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Abstract
The use of Transformers outside the realm of nat-
ural language processing is becoming more and
more prevalent. Already in the classification of
data sets such as CIFAR-100 it has shown to be
able to perform just as well as the much more es-
tablished Convolutional Neural Network. This pa-
per investigates the possible out-of-distribution ca-
pabilities of the multi-head attention mechanism,
through the classification of the MNIST data set
with added backgrounds. Additionally, various reg-
ularization techniques are applied to increase the
generalization capabilities even more. Regulariza-
tion is shown to be an important tool to improve
out-of-distribution accuracy, though it might imply
some trade offs for in-distribution settings.

1 Introduction
Image classification is a hugely important subdomain of
Computer Vision which has given rise to many applications
previously considered impossible, ranging from the detection
of diseases in medical images to self-driving cars.

Great success in this field has already been achieved
with highly structured models such as Convolutional Neural
Networks (CNNs) [LeCun et al., 1989]. However, these
models are usually trained and tested on images from the
same distribution. Accuracy drops rapidly when the test
images have the same type of information as the training
data but with systematic modifications, known as distribution
shift. We say that these images are out-of-distribution.

The ability to recognise images on which a system has
not been trained is obviously essential for practical applica-
tions. A potential solution to this generalisation problem is
the introduction of Transformers [Vaswani et al., 2017]. They
have revolutionised the field of natural language processing
and show great promise for image classification.

Of particular interest is the multi-head attention (MHA)
mechanism found in the Transformer. The use of the MHA
in image classification is however still limited. In [Doso-
vitskiy et al., 2020] the authors utilize the encoder from the
Transformer architecture, that includes the MHA, achieving
excellent accuracy in large datasets such as ImageNet. The
images used for testing were however still in-distribution, so
the question of the degree of generalization achieved is still
unanswered.

The contributions of this paper to this line of research
are the following:

• Investigate the MHA module, rather than the full Trans-
former encoder, as an image classification mechanism.

• Investigate the effects of regularization schemes on
CNNs and MHAs under distribution shifts.

To establish a baseline, the accuracy of basic MHA and
CNN on out-of-distribution (OOD) images is measured. Then

a variety of regularization schemes, such as weight normal-
ization and dropout [Srivastava et al., 2014], are added to both
architectures to determine their effect on accuracy.

2 Background: Convolutional Neural
Network

The primary operation utilized in Convolutional Neural Net-
works is the mathematical operation “convolution”. The ar-
guments of this operation are an input (the function x below)
and a kernel (the function w below). The output is usually
referred to as a feature map. As defined in the book “Deep
Learning” [Goodfellow et al., 2016] the equation below is the
convolution operation.

s(t) =

∫
x(a)w(t− a) da (1)

This operation represents a weighted average of the values
of the function x, giving a more smoothed estimate of the
results of x. Though the weighting function w could be re-
placed with any function, this definition is the most common
for machine learning contexts. Additionally, the discrete case
is more common, where the kernel and input are tensors, so
multidimensional arrays.

s(t) = (x ∗ w)(t) =
∞∑

a=−∞
x(a)w(t− a) (2)

The asterisk is the symbol used to denote the convolu-
tion between two functions. The convolution will often be
utilized with multiple axes at the same time, for example
a 2-dimensional image will require a 2-dimensional kernel.
The equation below allows for this and is called “cross-
correlation”, a term that in machine learning contexts is often
interchanged with the term convolution.

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(m,n)K(i−m, j − n)

(3)
In the context of a 2-D image, a convolution is the act of

placing the kernel in the top left region of the image, comput-
ing the weighted sum and then shifting the kernel to the right.
This operation is done row by row until the feature map is
completed.

Multiple feature maps can be computed in parallel to be
able to detect different features with each kernel.

