal or transverse), and failure in the most severe cases, additionally,
harsh atmospheric conditions are responsible for the erosion of the leading edge. Ice accumulation
is also an issue of great concern because it will affect the rotor’s aerodynamic performance, causing
imbalanced rotation, aerodynamics loss, unwanted stop, and increased blade fatigue and safety risks.

In order to make sure that the blade is still in good condition and fulfills its functions, damage detec-
tion techniques can be adopted to monitor the damage before it causes catastrophic incidents. The
main possible strategy is through fault indicators relying on the following methods: strain measurement
through strain gauges, acoustic emission, ultrasound, vibration analysis, and thermography which have
been introduced previously in section 2.2. Optical inspection on-site through machine vision for image
acquisition is also possible. Nevertheless, it is not yet common nowadays to have sensors implemented
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Figure 2.5: View of wind turbine blade’s parts [21]

on the blade structures themselves, therefore the possible detection of faults is mainly linked to on-site
inspections. Due to the importance of preventing severe damage and faults, it is of particular interest
in the present research scenario to investigate new methods for remote detection.

2.5. Rotor Imbalances
Wind turbine blade faults are prone to induce rotor imbalance. In the literature, two main groups of rotor
imbalance types can be found: mass and aerodynamic imbalances. Mass imbalance occurs when the
mass of a rotating body is not evenly distributed around its center of gravity like in the presence of ice
accretion or different blade damage types like the one mentioned in Section 2.4. The related uneven
imbalance forces result in gravitational and centrifugal forces. The former will result in torque oscilla-
tions that excite torsional modes of the drivetrain, and the latter will result in periodic shear forces in the
fixed frame that excite tower transverse bending modes. In the case of aerodynamic imbalance, like
pitch misalignment, discrepancies arise in trust and tangential forces due to not optimized lift and drag
forces along the blade. The fixed frame combination of shear and bending moments impacts structural
and drivetrain response. On the other hand, a second aerodynamic imbalance is represented by yaw
misalignment, which occurs when the wind turbine rotor is not correctly aligned with the wind direction
for maximum power production, and its resulting load effect leads to shear force excitation affecting
the structural response of the turbine. Traditionally, only SCADA signals are utilized. Meanwhile, the
drivetrain condition monitoring signals are mainly used for fault detection in gears and bearings. Rotor
imbalance detection mainly employs frequency-domain methods. It has been investigated and mod-
eled in many studies that a successful method to do it implies the monitoring of the rotor 1P rotational
frequency peak since imbalances in aerodynamic, gravitational, or inertial forces generate periodic
loads at this frequency [22, 23].

This thesis aims to explore further cutting-edge fields of research, like the one proposed by Mehlan et al.
[23], and Jin Xu et al. [24], both of which introduce a novel approach for investigating rotor imbalances
through the use of drivetrain condition monitoring signals. Mehlan et al. analyze the resulting dynamic
effects of three different imbalance scenarios by monitoring drivetrain vibration response and they pro-
pose a knowledge-based approach for the detection and diagnosis of all the mentioned imbalances for
different fault cases. By looking at the 1P amplitudes, they point out that the most promising CMS sig-
nals are gearbox housing side-side velocity for pitch misalignment detection and nacelle acceleration
for mass imbalance and yaw misalignment detection. Xu et al. instead, presented a successful vibra-
tion model for blade crack detection by applying the Morlet wavelet transform for rotational frequency
detection of the rotor hub implementing also a health indicator for imbalance severity recognition. Nieb-
sch et al. developed a method to estimate mass and aerodynamic imbalances by physical modeling of
rotor dynamics and solving the inverse problem [6]. Although detection is easier to implement, more
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research is needed for diagnostics, like classifying imbalance types and estimating fault severity. This
research gap will be the target of the presented thesis work. Current literature methods can be broadly
classified as physic-based, knowledge-based, or data-driven, and each of them presents different limita-
tions. Physics-based methods require detailed aeroelastic models, but uncertainties arise from limited
turbine specifications. Data-driven techniques show high accuracy but struggle with insufficient fault
data, requiring expensive equipment like LIDAR to collect more data. Knowledge-based approaches
depend on expert knowledge of fault causes and effects, but challenges exist in obtaining and manag-
ing this expertise. Each method has inherent limitations based on data availability, modeling accuracy,
or domain knowledge [23].

2.5.1. Dynamic Effects of Rotor Imbalances
A short insight into the dynamic of a wind turbine is provided in this section to motivate the adopted
analysis choices reported in Chapter 3 for the simulated signals. A schematic overview is also provided
in figure 2.6. This Section is not meant to explain the full theory behind systems dynamics which,
together with the mathematical background, can be found in the literature [[25], [26]].

Rotor Imbalances

Mass
imbalance

Aerodynamic
imbalance

Pitch
misalignment

Yaw
misalignment

Effect: Harmonic periodic loads that
shift the gravitational force and thrust
force center of the rotor from hub
to one blade –> influence on 1P

Effect: Periodic non-harmonic
load affecting loading on all

three blades, each one shifted
1/3 of revolution with respect to
the others –> influence on 3P

Figure 2.6: Rotor imbalances classification and effects

The loading conditions affecting wind turbines can be characterized according to their periodicity: har-
monic, non-harmonic loading but periodic, and random loading. Harmonic loading in wind turbines
occurs when variations follow a cosine or sine function, with three primary sources contributing to this
effect. The first source is aerodynamic imbalance, which occurs when one blade’s pitch angle differs
from the others, shifting the center of thrust from the hub to the affected blade. The second source
is mass imbalance, arising from uneven mass distribution among the blades, which shifts the rotor’s
center of gravity away from the hub. Both of these imbalances cause load variations and moments that
align with the rotor’s rotation period, known as 1P frequency. For offshore turbines, the third source of
harmonic loading is small, regular waves, which can be approximated as sinusoidal functions, creating
corresponding sinusoidal loads.

On the other hand, rotational sampling phenomena like wind shear, tower shadow, turbulence, and yaw
misalignment produce non-harmonic periodic loadings that can be decomposed into different harmonic
frequency contributions (1P, 2P, 3P...). Rotational sampling is the phenomenon of variation of the local
wind conditions at the position of a blade element that is caused by its rotational motion. For three-
bladed rotor turbines, rotational sampling induces load variations on the nacelle structure at a frequency
of 3P and its multiples. This occurs because loading phenomena affecting all three blades are offset
by one-third of a revolution relative to each other. Consequently, the total force on the hub, which is
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the sum of all harmonics on the three blades, results in the cancellation of 1P and 2P signals due to
their opposing phases. However, 3P signals are in phase and thus combine constructively, resulting in
a non-zero force at the hub.

2.6. Signal Processing
As previously mentioned in Section 2.2, different approaches can be adopted to analyze the signals
collected by the monitoring system depending on the type of fault being analyzed and the respective
machinery component. Conventional vibration-based condition monitoring techniques rely on tracking
key features within the measured signal. The two main and most common analysis techniques used
to perform feature extraction of the CMS signals are represented by frequency domain and time do-
main analysis, a respective detailed overview is given in the following sections. Is important to notice
that the majority of all vibration signal-processing techniques require steady-state loading conditions
which are necessary to ensure measurement consistency. In most situations, harmonic frequencies
necessitate stationarity in time to prevent frequency smearing, which can invalidate spectrum-based
methods. However, wind turbines are inherently non-stationary machines due to the variable nature of
wind, which dictates the rotor’s rotation speed. This variation results in time-varying harmonic frequen-
cies from components like gears, shafts, and bearings. Thus, accurate speed information is essential
for numerous signal-processing techniques to handle these fluctuations effectively, necessitating the
use of resampling algorithms. Installing an angle encoder or tachometer on one of the rotating shafts
in the gearbox is a common, accurate, and reliable method to obtain this speed data. Alternatively, the
instantaneous angular speed can be estimated directly from the vibration signal itself. Related to this
concept, Computed order tracking (COT) algorithms are explored. COT is primarily used for frequency
domain analysis, it tracks specific orders or harmonics over time in the frequency domain, providing
insight into the behavior of rotating components.

2.7. Frequency Domain Analysis
When it comes to signal analysis, especially vibration signals, the frequency spectrum can represent a
powerful tool to detect specific component contributions and the effect of a fault compared to healthy
conditions. The most widely adopted technique to perform it is through the Fast Fourier Transform
(FFT) which is an efficient algorithm for calculating the Discrete Fourier Transform (DFT) of a digital
discrete-time signal. In this section, just a general overview of the main and relevant concepts for this
thesis work is provided according to Barszcz [10]. The full theory and mathematical background can
be found in [27].

Fourirer Series is applied in order to analyze periodic signals composed of a finite sum of harmonic. This
analysis allows the breaking down of complex periodic waveforms into simpler sinusoidal components,
which are easier to analyze and interpret when the overall period of the signal x(t) is finite.

x(t) = x(t+ nT0) (2.1)

The reciprocal of the reported period is equal to the fundamental frequency according to the relation:
f = 1/T0. Therefore the Fourier series of the signal x(t) is given by equation 2.2:

x(t) =
a0
2

+

∞∑
n=1

Mncos(2πnf1t+ ϕn) (2.2)

This representation simplifies the analysis of periodic signals by decomposing them into their con-
stituent frequencies. The complex form of the Fourier series, along with its integral form, provides
a more compact representation:

x(t) =

∞∑
−∞

cne
j2π nt

T0 with cn =
1

T0

∫ T0

0

x(t)e−j2π nt
T0 dt (2.3)
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where: Mn are the amplitudes and Φn the phases at the respective frequencies fn. The Fourier trans-
form of a continuous-time signal instead is not assumed to be periodic and it gives its frequency domain
representation according to the following relation for continuous Fourier transform, X(f):

X(f) =

∫ ∞

−∞
x(f)e−j2πftdt (2.4)

Conversion back to the time domain can be obtained by Inverse Fourier Transform, defined as:

x(f) =

∫ ∞

−∞
X(f)ej2πftdf (2.5)

However, real signals in data acquisition systems are sampled in time, so discrete. To obtain spectra
of sampled signals we use Discrete Fourier Transform (DFT), which are expressed in its direct and
inverse transform by the formulas:

X(k) =

N−1∑
n=0

x(n)e−j 2π
N nk (2.6)

x(n) =
N−1∑
k=0

X(k)ej
2π
N nk (2.7)

where N represents the length of the signal and the number of samples according to the signal sampling
frequency fsamp. This frequency represents the highest value that can be correctly represented in a
sampled signal. It is important to consider that in order to have a correct reconstruction of the signal
the limiting cut-off frequency is represented by the Nyquist frequency fsamp/2. According to Nyquist
Shannon’s sampling theorem [27] components of the spectrum can only be extracted for frequencies
between

−fsamp

2
≤ f ≤ fsamp

2
(2.8)

This restriction is necessary to avoid aliasing, a distortion phenomenon where overlapping of frequen-
cies may occur (high-frequency components folding back into lower frequencies) if the sampling rate is
below the expected Nyquist rate. Aliasing can cause significant errors in the interpretation of frequency
components and must be mitigated by ensuring proper sampling rates and applying anti-aliasing filters
when necessary. FFT is a simply very efficient algorithm for calculating the DFT equations which is
optimised with respect to computing time and memory consumption. It rapidly computes such trans-
formations by factorizing the DFT matrix into a product of sparse factors. As a result, it manages to
reduce the complexity of computing the DFT from O(N2), which arises if one simply applies the defini-
tion of DFT, to O(N logN), where N is the data size. The full details of the FFT algorithm are beyond
the scope of this Thesis and can be found in Oppenheim et al. [27]. Nevertheless, according to the
mentioned advantages, FFT is the chosen method to perform frequency domain analysis and such
algorithms are commonly present in multiple programming environments such as MATLAB.

2.7.1. Order Analysis
In analyzing rotating machine vibrations it is often desired to have a frequency x-axis based on har-
monics or ’orders’ of shaft speed. This is done to avoid smearing discrete frequency components due
to speed fluctuations. These techniques are applied to asynchronously sampled signals (i.e. with a
constant sample rate in Hertz) to obtain the same signal sampled at constant angular increments of
a reference shaft. Spectra, where the frequency axis is normalized with shaft rotation frequency, are
denoted normalized order spectra.

Using shaft speed measurements, COT is a resampling and interpolation technique that transforms a
discrete signal from the time domain to the angular domain. An order (X) refers to a frequency multiple
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of the reference machine rotational speed ω, in rev/min, and frequency f in Hz, through the relation
[15]:

f = X
ω

60
(2.9)

In normalized order spectra, the positions of vibration signature peaks are invariant to changes in speed,
simplifying the spectra’ interpretation. By normalizing the frequency axis to the shaft rotation frequency,
any cyclic event synchronized with the shaft rotation will produce a spectral component at a consistent
position, even when speed varies. This property ensures that the spectral components remain at fixed
positions, facilitating easier analysis under variable speed conditions, its accuracy is then linked to the
adopted interpolation method.

COT Algorithm
According to K. R. Fyfe et al. (1996) [28], this procedure can be carried out following a few main steps,
the synthesized algorithm procedure is reported in this section.
Initially, the time instantsTk (k = 1 : K) corresponding to integer rotations of the shaft (i.e., angle equal
to 2πk) have to be estimated. Then, we define an angular rotation vector as:

αi = 2 · π iK
N

(2.10)

This vector accounts for the desired angular resolution, given by:

∆α =
K

N
(2.11)

Subsequently, we derive a vector of time instants through an initial interpolation step:

t(i∆α) = interpolation({2πk, Tk}, αi) (2.12)

Following that, a secondary interpolation step is employed to obtain the angular resampled signal
x(i∆α) from the original time domain signal x(j∆t):

x(i∆α) = interpolation({x(j∆t), j∆t}, t(i∆α)) (2.13)

2.7.2. Windowing
When a signal is sampled, especially for non-periodic signals, edge effects can cause spectral leakage,
therefore windowing functions are essential to be applied to signals before performing Fourier Trans-
forms. To mitigate this, window functions are applied to the signal to taper its edges smoothly to zero,
reducing the boundary discontinuities. Data windowing minimizes the magnitude of the spectrum, so
a trade-off is needed when choosing the window to be applied between main lobe width and side-lobe
height. A detailed explanation of the window function can be found in [27], in Figure 2.7 a comparison
between three different window functions on a 100 sample length is represented. They are all com-
pared against the rectangular window function which corresponds to not applying any windowing, it
gives ones for all the signal length components and zeroes otherwise, while the others are used to be
multiplied by a data block to smooth the start and end part of the signal window length to zero forcing
periodicity between the segments.
The most commonly used window functions are Hann (Hanning) and Hamming [15], whose functions
are expressed by the following relationship:

Hann w[n] = 0.5
[
1− cos

(
2π

n

N

)
]
]

(2.14)

Hamming w[n] = 0.54− 0.46 cos
(
2π

n

N

)
(2.15)
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They both belong to the family of raised cosine functions and are characterized by:

w[n] =

{
α+ (1− α) cos

(
2π
N n

)
−N/2 ≤ n ≤ N/2

0 otherwise
(2.16)

where the parameter α defines the degree of taper for 0.5 ≤ α ≤ 1. When α = 1we have the rectangular
window with zero taper, α = 0.54 corresponds to Hamming window, and when α = 0.5 we have the
maximum taper with Hann window.

Figure 2.7: Windows functions, inspired by Barszcz [10]

When selecting an appropriate truncation window, it’s essential to consider both the characteristics
of the signal under analysis and the properties of the system that generates it. These factors play a
significant role in determining the most suitable window function for the task. In particular, These two
similarly named Hamming and Hanning (more properly referred to as Hann) window functions have
a sinusoidal shape. The difference is that the Hanning window touches zero at both ends, removing
any discontinuity. The Hamming window is suggested for noisy systems signals providing stronger
sidelobes attenuation.

2.8. Time-domain Analysis
The second option for analyzing condition monitoring signals is time-domain vibration analysis. Vibra-
tion signals obtained are a series of values representing proximity, velocity, and acceleration, and in
time domain analysis, the signal’s amplitude is plotted against time. The signal processing method
required to obtain information and feature extraction consists of the analysis of statistical parameters
that go under the name of Condition Indicators [29]. Depending on the component that needs to be
analyzed different parameters can be explored. The ones considered in this thesis, able to identify
changes in the signals when it comes to fault condition detection, are: Root-mean-square value (RMS),
Crest Factor (CF), and Kurtosis. New condition indicators have also been explored in the context of
gearbox vibration analysis by P.J. Rzeszucinski [30] and they showed to have a good potential for fault
detection. They include monitoring the amplitude of the normal probability density function (APDF)
and monitoring the degree of deviations of the data set from a theoretical normal distribution (DND).
In particular, they have been applied and tested in the context of bearing and gear fault detection by
using residual signals. A residual signal is defined as a synchronous averaged signal in which the
components related to shaft speed and gear mesh frequencies with their harmonics are removed. Un-
like frequency domain analysis, time-domain signals do not inherently decompose the contributions
of different system components, making it necessary to apply filtering or preprocessing techniques to
isolate relevant information. In the present research work, filtering of a specific system’s mode is ap-
plied (see Chapter 3). The following sections will give a detailed overview also of the mathematical
implementation of the proposed condition indicators (CIs) for the signal analysis.
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Root Mean Square Value (RMS)
RMS is computed from the vibration signal and describes its energy content. Nowadays, however, we
deal with digitally sampled signals in CMSs, therefore the expression for RMS definition is given by:

sRMS =

√√√√ 1

N

N∑
i=1

(s2i ) (2.17)

srms is the root mean square value of dataset s, si is the i-th member of s, and N is the number of
points in the dataset. In the following sections of the presented work this condition indicator is going to
be addressed as CIRMS . Generally, the RMS value of the vibration signal is a good descriptor of the
overall condition of the tested component, it is sensitive to loads and speed changes and themain usage
is to monitor the overall vibration level that increases as the damage level progresses, additionally, it
is useful in detecting an imbalance in rotating machinery [13]. RMS is generally preferred over simple
peak value detection due to its sensitivity to noise.

Crest Factor (CF)
A crest factor is represented by the ratio of the input signal peak value to the RMS value:

CF =
speak
sRMS

(2.18)

where speak = max|s| is the maximum absolute value value of the signal. As damage progresses
the root mean square value of the vibration signal increases its value and the crest factor decreases.
The crest factor is often used in gearbox quality monitoring devices and when measurements are con-
ducted at different rotational speeds because it is independent of speed. The second selected condition
indicator presented here will be referred to as CICF throughout this study.

Kurtosis
Kurtosis is a nondimensional statistical measurement of the number of outliers in distribution and vi-
bration analysis, it corresponds to the number of transient peaks, so it describes how peaked or flat
the distribution is. A high number of peaks may be indicative of wear, its effectiveness depends on
the presence is dependent of the presence of significant impulsiveness in the signal. Its mathematical
definition is given by equation 2.19.

Kurt =
N ·

∑N
i=1(si − s)4(∑N

i=1(si − s)2
)2 (2.19)

where N is the number of points in the time history of signal s, and si is the i-th point in the signal, while
s is the mean value of the signal. It is defined as the fourth centralized moment of the signal normalized
by the square of the variance and will be addressed with the nomenclature CIKurt.

CIAPDF
This proposed new C.I. [30] is based on the idea of generating a normal Probability Density Function
(PDF) for each vibration signal and recording its maximum value. The idea behind this implementation
relies on the fact that when a fault develops and progresses with time new contributions start to appear
in the signal causing a spreading of the amplitude distribution tails whose widening will cause the
maximum value of the normal PDF curve to decrease with respect to healthy conditions, since the area
under the curve of a normally distributed signal is equal to 1. Therefore this CIAPDF monitors changes
in the amplitude of the normal probability density function of the vibration signal.

CIAPDF = max[f(sAPDF )] with f(sAPDF ) =
1

σ
√
2π

· e−
(s−µ)2

2σ2 (2.20)

where, f(s) is the normal probability density function, σ is the standard deviation of the vibration signal
s(t), and µ is the mean value.
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CIDND
The second CI proposed is the Deviation from Normal Distribution (DND), which assesses to what ex-
tent a measured signal deviates from a simulated normal distribution [30]. The Normal Probability Plot
(NPP), which is a specific type of Quantile-Quantile (Q-Q) plot, is recommended for this purpose. This
technique compares the measured vibration signal to an equal number of samples from a theoretical
normal distribution. If the signal is normally distributed, the points on the NPP form a straight line. De-
viations from this line indicate non-normality. As faults worsen, impulsive events can occur, disrupting
the normal distribution and increasing the signal’s variance, which leads to noticeable deviations in the
NPP. This relationship can be mathematically described as:

CIDND =

∑N
i=1 |Pa,i − Pt,i|

N
(2.21)

whereN is the number of data points in the signal, Pa,i is the value of the actual curve at the i− th data
point, Pt,i is the value of the theoretical curve at the i − th data point. The theoretical distribution is
derived from the actual signal’s mean and the standard deviation values. Once the NPP is generated
the area between the two curves can be calculated through equation 2.21.

2.9. Data Fusion
Hall and Llinas in 1997 [31] defined this discipline as: ”data fusion techniques combine data from
multiple sensors and related information from associated databases to achieve improved accuracy
and more specific inferences than could be achieved by the use of a single sensor alone”. The primary
goal is to enhance the quality of information and improve decision-making processes by combining
data from different sources into reliable results.

An important assessment to do when building such a system is to choose where to fuse (combine) the
different data. Knowledge combination can take place at various levels and different categorization and
system architecture are possible. For example in the Data Fusion Techniques review by F. Castanedo
(2013) [32], five different categorization criteria are summarized and listed below.

1. System input data sources relations: they can be identified as complementary, redundant, or
cooperative data;

2. Input-output data types: data in-data out, data in-feature out, feature in-feature out, feature in-
decision out, decision in-decision out;

3. Abstraction level of the employed data: raw measurements, signals, and characteristics (ex-
tracted features) or symbols;

4. Classification of the data fusion process into multiple processing levels including an associated
database and an information bus that connects them all;

5. Architecture type: centralized, decentralized or distributed, depending on the information process-
ing and data fusion take place in a single processor or locally in each node and then exchanged,
or alternatively, in the distributed architecture the data are first processed independently and then
sent to the fusion node.

However, the most common and widely spread categorization for knowledge combination is raw data
fusion level, feature extraction fusion level, and decision fusion level represented in figure 2.8 [33].

• Raw data fusion level: Data fusion at a raw stage can occur when data are of the same type, i.e.,
representing the same physical parameter. Once the signals are combined in a shared central
node, a vector is extracted and classical detection methods and pattern recognition techniques
can be applied. This comes with some disadvantages since the fault information detected by one
sensor could be lost in the fusion process with other sensor signals that didn’t measure it.

• Feature extraction fusion level: At this level, features are extracted from each sensor according
to the type of raw data and successively all the feature vectors are fused and used for pattern
recognition.
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Figure 2.8: a) Raw level b) Feature level and c) Decision level data fusion methods, reproduced from Niu et al. (2019) [33]

Different techniques can be adopted at this point, for example, clustering algorithms group data
points based on their similarities without needing prior labels, forming clusters where internal
variations are minimized, and differences between clusters are maximized. Artificial Neural Net-
works (ANNs), inspired by the human brain, consist of interconnected neurons that learn patterns
through weighted connections. Multi-layer perceptrons (MLPs) are a common ANN structure ca-
pable of classifying complex patterns. Physical models use known characteristics of systems to
create predictive models, comparing sensor features to identify matches. While accurate, these
models require significant computational power. Parametric templates compare observed data
features to predefined classes based on historical data, categorizing features into distinct, non-
overlapping boundaries. Knowledge-based models use AI to mimic human reasoning, relying on
extensive expert knowledge databases. These systems retrieve specific information in response
to queries but require much prior data knowledge, which can be hard to obtain.

