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Distributed Generalized Nash Equilibrium
Seeking in Aggregative Games on

Time-Varying Networks
Giuseppe Belgioioso , Angelia Nedić , and Sergio Grammatico

Abstract—We design the first fully distributed algorithm
for generalized Nash equilibrium seeking in aggregative
games on a time-varying communication network, under
partial-decision information, i.e., the agents have no di-
rect access to the aggregate decision. The algorithm is
derived by integrating dynamic tracking into a projected
pseudo-gradient algorithm. The convergence analysis re-
lies on the framework of monotone operator splitting and
the Krasnosel’skii–Mann fixed-point iteration with errors.

Index Terms—Distributed algorithms, multiagent sys-
tems, optimization method, network theory.

I. INTRODUCTION

AN AGGREGATIVE game is a collection of interdependent
optimization problems associated with noncooperative de-

cision makers, or agents, where each agent is affected by some
aggregate effect of all the agents [1]. Remarkably, aggregative
games arise in several applications, such as demand-side man-
agement in the smart grid [2], e.g., for charging/discharging
electric vehicles [3], demand–response regulation in competitive
markets [4], and congestion control in traffic and communication
networks [5]. The common denominator is the presence of a
large number of selfish agents, whose aggregate actions may
disrupt the shared infrastructure, e.g., the power grid or the
transportation network, if left uncontrolled.

Designing solution methods for multiagent equilibrium prob-
lems in noncooperative games has recently gained high research
interest. Several authors have developed semi-decentralized and
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distributed equilibrium-seeking algorithms for games without
coupling constraints [6] and, more recently, for games with
coupling constraints [7]–[10].

With focus on the generalized Nash equilibrium (GNE) prob-
lem, the formulations in [9], [10] have introduced an elegant
approach based on monotone operator theory [11] to charac-
terize the equilibrium solutions as the zeros of a monotone
operator. Not only is the monotone-operator-theoretic approach
general—e.g., unlike variational inequalities, smoothness of
the cost functions is not required—but also computationally
viable, since several algorithmic methods to solve monotone
inclusions are already well established, e.g., operator-splitting
methods [11, §26].

However, in the aforementioned literature on noncooperative
equilibrium computation, it is assumed that the agents have
direct access to the decisions of all their competitors, allowing
every agent to evaluate its cost function without the need of extra
communication. This game setup is known as full-decision in-
formation. In aggregative games, this ideal scenario is achieved
via the so-called semi-decentralized communication structure,
where a central node gathers and broadcasts the aggregation
variable to all the agents (see e.g., [7]–[9]).

Recently, in the broader context of noncooperative games,
the authors in [12], [13] propose fully distributed algorithms
for equilibrium-seeking under partial-decision information, i.e.,
each agent can only observe the decision of some neighboring
agents, while its cost function possibly depends on all the other
agents’ decision. In [12], to deal with the lack of information,
the agents are endowed with auxiliary variables, namely, the
estimates of the decisions of the other agents. Then, a con-
sensus protocol is combined with accelerated projected-pseudo-
gradient dynamics to steer the estimates toward their real value
and, consequently, the decisions to a Nash equilibrium, in the
same time-scale. In [13], similar ideas are developed in the
general framework of monotone operator theory to design an
algorithm for games with coupling constraints. The algorithms
proposed in [12], [13] require a number of auxiliary variables
(i.e., the estimates of the decisions of all the other agents) which
is proportional to the number of agents in the game. From a
practical perspective, this can be regarded as a drawback in terms
of memory storage and communication requirements, especially
in games with very large number of agents.

Scalability with respect to the population size indeed mo-
tivates us to focus on aggregative games. In this context, the
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authors in [14] propose an algorithm that relies on dynamic
tracking, a technique that allows a group of agents to locally
track the average of some reference inputs, extensively used in
distributed optimization for gradient tracking; e.g., [15]. Specif-
ically, the authors embed dynamic tracking of the aggregate
decision in a projected-pseudo-gradient update to compute a
Nash equilibrium in a fully distributed fashion (i.e., without
the need of a central coordinator). In the context of aggrega-
tive games with coupling constraints, an algorithm is proposed
in [16], however with important limitations: it requires a very
large number of distributed communication rounds before each
strategy update; convergence is guaranteed to approximate solu-
tions (i.e., ε−Nash equilibria) only; the communication network
must be time-invariant.

More recently, two fully distributed algorithms [17], [18],
for generalized aggregative games over time-invariant and con-
nected networks, have been proposed to compute an exact solu-
tion (i.e., GNE), without the need of multiple communication
rounds before every strategy update. To cope with the lack
of information, both algorithms introduce local estimates and
dynamic tracking of the aggregate decision. In [17], global
convergence is proved under strong monotonicity of the pseudo-
gradient, by leveraging a rescrited-monotonicity property of this
mapping in the extended space of strategies and estimates. In our
preliminary work [18], this assumption is relaxed to cocoerciv-
ity at the cost of having vanishing step-sizes, which typically
imply slow convergence. Unfortunately, the extension of both
methodologies to cover time-varying communication networks
is currently missing, since the operator-theoretic framework on
the basis of their convergence analysis fails when the underlying
mappings vary over time.

A. Contribution

In this article, we solve these technical issues and propose
the first discrete-time, fully distributed algorithm to compute
a GNE in aggregative games with coupling constraints over
a time-varying and repeatedly connected communication net-
work. The algorithm is obtained by combining dynamic track-
ing, projected-pseudo-gradient and Krasnosel’skii–Mann dy-
namics. The key approach to prove convergence of our proposed
algorithm relies on applying and tailoring the framework of
operator splitting methods [11] and fixed-point iteration with
errors [19].

B. Organization of the Article

In Section II, we formalize the GNE-seeking problem for
aggregative games over a time-varying communication network.
In Section III, we present a fully distributed algorithm and
discuss its interpretation from an operator-theoretic and fixed-
point perspective. In Section IV, we establish global conver-
gence of the proposed method. To corroborate the theory, in
Section V, we study the performance of the proposed method on
a Nash–Cournot game. Concluding remarks and future research
directions are discussed in Section VI.

C. Basic Notation

R denotes the set of real numbers, and R := R ∪ {∞} the
set of extended real numbers. 0 (1) denotes a matrix/vector
with all elements equal to 0 (1); to improve clarity, we
may add the dimension of these matrices/vectors as sub-
script. Given two sets, S1 and S2, we denote as S1 × S2

their Cartesian product. Given N sets, S1, . . . ,SN , we denote
with conv(S1, . . . ,SN ) = {a1x1 + · · ·+ aNxN | ∑N

i=1 ai =
1, ai ∈ R≥0, xi ∈ Si, ∀i ∈ {1, . . . , N}} the convex hull of
their union. A⊗B denotes the Kronecker product between
the matrices A and B. For a square matrix A = [ai,j ] ∈
Rn×n, where ai,j is the entry in position (i, j), its transpose
is A�; A 	 0 (
 0) stands for positive definite (semidefi-
nite) matrix; ‖A‖ denotes the largest singular value of A;
‖A‖∞ = max1≤i≤n

∑n
i=1 |ai,j | denotes the infinity norm. If

A 	 0, ‖ · ‖A denotes the A-induced norm, such that ‖x‖A =√
x�Ax, we omit the subscript when A = I . Given N matrices

A1, . . . , AN , blkdiag(A1, . . . , AN ) denotes a block diagonal
matrix with A1, . . . , AN as diagonal blocks. Given N vec-
tors x1, . . . , xN , x := col(x1, . . . , xN ) = [x�1 , . . . , x

�
N ]�, x̄ =

1
N

∑N
i=1 xi, x−i := col(x1, . . . , xi−1, xi+1, . . . , xN ); given a

vector z, (z,x−i) := col(x1, . . . , xi−1, z, xi+1, . . . , xN ).

