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Abstract:  Cracks may indicate structural problems in constructions made of timber beams, but their 

identification in notably roof constructions is difficult. Therefore this paper presents an algorithm for 

the automatic detection of cracks in timber beams sampled by LiDAR data. This algorithm enables 

the identification, analysis and monitoring of cracks and their geometrical characteristics. The 

algorithm is validated by tests on laboratory specimens and on a timber roof structure. The results 

prove that the proposed algorithm is able to automatically identify and analyze cracks with a width of 

above 3 mm from point clouds with an average resolution below 1 mm. 
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1. Introduction

Along history, wood has been a material commonly used in the construction of all kind of buildings 

and structures, such as houses, bridges, towers, windmills, etc. In fact, nowadays there are 

innumerable historical timber structures around the world. To preserve this heritage, its conservation 

and maintenance is needed. For this reason, structural health control is a fundamental issue. Also for 

the rehabilitation of old buildings for alternative use, analysis of structural health is mandatory. 

During the last century the use of wood as material for structures has declined in favor of other 

materials such as steel or concrete.  Nevertheless, in recent decades the use of both solid and 

engineered laminated timber in structures has increased again.  

1.1 Cracks in timber 

Natural wood generally cracks when it dries. This is caused by the anisotropic behavior of wood in 

radial versus tangential direction along the cross-section of the beam (Figure 1a). Cracks are present 

in both old and new structures. For new timber structures mainly glue laminated timber is used. 

Cracks may develop within the timber lamella or in the glue line and this is generally caused by 

stresses perpendicular to the grain as a result of temperature and wood moisture fluctuations in the 

beam (Figure 1b). The loading and the duration or variation of loading also influence crack growth, 

especially in areas with complex stress states. 
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Figure 1. (a) Cross section of a timber beam with cracks in radial direction. (b) Glue laminated 

timber beam (side view) with cracks in the lamella and in the glue line (delamination cracks). (c) 

Example of an almost straight and continuous drying crack (d) Example of a serious crack crossing 

almost the entire  cross section. (c) Sketch of not dangerous and dangerous cracks, the green cracks 

generally are less dangerous than the red one, but it depends on the beam loading and remaining 

functional cross section.  

Many cracks are harmless, but other cracks negatively affect the strength of a structure. Depending 

on the position, size and shape of the crack, it may have consequences for the safety of the structure, 

which in addition depends on the beam loading (Figure 1e). For example, large cracks in the neutral 

axis of a beam decrease the load bearing capacity of the timber element in shear and can also result 
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in a new stress distribution which may result in crack propagation. Cracks following the grain (fibre) that 

deviate from the neutral axis need to be evaluated depending on their size and location (Figure 1d). 

Mapping beam cracks is a necessary task to evaluate their potential danger. The potential impact of a 

crack could be determined after crack detection using finite element analysis. Mapping all cracks in for 

example a wooden roof structure using contact measurements is time consuming and often 

challenging, because of the height of the structure above the floor. The importance of the depth of a 

crack for solid wood strength properties has been investigated by Frech [1]. High growth rates, the 

presence of pits, knots and juvenile wood in the beam increases the hazard of developing cracks [2].  

However for service life prediction and safety considerations, controlling and evaluation of arising 

and growing cracks are essential.  

1.2 Methods and techniques for crack analysis  

For initial inspection and control of building and structures, non-destructive methods are most 

suitable because the material is not, or very limited, damaged by the measurements. Examples of 

such methods are: acoustic methods, resistance drilling techniques and radiography [3-5]. Also some 

inspection work has been performed using Ground Penetrating Radar (GPR) [6]. These methods 

allow a detailed analysis of the health of a timber structure but, they have the disadvantage that it is 

necessary to access the object and make contact with it. 

Photogrammetry is a technique which enables health monitoring without direct contact of the scene. 

Several researchers have applied photogrammetry to assess cracks. Barazzetti and Scaioni [7] present 

an image-based method for crack analysis; Sohn et al. [8] propose a crack-monitoring system to 

quantify the change of cracks in concrete from multitemporal images. Patricio and Maravall [9]  

present a novel generalization of the gray-scale histogram and its application to the automated visual 

measurement and inspection of cracks in wooden pallets. Although photogrammetry is in general a 

suitable technique to assess cracks, photogrammetry also depends on the light, color and texture of 
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the specimen surface to analyze. In some indoor situations bad lighting conditions may therefore 

hamper the use of photogrammetry for crack analysis.  

