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The Finite-Element Modeling of
Three-Dimensional Electromagnetic

Fields Using Edge and Nodal Elements

Gerrit Mur

Abstract— An efficient and accurate finite-element method is
presented for computing transient as well as time-harmonic elec-
tromagnetic fields in three-dimensional configurations containing
arbitrarily inhomogeneous media that may be anisotropic. To
obtain accurate results with an optimum computational effi-
ciency, both consistently linear edge and consistently linear nodal
elements are used for approximating the spatial distribution
of the field. Compared with earlier work, our formulation is
generalized by adding a method for explicitly modeling the
normal continuity along interfaces that are free of surface charge.
In addition to this the conditions for efficiently solving time-
harmonic problems using a code designed for solving transient
problems are discussed. Finally a general and simple method
for implementing arbitrary inhomogeneous absorbing boundary
conditions for modeling arbitrary incident fields is introduced.

I. INTRODUCTION

N view of its flexibility the finite-element method is very

suitable for computing electromagnetic fields in inhomoge-
neous media and/or complicated configurations. When com-
puting electromagnetic fields in inhomogeneous media in
terms of the electric or magnetic field strength, it is necessary
to use a computational technique that accounts for the continu-
ity of the tangential components of the fields across interfaces
between different media and that allows for a jump in the
normal components of these field strengths. Some authors
[11, [2] solve this difficulty by subdividing the problem space
into a number of homogeneous subdomains. The boundary
conditions at interfaces are then imposed separately. This
technique, however, may yield inaccurate results because
of the conflicting continuity conditions at nodes where the
vector normal to the interfaces is not unique. Alternatively,
this difficulty can be solved by using potentials [3], [4].
Approaches of this type have a number of disadvantages, the
most important of them being that a numerical differentiation
is required for computing the electric or magnetic field strength
from these potentials. This causes a large loss of accuracy and,
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consequently, a poor convergence of the resulting accuracy as
a function of the mesh size.

The difficulty of modeling the conditions along interfaces
can be solved at the element level by using edge elements
[S]. Edge elements have been designed to account for the
continuity of the tangential components of the fields across
interfaces. They allow for a jump in the normal components of
the field strengths such that the continuity conditions applying
to the normal flux can be satisfied. Additional advantages of
edge-based elements are that they do not generate conflicting
conditions at the nodes where the vector normal to an interface
or outer boundary is not unique and that they automatically
provide a natural representation of the tangential field strengths
along the outer boundary for all possible orientations of this
boundary. Computationally, edge elements have the disad-
vantage of being much more expensive than the commonly
employed nodal elements that make all field components
continuous and that represent the field accurately only in media
where the constitutive coefficients are continuous functions of
the spatial coordinates. In [6] it was shown for time-harmonic
problems that using a combination of edge elements and nodal
elements for the expansion of the electric or magnetic field
strength yields optimum computational results. By adding the
divergence condition [7], [8], the latter formulation was further
improved, both with regard to its computational efficiency
(storage and time) and its accuracy. In [9] it was shown
that the combination of edge and nodal elements mentioned
above can also be used in a mixed formulation of the three-
dimensional time-domain Maxwell equations. In the latier
paper, an explicit method was used for the integration of the
system of coupled differential equations along the time axis. In
[10] the explicit mixed time-domain formulation was replaced
by an implicit irreducible one in terms of the electric field
strength only. The irreducible formulation was chosen both to
make it easier to implement implicit methods for carrying out
the integration along the time axis and to reduce the storage
requirements. Experimental numerical results confirming the
theoretical convergence estimates were given. In the present
paper we shall describe an‘improved and augmented version of
our formulation and give some numerical results for a simple
but realistic configuration with inhomogeneous lossy media.

