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1
Introduction

1.1. On topic and motivation
Linear Stability Theory (LST) is concerned with the analysis of small-amplitude perturbations as
superimposed on base flows over or through certain geometries, and is used to study laminar-
to-turbulent transition. This transition from laminar to turbulent flow typically originates from the
onset of instabilities in the laminar flow. It is to that end that LST has been employed to provide
– e.g. users of the 𝑒ፍ-method ([28], [22]) with – a first indication of transition through mode
amplification determined by the eigenvalues.

The growth ’contained’ in just the eigenvalues is however incomplete for most shear force
driven flows [26]. For example, the predicted onset of instability from eigenvalues analyses did
not match the onset of instability observed in experiments for a Couette, Poiseuille or a Bla-
sius boundary layer flow [26]. Notably, for the Couette flow the eigenvalues predicted a stable
flow [17], whereas experimental data indicated that transition would occur even for relatively low
Reynolds numbers [10, 24]. Originally, it was thought that the non-linear terms, dropped from
the linearised equations, should then be investigated to explain for this difference. Linear alge-
bra indicates however that this discrepancy may also be attributed to growth contained in the
eigenvectors: even if the eigenvalues dictate a stable regime, ”inputs [...] may be amplified by
arbitrarily large factors if the eigenfunctions are not orthogonal to one another” [26]. LST could
be used to describe this algebraic (i.e. transient) growth due to the non-normality of the system
[21]. Transient growth in this regard relates to the short-time behaviour of the LST operator.
Such transient growth may occur even if the eigenvalues predict stable decay of any perturbation,
as exemplified by the Couette flow eigenvalue spectrum [17]. Whilst this is interesting from a
laminar-turbulent transitional flow perspective, the non-normality of the system does bear compli-
cations for the analyst. Firstly, the set of eigenmodes is not orthogonal, which complicates further
response analyses. Secondly, as noted by Schmid et al. [21], the non-normality of the operator
may result in large sensitivity of eigenvalues to small perturbations of the operator. Schmid et al.
[21] even concluded that as a result of non-normality ”the study of the sensitivity of the spectra
of hydrodynamic stability operators is as essential as the study of their spectra alone”.

1.2. Aim of the research
As the eigenvectors of the LST operators are non-orthogonal, (1) obtaining further insight into
the response to a disturbance, or (2) employing these modes as basis functions in a deterministic
approach, or control functions in a feedback loop, is complicated. Inherent to the inner product
definition of the adjoint, with its bilinear characteristics, bi-orthogonality relations may be derived
for the direct and adjoint sets of eigenvectors [20]. A first aim of this work is hence to assess
whether we can derive bi-orthogonality relations demonstrating that the adjoint LST eigenvectors
are orthogonal to the direct eigenvectors; thereby resolving the non-orthogonality complication.
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Furthermore, stability results are notoriously sensitive to perturbations (see a.o.[15]). Yet, often
the eigenvalue spectra are used to describe system behaviours. In particular, these eigenvalues
are used to indicate whether a system would be asymptotically stable or unstable for 𝑡 → ∞. Con-
sequently, we wish to gain insight into what happens to the eigenvalue spectrum of the current
LST operators for boundary layer flow when presented with a (matrix) perturbation. In practice
these might be perturbations that arise due to e.g. numerical error or errors in the input data.
Numerical errors may, for example, be related to generic operator perturbations of a certain order
of accuracy, whilst measurement errors could be related to systematic deviations in a streamwise
velocity base flow profile.

In [5] the required accuracy of a basic state is investigated so as to ensure a certain order
of accuracy of the stability results. In more detail, they discuss the ramifications with regards
to the propagation of numerical errors into the stability results. For which the numerical errors
were related to the (convergence of the) numerical schemes used to obtain this basic state. In
this work we wish to take this one step further, and as such a second aim is to determine the
sensitivity of the compressible and incompressible LST operators to specific perturbations in the
base flow profile. Or put differently: we wish to investigate how the eigenvalue spectrum of the
LST operator in the TU Delft stability code is affected by specific perturbations in the base flow
profile.

Scope: The use of LST is mainly restricted to the types of responses associated with amplification
mechanisms. We will further restrict this scope to two-dimensional flows and streamwise instabil-
ity. This is in line with the Squire theorem which states that two-dimensional wave amplification
will start at a Reynolds number lower than any 3D wave [1], for which the Tollmien-Schlichting
direction can be considered the most unstable direction. Arnal & Casalis [1] also indicate that
transition can be assumed to be triggered either by streamwise or crossflow instability.

1.3. Physics of transitional flow
Transition pertains to the region or process in which a laminar flow evolves into a chaotic turbulent
flow. This drastically changes the flow’s characteristics, e.g. the skin friction for a flow over an
aerofoil.

Figure 1.1: Graphic showing the stages of transition, after [16] (in [4]). Those mechanisms that can be represented
by LST are highlighted in blue.

In transitioning from laminar to turbulent flow, it is generally thought that the flow evolves
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through a number of flow states [16]. Each of theses states represents increased complexity of
the flow and its inherent parameters. This work only relates to the early stages of transition as
described by the eigenmode growth and transient growth mechanisms, which occur before the
onset of secondary instabilities. In Figure 1.1 the stages of transition for a wall-bounded flow
are represented graphically [16]. The transition paths 𝐴-𝐸 all start with a disturbance of a cer-
tain amplitude. This disturbance is then entrained in the boundary layer. The process by which
disturbances are entrained into the boundary layer and may generate instability waves is called
boundary layer receptivity. The topic of receptivity is not considered here, but it is important to
remember that receptivity forms a starting point for the transition stages related to LST. Addition-
ally, keep in mind that the adjoint eigenfunctions allow the projection of a given disturbance onto
the eigenbasis. Therefore the approach used here may be deployed for receptivity analyses. See
Saric [18], Kerschen [7] or Morkovin [12]) for more information on boundary layer receptivity. For
example, Kerschen [7] makes a distinction between natural and forced disturbances, their intrinsic
wavelengths and the physical processes involved.

The amplitude of a disturbance as mentioned previously is an important consideration in LST
(and also Figure 1.1). For example, after experiencing transient growth, the transition would follow
path B only if the disturbance remains of 𝒪(𝜖). Should the disturbance grow such that it is of 𝒪(1),
it could trigger non-linear bypass mechanisms. Similarly, if an initial disturbance entrained in the
boundary layer is large enough, then by-pass mechanisms would be at play rather than eigenmode
growth. This is a consideration to keep in mind when imposing perturbations on e.g. a base flow
profile. See [13] for more information on bypass mechanisms and see Reshotko [16] and/or Pinna
[14] for a more detailed description of the transition paths presented in Figure 1.1.

1.4. Non-normality
Formally a matrix may be considered normal if it commutes with its adjoint:

𝐀ዄ𝐀 = 𝐀𝐀ዄ (1.1)

The adjoint matrix 𝐀ዄ is here defined as the complex conjugate transpose, or the hermitian, of
𝐀. That is, 𝐀ዄ = ̅𝐀𝐓. Equivalently, a matrix 𝐀 is normal if, and only if, it has an orthonormal basis
of eigenvectors. The LST operators do not meet this criterion. It is through these non-orthogonal
eigenvectors that the LST results may exhibit transient growth.

In analogy to the well-known three-axes X,Y,Z coordinate system, having an orthogonal ba-
sis of eigenvectors would yield a coordinate system that could perfectly describe the dynamical
system through scalar amplification along the individual axes. The non-orthogonality yields a coor-
dinate system with eigenvectors that are oblique. In our X,Y,Z example two vectors would not e.g.
span the X-Y plane, but both vectors could for example lie within this original X-Y plane. Casually
speaking this may lead to a certain ’overlap’ in information when describing the dynamical system
in terms of the eigenvectors. Additionally, if in a asymptotically stable system one eigenvector
decays at a rate different from an eigenvector oblique to it, the resultant of the ’parallelogram’
spanned by the eigenvectors may yield short-term growth: transient growth. See also the sketch
of Schmid & Henningson [20] in Figure 1.2 which shows this aspect.

The adjoint eigenvectors are known to form a set of vectors that is so-called bi-orthogonal to the
direct eigenvectors. Examples of this are the bi-orthogonality relations for the Orr-Sommerfeld
equations by Schmid & Henningson in [20]. They derived an orthogality weight for which the two
sets of eigenvectors would be orthogonal.

Measures to determine the (extent of) non-normality of a matrix include computing the numer-
ical range, pseudospectra or the departure from normality (a.o. [27]). The relative non-normality
of an operator could be described from the definition of normality:

||𝐀ዄ𝐀 − 𝐀𝐀ዄ|| (1.2)
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Figure 1.2: Sketch from Schmid & Henningson in [20], indicating the process of transient growth for non-orthogonal
eigenvectors.

Alternatively a measure of non-normality could be obtained using the Frobenius norm ([2]):

𝑑𝑒𝑝ፅ(𝐀) = √||𝐀||ኼፅ −
፧

∑
፣዆ኻ
|𝜆፣|ኼ (1.3)

However these scalar measures are found not to be of much use in practice [2]. The numerical
range and pseudospectra on the other hand are generally considered to be effective tools to study
the non-normality of the system, as exemplified by research by a.o. [27], [21] and [15].

1.4.1. Numerical range
Essentially the numerical range provides a set of values in the complex plane that replaces the
eigenvalue spectrum. This new set 𝑊(𝐀) is the set of all the Rayleigh quotient eigenvalue esti-
mates. Formally:

𝑊(𝐀) = 𝑥∗𝐀𝑥 ∶ ||𝑥|| = 1 (1.4)

for which the original eigenvalue spectrum forms a subset of 𝑊(𝐀). Whilst the numerical
range does provide interesting information with regards to e.g. the numerical abscissa and hence
(in)stability information of the system; the numerical range itself can be rather large, especially for
systems like the LST operators [2]. Beyond the numerical abscissa this then leaves relatively little
room for interpretation or analysis of the resulting spectrum due to the sheer size of the range.

1.4.2. Pseudospectra
The pseudospectrum of matrix 𝐀 may be defined by the set:

𝜎Ꭸ = 𝑧 ∈ ℂ ∶ 𝑧 ∈ 𝜎(𝐀 + 𝐄) for some 𝐄 ∈ ℂ፧×፧ with ||𝐄|| < 𝜖 (1.5)

for which the original eigenvalue spectrum forms a subset of 𝜎Ꭸ(𝐀).
For the generalised eigenvalue problem the pseudospectrum may be defined as ([3, 2]):

𝜎Ꭸ(𝐀, 𝐁) = 𝑧 ∈ ℂ ∶ 𝑧 ∈ 𝜎(𝐀 + 𝐄𝟎)𝑥 = 𝑧(𝐀 + 𝐄𝟏)𝑥 for some 𝑥 ≠ 0 with ||𝐄||ኺ < 𝜖𝛼ኺ, ||𝐄||ኻ < 𝜖𝛼ኻ
(1.6)
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A well-known application to compute pseudospectra is ’Eigtool’, as developed by Thomas G.
Wright at the Oxford University Computing Laboratory [29] and which makes use of algorithms
described in [25, 27]. Eigtool is a MATLAB package for computing pseudospectra of both dense
and sparse matrices. Unfortunately, the tool may only be used for a single operator 𝐀 and cannot
compute spectra for a generalised eigenvalue problem (GEP) such as for the LST operators.

Spanning a d-dimensonal invariant subspace may yield a single matrix 𝑈ᖣ∗𝐀፞።፠፭፨፨፥𝑈 from the
dominant eigenvalues of the GEP’s 𝐀,𝐁 matrices and an orthonormal basis 𝑈 constructed from the
eigenvectors of the d-dimensional subspace. However doing so relies on being able to invert 𝐁
and/or to compute 𝐀፞።፠፭፨፨፥ = 𝐁\𝐀 in Matlab, which is infeasible given the (near) singularity and
ill-conditioning of the LST operators.

1.5. Method used to approach the objectives
Recall that the aims of the thesis are to:

1 assess whether we can derive bi-orthogonality relations such that the adjoint LST eigenvec-
tors are orthogonal to the direct eigenvectors, for both the compressible and incompressible
LST equations

2 determine how the eigenvalue spectrum of the LST operator is affected by specific pertur-
bations in the base flow profile

Taking into account the limitations described in the previous section for the LST equations, we
will:

I Derive the adjoint system for the incompressible and compressible LST equations

II Derive, implement and assess bi-orthogonality relations using the adjoint eigenvectors

III Compute pseudospectra for the incompressible and compressible LST equations for a per-
turbed generalised eigenvalue problem (𝐴 + 𝐸)q = 𝜔(𝐵 + 𝐸)q, with 𝐸 ∼ 𝒪(𝜖)

IV Compute eigenspectra for the incompressible and compressible LST equations for a per-
turbed streamwise velocity base flow profile 𝑢(𝑦) + 𝐸(𝑦), with 𝐸 𝒪(𝜖)

1.6. Lay-out of the thesis
In this thesis we will first discuss Linear Stability Theory, the governing equations ánd solving
those equations in Chapter 2. Chapter 3 will present the derivations of the adjoint LST operators,
compressible and incompressible, to be used for the bi-orthogonality relations that are derived
in Chapter 4. Chapter 4 will further discuss the numerical implementation of said biorthogonality
relations for the compressible and incompressible LST equations. Subsequently, in Chapter 5 the
’original’ temporal eigenvalue spectra will be characterised, and pseudospectra will be presented
for a perturbed generalised eigenvalue problem for both the incompressible and compressible LST
operators, respectively. Chapter 6 will present temporal eigenspectra of the incompressible and
compressible LST operators for perturbations of the streamwise velocity base flow profile. These
perturbations will be imposed (1) on the entire profile, (2) in the wall region, (3) in a middle region
and (4) on the top-layer at the edge of the flow profile. Finally, we will present our conclusions
and recommendations in Chapter 7.





2
Linear Stability Theory

In this chapter we will first briefly discuss the basic premise of Linear Stability Theory in Section
2.1. The governing equations and the inherent simplifications are presented in Section 2.2. How
we solve those equations is dealt with in Sections 2.3 and 2.4.