Laser scanning is a promising alternative technique for tstructural health analysis [10-12]. Laser 

scanning provides several advantages with respect to other methods such as: enabling the analysis of 

inaccessible structural elements, obtaining the 3D surface without direct contact to the specimen, 

efficient data collection in the form of ready to use 3D point clouds, no dependency on lighting 

conditions, color and texture of the specimen surface under analysis. Some applications of laser 

scanning for  structural analysis are: dimensional compliance control [13] , construction progress 

control [14] , analysis and documentation of historic structures [15,16], 3D modeling for structural 

engineering purposes [17-19] or analysis of structural health [11-12]. 

In the field of timber structures, laser scanning has been successfully used for 3D modeling of 

historic structures. Alessandri and Mallardo [20] deals with some preliminary structural analysis of 

the wooden roof construction of the Church of the Nativity in Bethlehem; Balletti et al. [21] study 

the wooden roof structure of the dome of SS. Giovanni e Paolo in Venice; Oreni et al. [22]  illustrates 

the switch from a 3D content model to a Historic Building Information Model (HBIM) in order to 

support conservation and management of built heritage. However, to the best of our knowledge only 

Van Goethem et al [23] has reconstructed and modeled timber boards with knots from LiDAR data. 

Knots and their location in the boards were analysed and structural wood quality could be estimated.  

Some work has been performed on the analysis of cracks sampled by LIDAR data in non-wooden 

structures. Laefer et al. [24] presents the fundamental mathematics to determine the minimum crack 

width detectable with a terrestrial laser scanner in unit-based masonry; Laefer et al. [25] compares 

the relative performance capabilities of crack detection by sidewalk-based manual inspection with 

digital photography. Sánchez-Aparicio et al. [26] presents a set of procedures based on laser 

scanning, photogrammetry and operational modal analysis to improve calibration of finite element 
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models in historical buildings. This work includes cracks in masonry walls. In the same way, Huang 

et al. [26] present a pavement crack detection method combining 2D and 3D information based on 

Dempster‐Shafer Theory. Nevertheless, none of these works address the automatic detection and 

quantification of cracks in wood structures from LIDAR data.  

The aim of this paper is to develop a first algorithm for the automatic detection of cracks in timber 

beams from LiDAR data. This algorithm allows analyzing the geometric characteristics of each 

identified crack, as well as generating a data file that labels each crack including all of  its geometric 

characteristics. This algorithm will in addition be used for monitoring the possible growth of each 

crack in time. After this  introduction, Section 2 outlines the proposed and developed algorithm. In 

Section 3 a series of tests with laboratory specimens and real timber structures are performed to 

check the algorithm and experimental results are presented. In Section 4 results and applicability of 

the proposed method are discussed. Finally, in Section 5, conclusions are given. 

2. Methodology 

The general methodology used in this paper for the automatic detection of cracks and controlling 

crack growth between different epochs is shown in Figure 2. 
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Figure 2. Workflow of the general methodology used in this paper. 

The process begins with the scanning of the timber structure. Within the point clouds obtained by the 

laser scanner, a region of interest (ROI) that contains the beam to analyze is selected. This is the only 

manual step in the whole process, which is performed with commercial software for point cloud 

processing. Next, the segmentation of the face of the beam to analyze is performed. For this 

segmentation a RANSAC algorithm [27-28] is used. From this segmented face, the new algorithm 
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proposed in this work is used to identify, analyze and label each crack. As a result, a data file with all 

geometric characteristics of each identified crack is obtained. This file will be used in future for 

controlling the crack growth during different periods of time, by comparing the geometric 

characteristics of the cracks between the initial  Epoch 1 and some consecutive Epoch 2. Figure 3 

summarizes the workflow of the novel algorithm that is proposed to find and analyze cracks.  

 

Figure 3. Workflow of the novel methodology to find cracks. 

Next, the steps of the proposed novel algorithm are described in detail below. 

2.1. Removing points inside the crack  

During the segmentation of the timber beam face, points that belong to the inside of the crack may 

remain (Figure 4). These points must be deleted to prevent errors at the next steps of the algorithm.  
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Figure 4. Example of points inside a crack that may remain after segmentation. a) Cracks in the 

beam. b) Plan view of the point cloud (red points are cleaned by fitting suitable polynomial surfaces) 

c) Profile view of the point cloud. 