Elements that exactly preserve tangential continuity without
imposing conditions on the normal components have been
proposed before [11]. The disadvantage of the elements dis-
cussed in [11] is that they are of mixed order, and for this
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reason they yield relatively poor convergence properties [5],
[12]; i.e., the accuracy obtained improves only slowly with
decreasing mesh size. Linear mixed elements, for instance,
are constants along their generating edges, whereas our edge
elements are consistently linear; i.e., all components of the
vectorial expansion functions are linear functions of all three
spatial coordinates.

II. THE CHOICE OF THE EXPANSION FUNCTIONS

For topological reasons, the geometrical domain, D, in
which the finite-element method is applied is subdivided
into a number of adjoining tetrahedra (simplices in IR3).
This subdivision can be done either exactly, when D is
a polyhedron, or approximately if D has a more general
shape. In each tetrahedron 7 the set of local nodal expansion
functions {WE(;)(z)} is given by WES)(I) = ¢i(z)i; (1 =
0,---,3, j = 1,2,3), where i; are the base vectors with
respect to the (background) Cartesian reference frame and
where ¢;(z) are the barycentric coordinates. The set of local
edge expansion functions {WEF]) ()} is given by WE?)(:I;) =
a; j¢i(x)Vi(z), (i, = 0,---,3, ¢ # j), where a;; =
|z; — x;| denotes the length of the edge joining the vertices
z; and ;. When x € 7, the electric field strength E(z,t) is
expanded as

3
E(z,t) = Z Z €i,j(t)W§,Cj‘E) (z), 1

=0 g

where {e; ;(¢)} denotes the local set of unknown time-
dependent expansion coefficients. The expansion functions
are, in each tetrahedron, taken from the set {Wﬁ?E) ()} =
{W,(S)(z), WE? (z)} since, depending on the local degree of
inhomogeneity [6], edge elements will be used along interfaces
between different media, and nodal elements will be used in

homogeneous subdomains.

III. THE SYSTEM OF DIFFERENTIAL EQUATIONS

Eliminating the magnetic field strength, H, from Maxwell’s
equations, we obtain

Ot E+0,0-E+Vx(p'-VxE)=
__atJext —V x (M—l .Kext% (2)

where J°** and K*' denote external sources of electrical
and magnetic current, and where ¢, o, and p denote the
permittivity, the conductivity, and the permeability tensor,
respectively. After substituting the expansion (1) for the elec-
tric field strength into (2), a system of differential equations
in the expansion coefficients is obtained by applying the
method of weighted residuals. The set of weighting functions
{WI(,,CQ’E) (z)} that is used is the same as the set of expan-
sion functions. Using an integration by parts and adding the
resulting equations over all tetrahedra, we obtain a system of
coupled ordinary differential equations for {e; ;} that can be
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written as
Zafei,j/ Wy e Wi;dV
i D

+ Zate.;,j /D Wyq-0- W,',jdV

iJ

+ Zei,j /;)(V X Wp)- pt (VX Wi;)dVv =
1,3

BN / W,,-(nx H)dA
aD
-8 / W, - JtaV
D
- / (VxWy,,)-pt K™V Vp,q, 3
D

where 0D denotes the outer boundary of the domain of
computation D and n the unit vector along the outward normal
to 9D. For deriving (3) we have used the continuity of the
tangential components of the magnetic field strength over all
internal interfaces.

Assuming the medium in each tetrahedron to be homo-
gencous and assuming no initial charges, it follows from
Maxwell’s equations that the electric flux density, D = €-
E, should be free of divergence in each tetrahedron. This
condition is not automatically enforced by (3). To impose
freedom of divergence, the system of differential equations
(3) is modified by adding the conditions

Zeiu’/ (V-Wyole n|™ V- (e- Wi ;)dV =0Vp,q (4)

i T
to it for all tetrahedra 7. Observe that the validity of (4)
follows from the divergence condition and that it has the
same dimension as the terms in (3). As regards the validity
of (4) we further note that, since our elements are not free of
divergence themselves, it is not enforced by either the edge
elements or the Cartesian elements used. Because of this the
divergence condition must be made a part of the formulation
of the problem. In case of anisotropy, the norm in (4) has to
be taken such that it reduces to ey for isotropic media.