A traditional layer of a CNN can be split into 3 sublay-
ers. The first is a series of convolutions performed in parallel
to produce a set of linear activations. The second is a non-
linear activation such as a rectified linear unit (ReLU), often
referred to as the detector stage. Thirdly, a pooling function
which is defined in section 2.3. This building block can then
be repeated or combined freely with other functions and lay-
ers to create deep learning models.

CNNs have three important properties which will be ex-
plained in the following sections.



2.1 Sparse interactions
When working on images, the input is usually composed by
many thousands of pixels. Feeding it to a traditional neural
network would require a model with just as many parame-
ters. However, meaningful information is likely found in just
a small subset of the image, so most of the weights would be
redundant.

The use of just a few kernels, each one much smaller than
the input image, greatly reduces the amount of parameters
needed by the CNN.

One might suppose that if not all nodes between layers are
fully connected then information could be lost. Fortunately,
when used in deep networks with many layers the nodes will
indirectly interact, allowing for both efficiency and expres-
siveness.

2.2 Parameter Sharing and Equivariant
representations

The use of kernels is a form of parameter sharing, as a sin-
gle set of weights are applied to every single input. This not
only drastically reduces the total number of model parame-
ters, as already mentioned, but also causes the layers to have
equivariance to translation.

Mathematically a function f is equivariant to a function g
if f(g(x)) = g(f(x)). In the case of images g could, for
example, shift all images to the right. This would confuse a
traditional neural network but not a CNN. A particular fea-
ture, for example a straight line, can be at any location in the
image and the network will still be able to recognise it.

2.3 Multiple Layers and Pooling
A pooling layer replaces areas of the input with a statistical
summary. A classic example is that of max-pooling [Zhou
and Chellappa, 1988], where an area is summarized by its
maximum value.

The goal is to make the model invariant to meaningless
variations or noise in the input as well as to provide local
translation invariance, as we are usually not interested in the
precise location of features but in their presence and approx-
imate position.

Combining multiple layers of convolutions and pooling
creates a recognition hierarchy where higher levels detect in-
creasingly more complex and global features [LeCun et al.,
1989].

3 Background: Transformer
Originally introduced in [Vaswani et al., 2017], the trans-
former architecture is a complex model following the encoder
decoder pattern. This model has had great success in the field
of natural language processing (NLP). The most prevalent ex-
ample of the Transformer architecture applied to image clas-
sification is in [Dosovitskiy et al., 2020]. In this paper only
the encoder component is used with an additional Multilayer
Perceptron (MLP) layer for final classification.

3.1 Multi-Head Attention
The Multi-Head Attention (MHA) takes as input a sequence
of elements, often referred to as tokens and returns the tokens

Figure 1: Encoder architecture used in [Dosovitskiy et al., 2020]

modified to take in account the similarity between each token
and every other token in the sequence. In NLP, this is equiva-
lent to contextualising the meaning of a word with respect to
the surrounding sentence.

To do this the attention mechanism requires a key, query
and value. Denoted as K, Q and V . In the case of self-
attention all three of these will be created from the same input
tensor.

The input is defined as, I = [x1 . . . xn]
T ∈ Rn×d,

where n is the length of the sequence, d is the number of
features per token and xi is a column vector representing a
token of the sequence.

The K, Q and V are created by projecting I using learnable
weights, Wk,Wq,Wv ∈ Rd×dk . Where dk is the embedding
dimension. To calculate the similarity between pairwise to-
kens the dot product is used between K and Q, to form an
attention score matrix, QKT ∈ Rn×n. This matrix contains
the pairwise attention values each token should have towards
other tokens. These values are multiplied with V to allows
the tokens to attend to various parts of the sequence. Addi-
tionally, 2 normalization techniques are used on the attention
values in the form of a division by

√
dk and a row wise soft-

max function. The full attention formula can be found below.

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (4)

The computation above produces an output matrix
O ∈ Rn×dk . This output is also called a head and can be
computed multiple times in parallel {O1 . . . OH} before
being concatenated and passed through a final linear layer to
produce the final result.