In order to remove these inside points, polynomial surfaces (Pn) are fitted to the segmented point 

cloud of the face F(x,y,z). For this task, a plane is not sufficient because the surface of a timber beam 

is in general not fully flat. After surface adjustment, all points above a distance, L, from the surface 

Pn are removed (Figure 5d). L is a value that depends on the noise level of the laser scanner 

following Equation (1)  

� � �	��				 (1) 

where σ is the nominal precision of the laser scanner and αc an adjustable range for cleaning, 

obtained experimentally. This step results in a cleaned point cloud F´(x,y,z). 

2 .2. 2D Projection and new 2D coordinate system  
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A plane is fitted to the cleaned point cloud  F´(x,y,z) of the face by orthogonal regression. All points 

are projected orthogonally on this plane, after a new coordinate system is fixed in the face (Figure 

5e). The origin is always placed in the left bottom corner of the face. Subsequently all points are 

changed to the new coordinate system obtaining a new point cloud N(x,y) in 2D. 

 

Figure 5. (a) Face of a timber structure with cracks. (b) Point cloud of the face timber structure. (c) 

Polynomial surfaces fitted to the segmented point cloud of the face. (d) Removed points located 

beyond a distance, L, from the polynomial surface. (e) Points projected on an orthogonally plane. (f) 

Cracks found after using Alpha-shapes. 

2.3. Determining crack outlines 

In this step Alpha-shapes are applied for detecting the outlines of cracks. Alpha-shapes [29] can be 

regarded as a family of “shapes” associated with a finite set of points. This approach generalizes the 

convex hull and allows finding non-convex shapes and holes in a finite set of points. The result of 

this method is the shape generated by consecutive point pairs that can be touched by an empty circle 

of diameter alpha (Figure 6). The obtained result depends directly on the choice of the diameter alpha 

(Dα). In 2D, Alpha-shapes have been used successfully for finding building roof edges in LiDAR 

data [30] and also, for estimating parametric plane models and determining boundaries of planar 
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patches in buildings in large-scale and noisy raw point clouds [31]. In both these works, Alpha-

shapes are used for finding the outside edges of large surfaces. In our case however Alpha-shapes are 

applied for estimating the location of the inside edges of small holes in the wood, where the diameter 

Dα  is critical in obtaining an optimal result. 

 

Figure 6. Alpha parameter Dα. The area of the crack is the sum of the area of all triangles. 

For too small values, the results outline individual points while for too large values no crack is found 

at all. Because of this, it is necessary to identify that value Dα that enables finding all cracks with 

maximal accuracy. When Alpha-shapes are used, not only true cracks are detected, but also some 

false positives may be obtained (Figure 7). 

 

Figure 7. Example of false positives detected by Alpha-shapes. 
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It should be noted that if the value Dα  is further reduced below a certain critical value, the number of 

obtained false positives increases exponentially. The reason for this behavior is that for too small Dα, 

natural gaps in the point cloud due to the limited point density are reported. Figure 8 shows from left 

to right the effect of decreasing the diameter Dα  of the alpha circle.  

 

Figure 8. Number of possible cracks found according to the value of the diameter Dα. 

In the proposed algorithm the Alpha-shape function starts by using a value D1 for the diameter of the 

alpha circle. This value is directly proportional to the density of points on the face of the beam and is 

calculated according to Equation 2. 

�� � 3	
�∗
��	
    (2) 

where W is the face width, H is the face length,  Np the number of points in the face and 3 a value 

obtained experimentally. 

The number of cracks n1 found when using value D1 is calculated. Progressively, the value of Dα is 

decreased until a value Dm where the number of cracks found exceeds a value nt (Equation 3). 
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��
�
�� 		While	n� ≤ n�				� � 1,… ,!							�"#� ← (D� − P	)					n�#� 	← 	α_shape.N0(x, y)3	45	�"#�						6786	95:;<	=>?=@8 ← α_shape.N0(x, y)3	45	�" 		

  (3) 

Here,  ni  is the number of cracks found by the Alpha-shape; nt is a threshold for the number of 

cracks, which is calculated based on the ratio ni/Np where ni is the number of cracks found and Np is 

the number of points on the beam face to be analyzed; Di is the value of Dα used; P is the step value 

for decreasing Di,. For common point resolutions between 0.1 and 2mm as are expected from a phase-

shift terrestrial laser scanner, a step value (P) for decreasing Di, equal to 0.25 mm is enough; Finally, 

Np(x,y) is the point cloud sampling the beam face in 2D projection. 

