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A B S T R A C T   

With the advent of automated vehicles (AVs), new infrastructure planning concepts such as subnetworks of AV- 
ready roads have been proposed to improve the performance of transportation networks and to promote the 
adoption of AVs. However, these subnetworks should evolve over time in response to the growing AV demand, 
which necessitates a multi-stage modeling approach. In this study, we propose multi-stage deployment of AV- 
ready subnetworks and formulate it as a time-dependent network design problem, which is a bi-level mixed- 
integer programming problem. The lower level is a simultaneous travel mode and route choice equilibrium with 
continuous decision variables, and the upper level is a design problem including infrastructure investment de-
cisions to determine which roads to upgrade and include in AV-ready subnetworks for mixed traffic. We use a 
case study of a real road network to demonstrate the concept. Since computational efficiency is a key factor for 
solving such large-scale problems, we develop two efficient and tailored evolutionary heuristics to solve the 
problem, and compare their performance to a computationally demanding Genetic-algorithm-based solution 
method. The results indicate that the proposed algorithms can efficiently solve this large-scale problem while 
satisfying constraints in all scenarios, and outperform Genetic algorithm, particularly in the scenario with larger 
number of stages. Moreover, in all scenarios, deployment of AV-ready subnetworks leads to improvements in 
network performance in terms of total travel time and cost. However, the improvements are always accompanied 
with increased total travel distance. The extent of changes depends on AV market penetration rate, AV-ready 
subnetwork density and timing of densification.   

1. Introduction 

Automated vehicles (AVs) are on the horizon; however, it might take 
a long time before a large market share for highly automated vehicles 
can be observed. In the meantime, a heterogeneous mix of traffic with 
AVs and conventional vehicles (CVs) on the roads is inevitable. Ac-
cording to SAE International (2018), there are five levels of vehicle 
automation where level 5 denotes fully automated vehicles, levels 3–4 
denote conditionally and highly automated vehicles, and levels 1–2 
denote partially automated vehicles, which are already available on the 
market. Although development of flawless level-5 AVs can take a long 
time, levels 3–4 might become a reality within the coming decade 
(Shladover, 2016). Based on SAE International (2018), the operating 
design domain (ODD) of levels 3–4 is limited. However, there is 
currently a lack of data to specify the exact ODD limitations of AVs. On 
the other hand, while ODDs are the accepted language of the automotive 

industry to define functional requirements for vehicle automation, there 
is no universally accepted standard for road operators describing the 
readiness of road network infrastructure to support automation func-
tions. Furthermore, the interactions between AVs and infrastructure 
become crucial during the long transition period to full automation, 
since a mix of CVs and AVs is then expected on the roads. A proper 
infrastructure can support AVs’ functionality, extend their ODD and 
improve safety for all road users, while lack of proper infrastructure can 
have negative impacts on these factors. 

Some studies have specified infrastructure requirements for safe 
operation of AVs (see (Farah et al. (2018) for a review). However, 
establishing a correspondence between the requirements and different 
parts of road networks can be challenging. Moreover, these re-
quirements can be idealistic, expensive and difficult to meet, especially 
in some road types, such as local distributors. Other researchers have 
suggested optimal networks of dedicated lanes (Chen et al., 2016), 
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dedicated links (Ye and Wang, 2018), and dedicated zones for AVs (Chen 
et al., 2017) as well as AV-ready subnetworks for mixed traffic (Madadi 
et al., 2020) to address this issue and promote the adoption of AVs via 
network design concepts. These are promising approaches; nonetheless, 
models representing these designs require more details and extensions to 
become operational. Furthermore, so far they have only been tested on 
small, often theoretical networks. Application of these concepts on 
large-scale real networks is a crucial but missing next step, especially 
since there are many practical issues and considerations involved with 
real networks that are not observed with theoretical networks, including 
network hierarchy and road type. Besides, dedicating parts of a network 
to one class of vehicles, can compromise accessibility of other classes 
and modes. 

Moreover, designing optimal road networks for AVs is a gradual 
process that depends on the level of demand for AVs. Since the demand 
for AVs will increase over time, optimal networks for AVs should evolve 
over time as well. An efficient design for a network with a low level of 
AV demand is not necessarily an efficient design for the same network 
with a very high level of AV demand. In addition, demand for cars and 
the performance of road networks cannot be assessed without consid-
ering alternative modes. 

On the other hand, analyses of automated driving system (ADS) 
disengagements and AV accident reports in the USA provide some 
insight into the suitability of various parts of road networks for AVs. 
Approximately, 10% of ADS disengagements can directly be associated 
with road infrastructure (Dixit et al., 2016), and around 56% have been 
due to system failures, which can also be attributed to vehicle’s inability 
to cope with its surrounding. Furthermore, around 87% of all disen-
gagements have occurred at interstate roads and urban streets, while 
motorways, freeways and arterial roads combined are associated with 
less than 13% of all disengagements (Favarò et al., 2018). According to 
Xu et al., (2019), 71.2% of the accidents involving AVs in California so 
far have occurred at intersections, 20.5% in urban streets and only 1.4% 
in highways. Moreover, based on the evidence of existing level-2 AVs, 
drivers are very likely to use the automated mode in freeways and un-
likely to use it on rural and urban roads (Hardman et al., 2019). This 
shows that road type is an essential factor for safety of AVs. 

In light of the discussion above, in this study, we select a set of roads 
based on their characteristics to define a (potentially) safe feasible re-
gion for the operation of AVs in automated driving mode (using ADS) in 
mixed traffic (on the same lanes as CVs). This region will be upgraded 
with physical and digital infrastructure investments to guarantee safety 
for all road users and to improve the efficiency of the automated driving 
mode. However, investing in all feasible roads can be costly and un-
necessary. Therefore, a next step is required to make a selection among 
the feasible roads that optimizes the trade-off between the investments 
and the societal benefits they provide in order to construct an efficient 
AV-ready subnetwork for mixed traffic. Therefore, we propose a multi- 
stage mathematical model to optimize the evolution of AV-ready sub-
networks over time in response to the gradual development of AV de-
mand considering the competing transport modes. Moreover, we use a 
case study of a large-scale real road network to demonstrate our pro-
posed design concept and to discuss practical considerations related to 
its deployment. This article contributes to the existing literature and 
extends the authors’ previous works on AV-ready subnetworks (Madadi 
et al., 2021, 2020, 2019) by the following.  

1. Proposing the multi-mode multi-class formulation of the network 
equilibrium problem with a mix of AVs and CVs including asym-
metric link costs (lower level problem)  

2. Proposing a multi-stage (time-dependent) model for optimizing AV- 
ready subnetworks for mixed traffic over time with endogenous and 
time-varying demand for AVs  

3. Proposing two heuristic algorithms to solve the problem, comparing 
their performance to a Genetic-algorithm-based solution procedure, 

and providing a rigorous analysis of their performance using exten-
sive computational experiments  

4. Demonstrating the applicability of the proposed methodology on a 
large-scale case study of the real network of the Amsterdam metro-
politan region 

The rest of the manuscript is organized as follows: Section 2 includes 
a brief problem background, Section 3 presents the problem formulation 
and the solution methods, Section 4 demonstrates the case study and 
numerical results, and Section 5 entails the discussion and concluding 
remarks. 

2. Problem background 

The problem under consideration is designing optimal AV-ready 
subnetworks in road networks and their evolution over a planning ho-
rizon considering a time-varying demand from different modes and 
vehicle types. In previous studies, these subnetworks have been referred 
to as automated driving (AD) subnetworks as well. Since models used to 
address such problems include many components, we provide an over-
view of the relevant studies in this section to place the problem within 
the literature, and discuss additional studies pertinent to each model 
component in the corresponding section. 

In transport literature, strategic decisions regarding transport net-
works are considered within the framework of the well-known network 
design problem (NDP), which involves a large body of literature. For 
review studies, the reader is referred to (Farahani et al., 2013; Magnanti 
and Wong, 1984; Yang and Bell, 1998). NDPs are generally modeled as 
Stackelberg leader–follower games where the leader tries to make 
optimal decisions for transport infrastructure considering the followers’ 
(travelers) response to the changes in the network by their travel 
choices. Mathematically, this results in a bi-level non-convex NP-Hard 
problem, which is very challenging to solve (Yang and Bell, 1998). 
The upper level includes optimal decisions for transport networks (e.g., 
building new streets and adding new lanes) considering their cost (in-
vestment) as well as their benefits (e.g., total user travel time saving), 
and the lower level includes predicting the travelers’ response to these 
decisions via their travel choices, which is commonly perceived to 
follow Wardrop’s equilibrium principles (Wardrop, 1952). 

