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Delft University of Technology

Delft, The Netherlands
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Abstract

Color information has been shown to provide useful in-
formation during image classification. Yet current popu-
lar deep convolutional neural networks use 2-dimensional
convolutional layers. The first 2-dimensional convolutional
layer in the network combines the color channels of the in-
put images, which produces feature maps per channel with
only spatial dimensions, height and width, getting rid of
the color dimension. In this work we introduce Full Color
Deep networks which use 3-dimensional convolutions to re-
tain the color dimension beyond the first layer. The 3D ker-
nels convolve over the color and spatial dimensions. The
network can extract features from all three dimensions in
all layers which are subsequently used by the classifier. We
show that the Full Color Deep networks perform at least
as well as the current CNNs but outperform them in learn-
ing color information and using that information in other
downstream tasks.

1. Introduction
Color information can be important depending on the

image classification task at hand [1]. Typical deep convolu-
tional neural networks (CNNs), however, use 2-dimensional
layers such as convolutions and pooling. After this point
we refer to such standard CNNs as 2D networks. The 2-
dimensional layers collapse over the color dimension by
additively superimposing the feature maps in the first layer.
The 2D feature maps per channel, in the height and width
dimensions, are subsequently used as input for the rest of
the layers. This brings forth the question if color infor-
mation is lost beyond the first convolutional layer. Several
works found that color information does play an important
role in image classification throughout the whole network
and that some filters even have their own role for specific
colored input [1, 8]. We believe, however, that color infor-
mation can play a bigger role in a classification task and that
the neural network can learn useful color features by retain-
ing the color dimension. To this end, we propose Full Color

Figure 1. The main difference between standard CNNs (top),
which use 2-dimensional convolutions, and our proposed Full
Color Deep networks (bottom), which use 3-dimensional convolu-
tions. The Full Color Deep networks maintain feature maps with
3 separate color channels in the third color dimension.

Deep networks (FCDNets) which use 3-dimensional convo-
lutional layers. The 3D convolutions enable the network to
focus on extracting features in the color dimension of the in-
put image. Figure 1 illustrates the main difference between
2D and FCD networks and a 3D convolution is visualized
in Figure 2.

3D CNNs with 3D convolutions are commonly used in
other domains such as medical imaging [28], which has a
third spatial dimension, or in video recognition [13, 21],
which has a third dimension in time. To our knowledge,
however, our proposed method is the first to apply 3D con-
volutions over the color dimension. We have the following
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Figure 2. Cube representing an RGB image with zero padding
in the color dimension (left). Cube representing the intermediate
output of one step in the convolution (right). The yellow cube is
the kernel which slides over the color and spatial dimensions.

main contributions. First, we investigate whether an FCD
network is viable for 2D image classification. A part of
the parameters in the network is dedicated to extracting fea-
tures in the color dimension, it is thus not trivial to investi-
gate whether its classification performance is on par with
the performance of 2D networks. We empirically show
that FCD networks are indeed viable for image classifica-
tion. We also systematically vary the color bias per class in
datasets and show how that influences the performance of
2D and FCD networks. For that purpose, we create several
toy datasets from the colored versions of MNIST [20] and
Fashion-MNIST [31]. The created datasets have a different
amount of class specific color information, allowing us to
capture the behaviour of the networks with respect to color
information. Finally we compare both type of networks and
show when an FCD network is a better alternative than the
2D network. We find that for regular tasks on the MNIST
and Fashion-MNIST datasets, both types of networks per-
form comparably. We show, however, that FCD networks
are better at learning color information even when it is not
necessary for the prediction task. The FCD networks can
afterwards apply the learnt color information in other down-
stream tasks to achieve better performances.

2. Related Work
This section contains related work on current research

of how color information is processed in neural networks
and in which fields CNNs with 3D convolutional layers are
deployed.

2.1. Color Encoding in CNNs

Color has been found to play an important role in im-
age classification [1, 8, 23, 24]. Buhrmester et al. [1] found
that color information becomes increasingly important if
there are many classes. Engilberge et al. [8] showed re-
sults that networks contain class invariant neurons which
are sensitive to color. The neurons in the earlier layers
are found to be more sensitive than those is later layers.
Rafegas et al. [23, 24] demonstrated similar behaviour and
presented the insight that even though neurons are less color

selective in later layers, the distribution of color selective
and non-color selective neurons stays relatively the same
throughout all layers. We find color selective neurons be-
ing present throughout all layers and 2D networks removing
the color dimension after the first layer counter-productive.
This motivated us to investigate the influence of retaining
the color dimension beyond the first layer of a neural net-
work.

Buhrmester et al. [1] created a formula to measure the
color sensitivity of a neuron. Rafegas et al. [23, 24] used a
measure which they called the color selectivity index. Both
measures compute the sensitivity of a neuron to color by
comparing the activation values of a colored image and its
grayscale counterpart. This seems to be a useful measure
and we will be using the color selectivity index to analyze
the performances of the 2D and FCD networks.

2.2. 3D CNNs and Features in the Third Dimension

Currently CNNs with 3D convolutions are deployed in
several fields of deep learning. CNNs are deployed in
medical visualization to detect abnormalities [17]. Suc-
cess has been found using 3D CNNs for finding brain
hemorrhages in volumetric data for promising results [29].
Kayalibay et al. [15] and Kamnitsas et al. [14] have also
demonstrated that 3D CNNs can perform well on a scarce
amount of data and even outperform state of the art re-
sults on challenging data. Chen et al. [3] transformed the
DenseNet [12] to use 3D kernels on a brain tumor segmen-
tation task and achieved state of the art results. Using 3D
kernels, they were able to extract features in all three spatial
dimensions. In our work, we transform VGGNet-based [27]
networks to use 3D kernels in the convolutional layers.

3D CNNs are commonly used in video recognition
tasks [32]. Tran et al. [30] and Ji et al. [13] proposed novel
3D CNNs and showed the results on human action recogni-
tion datasets. They showed the benefits of using 3D CNNs
over 2D CNNs, which included being able to better learn
temporal dimension features. 3D CNNs are even able to
deliver impressive results on facial emotion recognition in
videos [10] which have less obvious characteristics when
compared to human action. Just like in image classification,
transfer learning is researched for video recognition [2,26].
We also aim to demonstrate the effects of training on a cer-
tain dataset and evaluating the trained networks on other
datasets.

3. Method
In this section we start by giving a brief explanation on

how images are processed by a deep neural network in 2D
versus 3D. After that we introduce the FCDNet architec-
tures. We explain how we can convert a 2D network to an
FCD network or vice versa and this is followed up by the
exact chosen architectures with their parameter values used
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in the experiments. Finally we describe how we created the
controlled setting of our toy colored MNIST and Fashion-
MNIST datasets.

3.1. Batch Processing 2D vs 3D

Most, if not all, current image classification neural net-
works make use of 2D convolutional layers [11, 12, 19, 27].
An image classifier processes images in 4-dimensional
batches which correspond to the batch size, number of fea-
ture maps, height and width, of the feature maps. We inves-
tigate the influence of keeping a separate color dimension
because we hypothesize it will have a positive influence on
the eventual performance. Thus in the FCD networks we
work with 3-dimensional images, one color dimension and
two spatial dimensions. The batches have five dimensions,
batch size, number of feature maps, color dimension of the
feature maps and the spatial dimensions, height and width,
of the feature maps.