There have also been attempts to describe the relation-
ship between self-attention and Convolutional layers. “The
class of functions expressed by a layer of self-attention
encloses all convolutional filters”, [Cordonnier et al., 2019].
The authors prove that given enough heads the self-attention
layer is at least as expressive as any Convolutional layer. To



be noted however that this does not mean that self-attention
is actually acting like a CNN, simply that it could.

3.2 Positional Encoding
Unlike Recurrent Neural Networks inputs are passed as a bag
of tokens to the self-attention mechanism. In the setting of
NLP this can be problematic as the meaning of sentences de-
pends greatly on the order of words.

In [Vaswani et al., 2017] a sinusoidal positional encoding
is utilized. It is also possible to use a learned positional en-
coding as done in [Dosovitskiy et al., 2020]. This consists of
a set of learnable parameters which are summed to the input.

The two aforementioned papers note that positional encod-
ings improve performance but the type of encoding (either
learned or fixed) seems to have no significant impact on final
accuracy.

4 Background: Regularization
As defined in [Goodfellow et al., 2016] regularization is any
modification made to a learning algorithm to reduce its gen-
eralization error but not its training error. This can be done in
a number of ways, from adding parameter norm penalties to
the objective function, to dropping neurons or even modify-
ing the input.

4.1 Parameter Norm Penalties
Parameter Norm Penalties aim at reducing the model com-
plexity by restricting or modifying the values of its parame-
ters. This is done by adding a term to the objective function
J of the model.

Ĵ(θ,X, y) = J(θ,X, y) + αΩ(θ) (5)

With Ĵ as the regularized version of the objective function.
The α term is a hyperparameter to regulate the impact of the
regularization, values can range between [0,∞).

One of the most common penalties chosen is L2, also
known as weight decay. The regularization term is half the
sum of squared values of the weights, Ω(θ) = 1

2 ||w||
2. The

goal is to drive the values of the weights closer to 0.

Disagreement regularization terms [Li et al., 2018] have also
been defined to improve the accuracy of the MHA. The goal
of the MHA is to have each head attend to different parts
of the input. There is however no part of the model which
ensures this diversity in the heads.

The authors of [Li et al., 2018] attempt to solve this by
increasing the cosine distance between the output heads. In
the contexts of matrices this can be defined as the dot prod-
uct between two matrices, normalized by the product of their
norms. This similarity is computed pairwise over all the
heads and then subtracted from the objective function so that
the average distance between heads is increased. H is the
number of output heads.

Doutput = − 1

H2

H∑
i=1

H∑
j=1

OiO
T
j

||Oi|| ||Oj ||
(6)

4.2 Dropout

Dropout [Srivastava et al., 2014] is the process of removing,
for every training round, some hidden units of the neural net-
work with probability p. In practice this means setting ran-
dom values of the output tensor of a layer to 0.

The motivation behind this is that it allows the model to
test a great range of different architectures without additional
computational costs. In addition it has shown to reduce co-
adaptation of the neurons [Hinton et al., 2012], as the neurons
cannot rely on the other neurons being there.

Similar techniques can be used on the input, for example
with MHAs it could be possible to drop certain tokens ran-
domly.

4.3 Layer Normalization

In layer normalization [Ba et al., 2016] the outputs of the pre-
vious layer are normalized using their E[x] and V ar[x] as
shown in the equation below.

y =
x− E[x]√
V ar[x] + ϵ

∗ γ + β (7)

The γ and β are learned parameters which are there to re-
place the lost expressiveness of the model during regulariza-
tion. It may seem counter intuitive to allow the model to po-
tentially return to the same values as before regularization.
However, as explained in [Goodfellow et al., 2016], the mean
of this new parametrization is determined completely by β
and not by complicated interactions occurring in previous lay-
ers. This makes the parametrization much easier to learn with
gradient descent.

5 Methodology
The research question addressed by this paper can be an-
swered more easily by dividing it into smaller hypotheses.

