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The Finite-Element Modeling of 
Three-Dimensional Electromagnetic 

Fields Using Edge and Nodal Elements 
Gerrit Mur 

Abstruct- An efficient and accurate finite-element method is 
presented for computing transient as well as time-harmonic elec- 
tromagnetic fields in three-dimensional configurations containing 
arbitrarily inhomogeneous media that may be anisotropic. To 
obtain accurate results with an optimum computational effi- 
ciency, both consistently linear edge and consistently linear nodal 
elements are used for approximating the spatial distribution 
of the field. Compared with earlier work, our formulation is 
generalized by adding a method for explicitly modeling the 
normal continuity along interfaces that are free of surface charge. 
In addition to this the conditions for efficiently solving time- 
harmonic problems using a code designed for solving transient 
problems are discussed. Finally a general and simple method 
for implementing arbitrary inhomogeneous absorbing boundary 
conditions for modeling arbitrary incident fields is introduced. 

I. INTRODUCTION 
N view of its flexibility the finite-element method is very I suitable for computing electromagnetic fields in inhomoge- 

neous media and/or complicated configurations. When com- 
puting electromagnetic fields in inhomogeneous media in 
terms of the electric or magnetic field strength, it is necessary 
to use a computational technique that accounts for the continu- 
ity of the tangential components of the fields across interfaces 
between different media and that allows for a jump in the 
normal components of these field strengths. Some authors 
[l], [2] solve this difficulty by subdividing the problem space 
into a number of homogeneous subdomains. The boundary 
conditions at interfaces are then imposed separately. This 
technique, however, may yield inaccurate results because 
of the conflicting continuity conditions at nodes where the 
vector normal to the interfaces is not unique. Alternatively, 
this difficulty can be solved by using potentials [3], [4]. 
Approaches of this type have a number of disadvantages, the 
most important of them being that a numerical differentiation 
is required for computing the electric or magnetic field strength 
from these potentials. This causes a large loss of accuracy and, 
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consequently, a poor convergence of the resulting accuracy as 
a function of the mesh size. 

The difficulty of modeling the conditions along interfaces 
can be solved at the element level by using edge elements 
[5] .  Edge elements have been designed to account for the 
continuity of the tangential components of the fields across 
interfaces. They allow for a jump in the normal components of 
the field strengths such that the continuity conditions applying 
to the normal flux can be satisfied. Additional advantages of 
edge-based elements are that they do not generate conflicting 
conditions at the nodes where the vector normal to an interface 
or outer boundary is not unique and that they automatically 
provide a natural representation of the tangential field strengths 
along the outer boundary for all possible orientations of this 
boundary. Computationally, edge elements have the disad- 
vantage of being much more expensive than the commonly 
employed nodal elements that make all field components 
continuous and that represent the field accurately only in media 
where the constitutive coefficients are continuous functions of 
the spatial coordinates. In [6] it was shown for time-harmonic 
problems that using a combination of edge elements and nodal 
elements for the expansion of the electric or magnetic field 
strength yields optimum computational results. By adding the 
divergence condition [7], [SI, the latter formulation was further 
improved, both with regard to its computational efficiency 
(storage and time) and its accuracy. In [9] it was shown 
that the combination of edge and nodal elements mentioned 
above can also be used in a mixed formulation of the three- 
dimensional time-domain Maxwell equations. In the latter 
paper, an explicit method was used for the integration of the 
system of coupled differential equations along the time axis. In 
[ 101 the explicit mixed time-domain formulation was replaced 
by an implicit irreducible one in terms of the electric field 
strength only. The irreducible formulation was chosen both to 
make it easier to implement implicit methods for carrying out 
the integration along the time axis and to reduce the storage 
requirements. Experimental numerical results confirming the 
theoretical convergence estimates were given. In the present 
paper we shall describe an'improved and augmented version of 
our formulation and give some numerical results for a simple 
but realistic configuration with inhomogeneous lossy media. 