2.4. Labeling each crack  

As mentioned in the previous section, when Alpha-shapes are used, not only the cracks are detected, 

but also some false cracks (see Figure 7). To mitigate this problem, we need to differentiate between 

true and false cracks.  For this task, first a minimum area Amin is fixed.  The minimum area used 

should be greater than the area of the circle with diameter D1. This parameter is adjustable by the 

user and depends on the minimum crack area the user wants to detect. In this paper the Amin used was 

50 mm2 .Subsequently the area of each detected crack is calculated. For this calculation, the 

algorithm triangulates the points that define the edge of the crack as estimated by the Alpha-shape 

(Figure 6). The area of the crack is the sum of the areas of all triangles. If this area is bigger than Amin 

this is a true crack and it is labeled, otherwise it is deleted (Equation 4). 

A 		if		A� 	≥ A	E�F				� � 1,… , ;								�?G676<: LJ ← Crack	A�							O � 1,… , @else									�67646< ← Crack	A�		  (4)  
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Here Ai is the area of each candidate crack, n is the number of candidate cracks, Amin denotes the 

minimum area, Lj is the identification number of each true crack and k is the number of true found 

cracks. 

2.5. Analysis of the geometric characteristics of each crack  

Each crack is analyzed based on the points that define its edge. The results are calculated in the 

system coordinates fixed for the beam face. The data defined for each crack are: 

i) Main direction. This is calculated by orthogonal regression from the point cloud of the crack 

(Figure 9). 

ii) Area. Calculated in the previous step. 

iii) Centroid of the crack. This is estimated from the centroids of each triangle contributing to the 

area of the crack (Equation 5-6). These triangles are obtained by a triangulation of the points that 

define the edge of the crack. 

 P�Q � ∑ST	U	T		UV 					� � 1,… , ;	        (5) 

 W�Q � ∑XT	U	T		UV 					� � 1,… , ;	      (6) 

 

Here Xce and Yce are the coordinates of the centroid of the crack, xi and yi are the coordinates of the 

centroid of the each triangle, n is the number of triangles, Ai is the area of each triangle and Ac is the 

crack area. For estimating the centroid of the crack just taking the mean of the crack edge points is 

not suitable, because in many cases the number of points on one side is much higher than on the 

other. 
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iv) Length of the crack. Length calculated in the principal direction of the crack. 

v) Maximum width. This parameter is calculated by measuring the maximum distance between crack 

edge points orthogonal to the main direction. For this purpose the crack width is calculated at 

constant intervals (in this paper at intervals of 10 mm because such interval provides sufficient 

resolution for typical cracks in timber beams) and the maximum width is reported. 

 

Figure 9. Example of two cracks with their geometric characteristics 

Finally, a data file with all geometric characteristics of each found crack is obtained. In future work, 

the size, location and direction could be used to determine whether a crack is dangerous. 
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3. Test and results 

In order to verify the correct operation of the developed algorithm, two types of  tests were 

performed: first on  laboratory specimens and, second, on a real timber structure . A phase-shift 

terrestrial laser scanner FARO Photon 120/20 is used to collect point clouds in these tests. This laser 

scanner measures distances over a range of 0.6 m to 120 m, with a ranging error of ±2 mm, at 25 m 

distance in normal illumination and reflectivity conditions. The beam diameter at exit equals 3.3 mm 

and the beam has circular shape. The field of view is 360º horizontal and 320º vertical. The 

acquisition rate varies from 122000 to 976000 points per second with a maximum angular resolution 

of 0.009º. The algorithm is implemented in MATLAB (MathWorks, Natick, Massachusetts, USA). 

3.1 Laboratory test 

Firstly several laboratory tests are performed for checking the correct operation of the algorithm 

developed for detecting the geometric characteristics of the cracks, as well as detecting its growth 

between epochs. For this purpose a polyurethane specimen of 500x210x90 mm3 is used (Figure 10a). 

This material is chosen as it gives us an easy way to make cracks of a proper size and orientation. 