2.1. Basic premise
The basic premise of stability theory lies in the decomposition of a base flow plus a perturbation of
𝒪(𝜖) which is introduced into the governing equations (where 𝜖 << 1). Here, both the complete
expression and the base flow equations satisfy the governing equations. Which consequently
allows for the subtraction of the terms involving the base flow quantities only(system of 𝒪(1)),
thereby yielding the perturbation equations (system of 𝒪(𝜖)). The complete system is by many
reported as the ’mean-plus-perturbation equations [4]. Note that it is only after linearisation of the
perturbation equations that these are only applicable up to 𝜖 away from the equilibrium solution
under investigation.
Depending on the flow situation the base flow is – or can be assumed to be – (in)homogeneous
in certain directions, which affects the subsequent analysis in that the homogeneous direction(s)
may then be evaluated in a spectral manner, whereas the inhomogeneous directions require a
differential analysis. The problem can be Fourier transformed.

For a flow inhomogeneous in only one direction, and with a base flow independent of time (e.g.
a Blasius developing boundary layer, albeit analysed far from the leading edge of the plate) we
arrive at the well-known LST Ansatz (through Fourier analysis) for the perturbation 𝑞ᖣ:

𝑞ᖣ(𝑥, 𝑦, 𝑧, 𝑡) = 𝑞̃(𝑦)𝑒።ጆ(፱,፳,፭) + 𝑐.𝑐. (2.1)

which in our developing boundary layer example represents a parallel flow evaluated locally.
Assuming a solution of the form 𝑒።ጆ(፱,፳,፭) reduces the initial-boundary-value problem to an eigen-
value problem (EVP).

2.2. Stability equations
The stability equations are often set up as a spatial problem or as a temporal problem. For a
spatial problem the frequency 𝜔 is real and given and the EVP is solved for the complex spatial
wavenumber 𝛼. For a temporal problem the spatial wavenumber 𝛼 is real and given and the EVP
is solved for the complex frequency 𝜔. It is of course not necessary to choose for either problem,
as the ’full’ problem would allow both the spatial and temporal modes to grow/decay in time. In
this work we will restrict ourselves to the temporal problem, in light of its analogy with the stability
issue of flow disturbances in time, e.g. the growth of the Tollmien-Schlichting mode over time.
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The simplifications for the LST stability equations we will use in this project – obtained by
means of the Ansatz as described in 2.1 – amount to linearised equations, evaluated locally, spec-
tral treatment (i.e. homogeneous) in all directions (and time) except for the differentially evaluated
(i.e. inhomogeneous) 𝑦-direction.

Below the corresponding compressible LST stability equations are given – in Cartesian coordi-
nates – for compressible continuity, momentum and energy [4, 14].

Continuity:

−𝑖 𝛽 𝑇̃ 𝑃𝑊
𝑇

+ 𝑖 𝛽 𝑝̃𝑊 − 𝑖 𝛼 𝑇̃ 𝑃 𝑈
𝑇

+ 𝑖 𝛼 𝑝̃ 𝑈 −
𝑣̃ 𝑃 𝑇፲
𝑇

+𝑖 𝜔 𝑇̃ 𝑃
𝑇

− 𝑖 𝜔 𝑝̃ + 𝑣̃ 𝑃፲ + 𝑖𝛽 𝑤̃ 𝑃 + 𝑣̃፲ 𝑃 + 𝑖 𝛼 𝑢̃ 𝑃 = 0 (2.2)

x-Momentum:

𝑖 𝛽 𝛾 𝑢̃ 𝑀ኼ𝑃𝑊
𝑇

+
𝛾 𝑣̃ 𝑀ኼ𝑃𝑈፲

𝑇
+ 𝑖 𝛼 𝛾 𝑢̃ 𝑀

ኼ𝑃𝑈
𝑇

− 𝑖 𝛾 𝜔 𝑢̃𝑀
ኼ𝑃

𝑇
=
𝑇̃ 𝜇ፓ𝑈፲ ፲
𝑅𝑒

+
𝑇̃ 𝜇ፓ ፓ 𝑇፲𝑈፲

𝑅𝑒 +
𝑇̃፲ 𝜇ፓ𝑈፲
𝑅𝑒 +

𝑖 𝛼 𝑣̃ 𝜇ፓ 𝑇፲
𝑅𝑒 +

𝑢̃፲ 𝜇ፓ 𝑇፲
𝑅𝑒 − 𝑖 𝛼 𝑝̃ − 𝛼 𝛽 𝑤̃ 𝜇𝑅𝑒 +

𝑖 𝛼 𝑣̃፲ 𝜇
𝑅𝑒

+
𝑢̃፲ ፲ 𝜇
𝑅𝑒 − 𝛽

ኼ 𝑢̃ 𝜇
𝑅𝑒 − 2𝛼

ኼ 𝑢̃ 𝜇
𝑅𝑒 − 𝛼 𝛽 𝑤̃ 𝜆𝑅𝑒 +

𝑖 𝛼 𝑣̃፲ 𝜆
𝑅𝑒 − 𝛼

ኼ 𝑢̃ 𝜆
𝑅𝑒 (2.3)

y-Momentum:

𝑖 𝛽 𝛾 𝑣̃ 𝑀ኼ𝑃𝑊
𝑇

+ 𝑖 𝛼 𝛾 𝑣̃ 𝑀
ኼ𝑃𝑈

𝑇
− 𝑖 𝛾 𝜔 𝑣̃ 𝑀

ኼ𝑃
𝑇

=
𝑖 𝛽 𝑇̃ 𝜇ፓ𝑊፲

𝑅𝑒 +
𝑖 𝛼 𝑇̃ 𝜇ፓ𝑈፲

𝑅𝑒

+
2 𝑣̃፲ 𝜇ፓ 𝑇፲

𝑅𝑒 +
𝑖 𝛽 𝑤̃ 𝜆ፓ 𝑇፲

𝑅𝑒 +
𝑣̃፲ 𝜆ፓ 𝑇፲
𝑅𝑒 +

𝑖 𝛼 𝑢̃ 𝜆ፓ 𝑇፲
𝑅𝑒 − 𝑝̃፲ +

𝑖 𝛽 𝑤̃፲ 𝜇
𝑅𝑒 +

2 𝑣̃፲ ፲ 𝜇
𝑅𝑒

−𝛽
ኼ 𝑣̃ 𝜇
𝑅𝑒 − 𝛼

ኼ 𝑣̃ 𝜇
𝑅𝑒 +

𝑖 𝛼 𝑢̃፲ 𝜇
𝑅𝑒 +

𝑖 𝛽 𝑤̃፲ 𝜆
𝑅𝑒 +

𝑣̃፲ ፲ 𝜆
𝑅𝑒 +

𝑖 𝛼 𝑢̃፲ 𝜆
𝑅𝑒 (2.4)

z-Momentum:

𝛾 𝑣̃ 𝑀ኼ𝑃𝑊፲

𝑇
+ 𝑖 𝛽 𝛾 𝑤̃𝑀

ኼ𝑃𝑊
𝑇

+ 𝑖 𝛼 𝛾 𝑤̃𝑀
ኼ𝑃𝑈

𝑇
− 𝑖 𝛾 𝜔 𝑤̃𝑀

ኼ𝑃
𝑇

=
𝑇̃ 𝜇ፓ𝑊፲ ፲
𝑅𝑒

+
𝑇̃ 𝜇ፓ ፓ 𝑇፲𝑊፲

𝑅𝑒 +
𝑇̃፲ 𝜇ፓ𝑊፲
𝑅𝑒 +

𝑤̃፲ 𝜇ፓ 𝑇፲
𝑅𝑒 +

𝑖 𝛽 𝑣̃ 𝜇ፓ 𝑇፲
𝑅𝑒 − 𝑖 𝛽 𝑝̃ +

𝑤̃፲ ፲ 𝜇
𝑅𝑒 − 2𝛽

ኼ 𝑤̃ 𝜇
𝑅𝑒

−𝛼
ኼ 𝑤̃ 𝜇
𝑅𝑒 +

𝑖 𝛽 𝑣̃፲ 𝜇
𝑅𝑒 − 𝛼 𝛽 𝑢̃ 𝜇𝑅𝑒 − 𝛽

ኼ 𝑤̃ 𝜆
𝑅𝑒 +

𝑖 𝛽 𝑣̃፲ 𝜆
𝑅𝑒 − 𝛼 𝛽 𝑢̃ 𝜆𝑅𝑒 (2.5)
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Energy:

𝑖 𝛽 𝛾 𝑇̃ 𝑀ኼ𝑃𝑊
𝑇

+ 𝑖 𝛼 𝛾 𝑇̃𝑀
ኼ𝑃𝑈

𝑇
+
𝛾 𝑣̃ 𝑀ኼ𝑃 𝑇፲

𝑇
− 𝑖 𝛾 𝜔 𝑇̃𝑀

ኼ𝑃
𝑇

=
(𝛾 − 1) 𝑇̃ 𝑀ኼ 𝜇ፓ (𝑊፲)

ኼ

𝑅𝑒 +
2 (𝛾 − 1) 𝑤̃፲𝑀ኼ 𝜇𝑊፲

𝑅𝑒 +
2 𝑖 𝛽 (𝛾 − 1) 𝑣̃ 𝑀ኼ 𝜇𝑊፲

𝑅𝑒

+𝑖 𝛽 (𝛾 − 1)𝑀ኼ 𝑝̃𝑊 +
(𝛾 − 1) 𝑇̃ 𝑀ኼ 𝜇ፓ (𝑈፲)

ኼ

𝑅𝑒 +
2 𝑖 𝛼 (𝛾 − 1) 𝑣̃ 𝑀ኼ 𝜇 𝑈፲

𝑅𝑒

+
2 (𝛾 − 1) 𝑢̃፲𝑀ኼ 𝜇 𝑈፲

𝑅𝑒 + 𝑖 𝛼 (𝛾 − 1)𝑀ኼ 𝑝̃ 𝑈 +
𝑇̃ 𝑘ፓ 𝑇፲ ፲
𝑃𝑟 𝑅𝑒 +

𝑇̃ 𝑘ፓ ፓ (𝑇፲)
ኼ

𝑃𝑟 𝑅𝑒

+
2 𝑇̃፲ 𝑘ፓ 𝑇፲
𝑃𝑟 𝑅𝑒 +

𝑇̃፲ ፲ 𝑘
𝑃𝑟 𝑅𝑒 −

𝛽ኼ 𝑇̃ 𝑘
𝑃𝑟 𝑅𝑒 −

𝛼ኼ 𝑇̃ 𝑘
𝑃𝑟 𝑅𝑒

−𝑖 (𝛾 − 1)𝜔𝑀ኼ 𝑝̃ + (𝛾 − 1) 𝑣̃ 𝑀ኼ𝑃፲ (2.6)

For these compressible equations a calorically perfect gas is assumed and the transport coef-
ficients 𝜆, 𝜇 and 𝑘 are considered to be functions of temperature. Sutherland’s law is applied for
the first coefficient of viscosity. Note that in the TU Delft stability code the continuity equation as
presented above is divided by 𝜌̄ = 𝛾𝑀ኼ𝑝̄/𝑇̄ to improve the Frobenius norm of the LST operator
[5].

Homogeneous boundary conditions are usually applied for the perturbation amplitudes 𝑢̃, 𝑣̃,
𝑤̃ both at the wall and at the free-stream boundary [4, 14, 5]. Note that the latter is due to
the choice of the boundary layer flow test case in this work. A compatibility condition may be
applied for the pressure perturbation amplitude 𝑝̃. For the temperature perturbation, amplitude
it is justified to apply a homogeneous boundary condition for unsteady perturbation solutions,
ℛ(𝜔) ≠ 0 [5].

Similarly, the incompressible LST stability equations are given below – in Cartesian coordinates
– for incompressible continuity and momentum [4, 14].

Continuity:

𝑖𝛽𝑤̃ + ̃𝑣፲ + 𝑖𝛼𝑢̃ = 0 (2.7)

x-Momentum:

𝑖𝛽𝑢̃𝑊 + 𝑣̃𝑈፲ + 𝑖𝛼𝑢̃𝑈 − 𝑖𝜔𝑢̃ = −𝑖𝛼𝑝̃ +
𝑢̃፲፲
𝑅𝑒 −

𝛽ኼ𝑢̃
𝑅𝑒 −

𝛼ኼ𝑢̃
𝑅𝑒 (2.8)

y-Momentum:

𝑖𝛽𝑣̃𝑊 + 𝑖𝛼𝑣̃𝑈 − 𝑖𝜔𝑣̃ = − ̃𝑝፲ +
𝑣̃፲፲
𝑅𝑒 −

𝛽ኼ𝑣̃
𝑅𝑒 −

𝛼ኼ𝑣̃
𝑅𝑒 (2.9)

z-Momentum:

𝑣̃𝑊፲ + 𝑖𝛽𝑤̃𝑊 + 𝑖𝛼𝑤̃𝑈 − 𝑖𝜔𝑤̃ = −𝑖𝛽𝑝̃ +
𝑤̃፲፲
𝑅𝑒 −

𝛽ኼ𝑤̃
𝑅𝑒 − 𝛼

ኼ𝑤̃
𝑅𝑒 (2.10)

As with the compressible equations homogeneous boundary conditions are usually applied for
the perturbation amplitudes 𝑢̃, 𝑣̃, 𝑤̃ both at the wall and at the free-stream boundary [4, 14, 5].
A compatibility condition may be applied for the pressure perturbation amplitude 𝑝̃.
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2.2.1. Global instability and PSE
In the linear stability equations presented above we only evaluated the y-direction differentially.
As a result the solution can only represent inhomogeneous behaviour in the y-direction. The
other directions are restricted to modal behaviour. Hence, we essentially have a unidimensional
mean flow, and more importantly: unidimensional eigenfunctions. Taking into account a further
spatial direction would yield a BiGlobal analysis, in which we basically assess the flow stability in a
plane. In a similar vein TriGlobal analysis relates to the flow stability in a volume. Including extra
differential spatial directions allows for the representation of more physical phenomena than in
the current LST method, e.g. spanwise vorticity for the BiGlobal case. For more information on
global instability see Theofilis [23], and for an extensive introduction to BiGlobal analysis and the
corresponding equations see [4].

Another main assumption in the LST equations is that of a local flow. It is possible to eliminate
the local assumption and solve the equations by marching in space instead of solving them sepa-
rately for each location. This approach would constitute Parabolised Stability Equations (PSE) and
could be performed irrespective of the choice on differential/spectral directions (e.g. Uni-, Bi- or
TriGlobal PSE). Obviously this would increase the accuracy of the representation of the test case,
as it allows for the use of the time history of the flow, e.g. curvature of an airfoil suddenly can be
accounted for.