• Decision fusion level: The decision fusion level involves making separate assessments from
each sensor and combining these to reach a final decision. This approach reduces the number of
sensors needed while still integrating diverse information to form a comprehensive assessment.

Classical inference uses empirical probabilities from long-term observations to validate assump-
tions. It is straightforward but limited to repeatable processes and binary decision alternatives.
Bayesian inference has some improvements by updating probabilities based on new evidence,
using empirical data, historical records, and subjective insights. This method can handle multi-
ple hypotheses and improve accuracy over time, even though it can be complex and relies on



2.9. Data Fusion 20

subjective probabilities. Fuzzy logic allows for intermediate values between 0 and 1, giving the
possibility of dealing with different degrees of truth. This approach models human-like decision
processes more accurately, giving the possibility of handling uncertainties. Finally, heuristic meth-
ods mimic human decision-making in groups, using techniques like voting, scoring, and Q-sort
models to aggregate opinions and simulate consensus-building processes. It results in an in-
tuitive approach, but on the other hand, these methods may lack mathematical rigor and clear
quantifiability. By using these techniques, decision fusion combines sensor data into a unified
and actionable assessment, ensuring robust condition monitoring.



3
Methodology and Tools

This chapter provides a comprehensive overview of the simulation environment, the chosen simulation
parameters, and the analysis procedures used in this thesis. It begins by introducing the drivetrain
model, discussing its characteristics and design in detail (Section 3.1). Section 3.2 presents the layout
of the decoupled analysis utilized in this study, highlighting the adopted simulation framework and
approach. Next, Section 3.3 outlines the steady-state simulation parameters, which form the basis
for analyzing various faulty cases and inflow conditions under different operational scenarios. Section
3.4 describes the turbulence conditions, a critical factor in understanding the drivetrain performance
and behavior in realistic environments, which are included in the second set of simulations. Section 3.5
describes the methods employed for the analysis of the drivetrain signals, looking at both the frequency
domain (Section 3.5.1) and the time domain (Section 3.5.2), with a focus on the techniques used to
compare simulation outputs features. Finally, Section 3.6 addresses the choice of the signals, with an
in-depth examination of the system dynamics (Section 3.6.1) and how these considerations influence
signal selection.

3.1. The 10 MW Medium-speed NTNU Drivetrain Model
SIMULIA SIMPACK [34] is a complete software package dedicated to the development and simulation
of high-fidelity multibody system (MBS) virtual prototypes. The components of mechanical systems are
modeled as separate parts and their interconnections are defined by force elements and joints. The
level of fidelity obtained depends on this modeling choice. The basic concept of SIMPACK is to create
the equation of motion of a mechanical system model based on the given degrees of freedom (DOF)
and apply mathematical tools like time integration to solve them. Joints define the DOFs, which can
vary from 0 to 6. Depending on the DOFs, MBSs can be divided into three types [35]:

1. Purely torsional multibody models, which focus solely on rotational motion around a fixed axis,
ignoring any translational motion or deformation of the bodies. Therefore only one DOF is allowed
and the other five are fixed.

2. Rigid multibody models, assume that the bodies are perfectly rigid, meaning they do not deform
under load. In these models, all connections and constraints between bodies are treated as rigid
joints, and both translational and rotational movements are considered. It It is also possible to
combine rigid bodies with discrete flexible joint elements, usually to investigate the influence of
bearing flexibilities. These types of models include up to 6 DOF.

3. Flexible multibody models, which account for the deformation of bodies under loading, incorporat-
ing both translational and rotational motions along with the effects of structural flexibility. Typically,
these models can have a large number of DOFs.

This Section presents the 10 MWmedium-speed drivetrain model developed by the Norwegian Univer-
sity of Science and Technology (NTNU) [36] which is the chosen tool for the simulations performed in
this research work. The NTNU model was designed in SIMPACK via the multibody system approach.
To compromise between the accuracy of the dynamic behaviors and computation time, a rigid-flexible

21
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coupled drivetrain model has been implemented. This includes the main shaft, planet carriers, and
transmission shafts in the gearbox represented by flexible bodies, and the hub, bedplate, housing, and
gears modeled as rigid bodies. The described setup has been implemented for the 10-MW reference
wind turbine proposed by the Technical University of Denmark (DTU) in 2013 as a scale-up of the refer-
ence 5 MWNREL wind turbine. The key characteristics of the 10 MWDTU turbine are provided in Table
A.1 in Appendix A [37]. Additionally given drivetrain parameters for the 10 MW turbine have been re-
ported for completeness in Table A.2. Most drivetrain models available in the literature use high-speed
gearboxes ([38],[39]). In contrast, the current model proposes a medium-speed configuration, which
balances reliability issues, particularly prevalent in high-speed systems under offshore conditions, and
weight challenges associated with scaling up power ratings in direct-drive (DD) systems. Furthermore,
from the Global Wind Energy report (2023) [2] it has been reported, that medium-speed drivetrains
have an additional benefit since they use one-tenth of the rare earth permanent magnets needed in a
DD drivetrain system. The SIMPACK drive train MBS used in this work is shown in Figure 3.1.

Figure 3.1: NTNU 10 MW drivetrain multibody system model [36]

The main components of the drivetrain are the hub, the main shaft, the main bearing, the gearbox, the
coupling, the generator, and the bedplate. Their model is based on the design loads and criteria that
are recommended in relevant international standards. More details about the general features of the
different components can be found in Section 2.3 and the schematic layout of the NTNUmodel is shown
in Figure 3.2. The MBS features a four-point support layout with two main bearings with a tapered roller
design. This can prevent huge non-torque loads from entering the gearbox. The gearbox is designed
with two planetary stages and one parallel stage with a 50:1 speed ratio and, lastly, a medium-speed
electric generator is included. It is also important to mention that as reported by Mehlan et al. [23]
the MBS drivetrain model can simulate accurately gearbox housing velocities, but it has limitations in
addressing vibrations in the main bearing and generator housing. This is because these housings are
not individually implemented but are treated as part of the bedplate.

Figure 3.2: NTNU 10 MW gearbox schematic layout [36]
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According to ISO 10816-21 [18], drivetrain condition monitoring signals should be acquired by placing
piezo-resistive or capacitive accelerometers on key components such as the main bearings, gearbox,
and generator coupling. This ensures effective monitoring of system health. It is important to note
that, in real-world applications, measurement accuracy and frequency response can be affected by the
installation of the transducers, making it essential to secure the most rigid coupling possible. Figure
3.3 illustrates the selected sensor locations utilized in the simulations. In compliance with the standard,
sensor measurement directions include horizontal (transverse to the rotor shaft), axial (along the rotor
shaft), and vertical. For fault detection involving low characteristic frequencies (ranging from 0.1 to 10
Hz), the standard further recommends the use of velocity signals, which are obtained by integrating the
measured accelerations.

Figure 3.3: SIMPACK model sensor’s location

The drivetrain modes can be obtained in SIMPACK through the ”Eigenvalues analysis” tool and they
are important to identify different contributions when performing analysis of the system. The full system
modes of the NTNU model are reported in Table 3.1. Specifically, according to the analysis, the drive-
train torsional mode’s natural frequency has been found to be equal to 4.211 Hz. The model resonance
analysis and validation related to the torsional mode has been performed by Wang et al. [36].

Table 3.1: Drivetrain system modes

Mode SIMPACK Value [Hz]
Tower fore-aft 0.24
Tower side-side 0.25

1st drivetrain free-fix 0.51
1st asymmetric flap with yaw 0.55
1st asymmetric flap with tilt 0.59

Collective flap 0.63
1st asymmetric edge 0.93

2nd asymmetric edge with yaw 0.93
2nd asymmetric flap with yaw 1.38
2nd asymmetric flap with tilt 1.59

Rotor symmetric flap 1.76
Rotor symmetric edge 1.81 11

Blade asym. flap & tower fore-aft 2.254
Blade asym. flap with tower fore-aft 2.3
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3.2. Decoupled Simulations Layout
Multiple input factors are responsible for mechanical loads that act on a wind turbine, between these
features we can find: rotor interactions with different inflow conditions, aero-servo-elastic interaction,
and hydrodynamic loads also in the case of an offshore wind turbine. In this study, the focus is on
the impact that the aero-servo-elastic interactions of the rotor of a land-based wind turbine have on
the drivetrain. Based on the interaction level, drivetrain multibody models can be categorized as ei-
ther fully coupled or decoupled models. Fully coupled models solve the aero-servo-elastic interaction
and/or electromechanical grid interaction alongside drivetrain dynamics simultaneously. Conversely,
a two-step process is adopted in decoupled models, and it is employed in this research [35]. The
global analysis is conducted using first a standard aero-servo-elastic software to determine the wind
turbine loads and dynamics. In this work, OpenFAST is used for this purpose [40]. Subsequently, the
resultant loads and dynamics- which include forces, moments, motions, and deflection experienced by
the system- are used as input for the drivetrain multibody model developed in SIMPACK. Specifically,
inputs to these models include main low-speed shaft (LSS) loads (forces and moments) and nacelle
motions [35]. The described procedure is shown in the schematic layout in Figure 3.4.

Input conditions
model files

openFAST Aero-
servo-elastic
software sim-
ulations:
load

and dynamics
calculations

LSS forces
and moments

and nacelle/tower
top motions

SIMPACK
drivetrain
MBS model
simulations

Figure 3.4: Decoupled simulation procedure

The central aim of this thesis is to address the second stage of the decoupled analysis, focusing on
multibody simulations performed using SIMPACK. The aero-servo-elastic input files were prepared for
various conditions of interest—these include distinct inflow profiles, environmental influences, and both
healthy and faulty structural scenarios (details regarding these simulation conditions are elaborated in
Sections 3.3 and 3.4). Output data generated by OpenFAST simulations, originally sourced from a
previous MSc thesis project, were utilized to develop the input parameters required for the drivetrain
analysis. The input variables, presented in Table 3.2, offer the critical information necessary for accu-
rately simulating drivetrain dynamics under the specified conditions.

It is worth noting that, according to IEC 61400-13 standards [41], multiple coordinate systems must be
implemented for the measurement of mechanical loads within wind turbine systems, as they are es-
sential for interpreting simulation output parameters [42]. OpenFAST inherently supports these various
coordinate systems. However, this work focuses on three primary coordinate systems relevant to the
parameters under consideration:

• Shaft coordinate system (xs, ys, zs): This system is fixed to the shaft, translating and rotating
with the tower, while yawing with the nacelle and furling with the rotor. Importantly, it does not
rotate with the rotor itself. All motion-related outputs from the nacelle inertial measurement unit
are expressed in this coordinate frame.

• Azimuth coordinate system (xa, ya, za): This system shares its origin with the shaft coordinate
system but rotates synchronously with the rotor. It is crucial for capturing rotor dynamics and
azimuth-dependent phenomena.

• Tower base coordinate system (xt, yt, zt): Fixed to the support platform, this coordinate system
translates and rotates with the platform. Its origin is located at the intersection of the tower’s cen-
terline and its connection to the base platform. In scenarios where tower deflection is negligible,
this system coincides with the tower-top coordinate frame (base plate), which does not rotate with
the nacelle’s yaw movement.
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Table 3.2: OpenFAST output parameter for SIMPACK decoupled drivetrain analysis

Variable name Description
GenSpeed Angular speed of the HSS and generator (rpm)
RotThrust LSS thrust force (this is constant along the shaft and is equivalent

to the rotor thrust force) directed along the xa- and xs-axes (kN)
LSShftFys Nonrotating LSS shear force (this is constant along the shaft) di-

rected along the ys-axis (kN)
LSShftFzs Nonrotating LSS shear force (this is constant along the shaft) di-

rected along the zs-axis (kN)
LSShftTq LSS torque (this is constant along the shaft and is equivalent to

the rotor torque) about the xa- and xs-axes (kN∙m)
LSSTipMys Nonrotating LSS bending moment at the shaft tip (teeter pin for

two-bladed turbines, apex of rotation for three-bladed turbines)
about the ys-axis (kN∙m)

LSSTipMzs Nonrotating LSS bending moment at the shaft tip (teeter pin for
two-bladed turbines, apex of rotation for three-bladed turbines)
about the zs-axis (kN∙m)

YawBrTDxt Tower-top / yaw bearing fore-aft (translational) deflection (relative
to the undeflected position) directed along the xt-axis (m)

YawBrTDyt Tower-top / yaw bearing side-to-side (translational) deflection (rel-
ative to the undeflected position) directed along the yt-axis (m)

YawBrTDzt Tower-top / yaw bearing axial (translational) deflection (relative to
the undeflected position) directed along the zt-axis (m)

3.3. Steady State Simulation Parameters
The analysis performed by Mehlan et al. [23], discussed in Section 2.5, is the starting point of this re-
search work used as a reference and validation, and from which further studies are performed. There-
fore, the same values of the simulation parameters are used for the different input conditions. They are
reported and explained in the present Section.

The three different types of rotor imbalances explored, introduced in Section 2.5, are mass imbalance,
pitch misalignment, and yaw misalignment. For each scenario, three fault levels are selected and an-
alyzed. Each of them will be compared to the reference healthy case conditions, for all the simulated
wind speeds. The faulty cases are shown in Table 3.3. As introduced previously, the National Re-
newable Energy Laboratory’s OpenFAST software was used to model both mass and aerodynamic
imbalances in the 10 MW DTU wind turbine. The imbalances were imposed individually on one blade.
Multiple simultaneous faults in more than one blade are not part of this work.

Table 3.3: Chosen fault cases and their severity levels, inspired by [23]

Mass Imbalance Pitch Misalignment Yaw misalignment
Level 1 0.58 % 1° 5°
Level 2 0.88% 2° 10°
Level 3 1.17% 3° 15°

In accordance with ISO 21940-11:2016, the classification standard for addressing mass imbalance
cases is denoted by the ”G” scale. As highlighted by H. Schneider (2020) [43], wind turbines undergo
a balancing procedure prior to commissioning, with G16 serving as the reference threshold before
turbines become fully operational. Consequently, three fault severity levels are examined: G32, G48,
and G64, representing mass imbalance increases of 0.58%, 0.88%, and 1.17%, respectively, affecting
one blade in the most severe scenario [23].

Building on the findings of Saathoff et al. [44], this study accounts for pitch misalignment by modifying
the structural twist of one blade within the aeroelastic model. Their research indicates that approxi-
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mately 35.3% of operational wind turbines exhibited pitch misalignments ranging from 0.6° to 2°, with
more significant misalignments—exceeding 2°—being reported in only 2.6% of cases [44].

For yaw misalignment, the selected values are based on parameters outlined in key studies within the
field [45, 46].

Each case will be analyzed under six different environmental conditions, specifically, six selected wind
speeds: three below- and three above-rated wind speeds, as detailed in Table 3.4. This selection is
designed to cover the entire range of the turbine’s power curve shown in Figure 3.5.

Table 3.4: Wind speeds simulation setup

Case name Wind speed [m/s]
U1 4
U2 7
U3 10
U4 12
U5 14
U6 20

Figure 3.5: DTU 10 MW turbine power curve

Therefore, a total of 60 simulations in steady-state conditions were analyzed, 54 faulty cases combined
with 6 healthy reference cases, one for each chosen wind speed. In the following chapters, the fault
levels will be referred to using the color scheme and nomenclature reported in Table 3.5.

Table 3.5: Color codes and nomenclature adopted to represent the different imbalance cases (Chapters 4 and 5)

Representation Mass Imbalance Pitch Misalignment Yaw Misalignment
Level 0 Healthy Healthy Healthy Healthy
Level 1 Low MI1 PM1 YM1
Level 2 Medium MI2 PM2 YM2
Level 3 High MI3 PM3 YM3

3.4. Turbulence
For the second set of simulations, more realistic inflow conditions, including turbulence intensity, were
modeled. Turbulent inflow conditions were generated using TurbSim, a stochastic, full-field turbulent
wind simulator designed to efficiently produce randomized coherent turbulent structures around a spec-
ified mean wind speed [47]. TurbSim employs a statistical model to simulate a time series of three-
component wind speed vectors at various points on a two-dimensional vertical rectangular grid, fixed
in space.

When simulating flow containing coherent turbulent elements, it is advisable to conduct an ensemble of
simulations using identical boundary conditions but varying the random seed. The random seed in the
TurbSim file must be an integer within the range of –2147483648 to 2147483647. Due to the inherent
variability in turbulent flows, the manual advises the use of more than 30 different random seeds for a
specific set of boundary conditions to ensure robust results [47]. An example of one wind speed vector
for turbulent inflow conditions is reported in Figure 3.6.
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Figure 3.6: Example of turbulent inflow wind conditions of streamwise (longitudinal) direction component ”u”, generated
through TurbSim

Due to limitations in software licensing for SIMPACK and the substantial computational resources re-
quired, it was not feasible to execute the full set of simulation seeds for each combination of input
parameters. In the study by Mehlan et al. [23], six simulation seeds were used, but reproducing this
across all combinations of wind speeds and fault cases was not possible in the present work.

To address this constraint and still validate the steady-state analysis under more realistic turbulence
conditions, a strategic reduction was made in the number of wind speeds tested, decreasing from six to
four. Specifically, U1, U3, U4, and U6 were chosen (Table 3.4). This reduction ensures that a compara-
ble baseline is maintained between steady-state and turbulent condition simulations by eliminating two
wind speeds that were redundant, while still representing all critical regions of the power curve. The
fault conditions related to imbalance severity, as outlined in Table 3.3, were consistently applied across
these simulations.

Given the technical limitations mentioned above, the number of seeds was restricted to two. As a
result, a total of 80 simulations were performed, covering both faulty and healthy cases across four
wind speeds and two turbulence seeds, thereby providing a robust dataset for analysis.

The external inflow design parameters are commonly dictated by the specific site characteristics or site
classification for the intended wind turbine installation. In the present case, turbulence intensity was
quantified in compliance with IEC 61400-1 standards, employing the Normal Turbulence Model (NTM)
for Class A wind turbines. This model characterizes the higher turbulence levels typically encountered
in onshore environments. In the NTM the representative value for turbulence standard deviation, σ1,
is calculated taking into account the wind speed velocity at the hub height of the wind turbine, Vhub, its
formulation is given by:

σ1 = Iref (0.75Vhub + b) with Iref = 0.16 b = 5.6m/s (3.1)

Therefore the turbulence intensity, I, value is equal to:

I =
σ1

Vhub
(3.2)

which allows to calculate the turbulence intensity values for the six wind speeds, addressed as: IU1,
IU2, IU3, IU4, IU5 and IU6. The intensity values are reported in Table 3.6.
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Case name Turbulence intensity [-]
IU1 0.344
IU2 0.248
IU3 0.2096
IU4 0.1947
IU5 0.184
IU6 0.1648

Table 3.6: Turbulence intensity level for the chosen wind speeds

The effects of introducing turbulence into the measured signals, compared to steady-state conditions,
are illustrated in Figure 3.7. This figure represents themeasurement of the rotor speed for a low-severity
pitch misalignment imbalance case under rated power conditions (U4 = 12m/s). The plot compares
the same fault case under two different inflow conditions: with and without turbulence. Notably, the
increased randomness in amplitude oscillations of the measured signal due to turbulence can be ob-
served.

Figure 3.7: Example of turbulence effect on the rotor speed signal for the PM1 case at U4

3.5. Analysis Method Outline
The signal analysis framework presented in this thesis is schematically outlined in Figure 3.8. It starts
with an initial processing phase, applied to a selected subset of signals based on specific criteria de-
tailed in Section 3.6. Before starting the analysis, unstable system transient effects are removed from
the signals. These transients typically include initial irregularities or dynamics that do not represent
the system’s normal or steady-state operation. Such early transients may result from initial conditions,
like non-zero initial velocities or forces, which dissipate over time and are irrelevant to the long-term
behavior of the system. Including these transient effects in the analysis could lead to misleading results
and inaccurate interpretations of the system’s true performance.

In this study, the length of the transient-removed signal is 3600 seconds, i.e. 400 seconds are removed.
The analysis then diverges into two approaches: frequency domain and time domain analysis reported
in Sections 3.5.1 and 3.5.2.

These sections integrate the knowledge from the literature review presented in Chapter 2, along with
basic key statistical insights required to implement the selected comparison analysis methodologies.
This is done after all signal processing steps have been completed and the relevant features extracted.
Chapters 4 and 5 will present the results obtained from the applied methodologies, first under steady-
state conditions, followed by turbulent inflow conditions. Subsequently, Chapter 6 will synthesize these
results into a comprehensive detection and diagnosis framework. This framework is structured using a
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decision fusion approach, as outlined in Section 2.9, where individual assessments from each sensor
signal are first performed independently, and then combined to form a final, unified decision tree.

3.5.1. Frequency Domain Analysis and Comparison
The analysis begins by focusing on the left-hand branch of the schematic workflow depicted in Figure
3.8. As discussed in Section 2.7.1, frequency domain analysis involves the implementation of the COT
order resampling process. The implemented algorithm code and related flow chart are reported and
explained in detail in Appendix B (Section B.2). This step is essential for aligning a varying speed
system with the shaft integer rotation period, providing a stable foundation for further analysis.

The frequency domain approach has been adopted in this study to emphasize frequency patterns re-
lated to rotor operations of interest, through the extraction of the once-per-revolution rotor frequency
(1P) and its third harmonics (3P) from the OpenFAST rotor speed signal. As noted in Section 2.5, 1P
and 3P harmonics are crucial for detecting rotor imbalance. To perform accurate spectrum analysis
using the Fast Fourier Transform (FFT), a windowing process is first necessary to prevent spectrum
leakage or signal aliasing, as described in Section 2.7.2, which could distort the results. The Hann
window has been selected in this case to achieve the outlined purpose. Specifically, for 3600-second
signals, 60 windows of 60 seconds are extracted. The next analysis stage involves the calculation of
the FFT spectrum for each of the 60 windows into which the signals have been partitioned. After the
once-per-revolution rotor frequency (1P) and its third harmonics (3P) are extracted from the OpenFAST
rotor speed signal, the relative peak amplitudes to the listed frequencies are identified for each signal
and extracted for each window. In the following results chapters the nomenclature that is going to be
used to indicate the related frequencies’ peak amplitudes, is: 1̃P and 3̃P . After all the mentioned fea-
tures are collected for the different healthy and faulty scenarios a comparison analysis which involves
multiple steps is performed and reported accordingly to the order presented in Figure 3.8.

1. FFT analysis plots: As an initial step, FFT plots are generated within the 0-1 Hz bandwidth for
each analyzed signal to visualize the extracted spectral peaks at the identified frequencies of
interest. These plots allow for a comparison between the different imbalance scenarios and their
respective healthy cases under various inflow conditions. This serves as a preliminary assess-
ment to determine whether the detection of imbalances is feasible.

2. Averaged peak amplitudes 3D plots: The peak amplitudes from the FFT results for each anal-
ysis window are averaged to obtain a representative value for each selected signal under the
simulated operating conditions. This step aims to capture a characteristic amplitude for each
condition. Subsequently, the average peak amplitudes corresponding to different fault severities
are compared to those from the healthy condition across all selected wind speeds. The results
are compiled and presented in a 3D plot to assess whether any discernible trends emerge.

