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Abstract: Gray-box identification is prevalent in modeling physical and networked systems.
However, due to the non-convex nature of the gray-box identification problem, good initial
parameter estimates are crucial for a successful application. In this paper, a new identification
method is proposed by exploiting the low-rank and structured Hankel matrix of impulse
response. This identification problem is recasted into a difference-of-convex programming
problem, which is then solved by the sequential convex programming approach with the
associated initialization obtained by nuclear-norm optimization. The presented method aims
to achieve the maximum impulse-response fitting while not requiring additional (non-convex)
conditions to secure non-singularity of the similarity transformation relating the given state-
space matrices to the gray-box parameterized ones. This overcomes a persistent shortcoming
in a number of recent contributions on this topic, and the new method can be applied for
the structured state-space realization even if the involved system parameters are unidentifiable.
The method can be used both for directly estimating the gray-box parameters and for providing
initial parameter estimates for further iterative search in a conventional gray-box identification
setup.

© 2017, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.

Keywords: Structured state-space model, convex-concave procedure.

1. INTRODUCTION 0 1 0
z(t) = 0 1z + | B |u®) 1)
Nowadays, the control and identification of structured T T
state-space system model have attracted great attention y(t) =[1 0]=z(?).
in the control community. There are two main sources of By reparameterizing 0, = =%, 0 = g . we have

structured state-space models: the modeling of practical
physical systems (Dorf and Bishop, 2011; Ljung, 1999;
Verhaegen and Verdult, 2007) and the description of net-
worked systems (Bellman and Astrém, 1970; Van den
Hof, 1998). When modeling physical systems, the non-
zero entries of the system matrices always have physical
meanings. Identification of the physical parameters can
provide us a better understanding of the inner physical
mechanism of the investigated object. On the other hand,

. 01 00 0
o= (35 14]e) o+ (2]
y(t) = [1 0]x(t).
Although the system matrices above are parameterized
linearly in only two variables, it might be cumbersome

to identify these two parameters using the sampled input-
output (I0) data, unless we have good initial estimates.

a network connected system often can be represented as
a structured system with the structure straightforwardly
determined by the interconnections among the involved
subsystems. Identification of such kind of structured sys-
tem models provides the foundation for the model-based
network control.

One simple example of gray-box model is the DC Servomo-
tor (Ljung, 1999, Example 4.1) with time constant 7 and
steady state gain to angular velocity 8. The continuous-
time state-space expression is

* This work is sponsored by the European Research Council, Ad-
vanced Grant Agreement No. 339681.

In the literature, there are two kinds of methods to iden-
tify structured state-space models. One is the traditional
gray-box set-up, to identify the parameterized state-space
models directly from the 10 data using the prediction-
error method (Ljung, 1999; Verhaegen and Verdult, 2007).
Since the involved identification problem is always a non-
convex optimization problem, the conventional nonlinear
optimization methods, such as regularized Gauss-Newton
method (Ljung, 1999, Section 10.2), and the gradient
project method (Verhaegen and Verdult, 2007, Chapter
7), are sensitive to the initial parameter estimate. This
traditional setup thus requires reasonable knowledge of the
parameters and structures to be identified. Since the gray
box situation starts from some physical insight, this knowl-
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edge may be sufficient in some cases, but too demanding
in other. Resorting to testing random initial parameters
may not be feasible for large problems.

The other approach to structured state-space models is to
first estimate an unstructured, black-box model using, e.g.,
subspace identification methods, followed by the recovery
of the physical parameters embedded in the structured
model. Using the classical subspace identification methods,
such as MOESP and N4SID (Ljung, 1999; Verhaegen and
Verdult, 2007), the system matrices in the first step can
be consistently estimated under some mild conditions. The
parameter recovery in the second step turns out to be a
small-scale bilinear optimization problem.

To solve the bilinear optimization problem involved with
the gray-box identification, an alternating minimization al-
gorithm was developed in (Xie and Ljung, 2002) and a null-
space based method was proposed in (Prot et al., 2012).
In order to prevent the singular similarity transformation,
a non-smooth optimization approach was presented in
(Mercere et al., 2014). Furthermore, in order to avoid esti-
mating the similarity transformation, an H..-norm-based
identification algorithm was proposed in (Bergamasco and
Lovera, 2013; Vizer et al., 2016). The above mentioned
algorithms are sensitive to initial conditions. To cope with
this problem, the bilinear optimization problem was refor-
mulated into a sum-of-squares of polynomials which is then
solved by the semi-definite programming method (Ljung
and Parrilo, 2003); however, this technique is limited to
solving small-scale problems having only a few unknown
variables.