These more involved analyses are however considered outside the scope of this thesis. Need-
less to say, improving the accuracy of the analysis and the increased number physical phenomena
that can be captured by the BiGlobal/TriGlobal and PSE is indeed very interesting. However it
adds a complexity to the equations themselves and an increasing sensitivity to boundary/initial
conditions that may cloud the interpretation of the stability results in light of the aims of this
study. The effect of the choice of boundary conditions, or even the initial disturbances, is not
easily distinguished from the effect of a perturbation imposed deliberately.

2.3. Numerical methods
The stability equations will be solved using the verified TU Delft stability code [5] (originating from
[4]). Below we will detail the systems of equations (Section 2.3.1), the discretisation method
(Section 2.3.2), and how we will solve the eigenvalue problems. An additional note is included
on the spurious modes that can be observed in the stability results of the TU Delft code (Section
2.4.1).

2.3.1. LST operators
The systems of equations following from the governing LST equations are set up as follows, for
the generalised eigenvalue problem (GEP) (𝐀 − 𝜔𝐁)𝑞̃ = 𝟎:

Incompressible:

⎡
⎢
⎢
⎣

[X-MOMENTUM]
[Y-MOMENTUM]
[Z-MOMENTUM]
[CONTINUITY]

⎤
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑢̃
𝑣̃
𝑤̃
𝑝̃

⎤
⎥
⎥
⎦

= 𝟎 (2.11)

Compressible:

⎡
⎢
⎢
⎢
⎢
⎣

[X-MOMENTUM]
[Y-MOMENTUM]
[Z-MOMENTUM]
[ENERGY]

[CONTINUITY]

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎣

𝑢̃
𝑣̃
𝑤̃
𝑇̃
𝑝̃

⎤
⎥
⎥
⎥
⎥
⎦

= 𝟎 (2.12)
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The system of equations determined by (𝐀−𝜔𝐁) forms the operator, or function, that acts on
the variables defined in 𝑞̃.
Note from the stability equations that the temporal EVP (𝐀 − 𝜔𝐁) yields a ’straight-forward’
linear EVP, whilst the spatial EVP would yield a quadratic EVP given the terms 𝛼ኼ. That is:
(𝐀 − 𝛼𝐁 − 𝛼ኼ𝐂) = 0. To be able to solve such a polynomial problem would require linearising

the system of equations by augmenting it such that we solve for 𝑞̃፪፮ፚ፝፫ፚ፭።፜ = [
𝛼𝑞̃
𝑞̃ ].

For the temporal LST problem in this study homogeneous boundary conditions are applied for
the perturbation amplitudes 𝑢̃, 𝑣̃, 𝑤̃ both at the wall and at the free-stream boundary. Using
the linearised y-momentum and the pressure gradient term in said y-momentum equation a com-
patibility condition is applied for the pressure perturbation, which yields the following system of
equations (compressible case):

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

[X-MOMENTUM]
[Y-COMPATIBILITY EDGE]

[Y-MOMENTUM]
[Y-COMPATIBILITY WALL]

[Z-MOMENTUM]
[ENERGY]

[CONTINUITY]

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑢̃
𝑣̃
𝑤̃
𝑇̃

𝑝̃edge
𝑝̃
𝑝̃wall

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 𝟎 (2.13)

2.3.2. Chebyshev spectral collocation
The TU Delft stability code employs a Chebyshev spectral collocation method with a set of Gauss-
Chebyshev-Lobatto (GCL) nodes, and the mapping introduced by Malik [11].

Spectral collocation essentially uses an expansion of the solution in terms of a finite set of global
basis functions. The expansion coefficients are then required to exactly satisfy the differential
equation at the collocation nodes in question. This allows for the representation of the derivatives
at these nodes. Exactly satisfying the equations at the collocation nodes can be done using a set
of discrete delta functions, e.g. Lagrange polynomials.

The main advantage of using a spectral collocation method, as opposed to for example finite
differences, is the relatively high accuracy, especially regarding the evaluation of the derivatives.
In the spectral collocation method used, the derivative(s) at a certain node are determined using
the entire stencil of nodes, whereas e.g. in a finite difference scheme the derivatives are computed
using a certain subset of (neighbouring) nodes.

For a more detailed description of the collocation method used see Groot [4]. Or see Hussaini
et al. [6] for a review on spectral collocation methods.

2.4. Solving eigenvalue problems
To solve the eigenvalue problems presented by the LST equations we will use the standard function
eig in Matlab. This function employs the QZ algorithm to determine the full spectrum 𝜎(𝐀, 𝐁).
These results are accurate up to:

𝜖፞።፠ = 𝑚𝑎𝑥(𝜖||𝐀||ፅ , ||𝐁||ፅ) (2.14)

This criterion, often referred to as the algorithm precision, may be used to determine whether
the spectrum resolved by the QZ algorithm is of the desired accuracy for the Frobenius norm || ⋅ ||ፅ
and the machine precision 𝜖 (≈ 2.2∗10ዅኻዀ [4]). We will use the above criterion in the subsequent
pseudospectra analyses to quantify the reliability of our spectra. When solving the LST EVP for
the frequency 𝜔 the spectrum (i.e. 𝜎(𝐀, 𝐁)) perturbations may grow exponentially for values of
𝜔 for which the imaginary part is positive. Hence, should the spectrum be confined to the lower
complex half-plane, the system can be considered linearly stable. In this case small perturbations
would decay for 𝑡 → ∞.
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In interpreting the eigenspectrum it is interesting to note that the real phase speed ℛ(𝑐) of a
certain eigenmode 𝜔:

ℛ(𝑐) = ℛ(𝜔𝛼 ) (2.15)

may be linked to the base flow velocity profile. In matching the real phase speed to the base
flow velocity profile it gives an indication of the dominant location of this mode, i.e. the location
at which it has its maximum amplitude [20]. For example, for a boundary layer flow those modes
with a lower real phase speed may be considered wall modes, and modes for which the real phase
speed approaches 1 are dominant in the freestream layer.

Further notes to keep in mind are that due to the non-orthogonality of the eigenvectors for fluid
mechanics problems, the eigenspectra may yield regions with random mode behaviour, related
to the phenomenon of transient growth [27]. And that the system of eigenvectors resulting from
the EVP is only applicable up to 𝜖 away from the ’current’ tangent space in which they reside. For
example, to properly include the effects of transient growth, the actual (stable) manifold itself will
be required, which yields a non-EVP [4].

2.4.1. Spurious mode behaviours

Figure 2.1: Spurious v-mode, ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ

Through solving the discretised LST equations with a compatiblity equation the set 𝜎(𝐀, 𝐁) does
not solely contain physical modes. Rather, non-physical spurious modes are contained within the
set 𝜎(𝐀, 𝐁). These are apparent in the normal-velocity perturbation and are characterised by
large oscillations between subsequent nodes. See for example the spurious mode in Figure 2.1.
The mode effectively becomes a combination of two decoupled mode-shapes with intermittent
’zig-zagging’. Such a spurious mode might perhaps be attributed to the following:

• As a result of the pressure compatibility conditions, the formulation in 𝑣̃ remains uncon-
strained, which leads to odd-even decoupling between the nodes and subsequent non-
uniqueness as a result of additive constants [23]

• eigensolver characteristics, i.e. replacing entries below a certain threshold with zeros,
thereby affecting the system considerably given that it is highly non-orthogonal

Detection of the non-physical spurious modes is achieved by means of an orthogonal projection
of the mode on a general ’zig-zag’ pattern to capture the oscillatory content of the 𝑣̃-amplitude.
These modes are omitted in what follows.



3
Derivations of the adjoint LST

operators

In this chapter we will first briefly discuss the definition of an adjoint operator and what adjoint
operators might be used for in section 3.1. The derivation of the adjoint operator of the primitive
variable formulation of the incompressible LST system is then presented in section 3.2. The adjoint
operator derivation of the primitive variable formulation of the compressible LST system is shown
in section 3.3.

3.1. Adjoint operators
Formally the adjoint is defined as an operator ℒዄ such that:

(𝑦, ℒ(𝑥)) = (ℒዄ(𝑦), 𝑥) ∀𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 (3.1)

for arbitrary vectors 𝑥, 𝑦, and with the inner product defined as (𝑢, 𝑣) = ∫𝑢∗𝑣 dy ∈ ℂፍ. For
continuous linear operators the adjoint is generally defined as the matrix 𝐀ዄ such that:

(𝑦, 𝐀𝑥) = (𝐀ዄ𝑦, 𝑥) ∀𝑥, 𝑦 ∈ ℂፍ and 𝐀,𝐀ዄ ∈ ℂፍ፱ፍ (3.2)

for which – again for arbitrary vectors 𝑥, 𝑦 – the inner product properties dictate that 𝐀ዄ = 𝐀ፇ,
and (𝐀ዄ)ፇ = 𝐀 for constant coefficient matrices 𝐀. As such the definition of the adjoint translates
to the complex conjugate transpose, or Hermitian transpose, in matrix operations. For cases with
non-constant coefficient matrices, due to for example an inhomogeneous direction and hence dif-
ferential dependency in the operator matrix, the latter equation does not necessarily apply. In
that scenario the transposition of the system might yield additional cross-terms: i.e. 𝐀ዄ ≠ 𝐀ፇ.
An example of such a non-constant coefficient operator would be that of the LST operators such
as those described in section 2.2. These operators not yield constant coefficient matrices due
to their inherent 𝑦−dependency, and as a result 𝐀ዄ ≠ 𝐀ፇ for the continuous linear operator
case. When considering the discretised version of these operators, then the identity 𝐀ዄ = 𝐀ፇ
does apply. This means that for a discrete EVP the adjoint eigenvectors could be derived by de-
termining the left eigenvectors of the direct EVP. The left eigenvectors of the direct EVP equal
the eigenvectors of the Hermitian transpose of the direct EVP operator, 𝐀ፇ in our example. In
the current study we will use both the continous approach and the discrete approach to obtain 𝐀ዄ.

3.1.1. Application of adjoint operators
Inherent to the inner product definition of the adjoint, with its bilinear characteristics, bi-orthogonality
relations regarding the two sets of eigenmodes may be derived [20]. The bi-orthogonality relations
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can be used for the projection of ”any initial condition or external forcing onto the basis formed
by the system’s eigenvectors” [19]. Thereby the adjoints help provide insight into the sensitivity
and response of a system to initial condititions or types of forcing of interest. Schmid [19] notes
that triggering a specific mode is best done by ”using the velocity profile defined by its adjoint”.

In another application, the adjoint operator may be used to determine optimal growth modes
[20], which may especially be of interest for the transient growth perspectives touched upon earlier
in the introduction to this thesis.

For further applications of the adjoint equations in stability analysis, see the review of Luchini
& Bottaro [8].

3.2. Primitive variable incompressible LST
In the primitive variable formulation the incompressible LST equations can be expressed as the
generalised eigenvalue problem (𝐀 − 𝜔𝐁)𝑞̃ = 𝐂𝑞̃ = 0:

ℒ =
⎡
⎢
⎢
⎣

x − momentum
y −momentum
z −momentum
continuity

⎤
⎥
⎥
⎦

⇒ 𝐂𝑞̃ =
⎡
⎢
⎢
⎢
⎣

𝐺 𝑈፲ 0 𝑖𝛼
0 𝐺 0 𝒟
0 𝑊፲ 𝐺 𝑖𝛽
𝑖𝛼 𝒟 𝑖𝛽 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑢̃
𝑣̃
𝑤̃
𝑝̃

⎤
⎥
⎥
⎦

(3.3)

with 𝐺 = −𝑖𝜔+ 𝑖𝛼𝑈+ 𝑖𝛽𝑊− ኻ
ፑ፞ (𝒟ኼ−𝑘ኼ), and homogeneous boundary conditions 𝑢̃ = 𝑣̃ = 𝑤̃ = 0

at the walls in case of Poiseuille flow – or more generally speaking – at the bounds of the domain.
Note that we here consider the temporal eigenvalue problem with the frequency 𝜔 as the eigen-
value.
Property-wise, it is interesting to note that the mean flow terms 𝑈፲ and 𝑊፲ are the sole cause
of system asymmetry in 𝐂. Thereby preventing us from using the hugely simplifying properties
of symmetric matrices, such as orthogonal eigenvectors or real eigenvalues. Furthermore, it is
to be observed that perturbation pressure-wise there is no implicit coupling between the mo-
mentum and continuity equations. And with the velocity perturbation components known on the
boundaries through the homogeneous boundary conditions, the perturbation pressure solution
essentially does not have any boundary conditions itself. Although, we do employ pressure com-
patibility conditions on Ꭷ፩̃

Ꭷ፲ in the TU Delft stability code through use of the y-momentum equation
defined at the wall and free-stream edge. That is, a Neumann boundary condition forced by the
viscous term on the RHS. Thereby the pressure perturbation is not prescribed on the boundaries,
but follows from the velocity components, consequently yielding a singular system. The singu-
lar pressure modes can be interpreted as superfluous unknowns which can take on any value
𝑝̃።,፣ + 𝑐𝑜𝑛𝑠𝑡 without affecting the pressure gradients or the conservation of mass. As such there
are infinitely many solutions. In EVPs the undetermined constant in the perturbation-pressure
solution is set randomly by the eigensolver [4].

In the discrete approach solving, the above direct EVP using Matlab’s eig yields the direct eigen-
vectors (right eigenvectors) and the discrete adjoint eigenvectors (the left eigenvectors).