3. Peak amplitude relative change detection histograms: In succession, histograms are plotted
to quantify how the relative change in average peak amplitude values varies at different wind
speeds with increasing severity of the fault compared to healthy conditions.

4. Signals correlation analysis: After the initial analysis of averaged peak amplitudes, the focus
shifts to examining the complete dataset of peak values corresponding to each window—totaling
60 points for each signal. Analyzing these amplitude distributions, rather than single averaged
values, allows for a broader range of analytical techniques.

One of the primary methods explored in this stage is the use of correlograms, which provide
a visual representation of the correlation matrix, showing the correlation coefficients between
pairs of variables. There are three common methods to calculate these correlation coefficients:
Pearson, Spearman, and Kendall.

• Pearson’s correlation coefficient is most appropriate for linear relationships and assumes
that the data is normally distributed.

• Spearman and Kendall correlations, on the other hand, are non-parametric methods, making
them suitable for more general applications where these assumptions do not hold.

The Spearman correlation coefficient (denoted by ρ) is particularly useful when assessing the
monotonic relationship between two variables, regardless of whether the relationship is linear. It
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operates on the ranked values of the data, making it less sensitive to outliers and not dependent on
any underlying distribution. In contrast, Kendall’s coefficient is often preferred for smaller datasets
but is more computationally intensive, as it provides enhanced accuracy by comparing pairs of
data points directly. Given the large dataset in this study, the Spearman correlation coefficient is
ideal for identifying whether a monotonic relationship exists between the amplitude distributions of
different signals, even when the assumptions of normality, homoscedasticity (constant variance),
and linearity are not met. Spearman’s correlation does not rely on these assumptions, making it
robust for this analysis. The formula for the Spearman correlation coefficient is shown in Equation
3.3, with its values ranging between -1 and 1, so from a perfect negative monotonic relationship
to a positive relationship.

ρ(a, b) = 1− 6
∑

d2

n(n2 − 1)
(3.3)

Where d is the difference between the ranks of the two variable distribution groups (a and b) for
the extracted peak amplitudes and n is their length. Through the calculation of the correlation co-
efficients, between the different analyzed pairs, it is possible to identify the signals that exhibit the
most significant response in terms of peak amplitude change due to imbalanced rotor conditions
since correlations describe the mutual relationship between two variables.

After the correlation coefficients are calculated and plotted in correlograms, the amplitude distri-
bution points are further investigated through scatter plots to visualize the relationship between
signal pairs (one on the x-axis and one on the y-axis) across different fault cases and wind speeds.
Each point on the scatter plot represents a pair of amplitude values —one from each variable—
collected from the same measurement window, ensuring that the data points reflect simultaneous
measurements. These plots are used to observe clustering patterns between data points from
different fault severities and assess how they relate to each other.

5. Peak amplitude distributions analysis: In the following step, a more detailed analysis of the
peak amplitude data distribution is performed. This can be achieved using box plots, followed by
statistical multiple comparison analysis.

A box plot graphically displays the central tendency, spread, and skewness of numerical data
based on quartiles, providing a standardized summary of the dataset. In particular, the represen-
tation box spans from the lower quartile (25th percentile) to the upper quartile (75th percentile),
representing the interquartile range (IQR). Inside the box also the median is shown (50th per-
centile), and depending on its position, the skewness of the data can also be determined. Out-
liers, which differ significantly from the rest of the data, are plotted as individual points beyond the
whiskers. In this work, the box plots are used to visualize the distribution of the peak amplitudes
across different fault cases for the analyzed signals and how they compare with each other.

6. Median values multi-comparison plots: In the present stage, a statistical analysis of the am-
plitude distribution’s median values is conducted. This section outlines the main statistical tests
considered to guide the decision-making process for selecting the most appropriate method for
this study. Detailed explanations can be found in specialized literature [48]. The statistical tests
considered include ANOVA, the Kruskal–Wallis test, and the Mann-Whitney U test.

Initially, a classical one-way analysis of variance (ANOVA) was considered, but it turned out to
be unsuitable for this dataset due to its strict assumptions. ANOVA requires that data across all
groups have equal variances and follow a normal distribution, conditions not met by the simu-
lated dataset. Transforming the data to meet these assumptions could lead to unreliable results,
especially when the data significantly deviates from normality. Therefore, using ANOVA would
provide inaccurate estimates.

Instead, the non-parametric Kruskal–Wallis test was chosen. This test is an alternative to one-
way ANOVA, designed for situations where the assumptions of normality and equal variances do
not hold. The Kruskal–Wallis test compares the distributions across groups by ranking the data
rather than using the raw numeric values. It evaluates whether the median values of the groups
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are statistically different, testing the null hypothesis that all group medians are equal. If the test
rejects the null hypothesis, it indicates that at least one group’s median differs from the others.

In the Kruskal–Wallis test, data are ranked from smallest to largest across all groups, and a chi-
square statistic is used to determine whether the differences in ranks are significant. In cases of
tied values, the average rank is assigned to all tied observations. While the test does not evaluate
differences in group means, it is highly effective at identifying whether one group stochastically
dominates another.

Choosing the right statistical test is essential for minimizing errors, such as false positives (Type
I) or false negatives (Type II). If the Kruskal–Wallis test finds significant differences, subsequent
pairwise comparisons can be performed to identify which specific groups differ. However, the
focus of this analysis is on comparing all the fault groups only with the healthy condition.

For pairwise comparisons, the Mann-Whitney U test (also known as the Wilcoxon rank-sum test)
is used and chosen as the final tool for this analysis stage. This non-parametric test compares
two independent groups without assuming a normal distribution, making it more robust for skewed
data or datasets that deviate from normality. The Mann-Whitney U test works by ranking all the
values from both groups together and calculating a U statistic, which measures the difference
between the rank sums of the two groups according to the formula reported in Equation 3.4. This
approach is more appropriate for analyzing the fault conditions against the healthy state.

U1 = n1n2 +
n1(n1 + 1)

2
−R1 (3.4)

Where U1 is the resulting U statistic value for Group 1, n1 is the sample size of Group 1 and n2

is the sample size of Group 2, R1 instead is the sum of the ranks for the observation in Group 1.
The same applies to Group 2. The smaller of the two U-values is the test statistic. The reason
for this is that the Mann-Whitney U-test is based on the assumption that lower U values indicate
a difference between groups, with U-values near 0 indicating a more extreme difference.

Once the U statistic is calculated, it is compared to a critical value from the U distribution, or
more commonly, it is converted into a p-value. The p-value is a key concept in hypothesis testing,
representing the probability of obtaining a result under the assumption that the null hypothesis
(H0) is true. If the p-value is below a significant threshold of 0.005, we reject the null hypothesis
and conclude that there is a statistically significant difference between the two groups’ distribu-
tions, implying a difference in medians. If this condition is met, the median values of the analyzed
groups in the dataset are presented in a multiple comparison plot, clearly distinguishing between
groups with a significant positive difference and those without.

This method provides insight into how value ranges vary across different wind conditions and fault
severity levels introducing a new potential criterion for the detection and diagnosis of different
health state scenarios.

3.5.2. Time Domain Analysis
In this section, we focus on the right-hand branch of the schematic layout shown in Figure 3.8. The
time domain approach adopted in this study involves applying a filtering process to isolate the impact
of a specific system mode on the mechanical components. This filtering helps prevent the overlap of
various system effects and components, which can complicate interpretation. A bandpass filter (BPF)
is used to allow only the frequencies within a specific band to pass, effectively suppressing those
outside the selected bandwidth and avoiding the introduction of unwanted frequencies into the system.
In vibration analysis, a 10% range is commonly employed ([49], [50]) to balance the isolation of the
desired frequency for a particular system mode while capturing sufficient signal energy to accurately
represent themodewithout distortion. This approach is validated by performing the eigenvalue analysis,
confirming that this range corresponds to the bandwidth encompassing all the different system modes
present in the model. After processing the signals with the explained procedures, key features, also
known as condition indicators, are extracted.
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A condition indicator is any feature that helps distinguish between normal and faulty operation or pre-
dicts remaining useful life. Effective condition indicators cluster similar system statuses while differen-
tiating between distinct statuses [51]. Focusing on indicators closely related to the system’s physics
and dynamics ensures that the information obtained is clear and relevant for fault detection.

Time domain analysis examines the system’s physical and statistical parameters to identify detectable
trends under different fault conditions and varying severity levels. The selected statistical indicators
were discussed in Section 2.8 and their formulation is given in Equations: 2.18 (CICF), 2.19 (CIKurt),
2.17 (CIRMS), 2.20 (CIAPDF) and 2.21 (CIDND).

Multiple analysis types are involved in their determination and comparison, and they are going to be
addressed also in this case in the same order given in Figure 3.8.

1. Signals torsional mode PDFs and histograms comparison: To ensure the validity of the con-
dition indicators, CIAPDF and CIDND, the input filtered signals must adhere to the initial assumption
that they follow a normal distribution under healthy conditions (as discussed in Section 2.8). This
analysis aims to quantify deviations from this assumption in the presence of faults. For each rotor
imbalance scenario, the analysis compares four signal conditions: one healthy state and three
levels of fault severity for the same vibration measurement. The process begins by evaluating
the amplitude probability density function (PDF) condition indicator, its form is given by:

f(x) =
1√
2πσ2

exp
(x−µ)2

2σ2 (3.5)

Therefore, the mean (µ) and standard deviation (σ) of the signals under comparison are calcu-
lated to perform the respective PDF allowing a comparison of peak amplitude values. The x-axis
spans the range between the minimum and maximum values of the signals. Next, the theoret-
ical PDFs are compared with histogram plots generated from the actual simulated signal data.
This comparison assesses how well the theoretical normal distribution aligns with the observed
data, providing validation for the assumption that the healthy condition signals follow a normal
distribution.

2. NPP plots for distribution fitting: Secondly, a comparison analysis between values of the
(CIDND) indicator is conducted. This metric represents the area gap present between the deviation
of the signal distribution from the theoretical normal distribution. The comparison is performed
using Normal Probability Plots (NPP), which involve a point-by-point quantile comparison to de-
termine whether the simulated signal data points align with the expected straight-line distribution.

To robustly assess, beyond visual inspection, whether the dataset signals fit the normal distribu-
tion, the Kolmogorov-Smirnov test can be used as a goodness-of-fit verification method. This test
is non-parametric, meaning it does not assume a specific distribution for the data, making it appli-
cable in a wide range of scenarios. It is particularly useful because of its sensitivity to differences
in both location and shape between the empirical and reference distributions. The test quanti-
fies the distance between the empirical distribution function of the sample and the cumulative
distribution function of the reference distribution (in this case, the standard normal distribution)
[52]. This can be carried out using MATLAB’s built-in ’kstest’ function. Since the selected test is
non-parametric, it does not make strict assumptions about the structure of the input data, which
is advantageous for the dataset under study. The focus of this work is not on the mathematical
details of the test, which can be further explored in statistical literature [52], but rather on the
insights it offers. The test aims to return a decision regarding the null hypothesis (H0), which
posits whether or not the data distribution vector originates from a standard normal distribution.
The test output is h = 1 if the null hypothesis is rejected at the 5% significance level; otherwise,
the reported output will be h = 0.

3. Bar plot indicators comparison: The three remaining condition indicator values are directly
calculated through the listed formulas and their numerical results are compared across different
cases using simple bar plots.
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3.6. Signal Choice
As discussed in Section 2.2, various sensor types are available for wind turbine CMS. The initial focus
of the proposed work is on extracting key signals from the extensive dataset typically collected by stan-
dard turbine condition monitoring systems. This dataset includes measurements of accelerations and
related quantities such as velocities and displacement. In addition, in this study, loads and mechanical
moments are recorded in both the stationary reference frame of the wind turbine system and the rotat-
ing reference frame of the blades. The focus of this work will be on vibration monitoring analysis, which
is well-established and particularly effective in assessing the condition of mechanical drive components.
This approach is widely adopted and focuses on measuring three interrelated quantities: displacement,
velocity, and acceleration, which are connected through numerical integration or differentiation. As the
vibration frequency increases, displacement tends to decrease, whereas acceleration increases[53].
Therefore, as the frequency rises, it is generally advisable to transition from a displacement sensor to
a velocity transducer, and ultimately, to an accelerometer. The optimal frequency ranges for different
transducers are detailed in Table 3.7, as reported by Tavner et al. [53].

Table 3.7: Vibration transducer and their related required frequency range, reproduced from Tavner et al. (2020) [53]

Transducer Typical transducer output response
0–2 Hz 2–5 Hz 5–200 Hz 0.2–1 kHz 1–2 kHz 2–20 kHz

Displacement Good Good Good Fair Poor Nil
Velocity Fair Good Good Good Fair Poor
Accelerometer Poor Fair Good Good Good Good

In the drivetrain model used for this study, displacement measurements were not included as outputs,
since international standards do not recommend their analysis. However, for future studies, it would
be beneficial to also consider displacement measurements. This is because loading induced by rotor
imbalances in wind turbines affects low-frequency vibration ranges. Section 2.5.1 explained that un-
balanced rotors transmit the most intense loads at once per rotation, known as ”1P”. The terms 1P,
2P, 3P, and so on, refer to the frequency or periodicity of recurring variations, particularly in loads or
system responses. These terms represent the number of occurrences per revolution, with 1P meaning
once-per-revolution, 2P meaning twice-per-revolution, and 3P meaning three-times-per-revolution, etc.
Therefore, the 1P frequency is equal to the inverse of the time taken for one full rotation, while the 3P
frequency is three times that value [25]. This once-per-revolution frequency, along with its harmonics
nP , is determined by the rotor’s speed ωrotor and can be expressed as:

nP [Hz] = n ·
(
mean

(ωrotor

60

))
. (3.6)

Combining the findings from the literature study reported in Table 3.7 and the low-frequency bandwidth
range of interest analyzed in this study between 0 and 1 Hz (Section: 3.5.1), simulated drivetrain
CMS velocity signals, were selected for the frequency domain analysis, in conjunction with the rotor
rotational speed vector derived from theOpenFAST simulations. The latter signal is particularly relevant
as it effectively captures the impact of types of imbalance that specifically influence individual blades,
such as the modeled cases of mass imbalance and pitch misalignment, as discussed in Section 2.5.1.
This is due to gravitational imbalance effects and allows the distinction of mass imbalance and pitch
misalignment effects from those due to yaw misalignment. Table 3.8 shows the signals used in this
work and their nomenclature, which will be consistently used in the analysis of the results in Chapters
4 and 5. It can be noticed that the selected subset of vibration signals of the CMS are in the side-side
direction (y-axes Figure 3.3). An extensive explanation for this choice is given in the following Section
3.6.1.
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Table 3.8: Signals selected for the analysis in the frequency domain and their nomenclature

Signal Nomenclature

Front main bearing side-side velocity vMB (front), Y
Rear main bearing side-side velocity vMB (rear), Y
Gearbox housing side-side velocity vGB, Y
Generator side-side velocity vGen, Y
Rotor rotational speed ωrotor

Several considerations were made when designing the time-domain analysis. It is well established that
mechanical systems are frequently subjected to varying forces and excitations, often due to changing
environmental conditions or the development of faults. In rotating machinery, these dynamic phenom-
ena can exhibit significant non-linear behavior, a phenomenon extensively documented over the past
several decades, particularly in studies of torsional vibrations such as Kahraman et al. (1997) [54].

As detailed in Section 3.1, the model incorporates two main bearings and four support systems, which
are intended to mitigate the transmission of significant non-torque loads to the drivetrain. Consequently,
the study byWang et al. (2019) [36] focuses on resonance evaluation primarily in the torsional direction,
as this is the direction most likely to coincide with system excitation frequencies. To avoid the influence
of multiple modes that could lead to misleading results, the torsional mode has been selected as the
filtering frequency for time-domain analysis, specifically to assess its sensitivity to the rotor imbalance
cases under study. The torsional mode’s primary frequency of interest, as mentioned in Section 3.1, is
equal to 4.21 Hz. Nonetheless, the study of the axial loading drivetrain mode of the system needs also
to be addressed since it reflects the impact of non-toque loads such as axial thrust and shear forces
which induce blades out of plane motions [55]. Even if the used drivetrain model design mitigates these
effects they still need to be investigated but this will be left for future study and improvements.

Furthermore, external excitations, such as rotor imbalances, are known to cause torque fluctuations
that directly impact the torsional mode of the drivetrain ([56], [57]). This connection is further explored
in Section 3.6.1. During the analysis of the simulated dataset, it was observed that the velocity vibra-
tion signals exhibited a multimodal distribution at higher frequency ranges, while the chosen condition
indicators for this domain study apply only to normally distributed signals (Section 3.5.2). To address
this and ensure more accurate analysis, acceleration signals, always in the side-side direction of mea-
surements (y-axis), were chosen for the time-domain study, they are listed in Table 3.9.

Table 3.9: Signals chosen for time domain analysis and their nomenclature

Signal Nomenclature

Front main bearing abs acceleration aMB (front), y
Rear main bearing abs acceleration aMB (rear), y
Nacelle abs acceleration aNac, y
Generator abs acceleration aGen, y

3.6.1. A Closer Look at the System Dynamics
It has to be mentioned that the model used in this work allows for the detection of forces, moments, and
vibration quantities in all three frame directions—axial (x-axis), and radial, which is further divided into
vertical (z-axis) and lateral or side-side (y-axis) directions. In the literature study by Mehlan et al. [23],
the induced drivetrain responses resulting from the three rotor imbalances have been comprehensively
analyzed. This investigation focuses on understanding how these imbalances affect the drivetrain
and associated structures. An introduction to the topic was provided in Section 2.5, and the present
paragraph addresses these aspects in summary with deeper technical details [23].

• Firstly, is known that when it comes to mass imbalance, the primary excitation occurs through
centrifugal forces in the lateral (Y) and vertical (Z) directions within the wind turbine’s fixed frame.
These periodic shear forces, driven by the rotation of the imbalance mass, excite transverse
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bending modes in the tower structure, leading to lateral deflections and vibrations. Additionally,
gravitational forces in the rotating frame generate periodic torque oscillations about the X-axis,
which in turn excite torsional modes within the drivetrain, significantly impacting critical compo-
nents such as the gearbox and main shaft.

• Pitch misalignment leads to uneven aerodynamic forces across the rotor, and it was found to
generate substantial out-of-plane bending moments in the Y (side-side) and Z (vertical) direc-
tions within the fixed frame. These bending moments induce vibrations in the main shaft, which
propagate through the drivetrain and affect downstream components like the gearbox. Further-
more, the imbalance in tangential forces due to pitch misalignment creates shear forces along
the X (fore-aft) and Y (side-side) axes. These forces contribute to lateral bending of the tower,
with a lesser impact on fore-aft motion.

• Yaw misalignment, on the other hand, implies misalignment of the rotor axis with the wind direc-
tion, it results in periodic variations in the effective angle of attack on each blade. This misalign-
ment induces oscillating thrust and tangential forces that generate periodic shear forces along the
Y (side-side) and Z (vertical) axes and bending moments in the Y-axis. The primary consequence
of these forces is increased swaying of the tower. The dynamic response to yaw misalignment
is complex and can vary significantly depending on operational conditions and the specific yaw
angle, making it a challenging aspect to manage.

The analysis of these dynamic outcomes, grounded in an understanding of the physical relationships
involved, provides insights into the most meaningful signals and directional frames to focus on. Ac-
cording to the study’s findings [23], significant responses for all cases occur in the side-side (y-axis)
direction. Furthermore, different directions of the current simulated dataset, have been analyzed and
compared for each vibration signal. In Figure 3.9 a representative example is reported which clearly
shows the higher impact of the modeled faults, on the y-axis vibration measurement on the gearbox
housing. As a result, the chosen subset of signals for effective analysis across all imbalances empha-
sizes the y-axis for the chosen analysis methods. This approach leaves the axial (X) and vertical (Z)
directions for further study and potential refinement in future work.

Figure 3.9: Gearbox housing vibration signal for PM2 case and wind speed U4. Comparison of the different velocities
measurements along the x,y, and z axes



4
Results: Steady State Analysis

In the following chapter, the results from the initial set of 60 steady-state simulations, performed ac-
cording to the input conditions detailed in Section 3.3, are presented. Extracting interpretable features
is fundamental to ensuring clarity and precision when developing a classification tree algorithm for fault
detection. The key objective of the results’ analysis, is to identify distinctive features that enable differ-
entiation between various imbalance scenarios and their diagnosis, facilitating accurate fault diagnosis
and trend analysis under the variable wind turbine operating conditions.

As outlined in Section 3.5, various analytical approaches were chosen to compare post-processed sig-
nals under both healthy and faulty conditions. Section 4.1 begins with a frequency domain analysis,
using FFT plots to assess the frequency spectrum of the selected signals (4.1.1). The peak amplitude
magnitudes at key frequencies are averaged across windows and displayed in a 3D plot. This allows for
a comprehensive evaluation of each signal, considering all combinations of fault scenarios and inflow
conditions (as specified in Section 3.3), with further details provided in Subsection 4.1.2. Next, Sub-
section 4.1.3 uses histograms to detect relative changes in the averaged peak amplitudes, normalized
against the healthy condition, helping to identify trends across different fault severity levels. In Subsec-
tion 4.1.4, the relationships between signals are explored through correlation matrices and scatter plots
of the peak amplitude distributions. These distributions are further analyzed in Subsection 4.1.5 using
box plots and statistical tests to compare the median values between groups. Finally, Subsection 4.2
presents the results of a time-domain analysis, focusing on selected condition indicators to compare
the signals under steady-state conditions. The chapter concludes with a summary of the key findings
in Section 4.3.

4.1. Frequency Domain Analysis
In the case of steady-state conditions, the computed order tracking (COT) resampling algorithm was
not applied. This decision stemmed from the observation that, in the absence of turbulence within the
simulated dataset, the analysis of the frequency content of the windowed signals did not show any
significant variations. Therefore, post-processing analysis for feature extraction was applied directly to
the selected signals listed in Section 3.6.

The analysis focused on two key frequencies: 1P and 3P. According to what is discussed in Section
2.5.1, the 1P frequency reflects the effects of harmonic periodic loads caused by the shift in gravitational
force and thrust force centers from the hub to one of the blades due to mass imbalance and pitch
misalignment. On the other hand, the 3P frequency reflects the effects caused by the misalignment
between the direction of the incoming wind and rotor alignment, impacting the loading conditions on all
three blades.

4.1.1. FFT Analysis
The analysis presented in this section aims to confirm the feasibility of detecting the dynamic effects
previously discussed through frequency domain spectrum inspection. The FFT analysis provides a

37
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representation of the signal spectrum, enabling the identification of contributions from various system
components. Figure 4.1 shows the case of the side-to-side velocity of the gearbox housing as a repre-
sentative signal to demonstrate the impact of the three faults on system behavior. These signals were
analyzed under rated power conditions, specifically at wind speed U4.