Hypothesis 1: “An unregularized MHA performs better
than an unregularized CNN under distribution shift.”

The self-attention mechanism has proven successful in
other domains and has interesting properties including long
range dependencies and low inductive priors which should
help it perform well in OOD tasks.

Measuring the baseline performance of the two architec-
tures is also required to assess the effect of the regularization
schemes.

Hypothesis 2: “Regularization schemes, with tuned hy-
perparameters, improve the accuracy of the CNN and MHA
architectures under distribution shift.”

Regularization schemes are well established techniques
which are known to improve model performance for in-
distribution tasks. These improvements should be transfer-
able to the OOD scenario.

Hypothesis 3: “A regularized MHA has a better accuracy
than a regularized CNN under distribution shift.”

The greater variety of regularization techniques available
for MHA should give it an edge over the CNN.



5.1 Data Set
To test the accuracy of the models in in-distribution set-
tings against out-of-distribution two data sets are necessary,
MNIST and CIFAR-10. Both contain thousands of images
and are split into a training set and a test set. MNIST con-
tains black and white hand drawn digits, CIFAR-10 coloured
images of ten different classes (airplane, automobile, bird,
etc...). These data sets are combined by superimposing (tech-
nically, subtracting) a number from MNIST to an image from
CIFAR-10 so that visually the number appears as the fore-
ground and the image as the background.

The models were trained on a varying number of back-
ground images, respectively [1, 2, 4, 8, 16, 32, 64] images, for
each digit class. This was done to observe how the models
handle variations in the correlation between the foreground
and background. In the case in which there are few differ-
ent background images it is likely that the model will simply
focus on the background as it has more characteristics com-
pared to the visually simpler digits. If we move onto the other
extreme of 64 background images then there will be almost
no correlation between the foreground and background mak-
ing it more likely for the model to concentrate on the fore-
ground. This 64 background case will be considered similar
to an in-distribution case during the experimental phase.

During training, both foreground and background come
from the training sets of the MNIST and CIFAR-10 data sets.
The validation set foregrounds come from the MNIST test set
and the backgrounds from the CIFAR-10 training set, this is
used to calculate in-distribution accuracy. The test set fore-
grounds and backgrounds come from the respective test sets,
this is used to calculate the out-of-distribution accuracy.

Figure 2: Representation of how the data sets were combined.

5.2 Architecture
To understand the out-of-distribution capabilities of the MHA
module, not to be confused with the complete transformer, at-
tempts have been made to replicate the architecture of a tradi-
tional CNN while replacing only the convolutional layer with
the MHA.

The first task is to simulate the moving kernel of the CNN
moving over the input image with a stride of one. This was
done by utilizing the PyTorch unfold method [Paszke et al.,
2019].

The architecture is then composed of a layer of MHA, a
max pool, then again the same 2 layers followed by an MLP
head for classification.

The positional encoding is not part of the baseline architec-
ture but has been added to clarify where it is positioned when
the corresponding component is tested.

Figure 3: Overview of model architectures. The illustration is in-
spired by [Vaswani et al., 2017]

6 Experimental Setup
To run the experiments, the two architectures have been im-
plemented using the PyTorch framework.

Models were trained over 10 epochs of the data, using
the Adam optimizer, batch size of 128, fixed learning rate
of 0.001 and cross entropy as the loss function. To reliably
calculate the mean and standard deviation of the accuracy of
each experimental setup they where each run 10 times. If the
standard deviations of different experiments do not overlap
we can be confident that there is a statistically significant dif-
ference between their accuracy. Training, in-distribution and
out-of-distribution (OOD) accuracies were calculated but in
the plots below often only the OOD case is show as that is the
value of interest. The x axis indicates the number of back-
grounds used.

Initial experiments were run with the baseline CNN and
MHA architectures found in figure 3. Once these baselines
were established the architectures where run with regulariza-
tion techniques applied one at a time to observe their effects.

