The Circular Concrete Viaduct

Development of Concept Demountable Footing to Foundation (F2F) Dowel Connection for the Application in Multiple Life-Cycles

Jaap-Willem Boersma (4737288)
CIE5060-09 MSc Thesis
SCIA Engineering Report - Demountable F2F Dowel
Model

December 24, 2020

The Circular Concrete Viaduct

Development of Concept Demountable Footing to Foundation (F2F) Dowel Connection for the Application in Multiple Life-Cycles

by

Jaap-Willem Boersma

to obtain the degree of Master of Science at the Delft University of Technology, to be defended publicly on Thursday January 14, 2021 at 14:30 PM.

Faculty of Civil Engineering and Geosciences
Track "Structural Engineering"
Specialisation "Concrete Structures"

in collaboration with:

Student number: 4737288

Project duration: February 10, 2020 – January 14, 2021
Graduation committee: Dr. ir. Y. Yang TU Delft, chair
Dr. ir. H.W.M. van der Ham TU Delft, supervisor

Dr. F. Di Maio TU Delft, supervisor/graduation coordinator

Ing. A.S. Rodenhuis PMSE Lievense, company supervisor

An electronic version of this thesis is available at: http://repository.tudelft.nl/

Introduction

This report contains the Engineering Report of the concept demountable footing to foundation (F2F) dowel connection, developed in SCIA Engineer 19.1.3030 (student version), which belongs to the thesis report "The Circular Concrete Viaduct – Development of a Concept Demountable Footing to Foundation (F2F) Dowel Connection for the Application in Multiple Life-Cycles". The report provides detailed information about the properties and input of the model as well as the main relevant results, which are the deformation of the dowel end (in SLS) and the contact stresses between the dowel and the surrounding concrete (in ULS).

SCIAENGINEER

Part Author Date Demountable dowel footing to JWB

11.11, 2020

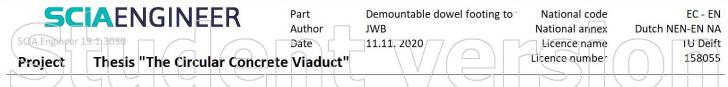
National code National arinex Licence name

Licence number

EC - EN Dutch NEN-EN NA

158055

Project


Thesis "The Circular Concrete Viaduct"

1. Project

Licence name	TU Delft
Project	Thesis "The Circular Concrete Viaduct"
Part	Demountable dowel footing to foundation connection
Description	Checking of contact stresses and deformations
Author	JWB
Date	11.11. 2020
Structure	General XYZ
No. of nodes:	14
No. of beams :	0
No. of slabs :	5
No. of solids:	0
No. of used profiles:	0
No. of load cases:	12
No. of used materials :	1
Acceleration of gravity [m/s ²]	9,810
National code	EC - EN

2. Table of contents

—	
Project Table of contents	1 1
3. Materials	3
4. Analysis model	3
5. Nodes	3
6. 2D member standard FEM	3
7. Supports on 2D member edge	4
8. 2D member supports	4
9. Concrete foundation modulus (subsoil)	4
9:1. Concrete foundation modulus (subsoil) - C30/37	4
9 1.1. Nonlinear functions	4
10. Load cases	5
10.1. Load cases - V_Nmax_ULS	5
10.1.1. Line force on 2D member edge	5
10.2. Load cases - M_Nmax_ULS	6
10.2.1. Line force on 2D member edge 10.3. Load cases - V Vmax ULS	6 7
10.3.1. Line force on 2D member edge	7
10.4. Load cases - M_Vmax_ULS	8
10.4.1. Line force on 2D member edge	8
10.5. Load cases - V_Mmax_ULS	9
10.5.1. Line force on 2D member edge	9
10.6. Load cases - M_Mmax_ULS 10.6.1. Line force on 2D member edge	10 10
10.7. Load cases - V Nmax SLS	11
10.7.1. Line force on 2D member edge	11
10.8. Load cases - M_Nmax_SLS	12
10.8.1. Line force on 2D member edge	12
10.9. Load cases - V_Vmax_SLS	13
10.9.1. Line force on 2D member edge 10.10. Load cases - M_Vmax_SLS	13 14
10.10.1. Line force on 2D member edge	14
10.11. Load cases - V_Mmax_SLS	15
10.11.1. Line force on 2D member edge	15
10.12. Load cases - M_Mmax_SLS	16
10.12.1. Line force on 2D member edge	16
11. Nonlinear combinations	17
12. Displacement at dowel end	18
12.1. Combination 1: Nmax (SLS) 12.2. Combination 2: Vmax (SLS)	18 19
12.3. Combination 3: Mmax (SLS)	21
13. 2D contact stress between steel dowel and concrete interface	
13.1. Combination 1: Nmax (ULS)	22
13.2. Combination 2: Vmax (ULS)	23

13.3. Combination 3: Mmax (ULS)

24

Student version

Demountable dowel footing to JWB

11.11, 2020

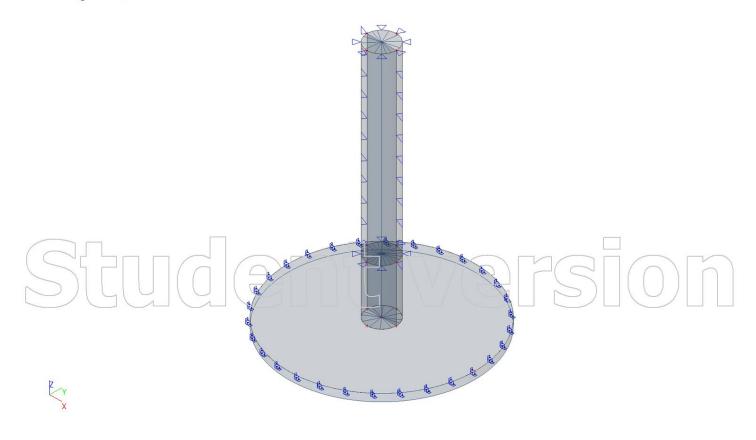
National code National armex Licence name