Elements that exactly preserve tangential continuity without 
imposing conditions on the normal components have been 
proposed before [l  11. The disadvantage of the elements dis- 
cussed in [ 111 is that they are of mixed order, and for this 
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reason they yield relatively poor convergence properties [5], 
[12]; i.e., the accuracy obtained improves only slowly with 
decreasing mesh size. Linear mixed elements, for instance, 
are constants along their generating edges, whereas our edge 
elements are consistently linear; i.e., all components of the 
vectorial expansion functions are linear functions of all three 
spatial coordinates. 

11. THE CHOICE OF THE EXPANSION FUNCTIONS 

For topological reasons, the geometrical domain, D, in 
which the finite-element method is applied is subdivided 
into a number of adjoining tetrahedra (simplices in Ill3). 
This subdivision can be done either exactly, when 2) is 
a polyhedron, or approximately if D has a more general 
shape. In each tetrahedron 7 the set of local nodal expansion 
functions {Wi:)(z)} is given by Wj:’(z) = &(z)ij (i = 
0 , . . - , 3 ,  j = 1,2:3) ,  where a j  are the base vectors with 
respect to the (background) Cartesian reference frame and 
where 4i(z) are the barycentric coordinates. The set of local 
edge expansion functions {Wi:’(z)} is given by Wjz’(z) = 
ai,j4i(z)V@j(z), ( i , j  = 0 , . . - , 3 ,  i # j ) ,  where u ; , ~  = 
Iz; - zJ I denotes the length of the edge joining the vertices 
zi and zj. When z E 7, the electric field strength E(z ,  t) is 
expanded as 

where {e;,j(t)} denotes the local set of unknown time- 
dependent expansion coefficients. The expansion functions 
are, in each tetrahedron, taken from the set {W!:.”’(z)} = 

{Wi:)(z), W$’(z)} since, depending on the local degree of 
inhomogeneity [6], edge elements will be used along interfaces 
between different media, and nodal elements will be used in 
homogeneous subdomains. 

111. THE SYSTEM OF DIFFERENTIAL EQUATIONS 
Eliminating the magnetic field strength, H ,  from Maxwell’s 

equations, we obtain 

where Jext and KeXt denote external sources of electrical 
and magnetic current, and where E ,  a, and p denote the 
permittivity, the conductivity, and the permeability tensor, 
respectively. After substituting the expansion (1) for the elec- 
tric field strength into (2), a system of differential equations 
in the expansion coefficients is obtained by applying the 
method of weighted residuals. The set of weighting functions 
{WC;”)(z)} that is used is the same as the set of expan- 
sion functions. Using an integration by parts and adding the 
resulting equations over all tetrahedra, we obtain a system of 
coupled ordinary differential equations for {e;,j} that can be 

- at]= Wp,q . JeXtdV 

- L ( V  x wp,q) . p-1 ‘ Kext dV VP, 4, (3) 

where 32) denotes the outer boundary of the domain of 
computation V and n the unit vector along the outward normal 
to aD. For deriving (3) we have used the continuity of the 
tangential components of the magnetic field strength over all 
internal interfaces. 

Assuming the medium in each tetrahedron to be homo- 
geneous and assuming no initial charges, it follows from 
Maxwell’s equations that the electric flux density, D = E . 
E,  should be free of divergence in each tetrahedron. This 
condition is not automatically enforced by (3). To impose 
freedom of divergence, the system of differential equations 
(3) is modified by adding the conditions 

to it for all tetrahedra 7.  Observe that the validity of (4) 
follows from the divergence condition and that it has the 
same dimension as the terms in (3). As regards the validity 
of (4) we further note that, since our elements are not free of 
divergence themselves, it is not enforced by either the edge 
elements or the Cartesian elements used. Because of this the 
divergence condition must be made a part of the formulation 
of the problem. In case of anisotropy, the norm in (4) has to 
be taken such that it reduces to ~p for isotropic media. 