In the CNN the following techniques were tried:

• Normalization layers before and after each convolu-
tional layer.

• Dropout layers after each convolutional layer.

• L2 norm applied to the loss function.

In the MHA the following techniques were tried:

• Normalization layers after each MHA layer. The layer
was also tried before each layer, inspired by the work of
[Xiong et al., 2020].

• Dropout layers after each MHA layer.

• L2 norm applied to the loss function.

• Learned positional encoding.

• Disagreement regularization, see equation 6.



Hyperparameter tuning was conducted on dropout (proba-
bility of dropout p) and L2 norms (α) to verify hypotheses 2
and 3. The values tried can be found in the graphs of section
7.

During hyperparameter training it is important to have a
validation set to find the best hyperparameter not just for the
test set used but test sets in general. If the test set were used
for hyperparameter tuning then overfitting would likely oc-
cur on the test set. The in-distribution data set is used as a
validation set.

However during the experiments it became clear that the
ideal values for the in-distribution set do not achieve even
similar performance in the out-of-distribution settings.

A possible explanation is that the background images have
already been seen and therefore can not be considered OOD.
Meaning that it makes sense for the best hyperparameters for
in-distribution to not be the best for the OOD data set.

Therefore in the results section a greater focus is placed on
the hyperparameters and regularization schemes which work
best for the out-of-distribution data set.

The regularization techniques which showed the best per-
formance in isolation were also tried together on their respec-
tive architecture.

7 Results
In this section, we test our hypotheses against the experimen-
tal results. Particular attention is paid to the cases of 4, 8 and
16 backgrounds because they are considered the most diffi-
cult for the models to understand correctly. Furthermore the
64 background case can be considered a representation of in-
distribution performance, as explained in section 5.1.

7.1 Unregularized Architectures
Figure 4 below compares the two unregularized, baseline, ar-
chitectures. Accuracies are similar for all numbers of back-
ground images, except for the extreme case of 64 back-
grounds where the CNN outperforms the MHA by a signif-
icant margin. MHA outperforms the CNN on the 8 back-
grounds case but there is a strong overlap of the standard de-
viations so no statistically significant difference can be ob-
served. This disproves Hypothesis 1.

Figure 4: Performance of baseline CNN and MHA

7.2 Regularized CNN
Normalization Figure 8 in the Appendix shows that layer
normalization before convolution has little effect on improv-

ing OOD accuracy, only for 16 background images is the ac-
curacy improved, however not by a significant margin. For
all other numbers of backgrounds, performance is decreased.

Layer normalization after the convolution is even worse,
reducing accuracy with respect to the baseline architecture
for all values of backgrounds images.

Dropout
As shown in Figure 9, the optimal dropout hyperparameter

determined using the validation set is p = 0.3.
However when observing the test set in figure 10, p = 0.7

greatly outperforms the other values and 0.3 has the worse
performance.

L2 Norm
As shown in figure 12, L2 has no impact on performance

for most values of its α hyperparameter. In most cases accu-
racy improves only modestly and with high amounts of over-
lap with respect to the mean of the baseline architecture.

The only α value with a statistically significant difference
is 0.01. This value achieves a strong improvement with both
8 and 16 backgrounds, with no overlap present. The trade-
off with for this improvement is a drop in accuracy for 64
backgrounds.

Combined Regularization
By combining the best techniques for CNNs which were

dropout (p = 0.7) and L2 (α = 0.01) accuracy was signifi-
cantly improved for 16 backgrounds but not for other number
of backgrounds.

Overall, the techniques used in isolation had higher accu-
racies than the combined version, see figure 22.

Summary of CNN Regularization
Figure 5 shows the best CNN regularization schemes. Both

dropout and L2, with appropriate hyperparameters, provide
strong improvements compared to the baseline architecture,
with dropout performing slightly better than normalization
with 8 background but no clear winner present. An unexpect-
edly high value of dropout (p = 0.7) is found to be required
for the model to not overfit on the training set, generalize bet-
ter and therefore provide higher accuracy in OOD settings.