Licence number

EC - EN Dutch NEN-EN NA

158055

Project


Thesis "The Circular Concrete Viaduct"

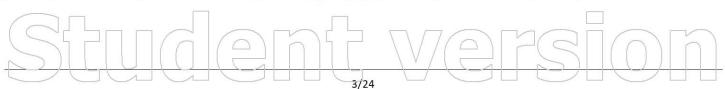
3. Materials

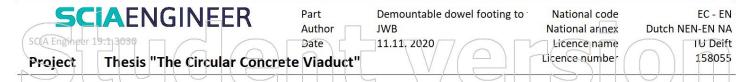
Steel EC3

Name	ρ [kg/m³]	E _{mod} [MPa]	μ	Lower limit [mm]	Upper limit [mm]	F _y [MPa]	Fu [MPa]	Colour
		G _{mod} [MPa]	a [m/mK]					
S 355	7850,0	2,1000e+05	0.3	0	40	355,0	490,0	
		8,0769e+04	0,00	40	80	335,0	470,0	

4. Analysis model

5. Nodes


Name	Coord X [mm]	Coord Y [mm]	Coord Z [mm]
N227	1210,000	1250,000	0,000
N228	1290,000	1250,000	0,000
N229	1250,000	1210,000	0,000
N230	1290,000	1250,000	150,000
N231	1210,000	1250,000	150,000


Name	Coord X	Coord Y	Coord Z
	[mm]	[mm]	[mm]
N232	1250,000	1210,000	150,000
N233	1250,000	1290,000	0,000
N234	1250,000	1290,000	150,000
N235	1290,000	1250,000	650,000
N236	1210,000	1250,000	650,000

Name	Coord X	Coord Y	Coord Z
	[mm]	[mm]	[mm]
N237	1250,000	1210,000	650,000
N238	1250,000	1290,000	650,000
N239	1250,000	1250,000	0,000
N240	1504,000	1250,000	0,000

6. 2D member standard FEM

Name	Element type	Element behaviour	Layer	Туре	Material	Thickness type	Th. [mm]
S74	Standard	Standard FEM	d=80mm	wall (80)	S 355	constant	40
S75	Standard	Standard FEM	d=80mm	wall (80)	S 355	constant	40
S76	Standard	Standard FEM	d=80mm	wall (80)	S 355	constant	40
S77	Standard	Standard FEM	d=80mm	wall (80)	S 355	constant	40
S78	Standard	Standard FEM	d=80mm	plate (90)	S 355	constant	20

7. Supports on 2D member edge

Sle35		
2D member, Edge	S78	1
Orig, Coor	From start	Rela
Pos x ₁ , Pos x ₂	0.000	1.000
X, Stiffness X [N/mm ²]	Flexible	1,0000e+00
Y, Stiffness Y [N/mm ²]	Flexible	1,0000e+00
Z, Stiffness Z [N/mm ²]	Flexible	1,3125e+02
Rx, Stiffness Rx [Nmm/mm/rad]	Rigid	
Ry, Stiffness Ry [Nmm/mm/rad]	Rigid	
Rz, Stiffness Rz [Nmm/mm/rad]	Rigid	

8. 2D member supports

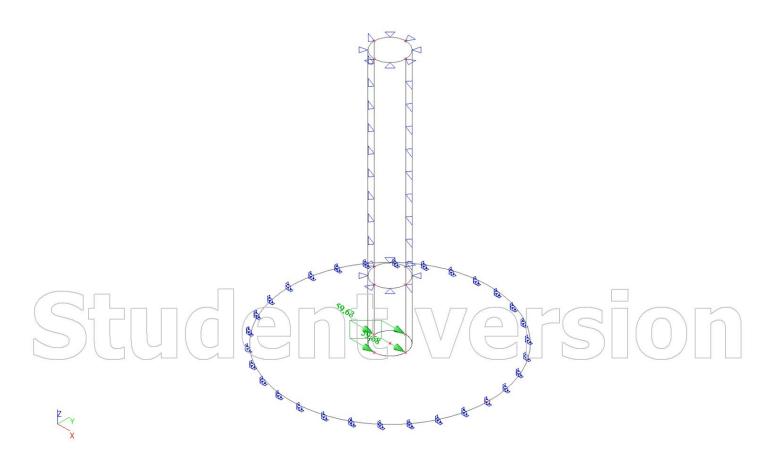
Name	Туре	Subsoil	2D member
SS32	Individual	C30/37	S76
SS33	Individual	C30/37	S77

9. Concrete foundation modulus (subsoil)

9.1. Concrete foundation modulus (subsoil) - C30/37

Name	C1x [N/mm ³]	C1z	C1y [N/mm ³]	Stiffness [N/mm ³]	C2x [N/mm]	C2y [N/mm]
C30/37	0,0000e+00	Nonlinear function	0,0000e+00	3,7500e+01	0,0000e+00	0,0000e+00

9.1.1. Nonlinear functions


DIELE ITOMINICAL IMPO					
Name Type	Positive en				
C30/37 Nonlinear subsoil	Free	Free			
Drawing		F[MPa]		JS[(
		u [mm]			
	/	d [mm]			
/		30.0000			

ACINGINEER	Part Author	Demountable dowel footing to JWB	National code National armex	EC - EN Dutch NEN-EN NA
SC(A Engineer 19:1) 3030	Date	11.11, 2020	Licence name	T⊍ Deift
Project Thesis "The Circular Concrete	Viaduct"		Licence number	158055