D. Operator-Theoretic Definitions

Id(·) denotes the identity operator. The mapping ιS : Rn →
{0, ∞} denotes the indicator function for the set S ⊆ Rn, i.e.,
ιS(x) = 0 if x ∈ S, ∞ otherwise. For a closed set S ⊆ Rn,
the mapping projS : Rn → S denotes the projection onto S,
i.e., projS(x) = argminy∈S ‖y − x‖. The set-valued mapping
NS : Rn ⇒ Rn denotes the normal cone operator for the set
S ⊆ Rn, i.e., NS(x) = ∅ if x /∈ S, {v ∈ Rn | supz∈S v�(z −
x) ≤ 0} otherwise. For a function ψ : Rn → R, dom(ψ) :=
{x ∈ Rn | ψ(x) <∞}; ∂ψ : dom(ψ) ⇒ Rn denotes its subd-
ifferential set-valued mapping, defined as ∂ψ(x) := {v ∈ Rn |
ψ(z) ≥ ψ(x) + v�(z − x) for all z ∈ dom(ψ)}. A set-valued
mapping F : Rn ⇒ Rn is (strictly) monotone if (u− v)�(x−
y) ≥ (>) 0 for all x �= y ∈ Rn, u ∈ F(x), v ∈ F(y); F is
restricted-(strictly) monotone with respect to (w.r.t.) Y ⊂ Rn if
(z∗ − z)�(x∗ − x) ≥ (>)0 for all ∀x∗ ∈ Y , x ∈ Rn \ Y , z∗ ∈
F(x∗), x ∈ F(x); F is η-strongly monotone, with η > 0, if
(u− v)�(x− y) ≥ η‖x− y‖2 for all x �= y ∈ Rn, u ∈ F(x),
v ∈ F(y); fix(F) := {x ∈ Rn | x ∈ F(x)}, and zer(F) :=
{x ∈ Rn | 0 ∈ F(x)} denote the set of fixed points and of ze-
ros, respectively. A single-valued mapping F : Rn → Rn is L-
Lipschitz continuous, with L > 0, if ‖F (x)− F (y)‖ ≤ L‖x−
y‖ for all x, y ∈ Rn; F is nonexpansive if it is 1-Lipschitz con-
tinuous;F is η-averaged, with η ∈ (0, 1), if ‖F (x)− F (y)‖2 ≤
‖x− y‖2 − 1−η

η ‖(Id − F )(x)− (Id − F )(y)‖2, for all x, y ∈
Rn; F is β-cocoercive, with β > 0, if βF is 1

2 -averaged.

II. PROBLEM STATEMENT

Consider a set of N agents indexed by I = {1, . . . , N}. The
ith agent is characterized by a local strategy set Ωi ⊂ Rn and a
cost function Ji(xi, x̄), which depends on the decision of agent
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i, xi, and on the aggregate of all agent decisions, i.e.,

x̄ :=
1

N

N∑
i=1

xj .

Moreover, we assume that the collective strategy profile x :=
col(x1, . . . , xN ) ∈ RnN must satisfy a coupling constraint,
described by the affine function x �→ Cx− c, where C =
[C1| . . . |CN ] ∈ Rm×nN , c =

∑N
i=1 ci ∈ Rm, and Ci, ci are

local parameters known to agent i only. In summary, the aim of
each agent i, given the decision variables of the other agents, i.e.,
x−i := col(x1, . . . , xi−1, xi+1, . . . , xN ), is to choose a strategy
xi that solves its local optimization problem, according to the
game setup above, i.e., ∀i ∈ I :⎧⎨

⎩
argminxi∈Rn Ji(xi,

1
N xi +

1
N

∑
j �=i xj)

s.t. xi ∈ Ωi

Cixi − ci ≤
∑N

j �=i(cj − Cjxj)

(1)

where the last constraint is equivalent to Cx− c ≤ 0.
Remark 1: Affine coupling constraints, as considered in this

article, are very common in the literature of noncooperative
games, e.g., [8], [10], [13], [16], and cover several applications
where they typically arise in the form of upper and lower limits
on the available shared resources, e.g., [2]–[5]. �

Assumption 1: For all i ∈ I and any fixed u ∈ 1
N

∑N
j �=i Ωj ,

the function Ji(· , 1
N ·+u) is convex and continuously differen-

tiable, Ωi ⊂ Rn is nonempty, compact, and convex. The global
feasible set K := {x ∈∏N

i=1 Ωi|Cx− c ≤ 0} is nonempty
and satisfies Slater’s constraint qualification. �

From a game-theoretic perspective, our goal is to distribu-
tively compute a GNE of the aggregative game described by the
N interdependent optimization problems in (1).

Definition 1 (GNE): A collective strategy x∗ ∈ K is a GNE
of the game in (1) if , for all i ∈ I:

Ji (x
∗
i , x̄

∗) ≤ Ji

⎛
⎝z, 1

N
z +

1

N

N∑
j �=i

x∗j

⎞
⎠

∀z s.t. (z,x∗
−i) ∈ K.

A. Communication Networks

We consider a time-varying network to model the communica-
tions among agents over time. At each stage k, the communica-
tion is described by an undirected graph Gk = (I, Ek), where I
is the set of vertices (agents) and Ek ⊆ I × I is the set of edges.
An unordered pair of vertices (i, j) belongs to Ek if and only if
agents j and i can exchange information. The set of neighbors of
agent i at stage k is defined as Ni(k) = {j| (i, j) ∈ Ek}. Next,
we assume the graphs sequence {Gk}k∈N to be Q-connected.

Assumption 2: There exists an integer Q ≥ 1 such that the
graph (I,∪Q

�=1E�+k) is connected, for all k ≥ 0. �
This assumption ensures that the intercommunication inter-

vals are bounded for agents that communicate directly. In other
words, every agent sends information to each of its neighboring
agents at least once every Q time intervals.

We consider a mixing matrix W (k) = [wi,j(k)] associated
with Gk, whose elements satisfy the following assumption.

Assumption 3: For all k ∈ N, the matrix W (k) = [wi,j(k)]
satisfies the following conditions:

i) (Edge utilization) Let i, j ∈ I, i �= j. If (i, j) ∈ Ek,
wi,j(k) ≥ ε, for some ε > 0; wi,j(k) = 0 otherwise;

ii) (Positive diagonal) For all i ∈ I, wi,i(k) > ε;
iii) (Double-stochasticity) W (k)1 = 1, 1�W (k) = 1�. �

Assumption 3 is strong but typical for multiagent coordination
and optimization, e.g., [15], [20]. For an undirected graph, it can
be fulfilled, for example, by using Metropolis weights:

wi,j(k) =

⎧⎪⎨
⎪⎩
(max{|Ni(k)|, |Nj(k)|})−1 if (i, j) ∈ Ek
0 if (i, j) �∈ Ek
1−∑�∈Ni

wi,�(k) if i = j.

(2)

Finally, let us introduce the so-called transition matrices
Ψ(k, s) from time s to k:

Ψ(k, s) =W (k)W (k − 1) · · ·W (s+ 1)W (s) (3)

for 0 ≤ s < k, where Ψ(k, k) =W (k), for all k. The following
statement shows the convergence properties of the transition
matrix Ψ(k, s).

Lemma 1 ([21, Lemma 5.3.1]): Let Assumptions 2 and 3
hold true. Then, the following statements hold:

i) limk→∞ Ψ(k, s) = (1/N)11�, for all s ≥ 0.
ii) The convergence rate of Ψ(k, s) is geometric, i.e.,

‖Ψ(k, s)− (1/N)11�‖ ≤ θρk−s for all k ≥ s ≥ 0,
where θ := N(1− ε/(4N2))−2 and

ρ :=
(
1− ε

4N2

)1/Q
∈ (0, 1) (4)

with Q as in Assumption 2 and ε as in Assumption 3. �

B. GNE as Zeros of a Monotone Operator

As first step, we characterize a GNE of the game in terms of
the Karush-Kuhn-Tucker (KKT) [11, Rem. 27.22] conditions of
the coupled optimization problems in (1). For each agent i ∈ I,
let us introduce the Lagrangian function Li, defined as

Li(x, λi) := Ji(xi, x̄) + ιΩi
(xi) + λ�

i (Cx− c)

where λi ∈ Rm
≥0 is the dual variable of agent i associated with

the coupling constraints, and ιΩi
is the indicator function. It

follows from [22, §12.2.3] that the set of strategies x∗ is a GNE
of the game in (1) if and only if the following coupled KKT
conditions are satisfied for some λ1, . . . , λN ∈ Rm

≥0:

∀i ∈ I :

{
0 ∈ ∇xi

Ji(x
∗
i , x̄

∗) + NΩi
(x∗i ) + C�

i λ∗
i

0 ≤ λ∗
i ⊥ −(Cx∗ − c) ≥ 0.

(5)

Within all the possible GNE, we focus on an important
subclass of equilibria, namely the variational GNE (v-GNE),
that enjoys some relevant structural properties, such as “larger
social stability and “economic fairness” and corresponds to
the solution set of the KKT conditions in (5) with equal dual
variables, i.e., λ∗

1 = · · · = λ∗
N [23, Th. 3.1]. The next proposition

characterizes the subclass of v-GNE as the solution to a specific
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variational inequality problem,1 or equivalently as the zero set
of the set-valued mapping

U :

[
x

λ

]
�→
[
NΩ(x) + F (x) + C�λ

NRm
≥0
(λ)− (Cx− c)

]
(6)

where λ ∈ Rm, Ω :=
∏N

i=1 Ωi, NS = ∂ιS is the normal cone
operator associated with a set S and F is the so-called pseudo-
gradient (PG) mapping defined as

F (x) = col(∇x1
J1(x1, x̄), . . . ,∇xN

JN (xN , x̄)). (7)

Proposition 1: Let Assumption 1 hold. Then, the following
statements are equivalent:

i) x∗ is a variational GNE of the game in (1);
ii) ∃λ∗ ∈ Rm

≥0 such that, the pair (x∗i , λ
∗) is a solution to the

KKT in (5), for all i ∈ I;
iii) x∗ is a solution to VI(F,K);
iv) ∃λ∗ ∈ Rm

≥0 such that col(x∗, λ∗) ∈ zer(U). �
Proof: The equivalences (i)⇔(ii)⇔(iii) are proven in [23,

Th. 3.1] while (iii)⇔(iv) follows by [25, Th. 3.1]. �
The following assumptions on the PG in (7) are standard (e.g.,

[8, Th. 3], [10, Assumption 2], [26, Assumption 3]) and sufficient
to ensure the convergence of standard GNE-seeking algorithms
based on projected-pseudo-gradient dynamics.