In this paper, a difference-of-convex programming (DCP)
based method is developed for the identification of struc-
tured state-space models. This approach estimates the
system parameters by the structured factorization of a
block Hankel matrix of system impulse response, which is
inspired by the Ho-Kalman decomposition method (Ver-
haegen and Verdult, 2007). More explicitly, the proposed
method boils down to solving a structured low-rank ma-
trix factorization problem. In this paper, this non-convex
optimization problem is transformed into a difference-of-
convex (DC) optimization problem which is then tackled
by the sequential convex programming technique (Boyd,
2008).

The advantages of the proposed method against many
recently developed methods are as follows. Different from
the identification method in (Mercere et al., 2014), the
proposed algorithm framework avoids the non-singularity
constraint on the similarity transformation and can be
applied to the realization of non-identifiable gray-box
models. Unlike the model-matching H., method (Vizer
et al., 2016) which requires to solve an infinite-dimensional
optimization problem, the proposed identification method
is finite-dimensional so that it is more computational
amenable.

2. PROBLEM STATEMENT

We consider a parameterized state-space model as follows
z(t) = A(0)x(t) + B(0)u(t) @)
y(kT) = C(0)x(kT) + w(kT),

9463

where u(t) € R™ z(t) € R" y(t) € RP and w(k) €
RP are system input, state, output, and measurement
noise, respectively; # € R! is the parameter vector; ¢
and k represent continuous and discrete time indices,
respectively; T is the sampling period.

The parameter vector 6 in (2) typically represents un-
known values of physical coefficients. Here, we assume that
the structured system matrices are affine with respect to
0, i.e.

l l
A(0) = Ao+ A, B(O)=Bo+ Y Bib;,

i=1 i=1

1
C(0) =Co+ Y _Cith,
i=1
where the coefficient matrices A;, B; and C; are known.
Besides the structures of the system matrices, the system
order of (2) is known as a priori knowledge as well. The
DC Servomotor example given in the introduction exactly
fits the above structure.

Denote the corresponding true continuous-time transfer
function by:

G(s,0) = C(0) (s — A(6) " B(). (3)
Although state-evolution equation in (2) is continuous, we
can only obtain sampled 10 data in practice with sampling
period T'. Denoting the discrete-time system, obtained by
the sampling period T with the system input u(t) being
piecewise constant between the sampling instants k7T, as

H(q,0) = C(0) (¢I — Ar(0))"" Br(0), (4)
where

T
Ap =0T Bp = / A7 B(6)dr.
7=0

Given the sampled 10 data {u(kT),y(kT)} for k = 0,1, - -
that are generated from model (2) for a certain value
0*, the concerned gray-box identification problem is to
estimate the parameter vector 8* from the measured 10
data.

3. GRAY-BOX APPROACH

The estimation of the parameter vector 8* using the sam-
pled 10 data {u(kT),y(kT)} is typically a gray-boz iden-
tification problem. The traditional identification method
is the prediction-error method (Ljung, 1999) in which
the predicted or simulated outputs §(kT|f) are comput-
ed using the discrete-time model H(gq,0) for any 6. The
corresponding prediction error criterion is written as

N-1
. 1 N 2
min g_o ly(KT) — g(kT|0)|

sit. (kT +T)=Ar(0)z(kT) + Br(0)u(kT)
g(kT|0) = C(0)&(kT) fork=0,--- ,N—1.
This general method has the best possible asymptotic
accuracy, but the main drawback is that the optimization
problem is (highly) non-convex and may have many local
minima. The gradient-based optimization algorithms such
as Gauss-Newton method (Ljung, 1999, Section 10.2),
and gradient projection method (Verhaegen and Verdult,
2007, Chapter 7) can be used to solve (5). However,



9464

the performance mainly relies on the selection of initial
parameter estimate. The gray-box structure information
may be sufficient to provide such initial estimates that
are in the domain of attraction of the global minimum
but otherwise one may have to resort to random initial
parameters. It is shown in Ljung and Parrilo (2003) that
the chances to reach the global minimum of (5) from
random starting points may be very slim for problems of
realistic sizes.