10. Load cases

10.1. Load cases - V_Nmax_ULS

Name	Description	Action type	Load group
	Spec	Load type	
V_Nmax_ULS		Permanent	LG1
		Standard	2

10.1.1. Line force on 2D member edge

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS1050	S74	Force	X	59,68	0.000	Length	1
	V_Nmax_ULS	GCS	Uniform		1.000	Rela	From start
LFS1051	S75	Force	X	59,68	0.000	Length	1
	V_Nmax_ULS	GCS	Uniform		1.000	Rela	From start

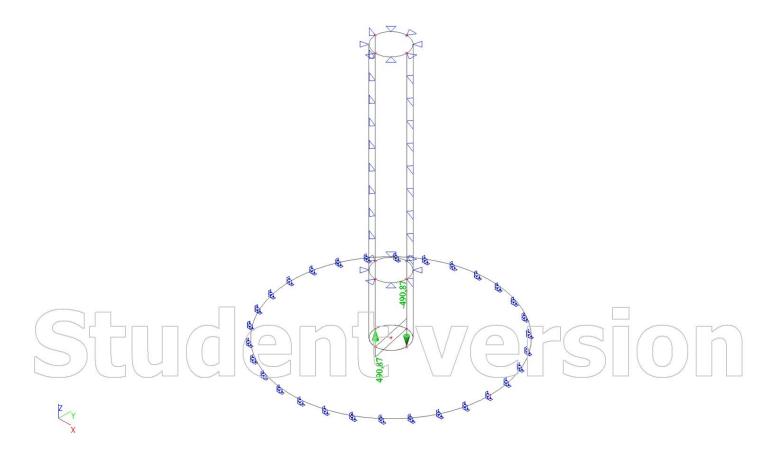
Demountable dowel footing to JWB

11.11, 2020

National code National armex Licence name

Licence number

EC - EN Dutch NEN-EN NA IU Deift


1.58055

Project

Thesis "The Circular Concrete Viaduct"

10.2. Load cases - M_Nmax_ULS

Name	Description	Action type	Load group
	Spec	Load type	
M_Nmax_ULS		Permanent	LG1
		Standard	

10.2.1. Line force on 2D member edge

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS1052	S74	Force	Z	490,87	0.000	Length	1
	M_Nmax_ULS	GCS	Trapez	-490,87	1.000	Rela	From start
LFS1053	S75	Force	Z	490,87	0.000	Length	1
	M_Nmax_ULS	GCS	Trapez	-490,87	1.000	Rela	From start

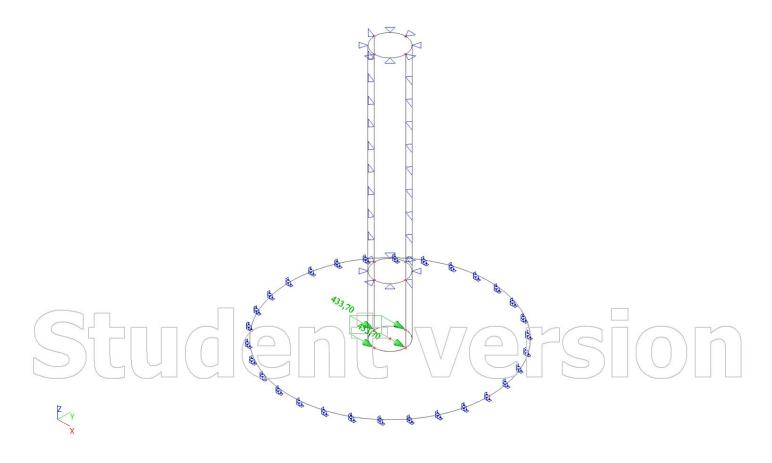
Demountable dowel footing to JWB

11.11, 2020

National code National armex Licence name

Licence number

EC - EN Dutch NEN-EN NA IU Deift


158055

Project

Thesis "The Circular Concrete Viaduct"

10.3. Load cases - V_Vmax_ULS

Name	Description	Action type	Load group
	Spec	Load type	
V_Vmax_ULS		Permanent	LG1
		Standard	

10.3.1. Line force on 2D member edge

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS1034	S74	Force	X	433,70	0.000	Length	1
	V_Vmax_ULS	GCS	Uniform		1.000	Rela	From start
LFS1035	S75	Force	X	433,70	0.000	Length	1
	V_Vmax_ULS	GCS	Uniform		1.000	Rela	From start

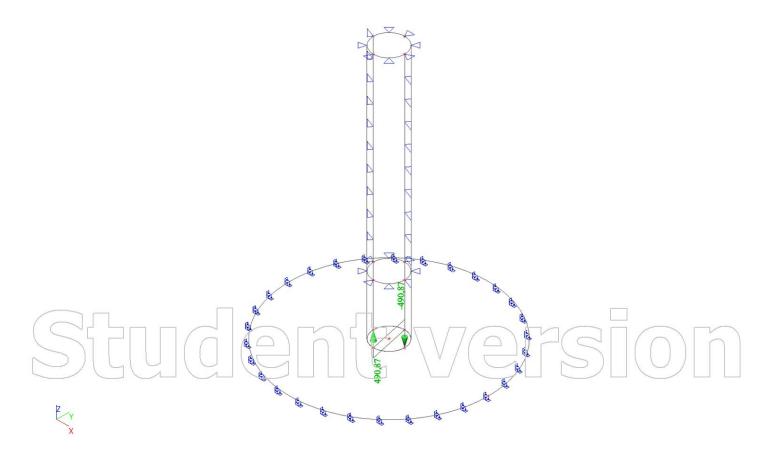
Demountable dowel footing to JWB

11.11, 2020

National code National armex Licence name

Licence number

EC - EN Dutch NEN-EN NA IU Deift


158055

Project

Thesis "The Circular Concrete Viaduct"