3.2. From a 2D Network to an FCD Network

All of the networks used in this paper are based on the
VGGNet [27]. We use convolutional layers with 3x3 ker-
nels, followed by a ReLU activation function and the fi-
nal layer is a linear layer for classification. We make use
of convolutional, ReLU, max pool (MP), adaptive average
pool (AAP) and linear layers [22]. It is relatively straight-
forward to transform a network from 2D to FCD, but there
are several things to keep in mind. The kernel, padding and
stride of the convolutional layer will be 3-dimensional. The
MP layer computes the maximum in three dimensions and
the AAP layer will create features in the three dimensions.
We make a fair comparison between the 2D and FCD net-
works, which means that only changing the layer type is
not sufficient. Only changing the layer type gives the FCD
network more parameters to work with, making the compar-
ison unfair. We define a fair comparison as comparing the
performance of the 2D and FCD networks having roughly
the same number of parameters throughout all of the layers.

The number of parameters in a network is decided by the
number of parameters in the feature extraction and classifi-
cation parts of the network. Each convolutional layer has
a number of input channels, output channels and a kernel
size. The AAP layer in our network is the bridge between
the feature extraction and classification parts. The linear
layer in the classification part has a number of input fea-
tures and output features. The number of parameters can be
computed as follows:

PF =

N∑
i

(Cini ∗ Couti ∗
k∏
j

(Kij ) + Couti), (1)

PC =

M∑
l

(Finl
∗ Foutl + Foutl), (2)

where PF is the number of parameters in the feature ex-
traction part of the network. N is the total number of con-
volutional layers i. Cini is the number of input channels
and Couti is the number of output channels, Ki is the con-
volutional kernel with k dimensions and Kij is the size of
the kernel in dimension j. PC is the number of parameters
in the classification part of the network. M is the number
of linear layers l. Finl

denotes the number of input fea-
tures and Foutl the number of output features. Both equa-
tions have an additional term at the end that denotes the bias
terms per layer. The number of input features of the first lin-
ear layer is equal to the number of output channels of the fi-
nal convolutional layer multiplied by the number of features
the AAP layer extracts. The output of the final linear layer
is equal to the number of classes of the dataset. The total
number of parameters of a network is equal to PF + PC .

The FCD network has more parameters than a 2D net-
work if a one-to-one conversion is applied on the number
of input and output channels per convolutional layer. A
scaling in the number of channels per convolutional layer
is applied to keep the number of parameters roughly the
same, according to the procedure of Cohen and Welling [5].
This results in the 2D networks having more input and out-
put channels per convolutional layer compared to their FCD
network counterparts. The 2D networks thus learn more 2D
filters while the FCD networks learn less 3D filters but with
more parameters. We expect that the 2D networks focus
more on spatial features while FCD networks split their fo-
cus on spatial and color dimension features.

3.3. The FCD Architectures

Many different types of 3D convolutions exist. Sev-
eral examples are convolutions with cube-shaped kernels
which do a same convolution with zero padding [16] in the
color dimension. The convolutional kernels can also be cus-
tomized to combine the color channels at different stages of
the network or to do different types of combinations. Each
has its own value for certain aspects of the task at hand. We
experiment with seven different FCDNet architectures. All
of the architectures have three convolutional layers. Each
convolutional layer does a same convolution in the spa-
tial dimensions. Each convolutional layer is followed by
a ReLU and MP layer. The MP operation is performed per
color channel with a kernel size and stride of 2x2 in the spa-
tial dimensions. The final MP layer is followed by an AAP
layer, which extracts one feature per color channel, and then
a linear layer. The key characteristics for the convolutions
can be found in Figure 3. Architectures 6 and 7 are left out
of the figure because they are combinations of the Architec-
tures 5 and 1 and Architectures 4 and 1 respectively.

4



Architecture 1 Architecture 2 Architecture 3

Architecture 4 Architecture 5

Figure 3. The key characteristics for five out of seven Full Color Deep network architectures. We sketch the type of convolution per
architecture. “x3” means for all three convolutional layers. After each iteration of convolutions, a ReLU and max pool layer are applied
(not shown). Each 4 by 4 matrix represents a channel. The rectangle around Architectures 1, 3, 4 and 5 represents that for each convolutional
layer, the input has to be padded before the convolution. The input is only padded once for Architecture 2. The convolutions in Architecture
2 use a stride of 2 in the color dimension. White channels represent zero padding. The red, green and blue channels represent respectively
the first, second and third channel of the input to the convolutional layer.

Table 1. The seven different architectures used in the experiments. Cout is the number of output channels and K is the kernel size. The
number of input channels for conv1 is 1 and for conv2 and conv3 it is the number of output channels in the layer prior. AAP stands for
adaptive average pool. Each convolutional layer is followed by a ReLU and then a max pool layer with kernel size 1x2x2. The output of
the linear layer is dependent on the dataset, in case of MNIST and Fashion-MNIST it is 10.

FCD Architecture 1 2 3 4 5 6 7
conv1 (Cout,K) 16, 3x3x3 16, 3x3x3 16, 3x3x3 16, 2x3x3 16, 1x3x3 16, 1x3x3 16, 2x3x3
conv2 (Cout,K) 32, 3x3x3 32, 3x3x3 32, 3x3x3 32, 2x3x3 32, 1x3x3 32, 3x3x3 32, 3x3x3
conv3 (Cout,K) 64, 3x3x3 64, 3x3x3 64, 3x3x3 64, 2x3x3 64, 1x3x3 64, 3x3x3 64, 3x3x3
AAP (output) (3, 1, 1) (3, 1, 1) (3, 1, 1) (3, 1, 1) (1, 1, 1) (3, 1, 1) (3, 1, 1)
linear (input) 192 192 192 192 64 192 192

The first architecture uses cube-shaped kernels which
convolve over the color and spatial dimensions. A same
convolution with zero padding is applied in the color dimen-
sion. The cube-shaped kernels allow the network to learn
color features in combinations of color channels.

The second and third architectures make use of cube-
shaped kernels and two padding schemes. The second ar-
chitecture pads the input once, as shown in Figure 3, such
that the resulting feature map after three convolutions has
three channels in the color dimension. The third architec-
ture pads the input images in each layer and the convolu-
tions have a stride of two in the color dimension. These
padding schemes enable the network to learn one or two
channel color features in the first layer of the network.
Learning features for the combination of all color channels
is delayed till further in the network. A deep neural network
is known to learn low level features in the earlier layers of
the network and high level features in the deeper layers of
the network [33]. We believe color information is a low
level feature. Thus we give the network more opportunities

to learn features by allowing the networks focus on single
or double color channels.

The fourth architecture has 2x3x3 shaped convolutional
kernels and the fifth architecture has 1x3x3 convolutional
kernels. We do a circular padding in the color dimension
for the fourth architecture and do not apply any padding in
the color dimension for the fifth architecture. These archi-
tectures are also chosen with the reason in mind to delay
the combination of the color channels. The fourth architec-
ture has convolutions over all combinations of two out of
three color channels in the first layer. The fifth architecture
does not combine the color channels, thus the AAP layer
extracts only one feature over all spatial and color channels,
combining the features in the separate color channels.

The sixth and seventh architectures are variants of the
fourth and fifth architectures. The architectures have a con-
volutional kernel size of 1x3x3 and 2x3x3 in the first layer
respectively and 3x3x3 kernels for the following layers.
This enables the networks to focus either on a color specific
or a mix of two color channels specific features in the first
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Figure 4. Gaussian distributions for each of the classes in the
(Fashion-)MNIST dataset with standard deviation 12. The even-
tual hue values are calculated modulo 360.

layer and combine the color channels in earlier subsequent
layers than the other architectures. A same convolution is
applied in the second and third layer for both architectures
and three features are extracted in the AAP layer.

3.4. Final Configurations

The final configurations of the FCDNet architectures are
shown in Table 1. We considered these networks in the
comparison of the best FCDNet architecture. One impor-
tant difference between the 2D and FCD networks is that
the AAP layer of the 2D network retains only one collapsed
feature in the spatial dimensions while the FCD network re-
tains three features, one per color channel. The importance
is the fact that we explicitly give the FCD network color fea-
tures to work with. Moreover, we use the cross-entropy loss
function and the Stochastic Gradient Descent optimizer.