Accordingly, NDPs can be classified into several variants. Based on 
the upper level decision variables, discrete NDP (DNDP) (Chen and Alfa, 
1991; Leblanc, 1975; Miandoabchi et al., 2013), continuous NDP 
(CNDP) (Davis, 1994; Wang et al., 2014) and mixed NDP (MNDP) 
(Cantarella et al., 2006; López-Ramos et al., 2019) are recognized. Based 
on the upper level objective function, single objective (Cantarella et al., 
2006) and multi-objective (Miandoabchi et al., 2013; Miandoabchi 
et al., 2012; Wang and Szeto, 2017) variants have been studied. Based on 
the lower lever equilibrium type, deterministic user equilibrium (DUE) 
(Leblanc, 1975; Li et al., 2018), stochastic user equilibrium (SUE) 
(Davis, 1994), system optimal (Dantzig et al., 1979) and mixed (Chen 
et al., 2017) versions have been proposed. Regarding the lower level 
demand, fixed demand (Tobin and Friesz, 1988) and elastic demand 
(Yang, 1997), single class (Chen and Alfa, 1991) and multi-class (Chen 
et al., 2017), as well as unimodal (Chen et al., 2016) and multi-modal 
(Miandoabchi et al., 2012) versions have been considered. Another 
distinction is based on the number of decision stages (time periods) 
which leads to single stage (most NDPs) and multi-stage or time- 
dependent NDP (NDP-T) (Lo and Szeto, 2009; Ukkusuri and Patil, 
2009). Finally, in recent years, a number of NDPs have considered 
special network configurations such as dedicated lanes (Chen et al., 
2016), dedicated links (Ye and Wang, 2018), and dedicated zones for 
AVs (Chen et al., 2017) as well as AV-ready subnetworks for mixed 
traffic (Madadi et al., 2020). This last category of NDPs is of special 
interest in this article, since they are closely related to this study due to 
proposing design concepts for AD. We refer to them as AD-NDP and 
briefly describe them in the following paragraph. 
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Chen et al. (2016) studied the problem of optimal deployment of 
dedicated AV lanes over time. The upper level included deciding where 
and when to deploy dedicated AV lanes to minimize the social cost and 
the lower level involved a multi-class DUE traffic assignment with fixed 
demand and a single mode (i.e., car). The model was tested on the 
(simplified version of) South Florida network with 232 links. To the best 
of our knowledge, this is the only time-dependent AD-NDP (AD-NDP-T) 
study so far. Chen et al. (2017) proposed optimizing dedicated AV zones 
in road networks with the upper level objective of minimizing social cost 
and a mixed route choice model for the lower level including system 
optimal routing for AVs and a deterministic routing for CVs. The model 
was demonstrated on a number of small synthetic networks (maximum 
288 links). Ye and Wang (2018) studied the problem of optimizing 
dedicated AV links combined with congestion pricing for CV links where 
the upper level entailed minimizing total travel time cost as well as the 
link-based toll, and the lower level was a DUE including CVs and AVs. 
This model was tested on a small synthetic network with 18 links. It is 
worth noting that all three aforementioned configurations restrict CVs’ 
access to some parts of the network since they dedicate some lanes, links 
and zones only to AVs. Finally, Madadi et al. (2020) proposed optimal 
AV-ready subnetworks referred to as “AD subnetworks”, which were 
accessible for all vehicles, yet adjusted for optimal automated driving 
performance in mixed traffic (i.e., CVs and AVs on the same lanes). The 
upper level objective was to minimize total travel cost along with 
infrastructure adjustment cost of creating the subnetwork and the de-
cision variables represented the links to be selected for the subnetwork. 
The lower level was a multi-class SUE with the path-size logit. This 
model was demonstrated on a semi-real network of Delft with 1151 
links. 

In this study, we model the problem as a multi-stage (time-depen-
dent) discrete NDP (AD-DNDP-T) with multi-mode and multi-class de-
mand involving AVs. To the best of our knowledge, this is the first NDP-T 
with multi-mode multi-class demand with asymmetric link costs (for 
CVs and AVs) involving special network configurations for AVs with 
demonstrations on a large-scale real road network. 

The AD-DNDP-T problem considered in this study is a multi-stage 
mixed-integer bi-level network design problem where both levels indi-
vidually are non-convex, the upper level decision variables appear in the 
lower level, and the upper level includes a non-differentiable connec-
tivity constraint. 

In general, bi-level problems are very difficult to solve for optimality. 
Therefore, heuristic solutions have been commonly used to solve these 
problems in the past (Migdalas, 1995). Recent developments in bi-level 
programing have made it possible to solve reasonable-sized bi-level 
problems with linear objectives and constraints for optimality (Fischetti 
et al., 2018a, 2017), and new methods have been developed to speed up 
the search process in mixed-integer programming problems (Fischetti 
et al., 2018b). However, the linearity condition is not met in our prob-
lem. Even the high-point relaxation method for finding lower bounds 
cannot be applied here since it requires convexity of lower and upper 
level objectives and constraints individually. Moreover, such methods 
cannot cope with the connectivity constraint of the problem considered 
in this study. For a systematic review of bi-level problems, the reader is 
referred to Lachhwani and Dwivedi (2018). 

For small instances of single-stage DNDPs, Wang et al. (2013) 
developed two global optimization methods based on system optimal 
and user equilibrium relaxations. For large-scale single-stage DNDPs, 
heuristics based on the genetic algorithm (GA) and simulated annealing 
(SA) have been the most common solutions so far (Farahani et al., 2013). 

DNDP-Ts on the other hand, have rarely been studied in the literature 
and are among the most challenging NDPs to solve. Therefore, in DNDP- 
T studies so far, either small case studies have been used that can be 
solved manually or approximate solutions have been used to solve the 
problem. Szeto et al., (2010) have used PREMIUM SOLVER PLATFORM 
to solve a DNDP-T for a small synthetic network with four links. Mian-
doabchi et al., (2015) have used two metaheuristics, namely, non- 

dominated sorting GA and a B-cell algorithm on seven test networks 
with maximum 66 links to solve a multi-objective DNDP-T. O’brien and 
Yuen (2007) have used a combination of branch and bound, and 
generalized reduced gradient for solving a DNDP-T. Finally, Chen et al. 
(2016) have solved a DNDP-T for the network of South Florida with 232 
links using the active-set algorithm. It is crucial to notice that for 
combinatorial optimization problems such as the one considered here, 
computation times increase exponentially with respect to the problem 
size (i.e., number of integer decision variables). Therefore, for solving 
case studies with large-scale real networks, efficiency of the solution 
method is of paramount importance. On the other hand, design of AV- 
ready subnetworks imposes subnetwork connectivity constraints 
(Madadi et al., 2020), which make most existing solutions ineffective 
since they are not designed to generate connected graphs. A generic 
remedy is using penalty functions to penalize disconnected solutions, 
but this can affect the efficiency of the solution method. 

Therefore, in this study, we solve the problem using three evolu-
tionary algorithms that are designed to deal with the complexity of the 
problem and the requirements mentioned earlier. The methodology and 
the solution algorithms are described in the following section. 

3. Multi-stage design of subnetworks for automated driving 

The concept of AV-ready subnetworks or AD subnetworks for mixed 
traffic entails selecting a subset of (potentially safe) roads within road 
networks to form a subnetwork, and upgrading this subnetwork with 
necessary (physical and digital) infrastructure adjustments to meet 
higher quality standards to ensure uninterrupted, safe and efficient AD 
using ADS in mixed traffic conditions. The extent of these adjustments 
depends on available funds and authorities’ commitment to facilitating 
safe AD. Several lists of possible adjustments under various scenarios 
based on expert interviews are provided by Lu et al. (2019). In this 
study, the selection of roads for adjustment occurs in two steps. The first 
step includes a preselection of feasible road segments (links) based on 
road type to guarantee that all selected links for the subnetwork have the 
potential to meet the desired standards after reasonable adjustments. It 
entails excluding roads with complex interactions between AVs and 
other road users. A more elaborate discussion on road selection for AV- 
ready subnetworks can be found in Madadi et al. (2019) and a practical 
example is shown here in Section 4 for a case study of Amsterdam. Since 
infrastructure adjustment projects tend to be costly and time consuming, 
a second step is required to select the best combination and timing of the 
adjustments that maximize their total societal benefits. The following 
subsections include the mathematical formulation of this problem. 
Table 1 provides the full notation. 

3.1. General assumptions 

Let G(N,A) denote a strongly connected graph representing the 
transportation network where N is the set of nodes and A is the set of 
directed arcs (links) representing the road and transit line segments. The 
planning horizon is divided into T equal decision stages (time periods) 
each having a length of l years. For each stage τ, a decision is made to 
select a subset of roads denoted by Aτ

1 for the AV-ready subnetwork 
represented by the graph Gτ

1(Nτ
1,Aτ

1) and the rest of the links are denoted 
byAτ

0(A = {Aτ
0 ∪ Aτ

1}, Aτ
0 ∩ Aτ

1 = ∅). An example of an AV-ready sub-
network graph is shown in Fig. 1. The effects of the construction period, 
which can be short given that the adjustments are not major, are 
ignored. 

All vehicles are allowed on all links in the network but AVs can 
switch to automated driving mode (i.e., activate their ADS) only on the 
AV-ready subnetwork links, which are adjusted for safe and efficient AD 
in mixed traffic. This means that on AV-ready subnetwork links, there 
will be a mix of CVs driving manually and AVs using their ADS. More-
over, on the rest of the links, both CVs and AVs drive manually. 
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The travelers’ response to these network design decisions is consid-
ered via a user equilibrium traffic assignment model including combined 
(simultaneous) choices of modes and routes, which are assumed to 
follow a hierarchical logit model. An AV diffusion model is used to es-
timate the market penetration rate of AVs in each stage based on the 
level of service (expected satisfaction) of all available travel choices in 
the previous stage and the price difference between CVs and AVs. 

The following definitions are necessary to describe AV-ready sub-
networks in mathematical terms. These definitions are demonstrated in 

Fig. 1. 

Definition 1. Any node n1 incident to at least one link included in an AV- 
ready subnetwork (i.e., G1(N1, A1)), is included in that AV-ready 
subnetwork. 

Definition 2. The degree of a node is the number of links incident to that 
node within the graph in which that node is included. 

Definition 3. A boundary node n*
1 for an AV-ready subnetwork repre-

sented by a directed graph G1 is a node included in G1with a degree less than 
the degree of the corresponding node n in the underlying graph G (i.e., the 
graph representing the original road network). 