10.4. Load cases - M_Vmax_ULS

Name	Description	Action type	Load group
	Spec	Load type	
M_Vmax_ULS		Permanent	LG1
		Standard	

10.4.1. Line force on 2D member edge

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS1042	S74	Force	Z	490,87	0.000	Length	1
	M_Vmax_ULS	GCS	Trapez	-490,87	1.000	Rela	From start
LFS1043	S75	Force	Z	490,87	0.000	Length	1
	M_Vmax_ULS	GCS	Trapez	-490,87	1.000	Rela	From start

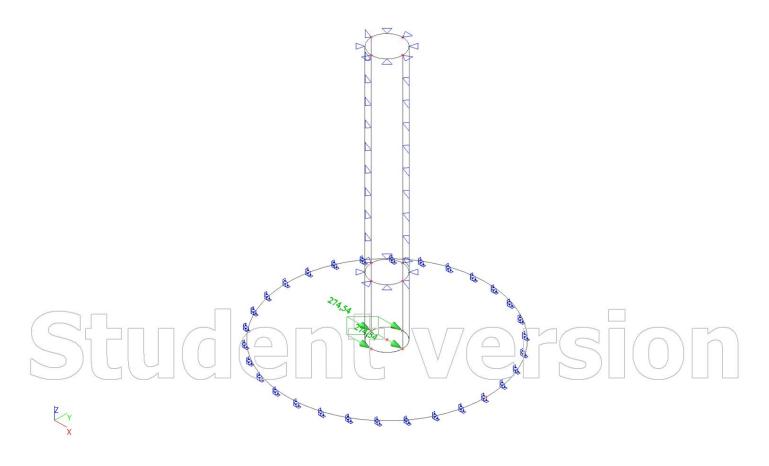
Demountable dowel footing to JWB

11.11, 2020

National code National armex Licence name

Licence number

EC - EN Dutch NEN-EN NA IU Deift


158055

Project

Thesis "The Circular Concrete Viaduct"

10.5. Load cases - V_Mmax_ULS

Name	Description	Action type	Load group
	Spec	Load type	
V_Mmax_ULS		Permanent	LG1
		Standard	

10.5.1. Line force on 2D member edge

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS1036	S74	Force	X	274,54	0.000	Length	1
	V_Mmax_ULS	GCS	Uniform		1.000	Rela	From start
LFS1037	S75	Force	X	274,54	0.000	Length	1
	V_Mmax_ULS	GCS	Uniform	7 867	1.000	Rela	From start

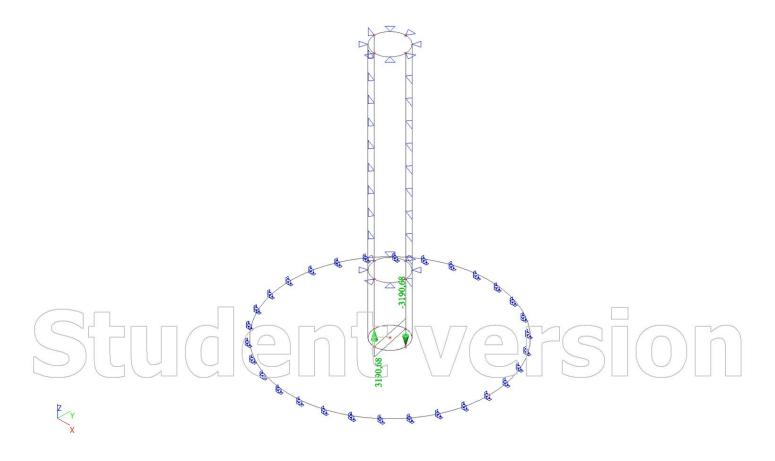
Demountable dowel footing to JWB

11.11, 2020

National code National armex Licence name

Licence number

EC - EN Dutch NEN-EN NA IU Deift


158055

Project

Thesis "The Circular Concrete Viaduct"

10.6. Load cases - M_Mmax_ULS

Name	Description	Action type	Load group
	Spec	Load type	
M_Mmax_ULS		Permanent	LG1
		Standard	

10.6.1. Line force on 2D member edge

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS1044	S74	Force	Z	3190,68	0.000	Length	1
	M_Mmax_ULS	GCS	Trapez	-3190,68	1.000	Rela	From start
LFS1045	S75	Force	Z	3190,68	0.000	Length	1
	M_Mmax_ULS	GCS	Trapez	-3190,68	1.000	Rela	From start

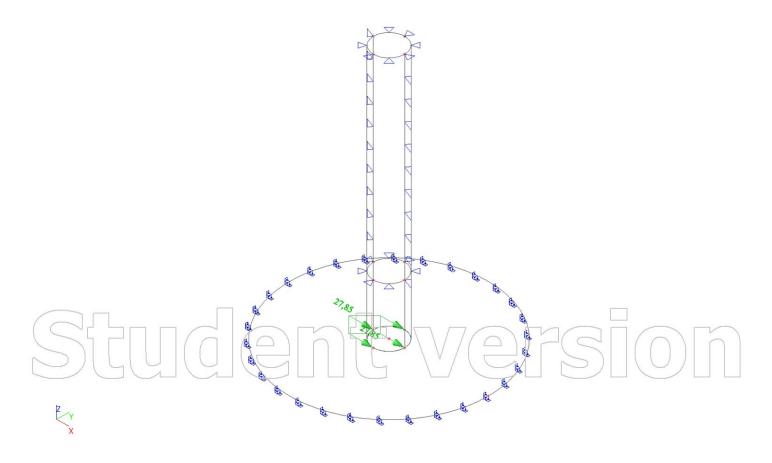
Demountable dowel footing to JWB

11.11, 2020

National code National armex Licence name

Licence number

EC - EN Dutch NEN-EN NA IU Deift


158055

Project

Thesis "The Circular Concrete Viaduct"