3.2.1. Continuous approach
If we now intend to derive the adjoint operator 𝐂ዄ using the continuous approach we effectively
determine the transpose and complex conjugate of operator 𝐂, as per the inner product definition
of the adjoint operator. In the derivation below we will do so by (STEP 1) defining the inner
product (𝑞̃ዄ, 𝐂𝑞̃) = ∫፲(𝑞̃

ዄ)∗𝐂𝑞̃ d𝑦 = 0, (STEP 2) performing integration by parts on the inner
product to transpose the system and (STEP 3) taking the complex conjugate of the remaining
expression so as to determine the adjoint of the complete operator as opposed to just the matrix
(i.e. as for example constants taken out of the matrix in order to simplify the transposition, might
themselves still be complex numbers).
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STEP 1:

∫
፲
[(𝑢̃ዄ)∗ (𝑣̃ዄ)∗ (𝑤̃ዄ)∗ (𝑝̃ዄ)∗]

⎡
⎢
⎢
⎢
⎣

𝐺 𝑈፲ 0 𝑖𝛼
0 𝐺 0 𝒟
0 𝑊፲ 𝐺 𝑖𝛽
𝑖𝛼 𝒟 𝑖𝛽 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑢̃
𝑣̃
𝑤̃
𝑝̃

⎤
⎥
⎥
⎦

d𝑦 = 0 (3.4)

STEP 2:

1. Performing integration by parts on the inner product’s x-momentum terms:

∫(𝑢̃ዄ)∗ [−𝑖𝜔 + 𝑖𝛼𝑈 + 𝑖𝛽𝑊 − 1
𝑅𝑒(𝒟

ኼ − 𝑘ኼ)] (𝑢̃)d𝑦 + ∫(𝑢̃ዄ)∗ [𝑈፲] (𝑣̃)d𝑦 + ∫(𝑢̃ዄ)∗ [𝑖𝛼] (𝑝̃)d𝑦

⇒ ∫(𝑢̃) [−𝑖𝜔 + 𝑖𝛼𝑈 + 𝑖𝛽𝑊 − 1
𝑅𝑒(𝒟

ኼ − 𝑘ኼ)] (𝑢̃ዄ)∗d𝑦 − [ 1𝑅𝑒 ((𝑢̃)𝒟(𝑢̃
ዄ)∗)]

ዌው
− [ 1𝑅𝑒 ((𝑢̃

ዄ)∗𝒟(𝑢̃))]
ዌው

+∫(𝑣̃) [𝑈፲] (𝑢̃ዄ)∗d𝑦 + ∫(𝑝̃) [𝑖𝛼] (𝑢̃ዄ)∗d𝑦

⇒ ∫(𝑢̃) [−𝑖𝜔 + 𝑖𝛼𝑈 + 𝑖𝛽𝑊 − 1
𝑅𝑒(𝒟

ኼ − 𝑘ኼ)] (𝑢̃ዄ)∗d𝑦 + ∫(𝑣̃) [𝑈፲] (𝑢̃ዄ)∗d𝑦 + ∫(𝑝̃) [𝑖𝛼] (𝑢̃ዄ)∗d𝑦

note that after applying 𝑢̃(BC) = 0, and choosing (𝑢̃ዄ)∗(BC) = 0, there are no integration-
by-parts boundary terms left in the expression.

2. Performing integration by parts on the inner product’s y-momentum terms

∫(𝑣̃ዄ)∗ [−𝑖𝜔 + 𝑖𝛼𝑈 + 𝑖𝛽𝑊 − 1
𝑅𝑒(𝒟

ኼ − 𝑘ኼ)] (𝑣̃)d𝑦 + ∫(𝑣̃ዄ)∗𝒟(𝑝̃)d𝑦

⇒ ∫(𝑣̃) [−𝑖𝜔 + 𝑖𝛼𝑈 + 𝑖𝛽𝑊 − 1
𝑅𝑒(𝒟

ኼ − 𝑘ኼ)] (𝑣̃ዄ)∗d𝑦 − ∫(𝑝̃)𝒟(𝑣̃ዄ)∗d𝑦

again, by applying 𝑣̃(BC) = 0, and choosing (𝑣̃ዄ)∗(BC) = 0, there are no integration-by-parts
boundary terms left in the expression. Also note the ’−’ due to the integration-by-parts on
the direct pressure gradient term (transposing from 𝒟𝑝̃ to (𝒟𝑣̃ዄ)∗).

3. Performing integration by parts on the inner product’s z-momentum terms

∫(𝑤̃ዄ)∗ [−𝑖𝜔 + 𝑖𝛼𝑈 + 𝑖𝛽𝑊 − 1
𝑅𝑒(𝒟

ኼ − 𝑘ኼ)] (𝑤̃)d𝑦 + ∫(𝑤̃ዄ)∗ [𝑊፲] (𝑣̃)d𝑦 + ∫(𝑤̃ዄ)∗ [𝑖𝛽] (𝑝̃)d𝑦

⇒ ∫(𝑤̃) [−𝑖𝜔 + 𝑖𝛼𝑈 + 𝑖𝛽𝑊 − 1
𝑅𝑒(𝒟

ኼ − 𝑘ኼ)] (𝑤̃ዄ)∗d𝑦 + ∫(𝑣̃) [𝑊፲] (𝑤̃ዄ)∗d𝑦 + ∫(𝑝̃) [𝑖𝛽] (𝑤̃ዄ)∗d𝑦

observe that by applying 𝑤̃(BC) = 0, and choosing (𝑤̃ዄ)∗(BC) = 0, there are no additional
boundary terms due to the integration-by-parts procedure to be found in the expression.

4. Performing integration by parts on the inner product’s continuity terms

∫(𝑝̃ዄ)∗ [𝑖𝛼] (𝑢̃)d𝑦 + ∫(𝑝̃ዄ)∗𝒟(𝑣̃)d𝑦 + ∫(𝑝̃ዄ)∗ [𝑖𝛽] (𝑤̃)d𝑦

⇒ ∫(𝑢̃) [𝑖𝛼] (𝑝̃ዄ)∗d𝑦 − ∫(𝑣̃)𝒟(𝑝̃ዄ)∗d𝑦 + ∫(𝑤̃) [𝑖𝛽] (𝑝̃ዄ)∗d𝑦
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by applying 𝑣̃(BC) = 0 there are no additional boundary terms due to the integration-by-
parts procedure (do note the ’−’ resulting from the transposition from velocity gradient to
pressure gradient).

As such the transposed system becomes:

[𝑢̃ 𝑣̃ 𝑤̃ 𝑝̃]
⎡
⎢
⎢
⎢
⎣

𝐺 0 0 𝑖𝛼
𝑈፲ 𝐺 𝑊፲ −𝒟
0 0 𝐺 𝑖𝛽
𝑖𝛼 −𝒟 𝑖𝛽 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

(𝑢̃ዄ)∗
(𝑣̃ዄ)∗
(𝑤̃ዄ)∗
(𝑝̃ዄ)∗

⎤
⎥
⎥
⎦

= 0 (3.5)

STEP 3: Finally, taking the c.c. of the complete transposed expression:

∫
፲
[𝑢̃∗ 𝑣̃∗ 𝑤̃∗ 𝑝̃∗]

⎡
⎢
⎢
⎢
⎣

𝐺∗ 0 0 −𝑖𝛼∗
𝑈፲ 𝐺∗ 𝑊፲ −𝒟
0 0 𝐺∗ −𝑖𝛽∗

−𝑖𝛼∗ −𝒟 −𝑖𝛽∗ 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎣

𝑢̃ዄ
𝑣̃ዄ
𝑤̃ዄ
𝑝̃ዄ

⎤
⎥
⎥
⎦

d𝑦 = 0 ⇒ (𝑞̃, 𝐂ዄ𝑞̃ዄ) = 0 (3.6)

where 𝐺∗ = 𝑖𝜔∗ − 𝑖𝛼∗𝑈 − 𝑖𝛽∗𝑊 − ኻ
ፑ፞ (𝒟ኼ − 𝑘ኼ), and homogeneous boundary conditions 𝑢̃ዄ =

𝑣̃ዄ = 𝑤̃ዄ = 0 at the wall and free-stream edge in case of boundary layer flow – or more generally
speaking – at the bounds of the domain. As with the direct system the (Neumann) boundary
condition for the pressure (i.e. on 𝒟(𝑝̃ዄ)∗(BC)) is provided through the use of – in this case – the
adjoint y-momentum equation as the compatibility condition. This follows from the derivation, for
which in the adjoint y-moment equation the pressure gradient is again coupled with the viscous
term.
Note that for the adjoint formulation 𝜔∗ would be considered the eigenvalue. See also section 4.1
for more information on the relation between the adjoint and direct eigenvalues. Furthermore,
the spatial wavenumbers in the LST currently used are taken to be real, but in an effort to remain
as general as possible, here they are still shown as being in their complex conjugate form.

Furthermore, as Schmid & Henningson [20] also noted: the form of the adjoint depends on
the particular inner product that is chosen for the transposition of the operator. Note that in this
continuous approach we have taken the complex conjugate of the complete expression, including
any constants.

3.3. Primitive variable compressible LST
As with the incompressible LST derivation in section 3.2 the discrete approach involves solving
the above direct EVP using Matlab’s eig for the direct eigenvectors (right eigenvectors) and the
discrete adjoint eigenvectors (the left eigenvectors). The continuous approach can be executed
using the same steps as in section 3.2. See the Appendix A for the full derivation of the adjoint
system for the compressible LST equations.

Interesting to note regarding the continuous adjoint derivation is that as a result of the contin-
uous complex conjugate transposition there is a shift to be observed from mu-transport variables
in the direct equations to lambda-transport variables in the adjoint equations due to the homoge-
neous boundary conditions used in the integration-by-parts.



4
Derivations of bi-orthogonality

relations

In this chapter we will first derive the bi-orthogonality relations that ensure orthogonal sets of
direct and adjoint eigenvectors in Sections 4.1 and 4.2. We will further discuss the numerical im-
plementation and results of said biorthogonality relations for the compressible and incompressible
LST equations in Sections 4.3, 4.4 and 4.5.

4.1. Theoretical: direct and adjoint eigenvectors incompressible LST
Consider the generalised direct (𝐼) and adjoint (𝐼𝐼) EVPs, respectively:

𝐼 ∶ 𝐀 ̃𝑞፣ = 𝜔፣𝐁 ̃𝑞፣
𝐼𝐼 ∶ 𝐀ዄ ̃𝑞።ዄ = 𝜔ዄ። 𝐁ዄ ̃𝑞።ዄ

where by definition 𝐀ዄ = 𝐀ፇ. That is, the adjoint operator 𝐀ዄ is defined as the complex
conjugate transpose of the orginal operator 𝐀. Then we can show the relation between the direct
and adjoint eigenvalues by taking the inner products (𝐼ፚ): ( ̃𝑞።ዄ, 𝐀 ̃𝑞፣) = 𝜔፣( ̃𝑞።ዄ, 𝐁 ̃𝑞፣) and (𝐼𝐼ፚ):
( ̃𝑞፣ , 𝐀ዄ ̃𝑞።ዄ) = 𝜔ዄ። ( ̃𝑞፣ , 𝐁ዄ ̃𝑞።ዄ).

𝐼ፚ ∶ ( ̃𝑞።ዄ)ፇ𝐀 ̃𝑞፣ = 𝜔፣( ̃𝑞።ዄ)ፇ𝐁 ̃𝑞፣
𝐼𝐼ፚ ∶ ( ̃𝑞፣)ፇ𝐀ዄ ̃𝑞።ዄ = 𝜔ዄ። ( ̃𝑞፣)ፇ𝐁ዄ ̃𝑞።ዄ

For which (𝐼ፚ) – by rewriting the inner product and using the definition of the adjoint operator
– becomes:

𝐼፛ ∶ (𝐀ዄ ̃𝑞።ዄ)ፇ ̃𝑞፣ = 𝜔፣(𝐁ዄ ̃𝑞።ዄ)ፇ ̃𝑞፣
now taking the Hermitian conjugate of (𝐼፛) yields:

𝐼፜ ∶ ( ̃𝑞፣)ፇ𝐀ዄ ̃𝑞።ዄ = 𝜔∗፣( ̃𝑞፣)ፇ𝐁ዄ ̃𝑞።ዄ

Comparing (𝐼፜) with (𝐼𝐼ፚ) shows that 𝜔ዄ። = 𝜔∗፣. As such the definition of the adjoint implies
that the adjoint eigenvalues 𝜔ዄ are the complex conjugates of the direct eigenvalues 𝜔.

To evaluate the bi-orthogonality between the sets of direct and adjoint eigenvectors we now
define the following identity:

𝐼𝐼𝐼 ∶ ( ̃𝑞።ዄ)ፇ𝐀 ̃𝑞፣ − ( ̃𝑞።ዄ)ፇ𝐀 ̃𝑞፣ = 0

17
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Recall the inner product of the adjoint eigenvector onto the direct problem:

( ̃𝑞።ዄ, 𝐀 ̃𝑞፣) = 𝜔፣( ̃𝑞።ዄ, 𝐁 ̃𝑞፣)
⇒ ( ̃𝑞።ዄ)ፇ𝐀 ̃𝑞፣ = 𝜔፣( ̃𝑞።ዄ)ፇ𝐁 ̃𝑞፣

Rewriting (𝐼𝐼𝐼) through use of (I) and (II), and the definition of the inner product and adjoint
operator:

𝐼𝐼𝐼ፚ ∶ ( ̃𝑞።ዄ)ፇ(𝜔፣𝐁 ̃𝑞፣) − (𝐀ዄ ̃𝑞።ዄ)ፇ ̃𝑞፣ = 0
⇒ 𝐼𝐼𝐼፛ ∶ ( ̃𝑞።ዄ)ፇ(𝜔፣𝐁 ̃𝑞፣) − (𝜔ዄ። 𝐁ዄ ̃𝑞።ዄ)ፇ ̃𝑞፣ = 0
⇒ 𝐼𝐼𝐼፜ ∶ ( ̃𝑞።ዄ)ፇ(𝜔፣𝐁 ̃𝑞፣) − ( ̃𝑞።ዄ)ፇ((𝜔ዄ። )∗𝐁 ̃𝑞፣) = 0

Or equivalently to (𝐼𝐼𝐼፜):

𝐼𝐼𝐼፝ ∶ (𝜔፣ − (𝜔ዄ። )∗) [( ̃𝑞።ዄ)ፇ𝐁 ̃𝑞፣] = 0

If we assume simple eigenvalues

𝜔፣ ≠ 𝜔። 𝑖 ≠ 𝑗

expression (𝐼𝐼𝐼፝) yields the following bi-orthogonality relations between the adjoint eigenvec-
tors and the direct eigenvectors:

( ̃𝑞።ዄ)ፇ𝐁 ̃𝑞፣ = 0 𝑖 ≠ 𝑗 (4.1)
( ̃𝑞።ዄ)ፇ𝐁 ̃𝑞፣ = 𝐶ኻ 𝑖 = 𝑗 (4.2)

Note that in (𝐼𝐼𝐼፝) the latter equation 𝐁 acts as a weight to ensure orthogonality between the
two sets of eigenvectors ̃𝑞፣ and ̃𝑞።ዄ. For the incompressible LST equations – with the y-direction
evaluated differentially, and x- and z-directions spectrally – this yields the orthogonality weight:

𝐁 =
⎡
⎢
⎢
⎣

𝑖 0 0 0
0 𝑖 0 0
0 0 𝑖 0
0 0 0 0

⎤
⎥
⎥
⎦

(4.3)

Or in other words, by integrating over the domain the following orthogonality relation applies
for the continuous approach:

∫𝑖 [( ̃𝑢።ዄ)∗ ̃𝑢፣ + (𝑣̃።ዄ)∗ ̃𝑣፣ + (𝑤̃።ዄ)∗𝑤̃፣] d𝑦 = 0 𝑖 ≠ 𝑗 (4.4)

∫𝑖 [( ̃𝑢።ዄ)∗ ̃𝑢፣ + (𝑣̃።ዄ)∗ ̃𝑣፣ + (𝑤̃።ዄ)∗𝑤̃፣] d𝑦 = 𝐶ኼ 𝑖 = 𝑗 (4.5)

whereas for the discrete approach the matrix operations following from the relations in 4.1 and
4.2 apply.