Definition 4. An outer boundary link a*
0 for an AV-ready subnetwork is a 

link incident to a boundary node n*
1 of the AV-ready subnetwork but not 

included in the graph G1 representing the AV-ready subnetwork. 

Definition 5. An inner boundary link a*
1 for an AV-ready subnetwork is a 

link included in the graph G1 representing the AV-ready subnetwork and 
incident only to boundary nodes with the degree of one. 

Note that boundary nodes of an AV-ready subnetwork and its inner 
boundary links are included in the subnetwork while the corresponding 
outer boundary links are not included in that subnetwork (hence the 
difference in the subscripts). 

3.2. Lower level problem: combined multi-mode, multi-class stochastic 
user equilibrium 

In the academic literature, the macroscopic static traffic assignment 
problem for CVs and AVs has been modeled using three general ap-
proaches. The first one is via the assumption of increased capacity for 
AVs (Chen et al., 2016; Ye and Wang, 2018). This approach is suitable 
when studying dedicated infrastructure for AVs. The next approach 
considers different routing principles for CVs and AVs (Bagloee et al., 
2017; Wang et al., 2019). This is suitable when those principles (e.g., 
system optimal routing) are applicable for travel behavior of AVs. A 
combination of system optimal routing and increased capacity for AVs is 
used in Chen et al. (2017). Finally, the last approach is to consider AV- 
flow-specific (PCE-based) link travel times based on the ratio of AVs to 
CVs on each link along with assuming a different value of travel time 
(VoTT) for AD mode (Levin and Boyles, 2015; Liu and Song, 2019; 
Madadi et al., 2019). This approach is more common when considering 
mixed traffic conditions with CVs and AVs on links. It should be noted 
that system optimal routing is not realistic for mixed traffic conditions, 
particularly before reaching high market penetration rates of AVs. In 
this study, we follow the PCE-based approach and extend it for the multi- 

Table 1 
Notation.  

Notation Definition 

Sets 
W  Set of origin–destination (OD) pairs w 
Rτ,w

m  Set of routes r between OD pair w for mode m in stage τ 
M  Set of modes m ∈ {0, 1,2} (0 = PT, 1 = CD, 2 = AD)  
K  Set of user classes k ∈ {0, 1,2} (0 = no access to vehicle, 1 = access to 

CV, 2 = access to AV)  
Aτ

0  Set of links a not belonging to the AV-ready subnetwork in stage τ 
Aτ

1  Set of links a belonging to the AV-ready subnetwork in stage τ 
A  Set of all links a in the network;A = {Aτ

0 ∪ Aτ
1},∀τ ∈ T   

Parameters 
μk  Logit route choice parameter for class k 
θk  Logit mode choice parameter for class k 
hm  A constant representing attractiveness of mode m in the logit choice 

model 
γm  PCE (PCU) of mode m 
ηm  Value of travel time (VoTT) of mode m 
cτ

m,a  Fixed cost of mode m on link a in stage τ (i.e., driving cost for CVs and 
AVs, and fare for PT) 

t0a  Free flow travel time on link a 

αa, ba  BPR function parameters of link a 
Λa  Capacity of link a 
δw,r,τ

m,a  Assignment map: 1 if route r between OD pair w for mode m includes link 
a, 0 otherwise 

eτ
m  Yearly expenses of using vehicles of modem ∈ {1,2}

σ  Parameter converting the hourly travel cost to a yearly value 
ρn  Diffusion function scale parameters 
κτ

a  Adjustment cost of link a in stage τ 
ψ  Discount rate 
Vτ,w  Total number of vehicles (potential demand) between OD pair w in stage 

τ 
p̃  Market saturation rate of AVs  

Variables 
Fτ,w,k

m,r  (Route-based) flow of route r between OD pair w for class k and mode m 
in stage τ 

Fτ,w,k
m  Flow of mode m between OD pair w for class k in stage τ 

fτ
m,a  (Link-based) flow of mode m on link a in stage τ 

qτ
a  (Link-based) total flow (PCE-equivalent) on link a in stage τ 

Dτ,w,k  Demand for (i.e., number of vehicles of) class k between OD pair w in 
stage τ 

tτ
a  (Link-based) Travel time on link a in stage τ 

cτ
m,a  (Link-based) Travel cost of mode m on link a in stage τ 

Cτ,w,k
m,r  (Route-based) travel cost of route r between OD pair w for class k and 

mode m in stage τ 
ωτ,w,k

m  Expected satisfaction (logsum) of all routes for OD pair w for class k and 
mode m in stage τ 

TTCτ  Total system travel cost in stage τ 
TTTτ  Total system travel time in stage τ 
TTDτ  Total system travel distance in stage τ 
TACτ  Total adjustment cost in stage τ 
xτ

a  Binary variable taking the value 1 if link a is upgraded in stage τ and 
0 otherwise 

Xτ
a  Binary variable with value of 1 if link a has been upgraded in stage τ or 

before and 0 otherwise 
nccτ

1  Number of connected components in graph Gτ
1 for stage τ   

Fig. 1. An example AV-ready subnetwork; nodes 3–7-9–10-11 are boundary 
nodes, links (5,9)-(6,10)-(7,11) are inner boundary links, and links (9,13)- 
(10–14)-(11,15)-(11,12)-(7,8)-(3–4)-(9,10)-(10,11) are outer boundary links. 
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mode traffic assignment problem under consideration. 
Three travel modes, namely automated driving (AD) mode, con-

ventional driving (CD) mode and public transport (PT) mode are 
considered here. Travelers are categorized within three separate classes 
based on their access to vehicles. Accordingly, each class has certain 
travel modes and their relevant routes available. Fig. 2 depicts the 
travelers’ choice tree for each class. The summation of the demand of all 
modes for each class for each origin–destination (OD) pair is fixed for 
each stage, but it can change over time and the proportion of demand 
assigned to each mode can change based on the travelers’ mode choice. 
The following equations represent the behavioral rules considered in the 
network equilibrium model (NEM) for each stage τ. 
∑

w∈W

∑

k∈K

∑

r∈Rw,τ
m

Fτ,w,k
m,r δτ,w,k

m,a = f τ
m,a, ∀a ∈ A, ∀τ ∈ T, ∀m ∈ M, (1)  

∑

w∈W

∑

k∈K

∑

r∈Rw,τ
m

Cτ,w,k
m,r δτ,w,k

m,r,a = cτ
m,a, ∀a ∈ A, ∀τ ∈ T, ∀m ∈ M, (2)  

∑

r∈Rw,τ
m

Fτ,w,k
m,r = Fτ,w,k

m , ∀τ ∈ T, ∀w ∈ W, ∀k ∈ K, ∀m ∈ M, (3)  

∑

m∈M
Fτ,w,k

m = Dτ,w,k, ∀τ ∈ T, ∀w ∈ W, ∀k ∈ K, (4)  

cτ
m,a = cτ

m,a + ηmtτ
a, ∀a ∈ A, ∀τ ∈ T, ∀m ∈ M, (5)  

tτ
a = t0

a

[

1 + αa

(
qτ

a

Λτ
a

)ba
]

, ∀a ∈ A, ∀τ ∈ T, (6)  

qτ
a =

∑

m∈M
f τ
m,a, ∀a ∈ Aτ

0, ∀τ ∈ T, (7)  

qτ
a =

∑

m∈M
γmf τ

m,a, ∀a ∈ Aτ
1, ∀τ ∈ T, (8)  

Fτ,w,k
m,r ,Fτ,w,k

m ⩾0, ∀τ ∈ T, ∀w ∈ W, ∀k ∈ K, ∀m ∈ M, ∀r ∈ Rw,τ
m , (9)  

Fτ,w,0
1,r ,Fτ,w,0

2,r ,Fτ,w,1
2,r ,Fτ,w,2

1,r = 0, ∀τ ∈ T, ∀w ∈ W, ∀r ∈ Rw,τ
m . (10) 

Eq. (1) stablishes the correspondence between route and link flows, 
constraint (2) carries out the same for route costs and link costs. Eqs. (3) 
and (4) guarantee flow conservation for routes and modes, respectively. 
Constraint (5) represents link travel costs, which include link travel time 
multiplied by VoTT for each class, plus a fixed cost (e.g., per kilometer 
driving cost for cars and fare for PT). 

Constraint (6) shows how link travel time is calculated based on a 
bureau of public roads (BPR) travel time function. This function calcu-
lates the link travel time using the total flow of vehicles on the link. On 
regular links (Aτ

0), the total flow is the simple summation of all flows on 
the link (Eq. (7)). However, on AV-ready subnetwork links (Aτ

1), the total 

flow is the weighted sum of the mode flows and their corresponding PCE 
value (Eq. (8)). The PCE value for the AD mode is lower than the PCE 
value for the CD mode to account for the shorted driving gaps between 
AVs and their leading vehicles in AD mode. As mentioned earlier, this 
approach is commonly used in the literature to calculate link travel 
times where AVs can use the AD mode in mixed traffic conditions. The 
exact PCE values used in this study are reported in Section 4.1. 

Constraint (9) guarantees feasible flows, and (10) restricts flows of 
classes in modes unavailable to them (i.e., owners of CVs do not have 
access to AD mode, owners of AVs drive in AD mode whenever available, 
and the class with no vehicle available does not have access to any car 
mode). 

In the following part, the equilibrium conditions of the NEM will be 
expressed in variational inequality (VI) formulation. 