The pattern of regularization helping in OOD but not in
in-distribution can be noted for both dropout and normaliza-
tion. This reinforces the idea stated in [Torralba and Efros,
2011] that in-distribution accuracy is no guarantee of out-of-
distribution accuracy.

These results are strong evidence for Hypothesis 2, with
regards to the CNN. Regularization does seem to improve the
accuracy of the model under distribution shift, with the trade
off in high background cases.

Figure 5: Overview of Regularization schemes on CNNs



7.3 Regularized MHA
Normalization

Figure 13 shows that neither placing the normalization be-
fore or after the MHA layer provides significant improve-
ments for a number of background images under 32.

However, unlike the regularization for the CNN, both nor-
malization techniques improve the accuracy of the model in
high background cases.

Dropout
Compared to the CNN architecture, dropout for MHAs has

less promising results in OOD settings. As shown in figure
15 no matter the value of the dropout, accuracy is similar up
to 8 backgrounds and then falls greatly for higher numbers of
background images.

L2 Norm
Similarly to dropout, L2 has limited effect on the accuracy

of the model. For all values tried there was overlap of the
standard distributions for all number of backgrounds, with
the best performing value being α = 0.1, which improved
both 8 and 16 images though not by large margins.

It should be noted that unlike dropout, performance for
high backgrounds is not reduced. Accuracies vary only by
a few points.

Positional Encoding
Positional encoding, figure 19, improves accuracy for 2,

4, 8 and 16 backgrounds but with overlaps in the standard
deviations. Almost no difference is made for 64 backgrounds.

The unfold operation creates overlapping patches, this
could explain the poor performance of the absolute positional
encoding tested.

Further research might look at different kinds of positional
encodings. For example [Shaw et al., 2018] utilizes a relative
positional encoding.

Disagreement Regularization
Disagreement Regualization, equation 6, had no significant

impact on the accuracy of the model.
Tests conducted by another team member of the Research

Project concluded that the number of heads utilized had no
impact on performance. Seeing as the penalty norm used
has the goal of making each head as different as possible this
could explain why it does not impact performance almost at
all.

Combined Regularization
An MHA with positional encoding, post layer normaliza-

tion and L2 (α = 0.1) did result in an architecture with sig-
nificant accuracy improvement for 16 backgrounds and barely
any overlap in standard deviation for 8 backgrounds. Accu-
racy does drop however for low backgrounds and 64 back-
grounds.

This architecture resembles the traditional transformer
much more than the architectures tested in the previous exper-
iments. This result suggests that the MHA module in isola-
tion is less effective than a Convolutional layer, however with
the addition of other modules can become very effective.

Summary of MHA Regularization
The full comparison of the best regularization techniques

can be found in figure 6, disagreement regularization and po-
sitional encoding have been removed to reduce clutter.

No single technique in isolation was able to improve accu-
racy in a statistically significant way. Only when combined,
did regularization improve accuracy meaningfully.

Therefore Hypothesis 2 for MHAs is likely to be true for
combined regularization techniques, however more research
needs to be done to determine which combinations provide
the best results.

Figure 6: Overview of Regularization schemes on MHAs

7.4 Comparison between Regularized
Architectures

The best regularization scheme for CNNs was the L2 norm
and for MHA it was the combined architecture described in
section 7.3. Both schemes improve the architectures signifi-
cantly above their baseline counterparts, figure 4.

In the case of 64 backgrounds the baseline CNN still
has the the highest performance, followed by the combined
MHA.

Neither of the two regularized architectures shows consis-
tently higher results than the other. The MHA performs better
for 16 backgrounds but worse for 8.

Therefore Hypothesis 3 cannot be confirmed or rejected.
More work on different types of regularizations and their
combinations would be required.

Figure 7: Overview of Best Regularization scheme for both archi-
tectures.

