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Abstract: In a recent work described in Ref. [1], an angle-independent methodology was 
developed to use the multi-beam echo sounder backscatter (MBES) data for the seabed 
sediment classification. The method employs the backscatter data at a certain angle to obtain 
the number of sediment classes and to discriminate between them by applying the Bayes 
decision rule to multiple hypotheses. This method is adopted and applied to very shallow-
water applications. There are two issues when dealing with riverbed classification in shallow 
water. Shallow water depth results in a small beam-footprints and hence a small number of 
scatter pixels, which makes the classification results to be less discriminative. The significant 
bottom slopes will also affect the backscatter data and hence the classification results. We 
aim to handle these issues using the high resolution bathymetry and backscatter data. A 
methodology is developed to estimate the precise bottom slopes using the high resolution 
bathymetry data. Corrections are then applied to convert the arrival angle of the signal into 
the true incident angle and to compensate for the effect of the ensonified area. The high 
resolution backscatter data allows one to reduce the statistical fluctuations using an 
averaging procedure. The methodology will then be tested on a MBES data set from the river 
Waal, the Netherlands. The acoustic classification results are correlated with the mean grain 
sizes of the sediment obtained from core analysis of the grab samples. The dependence of 
acoustic backscatter classification on sediment physical properties is verified by observing a 
significant positive correlation coefficient of 0.70 between the classification results and 
sediment mean grain sizes of the grab samples. 
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1. INTRODUCTION  

Multi-beam echo sounder (MBES) systems produce high-resolution bathymetry and 
backscatter data throughout the survey area. The bathymetry data is used to locate 
topographical features on the seafloor and to make topographical maps (e.g. harbour charts), 
which are the task of many hydrographic surveying institutes. The MBES backscatter data 
can be used to obtain information about the sediment composition and physical properties of 
the riverbed and seafloor. Proper analysis and subsequent interpretation of the backscatter 
data is currently the task of many research institutes of acoustic remote sensing. The ultimate 
goal of acoustic classification methods is to remotely measure the physical properties of the 
surficial sediments such as porosity and mean grain size. 

We use a classification method, which was developed by [1] for the seabed sediment 
classification. The method, based on the Bayesian decision rule, was applied to MBES 
backscatter data for the classification in a test area in the North Sea with well-known 
lithology. In order to adopt the method for shallow water applications, two issues need to be 
addressed. 1) The lower water depths result in smaller beam footprints and hence higher 
variances for the backscatter data. The discriminating power between sediments will 
accordingly decrease. 2) There exist significant bottom slopes which affect the backscatter 
data and hence the classification results. We elaborate these issues in detail and improve the 
results of the classification method for a shallow-water environment. 

This contribution is organized as follows. In section 2, we briefly describe MBES 
classification method proposed by [1] and discuss our methodology to compute the bottom 
slopes using the precise bathymetry data and then to apply corrections to the backscatter data. 
We explain how to combine the classification results at different angles. In section 3, the 
acoustic classification results are presented for a recent data set carried out at Waal river. The 
classification results are then correlated with the mean grain size of grab samples. Section 4 
concludes this paper. 

2. MBES BACKSCATTER DATA 

2.1 Classification method 
 
In Ref. [1] a method was developed for seafloor sediment classification in deep water 

applications. The method fits a few Gaussian PDFs (normal distributions N ) to the histogram 
of the backscatter data ( BS ) at a given grazing angle (each Gaussian PDF then represents 
one acoustic class): 
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This is achieved by consecutively increasing the number of PDFs until a chi-square 
distributed test-statistic (on the residuals) becomes less than a certain critical value. In the 
preceding equation, iµ  and 2

iσ  are the mean and variance of the ith
ic PDF, respectively, and  

is the contribution of the individual Gaussian functions to the total PDF. For further 
description of the method and the steps involved we refer to Ref. [1].  

The main issue regarding the classification method is the normality assumption. This is 
valid for deep-water environments like seas and oceans where the beam footprint is large—it 
is proportional to depth—and hence many scatter pixels fall within the beam footprint. The 
central limit theorem states that the distribution of the averaged (over scatter pixels) 