3.5. Colored MNIST and Fashion-MNIST

Variations of the MNIST and Fashion-MNIST datasets
are used to create a controlled environment and observe the
behaviour of the neural networks. The datasets are trans-
formed to contain color information per class. Five specific
datasets are created. The color of the digit is dependent on
the HSV colorspace. The saturation and value values are
always 1 in a range of 0 to 1 and the hue values vary in the
range of 0 to 360. One type of dataset is a Deterministic
dataset. 360 is divided in steps of 360

10 = 36 and one class
is assigned one value. Class 0 is assigned hue value 0 for
example. HSV values 0/1/1 are converted to RGB values,
which correspond to the color red and the image is trans-
formed correspondingly.

The four other datasets follow a particular strategy. One
class is assigned a hue value. Class 5 for example is as-
signed hue value 180 which corresponds to the color cyan.
Instead of every encountered instance of class 5 being cyan,
a Gaussian distribution is drawn for class 5 with mean value

Figure 5. 2D networks trained and evaluated on the colored
(Fashion-)MNIST datasets with the corresponding standard devia-
tion shown on the x-axis. Five models with different random seeds
are trained per dataset and the mean and standard deviation values
are plotted.

180 and a standard deviation value differing for the four
datasets. The four standard deviation values are 12, 60, 120
and 1,000,000. Whenever an image with label 5 is encoun-
tered, a random sample is picked from its Gaussian distri-
bution, which will represent the hue value of the image. An
instance of the distributions of the dataset with standard de-
viation 12 is shown in Figure 4. The reasoning behind the
standard deviation values is as follows. Standard deviation
12 indicates a low deviation from the mean value of the
class so in more than 80% of the cases, the picked sam-
ple is closer to its own mean value than other mean values.
In standard deviation 60 more than 80% of the values are
within the right half of the hue circle and in standard devia-
tion 120 more than 80% of the samples will deviate at most
180 from the mean value. Finally we have standard devia-
tion 1,000,000 which represents a Uniform dataset meaning
that any digit can be assigned any hue value between 0 and
360. The datasets in this work are referred to as the Deter-
ministic, Gaussian 12, Gaussian 60, Gaussian 120 and Uni-
form datasets. Even though the digits can be assigned dif-
ferent colors, the number of labels in these datasets is equal
to 10, corresponding to the digits 0 up to and including 9.
By training both 2D and FCD networks on the datasets with
different standard deviation values, we observe what the im-
pact of color is on the networks. We introduce additional
datasets in the experiments. Examples for all of the datasets
are included in the appendix.

4. Experiments
In this section we present the experiments we have per-

formed along with our hypotheses and results. The accuracy
plots per dataset have a mean line and a standard deviation
area, because five networks are trained and evaluated for
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Figure 6. Color selectivity indices of 2D Architecture 1 in Table 2
trained on the five colored (Fashion-)MNIST datasets.

Table 2. Hyperparameters of the two different 2D architectures
used in the experiments. Cout is the number of output channels
and K is the kernel size. The number of input channels for conv1
is 3 and for conv2 and conv3 it is the number of output channels in
the layer prior. AAP stands for adaptive average pool. Each con-
volutional layer is followed by a ReLU and then a max pool layer
with kernel size 2x2. The output of the linear layer is dependent
on the dataset, in case of MNIST and Fashion-MNIST it is 10.

2D Architecture 1 2
conv1 (Cout,K) 16, 3x3 23, 3x3
conv2 (Cout,K) 32, 3x3 45, 3x3
conv3 (Cout,K) 64, 3x3 91, 3x3
AAP (output) (1, 1) (1, 1)
linear (input) 64 64

each dataset with a different fixed starting seed for more
reliable representations. The accuracy is computed as the
number of correctly predicted samples divided by the total
number of samples.

4.1. How Does Color Influence Performance?

Firstly, we investigate how color currently affects the
performance of neural networks. We expect the CNNs to
perform well whenever color bias per class is high but worse
when the color bias per class is low. We hypothesize that
if color bias is high, the neural network has a clear fea-
ture which makes the classification task easier. We use the
five colored MNIST datasets. Since MNIST is a fairly easy
dataset for CNNs, we use a small network and ∼16.67% of
the data. A simple 2D network was used for this purpose
(Table 2 Architecture 1).

Much color bias per class is present in the Deterministic
and Gaussian 12 datasets. In the other three datasets, the
color bias per class decreases as the standard deviation in-
creases until there is no correlation between the color and

Figure 7. Color selectivity indices of FCD Architecture 4 in
Table 1 trained on the five colored (Fashion-)MNIST datasets.

the class, i.e. there is no color bias in the Uniform dataset.
As shown in Figure 5, the accuracy is lower for the Uniform
dataset than for the Deterministic dataset. We also believe
that the networks trained on the Uniform dataset, have to
classify based on only the spatial features, since color does
not add valuable information, which is a harder task. We be-
lieve that color information is lost for those networks since
it was not a useful feature. This information could be useful,
however, for other downstream tasks. We introduce FCD
networks to retain color information. The colored versions
of the Fashion-MNIST dataset are used as control datasets
and we observe the same behaviour in Figure 5.

The color selectivity index [24] assigns a value to a neu-
ron in a convolutional layer. A value close to 1, at least
higher than 0.25, means the neuron is color selective, i.e.
color in the input image highly activates that neuron. A
value less than 0.1, all the way down to -infinity, means
color in the input image does not activate that neuron. The
color selectivity index is a useful measure that can help us
understand the behaviour of the networks. A violin plot
has a range indicating the minimum and maximum values
with a shaded area which represents the distribution of the
values. We have 91 color selectivity indices in the final con-
volutional layer of the 2D network and 64 color selectivity
indices in the final convolutional layer of the FCD network.
The violin plot of the color selectivity indices in Figure 6
supports our belief that the neural network only uses spatial
features for Uniform datasets, almost none of the neurons
are color selective. For the networks trained on the De-
terministic dataset, however, there are more color selective
neurons.

4.2. Best Full Color Deep Network Architecture

There are many different ways to combine the color
channels in an FCDNet, which is why in this experiment we
evaluate the seven FCDNet architectures in Table 1. We in-
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Figure 8. Accuracies of the seven FCDNet architectures on the five MNIST datasets (top) and Fashion-MNIST datasets (bottom). Five
networks are trained for each dataset and the mean and standard deviation values are plotted.

Figure 9. Accuracies of the optimal 2D and FCDNet architectures
on the MNIST and Fashion-MNIST datasets of size 10,000.

vestigate which one attains the highest accuracy. We use the
five datasets of MNIST and Fashion-MNIST. We use only
10,000 out of 60,000 images for all of the datasets. We ob-
serve that all of the accuracies for all architectures are fairly
similar with the exception of Architecture 5 (Figure 8). We
believe there is a deviation because the architecture is set
up differently compared to the others. With this architec-
ture the network is only able to learn spatial features in
the RGB channels separately and combine them at the end.
This causes the network to perform poorly when color bias
per class is prevalent but similar to the others when the op-
posite is the case. Even though the rest of the networks
achieve a similar accuracy, Architecture 4 is performing bet-
ter. The architecture using 2x3x3 convolutions with circu-
lar padding thus performs best on at least the MNIST and
Fashion-MNIST datasets.