Recall that for the generalised EVP the primitive variable incompressible LST system operator,
𝐀 would be represented by:

𝐀 =
⎡
⎢
⎢
⎢
⎣

𝐹 𝑈፲ 0 𝑖𝛼
0 𝐹 0 𝒟
0 𝑊፲ 𝐹 𝑖𝛽
𝑖𝛼 𝒟 𝑖𝛽 0

⎤
⎥
⎥
⎥
⎦

(4.6)

with 𝐹 = 𝑖𝛼𝑈 + 𝑖𝛽𝑊 − ኻ
ፑ፞ (𝒟ኼ − 𝑘ኼ)
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4.2. Theoretical: direct and adjoint eigenvectors compressible LST
Given that the compressible problems – both direct and adjoint – are also defined as a generalised
EVP, an analysis similar to section 4.1 again yields the condition

𝐼𝐼𝐼፝ ∶ (𝜔፣ − (𝜔ዄ። )∗) [( ̃𝑞።ዄ)ፇ𝐁 ̃𝑞፣] = 0
(4.7)

So if we assume simple eigenvalues

𝜔፣ ≠ 𝜔። 𝑖 ≠ 𝑗
(4.8)

expression (𝐼𝐼𝐼፝) yields the following bi-orthogonality relations between the adjoint eigenvec-
tors and the direct eigenvectors:

( ̃𝑞።ዄ)ፇ𝐁 ̃𝑞፣ = 0 𝑖 ≠ 𝑗 (4.9)
( ̃𝑞።ዄ)ፇ𝐁 ̃𝑞፣ = 𝐶ኻ 𝑖 = 𝑗 (4.10)

For the compressible LST equations with the y-direction evaluated differentially, and x- and
z-directions spectrally this yields the orthogonality weight 𝐁:

𝐁 =

⎡
⎢
⎢
⎢
⎢
⎣

𝐸 0 0 0 0
0 𝐸 0 0 0
0 0 𝑖 −𝑖ፏ

ፓ
0

0 0 −𝑖(𝛾 − 1)𝑀ኼ 𝐸 0
0 0 0 0 𝐸

⎤
⎥
⎥
⎥
⎥
⎦

(4.11)

with 𝐸 = ።᎐ፌᎴፏ
ፓ

, and 𝑇 = 𝑇(𝑦), 𝑃 = 𝑃(𝑦) (the latter as a result of the ideal gas assumption).

4.3. Numerical: direct and adjoint eigenvectors incompressible LST
The incompressible continuous adjoint LST operator as derived in Chapter 3 is implemented in the
TU Delft stability code with a Chebyshev collocation discretisation, homogeneous boundary condi-
tions for the adjoint velocity perturbation amplitudes and a compatibility condition for the adjoint
pressure perturbation amplitudes by means of the ’adjoint wall-normal y-momentum’ equation.
The resulting EVP is solved using Matlab’s eig function. This yields the continuous adjoint eigen-
vectors and eigenvalues.

The discrete adjoint eigenvectors are obtained through the left eigenvectors of Matlab’s eig
function.

For the direct eigenvectors, and the continuous adjoint eigenvectors non-physical modes are
omitted from the bi-orthogonality analysis. This concerns the previously identified spurious modes
(see Chapter 2) and modes having infinite eigenvalues.

Eigenvalues
From the derivation in Section 4.1 we know that 𝜔ዄ። = 𝜔∗፣. A prima facie the complex conjugates
of the continuous adjoint eigenvalue spectrum do match the direct eigenvalue spectrum in the
physically interesting range (Figure 4.1). However on second inspection, it appears that outside
of the range shown in Figure 4.1 there are rather large eigenvalues, ℛ(𝜔) > 𝒪(10ኾ), in both the
direct and adjoint sets. These large direct and adjoint eigenvalues tend to differ by > 𝒪(10ኻ).
This marks a first discrepancy between the direct results and the continuous adjoint results, which
may likely be attributed to the corresponding modes being non-physical modes given the size of
the real part of these eigenvalues.
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Figure 4.1: Temporal eigenvalue spectrum for incompressible LST with ፌዄ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆ ኻ኿ኺ. direct
eigenvalues in black circles and adjoint eigenvalues in cyan pluses.

Discrete approach: Bi-orthogonality coefficient matrix
The bi-orthogonality relations derived in Section 4.1 yield a coefficient matrix, both for the discrete
adjoint eigenvectors (matrix operation of the bi-orthogonality product) and the continous adjoint
eigenvectors (integration of the bi-orthogonality product). The main point of the bi-orthogonality
requirement is that this coefficient matrix is diagonal. To that end we will here use the following
norm to determine how much the matrix 𝐴 deviates from the diagonal matrix 𝐷 containing only
the diagonal elements of 𝐴:

𝑑𝑒𝑝፝።ፚ፠ = ||𝐴 − 𝐷|| (4.12)

This norm will be zero for a perfectly diagonal matrix 𝐴. For the incompressible discrete adjoint
bi-orthogonality coefficient matrix 𝑑𝑒𝑝፝።ፚ፠ = 5.4 ⋅ 1𝑒 − 11. This indicates that the norm of the
off-diagonal terms in the coefficient matrix approaches zero. Thereby confirming that the product
(𝑞̃ዄ)ፇ𝐵𝑞̃ derived in Section 4.1 for the discrete adjoint eigenvectors is indeed bi-orthogonal. This
notion is also exemplified visually in Figure 4.2. Here, only the diagonal terms are of order 𝒪(10ኺ),
whereas the off-diagonal terms are of order ∼ 𝒪(10ዅ10), or smaller.

In Figure 4.3 the bi-orthogonality norm (𝑞̃ዄ)ፇ𝐵𝑞̃ can be seen to be dominant for eigenmodes
with relatively low real phase speed that are highly damped, and increasingly dominant for modes
approaching the phase speed of the free-stream 𝑈፞. The bi-orthogonality norm is relatively small
(or zero) for the discrete wall modes, which can be recognised between elements 100 and 150.
These discrete wall modes can be characterised as having relatively low damping and low real
phase speed, with the eigenmode having its dominant amplitude close to the wall.

Also note that the bi-orthogonality norm (𝑞̃ዄ)ፇ𝐵𝑞̃ as derived here is similar, to some extent,
to the relation derived by Schmid [19] for the eigenvalue shift resulting from a matrix pertur-
bation. They derived a proportionality constant ||፪Ꮌ||||፪|

|ጺ፪Ꮌ ,፪ጻ| Schmid & Henningson [20] argued that
the quantity ||𝑞ዄ||ፄ||𝑞|ፄ, i.e. the energy norms of the adjoint and direct eigenmodes, can be
interpreted as the relative sensitivity of an individual eigenvalue. In their derivation this quantity
appears as the proportionality constant between the size of a matrix perturbation and the shift of
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Figure 4.2: Mesh plot of ፥፨፠(ፚ፛፬(⋅)) of the coefficient matrix entries for the discrete approach. Results are from an
incompressible LST computation with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆ ኻ኿ኺ.

the eigenvalue. It should be noted that Schmid’s [19] and Schmid & Henningson’s [20] derivations
both were for an eigenvalue problem of the form 𝜔𝑞̃ = 𝐴𝑞̃. The bi-orthogonality norm (𝑞̃ዄ)ፇ𝐵𝑞̃
may thus perhaps provide some insight into the relative sensitivity of an eigenmode to perturba-
tions in a generalised EVP. Extending this to the findings in this section might indicate that those
eigenvalues with small contributions of the bi-orthogonality norm in Figure 4.3 would shift less
when the LST operator is perturbed than those with a larger norm.

Overlap between the direct and adjoint eigenvectors
In Figures 4.4 and 4.5 the ’overlap’ (𝑞̃ዄ። )ፇ𝐵𝑞̃። between the direct eigenvectors 𝑞̃። and the discrete
adjoint eigenvectors 𝑞̃ዄ። can be seen for a wall mode, and a ’middle-layer mode’ respectively.
In both these cases the dominant amplitude of the direct eigenmode is located lower than the
dominant amplitude of the discrete adjoint eigenmode. For the wall mode in 4.4 the shaping is
also different as the direct mode has a ’second peak’ towards 𝛿ዃዃ, whereas the adjoint mode then
approaches zero.

Continuous approach: Bi-orthogonality coefficient matrix
Unlike the discrete approach, for the incompressible continuous adjoint bi-orthogonality coefficient
matrix 𝑑𝑒𝑝፝።ፚ፠ = 83.25. This indicates that the coefficient matrix does contain substantial off-
diagonal terms, which is in disagreement with the bi-orthogonality relations derived in Section 4.1.
Although one could argue that the coefficient matrix is diagonally dominant (see also Figure 4.6
for a visual representation).

To investigate why the continous approach does not yield the expected bi-orthogonal matrix,
we have compared a discrete adjoint mode with the corresponding continously derived adjoint
mode in Figure 4.7. This figure shows that whilst the discrete and continous adjoint eigenmodes
are similar in shape and location, the modes do not coincide. As a result the bi-orthogonality norm
for this particular eigenmode would indeed yield different results for the discrete approach versus
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Figure 4.3: Dominant contributions of the bi-orthogonality norm for the discrete approach, shown with the corre-
sponding eigenvalue: its absolute value, and the real and imaginary parts. Results are from an incompressible LST
computation with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆ ኻ኿ኺ.

Figure 4.4: Plot of the ’overlap’ product (፪̃Ꮌᑚ )ᐿፁ፪̃ᑚ using the direct eigenvector ፪̃ᑚ and the discrete adjoint eigenvector
፪̃Ꮌᑚ , for a wall mode with Ꭶ/ᎎ ዆ ኺ.ኽ዁ ዄ ኺ.ኺኺኻዀ።. The bottom blue line represents ᎑ᎴᎷ → ፮̃/ፔᑖ ≈ ኼ኿%. The top blue
line represents ᎑ᎻᎻ → ፮̃/ፔᑖ ≈ ዃዃ%. Results are from an incompressible LST computation with ፌ ዆ ኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆
ኺ.ኼ, ፍፂ ዆ ኻ኿ኺ.
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Figure 4.5: Plot of the ’overlap’ product (፪̃Ꮌᑚ )ᐿፁ፪̃ᑚ using the direct eigenvector ፪̃ᑚ and the discrete adjoint eigenvector
፪̃Ꮌᑚ , for a ’middle-layer’ mode with Ꭶ/ᎎ ዆ ኺ.዁ዀ ዅ ኺ.ኾኼ።. The bottom blue line represents ᎑ᎴᎷ → ፮̃/ፔᑖ ≈ ኼ኿%. The
top blue line represents ᎑ᎻᎻ → ፮̃/ፔᑖ ≈ ዃዃ%. Results are from an incompressible LST computation with ፌ ዆ ኺᎽᎵ, ፑ፞ ዆
኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆ ኻ኿ኺ.

Figure 4.6: Mesh plot of ፥፨፠(ፚ፛፬(⋅)) of the coefficient matrix entries for the continuous approach. Results are from
an incompressible LST computation with ፌ ዆ ኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆ ኻ኿ኺ.
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Figure 4.7: Comparison between a discrete adjoint eigenmode and the corresponding continuous adjoint eigenmode.
Results are from an incompressible LST computation with ፌ ዆ ኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆ ኻ኿ኺ.

the continuous approach. A potential explanation might be that in the continous approach the
adjoint eigenvalue problem is solved using Chebyshev collocation nodes set-up similar to the direct
eigenvalue problem, whereas in the discrete approach the Matlab left eigenvectors are weighted
accordingly to be represented on the same nodes as the direct eigenvectors.

4.4. Numerical: direct and adjoint eigenvectors compressible LST
Similarly to the incompressible adjoint, the compressible LST operator derived in Chapter 3 is im-
plemented in the TU Delft stability code with a Chebyshev collocation discretisation, homogeneous
boundary conditions for the velocity perturbation amplitudes and the temperature perturbation
amplitudes, and a compatibility condition for the pressure perturbation amplitudes by means of
the ’adjoint wall-normal y-momentum’ equation. The resulting EVP is solved using Matlab’s eig
function.This yields the continuous adjoint eigenvectors and eigenvalues.

The discrete adjoint eigenvectors are obtained through the left eigenvectors of Matlab’s eig
function.

For the direct eigenvectors, and the continuous adjoint eigenvectors non-physical modes are
omitted from the bi-orthogonality analysis. This concerns the previously identified spurious modes
(see Chapter 2) and modes having infinite eigenvalues.

Eigenvalues
Again, a prima facie the complex conjugates of the continuous adjoint eigenvalue spectrum appear
to match the direct eigenvalue spectrum in the physically interesting range (Figure 4.8). Yet, on
second inspection, it appears that outside of the range shown in Figure 4.1 there are rather large
eigenvalues, ℛ(𝜔) > 𝒪(10ኾ), in both the direct and adjoint sets. These large direct and adjoint
eigenvalues tend to differ by > 𝒪(10ኻ). As with the incompressible LST results in Section 4.3 this
marks a first discrepancy between the direct results and the continuous adjoint results, which may
likely be attributed to the corresponding modes being non-physical modes given the size of the
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real part of these eigenvalues.