Assumption 4: F in (7) is χ-cocoercive over Ω. �
When F is ξ-strongly monotone and LF-Lipschitz, then F is

also (ξ/L2
F)-cocoercive. However, in general, cocoercive map-

pings are not necessarily strongly monotone, e.g., the gradient
of a (nonstrictly) convex and smooth function.

To emphasize the structure of F in (7), we define

Fi(v, w) :=

(
∂

∂z1
Ji(z1, z2) +

1

N

∂

∂z2
Ji(z1, z2)

)∣∣∣∣ z1 = v
z2 = w

(8)

that satisfies Fi(xi, x̄) = ∇xi
J1(xi, x̄), for all i ∈ I. Then, we

define the extended pseudo-gradient (EPG) mapping

F (v,w) := col (F1(v1, w1), . . . , FN (vN , wN )) (9)

where each component mapping Fi is given by (8). With this
notation, we have F (x,1⊗ x̄) = F (x). Next, we assume Lip-
schitz continuity of the EPG, which is usual in the context of
games under partial-decision information (see e.g. [13, Assump-
tion 3], [14, Assumption 3], and [17, Assumption 4]).

Assumption 5: Let Ω̄ := conv(Ω1, . . . ,ΩN ) be the set
whose elements are convex combination of the elements from
the local sets Ωi’s. The mapping F in (9) is uniformly Lipschitz
continuous over Ω× Ω̄, with Ω̄ =

∏N
i=1 Ω̄, i.e., there exists

LF > 0 such that, for all v,u ∈ Ω and w, z ∈ Ω̄,

‖F (v,w)− F (u, z)‖ ≤ LF

∥∥∥∥
[
v
w

]
−
[
u
z

]∥∥∥∥ .
�

1For a single-valued mapping M : Rn → Rn and a set S ⊆ Rn, the varia-
tional inequality problem VI(M,S) is the problem of finding a vector ω∗ ∈ S
such that M(ω∗)�(ω − ω∗) ≥ 0, for all ω ∈ S [24, Def. 1.1.1].

Remark 2 (Existence and uniqueness of a v-GNE): It follows
by [24, Cor. 2.2.5] that VI(F,K) has a nonempty and compact
solution set, since K is nonempty, compact, and convex and F
is continuous, by Assumption 1. Furthermore, whenF is strictly
monotone, then the solution to VI(F,K), (i.e., the v-GNE of the
game), is unique [24, Th. 2.3.3]. �

C. Boundedness of the Dual Variables

In the next statement, we formally establish the boundedness
of the dual solution set of VI(F,K) or, equivalently, of the dual
part of the monotone inclusion col(x∗, λ∗) ∈ zer(U).

Lemma 2: Let Assumptions 1 hold true. If col(x∗, λ∗) ∈
zer(U), then λ∗ ∈ D∗, where D∗ ⊂ Rm

≥0 is bounded. �
Proof: The boundedness of the dual solution set D∗ follows

by [25, Proposition 3.3] since VI(F ,K) has a nonempty bounded
solution set by Remark 2 and there exists a vector x ∈ dom(F )
satisfying Slater’s constraint qualification by Assumption 1. �

Let us denote with BD∗ = maxλ∈D∗ ‖λ‖∞ the largest entry
of all the optimal dual vectors. The agents can locally build
a bounded superset Di of the optimal dual set D∗ as follows:
Di := {μ ∈ Rm

≥0 | ‖μ‖∞ ≤ BD∗ + r, with r > 0} [27, p. 21].
In the context of distributed constrained optimization, a local
estimate of BD∗ can be constructed based on a Slater’s vector
(see [28, §4.2], [29, 3.A (2)]). The extension of these estimation
methods to generalized noncooperative games would rely on
Lagrangian duality theory for variational inequalities [25]. In
practice, each agent does not need an accurate estimate of the
optimal dual solution set D∗ and can simply construct a local
superset Di by taking r large enough.

D. A Standard Semi-Decentralized Algorithm

It follows by Proposition 1 that the original GNE-seeking
problem corresponds to the following monotone inclusion prob-
lem:

find ω∗ = col(x∗, λ∗) s.t. 0 ∈ U(ω∗). (10)

Next, we recall a standard semi-decentralized GNE-seeking
algorithm obtained by solving the monotone inclusion problem
in (10) by means of a preconditioned forward–backward (pFB)
splitting [26, Alg. 1].

Remark 3: The local auxiliary variables di’s are introduced
to cast Algorithm 1 in a more compact form. The average
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d̄k+1 := 1
N

∑N
i=1(2Cix

k+1
i − Cix

k
i − ci) represents the viola-

tion of the coupling constraints, technically, is the “reflected
violation” of the constraints at iteration k. �

If the step sizes {αi}i∈I and β are chosen small enough,
then the sequence (col(xk, λk))k∈N generated by Algorithm 1
converges to some col(x∗, λ∗) ∈ zer(U), where x∗ is a v-GNE
(see [26, Th. 1] for a formal proof of convergence).

We note that Algorithm 1 is not distributed. In fact, at each
iteration k, a central coordinator is needed to:

i) gather and broadcast the average strategy x̄k;
ii) gather the average quantity d̄k; and

iii) update and broadcast the dual variable λk.

III. A DISTRIBUTED GNE-SEEKING ALGORITHM

A. Toward a Fully Distributed Algorithm

A first step toward a fully distributed algorithm consists of
endowing each agent with a copy, λi, of the dual variable and
enforcing consensus on the local copies. Consider the set-valued
mapping T , obtained by augmenting U in (6) with the local
copies of the dual variable:

T :

[
x

λ

]
�→
[

NΩ(x) + F (x) + 1
NC

�
f λ

NRmN (λ) + Łmλ − 1
N (Cf x− cf)

]
(11)

where λ = col(λ1, . . . , λN ), Cf = 1N ⊗ C, cf = 1⊗ c, Łm =
Ł ⊗ Im, and Ł := IN − 1

N 11� represents the projection onto
the disagreement space.

Remark 4: When the local copies of the dual variable are
equal, i.e., λ ∈ E‖ := {1N ⊗ λ, | λ ∈ Rm}, where E‖ is the
consensus subspace of dimension m, the first row block of T
corresponds to that of U , while each of the N components of
the second row block of T describes the same complementarity
condition, namely, the second row block of U . �

We note that the mapping T in (11) can be written as the sum
of two operators, i.e.,

T1 : col(x,λ) �→ col

(
F (x),Łmλ +

1

N
cf

)
(12)

T2 : col(x,λ) �→ NΩ(x)×NRmN
≥0

(λ) + S col(x,λ) (13)

where S is a skew-symmetric linear mapping defined as

S :=
1

N

[
0 C�

f

−Cf 0

]
. (14)

The formulation T = T1 + T2 is called splitting of T , and will
be exploited in different ways later on. The next lemma shows
that T2 is maximally monotone and that T1 is cocoercive and
strictly monotone with respect to the consensus subspace of the
dual variables, i.e., Ω×E‖.

Lemma 3: Let Assumptions 1 and 4 hold true. The following
statements hold:

i) T2 in (13) is maximally monotone on Ω× RmN
≥0 ;

ii) T1 in (12) is δ-cocoercive, with 0<δ≤min{1, χ} and
restricted-strictly monotone w.r.t. Θ‖ := Ω×E‖, i.e.,
for all ω‖ ∈ Θ‖, ω ∈ (Ω× RmN

≥0 ) \Θ‖, it holds that
(T1(ω)− T1(ω

‖))�(ω − ω‖) > 0;

iii) T is maximally monotone on Ω× RmN
≥0 and restricted-

strictly monotone w.r.t. Θ‖. �
Proof: See Appendix A. �
The next proposition exploits the restricted-strict monotonic-

ity of T to show that the v-GNE of the original game is fully
characterized by the zeros of T .