 

backscatter data in the beam footprint tends to a normal distribution if the number of scatter 
pixels N is large enough. This holds obviously in deep water, while, in shallow water, N is 
not large enough to use the central limit theorem. Therefore, we may use the averaged 
backscatter strength over the small surface patches. In addition, bottom slopes can be 
significant in the river environment considered in this paper. Therefore, two intermediate 
steps are added to the approach in Ref. [1]. These steps are as follows: 
Step I (correcting and averaging procedure): In shallow water environments such as rivers, 
the number N of the scatter pixels inside the beam footprint is not large because N is 
proportional to the water depth. In order to restore the normality of the backscatter strength 
by means of the central limit theorem, one can use the average backscatter values over the 
small surface patches. Each patch consists of a few beams in the across-track direction and a 
few pings in the along-track direction. It also allows one to apply the slope corrections to the 
backscatter data, namely, correction due to the changes of the area of the signal footprint, and 
correction due to the true beam grazing angle. Therefore, for angle θ  the ‘averaged 
corrected’ (over patches) backscatter data will be used. Further explanation is given in 
Section 2.2. 
Step II (combination of different angles): The method in Ref. [1] takes observations from 
one single angle only. In practice, to use the full high-resolution mapping potential of the 
method, we consider multiple beams and individually perform the classification. This 
consequently allows one to obtain a continuous map over the whole area. The classification 
method at angles close to nadir (e.g. 20θ =  ), however, becomes less efficient as the 
backscatter values of different sediment types have values close to each other. One remedy, 
followed in this contribution, is to first use the backscatter data at a few low grazing angles 
(e.g. reference angles of 64,  62,  60θ =  ) and apply the classification method. This analysis 
gives the number r of the sediment types, the means iµ  , the variances 2

iσ  and the 
coefficients ic . The nonlinear curve fitting in Eq. (1) is based on the bounds on the variables. 
Based on this information the curve fitting procedure is then executed and extended to all 
other angles ranging from 60θ =  , 58θ =  , …, 20θ =  , but now i) for a fixed number r of 
the Gaussian PDFs, where r has been determined from the application of the classification 
method to the backscatter data of the low grazing reference angles (say 64,  62,  60θ =  ), ii) 
by obtaining a good initial guess for the mean parameters, i.e. 0

iµ ( 1,...,i r= ), of the 
backscatter data at the angle under study. This is achieved by using the mean values iµ  
( 1,...,i r= ) of the reference angles, and equally shifted by the difference between the mean 
backscatter values at the angle under study (of entire histogram) and the mean backscatter 
values at the reference angles, and iii) by using more strict bounds on the mean parameters iµ  
( 1,...,i r= ) for the classification of backscatter data at the angle under study (e.g. 

0 0.5l
i iµ µ= −  and 0 0.5u

i iµ µ= +  dB). The bounds considered are still wide enough to 
compensate for the angular dependence of the statistical distributions for the backscatter data. 
 
2.2 Local slope correction 
 

The significant local slopes of the riverbed will affect the classification results. To 
compensate for these effects one has to estimate the along- and across-track slopes. Multi-
beam echo-sounders (MBES) provide detailed and precise bathymetry information from 
which the local slopes (along- and across-track slopes) can be estimated using the least-
squares method. This allows one to improve the seabed classification results by applying the 
corrections to the backscatter data. The literature has paid little attention to the question of 



 

how such corrections should be taken into account. Two effects are discussed: 1) correction 
due to the changes in the signal footprint (ensonified area) to which the backscatter data 
refers, and 2) correction due to the true beam grazing angle.  Both corrections can be applied 
when the along- and across-track slopes of the seafloor (riverbed) are available.  
 
Estimation of slopes: 
A discrete surface patch ( , ),  1,...,i i iz f x y i m= =  includes a few angles around the central beam 
angle (e.g. with deviation of one degree), where the angular dependence of the statistical 
distribution of the backscatter data is negligible. Also, because the ping rate is high (40 Hz), 
we may in addition include a set of neighboring pings to make a surface patch and hence to 
be able to estimate the along- and across-track slopes. This results in a window (e.g. 0.5×0.5 
m) that contains, say, m=8×7=56 beams. The average backscatter data and the average depth 
in this small patch will be used. Using this strategy, to divide the area under survey into small 
surface patches and to use the average values, one can i) compute the along- and across-track 
slopes and correct for the true grazing angle and the backscatter data, ii) assure that the 
normality assumption is achieved by means of the central limit theorem. This is a prerequisite 
for using the classification method, and iii) decrease the variance and hence increase the 
discriminating power between sediments. This makes the classification method more 
discriminative. 

A bi-quadratic function consisting of six unknown coefficients is used to model (estimate) 
the surface patch: 2 2

0 1 2 3 4 5( , )z f x y a a x a y a x a y a xy= = + + + + + . The depth measurements iz  at 
the discrete points of the surface patch allow one to compute the unknown coefficients 

0 1 2 3 4 5[ , , , , , ]a a a a a a  using the least-squares method. And a procedure called datasnooping can 
be used to test for the presence of outliers in the bathymetry data ([2, 3]). This subsequently 
allows one to obtain the along-track (x) and across-track (y) bottom slopes xa  and ya  (take 
partial derivatives with respect to x and y). The slope angles xα  and yα  that the tangent plane 
makes with the positive directions of x and y axes can accordingly be obtained. For more 
information we refer to Ref. [4]. 
 