4.3. Comparison 2D vs FCD on Colored MNIST
and Fashion-MNIST

In this experiment we investigate whether the best FCD-
Net architecture in the experiment of section 4.2 can per-
form at least as well as its 2D counterpart. The colored
MNIST datasets are fairly simple so we also evaluate the
networks on the colored Fashion-MNIST datasets. We be-
lieve that, for at least the Deterministic datasets and the
Gaussian datasets with low standard deviation, the 2D and
FCD networks will perform comparably. FCD network can
be outperformed on the Uniform dataset because that task
is performed only utilising spatial features and 2D networks
have more focus on spatial features. We use Architecture 4
in Table 1 and its fair counterpart Architecture 2 in Table 2.
The accuracies of the 2D and FCD networks are similar on
all of the datasets (Figure 9). A trend similar to the ex-
periment in section 4.1 is observed, the accuracies are high
when the standard deviation is low, and the accuracies are
low if the standard deviation is high. The FCD networks
thus perform at least as well, if not better, than 2D networks
on at least the MNIST and Fashion-MNIST datasets. We
performed an optimal comparison between the two types
of networks, in which we compare the networks when they
have the highest number of filters per convolutional layer.
The results are very similar however, so we have included
the results in Appendix Section 5.

4.4. Out of Distribution Datasets

We found that FCD networks can perform comparably to
2D networks on image classification. With three following
experiments we give some more intuition on how color in-
formation is processed and we also show that FCD networks
are better at retaining color information than 2D networks.
We define the retention of color information as the networks
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Figure 10. A visual description of the extra experiments performed
on out of distribution datasets. In experiment 1 the pretrained net-
works are immediately evaluated on the Deterministic dataset with
hueshift 180. In experiment 2 the weights in the classification lay-
ers of the pretrained networks are finetuned on the Determinis-
tic Hueshift 180 dataset and then evaluated. In experiment 3, the
weights in the classification layers of the pretrained networks are
finetuned on a 10 color uniform dataset in which the label is the
color and afterwards evaluated.

learning color features such that deeper layers of the net-
work are able to use those features to make predictions. Two
new datasets are introduced. The first dataset is a Determin-
istic dataset as described before. The only differences are
the hue values per class, those are shifted by 180 modulo
360, e.g. class 7 was originally assigned hue value 252, in
the new dataset it is assigned (252 + 180) % 360 = 72. This
way we obtain a Deterministic dataset in which the digits
are assigned a color in the opposite of the hue circle. The
second dataset has 10 colors around the hue circle in steps
of 36 just like the Deterministic dataset. A sample in the
dataset has a uniform chance to be assigned any of the 10
colors. The labels in this dataset correspond to the color
of the samples. A visual description of the experiments is
shown in Figure 10.

The first of the three experiments uses the pretrained net-
works in the experiment of section 4.3 and evaluates those
on the first dataset introduced in this experiment. The clas-
sification labels for both the initial training and downstream
tasks are the same. The only difference in the downstream
task is the color of the digit. The accuracies on the Deter-
ministic are zero (Figure 11). As shown in Figure 12, the
2D and FCD networks only learned color information in the
initial training task. This results in the networks to classify
each class as five classes later, the classes that are assigned
the color in the original Deterministic datasets. The same
behaviour applies on the Gaussian 12 datasets. The accu-
racies are higher for the networks initially trained on Gaus-
sian 60 but the accuracies are not as high as in Figure 9,
∼90% compared to ∼98% on MNIST and ∼60% compared

to ∼89% on Fashion-MNIST, note the difference in the y-
axes. Color information was thus important, but not as im-
portant as for the Deterministic and Gaussian 12 datasets.
Finally, the networks perform comparable to the networks
in Figure 9 when pretrained on the Gaussian 120 and Uni-
form datasets, ∼97.4% and ∼97.8% compared to ∼97.5%
and ∼97.6% on MNIST and ∼84.4% and ∼86.1% com-
pared to ∼85.7% and ∼85.7% on Fashion-MNIST. This
tells us that those pretrained networks mostly used spatial
features to classify the images. The color selectivity indices,
as shown in Figure 7, are similar to the color selectivity in-
dices in Figure 6.

The purpose of the second experiment is to investigate
at what aspect the FCD network excels compared to the 2D
network. We freeze the weights in the layers up to and in-
cluding the adaptive average pool layer of the pretrained
networks and finetune the weights in the classification layer
on the first proposed dataset. This way we can assess how
much color information was learned by the feature weights
of the pretrained networks and whether that information is
useful for other downstream tasks. As shown in Figure 11,
the accuracies are similar for the 2D and FCD networks for
the first two datasets of MNIST and Fashion-MNIST. As
the standard deviation of the dataset increases, however, the
FCD networks achieve higher accuracies than the 2D net-
works. In our work a 2D network has more filters per layer
and has 2D feature maps per channel. Thus it only learns
spatial information for datasets with high standard devia-
tion and has more focus on it than its FCD counterpart. The
accuracies of the FCD networks, for both the MNIST and
Fashion-MNIST datasets, being higher than their 2D coun-
terparts for higher standard deviation datasets thus tells us
that the 3-dimensional kernels are able to learn color fea-
tures even when their initial task has no use for this infor-
mation. This observation is even more prevalent in the fol-
lowing experiment.

The final of the three experiments was performed with
the purpose to isolate the color features learned by the net-
works. Here we do the same as the second experiment but
on the second dataset introduced in this experiment. The
classification task in this experiment is different from the
pretrain tasks. The labels in this dataset are equal to the
colors in the images. We train only the weights in the clas-
sification layer for both the 2D and FCD networks and thus
we can investigate what features the pretrained networks
learned in their initial tasks with regards to color informa-
tion. The accuracies of the FCD networks on the down-
stream task are close to 1.0 while the accuracies are lower
for the 2D networks. Both 2D and FCD networks had the
same input and objective in the pretrain task. The results
indicate that the FCD networks learned meaningful features
for the new dataset while the 2D networks did not. Exper-
iment 3 in Figure 11 is thus a prime example that the FCD
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Figure 11. Accuracies of networks pretrained on the 5 MNIST and Fashion-MNIST datasets and evaluated on out of distribution datasets.

Figure 12. Confusion matrix of the 2D (top) and FCD networks
(bottom) pretrained on the Deterministic MNIST dataset and eval-
uated on the Deterministic dataset with hueshift 180. The color of
the label represents the color the class was assigned.

networks retained color information better than the 2D net-
works.

4.5. Vehicle Color Recognition

We investigate how our networks perform on a real world
problem, the color recognition of vehicles on a highway.
We use the vehicle color recognition dataset for this pur-

Figure 13. Accuracies of 2D Architecture 2 in Table 2 and FCD
Architecture 4 in Table 1 on the vehicle color recognition dataset.

pose [4]. The classification task of this dataset is to predict
the color of the vehicle. In the previous experiments we
have been using toy datasets and thus it is not sure if the
networks can be applied in real life situations. We use the
optimal architectures we found before, FCDNet Architec-
ture 4 in Table 1, and its 2D counterpart, Architecture 2
in Table 2. Since the classification task is recognizing the
color of vehicles, we believe that such small networks are
still able to do the job. We believe they might even perform
better than bigger networks since the receptive fields are so
small that they are only able to focus on smaller features
such as the color. We trained the networks until the accu-
racies saturated. As shown in Figure 13, the FCD network
achieves higher accuracies than the 2D network throughout
the whole learning process. Even though the number of pa-
rameters throughout all of the layers are relatively the same,
the FCD networks are better at learning the color features in
the images.

Our hypothesis on why the FCDNets are outperforming
the 2D networks is that the vehicle color recognition dataset
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Figure 14. Accuracies of the 2D and FCD networks on a high
variance Fashion-MNIST dataset.

has too much variance per class. The 2D network puts too
much focus on all of the features in the input images that
it gets distracted from the main feature, the color of the ve-
hicles. We believe the FCD network also gets distracted,
however, since they have a dedicated color dimension to ex-
tract features from, they are able to more easily identify the
useful feature, which is the vehicle color. We modified the
Fashion-MNIST dataset to recreate the setting. To recre-
ate the variance, we only included eight samples per class
and added background noise to each image. As shown in
Figure 14, the FCDNets achieve higher accuracies than the
2D networks. This shows as well that the FCD networks are
less susceptible to noise than the 2D networks.