Proposition 2: Let Assumption 1 hold true. The following
statements hold:

i) zer(T ) �= ∅,
ii) If col(x∗,λ∗) ∈ zer(T ), then x∗ is a v-GNE and λ∗ =

col(λ∗, . . . , λ∗), with λ∗ ∈ Rm
≥0. �

Proof: See Appendix B. �
To find a zero of T , we exploit a preconditioned version of

the forward–backward method [11, Sec. 25.6] on the splitting
(12)–(13), similarly to [10], [26], thus obtaining Algorithm 2.

The next theorem establishes global convergence of
Algorithm 2 to a v-GNE if the step-sizes are chosen according
to the following choices.

Assumption 6: Take 0 < δ ≤ min{1, χ}, where χ is as in
Assumption 4. Set the global parameter τ > 1

2δ and denote ν :=
2δτ

4δτ−1 ∈ (1/2, 1). Set the step-sizes as follows:
i) 0 < αi ≤ (‖Ci‖+ τ)−1, for all i ∈ I,

ii) 0 < βi ≤ ( 1
N

∑N
j=1 ‖Cj‖+ τ)−1, for all i ∈ I,

iii) (γk)k∈N such that γk ∈ [0, ν−1] for all k ∈ N and∑∞
k=0 γ

k(1− νγk) = ∞. �
Note that the design choice γk = 1, for all k ∈ N, always

satisfies Assumption 6(iii).
Theorem 1: Let Assumptions 1 and 4 hold. If the step-sizes

{αi, βi}i∈I and (γk)k∈N are set as in Assumption 6, then the
sequence (col(xk,λk))k∈N generated by Algorithm 2 converges
to some col(x∗,λ∗) ∈ zer(T ), where x∗ is a v-GNE of the game
in (1). �

Proof: See Appendix C. �
Remark 5 (Algorithm 2 as a fixed-point iteration): Our con-

vergence analysis is based on the same operator theoretic frame-
work in [10]–[26]. Specifically, we recast the dynamics gener-
ated by Algorithm 2 as the fixed-point iteration

ωk+1 = ωk + γk(R(ωk)− ωk), (k ∈ N) (15)
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where ωk = col(xk,λk) is the stacked vector of the iterates and
R is the so-called pFB operator, defined as

R := (Id + Φ−1T2)
−1 ◦ (Id− Φ−1T1) (16)

where T1, T2 in (12) and (13) characterize the splitting of T , and
Φ is the so-called preconditioning matrix, here chosen as

Φ :=

[
α−1

d − 1
NC

�
f

− 1
NCf β−1

d

]
(17)

αd := diag(α1, . . . , αN )⊗ In, βd := diag(β1, . . . , βN )⊗ In.
Then, we show that, if the step sizes in the main diagonal ofΦ are
set according to Assumption 6, the mapping R is averaged with
respect to theΦ-induced norm, i.e.,‖ · ‖Φ. Hence, the fixed-point
iteration (15) converges to some ω∗ := col(x∗,λ∗) ∈ fix(R) =
zer(T ), wherex∗ is a v-GNE. See Appendix VI-C for a complete
convergence analysis. �

To conclude this section, we note that the projected-pseudo-
gradient updates in Algorithm 2 can be cast compactly as

x̃k = projΩ

(
xk − αd(F (xk, x̄k) + C�

d λ̄
k
)
)

(18)

λ̃
k
= projRmN

≥0

(
λk + βd(d̄

k − λk + λ̄
k
)
)

(19)

where

x̄k = 1⊗ x̄k, λ̄
k
= 1⊗ λ̄k, d̄

k
= 1⊗ d̄k

and Cd := blkdiag(C1, . . . , CN ).
Unlike Algorithm 1, Algorithm 2 does not directly rely on

the actions of a central coordinator, namely, dual update and
broadcast communication. However, it requires an all-to-all
information exchange (or, equivalently, a complete communi-
cation graph) at each iteration k, since the local updating rule of
each agent necessitates the knowledge of:

i) the average strategy x̄k;
ii) the average dual variable λ̄k; and

iii) the average quantity d̄k.

B. A Fully Distributed Algorithm via Dynamic Tracking

To implement Algorithm 2 fully distributively under the more
realistic communication assumptions in Section II-A, we ap-
proximate its updates by endowing each agent iwith some surro-
gate variables (or estimates), i.e., σi, yi, and zi, that dynamically
track the averages x̄k, d̄k, and λ̄k, respectively. Then, to mitigate
the errors due to the inexactness of the surrogate variables,
we relax the projected-pseudo-gradient iterations by means of
a Krasnosel’skii–Mann (KM) process [11, Eq. (5.12)], whose
step-sizes are set according to the following design choice.

Assumption 7: The sequence (γk)k∈N satisfies the following
conditions:

i) (nonincreasing) 0 ≤ γk+1 ≤ γk ≤ 1, for all k ≥ 0;
ii) (nonsummable)

∑∞
k=0 γ

k = ∞;

iii) (square-summable)
∑∞

k=0 (γ
k)

2
<∞. �

For example, Assumption 7 is satisfied for step sizes of the
form γk = (k + 1)−b where 1

2 < b ≤ 1.

The proposed algorithm relies on agents constructing an es-
timate of the averages by mixing information drawn from local
neighbors and making a subsequent relaxed projected-pseudo-
gradient step, as in Algorithm 2. To build the estimatesσi, yi, and
zi, at every iteration k, agent i receives σk

j ’s, ykj ’s, and zkj ’s from
its neighbors, j ∈ Ni(k), and aligns its intermediate estimates
according to the following rules:

σ̂k
i :=

N∑
j=1

wi,j(k)σ
k
j , ŷki :=

N∑
j=1

wi,j(k)y
k
j

ẑki :=

N∑
j=1

wi,j(k)z
k
j

Then, on the basis of σ̂k
i , ŷki , and ẑki , agent i updates its strategy

xk+1
i , its dual variable λk+1

i , and the new estimates σk+1
i , yk+1

i ,
and zk+1

i as formalized in Algorithm 3.
Note that the projected-pseudo-gradient updates in

Algorithm 3 can be recast in a compact form as

x̃k = projΩ

(
xk − αd(F (xk, σ̂k) + C�

d ẑ
k
)

(20)

λ̃
k
= projRmN

≥0

(
λk + βd(y

k+1 − λk + ẑk)
)

(21)

where

σ̂k =Wn(k)σ
k, ẑk =Wm(k)zk, ŷk =Wm(k)yk

yk+1 = ŷk + Cd(2x̃
k − xk)− Cd(2x̃

k−1 − xk−1).

and W�(k) :=W (k)⊗ I� for some � ∈ N.
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IV. CONVERGENCE ANALYSIS

To prove the convergence of Algorithm 3, we rely on the
framework of the inexact KM fixed-point iteration [19, Alg. 5.4].
Informally speaking, our goal is to show that the error deriving
from the inexactness of the estimates σi’s, yi’s, and zi’s vanishes
to zero fast enough, in which case, also (xk)k∈N generated by
Algorithm 3 globally converges to a v-GNE. Technically, we
aim at exploiting [19, Th. 5.5], which establishes convergence
of an inexact version of the KM iteration in (15), i.e.,

ωk+1 = ωk + γk(R(ωk) + ek − ωk), ∀k ≥ 0 (22)

when R is nonexpansive and the step-size and error sequences,
(γk)k∈N and (ek)k∈N , respectively, satisfy

C.1)
∑∞

k=0 γ
k(1− γk) = ∞

C.2)
∑∞

k=0 γ
k‖ek‖ <∞.

Note that Algorithm 3 can be written as the KM with errors
in (22) where ωk = col(xk,λk) and the error at stage k is

ek = col(x̃k, λ̃
k
)− col(x̃k

A2, λ̃
k

A2) (23)

where x̃k
A2 and λ̃

k

A2 denote the iterates generated by Algorithm 2
[defined in (18) and (19), respectively]. In other words, ek

represents the distance between the iterates in the ideal case of
full-decision information (i.e., where the agents have an exact
knowledge of the averages x̄k, d̄k, and λ̄k) and the iterates of
Algorithm 3, in which the averages are replaced by the estimates
σ̂k
i , ŷki and ẑki , built online by mixing information drawn from

local neighboring agents only.
The main technical challenge to invoke [19, Th. 5.5] and,

in turn, prove the convergence of Algorithm 3 is to find a
step-size sequence (γk)k∈N , that complies with (C.1), such
that the relaxed error sequence (γk‖ek‖)k∈N satisfies (C.2). We
immediately note that if (γk)k∈N is chosen as in Assumptions
7, then it already satisfies (C.1). In the following subsection, we
show that (C.2) is also satisfied.

A. Analysis of the Relaxed Error Sequence

In the next lemma, we recall a fundamental invariance prop-
erty of dynamic tracking, namely, at each stage k, the averages
among the estimates σk

i ’s, yki ’s, and zki ’s are equivalent to the
correspondent averages we aim to track.