While in addition it allows us to perform a simulation of crack growth. A template drawn by 

computer is used to mark several cracks on the surface of the polyurethane specimen. Next the 

indicated cracks are cut by a cutter at a constant depth of 90 mm. Epoch 1 features four different 

cracks A, B, C, D (Figure 10b). In Epoch 2 (Figure 10c), crack A is kept the same, while crack B is 

increased to twice its original width and length, crack C is increased twice in length, crack D is 

increased twice in width and crack E is new. The laser scanning is performed at incidence angles of 

approximately 0º, 15º, 30º and 45º. The scanner center  is positioned at the same elevation as the 

center of the specimens (see Figure 10d).  
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Figure 10. a) The specimen of Epoch 2. b) Drawing of the specimen for Epoch 1. c) Drawing of the 

specimen for Epoch 2. d) Plan of the laboratory test. 

The developed algorithm was applied for analyzing the geometric characteristics of each crack for 

each position in both epochs. The obtained results are compared with validation measurements of the 

cracks and its direction. A caliper is used to obtain the validation measurements. Besides, the growth 

between Epoch 1 and Epoch 2 is analyzed. The average point resolution is between 1.4 mm and 2.1 

mm, depending on the scanning angle. After segmenting the beam face, outliers are removed by 

evaluating the distance of individual points to a polynomial surface fitted to the beam face points, 

with a value of αc equal to 2.0. The measurements of each crack obtained by the algorithm for 

different incidence angles in Epoch 2 are shown in Table 1. The detected minimum crack width 

directly corresponds to the value of the alpha diameter used (see Table 1). The differences in the 

width of each crack as estimated by the algorithm are 2 mm at incidence angles of 0 – 30º, and 4 mm 

at incidence angle of 45 º. In all cases, the crack width based on the scans was overestimated by on 

average 5 mm. The crack lengths were underestimated by maximally 10 mm for incidence angles 

between 0º and 15º, and by maximally 30 mm for incidence angles of 30º (real length is measures for 

a minimal width of 2 mm). For incidence angles of 45º inconsistent results are obtained. 
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Table 1. Summary of the geometric characteristics of the cracks found by the algorithm for different 

incidence angles for Epoch 2. 

The differences in the crack area as estimated by the algorithm for the different scan positions are all 

below 300 mm2 at incidence angles between  0  and 30º. These values are all within 30 % of the 

crack area. The differences exceed 45% in some cases at an incidence angle of 45º. Difference in 

percent between the real value for each crack area and the area obtained by the algorithm for 

different incidence angles for Epoch 2 is shown in Figure 11. 
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Figure 11. Difference in percent between the real value for each crack area and the area obtained by 

the algorithm for different incidence angles for Epoch 2. 

The differences in the increase in area of each crack estimated by the algorithm between Epoch 1 and 

Epoch 2 for the different scan positions are all within 300 mm2 at incidence angles of 0–30º. The 

growth found by the algorithm between Epoch 1 and Epoch 2 for different incidence angles is shown 

in Figure 12.  
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Figure 12. Growth found by the algorithm between Epoch 1 and Epoch 2 for different scan angles. 

3.2 Real structure 

The developed algorithm also has been tested on a real timber structure. This structure is situated in 

Zoetermeer (The Netherlands) and nowadays supports a restaurant (Figure 13). The main dimensions 

are 13 m wide, 21 m long and 10 m high. The building was built around 2009. Its structure has been 

made of solid timber beams (wood species: Pinus sylvestris L.) with cross section of 450 mm x 300 

mm. The structure has a lot of cracks (Figure 13b). 
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Figure 13. a) Outside of the scanned real structure. b) Inside of the scanned real structure. 

Inside the building, three different scans are performed from 3 different scanner positions. The laser 

scanning is performed at high resolution (976000 points/s). Six beams (column, diagonal brace and 

beam A and B) of the timber structure (Figure 13b) are analyzed by the algorithm. The average point 

resolution on these specimens is below 1 mm. The files obtained are stored for future comparison. 

After segmenting, and outlier removal cracks were detected using a value αc equal to 2.5. A total of 

54 cracks have been found by the algorithm in the 6 analyzed beams; 11 cracks turn out to be false. 

These false cracks are du e to regions occluded by wood pins, speakers and lamps over the beam face 
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(Figure 14). The algorithm is found suitable for cracks with a width of over 3 mm; 26 small cracks 

with widths equal or less than 3 mm are not detected by the algorithm. When two cracks are very 

close (separated by less than about 5 mm), the cracks are merged by the algorithm (Figure 14c). 