10.7. Load cases - V_Nmax_SLS

Name	Description	Action type	Load group
	Spec	Load type	
V Nmax SLS		Permanent	LG1
		Standard	

10.7.1. Line force on 2D member edge

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS1054	S74	Force	X	27,85	0.000	Length	1
	V_Nmax_SLS	GCS	Uniform		1.000	Rela	From start
LFS1055	S75	Force	X	27,85	0.000	Length	1
	V_Nmax_SLS	GCS	Uniform		1.000	Rela	From start

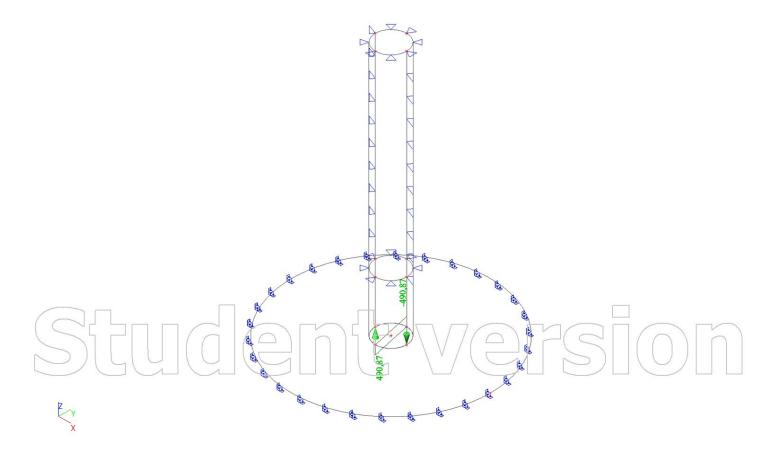
Demountable dowel footing to JWB

11.11, 2020

National code National arinex Licence name

Licence number

EC - EN Dutch NEN-EN NA TU Deift


158055

Project

Thesis "The Circular Concrete Viaduct"

10.8. Load cases - M_Nmax_SLS

Name	Description	Action type	Load group
	Spec	Load type	
M_Nmax_SLS		Permanent	LG1
		Standard	

10.8.1. Line force on 2D member edge

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS1056	S74	Force	Z	490,87	0.000	Length	1
	M_Nmax_SLS	GCS	Trapez	-490,87	1.000	Rela	From start
LFS1057	S75	Force	Z	490,87	0.000	Length	1
	M_Nmax_SLS	GCS	Trapez	-490,87	1.000	Rela	From start

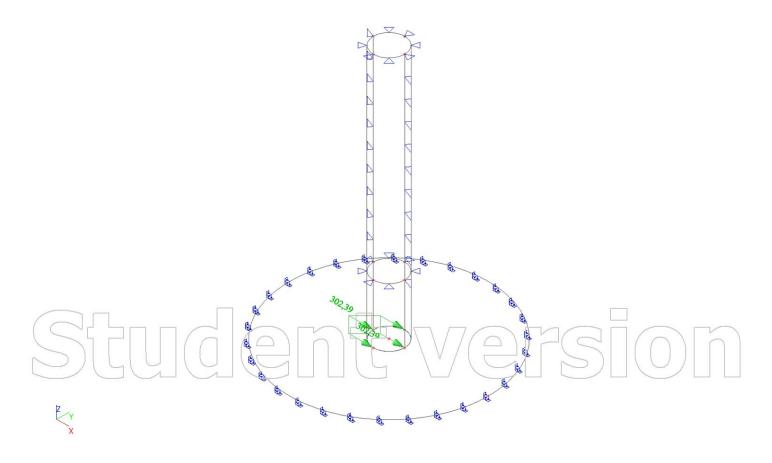
Demountable dowel footing to JWB

11.11, 2020

National code National armex Licence name

Licence number

EC - EN Dutch NEN-EN NA TU Deift


158055

Project

Thesis "The Circular Concrete Viaduct"

10.9. Load cases - V_Vmax_SLS

Name	Description	Action type	Load group
	Spec	Load type	
V_Vmax_SLS		Permanent	LG1
		Standard	

10.9.1. Line force on 2D member edge

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS1038	S74	Force	X	302,39	0.000	Length	1
	V_Vmax_SLS	GCS	Uniform		1.000	Rela	From start
LFS1039	S75	Force	X	302,39	0.000	Length	1
	V_Vmax_SLS	GCS	Uniform	70	1.000	Rela	From start

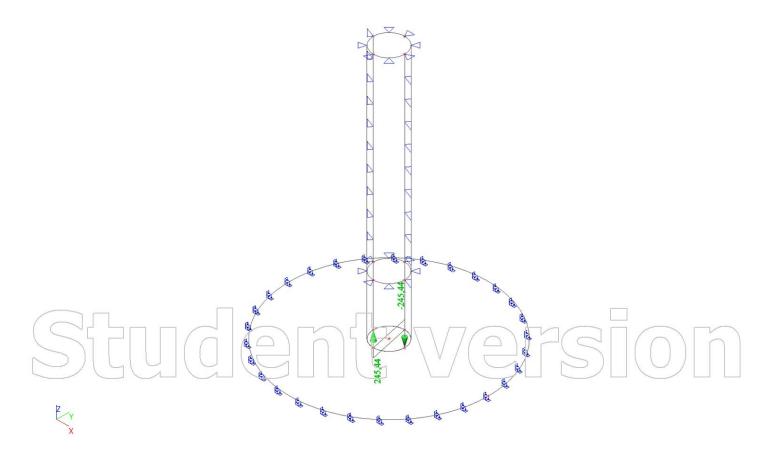
Demountable dowel footing to JWB

11.11, 2020

National code National arinex Licence name

Licence number

EC - EN Dutch NEN-EN NA TU Deift


158055

Project

Thesis "The Circular Concrete Viaduct"