When we have an interface between two different lossless
media carrying no initial surface charges it follows from
Maxwell’s equations that the normal component of the electric
flux density should be continuous across this interface. This
condition is not enforced explicitly by (3); it can be imposed
by adding the conditions

/ n- (Dt -D7)dA=0 &)
oT

to it for all triangles 97T along this part of the interface. In (5) n
denotes the normal to &7 and D' and D~ denote the electric
flux densities at both sides of this triangular interface between
two tetrahedra. The use of (5) will cause the connectivity of
the problem to increase, and for this reason some additional
nonzero elements will be added to the system matrices. In
practical cases, when the number of tetrahedra connected to
interfaces is small compared with the number of tetrahedra
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covering the “homogeneous” subdomains, this increase is of
the order of a few percent; in extremely inhomogeneous
configurations it will be higher depending on the degree
of inhomogeneity. The element matrices implied in (5) are
asymmetric. In order to avoid a disruption of the symmetry of
the system matrices derived from (3), these element matrices
are symmetrized by multiplying them by their transpose before
adding them to the relevant system matrix. Using the above
procedures, the divergence condition is imposed in a weighted
sense. A numerical solution that is obtained using (4) and
(5) will be free of divergence in the numerical sense, i.e. the
divergence condition is satisfied to the same degree of accuracy
as (2) is. Because of this our method does not suffer from
difficulties like “spurious modes”.

The system of coupled differential equations can, in matrix
form, be written as

M.dle(t) + M,d.e(t) + M e(t) = q(t). (6)

Together with the appropriate initial and boundary condi-
tions (6) constitutes a system of coupled ordinary diffential
equations from which the evolution in time of the expan-
sion coefficients can be obtained. When the problem to be
solved contains Dirichlet boundary conditions, some of the
elements of the vector e(t) will have prescribed, generally
time-dependent, values. Those elements should be eliminated
from the vector of unknowns e(t), and (6) has to be rewritten
such that their contribution is added to the relevant part of
right-hand side vector q(t).

IV. THE INTEGRATION OF THE
SYSTEM OF DIFFERENTIAL EQUATIONS

For the integration of the system of coupled differential
equations (6) along the time axis the most obvious chioces are
single- and two-step time marching schemes [13], [14]. We
have used both methods with a number of different weighting
functions in time. As regards computational efficiency, two-
step methods have proved to be slightly more efficient for
solving our type of problems than single-step methods.

Using an incomplete LU decomposition [15] of the system
matrix for preconditioning, the iterative (conjugate-gradient)
solution of the system of linear algebraic equations that has to
be determined for each time-step has proved to be an extremely
fast method, requiring only a few (usually two to 20) iteration
steps for each time step.

Time-Harmonic Problems

Complex valued time-harmonic fields can be computed in
the time domain by, for instance, using a pulse excitation and
using Fourier transformations to select the desired temporal
frequencies. This method is expensive in terms of time and
storage requirements but it has the advantage of yielding
results for a range of frequencies rather than for a single
frequency.

Alternatively, one can switch on the time-harmonic sources
at t = (), say, and continue the time stepping until steady state
is achieved. The duration of this process can be estimated as

follows. After starting the time stepping process the solution
will consist of the exact time-harmonic solution together with
an error that has to be eliminated by letting it decay in time.
This error term will contain terms in a wide temporal fre-
quency range. Assuming, for simplicity, homogeneous media,
high-frequency terms will decay with the well-known time
constant ¢ /0. It is easily shown that low-frequency terms will
decay with a time constant o LZ,, where Lp is a length typical
for the outer dimensions of the domain of computation D.
Error terms having intermediate frequencies will decay with
a speed that is inversely proportional to the @) factor of the
configuration studied. Numerical experience has shown that
the largest of these time constants, usually the one related to
low-frequency errors, is often such that an excessively large
number of time steps is required to obtain steady state within
a sufficient degree of accuracy.