Figure 4.8: Temporal eigenvalue spectrum for compressible LST with ፌ ዄ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆ ኻ኿ኺ. direct
eigenvalues in black circles and adjoint eigenvalues in cyan pluses.

Discrete approach: Bi-orthogonality coefficient matrix
For the compressible discrete adjoint bi-orthogonality coefficient matrix 𝑑𝑒𝑝፝።ፚ፠ = 1.3 ⋅ 10ዅኻኺ.
This indicates that the norm of the off-diagonal terms in the coefficient matrix approaches zero.
Thereby confirming that the product (𝑞̃ዄ)ፇ𝐵𝑞̃ derived in Section 4.1 for the discrete adjoint eigen-
vectors is indeed bi-orthogonal. This notion is also exemplified visually in Figure 4.9. Here, only
the diagonal terms are of order 𝒪(10ኺ), whereas the off-diagonal terms are of order ∼ 𝒪(10ዅ10),
or smaller.

In Figure 4.10 the bi-orthogonality norm (𝑞̃ዄ)ፇ𝐵𝑞̃ can be seen to be dominant for eigenmodes
that are highly damped and have relatively low real phase speed , and increasingly dominant for
modes approaching the phase speed of the free-stream 𝑈፞. The bi-orthogonality norm is relatively
small (or zero) for the discrete wall modes, which can be recognised between elements 400 and
500. These discrete wall modes can be characterised as having relatively low damping and low
real phase speed, with the eigenmode having its dominant amplitude close to the wall.

Continuous approach: Bi-orthogonality coefficient matrix
For the compressible continous adjoint bi-orthogonality coefficient matrix 𝑑𝑒𝑝፝።ፚ፠ = 99.81. This
indicates that the coefficient matrix does contain substantial off-diagonal terms. Figure 4.6 con-
firms the finding for the incompressible continous bi-orthogonality matrix in that the coefficient
matrix is diagonally dominant.

4.5. Conclusions
Theoretically relations can be derived for which a weight matrix ensures bi-orthogonal sets of di-
rect and adjoint eigenvectors. These adjoint eigenvectors may be obtained by means of a discrete
approach or a continuous approach. Numerical implementation of these bi-orthogonality relations
for both incompressible and compressible LST leads to diagonal bi-orthogonality coefficient ma-
trices for the discrete case. Results for the continous approach show that the coefficient matrix
is diagonally dominant, but does contain substantial off-diagonal terms. As per the theoretical
derivation, the complex conjugates of the adjoint eigenvalues were shown to match the direct
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Figure 4.9: Mesh plot of ፥፨፠(ፚ፛፬(⋅)) of the coefficient matrix entries for the discrete approach. Results are from a
compressible LST computation with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆ ኻ኿ኺ.

Figure 4.10: Dominant contributions of the bi-orthogonality norm for the discrete approach, shown with the correspond-
ing eigenvalue: its absolute value, and the real and imaginary parts. Results are from a compressible LST computation
with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆ ኻ኿ኺ.
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Figure 4.11: Mesh plot of ፥፨፠(ፚ፛፬(⋅)) of the coefficient matrix entries for the continous approach. Results are from a
compressible LST computation with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆ ኻ኿ኺ.

eigenvalues in the physically interesting range, for both the incompressible and compressible LST
spectra.

To investigate why the continous approach does not yield the expected bi-orthogonal matrix,
a discrete adjoint mode was compared with the corresponding continous adjoint mode. Whilst
the discrete and continous adjoint eigenmodes were similar in shape and location, the modes
were found not to coincide. A potential explanation for the discrepancy might be the use of the
Chebyshev collocation nodes in the continous adjoint EVP. The adjoint EVP may require different
stretching of the mesh. Alternatively, closing the continuous adjoint system using the ’adjoint
wall-normal equation’ as a compatiblity condition for the adjoint pressure amplitude might possi-
bly adversely affect the continous adjoint eigenmodes.

The ’overlap’ (𝑞̃ዄ። )ፇ𝐵𝑞̃። between the direct eigenvectors 𝑞̃። and the discrete adjoint eigenvec-
tors 𝑞̃ዄ። was computed for a wall mode, and a ’middle-layer mode’ respectively. Interestingly, for
both modes the location of the maximum amplitude of the direct eigenmode was found to differ
spatially from that of the maximum amplitude of the discrete adjoint eigenmode.





5
Perturbations of the LST operators

In this chapter we will first briefly discuss the basic state used in the LST computations in Section
5.1. Then the ’original’ temporal eigenvalue spectra will be characterised in Section 5.2. Subse-
quently, in Section 5.3 pseudospectra will be presented for a perturbed generalised eigenvalue
problem for a Falkner-Skan-Cooke boundary layer flow, for both the incompressible and compress-
ible LST operators. Finally, we will provide our initial conclusions based on the results in Section
5.4.

5.1. Basic state
The basic state used in this work is a Falkner-Skan-Cooke boundary layer flow computed by
Groot [5] using the DEKAF boundary-layer solver. The DEKAF boundary-layer solver employs
a Chebyshev pseudo-spectral discretisation on the linearised compressible boundary-layer equa-
tions. These equations are then solved with a Newton-Raphson method. We here use their kindly
provided ’case II’, the Tollmien-Schlichting instability case in the incompressible flow regime with
𝑀 = 1𝑒−3, 𝑅𝑒 = 580, zero sweep, zero pressure gradient, and an adiabatic wall. For a complete
overview of this basic state and the numerical methods involved, see [5].

5.2. Reference eigenvalue spectra
The reference incompressible LST eigenvalue spectra for 𝛼 = 0.2, 𝛼 = 0.8 and 𝛼 = 6 are shown in
Figures 5.1a, 5.2a and 5.3a, respectively. The Figures 5.1b, 5.2b and 5.3b provide the same spec-
tra, but with spurious modes (Chapter 2) and infinite eigenvalues removed, and the eigenvalues
labelled for the dominant perturbation amplitude per eigenvalue.

The reference compressible LST eigenvalue spectra for 𝛼 = 0.2, 𝛼 = 0.8 and 𝛼 = 6 are shown
in Figures 5.4a, 5.5a and 5.6a, respectively. The Figures 5.4b, 5.5b and 5.6b provide the same
spectra, but with spurious modes (Chapter 2) and infinite eigenvalues removed, and the eigen-
values labelled for the dominant perturbation amplitude per eigenvalue.

The incompressible spectra can be seen to consist of a ’continous branch’ of modes extending
from 𝑐። ≈ 0, 𝑐፫ ≈ 1 downward, and a set of discrete modes to the left of this continous branch
with 𝑐፫ ∼ 0.2−0.7 for 𝛼 = 0.2 (Figure 5.1a). As mentioned previously, these discrete modes, with
lower real phase speeds, have their dominant amplitude close to the wall. Notably, the TS-mode,
i.e. the ’most unstable’ mode, which can be recognised in Figure 5.1a for 𝑐፫ ≈ 0.4, 𝑐። ≈ 0, .

The compressible spectra display a similar lay-out, but with additional modes due to the inclu-
sion of the energy equation (Figure 5.4a). Additional modes can be observed in both the continous
branch and the discrete set of modes. The additional modes in the continous branch initially follow
the same pattern as the incompressible modes, but branch off for increasingly damped modes.

Also note that the continous branch in the incompressible spectra is relatively straight for
𝛼 = 0.2, but is shown to shift leftward for increasing spatial wavenumber 𝛼 in Figures 5.2a and
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5.3a. This same shift can be observed in the compressible spectra in Figures 5.5a and 5.6a.

The visible incompressible spectrum predominantly contains 𝑢̃- and 𝑤̃-dominant modes, with
𝑣̃-dominant modes being present in the top of the continous branch. The visible compressible
spectrum predominantly contains 𝑢̃-, 𝑤̃- and 𝑇̃-dominant modes.

5.3. Pseudospectra
For the pseudospectra we solved a perturbed generalised eigenvalue problem:

(𝐀 + 𝐄𝟎)𝑞 = 𝜔(𝐁 + 𝐄𝟏)𝑞, 𝐄𝟎, 𝐄𝟏ℂፍ×ፍ ∶ 𝒪(𝜖), (5.1)

for 𝑀 = 10ዅኽ, 𝑅𝑒 = 580,𝑁𝐶 = 150, 𝛼 = [0.2, 0.8, 6], with 𝐄𝟎, 𝐄𝟏 containing random, complex
perturbation elements picked from a normal distribution with a mean of 0 and a standard deviation
of 1 and multiplied with a factor of 𝒪(𝜖). The perturbation elements are imposed for 𝒪(𝜖) = 10ዅኾ
- 𝒪(𝜖) = 10ዅኻኺ, with 100 random cases for each 𝒪(𝜖). The eigenvalue data is subsequently aggre-
gated for the 100 random cases per 𝒪(𝜖). To assess whether we can reliably use the eigenvalue
data from the perturbed systems we evaluated the algorithm precision - 𝜖፦ፚ፜፡።፧፞ ⋅ ||𝐀||ፅ, which
indicates the eigenvalue error. Both for the incompressible and the compressible eigenproblem
computations the algorithm precision is in the order of ≤ 𝒪(10ዅኻኼ) for all perturbation levels
𝒪(𝜖) = 10ዅኾ - 𝒪(𝜖) = 10ዅኻኺ, respectively. This indicates a reliable result, with minimal eigenvalue
error.

The superposition of the 100 sets of perturbed eigenvalue spectra per 𝒪(𝜖) is shown for the
incompressible LST computations in Figures 5.7a - 5.7f for 𝛼 = 0.2, in Figures 5.8a - 5.8f for
𝛼 = 0.8, and in Figures 5.9a - 5.9f for 𝛼 = 6.

The superposition of the 100 sets of perturbed eigenvalue spectra per 𝒪(𝜖) is shown for the
compressible LST computations in Figures 5.10a - 5.10f for 𝛼 = 0.2, in Figures 5.11a - 5.11f for
𝛼 = 0.8, and in Figures 5.12a - 5.12f for 𝛼 = 6.

Observations for increasing perturbations
If we consider increasing perturbation size, the disturbance of the spectrum appears to be initiated
from the intersection of the continous branch and the discrete set of modes. For increasing
perturbation size the disturbance of the spectrum then starts to spread outward. This behaviour
can be observed to be very similar for both the incompressible and the compressible results. Also
in terms of relative ’movement’ of the eigenvalues do the incompressible and compressible spectra
seem similar.

Another interesting general observation is that especially for larger perturbations the incom-
pressible and compressible eigenvalues describe a contour within which most of the ’pseudo-
eigenvalues’ are contained in a relatively noisy pattern. As such, some eigenvalues shift further
from the ’original’ unperturbed location than the order of magnitude of the imposed perturbations
would dictate. This finding is in agreement with Schmid [19] who noted for a Poiseuille flow and
a Couette flow – both with perturbations of a norm 𝜖 = 5 ⋅ 10ዅኽ – that some eigenvalues would
move from their unperturbed locations by an 𝒪(1) magnitude.

Observations for individual modes
Different modes appear to be affected differently by the matrix perturbations. As mentioned
previously, the disturbance of the spectrum appears to be initiated for the modes at the intersection
of the continous branch and the set of discrete modes. As an example we take the incompressible
spectrum for 𝛼 = 0.2 . In this example the modes at the intersection visibly move in the spectrum
for perturbations of 𝒪(𝜖) = 10ዅዂ. The ’free-stream’ modes for which 𝑐፫ → 1 and the wall modes
start to display a visible shift in the spectrum for 𝒪(𝜖) = 10ዅዀ and smaller. Even for relatively
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large perturbations of 𝒪(𝜖) = 10ዅ኿ the wall modes with the lowest phase speeds appear relatively
unaffected and to be contained in a region close to the unperturbed eigenvalue.

Again comparing this to Schmid [19] shows that these findings are in line with the sensitivity
results of the Poiseuille and Couette flows. Especially the Poiseuille eigenspectrum in their Figure
16 ([19])seems quite similar to the eigenspectrum of the boundary layer flow considered here.

The relative disturbance of the eigenmodes does not appear to be related to it’s dominant
amplitude. For example, in the compressible spectra the 𝑇̃-dominant modes and 𝑢̃-/𝑤̃-dominant
modes appear to be similarly affected.

Observations for 𝛼
First observations include that for 𝛼 = 0.8 and smaller, the eigenvalues start to visually ’shift’
around the unperturbed set of eigenvalues for 𝒪(𝜖) = 10ዅዂ) and larger, whilst for 𝛼 = 6 the
spectrum appears to be more robust to perturbations and the eigenvalues start to visually shift
around the unperturbed set of eigenvalues for 𝒪(𝜖) = 10ዅ዁) and larger.

Furthermore it may be observed that the highly damped modes (i.e. the lower regions of the
continous branch) shift considerably for 𝛼 = 0.2, whereas these damped modes are barely affected
for 𝛼 = 6. Although we should keep in mind that the relative phase speed of these ’continuous
branch’ modes then approaches that of the discrete wall modes, whereas for 𝛼 = 0.2 the phase
speed of the highly damped ’continuous branch’ modes is closer to 1.

5.4. Conclusions
The disturbance of the eigenvalue spectrum as a result of the matrix perturbations appears to be
initiated from the intersection of the continous branch and the discrete set of modes. For increas-
ing perturbation size the disturbance of the spectrum then starts to spread outward. Especially
for larger perturbations the eigenvalues describe a contour within which most of the ’pseudo-
eigenvalues’ are contained in a relatively noisy pattern. The eigenvalue spectrum appears to be
more robust to perturbations for higher spatial wavenumbers 𝛼.

The spectrum has been shown to not be uniformly affected by matrix perturbations. Some eigen-
values have a visible shift in the spectrum for perturbations as small as 𝒪(10ዅዂ), whereas other
eigenvalues display very little movement even for perturbations of 𝒪(10ዅኾ), or 𝒪(10ዅ኿). Inter-
estingly, for some modes the shift of the eigenvalues in the spectrum is thus far greater in orders
of magnitude than the perturbations imposed. Notably the set of discrete wall modes appears to
remain relatively close to their unperturbed position.