10.10. Load cases - M_Vmax_SLS

Name	Description	Action type	Load group
	Spec	Load type	
M Vmax SLS		Permanent	LG1
		Standard	

10.10.1. Line force on 2D member edge

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS1048	S74	Force	Z	245,44	0.000	Length	1
	M_Vmax_SLS	GCS	Trapez	-245,44	1.000	Rela	From start
LFS1049	S75	Force	Z	245,44	0.000	Length	1
	M_Vmax_SLS	GCS	Trapez	-245,44	1.000	Rela	From start

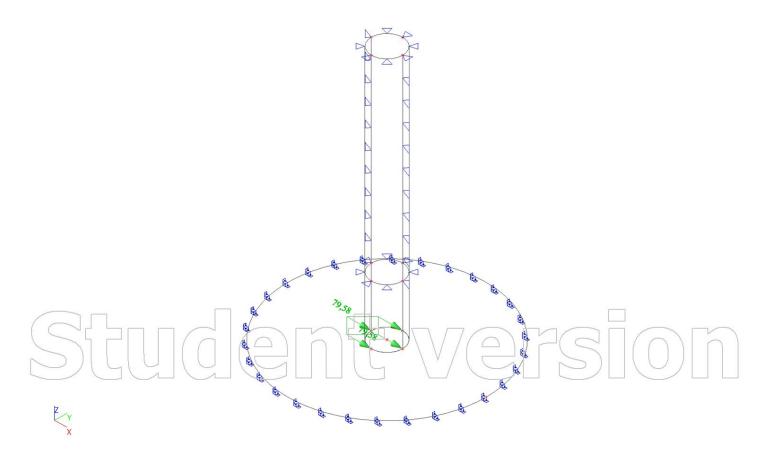
Demountable dowel footing to JWB

11.11, 2020

National code National armex Licence name

Licence number

EC - EN Dutch NEN-EN NA IU Deift


158055

Project

Thesis "The Circular Concrete Viaduct"

10.11. Load cases - V_Mmax_SLS

Name	Description	Action type	Load group
	Spec	Load type	
V Mmax SLS		Permanent	LG1
		Standard	

10.11.1. Line force on 2D member edge

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS1040	S74	Force	X	79,58	0.000	Length	1
	V_Mmax_SLS	GCS	Uniform	18	1.000	Rela	From start
LFS1041	S75	Force	X	79,58	0.000	Length	1
	V_Mmax_SLS	GCS	Uniform		1.000	Rela	From start

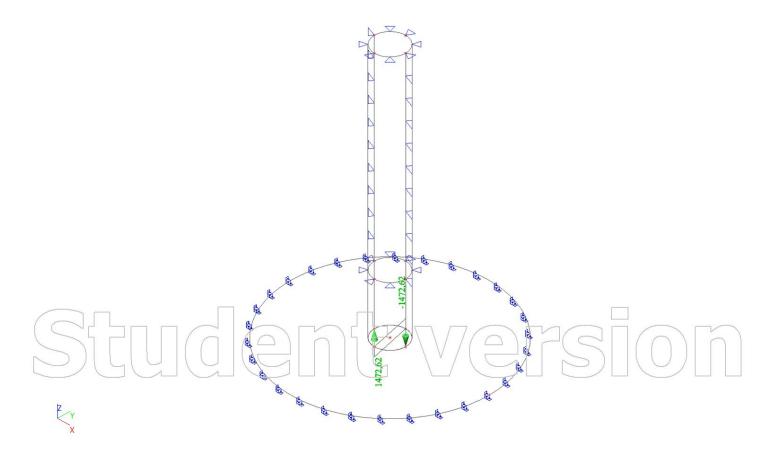
Demountable dowel footing to JWB

11.11, 2020

National code National armex Licence name

Licence number

EC - EN Dutch NEN-EN NA IU Deift


1.58055

Project

Thesis "The Circular Concrete Viaduct"

10.12. Load cases - M_Mmax_SLS

Name	Description	Action type	Load group
	Spec	Load type	
M Mmax SLS		Permanent	LG1
		Standard	

10.12.1. Line force on 2D member edge

Name	2D member	Туре	Dir	Value - P ₁ [kN/m]	Pos x ₁	Loc	Edge
	Load case	System	Distribution	Value - P ₂ [kN/m]	Pos x ₂	Coor	Orig
LFS1046	S74	Force	Z	1472,62	0.000	Length	1
	M_Mmax_SLS	GCS	Trapez	-1472,62	1.000	Rela	From start
LFS1047	S75	Force	Z	1472,62	0.000	Length	1
	M_Mmax_SLS	GCS	Trapez	-1472,62	1.000	Rela	From start

Demountable dowel footing to JWB

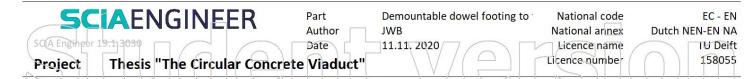
11.11, 2020

National code

EC - EN Dutch NEN-EN NA

1.58055

Project


Thesis "The Circular Concrete Viaduct"

Licence name Licence number

11. Nonlinear combinations

Name	Туре	Load cases	Coeff. [-]
Nmax_ULS	Ultimate	V_Nmax_ULS	1,00
		M_Nmax_ULS	1,00
Vmax_ULS	Ultimate	V_Vmax_ULS	1,00
		M_Vmax_ULS	1,00
Mmax_ULS	Ultimate	V_Mmax_ULS	1,00
		M_Mmax_ULS	1,00
Nmax_SLS	Serviceability	V_Nmax_SLS	1,00
		M_Nmax_SLS	1,00
Vmax_SLS	Serviceability	V_Vmax_SLS	1,00
		M_Vmax_SLS	1,00
Mmax_SLS	Serviceability	V_Mmax_SLS	1,00
		M_Mmax_SLS	1,00