In order to speed up the computations we modified the
above computational procedure by not switching on the time-
harmonic sources abruptly at ¢ = 0, but by introducing a
transient period 0 < ¢ < ¢¢,. During this period the right-hand
side vector q(¢) representing the time-harmonic excitation, is
multiplied by a continuous function f,(¢) that generates a
smooth transient from zero to steady state. For f;, we use the
function

=0, -0 <t <0,
Jir = (2 — sin((¢/ter )7 /2)) sin{(t/ b, )7/2),
0 <t <ty,
=1, t <t < oc. @)

Using fi; we obtain, at ¢ > i,, an approximation of the
time-harmonic solution with a relatively small error term, and
steady state is achieved much faster. In most cases a value
of t, in the range 5T < ti;, < 107, where 7' denotes the
period in time of the time-harmonic sources, turns out to yield
an optimum computational efficiency. Obviously the optimum
choice for 1, depends both on the problem at hand and on the
accuracy requirements. In general it can be said that ¢, should
preferably be chosen such that the solution at ¢ = ¢4, is already
accurate enough to be used as a steady-state solution and that
no subsequent time stepping is required to obtain steady state.

V. INHOMOGENEQUS ABSORBING BOUNDARY CONDITIONS

Absorbing boundary conditions are used on (parts of) the
outer surface of the domain of computation for modeling the
unbounded surrounding by absorbing the scattered field that
is generated in the domain of computation. In the case where
an external field is incident upon the domain of computation,
it is necessary to distinguish the scattered field from the
incident field. This can be done by introducing an additional
mathematical boundary close to the absorbing boundaries
[16]. In a finite-element program this is rather difficult to
implement and therefore we have adopted another simple and
general approach to include the incident field in the absorbing
boundary condition.
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Suppose we have an arbitrary absorbing boundary condition
that can be written in operator form as

A(E™) = 0. ®)

Assuming th_e operator AA to be 1inevar, we add the trivial
identity A(E™°) = A(E™°), where E'™ denotes an arbitrary
incident field distribution, to (8) to obtain

A(E) = A(E™). )

Now (9) constitutes an inhomogeneous absorbing boundary
condition for each incident wave and for each linear homoge-
neous absorbing boundary condition A. Note that this method
of taking the incident field into account does not require the
construction of an artificial mathematical boundary; it requires
only the generation of the right-hand side of (9). This right-
hand side is easily taken into account in (3) and generates a
contribution to the right-hand side vector g(¢) of (6).

VI. NUMERICAL RESULTS

In [10] we have studied the convergence properties of our
method by applying it to a problem for which the exact
analytical solution is known. It was shown that the RMS error
in the solution is approximately O((h/A)?), where A denotes
the maximum diameter of a tetrahedron and where A denotes
the wavelength of the incident field.

In the present paper we consider the scattering of a time-
harmonic plane wave by an inhomogeneous isotropic cubic
scatterer. The scatterer consists of an inner cube covering
the region D; { -0.075 < z; < 0.075 m, -0.075 < z3 <
0.075 m, -0.075 < z3 < 0.075 m}, with medium properties
{e1 = 70eg F/m, 07 = 0.68 S/m, p; = po H/m}. The
inner cube is embedded in a second cube covering the region
Dy { 015 <27 €015 m, -0.15 < 2 <015 m, -0.15
< z3 < 0.15 m}, with medium properties {2 = 7.5¢¢ F/m,
o2 = 0.05 S/m, uo = po H/m}. The second cube is surrounded
by a vacuum. This configuration was chosen because of its
geometrical simplicity and because it contains homogeneous
subdomains with sharp edges. These edges are known to be
a source of numerical difficulties and their presence in the
configuration offers an opportunity to investigate how well
our method deals with them.