4. BLACK-BOX + ALGEBRAIC APPROACH

Besides the gray-box approach, there exist other routes
to estimate the parameter vector 8* from the sampled 10
data. Even though the gray-box approach may end up in
local minima, it is still possible to find the true system
from data by a black-box approach. Subspace approaches
like N4SID and MOESP (Ljung, 1999; Verhaegen and
Verdult, 2007) can, under mild conditions, obtain the true
discrete-time system H(q,6*) as the length of the 10
data tends to infinity. That discrete-time system can be
easily transformed to continuous-time using the zero-order
hold interpolation approach (Franklin et al., 1998). As a
result, the continuous-time transfer function G(s, 6*) will
be known, but in an unknown state-space basis:

G(s,0%) = C*(sI — A*)"'B*. (6)
The identification problem has now been transformed to
an algebraic problem:

Given the values of A*, B*,C*, determine the parameter
vector 6 satisfying

C*(sI — A*)"'B* =C(0)(sI — A(0))"'B(6). (7)
The estimate of 8 obtained in this way can then be used as
initial estimate in the minimization of (5). This approach
was discussed in (Xie and Ljung, 2002; Ljung and Parrilo,
2003; Mercere et al., 2014).

5. SOLVING THE ALGEBRAIC PROBLEM

To solve the algebraic problem in (7), two routes are
provided here: one is the similarity transformation of the
state-space realization and the other is the structured low-
rank factorization of the block Hankel matrix constructed
by the system impulse response.

5.1 Using Similarity Transformation

Equation (7) means that there exists a similarity transfor-
mation @) such that

QA" = A(0)Q, QB = B(0),
From that we can form the criterion
V(Q,0) = QA" — A(0)Q|% + [|QB* — B(0)|% )
+c* = CO)QI%

The optimization problem in (9) is a bilinear estimation
problem and an alternating minimization method was
proposed in (Xie and Ljung, 2002). In Ljung and Parrilo
(2003), the optimization problem in (9) was minimized by
a convex sum-of-squares method in case A(6), B(),C(0)
are affine in #; however, this method is limited to solving
small-scale problems having only rather few unknown vari-
ables. Recently, to solve the bilinear optimization problem

C*=00)Q. (8)

Chengpu Yu et al. / IFAC PapersOnLine 50-1 (2017) 9462-9467

(9), a gradient projection method was given in (Verhae-
gen and Verdult, 2007, Chapter 7.5.4), a null-space-based
optimization method was developed in Prot et al. (2012)
and a difference-of-convex based method was proposed in
Yu et al. (2015).

Note that a solution pair (Q*,0*) to equation (8) might
not be meaningful when @Q* is singular. In fact, equations
(7) and (8) are equivalent if and only if @ is nonsingular
(Kailath, 1980). To deal with this problem, a condition-
number constraint on @ was considered in (Mercere et al.,
2014), which turns out to be a non-smooth and highly
non-convex optimization problem.

5.2 Using the Hankel Matrix of Impulse Response

In this section, aiming at dealing with the possible draw-
back of minimizing equation (9), a new identification ap-
proach is developed in this subsection. Firstly, given the
impulse response of the concerned continuous system, a
block Hankel matrix is constructed. Secondly, by exploit-
ing the low-rank property of the block Hankel matrix
and the shift properties of its row and column subspaces,
the gray-box identification problem is formulated as a
structured low-rank matrix factorization problem. Final-
ly, the low-rank matrix factorization problem is numer-
ically solved using the difference-of-convex programming
method.