The three plots in Figure 4.1 show different fault scenarios for low-severity cases. The plot on the
left depicts the mass imbalance case, followed by the pitch misalignment case in the center, and yaw
misalignment on the right. In the first two graphs, the comparison between faulty and healthy signals
reveals significant differences in the peak amplitudes at the 1P rotor rotational frequency, as expected,
primarily due to shifts in the center of gravitational and thrust forces on the turbine’s rotor side. In the
third plot, which represents yaw misalignment, no significant change is observed in the 1P peak ampli-
tude. However, in accordance with predictions, a noticeable change is detected at the third harmonic
amplitude (3P). This is attributed to the yaw misalignment that affects all three rotor blades.

In the mass imbalance and yaw misalignment cases, additional system modes can be also identified,
corresponding to the 3rd tower fore-aft mode and the 1st blade edge-wise mode. The tower fore-aft
mode refers to the tower bending motions that can either act against or align with the wind direction.
This phenomenon is important because creates a relative velocity on the blades causing variation in
the lift force therefore the dynamic motion of the system can be partially damped aerodynamically. The
second visible mode instead refers to the second bending mode of a wind turbine rotor and is known
as edge-wise deformation, which can also be called lead-lag motion because the rotor deforms in the
plane of rotation. As expected, these modes exhibit consistent amplitude levels in both healthy and
faulty conditions, since they do not depend on the presence of the imbalance. The comprehensive
system’s mode list is detailed in Section 3.1. Furthermore, it is evident from the middle graph that the
pitch misalignment case exhibits a significantly higher order of magnitude in the 1P amplitude, which
hides the peaks associated with other system modes.

(A) (B) (C)

Figure 4.1: FFT plot analysis for vGB, Y signal for U4= 12 m/s. Cases: (A)MI1, (B)PM1, (C)YM1

4.1.2. Average Peak Amplitudes 3D Plots
After extracting and collecting the detected peak amplitudes for each of the 60 simulation cases in the
dataset, the averaged values across all 60 windows were calculated to provide a single representative
peak amplitude value for each signal, fault condition, and wind speed. These values were then plotted
in a 3D layout representation to visualize all combinations together. Figure 4.2 illustrates the behavior of
the gearbox housing velocity signal in the side-to-side direction for each imbalance scenario, serving as
a representative example. The plots display data across six selected wind speeds and four health states
(ranging from healthy conditions to level 3 fault severity) along the x- and y-axes. The corresponding
averaged peak amplitude magnitudes for each combination of wind speed and health state are plotted
on the z-axis. Only one signal is presented in this Chapter. The other CMS measurements showed
similar and consistent behavior and they are presented in Appendix C, Section C.1.

The severity of the imbalance is reflected in the increasing amplitudes at the 1P and 3P frequen-
cies, demonstrating a proportional dependency and upward monotonic trend across all analyzed wind
speeds. External wind conditions also play a significant role, with a positive trend observed of increas-
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ing amplitude values as wind speed increases looking at the same fault level, likely due to the higher
aerodynamic loads. This behavior is noticeable in most of the cases and particularly clear for pitch
misalignment scenarios, however, this doesn’t always apply to each investigated imbalance scenario.
A closer examination of each imbalance case reveals that the amplitude values for the three conditions
differ in magnitude, showing varying sensitivities on the drivetrain side for each imbalance scenario.

For the case of mass imbalance, presented in Figure 4.2 (A), the 1P amplitudes under healthy condi-
tions show a slight offset from zero, which reduces the visual slope steepness of the trend compared
to the pitch misalignment case (Figure 4.2 (B)). This difference is due to the fact that the sensitivity to
mass imbalance is of the order of 10−6, while pitch misalignment results in amplitude magnitudes of the
order of10−4. As a result, the plot resolution is adjusted to reflect higher orders of magnitude for pitch
misalignment, but the same trend as in the mass imbalance case can be observed if the numerical val-
ues are examined more closely. On the other hand, in the case of yaw misalignment, shown in Figure
4.2 (C), a less pronounced linearly increasing trend is observed. In particular, in the first transition step
between healthy and YM1, there is almost no change in the 3P amplitude for all the investigated wind
speeds, in particular for the lower wind speeds in the cut-in region of the power curve.

(A) (B)

(C)

Figure 4.2: Averaged peak amplitudes of vGB, Y signal under varying health states and wind speed conditions: (A) MI - 1P, (B)
PM - 1P, and (C) YM - 3P

Furthermore, considering the dynamic effects of the first two cases of imbalance (MI and PM) on the
rotor side, the rotational speed signal, ωrotor, measured in rpm, was analyzed in the frequency do-
main. This analysis was not performed for yaw misalignment, as no significant dynamic effects were
observed in that case. It should be noted that this signal is not derived from the simulated CMS sensor
measurements in SIMPACK but is instead obtained from the openFAST simulations.
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Figure 4.3 displays the rotor speed results for all the simulated external input combinations in the
cases of mass imbalance and pitch misalignment. For the mass imbalance case, an increasing trend
is observed with increasing fault severity levels across the same wind speed, whereas the magnitude
tends to decrease slightly with increasing wind speed for the same health condition. This behavior may
be attributed to the introduction of aerodynamic damping effects on the blades, which could reduce
vibrations in the rotor, leading to lower 1P amplitudes, as well as to the effects of rotor speed regulation
by the control system, which can mitigate centrifugal force impacts.

For the pitch misalignment case, an increasing trend is observed, similar to the trend seen in the
gearbox housing signal results. This is likely due to the more pronounced mismatch in aerodynamic
forces acting on the blades resulting from thrust force imbalances.

(A) (B)

Figure 4.3: Averaged 1P peak amplitudes of the rotor speed signal, ωrotor : (A) MI,(B) PM

4.1.3. Relative Amplitude Change Detection
Due to the low magnitude ranges of the detected peaks, it is beneficial to quantify the trends observed
in the 3D plot analysis. For the three faulty cases and six wind speeds, the relative change in amplitude
of the collected signals with respect to the healthy case was then calculated and normalized against
the corresponding healthy amplitude. The histograms in Figure 4.4, show the results of the gearbox
housing vibration signal, vGen, Y. The analysis for other signals, which show similar trends, is provided
in Appendix C, Section C.2.

These histograms reveal a clear upward trend as the system moves from healthy to faulty conditions
across all three imbalance cases. Figures 4.4 (A) and (B) show similar trends for both mass imbal-
ance and pitch misalignment. Pitch misalignment stands out as the most sensitive case, exhibiting
amplitudes up to 150 times higher than those corresponding to healthy conditions for the case of PM3
at U6. In contrast, mass imbalance, as we saw in the previous section analysis (4.1.2), is confirmed
to be the least sensitive, with amplitude variations reaching no more than a factor of one relative to
the healthy case. The 3P amplitudes in the case of yaw misalignment, are not sensitive enough for
the detection of low fault severity or cut-in wind speeds. Nevertheless, they are effective at identifying
faults of moderate to high severity levels at higher wind speeds above cut-in.

Additionally, it is important to note that the trends for the three cases do not increase linearly with wind
speed. Instead, higher values are observed at a wind speed of U3 = 10m/s, which corresponds to
the region just before the rated wind speed of U = 11.4m/s. Considering the control regions of a wind
turbine’s power curve, the area corresponding to this wind speed is known as the transition region
between the partial load control and full load control. In this region, the control strategy shifts from max-
imizing the power coefficient through torque control to pitch control, where torque becomes inversely
proportional to the rotational speed in order to maintain a constant power output. This causes the tip-
speed ratio to deviate from its optimal value. The dynamic effects of the system in this transition region
are likely to influence the simulated results, contributing to the detection of higher peak amplitudes at
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wind speeds equal to U3.

(A) (B)

(C)

Figure 4.4: Normalised relative change in the averaged amplitudes of vGB, Y: (A) MI - 1P, (B) PM - 1P, (C) YM - 3P

Table 4.1 presents the amplitude variation ranges for all analyzed signals. It summarizes the relative
changes across the six wind speeds for each imbalance case, categorized into low, medium, and high
levels, as depicted in the histogram plots.

Focusing on vGB, Y signal column range as an example, it is evident that while mass imbalance and yaw
misalignment exhibit overlapping variation ranges between the different fault levels, pitch misalignment
displays a clear distinction in fault magnitude, and this is valid across most of the signal measurements.
This allows for effective fault detection and health assessment of the system contributing to avoiding the
possibility of false positive or negative diagnosis. Nonetheless, it’s worth it to mention that the results
under steady-state wind conditions are expected to be more sensitive and easily detectable compared
to turbulent inflow scenarios.

Table 4.1: Signals relative change ranges with respect to healthy conditions for different imbalance scenarios and fault
severities

Imbalance Case Fault Severity Level vMB(f),Y

Range
vMB(r),Y

Range
vGB,Y

Range
vGen,Y

Range

Mass Imbalance
Low 1-3 0.2-1 0.15-0.3 0.01-0.2

Medium 2-5 0.4-2 0.2-0.6 0.1-0.4
High 3-7 1-2.5 0.5-1 0.2-0.5

Pitch Misalignment
Low 90-130 50-100 20-50 15-30

Medium 190-250 100-190 50-100 35-70
High 300-400 190-300 70-150 50-100

Yaw Misalignment
Low -0.05 - 0.3 -0.1 - 0.3 -0.01 - 0.3 -0.004 -0.3

Medium -0.21 - 1.6 -0.1 - 2 -0.05 - 1.5 -0.03 - 2
High 0.4 - 4 0.3 - 4 0.1- 4 0.05 - 4
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4.1.4. Correlation Analysis
This stage of the analysis aims to assess the sensitivity of vibration signals from different sensor loca-
tions across all simulated imbalance cases, with the objective of determining their suitability for reliable
fault detection. To do this, the correlation between peak amplitude values from various sensor signals
has been analyzed. A comprehensive overview of this analysis is shown in the correlograms in Figure
4.5).

Unlike earlier steps, where averaged values were used, this analysis utilizes the full set of peak ampli-
tudes extracted from the 60 windows for each signal, without averaging. The amplitude data for each
signal are compared in pairs, meaning the peak amplitudes of two different signals are analyzed simul-
taneously to identify their correlation, as explained in Section 3.5.1. Rotor speed is also included in the
analysis for the first two imbalance cases, for the reasons discussed earlier in Section 4.1.2.

(A) (B) (C)

Figure 4.5: Correlation matrices between selected signals for 1P peak amplitudes ((A) MI, (B) PM and 3P amplitudes ((C) YM)

It can be observed that in general, CMS signal pairs, between main bearings, gearbox housing and
generator coupling, exhibit high correlation coefficients, indicating a strong relationship in how these
components respond to rotor imbalances. The correlation coefficients are equal to or approaching 1
in cases (B) and (C). This suggests that multiple sensor locations can effectively capture the 1P and
3P harmonics, which are indicative of the respective faults. In contrast, lower correlation coefficients
are observed in case (A), particularly when the signals correlate to the rotor speed. This signal shows
weaker correlations with the other vibration signals, with coefficients ranging from 0.15 to 0.39, indicat-
ing different responses and sensitivity to the presence of imbalances.

Scatter plots have been used to visually assess how the behaviors of these signals cluster. For each
imbalance case, two types of visualizations are provided. The first set of plots compares the amplitudes
corresponding to each health state (healthy, and fault severities 1, 2, and 3) of the machine, across all
analyzed inflow conditions, displayed in four separate subplots. The second set includes six subplots,
one for each simulated wind speed (from U1 to U6), showing how the fault-related amplitudes change
as fault severity increases. For the figures presented in this section, in both visualizations, the x- and
y-axes represent the frequency peak amplitudes for the analyzed signal pair. As known, 1P frequency
peaks are extracted for the mass imbalance and pitch misalignment scenarios, and the 3P peak for the
yaw misalignment case. To simplify the notation and improve clarity in the figure subplots, the signal
distributions for points’ amplitude on the axes will be denoted as ”s̃ignal[u.m.]”.

In this Section, for each imbalance case, the most effective signal pair is presented to highlight the most
significant and meaningful results of this analysis. However, similar trends have been observed in other
signal pairings due to the consistent correlation coefficients observed in figure 4.5. The first presented
imbalance scenario is mass imbalance, followed by pitch misalignment, and finally yaw misalignment.

For the mass imbalance case, the correlation coefficients between the CMS signals range from 0.64
to 0.97. These results have been analyzed across all possible signal combinations. However, no clear
clustering of the extracted peak amplitudes was observed, as they mainly tend to mix and overlap. This
indicates that it is not possible to differentiate healthy/faulty behavior among the six wind speeds, nor
is it possible to distinguish between different fault levels when comparing within the same wind speed.
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An illustrative example examining the correlation between the 1P peak amplitudes of the generator
coupling and gearbox housing is presented in Figures 4.6 and 4.7. This analysis reveals that, despite
the increasing trend observed in the 3D layout of averaged peak amplitudes in Figure 4.2 (A), the differ-
ences in magnitude between various combinations of inflow conditions or fault levels are not sufficiently
distinct to allow for clear clustering.

Figure 4.6: Mass imbalance - 1P amplitudes scatter plots of vGB, Y and vGen, Y signals. Each subplot refers to the relationship
across all wind speeds for a particular health condition: (a) Healthy case; (b) MI1; (c) MI2; (d) MI3

Figure 4.7: Mass imbalance - 1P amplitudes scatter plots of vGB, Y and vGen, Y signals. Each subplot resembles a single wind
speed for different health conditions: (a) U1; (b) U2; (c) U3; (d) U4; (e) U5; (f) U6

A particularly insightful analysis involves the correlation between the extracted peak amplitudes of rotor
speed and the various CMS vibration signals. Figures 4.8 and 4.9 show the comparison between rotor
speed and gearbox housing. A clear horizontal trend of the data point clusters can be observed. This
result underscores the predominance of rotor speed in identifying the presence of mass imbalance
among all other CMS signals.

In Figure 4.8, for instance, selecting a peak amplitude value from the gearbox vibration signal (x-axis)
would not allow for differentiation between wind speeds. However, on the y-axis (representing rotor
speed), visible discrimination is observed as the data cluster in distinct horizontal rows, each corre-
sponding to different peak amplitude magnitudes. As expected, a decreasing trend in amplitude val-
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ues is evident with increasing wind speed. This behavior aligns with the averaged amplitude analysis
presented in the 3D plot in figure 4.3 earlier in this Chapter.

In Figure 4.9, a clear clustering is also observed, displaying an increasing trend within the same wind
speed as the fault progresses, starting from the green healthy group to the red severe fault case (MI3).

Figure 4.8: Mass imbalance - 1P amplitudes scatter plots of vGB, Y and ωrotor signals. Each subplot refers to the relationship
across all wind speeds for a particular health condition: (a) Healthy case; (b) MI1; (c) MI2; (d) MI3

Figure 4.9: Mass imbalance - 1P amplitudes scatter plots of vGB, Y and ωrotor signals. Each subplot resembles a single wind
speed for different health conditions: (a) U1; (b) U2; (c) U3; (d) U4; (e) U5; (f) U6

Pitch misalignment stands out among the other studied imbalance cases due to its strong correlation
between all analyzed signal pairs. This allows for clear clustering and a distinct, linearly increasing
trend across both different environmental conditions and fault severity. In Figure 4.10, the linear trend
along the plot diagonal, corresponding to increasing wind speeds, is clearly visible. The data clusters
shift from the lower left, in the healthy condition subplot (Figure 4.10 (a)) with tightly clustered points
and minimal variation across wind speeds, to the upper right, in PM3 fault severity, where the data
points are more spread out and distinct.

The same pattern is observed in Figure 4.11, where, for each operating wind speed, a clear clustering
trend is detectable across the various health conditions. For each wind speed, this indicates a pro-
portional effect between the fault severity and the peak amplitude response of the signals. At higher
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wind speeds, the effect of the fault is more pronounced, leading to greater separation between different
health states in the plots. In contrast, at lower wind speeds, the signals are less sensitive to the fault,
resulting in closer clustering and less distinguishable differences between health conditions.

Figure 4.10: Pitch misalignment- 1P amplitudes scatter plots of vGB, Y and vGen, Y signals. Each subplot refers to the
relationship across all wind speeds for a particular health condition: (a) Healthy case; (b) PM1; (c) PM2; (d) PM3

Figure 4.11: Pitch misalignment- 1P amplitudes scatter plots of vGB, Y and vGen, Y signals. Each subplot resembles a single
wind speed for different health conditions: (a) U1; (b) U2; (c) U3; (d) U4; (e) U5; (f) U6

Lastly, the yaw misalignment scenario is analyzed through scatter plots. Linear correlation is also
evident in Figures 4.12 and 4.13. However, in the former, tight clustering along the data trend line is
observed in the first three subplots, making it difficult to distinguish between different wind speeds. The
clusters spread out only in the last subplot, which corresponds to the highest fault severity level. Notably,
as seen from the upper-right yellow points group and confirmed by the previous averaged analysis, wind
speed U3 = 10m/s generates the highest amplitude response in the 3P harmonic extracted peaks.

When analyzing the system’s health response at the same wind speed, Figure 4.13 shows the inability
of the selected harmonic to identify differences in system vibration behavior at low cut-in wind speeds.
The data points overlap without any clear distinction between health states. However, at higher wind



4.1. Frequency Domain Analysis 46

speeds, the data groups showmore pronounced separation, particularly for higher fault severities (YM2
and YM3). As observed in the histogram analysis in Section 4.1.3, the method demonstrates limited
sensitivity in detecting lower levels of yaw misalignment (YM1). The extracted amplitudes significantly
overlap with those corresponding to the healthy state. Consequently, the green clusters representing
the healthy condition are not distinguishable in this figure, indicating that the fault detection capability
at this low severity level is not sufficiently pronounced.

Figure 4.12: Yaw misalignment- 3P amplitudes scatter plots of vMB (front), Y and vMB (rear), Y signals. Each subplot refers to the
relationship across all wind speeds for a particular health condition: (a) Healthy case; (b) YM1; (c) YM2; (d) YM3.

Figure 4.13: Yaw misalignment- 3P amplitudes scatter plots of vMB (front), Y and vMB (rear), Y signals. Each subplot resembles a
single wind speed for different health conditions: (a) U1; (b) U2; (c) U3; (d) U4; (e) U5; (f) U6

Overall, while the correlation between CMS signals remains consistently strong, this analysis, demon-
strates that the ability to differentiate between fault severities improves as wind speed increases. At
higher wind speeds, yaw misalignment becomes more detectable, with clearer separation between
health conditions, whereas at lower wind speeds, it is more difficult to distinguish between fault lev-
els. This suggests that the system’s response to yaw misalignment is more sensitive under higher
aerodynamic loading conditions.
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4.1.5. Box Plots and Median Values Multi-comparison Analysis
As outlined in Chapter 3 (3.5), this section analyzes the extracted features by investigating several key
aspects. The first step involves creating box plots to examine the distribution of the extracted peak har-
monic amplitudes for each imbalance scenario under different wind speeds. The analysis revealed a
consistent pattern in the data distribution across the various wind speeds. Given the extensive nature
of the simulated dataset, this analysis aggregates the detected peak amplitudes for all three imbal-
ance cases and selected signals across all wind speeds. This approach allows for a comprehensive
assessment of how these amplitudes compare, providing deeper insight into the system’s response.
For completeness, the results for each individual wind speed are provided in Appendix D for the gear-
box housing vibration signal as an example, the same can be achieved for the other CMS signals. A
meaningful observation to point out about these individual speed plots is the clear subdivision with-
out overlapping of the distribution boxes for pitch misalignment case, standing out again for its clear
detectability also in terms of fault severity.

Three graphic representations are reported which show box plots for the three imbalance scenarios,
each representing the four main CMS signals selected. Figure 4.14 refers to the mass imbalance
case, Figure 4.15 to the pitch misalignment case, and finally Figure 4.16 to the yaw misalignment
case. In all three cases, the figures confirm an increasing trend in the fault-related amplitude and
variance ranges as the fault severity increases from healthy to more severe levels. Additionally, it can
be observed that the amplitudes increase going from the turbine rotor side to the end of its power
transmission system, with the generator signal exhibiting the highest vibration amplitude ranges. This
strengthens the observations made with the clustering analysis described in the previous sub-section
(4.1.4). Specifically, for mass imbalance the boxes for each of the four signals tend to overlap quite
significantly for different health states, and the difference between their median values (shown by the
red horizontal lines) is insignificant. In the case of pitch misalignment healthy and faulty states are
clearly distinguishable, while yaw misalignment exhibits noticeable differences in quartile distributions
mainly for the last two fault severity levels, which enables effective fault detection. However, as stated
before, there is no distinction between the healthy state and the YM1 conditions.

Figure 4.14: MI box plot- 1P amplitude distribution and variance of the selected monitoring signals aggregated for all wind
speeds
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Figure 4.15: PM box plot - 1P amplitude distribution and variance of the selected monitoring signals aggregated for all wind
speeds

Figure 4.16: YM box plot - 3P amplitude distribution and variance of the selected monitoring signals aggregated for all wind
speeds

Beyond providing an overview of the data distribution, this analysis highlights the potential of using the
distribution median values of the features extracted for selected harmonics as a fault detection indicator.
This is further studied by performing a statistical follow-up analysis where the Mann–Whitney U test is
applied. As introduced in Section 3.5.1, the Mann–Whitney U test calculates the likelihood that two
different groups have statistically significant differences in their median values. In this analysis, the test
was applied in pairs, comparing each imbalance subset against the corresponding healthy condition.
Also in this case, for presenting the results, the data points have been grouped among all the analyzed
wind speeds. Nonetheless, the same results trend has been obtained when analyzed singularly, the
figures are reported in Appendix D Section D.2.

The statistical comparison results corresponding to the three box plots from the previous figures are
displayed in Figures 4.17, 4.18, and 4.19. In these plots, the x-axis represents the median amplitude
magnitudes, while the y-axis lists the four CMS signals for each health condition. The blue markers
indicate healthy state conditions, the red markers highlight groups with statistically significant differ-
ences compared to the healthy condition, and the grey markers represent groups where no significant
difference was observed between the fault scenario and the corresponding healthy condition.
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Figure 4.17: MI - Multiple comparison median values analysis for CMS signals

Figure 4.18: PM - Multiple comparison median values analysis for CMS signals

Figure 4.19: YM - Multiple comparison median values analysis for CMS signals
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The considerations made in the previous box plot analysis for different imbalance scenarios also apply
to the median value analysis across all CMS signals. Mass imbalance cases show only a small differ-
ence in magnitude range compared to healthy conditions. Pitch misalignment, however, demonstrates
a high potential for distinguishing between different health states using the newly introduced criteria.
On the other hand, yaw misalignment is confirmed to not show a significant statistical difference for
low-severity cases compared to healthy conditions measurements.

4.1.6. Pitch Misalignement vs. Mass Imbalance
In the previous Section, it was observed that the three imbalance cases exhibit similar trends reflected in
different magnitudes of median value ranges. However, it is important to note that although these trends
are consistent, the sensitivity of the signals varies depending on the type of imbalance. Specifically,
yaw misalignment stands out because it is characterized by the analysis of 3P peak amplitudes rather
than 1P. In contrast, pitch misalignment and mass imbalance require further analysis and comparison
to assess how, and if, they can be detected in real conditions. For this reason, distribution analysis
through box plots, along with multiple comparison analyses of median values, were conducted for
each signal to directly compare the two types of imbalance.

The analysis across all four CMS signals produced consistent results. However, for illustrative pur-
poses, only the gearbox housing velocity vibration signal is presented here. Figure 4.20 shows box
plots comparing the amplitude distributions of this signal under healthy conditions and different fault
levels for both mass imbalance and pitch misalignment scenarios. This side-by-side comparison pro-
vides a clear visualization of how these two fault types differ.