5. Discussion
This section contains the limitations we observed during

our experiments, the main findings of our work and direc-
tions for future work regarding this research.

5.1. Limitations

There are some limitations on using FCD networks
over 2D networks. First, the time it takes to train is
longer. We found from all of the experiments that it
takes approximately 50% longer to train the FCD networks.
Next we trained a VGG-M network as in the work of
Rafegas et al. [24] on the vehicle color recognition dataset.
This gave two results. One of the results was that the opti-
mal architecture found for the colored MNIST and Fashion-
MNIST datasets was not the optimal architecture for the ve-
hicle color recognition dataset. Architecture 1 in Table 1
had a better performance. The second find was that Archi-
tecture 1 performed comparably with its 2D counterpart and
that Architecture 4 performed worse than its 2D counterpart
(Appendix Section 5). The FCD networks might thus not
necessarily be better than 2D networks when the networks

are bigger. Additionally, our analysis is limited by the archi-
tecture variants and datasets we experimented with in this
work. Other architectures using 3D convolutions might per-
form better than the architectures presented here.

5.2. Conclusion

We introduce Full Color Deep networks (FCDNets),
convolutional neural networks which use 3D convolutional
layers such that the color dimension can be retained beyond
the first convolutional layer. We also introduce colored ver-
sions of the MNIST and Fashion-MNIST datasets in which
we systematically vary the color bias for the classes. We
compare different FCDNet architectures to each other and
we find that FCDNet Architecture 4 in Table 1 performs
the best in terms of accuracy for the colored versions of the
MNIST and Fashion-MNIST datasets. The FCDNets per-
form comparably, if not better, than their 2D counterparts
when trained and evaluated on the MNIST and Fashion-
MNIST datasets. The FCDNets manage to attain much bet-
ter performance in retaining color information. We define
the retention of color information as the networks learning
color features such that deeper layers of the network are
able to use those features to make predictions.

Using the colored MNIST and Fashion-MNIST datasets,
we show that FCDNets preserve color information even
when it is not explicitly required and do not lose their image
classification performance compared to the 2D networks.
We also show that FCDNets do not only work in toy set-
tings but also on a real world problem where they outper-
form their 2D counterparts.

5.3. Future Work

In our work we showed that small FCD networks per-
form better than 2D networks on the vehicle color recogni-
tion dataset. We did not have the time to extensively exper-
iment with bigger architectures. It might thus be interesting
to investigate if current big networks such as the VGG-M
network have FCD counterparts which can perform compa-
rably or better on the vehicle color recognition dataset. A
point of interest is whether the optimal FCD network archi-
tecture is task dependent so whether each task has its own
optimal architecture. Other architectures besides the ones
presented in this research might also be viable options. The
performance of 2D and FCD networks can also be com-
pared on a more natural dataset such as ImageNet [6] or
CIFAR10 [18] to explore the benefits, in terms of training
time and accuracy, of using FCD networks in those settings.
Furthermore, using different color spaces to represent im-
ages can give different results for the same task [7, 9, 25].
It might be interesting to research the performance of an
FCDNet depending on the color space of the input dataset
in case the RGB colorspace is not the best colorspace for
FCDNets.
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2
Introduction

Convolutional neural networks (CNNs) have gained a lot of popularity over the recent years showing
prominent performance on computer vision tasks such as image classification, segmentation, object
recognition and much more [1,2,11]. In image classification in particular, AlexNet [7] was one of the first
introduced deep neural networks that showed significant results, even when compared to the competition
at that time. VGGNet [12] was introduced under the premise that the networks could be deeper with
small convolutional kernels and achieve even better results. Besides these, PyTorch [9] has an extensive
list of image classifiers and their performances on their website. One common element between the
networks is that they use 2-dimensional layers, 2-dimensional convolutional layers in particular. 2D
convolutional layers process RGB input images and produce 2D feature maps, in the height and width
dimensions, per channel. This removes the color dimension of the input images.

This work investigates the behaviour of CNNs when the color dimension is retained. We introduce
Full Color Deep (FCD) networks that are designed to handle 3D feature maps, in the color and spatial
dimensions, throughout all layers of the network. We also investigate the behaviour of CNNs with
regards to color bias per class by evaluating the 2D and FCD networks on datasets which have a
varying color bias per class.

2.1. Motivation
CNNs have had significant breakthroughs [8]. CNNs using 3-dimensional convolutional layers have
been applied to several fields already which include video action recognition and medical imaging for
example [6, 13]. We are the first, to our knowledge, to apply CNNs with 3D convolutional layers on
images which utilize the color dimension as the third dimension. We believe that color information is
important in the image classification task. Image classifiers using 3D convolutions to extract features
in the color dimension might perform better than regular 2D networks when color bias is present in
the dataset such as the Vehicle Color Recognition dataset [4]. This motivates us to explore beyond the
regular 2D networks and introduce FCD networks to investigate whether better architectures exist for
downstream tasks in which color information is important.

2.2. Research Questions
In this research we investigate the influence of retaining a color dimension beyond the first layer of the
convolutional neural network. The main research question accompanying this research is:

How does the retention of a color dimension of the input images influence the performance of a
neural network?
This can be deconstructed in the following three sub-questions:

How does color information influence the performance of the neural network?
How do we process the retained color dimension with a neural network?
How much color information is used when retaining the color dimension?

The first sub-question is to understand how color information is currently processed by neural networks.
That means how and when color information is used during classification. The second sub-question is
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16 2. Introduction

to investigate what type of convolutions we will use to include a color dimension which is related to
the type of architecture. The third sub-question is to investigate whether the retention of the color
dimension enables the neural networks to learn more color information than the regular 2D networks.

2.3. Outline
This report aims to provide additional information to the work presented in the scientific paper. Chapter
3 provides prior knowledge on the convolutional neural networks. Chapter 4 explains the methods in
more detail. Finally, chapter 5 provides extra explanations on experiments and also contains additional
experiments that were performed but did not add new insights to the findings in the scientific paper.



3
Prior Knowledge on Convolutional Neural

Networks
This chapter provides prior knowledge on the convolutional neural networks (CNNs) discussed in the
scientific paper. A CNN consists of several layers, each containing nodes, also known as neurons. The
nodes are interconnected and the whole network represents a human brain. The CNN has an input
layer, output layer and hidden layers in between. The hidden layers in this work are convolutional,
ReLU and pooling layers. In image classification, the CNN processes input images to obtain an output
which corresponds to the object in each image. Since the 2D networks and Full Color Deep (FCD)
networks mentioned in the scientific paper are fairly similar, we start by explaining the 2D networks.

3.1. 2D Convolutional Neural Networks
In the scientific paper we briefly discussed how the data is processed in a CNN. The well known image
classifiers available on the website of PyTorch [9] are 2D networks.

3.1.1. Dataset Processing
A dataset is a collection of images with labels which describe the object in the image. We worked with
the MNIST and Fashion-MNIST datasets. Both datasets contain 60,000 train images and 10,000 test
images. The train images are used to train the network and are split into two sets, train and validation
images. The validation set is a control dataset used to monitor the learning process during training
and it is in our work 20% of the training data. During one training loop, also known as an epoch, all
train images are used as input for the network. The train images are split into batches of, in our case,
32 images and then processed. Each batch is processed as 4-dimensional data. The first parameter is
the number of images in a batch. The second parameter is the number of input channels. The third
and fourth parameters are the spatial height and width of the images. The network produces an output
tensor of 32 predicted labels for each input batch. The predicted labels are compared to the actual
labels, also known as the ground truth labels, and adjustments are made to the network to improve the
predictions.