Another interesting observation is that the ’free-stream’ modes for which 𝑐፫ → 1, and the
discrete wall modes with relatively small 𝑐፫ tend to move less for a certain perturbation than the
modes for which 𝑐፫ is in between those two. As these findings are in agreement with the sensitivity
findings of Schmid [19] for Poiseuille and Couette flow, there appears to be a pattern for perturbed
eigenspectra of shear force flows.
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(a) Temporal eigenvalue spectrum for incompressible LST, with 𝑀 = 10ዅኽ, 𝑅𝑒 =
580, 𝛼 = 0.2, 𝑁𝐶 = 150.

(b) Labelled incompressible LST eigenvalue spectrum for dominant perturbation
amplitude per eigenvalue for 𝑀 = 10ዅኽ, 𝑅𝑒 = 580, 𝛼 = 0.2, 𝑁𝐶 = 150. Spurious
and other non-physical modes are omitted. Black circles for 𝑢̃, red pluses for 𝑣̃,
green dots for 𝑤̃ and blue diamonds for 𝑝̃.
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(a) Temporal eigenvalue spectrum for incompressible LST, with 𝑀 = 10ዅኽ
, 𝑅𝑒 = 580, 𝛼 = 0.8, 𝑁𝐶 = 150.

(b) Labelled incompressible LST eigenvalue spectrum for dominant perturbation
amplitude per eigenvalue for 𝑀 = 10ዅኽ, 𝑅𝑒 = 580, 𝛼 = 6,𝑁𝐶 = 150. Spurious
and other non-physical modes are omitted. Black circles for 𝑢̃, red pluses for 𝑣̃,
green dots for 𝑤̃ and blue diamonds for 𝑝̃.
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(a) Temporal eigenvalue spectrum for for incompressible LST, with 𝑀 = 10ዅኽ
, 𝑅𝑒 = 580, 𝛼 = 0.8, 𝑁𝐶 = 150.

(b) Labelled incompressible LST eigenvalue spectrum for dominant perturbation
amplitude per eigenvalue for 𝑀 = 10ዅኽ, 𝑅𝑒 = 580, 𝛼 = 6,𝑁𝐶 = 150. Spurious
and other non-physical modes are omitted. Black circles for 𝑢̃, red pluses for 𝑣̃,
green dots for 𝑤̃ and blue diamonds for 𝑝̃.
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(a) Temporal eigenvalue spectrum for compressible LST, with 𝑀 = 10ዅኽ, 𝑅𝑒 =
580, 𝛼 = 0.2, 𝑁𝐶 = 150.

(b) Labelled compressible LST eigenvalue spectrum for dominant perturbation
amplitude per eigenvalue for 𝑀 = 10ዅኽ, 𝑅𝑒 = 580, 𝛼 = 0.2, 𝑁𝐶 = 150. Spurious
and other non-physical modes are omitted. Black circles for 𝑢̃, red pluses for 𝑣̃,
green dots for 𝑤̃ and blue diamonds for 𝑝̃, and cyan crosses for 𝑇̃.
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(a) Temporal eigenvalue spectrum for compressible LST, with 𝑀 = 10ዅኽ
, 𝑅𝑒 = 580, 𝛼 = 0.8, 𝑁𝐶 = 150.

(b) Labelled compressible LST eigenvalue spectrum for dominant perturbation
amplitude per eigenvalue for 𝑀 = 10ዅኽ, 𝑅𝑒 = 580, 𝛼 = 6,𝑁𝐶 = 150. Spurious
and other non-physical modes are omitted. Black circles for 𝑢̃, red pluses for 𝑣̃,
green dots for 𝑤̃ and blue diamonds for 𝑝̃, and cyan crosses for 𝑇̃.
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(a) Temporal eigenspectrum for compressible LST, with 𝑀 = 10ዅኽ, 𝑅𝑒 = 580, 𝛼 =
0.8, 𝑁𝐶 = 150.

(b) Labelled compressible LST eigenvalue spectrum for dominant perturbation
amplitude per eigenvalue for 𝑀 = 10ዅኽ, 𝑅𝑒 = 580, 𝛼 = 6,𝑁𝐶 = 150. Spurious
and other non-physical modes are omitted. Black circles for 𝑢̃, red pluses for 𝑣̃,
green dots for 𝑤̃ and blue diamonds for 𝑝̃, and cyan crosses for 𝑇̃.
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 5.7: Temporal eigenvalue spectra for the incompressible LST equations, withፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆
ኻ኿ኺ. Perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ for both the real and
imaginary part are introduced for both the ፀ and ፁ matrices of the (ፀ ዅ Ꭶፁ)፪ ዆ ኺ generalised eigenvalue problem.
The superposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ - 𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 5.8: Temporal eigenvalue spectra for the incompressible LST equations, withፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ዂ, ፍፂ ዆
ኻ኿ኺ. Complex perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ for both the
real and imaginary part are introduced for both the ፀ and ፁ matrices of the (ፀ ዅ Ꭶፁ)፪ ዆ ኺ generalised eigenvalue
problem. The superposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ - 𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 5.9: Temporal eigenvalue spectra for the incompressible LST equations, with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ዀ,ፍፂ ዆
ኻ኿ኺ. Complex perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ for both the
real and imaginary part are introduced for both the ፀ and ፁ matrices of the (ፀ ዅ Ꭶፁ)፪ ዆ ኺ generalised eigenvalue
problem. The superposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ - 𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 5.10: Temporal eigenvalue spectra for the compressible LST equations, with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆
ኻ኿ኺ. Perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ for both the real and
imaginary part are introduced for both the ፀ and ፁ matrices of the (ፀ ዅ Ꭶፁ)፪ ዆ ኺ generalised eigenvalue problem.
The imposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ - 𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 5.11: Temporal eigenvalue spectra for the compressible LST equations, with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ዂ, ፍፂ ዆
ኻ኿ኺ. Complex perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ for both the
real and imaginary part are introduced for both the ፀ and ፁ matrices of the (ፀ ዅ Ꭶፁ)፪ ዆ ኺ generalised eigenvalue
problem. The imposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ - 𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 5.12: Temporal eigenvalue spectra for the compressible LST equations, with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ዀ,ፍፂ ዆
ኻ኿ኺ. Complex perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ for both the
real and imaginary part are introduced for both the ፀ and ፁ matrices of the (ፀ ዅ Ꭶፁ)፪ ዆ ኺ generalised eigenvalue
problem. The imposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ - 𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively





6
Perturbations of the streamwise

velocity base flow profile

In this chapter we will first briefly discuss the reference streamwise velocity base flow profile in
Section 6.1. Then we will present temporal eigenspectra of the incompressible and compressible
LST operators for perturbations of the streamwise velocity base flow profile. These perturbations
will be imposed (1) on the entire profile (in Section 6.2), (2) in the wall region (in Section 6.3), (3)
in a middle region (in Section 6.5) and (4) in the top-layer near the free-stream edge in (Section
6.5). Finally, we will present our initial conclusions in Section 6.6.

6.1. Reference streamwise velocity base flow profile
The basic state used in this chapter is the same as in Chapter 5: the Falkner-Skan-Cooke boundary
layer flow computed by Groot [5] using the DEKAF boundary-layer solver. For reference, the lower
regions of the streamwise velocity base flow profile of this basic state are shown in Figure 6.1.
Note that the bottom blue line in this Figure represents 𝛿ኼ኿ → 𝑢̃/𝑈፞ ≈ 25% amd that the top blue
line represents 𝛿ዃዃ → 𝑢̃/𝑈፞ ≈ 99%. The perturbations in the wall region will be imposed on the
region between the wall up to 𝛿ኼ኿. The perturbations in the middle region will be imposed on the
region between 𝛿ኼ኿ to 𝛿ዃዃ.

6.2. Perturbations of the entire profile
To determine how the eigenvalue spectrum of the LST operator is affected by perturbations on
the base flow profile eigenspectra are computed for the incompressible and compressible LST
equations, for a perturbed streamwise velocity base flow profile 𝑢(𝑦) + 𝐸(𝑦), with 𝐸(𝑦) ∼ 𝒪(𝜖).
The incompressible and compressible EVPs are solved for 𝑀 = 10ዅኽ, 𝑅𝑒 = 580,𝑁𝐶 = 150, 𝛼 =
[0.2, 0.8, 6], with 𝐸(𝑦) containing random, complex perturbation elements picked from a normal
distribution with a mean of 0 and a standard deviation of 1 and multiplied with a factor of 𝒪(𝜖).

The perturbation elements are imposed for 𝒪(𝜖) = 10ዅኾ - 𝒪(𝜖) = 10ዅኻኺ, with 100 random
cases for each 𝒪(𝜖). The Ꭷ፮

Ꭷ፲ and ᎧᎴ፮
Ꭷ፲Ꮄ profiles corresponding to the perturbed base flow profile

are determined using Chebyshev differential spectral matrices, so as to be consistent with the
unperturbed EVP.

Both for the incompressible and the compressible eigenproblem computations the algorithm
precision is in the order of ≤ 𝒪(10ዅኻኼ) for all perturbation levels 𝒪(𝜖) = 10ዅኾ - 𝒪(𝜖) = 10ዅኻኺ,
respectively. This indicates a reliable result, with minimal eigenvalue error.

45
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Figure 6.1: Zoom on the lower regions of the streamwise velocity base flow profile of the basic state [5] used in this
work. The bottom blue line represents ᎑ᎴᎷ → ፮̃/ፔᑖ ≈ ኼ኿%. The top blue line represents ᎑ᎻᎻ → ፮̃/ፔᑖ ≈ ዃዃ%.

Observations and comparison with matrix perturbations
The perturbations imposed on the base flow appear to initiate a disturbance pattern in both the
incompressible and compressible spectra that is similar to that of the matrix perturbations in
Chapter 5: the initial disturbance can be seen at the intersection of the continous branch and the
discrete set of modes. For increasing perturbation size the disturbance of the spectrum then starts
to spread outward.

Again, for larger perturbations the incompressible and compressible eigenvalues describe a
contour within which most of the ’pseudo-eigenvalues’ are contained in a relatively noisy pattern.
As such, some eigenvalues shift further from the ’original’ unperturbed location than the order of
magnitude of the imposed perturbations would dictate. For 𝛼 = 0.8 and smaller, the spectrum
starts to visibly shift relative to the unperturbed set of eigenvalues for 𝒪(𝜖) = 10ዅዂ and larger .

As with the matrix perturbations, the discrete wall modes with small 𝑐፫ and the continous ’free-
stream’-modes for which 𝑐፫ → 1 move less for a certain-sized perturbation than the modes for
which 𝑐፫ is mid-range. Even for relatively large sized perturbations there is very little movement
of these particular modes.

A comparison is made between the compressible pseudospectra for a perturbation of 𝒪(𝜖) =
10ዅኾ in Figure 5.10a and the superposition of eigenspectra for a perturbed baseflow with 𝒪(𝜖) =
10ዅኾ in Figure 6.3a. These Figures indicate that for this perturbation-size the contour of the
superimposed eigenvalues seems to have spread ever so slightly further towards the free-stream
modes and the discrete wall modes for the pseudospectra when compared with the perturbed
base flow eigenspectra.

6.3. Perturbations in the wall region
The perturbations for this analysis were imposed on the base flow profile in the wall region.
This wall region was defined from the wall up to 𝑢/𝑈፞ ≈ 0.25. The perturbation elements are
again picked from a normal distribution with a mean of 0, and a standard deviation of 1. These
random elements are then multiplied with a factor of order epsilon. Note that the boundary no-slip
condition of 𝑈፰ = 0 was maintainted. The first and second order derivatives corresponding to the
perturbed base flow profile are obtained by means of Chebyshev differential spectral matrices.
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Observations
A first observation when considering the superimposed eigenspectra for the wall region pertur-
bations is that the disturbance pattern no longer seems to be often of the random, noisy type.
For larger sized perturbations the superimposed modes at the intersection between the discrete
modes and the continous modes, and the superimposed modes along the continuous branch are
distributed along distinct lines. For 𝛼 = 0.2 these eigenvalues start to visibly move relative to the
unperturbed set of eigenvalues for 𝒪(𝜖) = 10ዅ዁ and larger. Do note that for every perturbation-
level the eigenspectrum appears more robust to base flow perturbations in this specific wall region,
when compared with the entire profile.

Interestingly, the wall modes, which are dominant in this near-wall region (see e.g. Figure 4.4,
do not seem to be affected by a perturbation in this specific region. Even for 𝒪(𝜖) = 10ዅ኿, for
𝛼 = 0.2, the most right eigenvalues in the discrete set of modes demonstrate very little movement.

6.4. Perturbations in a middle region
The perturbations for this analysis were imposed on the base flow profile in a middle region. This
middle region was defined from the 𝑢/𝑈፞ ≈ 0.25 up to 𝑢/𝑈፞ ≈ 0.99. The perturbation elements
are again picked from a normal distribution with a mean of 0, and a standard deviation of 1. These
random elements are then multiplied with a factor of order epsilon. The first and second order
derivatives corresponding to the perturbed base flow profile are obtained by means of Chebyshev
differential spectral matrices.

Observations
Unlike for the wall region, the disturbance patterns that can be observed in the superimposed
eigenvalue spectra for middle region perturbations are very similar to those seen for the entire
base flow and/or generic matrix perturbations. The eigenvalues for larger sized perturbations
do provide a contour within which a noisy pattern of eigenvalues is contained. However, the
distribution of eigenvalues does appear denser towards the ’edges’ of said contour when compared
with the contours for perturbations of the entire profile or that of matrix perturbations.

For 𝛼 = 0.2 the spectrum starts to visibly shift relative to the unperturbed set of eigenvalues
for perturbatinos of 𝒪(𝜖) = 10ዅ዁ and larger. The eigenvalue shift oberved is also larger for most
of the eigenvalues as compared to the wall region perturbations.

Again, as with all the previous analysis, the discrete wall modes with small 𝑐፫ and the continous
’free-stream’-modes for which 𝑐፫ → 1 demonstrate very little movement.

6.5. Perturbations in a top layer at the edge
The perturbations for this analysis were imposed on the base flow profile in a top layer, near the
free-stream edge. This top region was defined for the approx. top 50% of the top layer for which
𝑢/𝑈፞ ≈ 0.99. The perturbation elements are again picked from a normal distribution with a mean
of 0, and a standard deviation of 1. These random elements are then multiplied with a factor of
order epsilon. The first and second order derivatives corresponding to the perturbed base flow
profile are obtained by means of Chebyshev differential spectral matrices.