After the Mann-Whitney statistical test is applied between the faulty groups and the corresponding
healthy condition data, and Figure 4.21 is generated, displaying the median values of the distributions.
It is evident from the figure that mass imbalance (MI1, MI2, and MI3, y-axis) does not show a statistically
significant difference in median values (x-axis) which are represented in grey, compared to the blue
marker for healthy condition. This lack of distinction limits its effectiveness in detecting mass imbalance.

In contrast, pitch misalignment (PM1, PM2, and PM3) shows a clear shift in median values, as high-
lighted by the red markers. The higher the fault severity, the more the median value shifts to the right,
indicating higher amplitude magnitudes.

This confirms the vibration signal as a reliable indicator for detecting pitch misalignment. Similar behav-
ior is observed across the other CMS signals analyzed, which demonstrate comparable effectiveness
for pitch misalignment detection. The corresponding plots for these signals are presented in Appendix
C, Section C.3.

Figure 4.20: vGB, Y signal box plots peak amplitude
distribution analysis for healthy case compared to MI1,
MI2, MI3 and PM1, PM2, PM3 imbalance scenarios

Figure 4.21: vGB, Y amplitude distribution median values
comparison analysis after significant statistic difference

detection (Mann-Whitney U test)
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The only signal that resulted to be robust enough for mass imbalance detection, giving peak amplitudes
in the same range of magnitude of the pitch misalignment imbalance case, is the rotor speed. Results
are shown in the box plot and multiple comparison analysis in figures 4.22 and 4.23, respectively.

Figure 4.22: ωrotor signal box plots peak amplitude
distribution analysis for healthy case compared to MI1,
MI2, MI3 and PM1, PM2, PM3 imbalance scenarios

Figure 4.23: ωrotor amplitude distribution median values
comparison analysis after significant statistic difference

detection (Mann-Whitney U test)

4.2. Time Domain Analysis
As introduced in Chapter 3, two analysis domains have been selected for this thesis work. This section
focuses on the results obtained from the analysis in the time domain. The system’s torsional mode was
identified as the primary mode of interest to be investigated (see Section 3.6). Based on the modal
analysis simulations of the 10MW drivetrain model, a central frequency of 4.21 Hz has been selected
and isolated as described in section 3.1. For the time-domain analysis, for each wind speed, the same
signals under different health conditions are compared. After the initial post-processing steps, such as
transient time removal and band-pass filtering, the selected statistical features are extracted.

The first two analyzed features are CIAPDF and CIDND, presented in Equations 2.20 and 2.21. Ac-
cording to the literature, the evaluation of these two condition indicators begins with the assumption
that filtered signals in healthy conditions follow a normal distribution. Any deviation from this ideal be-
havior is considered indicative of deterioration in the system’s operating conditions. Due to the higher
frequency range investigated for the torsional mode analysis compared to frequency domain features,
acceleration vibration signals were selected from the CMS sensors in the side-to-side measurement
direction. However, upon analyzing the model signal outputs for each imbalance case, only the main
bearings signals (front and rear) showed behavior consistent with this hypothesis. Therefore, the pro-
posed time domain analysis steps are applicable just to these two signals. In contrast, the nacelle
and generator side-to-side acceleration signals exhibited healthy behavior distributions that already
deviated from a normal distribution.

The first analysis step, as outlined in Section 3.5.2, involves calculating and comparing the normal
probability density function (PDF) for the four signals. The first health condition indicator, CIAPDF ,
measures the amplitude difference of the PDF between the different health states. Since front and rear
main bearings yielded similar results, only the front main bearing analysis outputs are reported in this
section, but the same conclusions apply to the rear one. All three imbalance cases were analyzed. The
results reported in this section, demonstrate a clear detection of deviations from the normal distribution
for the pitch misalignment case scenarios at rated power conditions, i.e. from rated wind speed and
above, namely U4, U5 and U6. In contrast, mass imbalance and yaw misalignment scenarios have
been proven to consistently match the normal distribution for the torsional mode analysis, indicating
insufficient sensitivity for fault detection through torsional mode analysis. Examples of results obtained
for MI and YM are reported in Section C.4 of Appendix C, for U4.

Figure 4.24 presents the front main bearing PDFs for four different pitch health conditions, comparing
the healthy case to the three pitch misalignment fault levels, PM1, PM2, and PM3. Numerical results
are collected in Table 4.2.
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Figure 4.24: PDFs of aMB (front),Y signals for healthy, PM1, PM2, PM3 conditions, at U4

This analysis shows a noticeable increase in the peakedness of the PDF distributions as the fault
severity increases, suggesting a narrower range of amplitude variations. Consequently, this leads to
a rising trend in the CIAPDF condition indicator, reflecting worsening health conditions. On the other
hand, the curves for low-level faults and healthy conditions exhibit reduced amplitude values.

To understand this behavior, we need to explore the aerodynamics behind the design of a wind turbine
blade. The pitch angle refers to the angle between the chord line of the blade and the plane of rotation.
By adjusting this angle, it is possible to control how much aerodynamic force is exerted on the blades.
In this context blade stiffness refers to the resistance of the blade to deformation. Therefore, as we
model higher severities of pitch misalignment, we also decrease the aerodynamic forces acting on the
blade, leading to less flexing and bending. This causes the blade to behave in a more rigid manner,
resulting in less severe vibration amplitudes, as observed in the probability density function for PM3.

When fitting the histogram representation of the signals across the four different health conditions to
the theoretical normal probability density function, as shown in Figure 4.25), it becomes evident that
the fit is nearly perfect for the healthy condition. However, the fit progressively deteriorates as fault
severity increases. The degree of deviation from the normal distribution can be quantified using the
second condition indicator, CIDND, which measures the area difference between the actual measured
distribution and the ideal normal distribution.

Figure 4.25: Healthy vs PM1/PM2/PM3 - aMB, (front), Y , U4: histogram data fitting of the simulated dataset with respect to
theoretical normal distribution.
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This is visualized through the quantile comparison in the normal probability plots (NPP), as shown in
Figure 4.26. The increase in area difference for the different pitch misalignment cases reflects the
growing deviation in the tails of the distribution as fault severity worsens. This result matches the ex-
pectation acquired from other studies, such as [30], when dealing with health monitoring of mechanical
components. Also in this case, output numerical results are collected in Table 4.2.

Figure 4.26: Healthy vs PM1/PM2/PM3 - aMB, (front), Y, U4: NPPs for quantile comparison of simulated data with theoretical
normal distribution.

To verify the goodness-of-fit between the healthy case distribution and the theoretical normal distribu-
tion, the Kolmogorov-Smirnov (KS) test is applied. The test returns h = 1 if the null hypothesis is rejected
at the 5% significance level, indicating the data does not follow a normal distribution; otherwise, the
output will be h = 0. The results are shown in the fourth column of table 4.2 labeled as ”KS_h_value”.
As expected the data match a normal distribution just for healthy conditions.

Lastly, the three remaining condition indicators, the crest factor (CICF ), kurtosis (CIKurtosis), and root-
mean-square value (CIRMS), are calculated according to Equations 2.18, 2.19, 2.17. Graphical rep-
resentation is provided using bar plots in Figure 4.27 and numerical values reported in 4.2. The plots
and the data shown reveal an increasing trend for the first two indicators, namely the crest factor and
the kurtosis, and a decreasing trend for the root-mean-square value.

Figure 4.27: Bar plots for (CICF ), (CIKurtosis) and (CIRMS ) for healthy vs PM1/PM2/PM3 faulty conditions
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Table 4.2: Time domain condition indicators for vMB(front),Y comparing Healthy vs PM1/PM2/PM3 cases

Fault level CI_APDF CI_DND KS_h_value CI_CF CI_kurtosis CI_rms
Healthy 89.161 2.96E-05 0 3.122 2.979 0.0044
Low 89.468 6.87E-05 1 3.238 3.100 0.0044
Medium 111.987 0.000468 1 3.262 3.192 0.0032
High 177.157 0.000498 1 3.327 3.593 0.0019

The numerical values of all the collected condition indicators are summarised in Table 4.2, offering
insights into their effectiveness as health indicators under rated wind conditions for different levels of
pitch misalignment. An increasing trend is noticeable for all condition indicators, except for the last one
(CIrms), which displays a decreasing trend, consistent with the increased peakedness observed in the
probability distribution function for the high-severity case (PM3).

4.3. Summary
In this chapter, the analysis method outlined in Chapter 3, has been applied to steady-state condi-
tions, aiming at providing a robust system for fault detection and health condition estimation in wind
turbines which present different imbalance types on the rotor. Vibration velocity signals from simulated
drivetrain CMS sensor positions were selected as the basis for frequency domain fault detection. The
analysis involved signals from both main bearings, the gearbox housing, and the generator coupling.
To summarize the results, this work has explored the feasibility of using 1P and 3P peak frequency
amplitudes in all the examined CMS measurements, combined with the investigation of the rotor speed
signal. Positive results were achieved in differentiating between the different imbalance scenarios.

The extracted features from the selected signals displayed a consistent proportionally increasing trend
as the fault severity increased for the samewind speed. The averaged amplitude values, extracted from
the signal windows, were presented in 3D plots and quantified through relative change histograms, mea-
sured against healthy conditions. However, limitations were identified in detecting 3P peak amplitudes
for yaw misalignment, which proved insufficient for cut-in wind speed and low-severity misalignments.

Signals correlation analysis revealed that the rotor speed signal is the most effective signal for mass
imbalance detection, allowing for clear clustering between fault levels at all wind speeds. Pitch misalign-
ment detection proved robust across all signals, with distinct clustering observed for each simulated
input combination and fault level, supported by high correlations between signal pairs, approaching
unity. Similarly, yaw misalignment showed a correlation approaching unity and clear clustering for
higher fault severity levels. Moreover, the median value of peak amplitude distributions demonstrated
potential for fault detection and system health evaluation.

As a conclusion, the results underscore that when investigating 1P frequency the selected CMS sig-
nals are robust for pitch misalignment detection but insufficient for mass imbalance, where rotor speed
signals emerged as the leading indicator. On the other hand, the same CMS vibration measurements
proved to be a valuable tool for the detection of yaw misalignment when looking at the 3P frequencies,
although with fee limitations. Additionally, time-domain analysis of the main bearings signals demon-
strated promising results for assessing health conditions in the particular case of pitch misalignment
for wind speeds falling into the rated power region, through the evaluation of the presented statistical
condition indicators.
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Results: Turbulent Conditions

Analysis

In this chapter, the results of the analysis conducted under turbulent wind inflow conditions are pre-
sented. The primary objective is to validate the fault detection methodology introduced in the previous
chapter, which was applied under steady-state conditions, and to compare the outcomes from both
scenarios. This analysis is performed under realistic environmental conditions to assess whether the
same trends and results hold. It is important to note that for all modeled imbalance scenarios and fault
severities, the inflow conditions now incorporate two turbulence seeds, while the number of analyzed
wind speeds has been reduced from six to four, resulting in a total of 80 simulations.

Section 5.1 starts by evaluating the sensitivity of the selected frequency domain features to variations
in the number of turbulence seeds. Following this, Section 5.2 presents the frequency domain analysis,
which is divided into three Subsections: 5.2.1, focuses on the averaged peak amplitudes across signal
windows, 5.2.2 compares the correlation coefficients results between signal pairs of the two simulation
environments, 5.2.3, examines the full distribution of extracted amplitudes for each signal. This is done
using the methods outlined in Chapter 3, with a direct comparison with steady-state results. Lastly,
Section 5.3 discusses the time-domain analysis and presents the results of the selected condition
indicators. A summary of the key findings of the turbulent inflow analysis is provided in Section 5.4.

5.1. Number of Seeds Sensitivity Analysis
Before starting with the turbulent condition analysis, this section assesses the sensitivity of the ana-
lyzed peak amplitudes to the number of seeds used. to validate the decision to reduce the number
of turbulence seeds used in the analysis compared to the reference study conducted by Mehlan et al.
[23]. Specifically, a faulty case from the simulation dataset was selected for analysis using six different
turbulence seeds. In the reference study, six seeds were used for the simulated turbulent conditions.
The goal here is to assess how reliable the results of the analysis are when reducing the number of
seeds.

The selected case is the high-severity pitch misalignment fault (PM3) in rated power conditions (U4 =
12m/s). This case was chosen since pitch misalignment in the full load control region of the wind
turbine has been identified as one of the most critical fault scenarios in steady-state vibration analyses.
Therefore, this case is expected to show higher sensitivity to variations in turbulent external conditions
if there are any.

This analysis examined how the peaks of the rotor’s rotational frequency (1P) and its third harmonic
(3P) behave when averaged across different numbers of seeds. The results are presented in Figure
5.1, where the peak amplitudes of the four selected signals are plotted for the six different turbulent
input conditions.

55
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(A) (B)

Figure 5.1: (A) 1P frequency amplitudes for CMS signals, (B) 3P frequency amplitudes for CMS signals

Figure 5.1 shows that the generator velocity vibration signal has the highest amplitudes in 1P and 3P,
followed by the gearbox housing and rear main bearing signals, and lastly the lowest magnitudes in
the front main bearing signal. An increase in peak amplitudes is evident when moving from the wind
turbine rotor side toward the end of the transmission system.

Additionally, for the same vibration signal, the peak magnitudes do not significantly change when the
number of input turbulence seeds increases. This shows that when performing ensemble averaging,
the more seeds we consider, the more the turbulence variability is smoothed out. However, given the
small magnitude of the studied values, a more detailed analysis is required. To achieve this, a further
assessment was conducted by calculating the relative percentage change in peak amplitudes with
respect to one turbulence seed. The aim is to assess the sensitivity of the extracted feature compared
to the number of seeds. These results are presented in Figure 5.2.

(A) (B)

Figure 5.2: 1P and 3P amplitudes for PM3 at U4: relative percentage difference with respect to the one seed input turbulent
conditions: (A) Main bearing velocities side- side direction, front and rear (B) Gearbox housing and generator velocities for

side-side direction,

In the Figure, it can be appreciated that compared to the reference case with one turbulence seed, the
1P peak amplitudes (blue bars) show an average relative percentage increase of 5% across all signals
for seeds equal to or greater than 2. For the 3P peaks (orange bars), vMB(front),Y and vMB(rear),Y

display low variations ranging between 0% and 3%. However, the gearbox housing and generator
signals show a decreasing trend, with the first one dropping by up to 5% and the second one by up
to 9%. These percentage changes remain constant in both the five-seed and six-seed cases for all
the signals, indicating a convergence towards a stable limit that ensures the validity of the results.
Here, it can be noticed with stronger clarity that the high variability introduced by the turbulence seed
is smoothened out with a higher number of seeds. Therefore, this analysis confirms that the reduced
number of turbulence seeds does not compromise the accuracy or robustness of the results presented
in this chapter.
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5.2. Frequency Domain Analysis
In this case, due to the presence of turbulence, it was particularly important to apply the resampling COT
algorithm to avoid shifts in peak positions within the frequency spectrum when analyzing wind speeds
across different regions of the power curve. As discussed in Section 2.7.1, applying the resampling
procedure involves switching from the frequency domain to the order domain. This ensures that peak
positions remain fixed relative to the rotational speed of the main shaft, regardless of the wind speed
simulated in the inflow conditions. The algorithm was applied to all signals prior to conducting the
frequency domain analysis.

In the plots presented in Figure 5.3 just one representative signal for each imbalance case is presented,
showing overlapping distributions for the four different inflow conditions (wind speeds: U1, U2, U3, and
U4) once COT is performed. The example signal is the vibration velocity measured at the gearbox
housing for a low-severity fault case. As expected, and in line with findings from other studies [58],
Figure 5.3 demonstrates that the 1P and 3P frequency peaks overlap at the same order positions, with
increasing amplitudes as the wind speed increases.

In the three subplots, the 1P and 3P frequencies are clearly identifiable in their respective imbalance
cases. The higher magnitude of these frequencies overshadows other system frequency modes, mak-
ing them less visible in the reported turbulence case.

(A) (B) (C)

Figure 5.3: FFT plot analysis of vGB,Y signal resampled with COT algorithm for different wind speeds: (A) MI1, (B) PM1, (C)
YM1

Additionally, it can be observed that under turbulent inflow conditions, the system experiences stronger
dynamic effects, which contribute to higher amplitudes in the 3P harmonic frequency amplitude com-
pared to what was observed in steady-state conditions. This effect is also evident in the healthy condi-
tion, reducing the gap between healthy and faulty conditions, as shown in Figure 5.4.

Figure 5.4: FFT plot Healthy vs YM1/YM2/YM3 fault conditions for vGB,Y signal in order domain
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5.2.1. Averaged Peak Amplitudes Analysis
In this section, the analysis performed under steady-state conditions, as detailed in Section 4.1), is ex-
tended to turbulent inflow conditions. To highlight the impact of turbulence, shaded paths representing
the steady-state trends have been overlaid on the 3D plot representations. The results for the gearbox
housing vibration velocity signal are illustrated in Figure 5.5, where the averaged peak amplitudes from
the turbulent inflow simulations are compared to the previously observed steady-state results shown
in Figure 4.2. The whole set of 3D plots for all the analyzed signals is reported in Appendix E (Section
E.1).

(A) (B)

(C)

Figure 5.5: Averaged peak amplitudes comparison of vGB,Y signal under varying health states and turbulent inflow conditions.
(A) MI - 1P, (B) PM - 1P, and (C) YM - 3P

In the case of mass imbalance, shown in Figure 5.5 (A), the randomness introduced by the turbulence
still allows for the detection of the imbalance, but the trend is no longer clearly monotonically increasing.
This is due to the low sensitivity range of the 1P peak amplitudes. A similar behavior was observed
in other CMS velocity vibration signals, with the exception of the front main bearing, where the trend
still shows to be upward increasing. In contrast, the rotor speed 1P amplitudes follow a trend similar to
the steady-state one but shifted downward along the z-axis due to a lower overall amplitude magnitude
(Figure 5.6 (A)).

For pitch misalignment, shown in Figure 5.5 (B), the upward monotonic trend is preserved for both
increasing wind speeds and fault severity levels, as previously observed in steady-state conditions.
However, it is noticeable that the averaged amplitudes are lower in the case of transient conditions,
and this applies to all CMS signals, as well as to the rotor speed (5.6 (B)).



5.2. Frequency Domain Analysis 59

Conversely, yaw misalignment, shown in Figure 5.5 (C), exhibits higher magnitudes, as previously
observed in Section 5.2. Due to the stronger healthy system response at the 3P frequency, the overall
trend shows a flattening effect, significantly reducing the steepness that was observed under steady-
state conditions.

(A) (B)

Figure 5.6: Averaged 1P peak amplitudes comparison of ωrotor signal: (A) MI,(B) PM

To visually compare the relative change detection of the signals shown in the 3D plot with those cal-
culated under steady-state conditions, histograms are provided. Error bars are used to highlight the
differences between the two sets of data. In this case, the error bars are centered on the turbulent rel-
ative change values from the histograms and extend in both directions—above and below. The error
bars were calculated by estimating the absolute difference between steady-state and turbulent relative
change values. Therefore in Figures 5.7 5.8 and 5.9, they are going to be referenced in the legend as
the steady-state error (SS Error). In the graphical representation, an upper error (positive difference)
occurs when the steady-state relative change value is higher than the turbulence value, causing the
error bar to extend above the turbulent histogram bar. Conversely, a lower error (negative difference)
indicates that the turbulent value exceeds the steady-state value, so the error bar extends below the
turbulent case bar.

Figure 5.7: MI - 1P: Normalised relative change of the averaged amplitudes,
comparing turbulent and steady-state conditions through SS error bars
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Figure 5.8: PM - 1P: Normalised relative change of the averaged
amplitudes, comparing turbulent and steady-state conditions through SS

error bars

Figure 5.9: YM - 3P: Normalised relative change of the averaged
amplitudes, comparing turbulent and steady-state conditions through SS

error bars

In Figure 5.7, the mass imbalance case is represented. Despite the randomness introduced by turbu-
lence, discussed earlier, the relative change in peak amplitudes compared to healthy conditions shows
higher ranges and improved detection for the gearbox vibration velocity sensor under turbulent condi-
tions. The error bars show that the steady-state results exhibited a maximum increase of up to twice the
magnitude compared to healthy conditions for this signal. This is indicated by the lower ends of the er-
ror bars, which stop at a maximum value of 1 on the y-axis. A y-axis value of 1 signifies that the relative
change detection value for steady-state conditions is one time greater than its respective healthy base-
line. A similar pattern is observed for the front main bearing velocity vibration signal, where the overall
relative change detection magnitude decreases with increasing wind speed compared to steady-state
values. In contrast, other CMS sensor measurements show more significant fluctuations, leading to a
loss of clear fault detection trends and worsening health condition indicators. The corresponding plots
can be found in Appendix E (Section E.2). These results highlight the limitations of CMS sensitivity
for robust mass imbalance detection, as the aerodynamic effects of varying inflow conditions tend to
overshadow the imbalance signals. However, the rotor speed signal remains the most effective indica-
tor for mass imbalance detection due to its higher sensitivity compared to the other analyzed signals
(Section E.2, Appendix E).

Similarly, for pitch misalignment, a general downward shift is observed compared to steady-state con-
ditions in the corresponding 3D plot visualizations. As shown in Figure 5.8, despite this shift, the steep-
ness of the trend increases for the gearbox housing vibration measurements, resulting in higher relative
change detection under turbulent conditions. In contrast, other CMS signals exhibit a decrease in the
detected change between peak amplitudes of faulty and healthy conditions across all wind speeds,
except for cut-in conditions, where the trends remain more stable. The corresponding plots are pro-
vided in Appendix E (Section E.2). Overall, the analysis of 1P peak amplitudes from CMS sensor
measurements continues to demonstrate robustness for detecting pitch misalignment faults, support-
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ing effective health condition monitoring of the system. In the case of misalignment of the yaw, Figure
5.9 illustrates the effects of the upward shift in peak amplitudes observed in the previous plots in Figure
5.5 (C). The flattening of the amplitude trend results in a lower relative change detection sensitivity
compared to healthy conditions and lies within a consistently reduced magnitude range compared to
steady-state conditions. To clarify the comparison, the detected relative change in magnitude for high-
severity faults now shows an increase of 10% to 30% compared to healthy conditions, corresponding
to a 0.1–0.3 range on the y-axis in the graph. Previously, this increase was three to four times higher,
as indicated by the longer error bars above the histogram bars. Despite the lower sensitivity under
turbulent conditions, a closer examination still confirms the effectiveness of 3P peak amplitudes for de-
tecting yaw misalignment, albeit with certain limitations. The difficulty in detecting imbalance at cut-in
wind speed, which was also observed under steady-state conditions, persists in this case. Furthermore,
from the histograms, it can be observed that in the wind speed regions below rated conditions, the rel-
ative change in frequency amplitudes no longer exhibits an upward trend with increasing fault severity,
reducing the accuracy of health monitoring. In contrast, beyond the rated wind speed, a clearer trend
emerges, with change detection proving robust for medium to high fault severity levels. Similar patterns
are evident across all other CMS signals, as detailed in Section E.2 of Appendix E.