Lemma 4: Let Assumption 3 hold true and set the initial
conditions σ0

i , y
0
i , z

0
i as in Algorithm 3, for all i ∈ I. Then, the

following equations hold for all k ≥ 0:
i) σ̄k = 1

N

∑N
i=1 σ

k
i = x̄k;

ii) ȳk = 1
N

∑N
i=1 y

k
i = d̄k;

iii) z̄k = 1
N

∑N
i=1 z

k
i = λ̄k. �

Proof: See Appendix D. �
The following assumption on the dual sequences generated

by Algorithm 3 is instrumental for the subsequent lemma.
Assumption 8: The sequence (λk)k∈N generated by Algo-

rithm 3 is bounded, i.e., there exists BD > 0 such that ‖λk‖ ≤
BD, for all k ≥ 0. �

For example, in the context of distributed constrained opti-
mization, Assumption 8 can be enforced by changing the local
dual updates by projecting onto a local bounded set Di that

contains the optimal dual setD∗ [28], [29]. See Section II-C for
a discussion on how to locally build such supersets.

The next lemma provides upper bounds for the estimation
errors at each stage k of Algorithm 3.

Lemma 5: Let Assumptions 1–3 and 8 hold true. Then, there
exist some positive constants BΩ, BD, BY , δ1, and δ2 and a
vanishing scalar sequence (φk)k∈N defined as

φk = δ1ρ
k−1 + δ2

k∑
�=1

ρk−�γ�−1 (24)

with ρ as in (4) and (γk)k∈N as in Assumption 7, such that the
following upper bounds hold for all k ∈ N:

i) ‖σ̂k − 1⊗ x̄k‖ ≤ θBΩρ
k + θBΩ

∑k
s=1 ρ

k−sγs−1;
ii) ‖ẑk − 1⊗ λ̄k‖ ≤ θBDρ

k + θBD

∑k
s=1 ρ

k−sγs−1;
iii) ‖yk+1 − 1⊗ d̄k‖ ≤ θBY ρ

k +
∑k

s=1 ρ
k−sφs−1 + φk.

Proof: See Appendix E. �
By exploiting the upper bounds in Lemma 5 and a result on

the convergence of scalar sequences, which is recalled next, we
can show that the estimates asymptotically converge to their
correspondent aggregate true values.

Lemma 6 ([30, Lemma 3.1]): Let (δk)k∈N be a sequence.
a) If limk→∞ δk = δ and 0 < τ < 1, then limk→∞∑k

�=0 τ
k−�δ� = δ/(1− τ).

b) If δk ≥ 0 for all k,
∑∞

k=0 δ
k <∞ and 0 < τ < 1, then∑∞

k=0

∑k
�=0 τ

k−�δ� <∞. �
Proposition 3: Let Assumptions 1–3 hold true. Then, the

following statements hold:
i) limk→∞ ‖σ̂k − 1⊗ x̄k‖ = 0;

ii) limk→∞ ‖ẑk − 1⊗ λ̄k‖ = 0;
iii) limk→∞ ‖yk+1 − 1⊗ d̄k‖ = 0. �
Proof: (i) From the upper bound in Lemma 5 (i), we have

lim sup
k→∞

‖(W (k)⊗ In)σ
k − 1⊗ x̄k‖

≤ lim sup
k→∞

(
θBΩρ

k + θBΩ

k∑
s=1

ρk−sγs−1

)
≤ 0

where limk→∞ ρk = 0, since 0 < ρ < 1 by Lemma 1, and
limk→∞

∑k
s=1 ρ

k−sγs−1 = 0 by Lemma 6 (a), since 0 < ρ < 1

and limk→∞ γk = 0 by Assumption 7. Hence, limk→∞ ‖σ̂k −
1⊗ x̄k‖ = 0. The proofs of (ii) and (iii) are analogous. �

Next, we derive an upper bound for the error ek in (23) that
directly depends on the estimation errors in Lemma 5.

Lemma 7: Let Assumptions 1–3 and 8 hold true. Then, the
following bound holds for all k ∈ N:

‖ek‖ ≤ LF̃ ‖αd‖‖σ̂k − 1⊗ x̄k‖+ ‖βd‖‖yk+1 − 1⊗ d̄k‖
+ (‖αd‖‖Cd‖+ ‖βd‖) ‖ẑk − 1⊗ λ̄k‖.

Proof: See Appendix F. �
Finally, by combining the upper bounds in Lemmas 5 and 7

and exploiting a result on the convergence of scalar sequences,
i.e., Lemma 6 (b), we show that condition (C.2) holds, namely,
the relaxed error sequence (γk‖ek‖)k∈N is summable.
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Lemma 8: Let Assumptions 1–3 and 8 hold true. The se-
quence (γk‖ek‖)k∈N , with ek as in (23), is summable, i.e.,

∞∑
k=0

γk‖ek‖ <∞.

Proof: See Appendix G. �
Now, we can prove the convergence of Algorithm 3.
Theorem 2: Let Assumptions 1–5 and 8 hold true, the step

sizes {αi, βi}i∈I be set as in Assumption 6, and (γk)k∈N as
in Assumption 7. Then, the sequence (col(xk,λk))k∈N gener-
ated by Algorithm 3 globally converges to some col(x∗,λ∗) ∈
zer(T ), where x∗ is a v-GNE of the game in (1). �

Proof: For all k ∈ N, the iterations of Algorithm 3 can be
cast as the KM process with errors ωk+1 = ωk + γk(R(ωk) +
ek − ωk), where ωk = col(xk,λk), R as in (16) and ek as
in (23). By [19, Th. 5.5], the sequence (ωk)k∈N converges
to some ω∗ ∈ fix(R), since R is averaged, thus nonexpan-
sive, by Lemma 11, and (C.1)−(C.2) hold, by Assumption
7 and Lemma 8, respectively. To conclude, we note that
ω∗ ∈ fix(R) = zer(Φ−1T1 +Φ−1T2), by [11, Prop. 25.1 (iv)],
and that zer(Φ−1T1 +Φ−1T2) = zer(T ) �= ∅, with T as in
(11), since Φ 	 0, by Lemma 9, and T1 + T2 = T . Since
ω∗ ∈ zer(T ), then x∗ is a v-GNE of the game in (1), by
Proposition 2 (ii). �

V. NUMERICAL SIMULATIONS

In this section, we study the performance of the proposed
algorithm on a class of network Nash–Cournot games with
market capacity constraints. Such games represent an instance
of generalized aggregative Nash games. In Section V-A, we
describe the player cost functions and strategy sets and verify
that the necessary assumptions are satisfied. In Section V-B, we
compare the performance of our algorithm against a standard
semi-decentralized method (Algorithm 1).

A. Generalized Network Nash–Cournot Game

We extend the network Nash–Cournot game model proposed
in [14, IV] with additional market capacity constraints. Specif-
ically, consider N firms that compete over m markets. Let firm
i’s production and sales at location l be denoted by gi,l and si,l,
respectively, while its cost of production at location l is denoted
by fi,l(gi,l) and defined as follows:

fi,l(gi,l) = ai,lg
2
i,l + gi,lbi,l (25)

where ai,l and bi,l are scaling parameters for agent i.
The goods sold by firm i at location l fetch a revenue

p(s̄l)si,l, where p(s̄l) denotes the sales price at location l and
s̄l =

∑N
i=1 si,l represents the aggregate sales at location l. The

market price is set according to an inverse demand function
which depends on the aggregate of the network, i.e.,

pl(s̄l) = dl − s̄l

where dl is the overall demand for location l. Each firm i has a
production limitation at location l, described by ui,l. Moreover,

the overall production in each market l must meet the corre-
spondent demand dl and do not exceed a maximum capacity
rl. Hence, the coupling constraints dl ≤

∑N
i=1 gi,l ≤ rl, for all

l = 1, 2, . . . ,m, have to be satisfied.
Overall, each firm i, given the strategies of the other firms,

aims at solving the following optimization problem:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

argmin{gi,l,si,l}ml=1

∑m
l=1(fi,l(gi,l)− pl(s̄l)si,l)

s.t.
∑m

l=1 gi,l ≥
∑n

l=1 si,l
gi,j , si,j ≥ 0, gi,l≤ui,l, l = 1, . . . ,m

dl ≤
∑N

i=1 gi,l ≤ rl, l = 1, . . . ,m.

Effectively, the payoff function of firm i is parametrized by
nodal aggregate sales and its constraints depend on the other
firms’ strategies, thus leading to a generalized aggregative game.
In this example, we assume that the firms communicate over a
dynamic network to cope with the lack of aggregate information,
which is necessary to compute their optimal production and sale
strategies.