3.2.1. Equilibrium conditions 
Let the set Π defined by (1)–(10) denotes the admissible set of flows 

for the NEM under consideration (i.e., Π defines the feasible region of 
the NEM). It should be noted that Π is a non-empty, convex and compact 
set since the demand is non-zero and finite. Then the equilibrium con-
dition for the VI problem is to find π* = [F*τ,w,k

m,r , F*τ,w,k
m ] ∈ Π, such that 

H(π*)
T
(π − π*)⩾0, ∀π ∈ Π, where 

H(π) = [Cτ,w,k
m,r + 1

μk
m
lnFτ,w,k

m,r , 1
θk

m
lnFτ,w,k

m − hτ,w,k
m ], i.e., the VI problem is to 

solve 
∑

w∈W

∑

k∈K

∑

m∈M

∑

r∈Rw,τ
m

[C*τ,w,k
m,r (F*τ,w,k

m,r ) −
1

μk
m

lnF*τ,w,k
m,r ](Fτ,w,k

m,r − F*τ,w,k
m,r )

+
∑

w∈W

∑

k∈K

∑

m∈M
[

1
θk

m
lnFτ,w,k

m − hτ,w,k
m ](Fτ,w,k

m − F*τ,w,k
m )⩾0

, (11) 

subject to (1)–(10). 

3.3. AV diffusion model 

Since a long planning horizon including multiple time stages is 
considered in this study, the demand for AVs is likely to change over 
time. Therefore, this change needs to be estimated for each period based 
on the price of AVs and the benefits they provide. We use a diffusion 
model that estimates the AV demand in each period based on the 
mentioned factors. After each stage, the AV diffusion model is used to 
estimate the market penetration rate of AVs in the next stage endoge-
nously based on the level of service (i.e., expected satisfaction) of all 
available choices to AVs in the previous stage and the price difference 
between CVs and AVs. The diffusion model takes the values of equilib-
rium travel cost (C*τ,w,k

m,r ) obtained from solving (11) for each period τ as 
input and returns the demand for AVs for each OD pair w for the next 
period (Dτ+1,w,2) as output to be used in the next stage. 

Diffusion models have been widely utilized in various fields as 

Fig. 2. Travel decision choice tree for three classes of travelers: from left, respectively, PT users (i.e., travelers without access to a vehicle (k = 0)), CV users (k = 1), 
AV users (k = 2). 
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models to predict market penetration rates of new products and tech-
nologies. Recently, they have been used to predict the adoption rate of 
AVs (Chen et al., 2016; Lavasani et al., 2016; Nieuwenhuijsen et al., 
2018). In this study, we use an adaptation of the model proposed by 
Yang and Meng (2001) and used by Chen et al. (2016). This model is 
suitable for our study since it relates the adoption rate of AVs in each 
stage to its adoption rate in the previous stage, net benefits provided by 
them during the previous stage, and their cost. This allows time-varying 
estimation of the number of AVs in each stage endogenously using the 
utility values obtained by the discrete choice model used for the lower 
level problem. Therefore, the number of AVs adopted by each OD pair in 
each stage is calculated as follows. 

Dτ+1,w,2 = Dτ,w,2 + g(ϕw,τ)Dτ,w,2
(

1 −
Dτ,w,2

p̃Vτ+1,w

)

, ∀τ ∈ T, ∀w ∈ W, (12)  

g(ϕw,τ) = ρ1exp(ρ2[ϕ
w,τ − ϕw,τ

]), ∀τ ∈ T, ∀w ∈ W, (13)  

ϕw,τ = σ(ωτ,w,1
1 − ωτ,w,2

2 ) − (eτ
1 − eτ

2), ∀τ ∈ T, ∀w ∈ W, (14)  

ωτ,w,k
m =

1
μk

m
ln
∑

r∈Rτ,w
m

exp(μk
mC*τ,w,k

m,r ), ∀τ ∈ T, ∀w ∈ W, ∀k ∈ K, ∀m ∈ M,

(15)  

Dτ+1,w,1 +Dτ+1,w,2 = Vτ+1,w, ∀τ ∈ T, ∀w ∈ W. (16) 

Eq. (12) shows how AV demand in each stage is dependent on the AV 
demand in the previous stage, total number of vehicles, market satura-
tion rate of AVs, and the function g(ϕw,τ). This function represents the 
intrinsic growth coefficient for the OD pair w. Eqs. (13) and(14) show 
how this coefficient is calculated based on the price difference between 
CVs and AVs and the difference in benefits (i.e., expected satisfactions) 
provided by each vehicle type based on the utilities of all routes avail-
able for that vehicle type during the previous stage. Eq. (15) indicates 
how the expected satisfactions are calculated according to the utility 
values obtained from the route choice model (C*τ,w,k

m,r is obtained from 
solving (11)). Eq. (16) guarantees conservation of the total number of 
vehicles in each stage. This number is a model input. Note that the total 
number of travelers with and without access to cars for each OD pair 
throughout the planning horizon (Vτ,w and Dτ,w,0) are assumed to be fixed 
here. Nevertheless, a general or an OD-based growth rate (in case that 
information becomes available) can easily be applied using a multiplier 
in (16). 

3.4. Upper level problem: multi-stage design of automated-vehicle-ready 
subnetworks 

The upper level problem involves deciding which links to upgrade 
and include in the AV-ready subnetwork in each decision stage. The 
objective is to minimize the sum of total discounted adjustment cost and 
total discounted travel cost over the whole planning horizon given the 
travelers’ response to each network configuration captured by the NEM 
(i.e., the flow patterns used in the upper level problem to calculate the 
objective function value are obtained from solving the NEM). The 
following mathematical program represents the upper level problem. 

Min 

ZU =
∑

τ∈[0,T]

{
σTTCτ + TACτ

(1 + ψ)lτ +
∑

j∈[1,l− 1]

{
σTTCτ

(1 + ψ)lτ+j

}}

, l⩾2, (17) 

s.t. 
(1)-(16), 

TTCτ =
∑

a∈A

{
(
1 − Xτ

a

)
[(cτ,1

a +η1tτ
a)(f

*τ,1
a +f *τ,2

a )]+Xτ
a[(c

2,k
a +η2tτ

a)f
*τ,2
a ]

}

, ∀τ∈T,

(18)  

TACτ =
∑

a∈A
xτ

aκτ
a, ∀τ ∈ T, (19)  

Xτ
a =

∑

τ∈T
xτ

a,∀τ ∈ T, ∀a ∈ A, (20)  

Xτ
a⩽1, ∀τ ∈ T, ∀a ∈ A, (21)  

nccτ
1 = 1, ∀τ ∈ T, (22)  

xτ
a ∈ {0, 1}, ∀τ ∈ T, ∀a ∈ A. (23) 

The objective function in (17) includes total discounted travel cost 
and total discounted adjustment cost. Since the length of each stage can 
be more than one year, a second term is added to the objective function 
to represent the net present value of the travel costs for years without 
any investment. Flows used in (18) are obtained by solving the NEM. Eq. 
(19) represents total adjustment cost in each stage, (20) and (21) ensure 
that each link can be upgraded only once, and after that point, it remains 
part of the subnetwork, and (23) shows the decision variables of the 
upper level problem are binary. They assume the value of one for links 
that are included in the subnetwork and zero otherwise (i.e.,Xτ

a = 1,
∀a ∈ Aτ

1). Constraint (22) denotes the connectivity requirement of the 
AV-ready subnetwork. It entails that for any two nodes within a sub-
network, there should be at least one path within the (undirected) graph 
representing that subnetwork that connects those two nodes. This means 
that the number of connected components in each subnetwork graph in 
each stage (nccτ

1) should be equal to one. The reason for inclusion of this 
constraint is to avoid subnetworks with separated parts. Since activating 
automated driving mode is allowed only on AV-ready subnetwork links, 
having subnetworks with separate components (i.e., disconnected sub-
networks) leads to switching frequently between manual and automated 
mode, which should be avoided. This constraint imposes extra re-
quirements on the solution methods, which are discussed in the 
following section. 

3.5. Solution methods 

We solve the problem introduced in this study using three evolu-
tionary algorithms that are designed to deal with the complexity of the 
problem and the requirements mentioned earlier. We present two new 
algorithms, namely an evolutionary greedy search (EGS) and an evolu-
tionary policy search (EPS), which were specifically developed for this 
problem. They deal with the connectivity constraint via tailored oper-
ations that are inspired by evolutionary processes, yet adjusted to pre-
serve connectivity of subnetworks. Since GAs are one of the most 
common algorithms used in the literature to solve NDPs, we use a 
modified GA as a benchmark to compare the performance of our pro-
posed algorithms. The GA used in this study copes with the connectivity 
constraint via a penalty function. All three algorithms use the so-called 
iterative-optimization-assignment approach where the upper level 
optimization problem and the lower level SUE assignment problem 
(NEM) are solved iteratively. After each stage, the diffusion model is 
executed once to estimate the AV demand for the next stage based on the 
equilibrium values of the previous stage. These three algorithms are 
described in detail in the following subsections. 

3.5.1. Genetic algorithm (GA) 
As mentioned earlier, the GA introduced in Holland (1975) and 

elaborately discussed in Golberg (1989), is one of the most successful 
heuristic algorithms used for solving DNDPs. Therefore, we have used it 
here as a benchmark for the performance of existing solution methods. 
However, some modifications were necessary to guarantee the connec-
tivity requirement of AV-ready subnetworks (constraint (22)) and to 
accommodate the extra dimension (time) in decision variables. Instead 
of T sets of binary decision variables (one set for each stage), one set of 
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integer decision variables in range of [1,T+1] is used where the value 
specifies in which stage the link will be upgraded (T+1 represents 
never). The connectivity constraint is dealt with via a penalty function in 
fitness evaluation. The GA operations are explained below and the GA 
procedure is shown in Table 2. 