After obtaining a full-parameterized state-space realiza-
tion G(s,0*) = C*(sI — A*)"1B*, we can obtain the
associated impulse response sequence denoted by
M;(6%) = C(6*)A (#*)B(0*) = C*(A*)'B*
for i = 0,1,---. Let H, ,(0*) be a block Hankel matrix
constructed by Markov parameters
M) ) o)
My(60%) My(0%) --- My (6"
Hyn(07) = ; ; . ; '
My—1(0%) My(07) -+ Myrn—2(6")

(10)
where the subscripts v, h, satisfying v,h > n, denote
the number of block rows and number of block columns,
respectively. Given the block Hankel matrix H, ;(6*), the
concerned gray-box identification problem is formulated as

min [|Hy 1 (6%) — Hon(0)][7

C(6)B() Cc(6)A"L(0)B(9)

C(O)A1(0)BO) C(G)A”+h"2(9)3(9)
(11)

In the above equation, the block Hankel matrix H, p(6)
has a low-rank factorization as
c()
C(0)A(0)
H,»(0) = .

C(0)A"(0)
| —
0, (0)

x [B(6) A0)B(6) --- A"1(0)B(9) ],
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where O,(6) and Cp,(6) denote the extended observability
and controllability matrix, respectively.

Denote Y = H, ;,(6*). By exploiting the shift properties
embedded in extended observability and controllability
matrices, the optimization problem (11) can be recasted
into a structured low-rank matrix factorization problem:

i Y — X||?
g0 | %
st. X =0,Ch

Oy (1:p,:) =C(0)

Ch(5,1:m) = B(0)

Oy (1: (v —=1)p,:) A(0) = Oy (p+1: vp,:)

Ay, (5,1 :(h—1)m) =Cp (:,m+1: hm).
In the above optimization problem, the first and the last
two constraints in the above equation are bilinear. To solve
this problem, the DCP-based identification framework (Yu
et al., 2015) will be adopted, which contains the follow-
ing three steps: (i) the bilinear optimization problem is
transformed into a rank constrained optimization problem:;
(ii) the rank constrained problem is recasted into a DCP
problem; (iii) the DCP problem is then solved using the
sequential convex programming technique.

Step 1: The first constraint, X = O,Cp, in (13) can be
equivalently written as a rank constraint.

Lemma 1. (Doelman and Verhaegen, 2016) The bilinear
equation X = O,Cp, is equivalent to the rank constraint

rank {X Ov] _n. (14)

Ch In

Analogously, the equivalent rank constraints for the last
two constraints of (13) will be derived below. To simplify
the notation, we denote O, = O,(1 : (v —1)p,:), O, =
Ov(p+]— 1 up, :) and Ch = Ch(:’ 1: (hil)m)a Qh = Ch(:a m+
1: hm). The last two constraints can be represented as

q
Oy Ao + Z (@vei) Ai=0,
o (15)
AoCh, + Z A; (éhei) =Cy-
i=1

An equivalent form of the combination of the fourth and
fifth constraints is given in the following lemma.

Lemma 2. The constraint equation (15) is equivalent to

q
OyAo + Z rA;, =0,

i=1
q
ACh+ Y AT =¢, (16)
i=1
1 01 cee 04
rank | vec(Oy) vec(T'1) --- vec(Ty) | = 1.
vec(Cp) vec(Y1) -+ vec(Yq)

Proof of the above lemma can be found in Proposition 1
of Yu et al. (2015).

By Lemmas 1 and 2, the bilinear optimization problem in
(13) can be equivalently formulated as a rank-constrained
optimization problem as follows:

9465

min v — X2
0,04,Chn, X, I, T
X O
s.t. rank [Ch I: } =n

O, (1:p,) = C(0)
Cp (:,1:m) = B(0)

q
Oy Ap + Z A, =0,
) i=1 an
Op=04(1:(v—=1)p,:), O, =0O,(p+1:vp,:)

v

q
AoCr, + Z ATy =C,

i=1
Crh=Cr(:,1: (h—1)m), C, =Ch(:,m+1:hm)
1 61 - 0q
rank | vec(Oy) vec(T'1) -+ vec(Tq) | = 1.
vec(Cp) vec(Y1) --- vec(Yq)

The above optimization contains two rank constraints.
To deal with the above rank constrained optimization,
we shall further formulate it as a difference of convex
optimization problem.

Step 2: For notational simplicity, we denote

1 0 - 0,
vec(0,) vec(Ty) - vec(Ty)
vec(Cp) vec(Yq) -+ vec(Y,)
Let o; (T) be the i-th largest singular value of T for
i=1,--+,q+ 1. Define f,, (T) =>_7_, 0; (T), where f.()
is a convex function (Qi and Womersley, 1996).