Next, we show that the proposed network Nash–Cournot
game does satisfy our technical setup. Let xi = col
(gi,1, . . . , gi,m, si,1, . . . , si,m) ∈ R2m denote the strategy vec-
tor of agent i and x = col(x1, . . . , xN ) denote the collective
strategy profile. The cost function of agent i is quadratic, convex
in xi, continuously differentiable, and can be cast in a compact
form as

Ji(xi, x̄) = x�i Aixi + b�i xi + (Δx̄)�xi (26)

where Ai := diag(ai,1, . . . , ai,m, 0, . . . , 0), Δ = diag(0, Im)
and bi := col(bi,1, . . . , bi,m,−d1, . . . ,−dn). The local feasible
set of firm i is nonempty (for an adequate choice of ui,l’s),
convex, compact, and reads as Ωi := {xi ∈ R2n | ∑n

l=1 gi,l ≥∑n
l=1 si,l, gi,j , si,j ≥ 0, gi,l ≤ ui,l, l = 1, . . . ,m, }.
The coupling constraints are affine and can be writ-

ten in compact form as in (1), with Ci = [00
Im
−Im

] and
ci =

1
N col(r1, . . . , rm,−d1, . . . ,−dm), for all i ∈ I. Thus,

Assumption 1 is satisfied.
The PG mapping F is affine and reads as

F (x) = Px+ b (27)

with

P = 2A+
1

N
I ⊗Δ+

1

N
(11� ⊗Δ) (28)

A = blkdiag(A1, . . . , AN ) and b = col(bi, . . . , bN ). By a direct
inspection of the eigenvalues of P , we can show that F is
strongly monotone and Lipschitz continuous, when the coef-
ficients ai,j’s are positive. Hence, Assumption 4 is satisfied. In
particular, it follows by [11, Cor. 18.18] that F is χ-cocoercive
with χ := ‖P‖−1. Moreover, since F is strongly monotone and
the sets Ωi are compact, it follows by Remark 2 that there exists
a unique v-GNE. The mapping F̃ is affine and reads as

F (x,σ) =

(
2A+

1

N
I ⊗Δ

)
x+ (I ⊗Δ)σ + b.

Similarly, it can be shown that F is LF -Lipschitz continuous
with LF := maxij{ai,j , 1}. Thus, Assumption 5 is satisfied.
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Fig. 1. Trajectories of the residual ‖xk − x∗‖/‖x0 − x∗‖ for pFB [26,
Alg. 1], Alg. 3 with γk = k−0.51, and Alg. 3 with γk = 1.

Fig. 2. Trajectories of the consensus disagreement ‖(Ł ⊗ Im)λk‖ for
Alg. 3 with γk = k−0.51 and Alg. 3 with γk = 1.

B. Simulations Studies

In our numerical study, we consider a network Nash–Cournot
game played by 20 firms, i.e., N = 20, over 10 markets, i.e.,
m = 10. All the parameters of the game are drawn from uniform
distributions and fixed over the course of the entire simula-
tions. Specifically, for all i ∈ I and l ∈ {1, . . . ,m}, we set
the parameters of production cost in (25) as ai,l ∈ U(2, 3) and
bi,l ∈ U(2, 12), where U(t, τ) denotes the uniform distribution
over an interval [t, τ ] with t < τ . We set the production ca-
pacities of firm i as ui,l ∈ U(50, 100) for all l ∈ {1, . . . , n }
and for all i ∈ I. Moreover, the demand at market l is set as
dl ∈ U(90, 100), while the market capacity as rl ∈ U(dl, 2dl)
for all l ∈ {1, . . . ,m }.

At each iteration k, the firms communicate according to a
randomly generated and connected small world, where each
node has four neighbors. To create a doubly stochastic mixing
matrix W (k), we exploit the Metropolis weighting rules in (2).
Thus, Assumptions 2 and 3 are satisfied. The agents update their
decisions and their estimates as in Algorithm 3. The step-sizes
{αi, βi}i∈I are set according to Assumption 6, where the global
parameter τ is set 5% larger than the theoretical lower bound
1
2δ , where δ = min{1, ‖P‖} and P as in (28).

In Fig. 1, we show the trajectories of the sequences of nor-
malized residuals ‖xk − x∗‖/‖x0 − x∗‖ for different choices
of the step-size sequence (γk)k∈N . Moreover, we compare the
trajectories of Algorithm 3 with those obtained with Algorithm 1
[26, Alg. 1], which is a semi-decentralized algorithm and works
under the assumption of full-decision information, i.e., the firms
have access to the real aggregate information at each stage k of
the algorithm. As expected, the semi-decentralized algorithm

converges faster than the fully distributed counterpart. Interest-
ingly, we notice that convergence is achieved also in the case
of fixed relaxation step in the KM process, e.g., γk = 1 for all
k ≥ 0, which is not supported by our theoretical analysis.

In Fig. 2, we compare the trajectories of the consensus dis-
agreement of the dual variables ‖(Ł ⊗ Im)λk‖ for two choices
of the step-size sequence (γk)k∈N .

VI. CONCLUSION

For a general class of aggregative games with linear cou-
pling constraints over time-varying communication networks,
we have designed the first single-layer, fully distributed algo-
rithm to compute a variational GNE. Global convergence can
be established via monotone-operator-theoretic and fixed-point
arguments, integrated with a dynamic tracking methodology.

The analysis approach in this article is genuinely novel, and
hence opens up a number of new research directions. Motivated
by the numerical results of Section V, it would be valuable to
explore the computational aspects of the proposed method, e.g.
how the connectivity of the communication networks influences
the convergence speed. Whether or not the proposed algorithm
converges with fixed step sizes in the KM process is currently
an open question. Finally, it would be highly valuable to relax
the assumption of double-stochasticity of the mixing matrices.

APPENDIX

A. Proof of Lemma 3

i) T2 is the sum of two terms: S in (17) is a linear, skew
symmetric mapping, thus maximally monotone [11, Ex.
20.30]; and NΩ ×NRmN

≥0
is maximally monotone since

is the direct sum of maximally monotone operators [11,
Prop. 20.23] (i.e, the normal cones of the closed convex
sets Ω and RmN

≥0 ). Hence, the maximal monotonicity of
S +NΩ ×NRmN

≥0
= T2 follows by [11, Cor. 24.4 (i)]

since dom(S) = R(n+m)N .
ii) F is χ-cocoercive, by Assumption 4, and Łm is 1-

cocoercive by [11, Cor. 18.18], since Łm is a linear,
positive semi-definite mapping with ‖Łm‖ = 1. It fol-
lows that the direct sum T1(·) = F (·)× (Łm ·+ 1

N cf)
is δ-cocoercive, for all δ such that 0 < δ ≤ min{1, χ}.
Now, we show that T1 is restricted-strictly monotone
w.r.t. Θ‖ = Ω×E‖. Let us recall that E‖ and E⊥ are
the (m-dimensional) consensus and disagreement sub-
spaces, respectively. Moreover, each vector v ∈ Rm can
be split as v = v‖ + v⊥, with v‖ ∈ E‖ and v⊥ ∈ E⊥.
Consider nowω = col(x,λ) �∈ Θ‖, hence λ = λ‖ + λ⊥,

with λ‖ ∈ E‖ and0 �= λ⊥ ∈ E⊥. Letω′ = col(x,′ λ′) ∈
Θ‖, hence λ′ = λ′

‖ ∈ E‖ and λ′
⊥ = 0. The following

inequalities show that T1 in (13) is restricted-strictly
monotone w.r.t. Θ‖:

(T2(ω)− T2(ω
′))�(ω − ω′)

= (F (x)−F (x′))�(x−x′)+(λ − λ′)�Łm(λ − λ′)

≥ χ‖F (x)− F (x′)‖2 + (λ⊥)�Łmλ⊥

≥ eig2(Ł)‖λ⊥‖2 > 0
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where Łm = (Ł ⊗ Im), with Ł projection onto the dis-
agreement subspace and eig2(Ł) = 1 is the second
smallest eigenvalue of Ł = I − 1

N 11�. The first in-
equality follows by the cocoercivity of F (Assumption
4) and since Łmλ‖ = Łmλ′ = 0, namely, the projection
onto the disagreement subspace of the consensual terms
is zero.

iii) The maximal monotonicity of T = T1 + T2 follows
by [11, Cor. 24.4 (i)], since T1 is cocoercive (thus
maximally monotone [11, Ex. 20.31]), T2 is maximally
monotone and dom(T1) = R(n+m)N . Moreover, since
T1 is also restricted-strictly monotone with respect to
Θ‖, T enjoys the same property. �

B. Proof of Proposition 2

i) By Proposition 1, there exists λ∗ ∈ Rm
≥0 such that

col(x∗, λ∗) ∈ zer(U), where x∗ is a v-GNE. Define
ω∗ = col(x∗,λ∗), with λ∗ = 1N ⊗ λ∗, then we have
T (ω∗) � 0. In fact, each component of the first row block
of T (ω∗) reads as NΩi