3.5.1.1. GA initialization. The GA introduced here is initialized with a 
random configuration (i.e., a random selection of values within the 
feasible range for each upper level decision variable). 

3.5.1.2. GA mutation operation. A uniform mutation function is applied 
where 1% of genes (i.e., upper level decision variables) in each chro-
mosome (i.e., solution vector) selected based on a uniform probability 
distribution are perturbed to generate mutated offspring. 

3.5.1.3. GA crossover operation. Crossover operation here is based on a 
multiple-point crossover function where multiple (uniformly selected) 
swapping points for chromosomes are used to exchange genes between 
crossover parents. This means each gene in each crossover offspring has 
an equal chance of being inherited from either crossover parent. 

3.5.1.4. GA fitness evaluation. Fitness evaluation in GA introduced here 
is based on the value of ZGA

U in Eq. (24) where the value of ZU is according 
to the Eq. (17), and the second term is a penalty function described in 
this section. 

ZGA
U = ZU +

∑

τ∈[0,T]
106(nccτ

1 − 1) (24) 

The value of ZU is based on the equilibrium link flows obtained from 
solving the NEM (lower level problem). Zhou et al., (2009) have 
established the existence and uniqueness of the solution for the VI 
formulation of the combined SUE problem (origin, destination, mode 
and route choice) with asymmetric link costs, which is a more general 
form of the NEM considered here. A comprehensive discussion on 
different formulations of the NEM and existing solution methods is 
provided in Florian and Hearn (1995). Common solution methods for 
the VI formulation of the NEM can be used to solve the lower level 
problem of the AD-NDP-T introduced here. Regarding algorithms to 
solve VIs, the literature is vast. For review studies, see Florian and Hearn 
(1995) and Harker and Pang (1990). In this study, we use a linear 
approximation type algorithm introduced in Wu et al. (2006) with step 
sizes according to the method of successive averages (MSA) and a par-
allel approach for updating class flows in each iteration to solve the 
NEM. The algorithm was used by Wu et al. (2006) to solve a multi-class 
VI problem with asymmetric link costs where the efficiency and 
convergence of the algorithm were shown on a large-scale network with 
99,867 links. 

In order to guide GA to find connected designs (i.e., satisfy constraint 

(22)), a penalty term is included in (24) for each subnetwork in each 
stage with more than one connected component (i.e., designs that 
violate constraint (22) are penalized in their fitness value). Note that 
there is exactly one connected component in any connected graph. 
Therefore, a penalty proportional to the number of extra components is 
imposed on designs with more than one connected component. This 
procedure guides GA to find designs with exactly one connected 
component. The value of the penalty weight in Eq. (24) is determined 
empirically and discussed in Section 4.1.2. 

Each fitness evaluation includes solving the NEM and checking for 
connectivity T times (once per each stage) as well as running the 
diffusion model once after each stage to specify the AV demand for the 
next stage based on the travel utilities of the previous stage. 

3.5.2. Evolutionary greedy search (EGS) 
The EGS algorithm introduced in this study operates only on 

boundary links to preserve connectivity of produced subnetworks. It 
starts simple (one gene only) and the evolution process gradually adds 
complexity to the designs until there is no more gain from increasing 
complexity. To follow the general dynamic programming terminology, 
here we refer to an action as a decision for a single stage and a policy as a 
series of decisions for the complete planning horizon. EGS operates on 
action space. It starts from the first stage and optimizes the design for 
that stage. Once no further improvement is possible for that stage, it 
moves to the next stage. EGS operations are explained below and EGS 
procedure is shown in Table 3. 

3.5.2.1. EGS initialization. EGS starts with a population of single links 
each one selected based on a roulette wheel prioritizing link capacity. 
Since there is no link elimination operation in EGS (i.e., once a link is 
added to the design, it stays in the design), starting with a larger number 
of links was found to be ineffective. Single links are sampled from the 
full set of feasible links to provide a sufficiently diverse (and connected) 
population pool to start the algorithm. 

3.5.2.2. EGS extension operation. EGS operates on action space (i.e., 
optimizes one stage at a time). This means EGS extension operation is 
performed only for one stage at a time. Therefore, for each extension 
operation, first, the outer boundary links of the existing design for the 
active stage are found. Next, a sample of outer boundary links are 
selected based on a roulette wheel with odds proportional to link ca-
pacity, and a number of them are added to the existing design. Adding 
only outer boundary links guarantees that the resulting designs are 
connected (i.e., they meet constraint (22)). The number of candidate 
designs to evaluate (sample size) and the number of links to add to each 

Table 2 
GA procedure.  

GA steps 

1 Initialize population (GA initialization) and measure fitness 
2 For each generation j 
3 For each individual i 
4 Perform GA mutation operation 
5 Measure fitness 
6 End 
7 Select parents using a binary tournament selection based on 
8 fitness  

Perform GA crossover operation 
9 Measure fitness 
10 Select next generation from existing generation and  

offspring based on fitness 
11 If stopping criteria met: Terminate 
12 End  

Table 3 
EGS procedure.  

EGS steps 

1 Initialize population (EGS initialization) and measure fitness 
2 For each stage τ 
3 For each generation j 
4 For each individual i 
5 Perform EGS extension operation (on outer  

boundary links) 
6 Measure fitness 
7 End 
8 Select parents using a binary tournament selection  

based on fitness 
9 Perform EGS merging operation (on parents that can  

produce connected offspring) 
10 Measure fitness 
11 Select next generation from existing generation and  

offspring based on fitness 
12 If stopping criteria met: Go To the next stage 
13 End 
14 End  
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candidate (extension size) are algorithm parameters. 

3.5.2.3. EGS merging operation. To preserve diversity among the pop-
ulation of designs, and to expedite the search process, a merging oper-
ation is applied in EGS. It requires two parents who are first checked for 
compatibility. That is, the parents are checked to determine whether 
they have a common node in their designs. Since both parents are 
connected designs, if they have a node in common, the union of their 
links will produce a connected graph. Note that checking for common 
nodes is computationally trivial compared to checking for connectivity 
after each merging. Then, if they pass the check, a merged design is 
generated from their union. The fraction of the population to consider 
for merging in each generation (merging fraction) is an EGS parameter. 

3.5.2.4. EGS fitness evaluation. EGS fitness evaluation is based on the ZU 
value in (17), which is obtained by the MSA-based linear approximation 
algorithm discussed earlier. However, to reduce computation times and 
avoid unnecessary fitness evaluations, this operation is sliced into 
several pieces. In each stage, EGS starts with the optimal design obtained 
at the end of the previous stage and makes adjustments only on the 
active stage’s designs. Therefore, EGS fitness evaluation only includes 
adding the fitness value of each design for the active stage to the value of 
the optimal fitness at the end of previous stage. In this manner, at the 
end of the planning horizon, the fitness values correspond to the 
objective function value in (17) while avoiding a large number of un-
necessary fitness evaluations for inactive stages. It will be shown in the 
next section that this approach is computationally efficient. 

3.5.3. Evolutionary policy search (EPS) 
EPS algorithm operates on policy space and uses operations inspired 

by evolutionary processes yet tailored to the problem to evolve to fitter 
designs while preserving connectivity. These operations include a 
context-aware merging and two types of mutations on boundary links. 
EPS operations are explained below and EPS procedure is shown in 
Table 4. 

3.5.3.1. EPS initialization. EPS population is initialized with connected 
networks generated by the extension (similar to EGS extension) process 
without fitness evaluation. The number of starting links is a parameter. 
This means for each individual design, the algorithm starts with a 
random link, and adds links from the outer boundary links based on the 
roulette wheel explained earlier until a predefined number of links is 
added. The process provides the algorithm with a diverse set of con-
nected designs to start the evolution process with minimal computa-
tional effort. 

3.5.3.2. EPS extension operation. Since EPS operates on policy space, 
each time the extension operation is performed, first a stage τ* is 
randomly selected as the active stage for the operation. Then, an 
extension operation similar to EGS extension is performed on the active 
stage’s design. To guarantee constraint (20), once a set of links is 
selected to be added to a design on stage τ*, the same set is added to all 
following stages (i.e., [τ* + 1,T]) of that design. The number of designs 
to consider for extension (extension sample) and the number of links to 
add to each design (extension size) are algorithm parameters. 

3.5.3.3. EPS reduction operation. This is the process of eliminating un-
wanted links from designs to obtain better designs. However, to preserve 
connectivity of designs, candidate links for elimination are selected only 
from among inner boundary links. The number of links to be eliminated 
from each design (reduction size) and the number of candidate designs 
to consider for elimination (reduction sample) are algorithm parame-
ters. As in the extension operation, here the active stage is randomly 
selected. However, the difference is that for the reduction operation, 
after the selection of candidates, all preceding stages of candidate de-
signs are modified accordingly. This guarantees satisfaction of 
constraint (20). 

3.5.3.4. EPS merging operation. EPS merging is also similar to the EGS 
merging process including the check for nodes in common to ensure 
connected offspring. The difference is that first, an active stage is 
randomly selected for EPS merging operation. If a common node is 
found for candidate parents in their active stage’s designs, then a 
merged design is generated from their union in the active stage. The 
same design is used for the following stages, and the fitter parent con-
tributes to designs of previous stages for the merged offspring. The 
fraction of the population to consider for merging in each generation 
(merging fraction) is an EPS parameter. 