3.1.2. Training a Network
The input for a network is a tensor of images and labels, the output is a tensor of predictions. A network
produces an output after a batch is processed. We use Architecture 2 in Table 2 as our 2D network.
The batch is processed through convolutional, ReLU, max pool (MP), adaptive average pool (AAP)
and linear layers. We first explain each component separately and describe how they work together
afterwards.

Convolutional Layer
A convolutional layer has input channels and output channels. The input for the first convolutional
layer is a batch of 2D images with three color channels, RGB. The number of input channels is thus
equal to three. The convolutional layers have 3x3 kernels, also known as filters, which traverse the input
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18 3. Prior Knowledge on Convolutional Neural Networks

Figure 3.1: A convolution operation of a 3x3 kernel on a 4x4 input image producing a 2x2 feature map.

Figure 3.2: Examples of averaging and edge detection filters.

images to produce so called feature maps. The kernels, in a convolutional layer, slide over each value
and produce an output value. Figure 3.1 shows an example of one step of one kernel. The number of
input channels in the input layer is 3 and the number of output channels is 23. Thus there are 3 ∗ 23
3x3 kernels. The output is a 2D feature map per channel where each is a combination of the three input
channels. They are called feature maps because each filter highlights the features in the input it has to
detect. Filters have different functions. Figure 3.2 shows averaging and edge detection filters. The job
of a convolutional layer is to detect features in input images making use of its filters. The problem with
this setup is that the CNNs collapse the color dimension in the first convolutional layer. The outputs
are 2D feature maps, in the height and width dimension, per channel. CNNs have achieved astonishing
results, however, we believe that the networks can perform better if it learns explicit features in the
color dimension. 2D feature maps per channel limits this process.

Activation Function
The activation function is an important part of the network and in our case, each convolutional layer is
followed by a ReLU activation function. The activation function in a network decides for every neuron
in a layer by how much its output should be weighed as input for the next layer. There are several
activation functions such as the sigmoid, tanh or a linear function. We chose the ReLU activation
function because it is currently regarded as the better non-linear function when compared to sigmoid
and tanh. Furthermore, a non-linear activation function is important because it allows the network to
do more complex tasks by introducing non-linearity in the values.

Figure 3.3: A max pool operation with stride and kernel size of 2x2.
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Pooling Layer
A pooling layer in CNNs is used to downsample a feature map and that way summarize its features.
Pooling layers decrease the number of computations a network has to do since the feature maps are
downsampled. Pooling layers also make the network translation invariant. Translation invariance means
that the position of features in an image does not matter. The introduction of translation invariance
is important because the convolutional layers make the network encode location specific features. Our
networks use MP layers and an AAP layer. MP layers downsample the feature maps with a scale of
two in the height and width with a 2x2 kernel and stride (Figure 3.3). The job of the MP layer is to
retain the maximum value in the 2x2 patch, thus retaining the features in the whole feature map that
are the most eminent.

We use an AAP layer between the linear and final MP layer. For an AAP layer, instead of specifying
a kernel size and a stride, we specify the number of features, and the kernel size and stride are automat-
ically initialized. Our networks retain one spatial feature per feature map of the final MP layer. The
AAP layer computes the average feature per channel and passes the features on to the classification
part of the network.

Linear Layer
The final layer of our network is the linear layer, also known as a fully connected layer. We have one
linear layer which is the classification part of our network. All layers prior, are combined the feature
extraction part. This layer takes as input the flattened features produced by the AAP layer. Flattening
is a simple process in which a multi-dimensional vector of values is transformed to a 1-dimensional
vector of values. The linear layer has as input the number of features. The output is equal to the
number of classes in the dataset. The linear layer is able to learn connections between the features
extracted and the output. It is used to predict how probable a certain output is based on the input
features.

Loss Function and Optimizer
A loss function is used in the training process to compute the difference between the ground truth labels
and the predicted labels. The loss function assigns a value to the difference, also called the loss. The
loss function also calculates the gradients for each of the weights. The gradients for weights indicate
the change to the network weights to make the predicted labels more similar to the ground truth labels.
Once the gradients are calculated, the optimizer decides on how drastically to change the weights. A
learning rate is initialized to this end. A low learning rate indicates a small step towards the right
direction, a high learning rate indicates a big step towards the right direction.

Difference 2D and 3D Convolutions
A 2D convolution in convolutional layers uses a 2D kernel to convolve over the input image. The output
is computed as

𝑂[𝑚, 𝑛] =
⌊𝑘/2⌋

∑
𝑖=−⌊𝑘/2⌋

⌊𝑘/2⌋

∑
𝑗=−⌊𝑘/2⌋

𝐾[𝑖, 𝑗]𝐼[𝑚 + 𝑖, 𝑛 + 𝑗], (3.1)

where 𝑂[𝑚, 𝑛] is the coordinate (𝑚, 𝑛) in output 𝑂, 𝐾 is a 𝑘 ×𝑘 kernel and 𝐼 is the input. As shown
in Figure 3.4, a 2D convolution of an RGB input still produces a 2D output. A 3D convolution in
convolutional layers uses a 3D kernel to convolve over the input image. The output is computed as

𝑂[𝑝,𝑚, 𝑛] =
⌊𝑐/2⌋

∑
𝑙=−⌊𝑐/2⌋

⌊𝑘/2⌋

∑
𝑖=−⌊𝑘/2⌋

⌊𝑘/2⌋

∑
𝑗=−⌊𝑘/2⌋

𝐾[𝑙, 𝑖, 𝑗]𝐼[𝑝 + 𝑙,𝑚 + 𝑖, 𝑛 + 𝑗], (3.2)

where 𝑂[𝑝,𝑚, 𝑛] is the coordinate (𝑝,𝑚, 𝑛) in output 𝑂, 𝐾 is a 𝑐×𝑘×𝑘 kernel, where 𝑐 is the number
of channels in the color dimension, and 𝐼 is the input. As shown in Figure 3.5, a 3D convolution over an
RGB input produces a 3D output, with a first dimension in color followed by the dimensions in height
and width.
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Figure 3.4: A 2D convolution over an RGB image. Three kernels, one per color channel. The outputs per convolutional
kernel are additively superimposed to produce a 2D feature map.

Figure 3.5: A 3D convolution over an RGB cube representing an input (left) and one yellow cube-shaped kernel. The
output is a 3D feature map (right) in which one intermediate step is displayed.

Pipeline
Now we present an overview of how these components work together to train a model. A model is
trained for several epochs. In one epoch, the training data and validation data are processed. In case
of 60,000 images, 48,000 are used for training and 12,000 for validating. The training data is processed
by the network in batches of 32. Kernel weights are learned after a batch is used as input. The kernels
change the input to detect features and produce feature maps per channel. The ReLU activation
function decides how much the feature maps weigh as input for the next convolutional layer and the
MP layer emphasizes the most prominent features and adds translation invariance. The convolutional
operations, ReLU activation function and MP operations are executed three times. The kernels of the
early convolutional layers learn to detect low level features such as edges and corners while the later ones
learn to detect high level features [14]. The final convolutional layer produces feature maps depending
on the number of output channels, 91 in our case. The AAP layer extracts one global feature per
feature map and passes those as input to the linear layer which uses the features to predict an output.
The output, predicted labels, are compared to the ground truth labels using the loss function, and the
optimizer updates the weights in the network accordingly. This process is repeated for every epoch.