When we have an interface between two different lossless 
media carrying no initial surface charges it follows from 
Maxwell’s equations that the normal component of the electric 
flux density should be continuous across this interface. This 
condition is not enforced explicitly by (3); it can be imposed 
by adding the conditions 

LT n . (0’ - D-)dA = 0 ( 5 )  

to it for all triangles 87 along this part of the interface. In (5) n 
denotes the normal to d l  and D+ and D- denote the electric 
flux densities at both sides of this triangular interface between 
two tetrahedra. The use of ( 5 )  will cause the connectivity of 
the problem to increase, and for this reason some additional 
nonzero elements will be added to the system matrices. In 
practical cases, when the number of tetrahedra connected to 
interfaces is small compared with the number of tetrahedra 
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covering the “homogeneous” subdomains, this increase is of 
the order of a few percent; in extremely inhomogeneous 
configurations it will be higher depending on the degree 
of inhomogeneity. The element matrices implied in (5) are 
asymmetric. In order to avoid a disruption of the symmetry of 
the system matrices derived from (3), these element matrices 
are symmetrized by multiplying them by their transpose before 
adding them to the relevant system matrix. Using the above 
procedures, the divergence condition is imposed in a weighted 
sense. A numerical solution that is obtained using (4) and 
(5) will be free of divergence in the numerical sense, i.e. the 
divergence condition is satisfied to the same degree of accuracy 
as ( 2 )  is. Because of this our method does not suffer from 
difficulties like “spurious modes”. 

The system of coupled differential equations can, in matrix 
form, be written as 

M,dze(t) + M,dte(t) + M,e(t) = q( t ) .  (6) 

Together with the appropriate initial and boundary condi- 
tions (6) constitutes a system of coupled ordinary diffential 
equations from which the evolution in time of the expan- 
sion coefficients can be obtained. When the problem to be 
solved contains Dirichlet boundary conditions, some of the 
elements of the vector e ( t )  will have prescribed, generally 
time-dependent, values. Those elements should be eliminated 
from the vector of unknowns e ( t ) ,  and (6) has to be rewritten 
such that their contribution is added to the relevant part of 
right-hand side vector q(t).  

Iv .  THE INTEGRATION OF THE 
SYSTEM OF DIFFERENTIAL EQUATIONS 

For the integration of the system of coupled differential 
equations (6) along the time axis the most obvious chioces are 
single- and two-step time marching schemes [13], [14]. We 
have used both methods with a number of different weighting 
functions in time. As regards computational efficiency, two- 
step methods have proved to be slightly more efficient for 
solving our type of problems than single-step methods. 

Using an incomplete LU decomposition [15] of the system 
matrix for preconditioning, the iterative (conjugate-gradient) 
solution of the system of linear algebraic equations that has to 
be determined for each time-step has proved to be an extremely 
fast method, requiring only a few (usually two to 20) iteration 
steps for each time step. 

Time-Harmonic Problems 

Complex valued time-harmonic fields can be computed in 
the time domain by, for instance, using a pulse excitation and 
using Fourier transformations to select the desired temporal 
frequencies. This method is expensive in terms of time and 
storage requirements but it has the advantage of yielding 
results for a range of frequencies rather than for a single 
frequency. 

Altematively, one can switch on the time-harmonic sources 
at t = 0, say, and continue the time stepping until steady state 
is achieved. The duration of this process can be estimated as 

follows. After starting the time stepping process the solution 
will consist of the exact time-harmonic solution together with 
an error that has to be eliminated by letting it decay in time. 
This error term will contain terms in a wide temporal fre- 
quency range. Assuming, for simplicity, homogeneous media, 
high-frequency terms will decay with the well-known time 
constant c / o .  It is easily shown that low-frequency terms will 
decay with a time constant paL&, where Ljr, is a length typical 
for the outer dimensions of the domain of computation 2). 
Error terms having intermediate frequencies will decay with 
a speed that is inversely proportional to the Q factor of the 
configuration studied. Numerical experience has shown that 
the largest of these time constants, usually the one related to 
low-frequency errors, is often such that an excessively large 
number of time steps is required to obtain steady state within 
a sufficient degree of accuracy. 