3.5.3.5. EPS fitness evaluation. EPS fitness evaluation is based on the ZU 
value in (17), which is obtained by the MSA-based linear approximation 
algorithm discussed earlier. Similar to GA, EPS measures the fitness once 
per stage per design, with a diffusion function run after each stage to 
define demand for the next stage. However, no connectivity check or 
penalty is used for EPS since its operations guarantee connectivity. The 
optimal designs generated by EPS are checked for connectivity once 
after the optimization and as it will be shown later, they always meet the 
connectivity requirements of this problem. 

4. Case study and numerical results 

4.1. Description: Amsterdam metropolitan region 

We demonstrate the multi-stage AV-ready subnetwork optimization 
concept on a case study of the Amsterdam metropolitan region. The 
network and demand data are obtained from the VENOM model (Kieft, 
2013), which is based on the real network and demand patterns of 
Amsterdam, and is commissioned by the Amsterdam metropolitan re-
gion (Metropoolregio Amsterdam). It includes 52,812 links, 19,734 
nodes, and 10,124 OD pairs (aggregated from 3722 original trans-
portation zones). The study area (shown in Fig. 3) includes 24,250 links 
and 6642 OD pairs. 

Demand data and availability of cars (thereby total number of users 
in each class) are extracted from the calibrated demand matrices per 
mode in VENOM model for the year 2004. All transportation demand 
from, to, within and through the study area is included in the OD matrix 
and accounted for in the assignment, but network performance in-
dicators are reported for the OD pairs within the study area. One 
morning peak hour on an average workday is modeled and a conversion 
rate of σ = 10*12*30 (30 days a month, 12 month a year, daily to peak 
hour travel time ratio of 10) is used to obtain yearly values for 

Table 4 
EPS procedure.  

EPS steps 

1 Initialize population (EPS initialization) and measure fitness 
2 For each generation j 
3 For each individual i 
4 Randomly select the active time stage τ*  
5 Perform EPS extension operation (on outer boundary links) 
6 Measure fitness 
7 Randomly select the active time stage τ*  
8 Perform EPS reduction operation (on inner boundary links) 
9 Measure fitness 
10 End 
11 Select parents using a binary tournament selection based on fitness 
12 Perform EPS merging operation (on parents that can produce  

connected offspring) 
13 Measure fitness 
14 Select next generation from existing generation and produced  

offspring based on fitness 
15 If stopping criteria met: Terminate 
16 End  
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optimization. In the numerical results reported, all terms in Eq.(17) are 
divided by σ to avoid working with very large numbers. The traffic 
pattern of the base case (as is) is depicted in Fig. 4. 

Since the focus of this study is automated vehicles, and in order to 
reduce computation times, a simplified assignment for public transport 
is used where for each OD pair, one (artificial) link represents expected 
satisfaction of all available routes available with public transport. The 
data for calculating mentioned values is derived from Brands (2015), 
where the author has used the same network and demand data (VENOM 
model) for an NDP study with a focus on public transport. 

Regarding the diffusion model, the starting AV penetration rate used 
is 5%, the potential market size for AVs (saturation rate) is 90%, and the 
annual cost difference between CVs and AVs is 2000 €. 

Motorways, regional roads and main urban roads are considered as 
feasible links for the subnetwork, and (per kilometer) link adjustment 
costs used in the case study are 50,000 €/km for motorways, 75,000 €/ 
km for regional roads and 100,000 €/km for main urban roads. The 
maintenance cost per stage is 5% of the adjustment cost, which is added 

to the link adjustment costs. Net present values of economic benefits (i. 
e., total travel cost savings) and costs (i.e., total adjustment cost) up to 
one stage after the planning horizon are calculated and added to the 
reference point. The effect of variations of adjustment costs from 
mentioned values is considered via the sensitivity analysis reported in 
the next section. Total number of links selected as feasible links for the 
AV-ready subnetwork is 5804 out of 52,812 links (shown in Fig. 3). This 
leads to a lower level problem (i.e., NEM) with 52,812 continuous de-
cision variables and an upper level problem with 5804 binary decision 
variables (25804 possible solutions) for each stage. Three different sce-
narios, described below, are considered to account for the effects of 
planning horizon and decision stage length. 

Scenario 1: six stages with preselection: A 30-year planning horizon 
is considered for all scenarios. In scenario 1, the planning horizon is 
divided into six stages (i.e., six viewing or decision points) with the 
length of five years for each stage. It is assumed in this scenario that for 
stage zero (corresponding to the beginning of the planning horizon), all 
motorways are (pre)selected as part of the AV-ready subnetwork (i.e., 

Fig. 3. Amsterdam case study: study area and feasible links for AV-ready subnetwork.  

Fig. 4. Traffic patterns in Amsterdam case study: base case (as is) (bandwidth represents relative flow).  
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the value of decision variables for stage zero are preselected and fixed). 
The main reason for this choice is that many experts believe motorways 
are the first places to facilitate automated driving; therefore, they should 
be included in any network configuration for AVs. Moreover, reducing 
the number of decision variables (of the upper level problem) can 
decrease computation times as well. 

Scenario 2: two stages with preselection: In this scenario, a 30-year 
planning horizon with two stages (each 15 years long) and the same 
link preselection for stage zero as scenario 1 is considered. Since in this 
scenario the length of the planning horizon is the same as scenario 1 yet 
investment decisions are made less frequently, the comparison aids in 
demonstrating the effects of investment frequencies. 

Scenario 3: two stages without preselection: A 30-year planning 
horizon with two time stages (each 15 years long) and no link prese-
lection for stage zero is considered in this scenario. Since the value of the 
objective function for stage zero is also included in all calculations for all 
scenarios, comparing scenario 3 with scenario 2 provides some insight 
into the impacts of preselecting motorways. 

4.1.1. Hardware and software 
The mathematical model and the solution algorithms were coded in 

MATLAB and ran on a Windows PC with a Core i5-8600 CPU @ 
3.10 GHz and 32 GB RAM. MATLAB parallel computation toolbox was 
utilized with six parallel computing units for efficient computations and 
dealing with the computational complexity arising from the problem 
size. It should be noted that population-based algorithms (such as the 
evolutionary algorithms used in this study) can fully utilize the potential 
of parallel computation for efficiency. Moreover, sparse matrices in 
MATLAB were used for all algebraic operations on assignment maps to 
minimize the computation times of the MSA-based algorithm used to 
solve the lower level problem (NEM). Overall, 3 scenarios, 3 algorithms 
and 5 runs for each algorithm in each scenario led to a total of 45 
optimization runs for the Amsterdam case study (excluding parameter 
tuning and sensitivity analysis), which culminated in approximately 
72 days of computations. 

4.1.2. Parameter tuning 
For computational experiments of the Amsterdam case study, run 

time limits (i.e., maximum computation times) of 10 h for scenario 2 and 
scenario 3, and 160 h for scenario 1 were considered. We experimented 
with a grid of different parameter values for each algorithm and con-
ducted the final computational experiments using the parameters that 
led to the best results (lowest objective function values) for each algo-
rithm within the mentioned time limits. The best performing parameters 
that were used for the reported experiments for all three algorithms are 
shown in Table 5. Regarding the penalty weight used for GA in Eq. (24), 
the value of 106 is selected optimally after experimenting with different 
values in range of [10, 107]. A summary of these experiments for the 
three scenarios in this study is illustrated in Fig. 5. 

4.2. Numerical results and analysis 

In this section, we assess the effects of deploying AV-ready sub-
networks on network performance using three main network perfor-
mance criteria, namely, total travel cost (TTC), total travel time (TTT) 
and total travel distance (TTD). Reported values for objective function 
(OF) in Tables 6–8 are averages of five independent runs (replications). 
The bandwidths for 95% confidence intervals are reported in Table 7. 
Computation times (CTs) are reported in the same manner. TTC, TTT 
and TTD values are averages per stage per run. This allows comparisons 
with the base case. Note that due to the scaling of Eq. (17) explained in 
case study description, the reported values of TTC, TTT and TTD are 
hourly values rather than yearly values. Total adjustment cost (TAC) 
values are summed over all stages and averaged over all runs to show 
total investment values per scenario. 

Moreover, we discuss the performance of the solution algorithms and 
the impacts of scenario settings with respect to several performance 
criteria. The solution algorithms are compared in terms of effectiveness 
(i.e., average OF value obtained), efficiency (i.e., average computation 
times), stability (i.e., within run variations), scalability (i.e., computa-
tion time to problem size ratio), and constraint satisfaction (i.e., pro-
ducing connected graphs). 

4.2.1. Lower bounds 
Since the global optimum point of the problem is unknown, and with 

heuristics, there is no guarantee to find this point, we have provided 
additional numbers as reference points for comparisons. First, the values 

Table 5 
Best performing parameter values for EGS, EPS and GA in Amsterdam case 
study.  

EGS EPS GA 

Parameter Value Parameter Value Parameter Value 

Population 
size 

30 Population 
size 

300 Population size 180 

Extension size 5 Extension size 5 Max 
generations 

2000 

Sample size 8 Reduction size 2 Elite size 12 
Merging 

fraction 
0.8 Extension 

sample 
2 Crossover 

fraction 
0.9   

Reduction 
sample 

2 Crossover type uniform   

Merging 
fraction 

0.9 Mutation 
fraction 

0.01  

Fig. 5. Number of connected components in GA results for different penalty 
weight values in all scenarios. 

Table 6 
Lower bounds and upper bounds for OF, TTC and TAC values.   