The validation data follows a similar process, however, it does not update the weights. The purpose
of the validation data is an extra check to verify that the network is learning general weights and not
weights that are specific to the training data. The validation data thus contains input images that are
not in the training data. Finally, the network, after being trained for several epochs, is evaluated on
the test dataset which contains samples never seen before by the network. The evaluation metric is
usually the accuracy which is the number of correctly predicted labels divided by the total number of
labels multiplied by a hundred.

3.2. Full Color Deep Networks
The FCD networks used in this work are fairly similar to the 2D CNNs explained above, however, there
are several differences. The purpose of the FCD networks is to retain a color dimension so instead of the
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batch size being 4-dimensional, it is 5-dimensional. An extra dimension is in the third place representing
the color dimension. The convolutional layers are 3D instead of 2D. 3D convolutional layers learn 3D
kernel weights to detect features over 3D input images, one color dimension and two spatial dimensions.
This way we enable the network to learn features in the color dimension. The 3D convolutional layers
produce 3D feature maps per channel. The ReLU stays the same across both type of networks. The
MP layer is converted to a 3D MP layer because it has to do pooling operations over 3D feature maps
per channel. The pooling operation uses a 1x2x2 kernel size which means it does a MP operation
per channel. The 3D feature maps per channel thus stay 3-dimensional. The AAP layer passes three
features, one per color channel, to the linear layer per output channel of the final convolutional layer.
Only one feature was passed in the 2D networks. This way we are explicitly passing color features to
the linear layer for the classification task. Finally, besides the number of inputs differing, the linear
layer has no changes when compared to the 2D networks.





4
Supplementary Methods

This chapter contains additional information on the methods presented in the scientific paper. We
first give a more detailed explanation on how we derived the number of input and output channels per
convolutional layer. Then we elaborate on the color selectivity index and we conclude with examples of
all synthetic datasets we used in the scientific paper.

4.1. Comparison
In the scientific paper we mention a fair comparison between the 2D and FCD networks. We define a
fair comparison as comparing the two networks when the number of parameters across the networks are
roughly the same. We aim to keep the distribution of the parameters across the layers similar as well.
Equation 1 and 2 in the paper are used to compute the number of parameters in the feature extraction
and classification parts of the network. The authors of [5] presented a method to keep the number of
parameters roughly the same between 2D network and networks using 3+-dimensional convolutions.
We use 3D convolutions. The method is to scale the number of input channels and output channels of
the convolutional layers in the 2D network with a factor of √𝑥, where 𝑥 is the 3D kernel size divided
by the 2D kernel size, in our case 𝑥 = 2. Scaling with a factor of √2 works because if we write out 𝑃𝐹
for a 2D network, we get ∑3𝑖 𝐶2𝐷𝑖𝑛𝑖 ∗ 𝐶

2𝐷
𝑜𝑢𝑡𝑖 ∗ 3 ∗ 3. We can disregard the bias terms because they add up a

little to the total number of parameters. For the FCD network, 𝑃𝐹 is equal to ∑3𝑖 𝐶𝐹𝐶𝐷𝑖𝑛𝑖 ∗𝐶𝐹𝐶𝐷𝑜𝑢𝑡𝑖 ∗ 2 ∗ 3 ∗ 3.
Now if we substitute the 𝐶𝑖𝑛’s and 𝐶𝑜𝑢𝑡’s from the equation of FCD into the equation of 2D with the
appropriate factor √2, we get

3

∑
𝑖
𝐶2𝐷𝑖𝑛𝑖 ∗ 𝐶

2𝐷
𝑜𝑢𝑡𝑖 ∗ 3 ∗ 3 =

3

∑
𝑖
𝐶𝐹𝐶𝐷𝑖𝑛𝑖 ∗ √2 ∗ 𝐶𝐹𝐶𝐷𝑜𝑢𝑡𝑖 ∗ √2 ∗ 3 ∗ 3 =

3

∑
𝑖
𝐶𝐹𝐶𝐷𝑖𝑛𝑖 ∗ 𝐶𝐹𝐶𝐷𝑜𝑢𝑡𝑖 ∗ 2 ∗ 3 ∗ 3

This seems to be a perfect solution, however, there are exceptions. We can not control 𝐶𝑖𝑛1 which
is the number of input channels of the first layer, in our case 𝐶2𝐷𝑖𝑛1 = 3 and 𝐶𝐹𝐶𝐷𝑖𝑛1 = 1. The number of
parameters in the 2D case is equal to 3 ∗ 𝐶𝐹𝐶𝐷𝑜𝑢𝑡1 ∗ √2 ∗ 3 ∗ 3 + 𝐶𝐹𝐶𝐷𝑜𝑢𝑡1 while in the FCD case it is equal to
1 ∗ 𝐶𝐹𝐶𝐷𝑜𝑢𝑡1 ∗ 2 ∗ 3 ∗ 3+𝐶𝐹𝐶𝐷𝑜𝑢𝑡1 . The 2D networks have approximately twice as many parameters in the first
convolutional layer. We can not do much about this if we wish to keep the transition from 2D networks
to FCD networks, or vice versa, methodical. Another reason is the number of bias terms. The number
of bias terms is dependent on the number of output channels per layer and that differs between the two
types. Finally, the number of parameters is also influenced by the classification part of the network. In
the 2D network 𝑃𝐶 = 1 ∗ 𝐶2𝐷𝑜𝑢𝑡3 ∗ 𝐹𝑜𝑢𝑡 +𝐹𝑜𝑢𝑡 while for the FCD network 𝑃𝐶 = 3 ∗ 𝐶𝐹𝐶𝐷𝑜𝑢𝑡3 ∗ 𝐹𝑜𝑢𝑡 +𝐹𝑜𝑢𝑡. This
means the FCD network does have approximately twice as many parameters in the classification part
of the network. Overall the number of parameters in both networks differ in small amounts. In the fair
comparison experiment in section 4.3, the 2D network has 47,870 parameters while the FCD network
has 48,410 parameters.
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MNIST Deterministic MNIST Gaussian 12 MNIST Gaussian 60

MNIST Gaussian 120 MNIST Uniform

Figure 4.1: Samples of the Deterministic, Gaussian 12, Gaussian 60, Gaussian 120 and Uniform MNIST datasets.

4.2. Color Selectivity Index
The color selectivity index [10] is a metric to measure how color selective a certain neuron is in the
network. Color selective is defined as how much the neuron takes color into consideration for the image
classification task. The authors used an opponent-like colorspace rather than an RGB colorspace. They
additionally normalized the values of each axis in the range [-1, 1]. The new values of the images are
computed with the following three equations.

𝑂1 = (𝑅 + 𝐺 + 𝐵 − 1.5)/1.5 (4.1)

𝑂2 = (𝑅 − 𝐺) (4.2)

𝑂3 = (𝑅 + 𝐺 − 2𝐵)/2 (4.3)

The R, G and B correspond to the values in the red, green and blue channels respectively. Whenever
an image is used as input to the network, we are able to see which neurons are activated, by which
image patches and the value of activation. The color selectivity index is determined by computing two
sums. The first sum is over the 𝑛 image patches that have the highest activation values. The second
sum is again over those top 𝑛 image patches but in grayscale. 𝑛 can be defined by the user, however,
the authors of the paper and we use 𝑛 = 100. The color selectivity index is computed by

𝛼(𝑛𝐿,𝑖) = 1 −
∑𝑁𝑗=1𝑤′𝑗,𝑖,𝐿
∑𝑁𝑗=1𝑤𝑗,𝑖,𝐿

, (4.4)

where 𝛼(𝑛𝐿,𝑖) represents the color selectivity index of the 𝑖𝑡ℎ neuron 𝑛 in layer 𝐿, 𝑤𝑗,𝑖,𝐿 represents the
activation value of neuron 𝑖 in layer 𝐿 on the 𝑗𝑡ℎ ranked image patch and 𝑤′𝑗,𝑖,𝐿 represents the activation
value of its grayscale counterpart. The value of the color selectivity index is between a range of -inf
and 1 with 1, at least higher than 0.25, being very color selective and every value below 0.1 being
non-color selective. We use this metric in our work to verify the behaviour of several experiments, e.g.
the experiments in sections 4.1 and 4.4 of the scientific paper.