5.2.2. Correlation Analysis
Estimating the correlation between peak amplitudes extracted from different signals allows to deter-
mine whether the imbalance exerts a uniform influence across various measurement locations in the
drivetrain, or if one sensor location demonstrates greater sensitivity to fault detection. The bar plots in
Figures 5.10, 5.11, and 5.12, illustrate the differences in correlation coefficient values between steady
state and turbulent conditions, calculated from correlation matrices similar to those presented in the
steady-state analysis in Section 4.5. The x-axes display the different signal pairings from the correla-
tion matrices, starting with gearbox housing side-side vibration velocity, paired first with the generator
sensor, followed by front and rear main bearings, and finally, rotor speed, continuing with other combi-
nations.

It can be observed that the presence of turbulence induces fluctuations in the correlation coefficients be-
tween CMS signals, while still preserving an overall coherent output across all three imbalance cases
with respect to steady-state conditions. For mass imbalance, shown in Figure 5.10, the coefficients
range between 0.65 and 0.97 for CMS signal pairs, highlighting a correlation approaching unity. How-
ever, as discussed in Chapter 4, the features extracted from CMS signals for this specific imbalance
case tend to overlap, showing little distinction from healthy condition data points due to the low mag-
nitude of the frequency peak amplitudes. On the other hand, a notable impact on those signal pairs
compared to the rotor speed signal is visible. These coefficients are closer to zero and this indicates
a horizontal clustering trend in the scatter plots of amplitude points, which aligns with the findings from
the steady-state analysis shown in Figures 4.8 and 4.9. This result confirms the dominant influence of
the rotor speed signal in detecting mass imbalance faults, proving enhanced clustering potential.

Figure 5.10: Correlation coefficients values for mass imbalance scenario signal pairs comparing steady-state and turbulent
input conditions
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In general, for mass imbalance scenario the same trends described in Section 4.1.4 have been ob-
served in this second set of simulations referring to turbulent conditions. Although the scatter plots of
peak amplitude distributions exhibit slightly more noise due to turbulence, the overall results remain con-
sistent and validated under these turbulent conditions. Therefore, the graphic presentations of these
results are omitted from this section, examples can be found in Appendix E, Section E.3.

Similarly, for pitch misalignment, correlation coefficients approaching unity are maintained across all the
signal pairs, with a slight reduction in their values around 10% as shown in Figure 5.11. The selected
CMS signals under analysis still demonstrate potential for fault detection, as was observed in Figures
4.10 and 4.11. However, the scatter plots resulted in being more affected by the noise introduced by
turbulence leading to the presence of more spread outliers not allowing for a clear visual clustering
through full peak amplitudes data set distribution. As such, the scatter plots between signal pairs for
this case are also omitted and an example is reported in Section E.3, Appendix E. To investigate if the
possibility of reliable health monitoring is preserved follow-up analyses are reported in Section 5.2.3.

Figure 5.11: Correlation coefficients values for pitch misalignment scenario signal pairs comparing steady-state and turbulent
input conditions

For yaw misalignment, the correlation matrix reveals nearly uniform and consistently high values, in-
dicating a strong positive correlation approaching unity, as illustrated in the bar plot comparison in
Figures 5.12. The scatter plot analysis of 3P amplitude distributions further supports these findings,
demonstrating the strong fault detection and clustering at higher fault levels. Also in this case the re-
sults are consistent with those obtained in the steady-state analysis, as shown in Figures 4.12 and
4.13, therefore just one example is reported in Section E.3 of Appendix E. It is worth it to note that also
for this new analysis, the rotor speed signal has not been taken into account for the yaw misalignment
case due to the absence of any detectable difference compared to healthy conditions.

Figure 5.12: Correlation coefficients values for yaw misalignment scenario signal pairs comparing steady-state and turbulent
input conditions
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5.2.3. Box Plots and Median Values Multi-comparison Analysis
Following the correlation analysis, the same steps used to study the extracted feature distributions for
the three imbalance scenarios under steady-state conditions were consistently applied to the second
dataset of simulations involving turbulence.

Box plot distribution analysis is shown in Figures 5.13, 5.14, and 5.15. The alignment of the faulty dis-
tributions relative to their corresponding healthy state distributions remains consistent with the trends
observed under steady-state conditions. However, differences in the data distribution can be noted,
particularly in the skewness, as reflected by the asymmetry of the whiskers extending from the box-
plots in most cases. Additionally, an increase in the number of outliers spread farther from the boxplot
positions, is observed in the 1P distributions for the CMS signals of mass imbalance and pitch misalign-
ment. This is attributed to the added randomness and impulsiveness introduced by turbulence. It is
important to recall that outliers are identified as values lying outside the interquartile range (IQR), and
they represent 0-5% of the data points in the distribution, reaching up to 10%-15% in higher fault sever-
ity cases. This indicates that the system becomes more sensitive to severe faults when turbulence
induces additional excitation.

Figure 5.13: MI: 1P amplitudes distribution and variance analysis aggregated for all wind speeds

Figure 5.14: PM: 1P amplitudes distribution and variance analysis aggregated for all wind speeds
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Figure 5.15: YM: 3P amplitudes distribution and variance analysis aggregated for all wind speeds

Following the examination of the distributions, a statistical analysis based on changes in the median
values is conducted using theMann-Whitney U test, as described in Chapter 3. The comparison of peak
amplitude distributions between healthy conditions and the three fault severity levels is performed for
each wind speed individually. The results confirm the trends previously observed under steady-state
conditions. The following figures present results for the vGB,Y signal, as representative examples of
the different CMS signals, along with the ωrotor signal across wind speeds U1, U3, U4, and U6. In
Figure 5.16, a comparison between healthy conditions and the MI1/MI2/MI3 fault levels is shown for all
the specified wind speeds. Figure 5.17 illustrates the comparison between mass imbalance and pitch
misalignment fault severities against their respective healthy conditions, following the approach used
in Section 4.1.6. Lastly, Figure 5.18 applies the same analysis to the yaw misalignment scenario.”

(A) (B)

(C) (D)

Figure 5.16: Healthy condition vs MI1/MI2/MI3 - ωrotor amplitude distribution median values comparison analysis after
significant statistic difference detection (Mann-Whitney U test)
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(A) (B)

(C) (D)

Figure 5.17: Healthy condition vs MI1/MI2/MI3 and PM1/PM2/PM3 - vGB, Y amplitude distribution median values comparison
analysis after significant statistic difference detection (Mann-Whitney U test) - wind speeds: U1, U3, U4, U6

(A) (B)

(C) (D)

Figure 5.18: Healthy condition vs YM1/YM2/YM3 - vGB, Y amplitude distribution median values comparison analysis after
significant statistic difference detection (Mann-Whitney U test), wind speeds: U1, U3, U4, U6
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The presented graphical results are obtained through the same procedure described in Section 4.1.5.
Specifically, the one shown in Figures 5.17 and 5.18, are consistent across all other CMS signals. For
pitch misalignment, robust detection, and health condition indication are consistently observed across
all wind speeds and power curve regions for all CMS signals. Median values for fault conditions are one
to two orders of magnitude higher than those for healthy conditions, with distinct clustering between
different health states. In comparison, mass imbalance shows lower sensibility in detecting 1P peak
amplitudes, as the amplitude mismatch for mass imbalance falls within a range similar to that of healthy
conditions. This leads to higher uncertainty and an increased likelihood of false alarms, as highlighted in
Section 4.1.6. Similarly, the detection reliability achieved for pitch misalignment across all CMS signals
was successfully replicated for mass imbalance by applying the same analysis to the rotor speed signal.

For yaw misalignment, the proposed method does not provide robust health monitoring at cut-in wind
speeds, as noted in previous analyses. However, robust detection is achievable for medium to high
fault severity at wind speeds within the rated power region. Below rated wind speeds, detection remains
reliable only for higher fault severity, with reduced sensitivity to low and medium fault levels.

5.3. Time Domain
As outlined in Chapter 3, the second part of the analysis focuses on the time domain, specifically ex-
amining the filtered drivetrain torsional mode to assess its response to faulty system dynamics. It was
detailed in Section 3.5.2, that the central frequency of interest from the drivetrain model is 4.21 Hz,
and it is isolated using a band-pass filter. This section presents the results of the five chosen condition
indicators, defined in Equations 2.17, 2.18, 2.19, 2.20, and 2.21, and evaluates their response under
turbulent inflow conditions. It is important to highlight that, as discussed in Chapter 4, the observed
result trends consistently hold for wind speeds within rated power conditions. However, velocities in
the partial control region, i.e., below-rated wind speed, did not exhibit a clear trend suitable for fault
detection. Additionally, pitch misalignment was identified as the only detectable scenario via torsional
mode analysis, while mass imbalance and yaw misalignment showed no significant difference between
healthy and faulty conditions. Therefore, this section reports accordingly, simulation results for varying
pitch misalignment degrees which apply under rated power conditions.

Similar to the findings under steady-state conditions, the vibration signals from both the front and rear
main bearings conform to a normal distribution in healthy conditions. This validates the assumptions
for applying the condition indicators CIAPDF and CIDND for fault detection analysis. As the results are
consistent across both bearings, only the front main bearing signal is presented in this section, with the
same trends applicable to the rear bearing. Figure 5.19 illustrates the normal probability distributions
and compares healthy conditions to the three different levels of pitch misalignment.

However, unlike the trends observed in Chapter 4, a different behavior emerges here. Specifically,
as the fault level increases, the distribution’s tails widen, driven by the higher impulsivity in the signal
caused by turbulence. The presence of turbulence leads to more intense spikes being registered in the
vibration signals. This results in an inverse trend compared to the steady-state case, where the peak
values of the PDF decrease as fault severity rises. This happens because the area under the PDF
curve of a normally distributed signal must always equal 1, and the distribution broadens as a result of
these larger spikes.

In Figure 5.19, it can be seen that the PDF peak for the healthy condition is higher and the distribution
is more concentrated around zero, in a range similar to the steady-state case. This indicates that under
turbulent inflow, the system remains relatively stable in healthy conditions, with only a minor broadening
in the signal’s amplitude range. However, with increasing severity of pitch misalignment, the tails of
the distribution broaden and the peaks lower, indicating increased signal variance due to the combined
effects of misalignment and turbulence.
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Figure 5.19: PDF for aMB(front),Y signal comparing
healthy conditions with multiple pitch misalignment degrees

(U4 = 12 m/s)

Figure 5.20: Time domain torsional mode comparison of
PM3 signal in steady-state compared to turbulent inflow

conditions

This higher variance is further evidenced in Figure 5.21, particularly in the fourth histogram fitting sub-
plot (PM3 fault severity case), where the impact of higher pitch misalignment is clearly visible. As the
average amplitude range of the signal narrows with increased pitch misalignment, the effect of turbu-
lence becomes more pronounced. This observation aligns with the findings in Section 4.2, where the
absence of turbulence reduced signal variability. The large outliers caused by turbulence significantly
widen the tails of the PDF, as these spikes introduce values far from the mean. The system’s lower
initial amplitude range amplifies the impact of each spike, resulting in a more dramatic stretching of the
PDF tails. The difference in time domain filtered torsional mode signals for the high severity pitch mis-
alignment (PM3) is compared between steady-state and turbulent conditions in Figure 5.20 to highlight
the effects described. As a result, it can be concluded that in real turbulent inflow conditions the higher
the pitch misalignment severity the lower the PDF peak amplitude, implying therefore a decreasing
trend.

Figure 5.21: Histogram data fitting of the simulated dataset with respect to theoretical normal distribution. Study case: pitch
misalignment imbalance for front main bearing acceleration signal

When comparing the quantiles of the ideal normal distribution with the simulated dataset in Figure 5.22,
a similar trend to that observed in Figure 4.26 is evident. The data confirms a larger deviation from
ideal conditions as misalignment increases, with greater emphasis on deviations in the distribution tails.
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This results in a larger area difference, as captured by the CIDND values, increasing the potential of
this parameter as a health indicator. Normal distribution fitting is further quantified also in this case
through the Kruskal-Wallis test, and numerical results are reported in the fourth column of Table 5.1.

The indicator numerical values forCIAPDF andCIDND from the previous analysis are also summarized
in Table 5.1. Additionally, the calculated values for CICF , CIKurtosis, and CIRMS from Equations 2.18,
2.19, and 2.17 are also reported. All these values are presented across the three different misalignment
severity levels analyzed. This summary allows for a clearer visualization of potential health monitoring
trends.

Figure 5.22: NPP for quantile comparison of simulated data with theoretical normal distribution. Healthy conditions for wind
speed U4 = 12m/s compared with multiple degrees of pitch misalignment (PM1, PM2, PM3), for vMB(front),Y signal

Table 5.1: Time domain analysis in turbulent conditions. Condition indicator results are compared between healthy conditions
and three pitch misalignment degrees PM1/PM2/PM3 for vMB(front),Y signal

Fault level CI_apdf CI_DND KS_h_value CI_CF CI_kurtosis CI_rms
Healthy 126.92 3.37E-05 0 3.180 3.038 0.0031
Low 99.74 0.00067 1 3.25 3.21 0.0034
Medium 27.82 0.00081 1 3.29 3.22 0.0065
High 13.14 0.0202 1 3.327 3.24 0.0106

As seen in the table, all the time domain condition indicators prove to be effective tools for health
monitoring in the specific case of pitch misalignment under rated power conditions. They demonstrate
higher sensitivity and robustness in turbulent conditions, particularly in terms of amplitude detection of
the probability density function, area difference estimations between normal distributions and actual
data, and root-mean-square values. Although crest factor and kurtosis also exhibit increasing trends,
they display less sensitivity, with values closer across different health conditions, therefore, they are
not considered robust indicators for system health discrimination in this study case.

5.4. Results Findings Summary
In conclusion, the key findings of this chapter are summarized as follows. The proposed analysis meth-
ods demonstrated robustness, and the detection trends were validated even with turbulence included in
the wind inflow conditions. Starting with the frequency domain analysis, the sensitivity of the extracted
features to the number of turbulence seeds was first assessed, concluding that the reduction to two
seeds did not significantly affect the drivetrain’s measured signals. The analysis of 1P peak amplitudes
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confirmed the method’s robustness for detecting mass imbalance and pitch misalignment faults. It high-
lighted the rotor speed signal as the most effective for the detection of mass imbalance, while all the
considered CMS sensor signals are sensible to pitch misalignment showing high detection reliability.
For the analysis of the 3P peak amplitudes, yaw misalignment detection capability was reduced under
real turbulent conditions because of the system’s higher response in the same frequency range under
healthy conditions. However, medium to high degrees of misalignment were still accurately detected,
with limitations dependent on the region of the power curve corresponding to the current wind speed.

Overall, the analysis of the median values using the Mann-Whitney U test has been confirmed as a
valuable tool for identifying different operating states of a wind turbine rotor by calculating statistically
significant differences between groups. As a result, this thesis proposes the median values of peak
amplitude distributions at 1P and 3P frequencies as key features for a data fusion framework, specifi-
cally at the decision fusion level. This approach lays the groundwork for implementing a decision tree
to detect and diagnose the three investigated imbalance scenarios, as well as monitor the health state.

Lastly, the time domain analysis of the drivetrain’s torsional mode proved to be a powerful tool for
detecting pitch misalignment and assessing health conditions, using the main bearing acceleration
signals under rated power conditions through three key condition indicators: CIAPDF , CIDND, and
CIRMS .



6
Discussion, Recommendations, and

Limitations

In the previous Chapters (4 and 5), the features extracted from CMS signals under steady-state and
turbulent inflow conditions were thoroughly examined, with a focus on detecting and classifying three
types of wind turbine rotor imbalances. This Chapter aims to synthesize the findings and provide a
comprehensive discussion of how these feature data can be fused into a systematic fault detection
framework. Specifically, Section 6.1 outlines a decision tree model for fault classification, which lays
the groundwork for future implementation of detection algorithms.

Moreover, Section 6.2 identifies potential health monitoring indicators and their applicability to the three
main imbalance scenarios: mass imbalance, pitch misalignment, and yaw misalignment. These health
indicators are evaluated on the basis of their ability to track the fault level evolution and their diagnostic
capabilities, under varying wind conditions, using both frequency and time-domain analyses. Particular
attention is paid to the development of signal-based thresholds and decision-making criteria that can
be adapted to different operating regimes of the wind turbine.

Finally, Section 6.3 outlines the key limitations of the current methodology and provides specific recom-
mendations for future research and further analysis.

6.1. Decision Tree for Fault Detection and Diagnosis
The work presented in this thesis aims to contribute to the development of more efficient predictive
maintenance techniques by proposing novel approaches to analyze CMS signals. In the context of
wind turbines, rotor imbalances are critical to address to prevent severe failures and minimize produc-
tion losses due to aerodynamic misalignment. This study focuses on three primary types of imbalance:
mass imbalance, pitch misalignment, and yaw misalignment, each evaluated at multiple wind speeds,
under both steady and turbulent conditions, and for three different severity levels. The results of var-
ious combinations of these fault conditions have been analyzed and compared with healthy system
conditions to extract robust features for fault detection and classification.

This section summarizes the key findings from the previous two chapters and integrates them into a
unified fault detection and classification flowchart. Building on the decision fusion level approach dis-
cussed in Section 2.9, individual signals are processed and analyzed separately. The measurement
features extracted from each source are then combined to diagnose rotor imbalance scenarios. The
resulting flowchart is structured as a binary decision tree, where each node addresses a specific diag-
nostic task, progressively guiding the detection and classification of various fault types.

Let’s review the steps required to implement the flowchart shown in Figure 6.1. The process begins with
the selection of signals from the OpenFAST and SIMPACK drivetrain models, which are representative
of the SCADA and CMS signals typically collected by modern wind turbines. These signals are used
to capture the dynamic response of the system. For the frequency domain analysis, velocity vibration
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measurements are chosen, specifically focusing on the side-to-side direction (y-axis). These signals
are denoted as: vMBfront

, vMBrear
, vGB , and vGen. Additionally, the rotor speed signal, ωrotor, is also

included in the analysis. The vibration signals, simulated for 4,000 seconds each and sampled at 200
Hz, are first processed by removing the transient phase (the first 300 seconds). The remaining 3,600
seconds are then resampled in the order domain to mitigate the effects of peak smearing and shifting
inherent in the variable rotational speed of the turbine. A Hann window is applied to prevent aliasing and
spectral leakage, and the signals are divided into 60 windows of 60 seconds each. FFT is performed on
each window, and the amplitude peaks at 1P and 3P frequencies are extracted, yielding 60 data points
for each frequency and each signal. A similar procedure is followed for the SCADA rotor speed signal,
taking into account its lower sampling frequency of 40 Hz. After pre-processing, the median values of
the distributions for 1P and 3P frequency amplitudes are calculated for each health condition, serving
as the basis for fault presence detection and diagnosis (differentiating between imbalance types). With
this foundation, a decision tree is constructed using statistical change detection based on the median
amplitude values. The proposed classification tree is shown in Figure 6.1.

Wind speed detection for healthy threshold setting

Signals: 

  START

Yes No

Node 1

Signals: 

Pitch Misalignment

No Yes
Node 2

Signal: 
 

Yes No

Node 3

Signals: 

Mass Imbalance

Yaw Misalignment Healthy Conditions

Figure 6.1: Detection and diagnosis decision tree for three different imbalance scenarios under study (MI, PM, YM)
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The first step involves determining the healthy thresholds for the median values of the 1P and 3P
peak amplitude distributions, Mdn( ˜1PH) andMdn( ˜3PH), as these thresholds depend on environmental
factors, specifically they are a function of the current wind speed (f(Uwind)). To accurately differentiate
between healthy and faulty conditions, these thresholds must be established through system training
based on healthy operational data. This process is repeated for each signal under consideration.

Once the healthy thresholds are established, Node 1 compares the median values of the four CMS
signals from different drivetrain positions, Mdn(1̃P ), against their corresponding healthy thresholds,
Mdn( ˜1PH). If the median values of all signals exceed their respective thresholds, a pitch misalignment
fault is detected. This criterion is based on the strong correlation observed between CMS signals,
which consistently reflects the influence of pitch misalignment on 1P frequency amplitude peaks (refer
to Section 5.2.2). This multisignal approach enhances the robustness of fault detection and minimizes
the risk of false alarms.

If pitch misalignment is not detected, Node 2 evaluates the rotor speed signal, ωrotor, by comparing its
Mdn(1̃P ), value against the corresponding healthy threshold Mdn( ˜1PH). This signal has been demon-
strated to be the primary indicator for detecting mass imbalances (Sections 4.1.6 and 5.2.3). If signif-
icant deviations are observed, a mass imbalance fault is identified. Although pitch misalignment can
also affect the rotor speed signal’s 1P amplitude, the robust detection of pitch misalignment at Node 1
ensures that mass imbalances are clearly diagnosed at this second stage.

If neither pitch misalignment nor mass imbalance is detected, the system proceeds to Node 3, where
it calculates the median values of the 3P peak amplitudes (Mdn(3̃P )) for all CMS vibration signals and
compares them to their respective healthy thresholds (Mdn( ˜3PH)). If no conditions are met at any of
the three nodes, the system is classified as healthy.

This approach forms the foundation for a potential data-driven model capable of robustly detecting
and classifying rotor imbalances using existing CMS signals already integrated into modern wind tur-
bines. If properly implemented, this method could significantly reduce operations and maintenance
(O&M) costs by enabling more effective predictive maintenance scheduling. This methodology aligns
its scope with the research conducted by Mehlan et al. [23], sharing common principles while offering
an alternative to the proposed knowledge-based expert system. In particular, their approach relies
on the detection of 1P frequency peak amplitudes. The study highlighted the use of these frequency
peaks in the turbine’s nacelle side-to-side acceleration signal as a universal recognition parameter for
rotor imbalances, and drivetrain side-to-side vibration velocity as an indicator of pitch misalignment.
However, robust detection and distinction between mass imbalance and yaw misalignment were only
observed at cut-in wind speeds through rotor speed signal analysis, with no clear insights provided for
partial and full load operational ranges. The study also proposed a method for identifying the location
of the faulty blades.

The key distinction between this thesis and the reference study lies in the use of alternative CMS
signals and the extraction of different features for fault detection and diagnosis. This approach enables
the monitoring of various health conditions by tracking the evolution of fault severity. Specifically, while
the reference study selects signal mean values and 1P peak amplitudes as features for imbalance
identification, this thesis incorporates both 1P and 3P-related peak frequencies in the analysis. The
median values of their corresponding amplitude distributions are proposed as the primary features
in the detection and diagnosis framework. Additionally, unlike the reference study, which takes into
account acceleration measurements, this work focuses solely on velocity measurements. Moreover,
for the specific case of pitch misalignment detection, the findings in this thesis are validated through
the results from the reference study concerning the gearbox housing’s sensitivity to pitch misalignment.
However, this study further extends the detection capabilities by incorporating vibration measurements
from the main bearings and generator sensors, offering new detection paths. Additionally, the proposed
framework demonstrates the potential for reliability and accuracy across multiple wind speeds, covering
different power regions of the wind turbine.
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6.2. Health Monitoring
After faults have been detected and diagnosed using the flowchart in Figure 6.1, the next step is to quan-
tify and track the progression of fault severity in order tomonitor the system’s overall health. This section
will focus on identifying potential health indicators for each of the three imbalance scenarios—mass im-
balance, pitch misalignment, and yaw misalignment—individually. The respective health classification
trees are outlined in Figures 6.4, 6.6, and 6.8.