(x∗i ) +∇xi
Ji(x

∗
i , x̄

∗) + C�
i λ∗ �

0. However, each component of the second row block
of T (ω∗) reads as NRm

≥0
(λ∗)− 1

N (Cx− c) � 0, since

NRm
≥0
(λ∗)− (Cx∗ − c) � 0 and 1

NNRm
≥0

= NRm
≥0

.
Hence, zer(T ) �= ∅.

ii) From the first part of the proof, we know that there exists
ω∗ ∈ Θ‖ such that ω∗ ∈ zer(T ). Now, we show that all
the zeros ofT lie inΘ‖. By contradiction, letω′ ∈ zer(T )
and assume ω′ /∈ Θ‖. Then, 0 ∈ T (ω∗), 0 ∈ T (ω′),
and Lemma 3(iii) yield 0 = (0− 0)�(ω∗ − ω′) > 0,
which is impossible. Therefore, ω′ ∈ Θ‖, namely ω′ =
col(x,′ 1⊗ λ′). Now, by substituting ω′ into T (since
(Ł ⊗ Im)(1⊗ λ′) = 0), we recover that ω′ ∈ zer(T ) ⇒
col(x,′ λ′) ∈ zer(U), which, by Proposition 1, holds if
and only if x′ is a v-GNE. �

C. Proof of Theorem 1

To prove convergence of Algorithm 2, we follow the same
technical reasoning of the proof in [10, Alg. 1]. Specifically, the
proof is divided in two parts to show that:

1) Algorithm 2 corresponds to the fixed-point iteration in
(15), i.e., ωk+1 = ωk + γk(R(ωk)− ωk), where R :=
(Id + Φ−1T2)

−1 ◦ (Id− Φ−1T1) is the so-called pFB op-
erator.

2) If the step sizes are set as in Assumption 6, thenR is an av-
eraged operator. Hence, (15) globally converges to some
ω∗ := col(x∗λ∗) ∈ fix(R). Since fix(R) = zer(T ), with
T as in (11), then x∗ is a v-GNE, by Proposition 2.

1) Let us recast Algorithm 2 in a compact form as

x̃k = projΩ

(
xk − αd(F (xk, x̄k) + C�

d λ̄
k
)
)

(29)

λ̃
k
= projRmN

≥0

(
λk + βd(d̄

k−λk + λ̄
k
)
)

(30)

xk+1 = xk + γk(x̃k − xk) (31)

λk+1 = λk + γk(λ̃
k − λk) (32)

Since projΩ = (Id + NΩ)
−1, F (xk,1⊗ x̄k) = F (xk) and

C�
d λ̄

k
= C�

d (1⊗ λ̄k) = 1
NC

�
f λk, it follows from (29) that

(Id + NΩ)(x̃
k) � xk − αd(F (x

k) + 1
NC

�
f λk), which leads to

− F (xk) ∈ NΩ(x̃
k) +

1

N
C�

f λ̃
k

+ α−1
d (x̃k − xk)− 1

N
C�

f (λ̃
k − λk) (33)

where we used α−1
d NΩ(x̃

k) = NΩ(x̃
k). Similarly,

since 1⊗ d̄k = 1
N (2Cfx̃

k − Cfx
k − cf) and λk − λ̄

k
=

((I − 1
N 11�)⊗ Im)λk = (Ł ⊗ Im)λk = Łmλk, it follows

from (30) that (Id + NRmN
≥0

)(λ̃
k
) ∈ λk + βd(

1
N (2Cfx̃

k −
Cfx

k − cf)− Łmλk), which leads to

−Łmλk − 1

N
cf ∈ NRmN

≥0
(λ̃

k
)− 1

N
Cfx̃

k

− 1

N
Cf(x̃

k − xk) + β−1
d (λ̃

k − λk). (34)

Let ωk := col(xk,λk), then the inclusions in (33)–(34) can be
cast in a compact form as

−T1(ωk) ∈ T2(ω̃
k) + Φ(ω̃k − ωk) (35)

where T1, T2, and Φ are as in (12), (13), and (17), respectively.
By making ω̃k explicit in (35), we obtain

ω̃k = (Id + Φ−1T2)
−1 ◦ (Id− Φ−1T1)(ω

k) (36)

which corresponds to ω̃k = R(ωk), where R is the pFB op-
erator in (16). Finally, it follows by (31)−(32) that ωk+1 =
ωk + γk(R(ωk)− ωk), which concludes the proof.

2) Next, we introduce some technical statements that we
exploit later on in this proof.

Lemma 9: Let the step-sizes {αi, βi}i∈I satisfy
Assumption 6. Then, the following statements hold:

i) Φ− τI 
 0, with τ as in Assumption 6,
ii) ‖Φ−1‖ ≤ τ−1. �
Proof:
i): By the generalized Gershgorin circular theorem [31,

Th. 2], each eigenvalue μ of the matrix Φ in (17) satisfies
at least one of the following inequalities:

μ ≥ α−1
i − ‖C�

i ‖, ∀i ∈ I (37)

μ ≥ β−1
i − 1

N

N∑
j=1

‖C�
j ‖, ∀i ∈ I. (38)

Hence, if we set the step-sizes αi, βi as in Assumption
6, inequalities (37) and (38) yield to μ ≥ τ . It follows
that the smallest eigenvalue of Φ, i.e., μmin(Φ), satis-
fies μmin(Φ) ≥ τ > 0. Thus, Φ− τI is positive semi-
definite.

ii): Letμmax(Φ) be the largest eigenvalue ofΦ. We have that
μmax(Φ)≥μmin(Φ)≥τ . Moreover, ‖Φ‖ = μmax(Φ) ≥
μmin(Φ) =

1
‖Φ−1‖ ≥ τ . Hence, ‖Φ−1‖ ≤ τ−1. �

Lemma 10: Let Assumptions 1 and 4 hold and the step-sizes
{αi, βi}i∈I satisfy Assumption 6. The following properties hold
in the Φ-induced norm (i.e., ‖ · ‖Φ):
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i) Φ−1T1 is δτ -cocoercive and (Id− Φ−1T1) is 1
2δτ -

averaged;
ii) Φ−1T2 is maximally monotone and (Id− Φ−1T2)

−1 is
1
2 -averaged. �

Proof:
i) Since T1 is single-valued and Φ−1 nonsingular, by

Lemma 9 (i), for each ω,ω′ ∈ Ω× RnN
≥0

‖Φ−1T1(ω)− Φ−1T1(ω
′)‖2Φ = ‖T1(ω)− T1(ω

′)‖2Φ−1

≤ ‖Φ−1‖ ‖T1(ω)− T1(ω
′)‖2

≤ 1

τ
‖T1(ω)− T1(ω

′)‖2 (39)

where the last inequality follows by Lemma 9(ii). By (39)
and the δ-cocoercivity of T1 (Lemma 3(ii))

〈Φ−1T1(ω)− Φ−1T1(ω
′),ω − ω′〉Φ

= 〈T1(ω)− T1(ω
′),ω − ω′〉 ≥ δ‖T1(ω)− T1(ω

′)‖2

≥ δτ‖Φ−1T1(ω)− Φ−1T1(ω
′)‖2Φ. (40)

In other words, Φ−1T1 is δτ -cocoercive in the Φ-induced
norm. It follows from [11, Prop. 4.33] that (Id− Φ−1T1)
is 1

2δτ -averaged in the Φ-induced norm.
ii) Φ−1T2 is maximally monotone in the Φ-induced norm,

since T2 is maximally monotone by Lemma 3(i). By [11,
Prop. 23.7], the resolvent mapping (Id + Φ−1T2) is 1

2 -
averaged (or firmly nonexpansive; see [11, Remark 4.24])
in the Φ-induced norm, since Φ−1T2 is maximally mono-
tone in the same norm. �

Lemma 11: Let Assumptions 1 and 4 hold and the step-
sizes {αi, βi}i∈I satisfy Assumption 6. Then, the pFB opera-
tor R = (Id + Φ−1T2)

−1 ◦ (Id− Φ−1T1) is ν-averaged in the
Φ-induced norm (i.e., ‖ · ‖Φ), with ν := 2δτ

4δτ−1 ∈ ( 12 , 1).
Proof: By [11, Prop. 4.4], the mapping R is ( 2δτ

4δτ−1 )-
averaged with respect to ‖ · ‖Φ, since composition of (Id +
Φ−1T2)