Grazing angle and backscatter corrections: 
Suppose that the local surface is estimated as ˆˆ ( , )z f x y= . The angle between the normal 
vector to this surface patch and the nominal receiving-beam direction (based on the flat 
surface) is the true incident angle tθ , which is a function of both xα  and yα . A general 
formulation can be given for tθ  as a function of ϕ  (the nominal grazing angle), xα  and yα .  
In a special case when 0xα =  it follows that 90 ( )t yθ ϕ α= − + . 

Another correction due to the local slopes xa  and ya is the fact that the signal footprint 
(ensonified area) will change if the surface is not flat. For a sloping surface the signal 
footprint is obtained as 
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x
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=

−
           (2) 

where xRΩ  is the along-track resolution, c is the sound speed in water, and T is the 
transmitted pulse length. The correction for the backscatter strength (in dB) can accordingly 
be obtained (see Ref. [4] for further information). 

3. CLASSIFICATION RESULTS AND DISCUSSIONS 



 

 
The Waal river is a major river that serves as the main waterway connecting the Rotterdam 

harbor and Germany. For keeping the Waal river suitable for commercial activities bottom 
stabilizing measures are planned to counteract the subsidence and to keep the bottom more 
stable. To monitor the suppletion effectiveness at the river Waal, multi-beam echo sounder 
(MBES) bathymetry and backscatter measurements accompanied with extensive sediment 
grabbing were carried out in May 2008. The MBES used for the measurements is an 
EM3002, typically working at a frequency of 300 kHz for shallow water; the pulse length is 
150 μs; the maximum number of beams per ping is 254; and the maximum ping rate is 40 Hz. 
The bathymetry of this study area is shown in Fig. 1. Except for the flat area (sediment 
suppletion to prevent deformation in the outer part of the bend) in the middle of the area, the 
river exhibits significant bottom slopes. This section presents the results of the acoustic 
sediment classification based on the methodology developed by [1], which was modified in 
section 2 for shallow water applications. To assess the MBES classification results a 
comparison is made with the analysis of the grab samples. 

We apply the classification method of section 2 to the averaged backscatter strength (over 
the small surface patches). The surface patches include a few angles around the central beam 
angle (with deviation of 1  as 1 1θ θ θ− < < +  ). For such close angles, the angular 
dependence of the backscatter distribution can be ignored. Also a few consecutive pings (e.g. 
7 pings) have been included, because the ping rate (40 Hz) is high in shallow water. This 
results in a small surface patch that contains, say, 56 beams. The precise bathymetry data 
over the patches allows correcting the backscatter data for the bottom slope effects. The 
‘averaged corrected’ (over patches) backscatter data will then be used. 

The number of seafloor types is unknown and needs to be determined. This is achieved by 
increasing the number of Gaussian functions to well describe the histogram of the averaged 
backscatter strength. A plot (not presented here) of a chi-square distributed test statistic 
versus the number r of the Gaussian PDFs shows that this value is 3r =  (the ‘real’ number of 
riverbed types). Figure 2 shows the histogram and its best Gaussian fit for the averaged 
backscatter values at 60θ °= . Three Gaussian PDFs, indicating three acoustic classes, are 
identified. The contribution of the PDFs is roughly 5%, 30%, and 65%. It is worthwhile 
mentioning that the classification method is independent of the absolute values of the 
backscatter data. In this respect, one may for instance think of the angular dependence of the 
backscatter data, or the intrinsic difference between the backscatter data of the left and right 

 
Fig. 1 Bathymetry map of river Waal, the Netherlands; Km 876–886 (close to Nijmegen). 



 

transducers due to their calibration effects. 
In order to explore the full high-resolution mapping potential of the method, one may 

consider using multiple beams instead of only one (section 2, step II). The ultimate goal of 
the acoustic classification method is to obtain a continuous map over the whole region, as for 
the bathymetry map. The classification map obtained from the averaged backscatter data 
using beam angles at 64,  62,..., 20θ =   is shown in Fig. 3, where the three sediment classes 
are presented by the colours red, yellow, and green.  The green represents low values, the 
yellow represents intermediate values, and the red represents high values of the backscatter 
data. At a typical angle 60θ =  , the acceptance regions are as follows: [-∞ to -18.5] dB (class 
I), [-18.5 to -15] dB (class II), and [-15 to +∞ ] dB (class III).  

The ultimate goal of MBES data analysis is to transform the backscatter classification 
results into estimates of seafloor sediment properties such as mean grain size. The goal of the 
sediment grab sampling and grain-size analysis is to evaluate the potential correlation 
between the mean grain size and the results from acoustic classification. 28 grab samples 
taken at the central axis of the river and at both sides (70 m apart from the central path) were 
collected and analyzed for grain size distribution. The grab samples were washed, dried, and 
sieved through a series of mesh sizes ranging from 30 mm to 0.1 mm. The sieve sizes were 
converted into φ (phi) units using the equation φ =-log2

φ
 d, where d is diameter of grain in 

mm. Note that fine sediments have large  values. Based on the comparison with the 
acoustic classification results it can be concluded that the areas of high backscatter values 
correspond to gravel (class III) and lower backscatter values correspond to sand (class I). 