An analogy for these perturbations might for example be deviations in the input data resulting
from a disturbance in the far field.

Observations
The eigenvalue shift pattern for the perturbations in the top layer follows a pattern similar to that
of perturbations in the wall region. Eigenvalues at the intersection between the discrete modes
and the continous branch are distributed along disinct lines. For perturbations of 𝒪(𝜖) = 10ዅዀ
and larger, for 𝛼 = 0.2, visible eigenvalue movement relative to the unperturbed spectrum is to
be observed. Compared to the wall region perturbations, it seems that the eigenvalues in this
analysis demonstrate less movement for a certain perturbation.
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In agreement with all the previous analyses, some eigenvalues barely shift. The discrete wall
modes with small 𝑐፫ and the continous ’free-stream’-modes for which 𝑐፫ → 1 demonstrate very
little movement.

6.6. Conclusions
Perturbing the entire base flow profile produces superimposed eigenspectra that are similar to the
pseudospectra in Chapter 5. There are indications that for a certain sized perturbation (slightly)
fewer eigenvalues demonstrate visible movement for the perturbed base flow than for the matrix
perturbations.

Perturbations in specific regions of the base flow indicated that perturbations in a middle
region would most strongly affect the eigenvalues in that there was relatively more eigenvalue
shift when compared with perturbations in just the wall region or the top layer. Additionally, it was
only perturbations in the middle region that lead to the previously seen contour within which most
of the ’pseudo-eigenvalues’ are contained in a relatively noisy pattern. For both the wall region
and top layer perturbations, the superimposed modes at the intersection between the discrete
modes and the continous modes, and the superimposed modes along the continuous branch were
found to be distributed along distinct lines. There are indications that the spectrum is slightly
more robust to perturbations in the top layer than in the wall region.

Counterintuitively, the wall modes, which are dominant in the near-wall region did not seem to
be affected by a perturbation of the base flow in this specific region. This provides an interesting
result in that specific errors in the input data, e.g. due to difficulties in measuring the near-wall
region, may not necessarily lead to an eigenvalue shift of the TS-mode. Thereby rendering the
long-term stability information from this eigenvalue rather robust.
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 6.2: Temporal eigenvalue spectra for the incompressible LST equations, withፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆
ኻ኿ኺ. Perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ are introduced for the
entire streamwise velocity base flow profile. The superimposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ -
𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 6.3: Temporal eigenvalue spectra for the compressible LST equations, with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆
ኻ኿ኺ. Perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ are introduced for
the entire streamwise velocity base flow profile. The superimposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ -
𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 6.4: Temporal eigenvalue spectra for the incompressible LST equations, withፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ዂ, ፍፂ ዆
ኻ኿ኺ. Perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ are introduced for the
entire streamwise velocity base flow profile. The imposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ - 𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ,
respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 6.5: Temporal eigenvalue spectra for the compressible LST equations, with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ዂ, ፍፂ ዆
ኻ኿ኺ. Perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ are introduced for
the entire streamwise velocity base flow profile. The superimposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ -
𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 6.6: Temporal eigenvalue spectra for the incompressible LST equations, withፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆
ኻ኿ኺ. Perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ are introduced in the
wall region of the streamwise velocity base flow profile. The imposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ -
𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 6.7: Temporal eigenvalue spectra for the compressible LST equations, with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆
ኻ኿ኺ. Perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ are introduced in the
wall region of the streamwise velocity base flow profile. The imposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ -
𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 6.8: Temporal eigenvalue spectra for the incompressible LST equations, withፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ዂ, ፍፂ ዆
ኻ኿ኺ. Perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ are introduced in a middle
region between ᎑ᎴᎷ and ᎑ᎻᎻ of the streamwise velocity base flow profile. The imposed perturbations are in the order
of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ - 𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 6.9: Temporal eigenvalue spectra for the compressible LST equations, with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆
ኻ኿ኺ. Perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ are introduced in a
middle region of the streamwise velocity base flow profile. The imposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ
- 𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 6.10: Temporal eigenvalue spectra for the incompressible LST equations, with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆
ኺ.ዂ, ፍፂ ዆ ኻ኿ኺ. Perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ are introduced
in a top layer of the streamwise velocity base flow profile. The imposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ
- 𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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(a) 𝒪(𝜖) = 10ዅኾ (b) 𝒪(𝜖) = 10ዅ኿

(c) 𝒪(𝜖) = 10ዅዀ (d) 𝒪(𝜖፩፞፫፭) = 10ዅ዁

(e) 𝒪(𝜖) = 10ዅዂ (f) 𝒪(𝜖) = 10ዅኻኺ

Figure 6.11: Temporal eigenvalue spectra for the compressible LST equations, with ፌ ዆ ኻኺᎽᎵ, ፑ፞ ዆ ኿ዂኺ, ᎎ ዆ ኺ.ኼ, ፍፂ ዆
ኻ኿ኺ. Perturbations from a normal distribution with a mean of ኺ and a standard deviation of ኻ are introduced in a
top layer of the streamwise velocity base flow profile. The imposed perturbations are in the order of 𝒪(Ꭸ) ዆ ኻኺᎽᎶ -
𝒪(Ꭸ) ዆ ኻኺᎽᎳᎲ, respectively
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Conclusions and recommendations

Adjoint derivations and bi-orthogonality
Recall that the first aim of this thesis was to assess whether we can derive bi-orthogonality rela-
tions demonstrating that the adjoint LST eigenvectors are orthogonal to the direct eigenvectors, for
both the compressible and incompressible LST equations; thereby resolving the non-orthogonality
complication. It is to that end that we derived the adjoint operators for the incompressible and
compressible LST equations using both the discrete and the continous approach in chapter 3.
Subsequently, we derived, implemented and assessed bi-orthogonality relations using the adjoint
eigenvectors resulting from the discrete and continous approaches in chapter 3.

It was found that theoretically relations can be derived for which a weight matrix ensures
bi-orthogonal sets of direct and adjoint eigenvectors. Numerical implementation of these bi-
orthogonality relations for both the incompressible and compressible LST yielded diagonal bi-
orthogonality coefficient matrices for the discrete case. Results for the continous approach have
shown that the coefficient matrices are diagonally dominant, but do contain substantial off-
diagonal terms. As per the theoretical bi-orthogonality derivation, the complex conjugates of
the adjoint eigenvalues were shown to match the direct eigenvalues in the physically interesting
range, for both the incompressible and compressible LST spectra.

The discrete and continous adjoint eigenmodes were found to be similar in shape and location,
but the modes did not coincide. A potential explanation for the discrepancy might be the use
of the Chebyshev collocation nodes in the continous adjoint EVP. The adjoint EVP may require
different stretching of the mesh. Alternatively, closing the continuous adjoint system using the
’adjoint wall-normal equation’ as a compatiblity condition for the adjoint pressure amplitude might
possibly adversely affect the continous adjoint eigenmodes.

An interesting observation was made when considering the spatial structure defining the over-
lap between direct eigenmodes and discrete adjoint eigenmodes. For both a wall mode, and a
’middle region’ mode, the location of the maximum amplitude of the direct eigenmode was found
to differ spatially from that of the maximum amplitude of the discrete adjoint eigenmode.

Eigenvalue spectrum sensitivity to specific perturbations in the base
flow
The second aim of this study was to determine how the eigenvalue spectrum of the LST operator
is affected by specific perturbations in the base flow profile. It is to that end that we first computed
pseudospectra for the incompressible and compressible LST eqations for a perturbed generalised
eigenvalue problem (GEP):

(𝐴 + 𝐸)q = 𝜔(𝐵 + 𝐸)q , with 𝐸 ∼ 𝒪(𝜖) (7.1)

for a Falkner-Skan-Cooke boundary layer flow in Chapter 5.
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Subsequently we computed eigenspectra for the incompressible and compressible LST eqations
for a perturbed streamwise velocity base flow profile 𝑢(𝑦) + 𝐸(𝑦), with 𝐸 ∼ 𝒪(𝜖) in Chapter 6.
The perturbations were imposed on the base flow velocity profile (1) in its entirety, (2) in the wall
region (2) in a middle layer, and (3) on a top layer near the free-stream edge.

For the pseudospectra of the generalised eigenvalue problem, it was found that the distur-
bance of the eigenvalue spectrum resulting from the matrix perturbations would initiate from the
intersection of the continous branch and the discrete set of modes. For increasing perturbation
size, the disturbance of the spectrum was then seen to spread outward. Especially for larger per-
turbations the eigenvalues would describe a contour within which most of the ’pseudo-eigenvalues’
were contained in a relatively noisy pattern. For higher spatial wavenumbers 𝛼 the eigenvalue
spectrum was found to be more robust to perturbations .

The eigenspectrum has been shown to not be uniformly affected by matrix perturbations.
Some eigenvalues have a visible shift in the spectrum for perturbations as small as 𝒪(10ዅዂ),
whereas other eigenvalues display very little movement even for perturbations of 𝒪(10ዅኾ), or
𝒪(10ዅ኿). Thus, for some modes the shift of the eigenvalues in the spectrum is far greater in
orders of magnitude than the perturbations imposed. Notably the set of discrete wall modes, and
the TS-mode, appeared to remain relatively close to their unperturbed position.

Another interesting observation made in the pseudospectra analysis was that the ’free-stream’
modes for which 𝑐፫ → 1, and the discrete wall modes with relatively small 𝑐፫ tend to move less for
a certain perturbation than the modes for which 𝑐፫ is mid-range. As these findings are in agree-
ment with the sensitivity findings of Schmid [19] for Poiseuille and Couette flow, there appears to
be a ’sensitivity pattern’ for perturbed eigenspectra of shear force flows.

For the perturbed base flow problem it was found that perturbing the entire profile produced
superimposed eigenspectra that are similar to the pseudospectra for the matrix perturbations.
There were indiciations that for a certain sized perturbation (slightly) fewer eigenvalues would
demonstrate visible movement for the perturbed base flow than for the matrix perturbations.

A comparison of the perturbations imposed on specific regions of the base flow indicated that
perturbations in a middle region of the flow would most strongly affect the eigenvalues in that
there was relatively more eigenvalue shift when compared with perturbations in just the wall
region or the top layer. There were also indications that the spectrum is slightly more robust
to perturbations in the top layer than in the wall region. Additionally, it was only perturbations
in the middle region that lead to the previously seen contour within which most of the ’pseudo-
eigenvalues’ are contained in a relatively noisy pattern.

An interesting observation is that for both the wall region and top layer perturbations, the
superposed modes at the intersection between the discrete modes and the continous modes, and
the superposed modes along the continuous branch were found to be distributed along distinct
lines.

Furthermore, and counterintuitively, the wall modes – which are dominant in the near-wall
region – did not seem to be affected by a perturbation of the base flow in this specific region. This
implies that errors in the input data, e.g. due to difficulties in measuring the near-wall region, may
not necessarily lead to an eigenvalue shift of the TS-mode. Consequently, the long-term linear
stability information from this might be eigenvalue rather robust.

General conclusions
We have demonstrated that the discrete adjoint LST eigenvectors are theoretically and numerically
bi-orthogonal to the direct eigenvectors when using the derived weight matrix, for both the com-
pressible and incompressible LST operators. This resolves the first complication of the non-normal
LST operators: non-orthogonal eigenvectors. The demonstrated bi-orthogonality might allow for
the investigation of (isolated) responses to different types of disturbances, which is especially of
interest in boundary layer receptivity. Additionally, the demonstrated bi-orthogonality may aid in
employing the eigenmodes as basis functions in a deterministic approach (e.g. GO-ROM), or as
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control functions in a feedback loop (e.g. plasma actuation).

It was shown that the LST eigenvalue spectrum for the Falkner-Skan-Cooke boundary layer flow
is not uniformly affected by matrix perturbations, or perturbations in the base flow. Some eigen-
values shift by orders of magnitude greater than the perturbations imposed, whereas other eigen-
values remain relatively close to their unperturbed position. Especially the discrete wall modes,
notably the ’most unstable’ TS-mode, were found to be relatively unaffected by perturbations (in
the base-flow). On a practical note, this may mean that the TS mode can confidently be used
as an indication of long-term linear stability for experimental base flows, in spite of measuring
difficulties in certain regions of the base flow. An application could be to base flows obtained by
means of Hot-Wire-Anemometry (HWA) for which it is notoriously difficult to accurately measure
the near-wall region.

Recommendations
In this work we have considered only the incompressible Tollmien-Schlichting instability case, with
a relatively low Reynolds number. It might be worthwile to investigate how the findings for the
base flow perturbations extend to the compressible regime. Yet another potential avenue might
be to consider the effect of a completely different type of perturbation on the base flow. For
example, superimposing a mode-like disturbance, e.g. the TS mode, or an adjoint mode on the
base flow to not only investigate the response, but also the sensitivity of the eigenspectrum.

Future work on the adjoint systems and bi-orthogonality relations could focus on the structural
sensitivity. We found for both wall mode, and ’middle region’ modes, that the location of the
maximum amplitude of the direct eigenmode was different spatially from that of the maximum
amplitude of the discrete adjoint eigenmode. As a result, the spatial structure defining the overlap
between the discrete adjoint mode and the direct mode had its maximum amplitude in a region
(slightly) different from that of the direct mode. This overlap provides information ”about the
region in space where a feedback-forcing proportional to the local velocity has the largest impact
on eigenvalue drift” [19]. It would be very interesting to investigate structural sensitivity in the
context of specific base flow perturbations in the LST framework. This would effectively link the
two topics in this thesis. The paper by Luchini et al. [9] provides results in this regard for a flow
past a circular cylinder, which may prove a useful starting point.
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Compressible LST Equations

This appeidix contains the compuessible Linear Stahility Theory (LST) equations bi

Cartesiati, cylindrical, sphcrical and a specific curvilittear coordinate systeni.

Noting that y = wliere x denote the (possibly) cun’ilinear coordinates
and y’ are the Cart.esian coordinates, the following couventions apply in the case of this
systein:

Streainwise: z’ = x spectral (a) . 1 0 0
2 Metric

VaII—nonnaF.x = y differential g = 0 1 0
• 3 tensor:

Spanwise: z = z spectral (j3) 0 0 1

Note that. iii this case global analysis is pertoriue.d in the y—direction. This yie.Ids the
followi1]g set of equations:
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y-Momenturn equation

Compressible LST Equations
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