OF (€) TTC (€) TAC (€) 

Scenario 1 
Upper bound 23,014,977 1,185,655 256,024,217 
Lower bound 22,457,536 1,145,451 0  

Scenario 2 
Upper bound 25,549,484 1,185,655 216,115,436 
Lower bound 24,972,031 1,143,857 0  

Scenario 3 
Upper bound 25,549,484 1,185,655 209,521,104 
Lower bound 24,989,569 1,143,907 0  
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of the base case scenario (as is) are calculated to evaluate the network 
performance as it is before the changes. This provides the upper bounds 
for the values of OF and TTC. Second, the TTC values for a variation 
where all feasible links are included in the AV-ready subnetwork in all 
stages are calculated to provide a lower bound for TTC values obtained 
by deployment of AV-ready subnetworks. Since OF is the summation of 
TTC and TAC, using mentioned lower bounds for TTC values along with 
the value of zero for TAC (assuming no adjustment cost for reaching 
these TTC values) in each scenario provides (underestimated) lower 
bounds for the OF values. We use mentioned lower bounds as well as the 
values of the “as is” scenario and maximum possible investment costs to 
report the lower and the upper bounds for the values of OF, TTC and TAC 
in Table 6. The “as is” values of all performance indicators are reported 
in Table 7. These values aid in evaluating the case study results reported 
in Table 7 and calculating the optimality gaps reported in Table 8. It 
should be noted that although the lower bounds for OF might be 
unachievable in practice due to their underestimation, it is guaranteed 
that no algorithm can achieve lower numbers for OF values. This is a 
desirable property for algorithm performance comparison purposes, and 
it is shown in Table 8 that results very close to the lower bounds can be 
achieved. 

4.2.2. Network performance 
As evidenced by Table 7, there is a notable network-wide decrease in 

(per-stage) TTC values in all scenarios with all algorithms compared to 
the base case, which indicates that the AV-ready subnetwork concept 
has an overall positive impact on network performance in terms of TTC. 
In addition, TTC values (especially for EGS) are very close to the lower 
bounds reported in Table 8. The value of the TTC gap between the upper 
and the lower bound is above 98% for EGS in all scenarios. The OF gap 
values achieved by EGS are between 86% and 98%. Given that the lower 
bounds reported for OF values are underestimated, these results suggest 
that the results (at least for EGS algorithm) are near optimal. 

Regarding TTT, mild improvements are observed in all cases (with 
the exception of EPS in scenario 1). However, these improvements are 
not as significant as the observed TTC improvements. The differences 
between TTC and TTT in the extent of improvements were expected, 
since the algorithms optimize for TTC and TAC but not for TTT. More-
over, the tendency to choose longer routes via the AV-ready sub-
networks in automated mode can cause more travel time while leading 
to lower TTC due to the lower VoTT and higher fuel efficiency of 
automated driving. This change in travelers’ route choice behavior 
caused by the deployment of AV-ready subnetworks has been observed 
previously (Madadi et al., 2020). It also explains considerably higher 
TTDs in all optimal cases compared to the base case. 

The traffic patterns of optimal cases are very similar to the base case 
patterns (Fig. 4) with a slight increase in the volumes in the latter case. 
The explanation is that when AVs become more attractive in time with 
the existence of the AV-ready subnetworks, more travelers opt for cars. 
This leads to an increase in volumes on the network; nonetheless, the 
performance of the network is still favorable to the base case in terms of 
TTC and TTT due to the efficiency of automated driving. 

4.2.3. Algorithm performance 
In terms of effectiveness (i.e., average OF value obtained) EGS shows 

a better performance compared to the competing algorithms in all sce-
narios, particularly in scenario 1 when the number of possible solutions 
is considerably higher. This is evidenced by the numbers reported in 
Table 8 where EGS covers larger proportions of optimality gaps. In 
scenario 1 where the problem becomes very large, the greediness of EGS 
seems to serve well in terms of both efficiency and effectiveness; 
although, the optimality gap reduced by EGS is lower in this scenario 
compared to other scenarios. GA on the other hand, is outperformed in 
effectiveness in all scenarios by EGS; however, in scenario 1, it out-
performs EPS, and in scenario 2, it has a very similar performance to 
EPS. 

When it comes to efficiency (i.e., average computation times), EGS 
performs well on average yet not as well as its effectiveness perfor-
mance. For instance, in scenario 3, EPS has a lower computation time 
compared to EGS. EGS starts with a single link, and adds only a small 
number of links at each generation. Therefore, in scenario 3 where there 

Table 7 
Summary of case study results (±signs denote standard errors for 95% confidence intervals).  

Algorithm OF (€) TTC (€) TTT (h) TTD (km) TAC (€) Connected CT(h)  
(average) (average) (average) (average) (sum)  (average)  

Scenario 1: six stages with preselection 
GA 22,597,906 ± 3,635 1,150,222 97,140 1,373,965 245,869,501 No 154.92 ± 43.10 
EGS 22,534,825 ± 33,797 1,146,307 97,051 1,378,132 250,380,768 Yes 5.53 ± 0.14 
EPS 22,685,967 ± 1,626 1,156,838 97,289 1,366,779 240,203,049 Yes 144.06 ± 0.97 
As is 23,014,977 1,185,655 97,208 1,314,145 0 – 0  

Scenario 2: two stages with preselection 
GA 25,143,063 ± 321 1,150,777 97,181 1,373,674 212,675,527 Yes 7.95 ± 0.08 
EGS 25,023,282 ± 3 1,144,292 97,026 1,380,753 216,024,677 Yes 4.03 ± 0.03 
EPS 25,139,950 ± 333 1,150,612 97,175 1,373,890 212,680,670 Yes 9.15 ± 0.09 
As is 25,549,484 1,185,655 97,208 1,314,145 0 – 0  

Scenario 3: two stages without preselection 
GA 25,282,900 ± 243 1,159,160 97,106 1,357,159 198,926,645 Yes 8.78 ± 0.15 
EGS 25,002,051 ± 1,138 1,144,221 96,920 1,380,716 131,099,802 Yes 6.72 ± 0.18 
EPS 25,029,462 ± 1,400 1,145,238 97,026 1,379,269 209,199,259 Yes 3.78 ± 0.17 
As is 25,549,484 1,185,655 97,208 1,314,145 0 – 0  

Table 8 
Percentage of optimality gaps (between upper bounds and lower bounds) ach-
ieved by algorithms.   

OF 
(€) 

TTC 
(€) 

TTC saving (€) 
* 

TAC saving 
(€)** 

TAC spending 
(€)*** 

Scenario 1 
GA 75% 88% 127,558,800 10,154,716 8,195,650 
EGS 86% 98% 141,652,800 5,643,449 8,346,026 
EPS 59% 72% 103,741,200 15,821,168 8,006,768  

Scenario 2 
GA 70% 83% 125,560,800 3,439,909 7,089,184 
EGS 91% 99% 148,906,800 90,759 7,200,823 
EPS 71% 84% 126,154,800 3,434,766 7,089,356  

Scenario 3 
GA 48% 63% 95,382,000 10,594,459 6,630,888 
EGS 98% 99% 149,162,400 78,421,302 4,369,993 
EPS 93% 97% 145,501,200 321,845 6,973,309  

* TTC saving values reported are yearly and in comparison with the upper 
bounds reported in Table 6. 

** TAC saving values reported are in comparison with the upper bounds re-
ported in Table 6. 

*** TAC spending values reported are yearly. 
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is no link preselection, which leads to a higher number of decision 
variables, it takes longer than other scenarios, even longer than scenario 
1. 

As for stability, we reflect on within run variations captured by 
standard errors of both OF values and computation times (denoted by 
±signs in Table 7). GA and EPS demonstrate notable stability in both OF 
values and computation times in scenario 2 and scenario 3. However, in 
scenario 1, EPS is somewhat stable around an undesirable OF value, and 
GA is highly unstable in terms of computation times. Conversely, EGS 
shows rather persistent stability in computation times. Regarding OF 
values, EGS has the highest stability in scenario 2, followed by scenario 3 
and scenario 1. It is worth noticing that although EGS shows a rather 
large within run variability for OF in scenario 1, its worse run is still 
superior to the other algorithms’ best run (i.e., the upper bound of EGS 
confidence interval for OF is significantly lower that the lower bounds of 
GA and EPS confidence intervals for their OF value). 

Regarding scalability (i.e., computation time to problem size ratio), 
computation times of EPS and GA grow exponentially and their per-
formances deteriorate with the increase in the number of stages, while 
EGS computation times grow rather linear and remain effective with 
more stages. With the increase in the number of decision variables, EGS 
computation times grow rather linear while maintaining their level of 
effectiveness, whereas EPS and GA show less sensitivity to (a limited) 
increase in the number of decision variables. This relates to their 
structure and operation space; EPS and GA operate on policy space (i.e., 
one set of decision variables for the entire planning horizon), whereas 
EGS operates on action space (i.e., dealing with the decision variables of 
each time stage separately). In policy space, the number of possible 
solutions grows exponentially with the number of stages, while in action 
space, when the values of decision variables of previous stages are fixed 
in each stage, the number of possible solutions increases linearly with 
the increase in the number of stages. On the other hand, operating in 
such a manner on action space in a multi-stage setting makes EGS a 
greedy algorithm, since the decisions on each stage are taken without 
considerations for the later stages. Yet that does not seem to deter its 
performance in this problem. This could relate to the nature of the 
problem, since another greedy algorithm has been shown to perform 
well for the AV-ready subnetwork optimization problem without the 
time dimension (Madadi et al., 2020). Future studies should evaluate the 
performance of EGS on other problem instances and settings to inves-
tigate the effects of its greediness. 