In order to speed up the computations we modified the 
above computational procedure by not switching on the time- 
harmonic sources abruptly at t = 0, but by introducing a 
transient period 0 5 t 5 tt,. During this period the right-hand 
side vector q( t )  representing the time-harmonic excitation, is 
multiplied by a continuous function ftr(t) that generates a 
smooth transient from zero to steady state. For f t r  we use the 
function 

Using f t r  we obtain, at t 2 ttr, an approximation of the 
time-harmonic solution with a relatively small error term, and 
steady state is achieved much faster. In most cases a value 
of t,, in the range 5T 5 tt, 5 10T, where T denotes the 
period in time of the time-harmonic sources, tums out to yield 
an optimum computational efficiency. Obviously the optimum 
choice for tt, depends both on the problem at hand and on the 
accuracy requirements. In general it can be said that tt, should 
preferably be chosen such that the solution at t = ttr is already 
accurate enough to be used as a steady-state solution and that 
no subsequent time stepping is required to obtain steady state. 

V. INHOMOGENEOUS ABSORBING BOUNDARY CONDITIONS 

Absorbing boundary conditions are used on (parts of) the 
outer surface of the domain of computation for modeling the 
unbounded surrounding by absorbing the scattered field that 
is generated in the domain of computation. In the case where 
an external field is incident upon the domain of computation, 
it is necessary to distinguish the scattered field from the 
incident field. This can be done by introducing an additional 
mathematical boundary close to the absorbing boundaries 
[16]. In a finite-element program this is rather difficult to 
implement and therefore we have adopted another simple and 
general approach to include the incident field in the absorbing 
boundary condition. 
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Suppose we have an arbitrary absorbing boundary condition 

0 . 4 }  
that can be written in operator form as 

A(ESC"t) = 0. (8) 

Assuming the operator A to be linear, we add the trivial 
identity ,(Einc) = A(Einc), where EinC denotes an arbitrary 
incident field distribution, to (8) to obtain 

A(E)  = A(Einc). (9) 

Now (9) constitutes an inhomogeneous absorbing boundary 
condition for each incident wave and for each linear homoge- 
neous absorbing boundary condition A. Note that this method 
of taking the incident field into account does not require the 
construction of an artificial mathematical boundary; it requires 
only the generation of the right-hand side of (9). This right- 
hand side is easily taken into account in (3) and generates a 
contribution to the right-hand side vector q( t )  of (6). 

VI. NUMERICAL RESULTS 

In [IO] we have studied the convergence properties of our 
method by applying it to a problem for which the exact 
analytical solution is known. It was shown that the RMS error 
in the solution is approximately O ( ( h / X ) 2 ) ,  where h denotes 
the maximum diameter of a tetrahedron and where X denotes 
the wavelength of the incident field. 

In the present paper we consider the scattering of a time- 
harmonic plane wave by an inhomogeneous isotropic cubic 
scatterer. The scatterer consists of an inner cube covering 
the region Vl ( -0.075 5 z1 5 0.075 m, -0.075 5 2 2  5 
0.075 m, -0.075 5 x3 5 0.075 m}, with medium properties 
(€1 = 7 0 ~ 0  F/m, 01 = 0.68 S/m, p1 = po Wm). The 
inner cube is embedded in a second cube covering the region 
V Z  { -0.15 2 z1 5 0.15 m, -0.15 _< x2 5 0.15 m, -0.15 
5 5 3  5 0.15 m}, with medium properties ( ~ 2  = 7 . 5 ~ 0  F/m, 
g 2  = 0.05 S/m, p2 = po H/m}. The second cube is surrounded 
by a vacuum. This configuration was chosen because of its 
geometrical simplicity and because it contains homogeneous 
subdomains with sharp edges. These edges are known to be 
a source of numerical difficulties and their presence in the 
configuration offers an opportunity to investigate how well 
our method deals with them. 

This problem was solved under the condition that edge 
expansion functions are used when the relative contrast in 
the numerical value of E and/or o in two adjacent tetrahedra 
exceeds 10%; nodal expansion functions are used in regions 
with lower contrasts. With this choice edge elements are used 
along the surfaces of the two cubes; nodal elements are used 
elsewhere. 