This problem was solved under the condition that edge
expansion functions are used when the relative contrast in
the numerical value of ¢ and/or ¢ in two adjacent tetrahedra
exceeds 10%; nodal expansion functions are used in regions
with lower contrasts. With this choice edge elements are used
along the surfaces of the two cubes; nodal elements are used
elsewhere.

The electric field strength of the time-harmonic incident
plane wave, having a frequency f = 10® Hz, can be written as

E™ = cos(w(t — x3/co))in, (10)

where w = 2rf denotes the angular frequency and where
co = w(eopo) "'/ denotes the speed of light in vacuo.
Using symmetry, the domain of computation, D3, is chosen
as D3 {0 <2; £0225m,0 <z €0.225m, -0.225 < 23 <
0.225 m}. The mesh consists of 15x15x30 cubes of equal
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Fig. 1. Transient to time-harmonic, Eq1(z; = 0.1,22 = 0.1,23 = 0,1),

0<t<5%107%s.

size, each subdivided into six tetrahedra. For the discretization
in time we have chosen a time step At = T/20 = 5x10710 5.

The boundary conditions have been chosen as follows: at the
plane z; = 0 the tangential part of electric field strength is set
to zero, at the plane x5 = 0 the tangential part of the magnetic
field strength is set to zero, and at the the remaining parts
of the outer boundary an inhomogeneous absorbing boundary
condition is used that exactly absorbs scattered waves that
have a normal incidence upon the outer boundary. The initial
values at t = —At and t = 0 (a two-step method is used)
are set to zero. The transient time is chosen as ¢, = 57, and
with this choice an acceptable approximation of the steady
state was achieved immediately after the transient period. The
medium properties and the frequency chosen are typical for
hyperthemia applications. With the discretization used we have
a total number of 32252 degrees of freedom, 1232 of these
being set to zero because of the boundary conditions.

In Fig. 1 a plot is given of the transient process. It clearly
shows the rapid and smooth transient from zero state to a
time-harmonic solution. At ¢ = ¢;, the solution has converged
to a time-harmonic one to within less than 0.1%; i.e., the
time-harmonic solution that can be obtained from the solution
immediately after ¢ = t,, differs less than 0.1% from the time-
harmonic solution obtained from results for larger ¢, when all
transients have decayed away. Because of its simple cubic
geometry, the realistic choice of contrasts in the medium
properties and the difficulty that the interfaces between the
different media contain sharp edges, this configuration can
serve as a benchmark problem [17] for hyperthermia.

In Fig. 2 a contour plot is given of the real part, R(F1),
of the complex-valued time-harmonic solution E; in the plane
z3 = 0. Note that the real part of the (normal) x component
of the electric field strength shows a discontinuity at the outer
boundary of the outer cube, reflecting the continuity of the
normal flux at that plane. The imaginary part shows the same
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Fig. 2. Contour plot of R(E;(z1, 22,23 = 0)).

behavior. Without using (5), the normal components of the
electric field strength do not show the proper discontinuity,
the errors being larger near the edges of the cubes.

All computations have been carried out at a VAXstation
3100 M76, requiring an average of 2 min of CPU time for
each step in time and about 12Mbytes for storing the matrices.
The SEPRAN finite-element package [18] is used for carrying
out a number of tasks, among them generating the mesh and
assembling the system matrices from the element matrices
generated by FEMAXT.

VII. CONCLUSION

The theory discussed in the present paper was implemented
in the FEMAXT code that, apart from the time-dependent
aspects of it, was developed along the same lines as its counter-
part for time-harmonic problems, the FEMAX3 package [19].
We have shown that our approach yields an efficient and very
accurate method for computing transient electromagnetic fields
in strongly inhomogeneous media. The present time-domain
formulation can also be used for the efficient and accurate
solution in the time-domain of problems involving time-
harmonic fields and as such it is a very attractive alternative
to a formulation in the frequency domain.
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