Figure 6.4 presents a fault level classification tree for mass imbalance case using the ωrotor signal. The
median value of the 1P frequency amplitudes distribution (Mdn(1̃P )) is proposed as a potential health
indicator. This approach is based on identifying which range the detected median values fall into (low,
medium, or high), with threshold margins represented byMdn( ˜1PT1

) andMdn( ˜1PT2
). These thresholds

define the boundaries for different fault levels. To better illustrate the application of this health indicator,
Figure 6.2 presents an example result from Chapter 5, Section 5.2.3. In this example, three distinct
fault level ranges are identified, with threshold values that depend on the input wind speed. Specifically,
this case focuses on the rated power region, corresponding to wind speed U4. The faulty median am-
plitude values, Mdn(1̃P ), are depicted as red markers (’x’ values) and are shown to fall within visually
distinct regions. Furthermore, the corresponding median values amplitude magnitudes are reported in
Table 6.3. The threshold boundaries are defined graphically in this example in Figure 6.2, the results
demonstrate the feasibility of implementing them numerically for a precise fault level classification.

Sincemanually setting the fault severity threshold margins is not feasible in real conditions as a scalable
solution, advancedmethods such asmachine learning are required. Thesemethods would allow for the
automatic definition of threshold values, pre-trained on previously collected faulty data sets. Specifically,
supervised machine learning algorithms, such as Support Vector Machines (SVM), could serve as an
effective tool for establishing the boundary values for health conditions assessment. In general, SVM
works by identifying an optimal decision boundary, or hyperplane, that maximally separates data points
from different classes (an optimization problem). Maximizing the margin, i.e. the distance between the
decision boundary and the nearest data points, ensures robustness when classifying new data points.
The decision function of an SVM is determined by a subset of training samples known as support
vectors. For a more detailed exploration of machine learning techniques, including SVM, numerous
open-source books, such as the one by James et al. [59], offer comprehensive insights. However, due
to time constraints, implementing a supervised data-driven machine learning algorithm was beyond the
scope of this thesis. Therefore, this chapter is intended to provide an overview of the potential practical
applications and uses of the findings collected in this study.

Figure 6.2: ωrotor amplitude distribution median values
comparison after significant statistic difference detection

Fault level xvalues

Healthy 7.75e-05
Low 5.65e-04
Medium 8.25e-04
High 1.1e-03

Figure 6.3: ωrotor amplitude distribution median values
magnitude for different health states: Healthy vs

MI1/MI2/MI3
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Mass Imbalance

Node

Signal: 

Low HighMedium

Figure 6.4: Mass Imbalance fault severity assessment tree applied to ωrotor signal

Figure 6.6 presents two potential methods for monitoring the severity of pitch misalignment. Based on
the findings fromChapter 4 and Chapter 5, some particular fault-related features of the signals analyzed
demonstrate potential for pitch misalignment detection.

(A) (B) (C)

Figure 6.5: 1P - Amplitude distribution median values magnitude for different health states: Healthy vs PM1/PM2/PM3:
vMB(front), Y, vGB, Y and vGen, Y signals

The first method presented builds a health monitoring approach similar to what was proposed for the
case of mass imbalance. It can be applied within the entire turbine operational wind speed range
and it uses the median value of the 1P peak amplitude distributions (Mdn(1̃P )) as a health indicator.
However, in this scenario, the threshold values, Mdn( ˜1PT1

) and Mdn( ˜1PT2
), must be established for

both different incoming wind speed and the specific CMS vibration signal under analysis. As it can be
deduced from the three plots presented in Figure 6.5, different signals have different magnitude ranges
for their respective health states. This also applies in the context of different wind speeds, in this
case, U4 wind speed analysis is reported for median value comparison of vMB(front), Y, vGB, Y and vGen, Y
signals. Similarly to the previous imbalance scenario, boundary thresholds are extracted graphically for
representative purposes, in real-world conditions appropriate training of the system through collected
faulty data sets for each sensor position would be necessary. This study’s findings indicate that all
three levels of misalignment severity—low, medium, and high—are clearly distinguishable.

The second method proposed relies on time-domain analysis (3.5.2), according to the findings of Sec-
tion 5.3. It includes the evaluation of the drivetrain torsional mode filtered in the main bearings accel-
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eration signals ( vMBfront
and vMBrear ). However, this method is limited to wind speeds in the rated

power region; below-rated conditions, detection has proven to be not possible (Section 4.2). When the
wind speed condition is met, the system’s health can be assessed by differentiating between the three
misalignment severity levels using three primary condition indicators, which showed robustness in the
analysis. These are CIRMS (Equation 2.17), CIAPDF (Equation 2.20), and CIDND (Equation 2.21).

Similarly, for each severity level, threshold margins CI( ˜1PT1
) and CI( ˜1PT2

) must be established, con-
sidering both the specific condition indicator used and the corresponding wind speed. The results from
turbulent conditions, as shown in Table 5.1, reveal significant gaps between the value ranges of the
three condition indicators, allowing for clear differentiation between health states. The same consider-
ations for defining health state thresholds, as discussed in the previous methods, apply here as well.
It is important to emphasize that the purpose of the presented decision trees is to demonstrate that,
based on this study’s findings, such results are achievable and provide a solid foundation for future
machine learning-based implementations.

Pitch Misalignment

Node

Signals: 

Low HighMedium

Method 1 valid for: 

Node 
Time domain torsional mode

Signals: 
CI: 

Low HighMedium

Method 2 valid for: 

1

2

Figure 6.6: Pitch misalignment fault severity assessment tree
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Lastly, the health monitoring approach for yaw misalignment is illustrated in Figure 6.8. This method is
similar to those used for mass imbalance and pitch misalignment, but it selects the 3P-related median
values from amplitude distributions as health indicators (Mdn(3̃P )). As in previous cases, the median
values would have to be estimated for all four CMS signals and compared to pre-trained thresholds,
Mdn( ˜3PT1

) and Mdn( ˜3PT2
), which are determined for all the different incoming wind speeds.

However, a key distinction in this case is the presence of two possible pathways in the flowchart, de-
pending on the wind speed. If the wind speed is within the rated power region of the curve (Urated <
Uwind < Ucut−in), thresholds can be robustly defined, for medium to high misalignment severities, as it
is shown in the example reported in Figure 6.7 (B). Conversely, in the transition region, where the wind
speed is between Ucut−in and Urated, only high misalignment severity ranges can be reliably identified
(see Figure 6.7 (A)). Therefore, this approach presents certain limitations in terms of detectability, par-
ticularly when assessing the presence and severity of yaw misalignment under varying wind conditions.

(A) (B)

Figure 6.7: 3P - Amplitude distribution median values magnitude for different health states: Healthy vs YM1/YM2/YM3: vGB, Y
signal: (A) U3; (B) U6

Yaw Misalignment

Node

Signals: 

HighMedium High

Figure 6.8: Yaw misalignment fault severity assessment tree through Mdn(3̃P ) values and for all CMS signals
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6.3. Recommendations and Limitations
Despite the promising results presented in this thesis, several recommendations and limitations need to
be carefully addressed when considering the real-world implementation of the proposed methodology.

One significant aspect to be considered is the absence of noise in the simulations, which does not
reflect the complexity of real-world conditions where noise is inherently present and can influence the
measurements. Furthermore, frequency domain signal analysis is proved to be strongly dependent on
measurement resolution, therefore, it might be beneficial to investigate the detection capabilities when
going towards higher sampling frequencies with respect to the one used in this case study.

Additionally, the work presented in this thesis refers to a four-point-support, geared drivetrain model,
which features simplified housing models for the main gearbox and generator. This may introduce inac-
curacies when simulating vibration measurements, as the flexibility of the housing is not fully captured.

The input fault models used in the simulations are constrained, with either mass imbalance or pitch mis-
alignment being applied to only one blade or as single fault cases. In reality, combined fault scenarios,
such as faults affecting multiple blades, or the joint presence of aerodynamic imbalances and mass
imbalance are plausible and should be explored further, as their behavior could significantly differ from
the isolated cases studied here.

Moreover, the simulations employed a limited number of seeds for turbulent inflow conditions due to
the expensive computational time for the simulation in SIMPACK. More comprehensive studies that
include additional seeds and better representation of complete turbulent atmospheric conditions should
be considered for more realistic inflow modeling, as suggested in the TurbSim manual.

It is also important to note that the current time-domain analysis primarily targets the torsional mode,
as it is the dominant mode that transmits the effects of rotor torque loading conditions throughout the
drivetrain and power transmission system. To develop a more comprehensive understanding, it is
essential to investigate also other system modes that reflect the impact of non-toque loads such as
thrust and shear forces. Such loading conditions are mainly reflected through axial modes response in
the drivetrain since they induce blades out of plane motions. Additionally, further analysis is required
in the x and z-axis measurement directions, as this study primarily focused on the y-axis direction.

Frequency domain analysis primarily focused on velocity measurements; however, due to the interest in
lower frequency ranges, it may be beneficial to explore displacement sensor measurements as well, as
suggested in Table 3.7. This would provide a broader perspective and potentially more robust detection
criteria.

Yaw misalignment detection through 3P frequency analysis has been found to lack robustness at cut-in
wind speeds and for small misalignment angles, limiting its reliability. To overcome these limitations,
integrating SCADA data, specifically by using the electrical power output of the wind turbine, offers
a promising solution. Jing et al. [60] explored this approach, focusing on the partial load region of
the power curve, particularly for wind speeds near the cut-in range, as an effective method for yaw
misalignment detection.

Another crucial factor to consider is the precise calibration of thresholds for the proposed health moni-
toring indicators, alongside careful investigation for management of the false alarm rate. Both aspects
are vital to ensuring the system’s reliability in real-world applications. To guarantee robust performance,
a thorough validation of the proposed system’s false positive and false negative detection rates should
be conducted.

Finally, the proposed framework for the system health monitoring and assessment requires in real-world
conditions a data-driven approach (see Section 2.5), which requires large amounts of data collection for
thresholds pre-training across both healthy and faulty operating conditions. However, such comprehen-
sive datasets, specifically for faulty conditions, are often difficult to obtain in practice, which presents a
significant challenge for accurate model implementation and validation.
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Conclusions

Rotor imbalance represents a major risk in wind turbines, being a primary contributor to both increased
downtime and diminished energy output. Conventional maintenance approaches, which rely on fre-
quent inspections, are labor-intensive and time-consuming. Nevertheless, these inspections remain
common because turbines often do not have reliable automatic detection systems integrated as part of
their routine operations. Shifting from a time-based to a condition-based maintenance strategy shows
promising results in reducing system failures, costs, and unexpected downtime, to enhance and opti-
mize energy production.

In this chapter, the primary research question and subquestions posed in the introduction (Section 1.1)
are addressed.

Main Research Question: Can rotor imbalance be efficiently detected and diagnosed using existing
condition monitoring sensors on the wind turbine drivetrain to prevent severe component failures and
ensure reliable power production?

The findings of this research confirm that rotor imbalance can be effectively identified and diagnosed by
utilizing existing operational data collected from wind turbines. This is achieved by integrating drivetrain
CMS vibration signals with SCADA system data. By exploiting these combined signals, the detection
of rotor imbalances is significantly enhanced, eliminating the need for direct blade measurements—a
common shortcoming in current turbine monitoring systems. The developed methodology underscores
the feasibility of the proposed framework as a practical and scalable solution for fault detection and
diagnosis. Additionally, it provides a foundation for a new approach to assess fault severity, thereby
supporting the optimization of maintenance strategies in wind turbine operations.

This leads to answering the four subquestions posed:

1. Which signal analysis techniques are most suitable for detecting the presence of rotor imbal-
ances? Which drivetrain signals are the most effective and reliable for their detection and diag-
nosis?

Firstly, suitable signal analysis techniques for detecting rotor imbalances were explored. The
tools implemented in this study encompass fundamental and robust approaches, specifically fre-
quency domain analysis using FFT and time domain analysis based on statistical methods that
focus specifically on drivetrain torsional modes. CMS signals derived from different sensors posi-
tioned along the drivetrain have been analyzed. Front and rear main bearings, gearbox housing,
and generator were selected according to the international ISO 10816-21 [18] standards. Based
on the literature review and simulation results, the side-side (y-axis) direction measurements
proved to be the most sensitive, offering enhanced resolution for detecting imbalances. Due to
the frequency ranges under study, velocity vibration CMS signals were selected for frequency do-
main analysis, complemented by rotor speed signals from the SCADA system. For time domain
analysis, acceleration signals from the CMS sensors were investigated.

2. Which signal features ensure robust fault detection?
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The proposed approach focused on extracting two key frequency domain features that highlight
dynamic impacts on the signals at the rotor rotational frequency and its third harmonic (1P and
3P). The 1P frequency, associated with harmonic periodic loads, is particularly useful for identify-
ing mass imbalance and pitch misalignment, where the center of gravitational or thrust force shifts
from the hub to the faulty blade. Meanwhile, the 3P frequency, which captures non-harmonic pe-
riodic loads 2.5, is proved to be effective for detecting dynamic effects such as yaw misalignment.
After applying pre-processing techniques such as transient time removal, signals resampling in or-
der domain, and windowing, these features were extracted from each signal and for each window.
The final condition indicator for fault detection was defined as the median value of the distribution
of peak amplitudes for both 1P and 3P frequencies. In the time domain analysis, five statistical
condition indicators were applied to the filtered CMS signals, isolating drivetrain torsional mode.
These indicators were effective only for detecting pitch misalignment under rated power condi-
tions. Overall the listed features proved to be relevant methods for distinguishing normal rotor
behavior from imbalanced conditions.

3. Can a decision tree algorithm be developed for fault detection and classification?

The results obtained from various input combinations in the simulation setup support the develop-
ment of a fault detection and diagnosis classification tree through the implementation of a decision
fusion level framework. The proposed method relies on the detection of statistical changes in the
median values of peak amplitude distributions of all four CMS and rotor speed signals with respect
to a threshold derived under healthy conditions. This approach, which is wind-speed dependent,
enabled clear classification and distinction between the different imbalance scenarios. A binary
decision tree was thus established, laying the groundwork for a data-driven approach that could
be implemented in real-world conditions for automatic fault detection.

4. Can health indicators be constructed for the specific imbalance scenarios under investigation?
To what extent can they identify fault severity levels?

The study found that fault severities can be distinguished by clustering the median value fea-
ture for both 1P and 3P frequencies (Mdn(1̃P ) and Mdn(3̃P )) within predefined upper and lower
threshold ranges. These ranges can be determined for real-world implementation through ma-
chine learning techniques like SVM, which involve system training based on faulty datasets. This
poses some limitations in real practical implementation since rarely these data are available. For
mass imbalance, this health indicator is achieved using the rotor speed signal, while for pitch
misalignment, all CMS signals are involved. In both cases, through the use of representative
results examples obtained in Chapter 5, the fault level distinction was proved effective across
the three imbalance severity levels studied. For yaw misalignment, 3P-related median values en-
abled health condition assessment, though robust detection was observed only for higher severity
levels. Additionally, in the specific case of pitch misalignment under rated power conditions, three
of the five statistical condition indicators in the time domain proved effective for health condition
monitoring based on the main bearings’ measured signals.

As previously outlined, several recommendations emerge from the findings of this study, suggesting
directions for future work and further improvements. First, addressing the absence of noise in the
analyzed simulated signals is crucial, as real-world conditions inherently introduce noise that can af-
fect measurements. In parallel, exploring higher sampling frequencies would improve signal resolu-
tion and enhance the effectiveness of frequency domain analysis. Additionally, refining the drivetrain
model to incorporate more realistic housing flexibility, and expanding the analysis to combined fault
scenarios—such as simultaneous mass and aerodynamic imbalances—would increase the model’s
accuracy. Moreover, extending the analysis to cover additional system modes, particularly those in-
fluenced by non-torque loads, is recommended to capture a broader range of operational dynamics.
Furthermore, integrating displacement sensors, as well as SCADA data like electrical power output,
could improve the robustness of fault detection. Finally, precise calibration of health monitoring thresh-
olds, combined with the collection of more extensive faulty condition datasets, is crucial for ensuring
the model’s applicability in real-world environments.



References

[1] International Renewable Energy Agency.World Energy Transitions Outlook 2023: 1.5°C Pathway,
Volume 1. Abu Dhabi, 2023. URL: https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpo
int.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Jun/IRENA_World_
energy_transitions_outlook_2023.pdf?rev=db3ca01ecb4a4ef8accb31d017934e97.

[2] Mark Hutchinson et al.GlobalWind Report 2023. Brussels, Belgium: GlobalWind Energy Council,
2023. URL: http://www.gwec.net.

[3] Dayton A Griffin. THE CHALLENGES OF WIND TURBINE BLADE DURABILITY. URL: https:
//www.dnv.com/publications/the- challenges- of- wind- turbine- blade- durability-
243601/.

[4] European Agency for Safety and Health at Work. Occupational safety and health in the wind
energy sector – European Risk Observatory – Report. Publications Office, 2013. DOI: doi/10.
2802/86555.

[5] Liliana Cunha, Daniel Silva, and Mariana Macedo. “Different Shades of Green: An Analysis of
the Occupational Health and Safety Risks Faced by Wind Farm Workers”. In: Sustainability 16.7
(2024), p. 3012.

[6] Jenny Niebsch and Ronny Ramlau. “Simultaneous estimation of mass and aerodynamic rotor
imbalances for wind turbines”. In: Journal of Mathematics in Industry 4 (2014), pp. 1–19.

[7] Christopher J. Crabtree, Donatella Zappalá, and Simon I. Hogg. “Wind energy: UK experiences
and offshore operational challenges”. In: vol. 229. SAGE Publications Ltd, Nov. 2015, pp. 727–
746. DOI: 10.1177/0957650915597560.

[8] Bin Lu et al. “A review of recent advances in wind turbine conditionmonitoring and fault diagnosis”.
In: 2009 IEEE power electronics and machines in wind applications (2009), pp. 1–7.

[9] Pierre Tchakoua et al. “New trends and future challenges for wind turbines condition monitoring”.
In: 2013 International Conference on Control, Automation and Information Sciences (ICCAIS).
IEEE. 2013, pp. 238–245.

[10] Tomasz Barszcz. Vibration-based condition monitoring of wind turbines. Vol. 14. Springer, 2019.
[11] Fausto Pedro García Márquez et al. “Condition monitoring of wind turbines: Techniques and

methods”. In: Renewable energy 46 (2012), pp. 169–178.
[12] “Wind turbine drivetrains: State-of-the-art technologies and future development trends”. In:Wind

Energy Science 7 (1 Feb. 2022), pp. 387–411. ISSN: 23667451. DOI: 10.5194/wes-7-387-2022.
[13] Mohamad Hazwan Mohd Ghazali and Wan Rahiman. “Vibration analysis for machine monitoring

and diagnosis: a systematic review”. In: Shock and Vibration 2021 (2021), pp. 1–25.
[14] R Bond Randall and Vibration-based ConditionMonitoring. “Industrial, aerospace and automotive

applications”. In: VIBRATION-BASED CONDITON MONITORING. West Sussex (2011), pp. 13–
20.

[15] Donatella Zappalá. “Advanced algorithms for automatic wind turbine condition monitoring”. PhD
thesis. Durham University, 2014.

[16] Z Hameed et al. “Condition monitoring and fault detection of wind turbines and related algorithms:
A review”. In: Renewable and Sustainable energy reviews 13.1 (2009), pp. 1–39.

[17] Gram & Juhl A/S. TCM® Turbine Condition Monitoring. Last accessed: 29th May 2024. 2010.
URL: http://www.rotomech.com/pdf/brochure-eng.pdf.

[18] International Organization for Standardization. ISO 10816-21: Mechanical Vibration—Evaluation
of Machine Vibration by Measurements on Non-Rotating Parts — Part 21: Horizontal Axis Wind
Turbines with Gearbox. Available at: https://www.iso.org/standard/60328.html. 2015.

80

https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Jun/IRENA_World_energy_transitions_outlook_2023.pdf?rev=db3ca01ecb4a4ef8accb31d017934e97
https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Jun/IRENA_World_energy_transitions_outlook_2023.pdf?rev=db3ca01ecb4a4ef8accb31d017934e97
https://mc-cd8320d4-36a1-40ac-83cc-3389-cdn-endpoint.azureedge.net/-/media/Files/IRENA/Agency/Publication/2023/Jun/IRENA_World_energy_transitions_outlook_2023.pdf?rev=db3ca01ecb4a4ef8accb31d017934e97
http://www.gwec.net
https://www.dnv.com/publications/the-challenges-of-wind-turbine-blade-durability-243601/
https://www.dnv.com/publications/the-challenges-of-wind-turbine-blade-durability-243601/
https://www.dnv.com/publications/the-challenges-of-wind-turbine-blade-durability-243601/
https://doi.org/doi/10.2802/86555
https://doi.org/doi/10.2802/86555
https://doi.org/10.1177/0957650915597560
https://doi.org/10.5194/wes-7-387-2022
http://www.rotomech.com/pdf/brochure-eng.pdf
https://www.iso.org/standard/60328.html


References 81

[19] Y. Guo et al. “A systems engineering analysis of three-point and four-point wind turbine drivetrain
configurations”. In: Wind Energy 20.3 (2017), pp. 537–550. DOI: https://doi.org/10.1002/
we.2022. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.2022. URL:
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2022.

[20] Leon Mishnaevsky Jr. and Kenneth Thomsen. “Costs of repair of wind turbine blades: Influence
of technology aspects”. In:Wind Energy 23.12 (2020), pp. 2247–2255. DOI: https://doi.org/
10.1002/we.2552. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.2552.
URL: https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2552.

[21] Dimitris Al Katsaprakakis, Nikos Papadakis, and Ioannis Ntintakis. “A comprehensive analysis of
wind turbine blade damage”. In: Energies 14.18 (2021), p. 5974.

[22] Jijian Lian, Huan Zhou, and Xiaofeng Dong. “A theoretical approach for resonance analysis of
wind turbines under 1P/3P loads”. In: Energies 15.16 (2022), p. 5787.

[23] Felix C Mehlan and Amir R Nejad. “Rotor imbalance detection and diagnosis in floating wind
turbines by means of drivetrain condition monitoring”. In: Renewable Energy 212 (2023), pp. 70–
81.

[24] Jin Xu et al. “Rotor imbalance detection and quantification in wind turbines via vibration analysis”.
In:Wind Engineering 46.1 (2022), pp. 3–11.

[25] Michiel Zaaijer and Axelle Viré. Introduction toWind Turbines: Physics and Technology. Ed. by An-
dres Leiro Fonseca Ricardo Balbino Dos Santos Pereira Amir Daneshbodi. Version 20/09/2023,
2023/2024. 2023. URL: https://mytimetable.tudelft.nl/.

[26] Glidden S. Doman. “Structural Dynamic Considerations inWind Turbine Design”. In:Wind Turbine
Technology: Fundamental Concepts in Wind Turbine Engineering, Second Edition. ASME Press,
Jan. 2009. ISBN: 9780791802601. DOI: 10.1115/1.802601.ch10. eprint: https://asmedig
italcollection.asme.org/ebooks/book/chapter-pdf/2802290/802601\_ch10.pdf. URL:
https://doi.org/10.1115/1.802601.ch10.