8 Related Works
The majority of work done in supervised learning is in set-
tings where training and testing data are considered to be
independent and identically distributed (i.i.d), meaning that
they are all taken from the same distribution. This would not
be an issue if the distributions of commonly used training data
sets faithfully reflected the distribution of real world data.



[Torralba and Efros, 2011] shows that data sets have,
on the contrary, strong in-build biases. A support vector
machine (SVM) trained to identify which of the twelve most
popular data sets in computer vision an image belongs to,
achieves a significantly more than random accuracy. The
same paper also shows the lack of cross-dataset general-
ization, the average accuracy of models drops considerably
when tested on a separate data set containing images of the
same class. They also note that researchers concentrate too
much on improving benchmark scores on specific data sets
and forget the final objective of applying these models to the
real world.

Some studies have tried to tackle this issue. [Dollar
et al., 2010] uses a data set orders of magnitude greater than
usual of images from surveillance systems to avoid selection
bias.

[Hendrycks et al., 2020] creates 4 new data sets with
systematic distribution shifts on which researchers can test
the OOD robustness of their models. ImageNet-9, [Xiao
et al., 2020] is a data set that uses images with different
amounts of background and foreground signal. This also
alleviates the tendency of some models to focus on the
background rather than the foreground of images, evidence
of this behaviour is demonstrated in [Rosenfeld et al., 2018].

The domain of computer vision has long been domi-
nated by the CNN [LeCun et al., 1989], not surprising
due the their impressive results [Krizhevsky et al., 2012].
However, CNNs have several limitations which have come
to light in OOD settings. [Geirhos et al., 2018] showed
that CNNs trained on ImageNet had a strong bias towards
recognizing textures instead of shapes. This contradicts
the long standing hypothesis that CNNs combine low-level
features into increasingly complex shapes. They managed to
mitigate this issue by using a stylized version of ImageNet.

[Hendrycks et al., 2020] showed the CNN’s difficulties
in dealing with orientation, zoom and scale in test data.
Benchmarks on corruption robustness and surface variation
robustness have also been conducted by [Hendrycks and
Dietterich, 2019].

A possible solution to this issues could be the Trans-
former architecture. Transformers first appear in 2017
with [Vaswani et al., 2017], and they have since reached
impressive performance in tasks such as machine translation
[Ott et al., 2018]. Much of their success has been due to
their scalability and parallelisation capabilities leading to
high performing models such as BERT [Devlin et al., 2018]
and GPT [Radford et al., 2018] which have millions of
parameters.

Their potential in computer vision became quickly clear
with [Dosovitskiy et al., 2020] and [Touvron et al., 2020].
The fact that Transformers have weaker biases towards tex-
tures and stronger biases for shapes and structures has already
been shown in [Zhang et al., 2021]. They have also shown
great performance when dealing with occlusion and informa-
tion loss [Naseer et al., ]. This might be due to their ability
to learn global relationships within the input [Ramachandran

et al., 2019].
This body of research has inspired the idea examined in

this paper of replacing the CNN’s convolutional layer with
self-attention. Other examples of augmented CNNs can be
found in various papers including [Bello et al., 2019] where
they combine convolution and self-attention.

Regularization techniques have long been used in CNNs to
improve performance and generalization capabilities. The
most common examples are those of L2 norm, normalization
and dropout [Srivastava et al., 2014]. More complex and
recent attempts to reduce overfitting and improve general-
ization are in [Zheng et al., 2018] which uses a two phase
training method.

Regularization techniques are also commonly used with
Transformers with new methods continuously being intro-
duced. Examples of specific dropout strategies applied to
transformers are found in [Zhou et al., 2020] where instead
of dropping connections entire attention heads are dropped
with a certain probability. This is to avoid any heads from
dominating the predictions and to encourage a wider range of
information to be encoded in the other heads.