 

Figure 14. a) Column, diagonal brace and beam B analyzed by the algorithm. b) False cracks due to 

occluded regions by the wood pins. c)  Two cracks joined by the algorithm and thin crack not found. 
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In all cases the maximum width is overestimated by 4 mm on average. The geometric characteristics 

of the cracks found in column A by the algorithm are shown in Table 2. The calculated length is until 

a minimum width equal to the used value of the diameter alpha. A summary of the results found for 

the six specimens of the timber structure analyzed by the algorithm are shown in Table 3.  

 

Table 2. Geometric characteristics of the cracks found in column A by the algorithm. 

 

Table 3. Summary of results found by the algorithm for six beams of the timber structure. 

Besides cracks also knots were derived from point clouds of the 3D laser scan (Figure 15b). Even 

small cracks within the knots are recognized. An attempt has been made to determine the depth of 

the cracks before deleting the points inside the crack (Figure 15c). Because of the complex 

morphology of the cracks within the beam, the point clouds in general do not represent the true depth 

geometry. Only if the laser beams are directed perpendicular on the crack at which the crack has a 

one- dimensional depth, the model can reconstruct the depth.       
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Figure 15. (a) Face of a beam with cracks. (b) Point cloud of the beam face. Points are colored 

by intensity as indicated by the color bar (c) Points inside a crack. 

4. Discussion 

The obtained results prove that the proposed algorithm is suitable for finding cracks automatically in 

timber beams, as well as detecting its growth between epochs. But the results also show that there are 

several issues. 

-Crack width. All results have overestimated the maximum crack width (Table 1). This matches 

other experimental works performed by Laefer et al. [32] and Laefer et al. [24]. We have two 

possible explanations for this overestimation: point sampling and mixed pixels. Considering point 

sampling: our current approach estimates the width of a crack based on points classified as edge 

points by the Alpha-shapes method. These edge points are always situated on the beam face.  

 

Figure 16. Profile of a synthetic crack. 
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Compare the synthetic situation in Figure 16. The three lower points in the middle are from the 

crack, the other point are on the beam face. In fact there are two extreme reconstructions of the 

surface along the profile in the figure. One is indicated by the connected line segments. In this case 

the crack starts, on both sides, directly at the two edge points. The other situation is indicated by the 

dashed line segments. In this case the beam face is continuing after the found edge points and the 

crack only starts at the location of the two extreme crack points. Given the discrete sampling of a 

laser scanner, it is not possible to indicate which reconstruction is better. The difference in the 

resulting crack width between the two reconstructions is about 2 r, with r the local resolution of the 

point cloud. On average we assume the crack starts on a distance 0.5 r from both edge points. This 

implies that, we could correct the width by applying Equation 7 in order to obtain a more realistic 

estimation of the crack width 

Y= � Y − > (7) 

Here, r is the local resolution of the point cloud, W is the width as estimated by the methods 

described in Section 2.5, and Wc is the corrected width. Note that the point cloud resolution/point 

density is indeed varying throughout the point cloud as it depends on both range distance from 

scanner to surface, and local incidence angle. Therefore an implementation of this correction requires 

as additional input an estimation of the local point density, which can be obtained by counting the 

number of points sampling a beam part. Future work should address this improvement involving the 

use of Equation 7 

Part of the overestimation is also expected to be a result of so-called mixed-pixels (edge loss), which 

occurs at spatial discontinuities [33] . The amount of overestimation depends notably on the diameter 

of the laser beam and on the scanning distance and on the angular resolution [33]. In this paper, the 

maximum width of the crack is overestimated by on average 4 mm at a distance of 2.5 m and by on 

average 5 mm at a distance of 7.5 m. Future work should address the automatic correction of this 
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overestimation as function of the beam diameter, scanning distance, incidence angle and resolution. 

Such correction should enable the correct estimation of the crack width. 

The algorithm worked properly in finding cracks with a width larger than 3 mm in point clouds with 

average resolution below 1 mm from a point cloud sampling a real timber structure. According to the 

conclusions of the work by Laefer et al. [24] on crack detection limits,  the minimum crack width 

found from LiDAR data mainly depends on the resolution of the point cloud, which depends on the 

technical specifications of the scanner (sampling step and beam width) the scan settings and the scan 

distance. 