Constraint satisfaction is defined in this study as an algorithm’s 
ability to satisfy constraint (22), i.e., produce connected AV-ready 
subnetworks as solutions. For a comprehensive discussion on the ne-
cessity of this constraint, the reader is referred to Madadi et al. (2020). 
As is shown in Table 7 and depicted in Figs. 6–8, EGS and EPS generate 
connected subnetworks in all stages and all scenarios. This was to be 
expected due to their operations, which are tailored to this purpose. On 
the contrary, GA does not always meet this criterion, especially in sce-
nario 1. Even though a penalty is applied for each disconnected 
component in each stage, and various values for this penalty were 
explored. It is shown in Madadi et al. (2020) that GA with a similar 
penalty function successfully finds connected designs for the single 

stage, unimodal problem. Likewise, GA with penalty satisfies the con-
nectivity constraint in scenario 2 and scenario 3 of this study. However, 
as the number of stages increase, the penalty function appears to be less 
effective for satisfying the connectivity constraint. This goes to show 
that the problem size is a defining factor for performance of the algo-
rithms. Therefore, it should be taken into consideration while selecting 
an appropriate solution method for such problems. 

4.2.4. Sensitivity analysis 
In this section, we discuss possible variations in model input pa-

rameters and their impacts on the output. The values reported in Table 9 
are averages of three independent EGS runs for scenario 3. We analyzed 
three general categories of parameters, namely, adjustment cost pa-
rameters, diffusion model parameters and mode choice parameters. 

Based on Table 9, the most sensitive model parameter isρ1, which 
represents the sensitivity of AV demand to its overall cost (i.e., gener-
alized travel cost and ownership cost) in the diffusion model. This is also 
evident from Fig. 9 where it has been demonstrated that the evolution of 
market penetration rate of AVs can take considerably different paths 
with different values of this parameter. This signifies the importance of 
accurate AV demand prediction for infrastructure planning decisions. 

On the contrary, adjustment cost parameters are the least sensitive 
parameters. Although severe and rather proportional changes in TAC 
values are observed with variations in adjustment costs, which is natu-
ral, the changes in objective function values and network performance 
indicators are trivial in all cases. This indicates that adjustment cost 
parameters can have a significant impact on the project cost but not on 
network performance. 

Regarding mode choice parameters, an increase in the (absolute) 
value of the sensitivity of AVs to the level of service (expected satis-
faction) has the least significant impact on the results. On the other 
hand, a decrease in the sensitivity of AVs to the level of service demands 
greater investment with less positive impact on network performance. 
With CVs, the direction of changes is the opposite; less sensitivity to the 
level of service leads to better network performance and more sensitivity 
diminishes network performance. 

5. Summary, conclusions and future research directions 

In this study, we considered the problem of multi-stage optimization 
of AV-ready subnetworks within road networks with time-varying de-
mand. We modeled the problem as a time-dependent bi-level NDP where 
the upper level denoted infrastructure decisions made by authorities in 
several stages over a planning horizon, and the lower level represented 
mode and route choices of different classes of travelers (with access to 
AVs, CVs or no vehicle) in each stage in response to the infrastructure 
supply. We presented the VI formulation of the lower level as a multi- 
class simultaneous mode and route choice UE using a hierarchical 
logit model, and solved it using a linear approximation type algorithm 
with step sizes based on MSA. The upper level problem was modeled as a 
mathematical program with binary decision variables and solved for 
near-optimal solutions using three evolutionary heuristics. It is crucial to 
notice that network configurations for AVs are sensitive to the level of 

Fig. 6. Optimal evolution of AV-ready subnetworks obtained by GA for Scenario 1.  

B. Madadi et al.                                                                                                                                                                                                                                 



Computers and Operations Research 136 (2021) 105483

13

AV demand, which is expected to evolve over time. Therefore, these 
configurations should evolve over time as well. This makes the multi- 
stage planning approach necessary, which adds tremendous 
complexity to the problem and calls for efficient solution methods. 
Furthermore, we used the real road network of the Amsterdam metro-
politan region to demonstrate the concept and compare the performance 
of the solutions. 

Two tailored evolutionary algorithms, namely EGS and EPS, were 
developed in this study and their performance was compared to a GA 
with a penalty function (to satisfy constraints) using the case study. Both 
EGS and EPS successfully satisfied the constraints in all scenarios while 
GA became less effective in meeting this requirement with larger num-
ber of stages. Regarding effectiveness, EGS showed a satisfactory per-
formance in all scenarios considered in this study. As for efficiency, EGS 
outperformed other algorithms in two of the scenarios considered in this 
study; however, it was outperformed by EPS in the third scenario. The 
advantage of GA over the proposed algorithms is that it is available in 
most optimization packages and can easily be applied to the problem 
with a rather standard penalty function to satisfy constraints. However, 
in this study, with the growth in problem size, a decrease in the effec-
tiveness of the GA was observed. 

It was shown that AV-ready subnetworks deliver significant benefits 

in terms of TTC. The extent of these benefits increased with higher AV 
penetration rates and more AV-ready roads. However, this was accom-
panied by higher travel distances for AVs, which might cause higher 
emissions. 

On the other hand, AVs are expected to be more fuel-efficient 
compared to CVs. Moreover, many vehicle manufacturers have started 
manufacturing or have announced plans to produce electric-powered 
AVs. This could offset the negative impacts of longer travel distances 
with AVs in terms of emissions. However, the extent to which the fuel- 
efficiency of AVs and the coupling of automation and electrification 
trends in car industry can counterbalance the environmental impacts of 
longer AV travel distances is uncertain. 

A possible approach to optimize this trade-off is via monetizing the 
emission impacts and including the costs in the objective function of the 
network design problem alongside travel cost and infrastructure in-
vestment cost. Another alternative would be considering emissions, or 
travel distance as a proxy for emissions, as another objective and 
formulating a multi-objective network design problem. 

Performance of the algorithms considered in this study was 
compared using a case study of the Amsterdam metropolitan region. 
Future research can focus on the application of these algorithms on other 
problem instances and settings for further investigation of the 

Fig. 7. Optimal evolution of AV-ready subnetworks obtained by EGS for Scenario 1.  

Fig. 8. Optimal evolution of AV-ready subnetworks obtained by EPS for Scenario 1.  

Table 9 
Sensitivity analysis (% changes in network performance criteria with model parameter variations).  

Category Parameter Variation OF TTC TTT TTD TAC 

Adjustment cost  (− 50%, − 50%,-50%) − 0.04%  0.00% +0.01% − 0.01% − 45.58% 
Cost ratios: (+50%,+50%,+50%) +0.04%  +0.01% 0.00% − 0.01% +43.20% 
(Motorway, Regional, Urban) (+50%, 0% , − 50%) +0.03%  +0.02% 0.00% − 0.01% +17.51%  

(+100%, 0%,-100%) +0.02%  − 0.01% − 0.01% +0.01% +28.75%  

Mode choice θ2  +50% 0.00%  +0.01% − 0.01% +0.00% − 2.58% 
θ2  − 50% +0.02%  +0.02% +0.04% − 0.03% +8.86% 
θ1  +50% +0.01%  +0.01% +0.02% − 0.02% +4.44% 
θ1  − 50% − 0.02%  − 0.02% − 0.06% +0.03% − 10.99%  

Diffusion model ρ1  +50% − 0.69%  − 0.83% − 0.03% +1.15% +4.59% 
ρ1  − 50% +1.36%  +2.02% +0.14% − 2.68% − 11.64% 
ρ2  +50% 0.00%  0.00% 0.00% 0.00% − 2.36% 
ρ2  − 50% +0.01%  +0.00% +0.01% − 0.01% +8.02%  
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performance of these algorithms. 
Macroscopic static traffic assignment models have been commonly 

used for the lower level of bi-level NDPs, even though dynamic traffic 
assignment models can capture the behavioral differences of CVs and 
AVs more accurately. This is due to the general complexity of NDPs and 
high computation times of dynamic traffic assignment models. With 
advances in technology, computers with higher computation power are 
becoming available. However, application of dynamic traffic assign-
ments for AD-NDP-T studies, which are computationally much more 
demanding compared to standard NDP studies, remains a challenge, 
especially for case studies of large-scale networks. 

An interesting extension of this study is combining other network 
configurations, such as dedicated lanes and roads for AVs with AV-ready 
subnetworks for mixed traffic and developing a unified modeling 
framework for combinations of network design concepts for AVs. So far, 
these concepts have been modeled separately with incompatible 
frameworks. This makes it difficult to study them simultaneously using 
one model. Nevertheless, their combination can be relevant, particularly 
for large regions with various road types and jurisdictions. 

The sensitivity analysis performed in this study indicated that the AV 
diffusion model parameters are the most sensitive parameters of the 
study. Therefore, fine-tuning these parameters can aid in accurate esti-
mation of AV market penetration rate over time. However, since highly 
automated vehicles are not available on the market yet, fine-tuning the 
diffusion model parameters or validating its output is not possible at the 
moment. Moreover, models that can estimate market penetration rate of 
AVs and are compatible with discrete choice models are still rare in the 
academic literature. Nonetheless, an ideal AV demand estimation model 
for NDPs with AVs should be less reliant on scale parameters. 

When a long planning horizon is considered, origin and destination 
choices might become relevant as well. This can add yet another layer of 
complexity to an already complex model. Nonetheless, assuming fixed 
OD pairs is a non-trivial simplification present in all NDP studies with a 
few exceptions. 

Finally, a more detailed multimodal traffic assignment model 
including active modes, a more detailed representation of public trans-
port, and combined modes such as park and ride can capture all avail-
able choices to the travelers and improve the accuracy of the model 
results. 
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