T =

Inspired by the truncated nuclear norm method in (Hu
et al., 2013; Yu et al., 2015), the rank constraint rank (7') =
1 can be replaced by

Jorr (T) = A (T) = [T}« = A1(T) = 0. (18)
The above equation means that all the singular values of
T except the largest one are zero.

Using the above strategy, instead of directly solving the
rank constrained optimization problem in (17), we try to
solve the following regularized optimization problem:

i Y — X% + XM (|0« = fu(T
G’Omg:g(’m I 17 + A1 (1Tl = fu (1))

+ A2 (Il = £1(T))
X O,

Ch Ini|

O, (1:p,) = C(0)

Cp (:,1:m) = B(0)

st. I'= {

q
Oy Ag + Z riA, =0,

=1

(19)
Oy =0y(1: (v—1)p,:), O, =

q
AoCr, + Z ATy =C,

i=1
Crh=Cr(:,1: (h—1)m), C, =Cp(:,;m+1:hm)
1 61 - 0q
T = | vec(Oy) vec(l'1) --- vec(Tg) |,
vec(Cp) vec(Y1) --- vec(Yq)

where A1, Ao are non-negative regularization parameters.
It is remarked that all the constraints in (19) are linear
functions with respect to the unknown variables and
the objective function is a difference-of-convex function.
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Although the formulations (17) and (19) may not be
strictly equivalent, they have the same global optimum.

Step 3: We shall develop a sequential convex programming
method to solve the DC optimization problem in (19).
In order to develop a sequential convex programming
method, it is essential to linearize the concave terms in
the objective function of (19). Let I'V be the estimate of T’
at the j-th iteration and its SVD decomposition be given

as
. ) ) Sj Vj,T
o ) []

where U] and V{ are respectively the left and right
singular vectors corresponding to the largest n singular
values. It can be established that (Qi and Womersley,
1996)

(20)

uivy" e af, (17). (21)
Then, the linearization of f,,(I') at the point I' = I'V is

FulT) 2 fu(T9) + tr (U{’T (I — 1) v{) . (22)

Let T7 be the estimate of T at the j-th iteration and its
SVD decomposition be given as

. . . Zj Rj T
T] B L] LJ |: 1 ' :| |: 1 4 :| ’
[ 1 -2 } 2% R%’
where L and R] are respectively the left and right singular

vectors corresponding to the largest singular value. Then,
the linearization of f1(T) at the point T = T7 is

AT) = AT+t (L7 (T -T7) BY).

(23)

(24)

Based on the linearizations in (22) and (24), the convex
optimization problem to be solved at the (j + 1)-th itera-
tion is as follows:

i Y — X% + A1 (I« = tr (U2 TV
ot V=X (10— (02717))

+ 22 (|7« = tr (L37TR]))
X O,
Chn Ini|
Oy (1:p,:) =C(0)
Cr(:,1:m) = B(0)

q
Oy Ao + Z A, =0, (25)

=1

Oy = 0,(1:

st. I'= {

(v—1)p,:), O, =0y(p+1:vp,:)

q
AoCh + Z AT =C,,

i=1
Crh=Cr(:,1: (h—1)m), C, =Cp(:,;m+1:hm)
1 0 - 04
T = | vec(Oy) vec(T'1) --- vec(Tq)
vec(Cp) vec(Y1) -+ vec(Tq)

To ease the reference, the above sequential convex pro-
gramming procedure is summarized in Algorithm 1.

Since the difference-of-convex optimization problem in
(19) is still non-convex, the performance of the provided
sequential convex programming procedure relies on the
initial conditions. However, by setting T = 0 and I'Y = 0,
we can find that the optimization problem in (19) is a

Chengpu Yu et al. / IFAC PapersOnLine 50-1 (2017) 9462-9467

Algorithm 1 Sequential convex programming method for (19)
1) Set ' = 0 and T° = 0.
2) Repeat
2-1): Compute respectively the left and right singular vectors
of T9 and T7 as shown in (20) and (23).