- Crack length. Overall the results tended to underestimate the length of the crack, this is because the 

crack length is only detected up to the width of the value of diameter alpha used, and the crack may 

continue at a lower width, but this is not detected. The crack length obtained for the same specimen 

in vertical cracks at different angles decreases significantly when the horizontal scan angle is 

increased. This is primarily due to the following factors: i) The increasing of the angle affects the 

quality of the point cloud [34], for larger incidence angles, lower point quality is obtained. ii) For 

larger angles the presence of mixed-pixels inside of the crack increases, especially in the more 

narrow zones of the crack which are very difficult to clean. iii) The resolution of the points decreases 

and therefore, it is necessary to use a higher width for the diameter alpha. However for horizontal 

cracks, the length does not decrease when the horizontal scan angle is increased because in these 

horizontal cracks the quality of the point cloud is not affected by different horizontal angles of 

scanning, as a consequence if the scan angle is increased also an increase in the calculated crack 

length can be estimated. 

-Crack area and growth. The area obtained for each crack cannot be used directly because it is 

affected by the overestimation error of the maximum crack width, but this area value is useful to 

assess growth of cracks during different periods of time. Based on laboratory results it can be 
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determined that this new method can automatically detect crack area growth larger than 30 % (as 

minimum for distances of until 7.5 m and angles within 0-30 º) (Figure 12). Reported growths below 

30% detected by the algorithm can also be due to errors in the point cloud and the algorithm and may 

not represent real crack growth. For angles of 45 ° the error increases significantly. Although the 

calculated area is always on the safe side (Figure 11), the error introduced by the measurement at the 

edges should be corrected for obtaining the correct area. As discussed in previous sections, future 

work should focus on correcting this problem automatically. 

-Survey area. With a laser scanner with technical characteristics as used is this work, this algorithm 

works properly until a maximum incidence angle of 30 ° and until a distance of 7.5 m (point 

resolutions about 1.5 mm). For incidence angles of 45 ° the results are not correct. Therefore, survey 

areas of 7.5 x7.5 m2 could be analyzed by a scanner positioned at of 7.5 m from the survey area. This 

is a suitable survey area and a suitable distance for many historical timber structures. In any case, for 

obtaining similar results, the distance from the laser scanner may be increased if a laser scanner with 

a higher sampling step and higher measurement accuracy is used. Obviously, it is possible to use this 

algorithm at larger distances with the same scanner but then the minimum crack width that is 

possible to detect is increased and the accuracy of the results decreases. Unlike for the laboratory 

tests, in the timber structure a larger value of αc (2.5) was necessary for obtaining a correct 

segmentation. This is due to the fact that the surface of the timber beams was not fully flat, an 

important factor to consider when this method is applied on timber structures or other kinds of 

structures with similar surfaces. 

It is noteworthy that the methodology and algorithm proposed in this paper are not only suitable for 

timber structures, but could also be used for other kinds of structures with cracks of similar 

characteristics. 
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5. Conclusions and future work 

This paper proposes a new approach for the automatic detection of cracks in timber beams from 

LiDAR data as well as for controlling the growth of cracks during different periods of time. The 

obtained results prove that the proposed algorithm using Alpha-shapes is suitable for these tasks.  

However, all results have overestimated the maximum crack width and therefore overestimated the 

crack area. Future work should address the automatic correction of the area and width overestimation 

as function of the beam diameter, scanning distance, incidence angle and resolution. 

With a phase-shift terrestrial laser scanner with a ranging error of ±2 mm, a beam diameter at exit of 

3.3 mm and a maximum angular resolution of 0.009º, the novel algorithm works properly for survey 

areas of 7.5 x7.5 m2 scanned at distance of 7.5 m. Although these values are suitable for many 

historic wooden structures, future work should consider the use of other types of laser scanner and 

scanning greater distances. The methodology and algorithm proposed in this paper could also be used 

for other kinds of structures in case of cracks of similar characteristics.  

 According to the data file containing the size, location and direction of each identified crack, future 

work could determine if a crack is dangerous or not. 

Advances in structural health controlling from LiDAR data have been achieved in recent years, 

however, no important progress has been made in the automatic search of cracks in structures, and 

therefore, this work represents an important advance in this direction. 
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