[27] Alan V Oppenheim. Discrete-time signal processing. Pearson Education India, 1999.
[28] KR Fyfe and EDS Munck. “Analysis of computed order tracking”. In: Mechanical systems and

signal processing 11.2 (1997), pp. 187–205.
[29] P Večeř, Marcel Kreidl, and R Šmíd. “Condition indicators for gearbox condition monitoring sys-

tems”. In: Acta Polytechnica 45.6 (2005).
[30] Pawel Jakub Rzeszucinski.Development of reliable vibration-based condition indicators and their

data fusion for the robust health diagnosis of gearboxes. The University of Manchester (United
Kingdom), 2012.

[31] David L Hall and James Llinas. “An introduction to multisensor data fusion”. In: Proceedings of
the IEEE 85.1 (1997), pp. 6–23.

[32] Federico Castanedo et al. “A review of data fusion techniques”. In: The scientific world journal
2013 (2013).

[33] GangNiu, Bo-Suk Yang, andMichael Pecht. “Development of an optimized condition-basedmain-
tenance system by data fusion and reliability-centered maintenance”. In: Reliability engineering
& system safety 95.7 (2010), pp. 786–796. DOI: 10.1016/j.ress.2010.02.016.

[34] Dassault Systèmes. SIMPACK Multibody Simulation Software. [Accessed: 30-Sep-2024]. 2024.
URL: https://www.3ds.com/products/simulia/simpack.

[35] W Dheelibun Remigius and Anand Natarajan. “A review of wind turbine drivetrain loads and
load effects for fixed and floating wind turbines”. In:Wiley Interdisciplinary Reviews: Energy and
Environment 11.1 (2022), e417.

[36] Shuaishuai Wang, Amir R Nejad, and Torgeir Moan. “On design, modeling, and analysis of a 10-
MWmedium-speed drivetrain for offshore wind turbines”. In:Wind Energy 23.4 (2020), pp. 1099–
1117.

[37] C. Bak et al. The DTU 10-MW Reference Wind Turbine. Sound/Visual production (digital). 2013.

https://doi.org/https://doi.org/10.1002/we.2022
https://doi.org/https://doi.org/10.1002/we.2022
https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.2022
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2022
https://doi.org/https://doi.org/10.1002/we.2552
https://doi.org/https://doi.org/10.1002/we.2552
https://onlinelibrary.wiley.com/doi/pdf/10.1002/we.2552
https://onlinelibrary.wiley.com/doi/abs/10.1002/we.2552
https://mytimetable.tudelft.nl/
https://doi.org/10.1115/1.802601.ch10
https://asmedigitalcollection.asme.org/ebooks/book/chapter-pdf/2802290/802601\_ch10.pdf
https://asmedigitalcollection.asme.org/ebooks/book/chapter-pdf/2802290/802601\_ch10.pdf
https://doi.org/10.1115/1.802601.ch10
https://doi.org/10.1016/j.ress.2010.02.016
https://www.3ds.com/products/simulia/simpack


References 82

[38] Francisco Oyague. Gearbox modeling and load simulation of a baseline 750-kW wind turbine us-
ing state-of-the-art simulation codes. Tech. rep. National Renewable Energy Lab.(NREL), Golden,
CO (United States), 2009.

[39] Amir Rasekhi Nejad et al. “Development of a 5 MW reference gearbox for offshore wind turbines”.
In:Wind Energy 19.6 (2016), pp. 1089–1106.

[40] Bonnie Jonkman and Jason Jonkman. “FAST v8. 16.00 a-bjj”. In: National Renewable Energy
Laboratory 1355 (2016).

[41] International Electrotechnical Commission et al. “IEC 61400-13Wind TurbineGenerator Systems—
Part 13: Measurement of Mechanical Loads”. In: International Electrotechnical Commission: Geneva,
Switzerland (2015).

[42] JM Jonkman. “FAST User’s Guide”. In: National Renewable Energy Laboratory Technical Report
(2005).

[43] Hatto Schneider. Rotor Balancing: Fundamentals for Systematic Processes. Springer Nature,
2023.

[44] M. Saathoff et al. “Effect of individual blade pitch angle misalignment on the remaining useful life
of wind turbines”. In: Wind Energy Science 6.5 (2021), pp. 1079–1087. DOI: 10.5194/wes-6-
1079-2021. URL: https://wes.copernicus.org/articles/6/1079/2021/.

[45] CARLO LUIGI Bottasso and CED Riboldi. “Estimation of wind misalignment and vertical shear
from blade loads”. In: Renewable energy 62 (2014), pp. 293–302.

[46] Martin Cardaun et al. “Analysis of wind-turbine main bearing loads due to constant yaw misalign-
ments over a 20 years timespan”. In: Energies 12.9 (2019), p. 1768.

[47] Bonnie J Jonkman. TurbSim user’s guide. Tech. rep. National Renewable Energy Lab.(NREL),
Golden, CO (United States), 2006.

[48] John H McDonald. Handbook of biological statistics. Vol. 2. sparky house publishing Baltimore,
MD, 2009.

[49] Michael Steer. Microwave and RF design. NC State University, 2019.
[50] EMWorks. Understanding RLC Bandpass Filters: Simulation and Optimization. Accessed: 2024-

10-01. n.d. URL: https://www.emworks.com/application/understanding-rlc-bandpass-
filters-simulation-and-optimization.

[51] MathWorks.Condition Indicators for Monitoring, Fault Detection, and Prediction. Accessed: 2024-
10-01. n.d. URL: https://www.mathworks.com/help/predmaint/ug/condition-indicators-
for-monitoring-fault-detection-and-prediction.html.

[52] Yadolah Dodge. “Kolmogorov–Smirnov Test”. In: The Concise Encyclopedia of Statistics. New
York, NY: Springer New York, 2008, pp. 283–287. ISBN: 978-0-387-32833-1. DOI: 10.1007/978-
0-387-32833-1_214. URL: https://doi.org/10.1007/978-0-387-32833-1_214.

[53] Peter Ran Li Crabtree Christopher Tavner. 5.12 Wear and Debris Instrumentation. 2020. URL:
https://app.knovel.com/hotlink/khtml/id:kt01294V71/condition-monitoring/wear-
debris-instrumentation.

[54] A. Kahraman and G.W. Blankenship. “Experiments on Nonlinear Dynamic Behavior of an Oscilla-
tor With Clearance and Periodically Time-Varying Parameters”. In: Journal of Applied Mechanics
64.1 (Mar. 1997), pp. 217–226. ISSN: 0021-8936. DOI: 10.1115/1.2787276. eprint: https:
//asmedigitalcollection.asme.org/appliedmechanics/article-pdf/64/1/217/5464787/
217\_1.pdf. URL: https://doi.org/10.1115/1.2787276.

[55] Zhanwei Li et al. “Dynamicmodeling and analysis of wind turbine drivetrain considering the effects
of non-torque loads”. In: Applied Mathematical Modelling 83 (2020), pp. 146–168. ISSN: 0307-
904X. DOI: https://doi.org/10.1016/j.apm.2020.02.018. URL: https://www.sciencedire
ct.com/science/article/pii/S0307904X20301037.

https://doi.org/10.5194/wes-6-1079-2021
https://doi.org/10.5194/wes-6-1079-2021
https://wes.copernicus.org/articles/6/1079/2021/
https://www.emworks.com/application/understanding-rlc-bandpass-filters-simulation-and-optimization
https://www.emworks.com/application/understanding-rlc-bandpass-filters-simulation-and-optimization
https://www.mathworks.com/help/predmaint/ug/condition-indicators-for-monitoring-fault-detection-and-prediction.html
https://www.mathworks.com/help/predmaint/ug/condition-indicators-for-monitoring-fault-detection-and-prediction.html
https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1007/978-0-387-32833-1_214
https://doi.org/10.1007/978-0-387-32833-1_214
https://app.knovel.com/hotlink/khtml/id:kt01294V71/condition-monitoring/wear-debris-instrumentation
https://app.knovel.com/hotlink/khtml/id:kt01294V71/condition-monitoring/wear-debris-instrumentation
https://doi.org/10.1115/1.2787276
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/64/1/217/5464787/217\_1.pdf
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/64/1/217/5464787/217\_1.pdf
https://asmedigitalcollection.asme.org/appliedmechanics/article-pdf/64/1/217/5464787/217\_1.pdf
https://doi.org/10.1115/1.2787276
https://doi.org/https://doi.org/10.1016/j.apm.2020.02.018
https://www.sciencedirect.com/science/article/pii/S0307904X20301037
https://www.sciencedirect.com/science/article/pii/S0307904X20301037


References 83

[56] Cheng-Han Chuang et al. “Modal analysis, control of frequency, and torsional modes of microgrid
with doubly fed induction generator wind turbines providing frequency support”. In: IET Renew-
able Power Generation 17.9 (2023), pp. 2315–2334. DOI: https://doi.org/10.1049/rpg2.
12761. eprint: https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/rpg2.
12761. URL: https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/rpg2.
12761.

[57] Jianxiang Yang et al. “Torsional vibration characteristics analysis and adaptive fixed-time control
of wind turbine drivetrain”. In: Energy Science & Engineering 11.12 (2023), pp. 4666–4686.

[58] Sabrina Milani et al. “Automatic Detection and Intensity Classification of Pitch Misalignment of
Wind Turbine Blades: a Learning-based Approach”. In: Journal of Physics: Conference Series.
Vol. 2767. 3. IOP Publishing. 2024, p. 032010.

[59] Gareth James et al. An introduction to statistical learning: With applications in python. Springer
Nature, 2023.

[60] Bo Jing et al. “Improving wind turbine efficiency through detection and calibration of yaw mis-
alignment”. In: Renewable Energy 160 (2020), pp. 1217–1227. ISSN: 0960-1481. DOI: https:
//doi.org/10.1016/j.renene.2020.07.063. URL: https://www.sciencedirect.com/
science/article/pii/S0960148120311393.

https://doi.org/https://doi.org/10.1049/rpg2.12761
https://doi.org/https://doi.org/10.1049/rpg2.12761
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/rpg2.12761
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/rpg2.12761
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/rpg2.12761
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/rpg2.12761
https://doi.org/https://doi.org/10.1016/j.renene.2020.07.063
https://doi.org/https://doi.org/10.1016/j.renene.2020.07.063
https://www.sciencedirect.com/science/article/pii/S0960148120311393
https://www.sciencedirect.com/science/article/pii/S0960148120311393


A
10 MW DTU Design Specifics

Parameter Value
Rated power (MW) 10

IEC Class IA
Rotor orientation, configuration Upwind, 3 blades

Control Variable speed, collective pitch
Drivetrain medium-speed, multi-stage gearbox

Cut in wind speed (m/s) 4
Rated wind speed (m/s ) 11.4
Cut out wind speed (m/s) 25

Rotor diameter (m) 178.3
Hub height (m) 119
Hub diameter (m) 5.6
Hub overhang (m) 7.1
Shaft tilt angle (deg) 5

Rotor mass (t) 229
Nacelle mass (t) 446
Tower mass (t) 605

Table A.1: 10 MW DTU reference turbine specifics [37]

Parameter Value
Gearbox ratio 1:50

Minimum rotor speed (rpm) 6.0
Rated rotor speed (rpm) 9.6

Rated generator speed (rpm) 480.0
Electrical generator efficiency 94

Generator inertia about high-speed shaft (kgm2) 1500.5
Equivalent drive-shaft torsional-spring constant (Nm/rad) 2317025352

Equivalent Drive-Shaft torsional-damping constant (Nm/(rad/s)) 9240560
Natural frequency of free-free rigid shaft torsion mode 4.003
Natural frequency of free-fixed rigid shaft torsion mode 0.612

Table A.2: Drivetrain properties proposed by DTU[36]
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B
COT Resampling algorithm

B.1. Function Code
1 function [x_alpha_vector, delta_t_alpha, t_alpha, fs_resampled, PHIs] =
2 COT(vibration, fs_vibration, fs_speed, speed_rpm)
3

4 % Create time vectors
5 t_vibration = (0:length(vibration)-1) / fs_vibration;
6 t_speed = (0:length(speed_rpm)-1) / fs_speed;
7

8 % Convert speed from RPM to RPS
9 speed_rps = speed_rpm / 60;
10

11 % Interpolate rotational speed vector to match the vibration signal's time vector
12 speed_rps_interp = interp1(t_speed, speed_rps, t_vibration, 'linear', 'extrap');
13

14 % Calculate the phase angle by integrating the rotational speed
15 phase_angle = cumsum(speed_rps_interp) * 2 * pi / fs_vibration; % phase angle in radians

(2*pi)
16

17 % Identify time instants corresponding to integer rotations (phase angle wraps for
constant angular increments)

18 num_rotations = floor(phase_angle(end) / (2 * pi));
19

20 Tk = zeros(1, num_rotations + 1); %searching for time instants idx which corresponds
to phase wrap points (rotational periods)

21 for k = 1:num_rotations + 1
22 [~, idx] = min(abs(phase_angle - (k-1) * 2 * pi));
23 Tk(k) = t_vibration(idx);
24 end
25

26 % Define angular resolution (phase angle domain sampling)
27

28 N = length(vibration); % number of samples in the angular domain
29 K = num_rotations + 1; % number of integer rotations
30 alpha_i = 2 * pi * (0:N-1) * K / N; % angular rotation vector
31

32 % Interpolate to obtain time instants corresponding to alpha_i
33 t_alpha = interp1((0:num_rotations) * 2 * pi, Tk, alpha_i, 'linear', 'extrap');
34

35 % Calculate the new sampling frequency
36 PHIs = length(vibration)/phase_angle(end);
37

38 % Interpolate to obtain the angular resampled signal
39 x_alpha = interp1(t_vibration, vibration, t_alpha, 'linear', 'extrap');
40

41 % Return the resampled signal as a column vector
42 x_alpha_vector = x_alpha';
43

44 end
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B.2. Algorithm flow-diagram 86

B.2. Algorithm flow-diagram

Start

Input: vibration, fs_vibration, fs_speed, speed_rpm

Create Time Vectors

Convert Speed from RPM to RPS

Interpolate Speed Signal

Calculate Phase Angle

Identify Integer Rotations (Phase Wraps)

Define Angular Resolution

Interpolate Time Instants

Calculate New Sampling Frequency

Interpolate Vibration Signal

Return Outputs

End

Figure B.1: Flow-diagram for COT function code (B.1)



C
Steady State Analysis

C.1. 3D averaged peak amplitudes plot

(A) (B)

(C)

Figure C.1: MI - 1P: Averaged peak amplitudes under varying health states and wind speed conditions (A) vMB (front), Y; (B)
vMB (rear), Y; (C) vGen, Y
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C.1. 3D averaged peak amplitudes plot 88

(A) (B)

(C)

Figure C.2: PM - 1P: Averaged peak amplitudes under varying health states and wind speed conditions (A) vMB (front), Y; (B)
vMB (rear), Y; (C) vGen, Y

(A) (B)

(C)

Figure C.3: YM - 3P: Averaged peak amplitudes under varying health states and wind speed conditions (A) vMB (front), Y; (B)
vMB (rear), Y; (C) vGen, Y



C.2. Relative change detection histograms 89

C.2. Relative change detection histograms

(A) (B)

(C) (D)

Figure C.4: MI - 1P: relative change averaged frequencies amplitudes for MI1/MI2/MI3 compared and normalized with respect
to healthy conditions. (A) ωrotor; (B) vGen, Y; (C) vMB (front), Y; (D) vMB (rear), Y

(A) (B)

(C) (D)

Figure C.5: PM - 1P: relative change averaged frequencies amplitudes for MI1/MI2/MI3 compared and normalized with
respect to healthy conditions. (A) ωrotor; (B) vGen, Y; (C) vMB (front), Y; (D) vMB (rear), Y



C.3. Box plots and Multiple Comparison analysis for MI vs PM imbalance cases 90

(A) (B)

(C)

Figure C.6: YM - 3P: relative change averaged frequencies amplitudes for MI1/MI2/MI3 compared and normalized with
respect to healthy conditions. (A) vMB (front), Y; (B) vMB (rear), Y; (C) vGen, Y

C.3. Box plots and Multiple Comparison analysis for MI vs PM im-
balance cases

Figure C.7: Front main bearing boxplot Figure C.8: Front main bearing multiple comparison test



C.4. Time domain analysis for MI and YM 91

Figure C.9: Front main bearing boxplot
Figure C.10: Front main bearing multiple comparison

test

Figure C.11: Generator signal boxplot Figure C.12: Generator signal multiple comparison test

C.4. Time domain analysis for MI and YM

Figure C.13: PDFs of aMB (front),Y signals for healthy,
MI1, MI2, MI3 conditions, at U4

Figure C.14: Bar plots for (CICF ), (CIKurtosis) and
(CIRMS ) for healthy vs MI1/MI2/MI3 faulty conditions



C.4. Time domain analysis for MI and YM 92

Figure C.15: Healthy vs MI1/MI2/MI3 - aMB, (front), Y, U4: histogram data fitting of the simulated dataset with respect to
theoretical normal distribution.

Figure C.16: Healthy vs MI1/MI2/MI3 - aMB, (front), Y, U4: NPPs for quantile comparison of simulated data with theoretical
normal distribution.

Figure C.17: PDFs of aMB (front),Y signals for healthy,
MI1, MI2, MI3 conditions, at U4

Figure C.18: Bar plots for (CICF ), (CIKurtosis) and
(CIRMS ) for healthy vs YM1/YM2/YM3 faulty conditions



C.4. Time domain analysis for MI and YM 93

Figure C.19: Healthy vs YM1/YM2/YM3 - aMB, (front), Y, U4: histogram data fitting of the simulated dataset with respect to
theoretical normal distribution.

Figure C.20: Healthy vs YM1/YM2/YM3 - aMB, (front), Y, U4: NPPs for quantile comparison of simulated data with theoretical
normal distribution.



D
Steady-state data distribution and

statistical median value analysis for
all wind speeds

D.1. Box plots amplitude distribution analysis

(a) (b) (c)

(d) (e) (f)

Figure D.1: Mass Imbalance 1P peak amplitudes distribution for gearbox housing velocity vibration signal across six selected
wind speeds
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D.1. Box plots amplitude distribution analysis 95

(a) (b) (c)

(d) (e) (f)

Figure D.2: Pitch misalignment 1P peak amplitudes distribution for gearbox housing velocity vibration signal across six
selected wind speeds

(a) (b) (c)

(d) (e) (f)

Figure D.3: Yaw misalignment 3P peak amplitudes distribution for gearbox housing velocity vibration signal across six selected
wind speeds
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D.2. Median values comparison analysis

(a) (b) (c)

(d) (e) (f)

Figure D.4: Mass Imbalance 1P peak amplitudes distribution for gearbox housing velocity vibration signal across six selected
wind speeds

(a) (b) (c)

(d) (e) (f)

Figure D.5: Pitch misalignment 1P peak amplitudes distribution for gearbox housing velocity vibration signal across six
selected wind speeds
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(a) (b) (c)

(d) (e) (f)

Figure D.6: Yaw misalignment 3P peak amplitudes distribution for gearbox housing velocity vibration signal across six selected
wind speeds



E
Turbulence Analysis

E.1. 3D averaged peak amplitude comparison plot

(A) (B)

(C)

Figure E.1: MI - 1P: Averaged peak amplitudes comparison comparison under varying health states and wind speed
conditions (A) vMB (front), Y; (B) vMB (rear), Y; (C) vGen, Y
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(A) (B)

(C)

Figure E.2: PM - 1P: Averaged peak amplitudes under varying health states and wind speed conditions (A) vMB (front), Y; (B)
vMB (rear), Y; (C) vGen, Y
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(A) (B)

(C)

Figure E.3: YM - 3P: Averaged peak amplitudes under varying health states and wind speed conditions (A) vMB (front), Y; (B)
vMB (rear), Y; (C) vGen, Y
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E.2. Relative change detection histograms comparison

(A) (B)

(C) (D)

Figure E.4: MI - 1P: Relative change in averaged frequencies amplitudes for MI1/MI2/MI3 compared and normalized with
respect to healthy conditions. (A)ωrotor ; (B) vGen, Y; (C) vMB (front), Y; (D) vMB (rear), Y

(A) (B)

(C) (D)

Figure E.5: PM - 1P: Relative change in averaged frequencies amplitudes for PM1/PM2/PM3 compared and normalized with
respect to healthy conditions. (A)ωrotor ; (B) vGen, Y; (C) vMB (front), Y; (D) vMB (rear), Y
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(A) (B)

(C)

Figure E.6: YM - 3P: Relative change in averaged frequencies amplitudes for YM1/YM2/YM3 compared and normalized with
respect to healthy conditions. (A) vMB (front), Y; (B) vMB (rear), Y; (C) vGen, Y

E.3. Turbulence correlation analysis

Figure E.7: Mass imbalance - 1P amplitudes scatter plots of vGB,Y , Y, and ωrotor signals. Each subplot resembles a single
wind speed for different health conditions: (a) U1; (b) U3; (c) U4; (d) U6
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Figure E.8: Pitch misalignment- 1P amplitudes scatter plots of vGB,Y , and vGen,Y signals. Each subplot resembles a single
wind speed for different health conditions: (a) U1; (b) U3; (c) U4; (d) U6

Figure E.9: Yaw misalignment- 1P amplitudes scatter plots of vGB,Y , and vGen,Y signals. Each subplot resembles a single
wind speed for different health conditions: (a) U1; (b) U3; (c) U4; (d) U6


	Acknowledgments
	Abstract
	Nomenclature
	Introduction
	Research Objective and Questions
	Report outline

	State of the Art
	An Overview of O&M
	Wind Turbines Monitoring: Systems and Techniques
	Vibration-based CMSs

	Drivetrain Systems State of the Art
	Damage of Wind Turbine Blades
	Rotor Imbalances
	Dynamic Effects of Rotor Imbalances

	Signal Processing
	Frequency Domain Analysis
	Order Analysis
	Windowing

	Time-domain Analysis
	Data Fusion

	Methodology and Tools
	The 10 MW Medium-speed NTNU Drivetrain Model
	Decoupled Simulations Layout
	Steady State Simulation Parameters
	Turbulence
	Analysis Method Outline
	Frequency Domain Analysis and Comparison
	Time Domain Analysis

	Signal Choice
	A Closer Look at the System Dynamics


	Results: Steady State Analysis
	Frequency Domain Analysis
	FFT Analysis
	Average Peak Amplitudes 3D Plots
	Relative Amplitude Change Detection
	Correlation Analysis
	Box Plots and Median Values Multi-comparison Analysis
	Pitch Misalignement vs. Mass Imbalance

	Time Domain Analysis
	Summary

	Results: Turbulent Conditions Analysis
	Number of Seeds Sensitivity Analysis
	Frequency Domain Analysis
	Averaged Peak Amplitudes Analysis
	Correlation Analysis
	Box Plots and Median Values Multi-comparison Analysis

	Time Domain
	Results Findings Summary

	Discussion, Recommendations, and Limitations
	Decision Tree for Fault Detection and Diagnosis
	Health Monitoring
	Recommendations and Limitations

	Conclusions
	References
	10 MW DTU Design Specifics
	COT Resampling algorithm
	Function Code
	Algorithm flow-diagram

	Steady State Analysis
	3D averaged peak amplitudes plot
	Relative change detection histograms
	Box plots and Multiple Comparison analysis for MI vs PM imbalance cases
	Time domain analysis for MI and YM

	Steady-state data distribution and statistical median value analysis for all wind speeds
	Box plots amplitude distribution analysis
	Median values comparison analysis

	Turbulence Analysis
	3D averaged peak amplitude comparison plot
	Relative change detection histograms comparison
	Turbulence correlation analysis