2-2): Obtain the estimates 9+ and 77+ by solving (25).
3) until m
1167 1l2

< ¢ with € a small value.

nuclear-norm relaxation of the rank-constrained optimiza-
tion problem in (17). Due to the fact that the nuclear
norm is the convex envelope of the low-rank constraint on
the unit spectral norm ball (Recht et al., 2010), the as-
sociated nuclear-norm optimization usually yields a good
candidate for the starting point of the sequential convex
programming procedure.

6. NUMERICAL SIMULATIONS

The performance of the proposed identification method -
Algorithm 1- is demonstrated in this section. For compari-
son purposes, the prediction-error method (PEM) (Ljung,
1999; Ljung and Parrilo, 2003) and the difference-of-
convex programming (DCP) method (Yu et al., 2015)
are simulated. The implementation details of these three
methods are given below.

(1) Algorithm 1 is simulated by empirically setting the
regularization parameters in (25) to Ay = 10~% and
Ao = 107°. The tolerance of relative error is set to
e=10"%

(2) PEM is simulated by firstly configuring the struc-
ture object using the Matlab command idgrey, see
Ljung (2013) and then implementing the identifica-
tion method using the Matlab command pem. The
initial conditions are randomly generated following
the standard Gaussian distribution.

(3) DCP method is simulated by setting the regulariza-
tion parameter A in equation (17) of Yu et al. (2015)
to A =10"".

In the simulations, the maximum number of iterations for
the these three methods is set to 100.

The simulation is conducted following the way in Ljung
and Parrilo (2003). The state-space model of (2) is ran-
domly generated by the Matlab command rss, and the
system parameters to be estimated are randomly picked
from the generated models. When simulating the DCP
method and Algorithm 1, the system matrices A*, B* and
C* in (7) are assumed to be known.

To ensure the identifiability of the system parameters,
the number of unknown parameters cannot be larger than
(p + m)n; however, system parameters less than (p +m)n
may not always be identifiable (Ljung, 1999; Verhaegen
and Verdult, 2007). Therefore, we use the impulse-response
fitting to measure the identification performance. In the
simulation, we choose the system order n = 5 and the
input/output dimension m = p = 1. For each fixed number
of free parameters, we carry out 100 Monte-Carlo trials
by randomly generating the system model and randomly
picking a fixed number of free parameters. The success
rate is obtained by counting the number of successful trials
using the criterion IRF” < 1073, Denote by 6" the estimate
of # at the r-th Monte-Carlo trial. The impulse-response
fitting (IRF) of the r-th Monte-Carlo trial is defined as
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Fig. 1. Example 1: identification performance of PEM,
DCP and Algorithm 1.

U2 |lC(0m) AN(67)B(O7) — C*(A)'B*|Ir

(2

IRF" =

)

(26)
where the dimension parameters v and h are defined in
(10).

The identification performance of PEM, DCP and Algo-
rithm 1 is shown in Fig. 1 from which we can draw the
following conclusions.

(1) When the number of parameters is larger than 3,
DCP and Algorithm 1 perform much better than
PEM. This is because DCP and Algorithm 1 can
find good initializations by nuclear-norm regularized
optimization. In contrast, when the number of param-
eters are less than or equal to 3, PEM has a slightly
better performance than DCP and Algorithm 1. This
might be relevant to the selection of the regularization
parameters of DCP and Algorithm 1.

(2) When the number of parameters is larger than 6, the
success rate of Algorithm 1 is higher than that of
DCP up to 20%. This might be caused by the fact that
DCP does not consider the non-singularity constraint
of the similarity transformation, while Algorithm
1 implicitly guarantees the non-singularity of the
similarity transformation. However, when the number
of parameters is less than or equal to 6, DCP and
Algorithm 1 have similar performance. This might be
because, when the number of free parameters becomes
smaller, singular similarity transformations are less
likely to occur.

7. CONCLUSIONS

In this paper, we have proposed a new gray-box identifi-
cation method by exploiting the low-rank and structured
factorization of the Hankel matrix of impulse response.
This method uses the system impulse-response fitting as
the objective function while avoiding the explicit non-
singularity constraint on similarity transformation; thus,
it can be applied to the state-space realizations of non-
identifiable gray-box models. Compared with the classical
prediction-error method initialized at random parameter
values, the proposed method can yield better performance
since it can find a good initialization by nuclear-norm
based optimization.
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