The electric field strength of the time-harmonic incident 
plane wave, having a frequency f = 10' Hz, can be written as 

(10) 

where w = 27rf denotes the angular frequency and where 
CO = ~ ( E o ~ o ) - ~ / ~  denotes the speed of light in vucuo. 

Using symmetry, the domain of computation, D3, is chosen 
as D3 (0 5 x1 5 0.225 m, 0 5 x 2  5 0.225 m, -0.225 5 x3 5 
0.225 m}. The mesh consists of 1 5 x 1 5 ~ 3 0  cubes of equal 

LEinc = cos(w(t - zg /co ) ) i1 ,  

Fig. 1. Transient to time-harmonic, E l ( z l  = 0 . 1 , ~ ~  = 0.l,s3 = 0 : t ) ,  
0 5 t 5 5 * lo-". 

size, each subdivided into six tetrahedra. For the discretization 
in time we have chosen a time step A t  = T/20 = 5* lo-'' s. 

The boundary conditions have been chosen as follows: at the 
plane 2 1  = 0 the tangential part of electric field strength is set 
to zero, at the plane x2 = 0 the tangential part of the magnetic 
field strength is set to zero, and at the the remaining parts 
of the outer boundary an inhomogeneous absorbing boundary 
condition is used that exactly absorbs scattered waves that 
have a normal incidence upon the outer boundary. The initial 
values at t = -At  and t = 0 (a two-step method is used) 
are set to zero. The transient time is chosen as tt ,  = 5T, and 
with this choice an acceptable approximation of the steady 
state was achieved immediately after the transient period. The 
medium properties and the frequency chosen are typical for 
hyperthemia applications. With the discretization used we have 
a total number of 32252 degrees of freedom, 1232 of these 
being set to zero because of the boundary conditions. 

In Fig. 1 a plot is given of the transient process. It clearly 
shows the rapid and smooth transient from zero state to a 
time-harmonic solution. At t = tt, the solution has converged 
to a time-harmonic one to within less than 0.1%; i.e., the 
time-harmonic solution that can be obtained from the solution 
immediately after t = t,, differs less than 0.1 % from the time- 
harmonic solution obtained from results for larger t ,  when all 
transients have decayed away. Because of its simple cubic 
geometry, the realistic choice of contrasts in the medium 
properties and the difficulty that the interfaces between the 
different media contain sharp edges, this configuration can 
serve as a benchmark problem [17] for hyperthermia. 

In Fig. 2 a contour plot is given of the rea! part, R(fil), 
of the complex-valued time-harmonic solution El in the plane 
2 3  = 0. Note that the real part of the (normal) z component 
of the electric field strength shows a discontinuity at the outer 
boundary of the outer cube, reflecting the continuity of the 
normal flux at that plane. The imaginary part shows the same 



952 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 41, NO. 7, JULY 1993 

0.2 

7 

0.1 

0 
0.1 -z1 0.2 

Fig. 2. Contour plot of ~ ? ( & ? ~ ( Z ~ , L ~ . I ~  = 0)). 

behavior. Without using (3, the normal components of the 
electric field strength do not show the proper discontinuity, 
the errors being larger near the edges of the cubes. 

All computations have been carried out at a VAXstation 
3100 M76, requiring an average of 2 min of CPU time for 
each step in time and about 12Mbytes for storing the matrices. 
The SEPRAN finite-element package [18] is used for carrying 
out a number of tasks, among them generating the mesh and 
assembling the system matrices from the element matrices 
generated by FEMAXT. 

VII. CONCLUSION 
The theory discussed in the present paper was implemented 

in the FEMAXT code that, apart from the time-dependent 
aspects of it, was developed along the same lines as its counter- 
part for time-harmonic problems, the FEMAX3 package [ 191. 
We have shown that our approach yields an efficient and very 
accurate method for computing transient electromagnetic fields 
in strongly inhomogeneous media. The present time-domain 
formulation can also be used for the efficient and accurate 
solution in the time-domain of problems involving time- 
harmonic fields and as such it is a very attractive alternative 
to a formulation in the frequency domain. 
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