4.3. Dataset Examples
This section contains examples of all datasets from all classes used in the scientific paper. The datasets
in Figures 4.1 and 4.2 are used in the experiments in section 4.1, 4.2 and 4.3 of the scientific paper.
The datasets in Figures 4.3 and 4.4 are used in the experiment in section 4.4 of the scientific paper.
The dataset in Figure 4.5 is used in the experiment in section 4.5 of the scientific paper.
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Fashion-MNIST Deterministic Fashion-MNIST Gaussian 12 Fashion-MNIST Gaussian 60

Fashion-MNIST Gaussian 120 Fashion-MNIST Uniform

Figure 4.2: Samples of the Deterministic, Gaussian 12, Gaussian 60, Gaussian 120 and Uniform Fashion-MNIST datasets.

MNIST Hueshift 180 Fashion-MNIST Hueshift 180

Figure 4.3: Samples of the Deterministic datasets with hueshift 180 of MNIST and Fashion-MNIST.

MNIST 10 Color Uniform Fashion-MNIST 10 Color Uniform

Figure 4.4: Samples of the 10 color uniform datasets of MNIST and Fashion-MNIST.

High Variance Fashion-MNIST

Figure 4.5: Samples of the high variance Fashion-MNIST dataset.





5
Additional Experiments

This chapter contains experiments that were performed during the research but that did not yield
results that could be added to the scientific paper. We first explain the optimal comparison which is the
comparison of the two types of networks when both have the most number of neurons per convolutional
layer. Then we provide additional details on the experiments in section 4.4 of the scientific paper. We
conclude with additional experiments on the vehicle color recognition dataset.

5.1. Optimal Comparison
We do an optimal comparison besides the fair comparison in the paper. We define the optimal compar-
ison as the comparison between the 2D and FCD networks when they are at their best performance,
in our case, the most number of neurons per layer. This experiment is to investigate whether either
type of network performs better in classification whenever more resources are allocated to the network.
We compare the performances using the accuracies. We systematically increase the number of input
and output channels in the convolutional layers of the 2D and FCD networks. We keep increasing
the number of channels per layer until the accuracy saturates, so when the accuracy does not increase
anymore with an increase in the number of channels.

Our optimal 2D network is Architecture 2 in Table 2 of the scientific paper. We tried several
configurations. The first configuration is the network itself. The second configuration is each input
and output channel per convolutional layer multiplied by four. In the third configuration each is
multiplied by five and it is multiplied by six in the fourth configuration. The optimal FCD architecture
is Architecture 4 in Table 1 of the scientific paper. The first configuration is the network itself. The
second configuration is the number of input and output channels per convolutional layer multiplied by
four and in the third configuration it is multiplied by five. The results are shown in Figure 5.1.

The third configuration is the best 2D network configuration for both the MNIST and Fashion-
MNIST datasets. We did not try any other configurations because the accuracies already saturated and
for the Fashion-MNIST dataset, the fourth configuration performed worse than the third configuration
on higher standard deviation datasets. The third configuration is the best FCDNet configuration be-
cause the performance is already saturated for the MNIST dataset but for the Fashion-MNIST dataset,
it is better than the second configuration. The plot in Figure 5.2 shows that the behaviour is similar to
the fair comparison in Figure 9 in the scientific paper. Thus an increase in the number of neurons per
layer does not give an advantage to either network type on the MNIST or Fashion-MNIST datasets.

5.2. Out of Distribution Dataset Experiments
In section 4.4 of the scientific paper we introduce two type of experiments. We immediately evaluate the
network on an out of distribution dataset in the first experiment. In the second and third experiments
we train the classification weights on out of distribution datasets before evaluation. A dataset is called
out of distribution when the network training on it has not seen the samples before. The purpose of
the first experiment is to investigate the behaviour of how color information is processed in the neural
networks. The neural networks learn features in the feature extraction part and use those features to
classify the input to the classes of the dataset. We find in experiment 1 of Figure 11 in the scientific
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Figure 5.1: Accuracies of the optimal 2D and Full Color Deep networks on the MNIST and Fashion-MNIST datasets.

Figure 5.2: Performance comparison of the optimal 2D and Full Color Deep networks on the MNIST and Fasion-MNIST
datasets.
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paper that both 2D and FCD networks have an accuracy of 0, or close to 0, with the networks pretrained
on the Deterministic dataset. The only difference in the pretrain task is the color of the digit in the
image. This tells us that the networks only learned color features in the feature extraction part and
made connection on the color features and the output classes in the classification part.

The FCD networks, pretained on the uniform dataset, perform better than the 2D networks in
experiment 2 of Figure 11. The classification weights are trained in this experiment meaning that the
networks can learn proper connections between the features extracted and the output class. The results
tell us that the FCD networks extract more color features in the pretrain task than the 2D networks
for the linear layer. The FCD networks perform comparably to 2D networks in the pretrain task.
Spatial features are the only useful features in this task. The higher accuracies of the FCD networks in
experiment 2 of Figure 11 in the scientific paper thus indicate that the FCD networks learned features
in the color dimension making them achieve higher accuracies than the 2D networks.

In the third experiment the test dataset has samples that can be any of 10 distinct colors and the
label of the image is equal to the color it has. This is different from the other dataset in which the label
is the digit. Color is thus the only feature that has a connection to its label. The accuracies of the
2D networks in experiment 3 of Figure 11 for the datasets with high standard deviation are low, which
tells us that the networks have learned barely any color features. Meanwhile the FCD networks reach
an accuracy of, close to, 1. The classification task itself is fairly easy as it is comparable to training and
learning on a deterministic dataset which we find in other plots to reach an accuracy of 1 for both 2D
and FCD networks. When the network has to use pretrained weights for a dataset in which the color
bias per class is low, however, we find that the FCD networks remarkably outperform the 2D networks.

5.3. Vehicle Color Recognition
We performed an additional experiment, besides the experiments in the scientific paper, on the vehicle
color recognition dataset [4]. We use the VGG-M network as Rafegas et al. [10]. They initially used
the network because it was similar to the network in another work [3] in which the authors showed
that such deep networks start rivalling the performances of primates in representational tasks. Due to
this reason and Rafegas et al. showing that the network has color selective neurons throughout all of
the layers, we decided to also use this network for our experiments. We translated the network to the
optimal FCD network we found in the experiment in section 4.2 of the scientific paper by dividing the
number of output channels for each convolutional layers by a factor of √2. As shown in Figure 5.4,
2D VGG-M network outperforms the FCD variant. Figure 5.4 shows the accuracy of the 2D VGG-M
network versus the accuracy of its FCD counterpart according to Architecture 1 in the scientific paper.
The architectures for all networks are shown in Figure 5.3. We find that Architecture 1 is actually
outperforming Architecture 4 in the FCD case. This gives us the insight that the optimal architecture
is task dependent. Furthermore, Architecture 1 performs comparably to the 2D VGG-M network which
is not what we observe in the results when smaller networks are used. In that case the FCD network
outperforms the 2D network. These findings tell us that more research has to be done to figure out
when to use what architecture and when the FCD networks will actually outperform the 2D networks.
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Figure 5.3: VGG-M-Net with its parameters and the Full Color Deep network counterparts according to Architectures 1
and 4.

Figure 5.4: Accuracies of the VGG-M network versus the first and fourth proposed Full Color Deep network architectures
in the scientific paper.
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