We now make a comparison between the classification results and the mean grain size of 
the samples. Our strategy is to use the results of core analysis for comparison and to perform 
a correlation analysis afterward. The mean grain sizes were sorted from fine to coarse 
sediment. Considering the grab samples as an unbiased representative for the whole area, the 
percentages of 5%, 30%, and 65% were then applied to the 28 samples. This corresponds to 
1, 8, and 19 samples, respectively for sand, sandy gravel, and gravel areas. The classification 
results show good overall agreement with the ground truth information obtained from the 

 
Fig 2. Histogram (light bar) of averaged (over small surface patches) backscatter data 
corrected for local slopes, its three Gaussians (solid line), and its best fit (dashed line) at 
angle 60θ =   over the whole area; left transducer (left); right transducer (right); number of 
Gaussian PDFs 3r = . 
 



 

core analysis (Fig 3 zoom-in part). 
Most of the differences belong to the areas where the grab samples are in the boundary 

region of two classes. The dependence of acoustic backscatter techniques on sediment 
physical properties is examined using the Pearson correlation between mean grain size of the 
samples and the classification results. Larger grain sizes are expected to produce stronger 
backscatter for sandy and gravelly sediment. The Pearson correlation coefficient between the 
mean grain size and the results of the classification is 0.70. It indicates a high positive 
correlation (it is negatively correlated with φ  values). 

Due to the river currents interaction with bottom sediments, the rivers are dynamic 
environments and hence sediment distribution is highly heterogeneous. Ground truthing our 
classification results from core analysis of the sediments is prone to a few sources of 
uncertainty. We can at least mention: i) positioning error of the grab samples which is 
considered to be about 4-5 m, ii) the complexity inherent in ascertaining whether a single 
sample is representative of a larger region. This originates from the heterogeneity of the river 
sediment distribution, iii) a finite number of grab samples when assigning sediment types to 
acoustic classes. For example, the percentage of the class I (green) is 5% which leads to just 
one sample (if any) from 28 samples, iv) large standard deviation of backscatter data due to 
the shallowness of water, which leads to a small beam-footprint. This has been accounted for, 
to a large extent, due to the averaging procedure, and v) considering other physical properties 
of sediments rather than just the mean grain size. 

4. SUMMARY AND CONCLUSIONS 

Riverbed sediment classification using multi-beam echo-sounders (MBES) backscatter data is 
a promising approach. This contribution presented the methodology, developed in Ref. [1], to 
use the MBES backscatter data for the sediment classification in shallow water applications. 
The method employs the backscatter data to obtain the number of acoustic classes and to 
discriminate between them by applying the Bayes decision rule for multiple hypotheses. This 

 
Fig 3. Acoustic classification map of Waal river (Km 876–886) obtained from backscatter 
data at θ = 64, 62, ..., 20◦. For each angle separate classification has been applied and 
results put in a single map. The frames indicate a zoom-in of classification results for 
areas where grab samples have been taken. 
 



 

is achieved by fitting a series of Gaussian PDFs to the backscatter strength histogram. Since 
the classification is done per beam, the method is considered to be independent of the 
possible incorrect calibration effects and the angular behaviour of the backscatter data. 

Shallow water depth results in a small beam-footprints and hence a small number of 
scatter pixels per beam. That makes the backscatter data highly variable and consequently the 
classification method becomes less efficient. In order to increase the discriminating power of 
the classification results we used an averaging procedure over small surface patches (0.5×0.5 
m). The high resolution bathymetry data provides precise bottom slope corrections to convert 
the arrival angle of the signal into the true incident angle, and the high resolution backscatter 
data allows one to reduce the statistical fluctuation in backscatter strength. Both make the 
classification method more efficient. 

The performance of the method was tested by using the backscatter data acquired in the 
river Waal, the Netherlands (Fig. 3). For keeping the Dutch rivers suitable for commercial 
activities bottom stabilizing measures are planned to counteract the subsidence. To monitor 
the suppletion effectiveness, MBES measurements were used to apply the classification 
method. Extensive sediment grab samples analyzed for the grain-size distribution were used 
to evaluate the performance of the classification results. 

We performed a correlation analysis. The dependence of acoustic backscatter 
classification on sediment physical properties was verified by obtaining a Pearson correlation 
coefficient of 0.70 between the classification results and sediment mean grain-size. Because 
ground truthing the classification results from core analysis of the sediments is prone to a few 
sources of uncertainty, further analysis of the correlation coefficient is required. We can in 
particular think of a disattenuated correlation coefficient.  
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