Three different disagreement regularizations are intro-
duced in [Li et al., 2018], which act on the subspaces, at-
tended positions and output heads. Other examples of penalty
norms can be found in [Lin et al., 2017], which has the goal
of reducing redundancy between the attention weights of the
various heads.

9 Responsible Research
9.1 Ethics
The data used comes from the MNIST and CIFAR-10 data
sets. These are well known and publicly available data sets
which have been used in countless experiments and research
in the field of computer vision. MNIST contains hand written
digits. CIFAR-10 contains images of 10 classes of animals
and vehicles. Therefore there are no ethical concerns con-
cerning private or personal information being used.

This research aims to further the understanding of machine
learning models in the field of computer vision. This is a field
whose final applications are often in human centered environ-
ments. The classical example of self driving cars is one where
the accuracy of these models is paramount and errors can lead
to damage to both humans and property. It is therefore essen-
tial for all results to be accurate and well documented.

To ensure that no data trimming has occurred the results of
all experiments conducted can be found in the appendix.

9.2 Reproducibility
All the code utilized to run the experiments is contained in a
single repository which will be publicly released so that it can
be independently examined and executed 1.

The execution time of the models is significant. The ex-
periments were run on the TU-Delft clusters [Delft High Per-
formance Computing Centre (DHPC), 2022] which greatly
reduced processing times.

1https://github.com/LeoAssini/research-project-2022



Given the random initialization of the weights in the mod-
els slight variations will be of course observed by other re-
searchers when trying to replicate results. However this
should not affect the results exposed in this paper as random
variations have been mitigated a much as possible by running
all experiments 10 times. All results reported are the mean
and standard deviation of those multiple runs.

10 Conclusion and Future Work
Regularization has proven to be an effective tool for improv-
ing the generalization capabilities of neural networks, signif-
icantly increasing out-of-distribution accuracy (with the im-
portant trade off that in-distribution accuracy must be par-
tially sacrificed).

There was no clear winner between CNN and MHA with
both regularized architectures showing similar final perfor-
mance.

In the case of CNNs, accuracy in out-of-distribution set-
tings increases greatly using the regularization techniques of
dropout with probability of 0.7 and L2 norm with α = 0.01.
Combining multiple regularization techniques does not result
in significant additional improvement.

Regularization is less effective for the MHA architecture.
Applying regularization in isolation does not show statisti-
cally significant improvements over an unregularized MHA.
However, when combining the best regularization techniques
of positional encoding, post layer normalization and L2 with
α = 0.1, there is a significant additional improvement in ac-
curacy.

For future work, there are many avenues that might be ex-
plored.

Using much larger data sets, for example ImageNet, as due
to the low inductive priors of MHAs they might outperform
CNNs in this scenario.

Using other regularization techniques such as drophead,
specific to MHAs, or the many different positional encodings
that have been proposed for Transformers.

Using different combinations of regularization techniques
as, due to time constraints, only the most obvious one was
tested for each architecture. The promising results for MHAs
suggests that this could result in further improvements.
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A Graphs for CNNs and MHAs

Figure 8: Comparison of pre and post layer normalization for CNNs.

Figure 9: In-distribution of CNN with Dropout.

Figure 10: Out-distribution of CNN with Dropout.



Figure 11: In-distribution of CNN with L2 Norm.

Figure 12: Out-distribution of CNN with L2 Norm.

Figure 13: Out-distribution of MHA with Normalization.

Figure 14: In-distribution of MHA with Dropout.

Figure 15: Out-distribution of MHA with Dropout.

Figure 16: In-distribution of MHA with L2 Norm.

Figure 17: Out-distribution of MHA with L2 Norm.

Figure 18: Out-distribution of MHA with L2 Norm, α = 0.1.

Figure 19: MHA with Learnable positional encoding.

Figure 20: MHA with Disagreement Regularization.



Figure 21: Overview of Best Regularization schemes in isolation for
both architectures.

Figure 22: CNN architecture with dropout (p = 0.7) and L2 (α =
0.01).
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