Student version

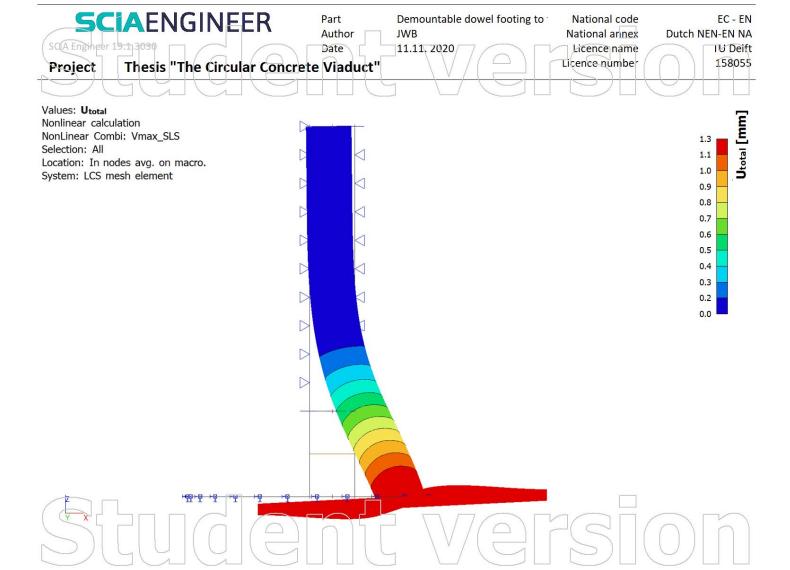

12. Displacement at dowel end

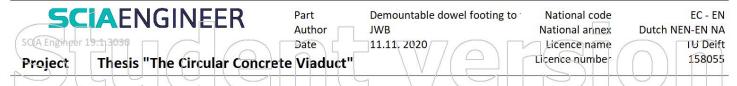
12.1. Combination 1: Nmax (SLS)

Nonlinear calculation, Extreme : Node Selection : Named selection - x=-a Nonlinear combinations : Nmax_SLS

Node	Case	Ux [mm]	Uy [mm]	Uz [mm]	Fix [mrad]	Fiy [mrad]	Fiz [mrad]
N239	Nmax SLS	0,0	0,0	0,0	0,0	0,3	0,0

Values: Ux
Nonlinear calculation
NonLinear Combi: Nmax_SLS
Extreme: Node
Selection: Named selection - x=-a




12.2. Combination 2: Vmax (SLS)

Nonlinear calculation, Extreme : Node Selection : Named selection - x=-a Nonlinear combinations : Vmax_SLS

Node	Case	Ux [mm]	Uy [mm]	Uz [mm]	Fix [mrad]	Fiy [mrad]	Fiz [mrad]
N239	Vmax SLS	1,2	0.0		0.0	-3.4	0.0

Values: Ux
Nonlinear calculation
NonLinear Combi: Vmax_SLS
Extreme: Node
Selection: Named selection - x=-a

12.3. Combination 3: Mmax (SLS)

Nonlinear calculation, Extreme : Node Selection : Named selection - x=-a Nonlinear combinations : Mmax_SLS

Node	Case	Ux [mm]	Uy [mm]	Uz [mm]	Fix [mrad]	Fiy [mrad]	Fiz [mrad]
N239	Mmax SLS	0,0	0,0	0,0	0,0	0,9	0,0

Values: Ux
Nonlinear calculation
NonLinear Combis Mmax_SLS
Extreme: Node
Selection: Named selection - x=-a

Demountable dowel footing to JWB

11.11, 2020

National code National armex Licence name

Licence number

EC - EN Dutch NEN-EN NA IU Deift

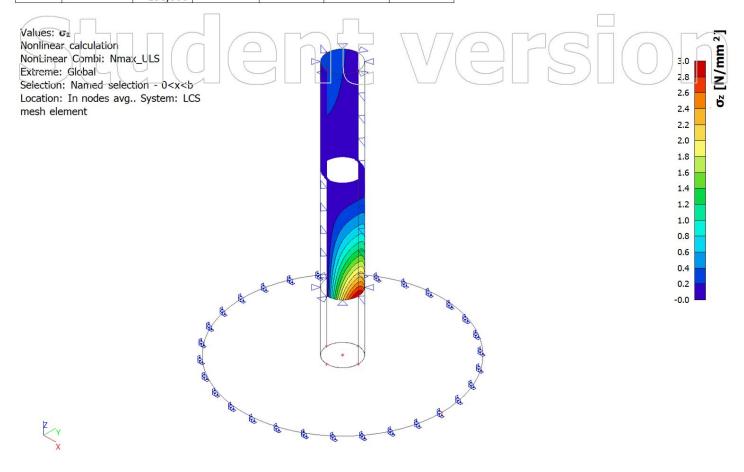
1.58055

Project

Thesis "The Circular Concrete Viaduct"

13. 2D contact stress between steel dowel and concrete interface

13.1. Combination 1: Nmax (ULS)


Nonlinear calculation NonLinear Combi: Nmax_ULS

Extreme: Global

Selection: Named selection - 0<x<b

Location: In nodes avg.. System: LCS mesh element

Name	Mesh	Position [mm]	Case	T _{ZX} [N/mm ²]	T _{yz} [N/mm ²]	σ _z [N/mm²]
S77	Node: 9698	1251,963 1289,952 150,000	Nmax_ULS	0,0	0,0	0,2
S76	Node: 4909	1251,963 1210,048 150,000	Nmax_ULS	0,0	0,0	0,2
S77	Node: 9727	1289,807 1253,921 150,000	Nmax_ULS	0,0	0,0	3,0
S77	Node: 9728	1289,952 1251,963 150,000	Nmax_ULS	0,0	0,0	3,0
S76	Node: 6	1210,000 1250,000 150,000	Nmax_ULS	0,0	0,0	0,0
S76	Node: 4	1290,000 1250,000 150,000	Nmax_ULS	0,0	0,0	3,0

Demountable dowel footing to JWB

11.11, 2020

National code National armex Licence name

Licence number

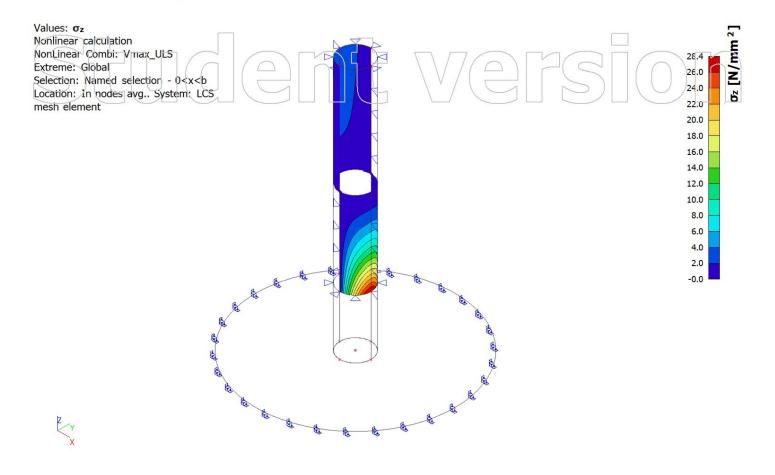
EC - EN Dutch NEN-EN NA

158055

Project

Thesis "The Circular Concrete Viaduct"

13.2. Combination 2: Vmax (ULS)


Nonlinear calculation NonLinear Combi: Vmax_ULS

Extreme: Global

Selection: Named selection - 0<x<b

Location: In nodes avg.. System: LCS mesh element

Name	Mesh	Position	Case	T _{ZX}	Tyz	σ _z
		[mm]		[N/mm ²]	[N/mm ²]	[N/mm ²]
S77	Node: 9698	1251,963	Vmax_ULS	0,0	0,0	1,4
		1289,952			100	
		150,000				
S76	Node: 4909	1251,963	Vmax_ULS	0,0	0,0	1,4
191011	W14100 - 2775 - 2001	1210,048	100		350	
		150,000				
S77	Node: 9727	1289,807	Vmax ULS	0,0	0,0	28,3
	ACCOUNT OF THE PARTY	1253,921	National Control of the State o	500 FE FIL	•	****
		150,000				
S77	Node: 9728	1289,952	Vmax ULS	0,0	0,0	28,4
		1251,963	_	,		
		150,000				
S76	Node: 6	1210,000	Vmax ULS	0,0	0,0	0,0
	X1000000000000000000000000000000000000	1250,000	(A)	10.0	•	* * * * * * * * * * * * * * * * * * *
		150,000				
S76	Node: 4	1290,000	Vmax ULS	0,0	0,0	28,4
		1250,000			0,0	
		150,000				

Demountable dowel footing to JWB

11.11, 2020

National code National armex Licence name

Licence number

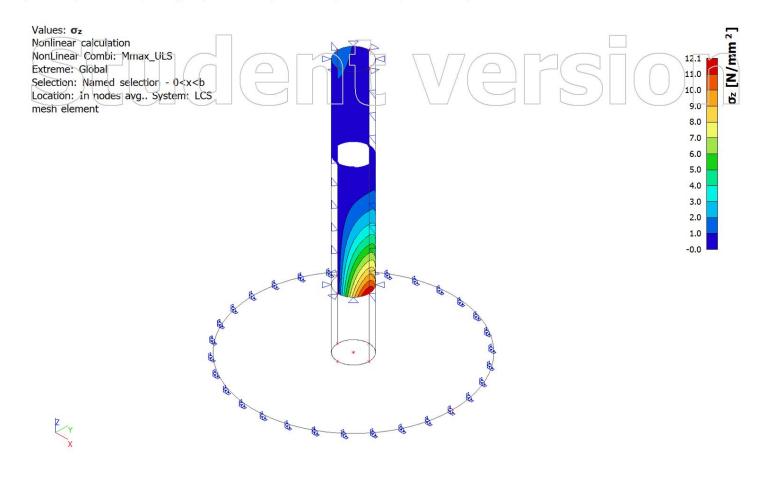
EC - EN Dutch NEN-EN NA

158055

Project

Thesis "The Circular Concrete Viaduct"

13.3. Combination 3: Mmax (ULS)


Nonlinear calculation NonLinear Combi: Mmax_ULS

Extreme: Global

Selection: Named selection - 0<x<b

Location: In nodes avg.. System: LCS mesh element

Name	Mesh	Position [mm]	Case	T _{ZX} [N/mm ²]	Tyz [N/mm²]	σ _z [N/mm²]
S77	Node: 9698	1251,963 1289,952 150,000	Mmax_ULS	0,0	0,0	0,6
S76	Node: 4909	1251,963 1210,048 150,000	Mmax_ULS	0,0	0,0	0,6
S77	Node: 9727	1289,807 1253,921 150,000	Mmax_ULS	0,0	0,0	12,0
S77	Node: 9728	1289,952 1251,963 150,000	Mmax_ULS	0,0	0,0	12,1
S76	Node: 6	1210,000 1250,000 150,000	Mmax_ULS	0,0	0,0	0,0
S76	Node: 4	1290,000 1250,000 150,000	Mmax_ULS	0,0	0,0	12,1