−1 and (Id− Φ−1T1) are 1
2− and 1

2δτ -averaged in‖ · ‖Φ,
respectively, by Lemma 10. Moreover, 2δτ

4δτ−1 ∈ ( 12 , 1), since
τ > 1

2δ , by Assumption 6. �
The fixed-point iteration (15), that corresponds to Algorithm 2

by the first part of this proof, is the Krasnosel’skii–Mann
iteration on the mapping R, which is ν-averaged, with ν ∈
( 12 , 1), by Lemma 11. The convergence of (15) to some ω∗ :=
col(x∗,λ∗) ∈ fix(R) follows by [11, Prop. 5.15]. To conclude,
we note that ω∗ ∈ fix(R) = zer(Φ−1T1 +Φ−1T2), by [11,
Prop. 25.1 (iv)], and that zer(Φ−1T1 +Φ−1T2) = zer(T ), with
T as in (11), since Φ 	 0, by Lemma 9(i), and T1 + T2 = T .
Since the limit pointω∗ ∈ zer(T ) �= ∅, by Proposition 2(i), then
x∗ is a v-GNE of the game in (1), by Proposition 2(ii), thus
concluding the proof. �

D. Proof of Lemma 4

We prove (i) by induction. At step zero, σ̄0 = x̄0 holds if the
estimates are initialized as σ0

i = x0i , for all i ∈ I. At step k,
we assume that σ̄k = x̄k. To conclude the proof, we show that

relation (i) holds at step k + 1:

σ̄k+1 =
1

N
(1� ⊗ In)((W (k)⊗ In)σ

k + xk+1 − xk)

=
1

N
(1� ⊗ In)(W (k)⊗ In)σ

k + x̄k+1 − x̄k

= σ̄k + x̄k+1 − x̄k = x̄k+1.

The first equality follows from the updating rule of the σi’s
in Algorithm 3, the second follows by definition of x̄k,
i.e., x̄k = 1

N (1� ⊗ In)x
k, the third follows since the mixing

matrix W (k) is column stochastic, i.e., 1�W (k) = 1�, by
Assumption 3, while the last equality follows from the induction
step k, i.e., σ̄k = x̄k. The proof of (ii) and (iii) is analogous.

E. Proof of Lemma 5

For easy of notation, this proof is developed for the scalar case,
i.e., n = m = 1. In this case, we can write ‖σ̂k − 1⊗ x̄k‖ =
‖(W (k)⊗ In)σ

k − 1⊗ x̄k‖ = ‖W (k)σk − x̄k1‖.
i) The update of the estimates σi’s in Algorithm 3 can be

written in a compact form as

σk+1 =W (k)σk + xk+1 − xk. (41)

By telescoping (41), we obtain

σk+1 =W (k)(W (k − 1)σk−1 + xk − xk−1)

+ xk+1 − xk

= Ψ(k, k − 1)σk−1 +Ψ(k, k)(xk − xk−1)

+ xk+1 − xk

= · · ·

= Ψ(k, 0)σ0 +

k∑
s=1

Ψ(k, s)(xs − xs−1)

+ xk+1 − xk (42)

where the transition matrices Ψ(·, ·)’s are defined in (3).
By rearranging (41), we can write W (k)σk = σk+1 −
xk+1 + xk. Then, by exploiting the equivalence in (42),
we have

W (k)σk = Ψ(k, 0)σ0 +

k∑
s=1

Ψ(k, s)(xs − xs−1).

(43)

Now, consider σ̄k, which may be written as follows:

σ̄k = σ̄k−1 + (σ̄k − σ̄k−1) = σ̄0 +

k∑
s=1

(σ̄s − σ̄s−1).

By Lemma 4, we have that σ̄s = x̄s ∀s ≥ 0, which leads
to

x̄k = σ̄k = σ̄0 +

k∑
s=1

(x̄s − x̄s−1)

=
1

N
1�σ0 +

k∑
s=1

1

N
1�(xs − xs−1). (44)
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From (43) and (44), we have the following:

‖W (k)σk − x̄k1‖

=

∥∥∥∥
(
Ψ(k, 0)− 1

N
11�

)
σ0

+

k∑
s=1

(
Ψ(k, s)− 1

N
11�

)
(xs − xs−1)

∥∥∥∥∥
(a)
≤ ‖Ψ(k, 0)− 1

N
11�‖‖σ0‖

+
k∑

s=1

‖Ψ(k, s)− 1

N
11�‖‖xs − xs−1‖

(b)
≤ θρk‖σ0‖+

k∑
s=1

θρk−s‖xs − xs−1‖ (45)

where (a) follows from the Cauchy–Schwarz inequal-
ity, while (b) since ‖Ψ(k, s)− 1

N 11�‖ ≤ θρk−s for all
k ≥ s ≥ 0, by Lemma 1. Next, we find an upper bound
for ‖xs − xs−1‖ in (45). The update of the decisions
xi’s can be written in a compact form as xk+1 =
xk + γk(x̃k − xk). We note that x̃ki , x

k
i ∈ Ωi, for all

k ≥ 0 since x̃ki is obtained by projecting onto Ωi and
xki = (1− γk)xk−1

i + γkx̃ki is a convex combination of
elements of the convex set Ωi. Since all the sets Ωi’s
are compact, by Assumption 1, it follows that for some
constant BΩ, we have

‖xs − xs−1‖ = γs−1‖x̃s−1 − xs−1‖ ≤ γs−1BΩ.
(46)

By combining (46) and (45), we obtain

‖W (k)σk − x̄k1‖ ≤ θρkBΩ +

k∑
s=1

θρk−sγs−1BΩ

where we exploited the initialization step of Algorithm 3,
i.e., σ0 = x0 ∈ Ω, from which ‖σ0‖ ≤ BΩ.

ii) The update of the estimates zi’s in Algorithm 3 can be
written in a compact form as

zk+1 =W (k)zk + λk+1 − λk. (47)

By telescoping (47), we obtain

‖W (k)zk − λ̄k1‖

≤ θρk‖z0‖+
k∑

s=1

θρk−s‖λs − λs−1‖ (48)

To upper bound ‖λs − λs−1‖, we note that the dual
update in Alg. 3 reads in a compact form as λs = λs−1 +

γs(λ̃
s−1 − λs−1) and that the dual sequence (λs)s∈N

is positive and BD-norm bounded, by Assumption 8.
Hence, we have ‖λs − λs−1‖ ≤ γs−1BD, that substi-
tuted into (48) gives

‖W (k)zk − λ̄k1‖ ≤ θρkBD +

k∑
s=1

θρk−sγs−1BD.

iii) The update of the estimates yi’s in Algorithm 3 can be
written in a compact form as

yk+1 =W (k)yk + Cd(2x̃
k − xk)

− Cd(2x̃
k−1 − xk−1) (49)

By telescoping (49) [as explained in (42)], we obtain

yk+1 = Ψ(k, 0)y0 +

k∑
s=1

Ψ(k, s)

· (Cd(2x̃
s−1 − xs−1)− Cd(2x̃

s−2 − xs−2)
)

+ Cd(2x̃
k − xk)− Cd(2x̃

k−1 − xk−1). (50)

Now, consider ȳk, which may be written as follows:

ȳk = ȳ0 +
k∑

s=1

{ȳs−1 − ȳs−2}+ ȳk − ȳk−1.

By Lemma 4, we have that ȳs = d̄s = 1
N 1�Cd(2x̃

s − xs)− c,
for all s ≥ 0, which leads to

d̄k = ȳk =
1

N
1�y0 +

k∑
s=1

1

N
1�

· (Cd(2x̃
s−1 − xs−1)− Cd(2x̃

s−2 − xs−2)
)

+
1

N
1� (Cd(2x̃

k − xk)− Cd(2x̃
k−1 − xk−1)

)
.

(51)

From relations (50) and (51), we have the following:

‖yk+1 − d̄k1‖

(a)
= ‖

(
Ψ(k, 0)− 1

N
11�

)
y0 +

k∑
s=1

(
Ψ(k, s)− 1

N
11�

)

· (Cd(2x̃
s−1 − xs−1)− Cd(2x̃

s−2 − xs−2)
)

+

(
IN − 1

N
11�

)
· (Cd(2x̃

k − xk)− Cd(2x̃
k−1 − xk−1)

) ‖
(b)
≤ ‖Ψ(k, 0)− 1

N
11�‖‖y0‖

+
k∑

s=1

‖Ψ(k, s)− 1

N
11�‖‖Cd‖

· ‖(2x̃s−1 − xs−1)− (2x̃s−2 − xs−2)‖
+ ‖Cd‖‖(2x̃k − xk)− (2x̃k−1 − xk−1)‖

(c)
≤ θρkBY +

k∑
s=1

θρk−s

· ‖Cd‖‖(2x̃s−1 − xs−1)− (2x̃s−2 − xs−2)‖
+ ‖Cd‖‖(2x̃k − xk)− (2x̃k−1 − xk−1)‖ (52)
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where the first equality, (a), follows by substituting (50) and
(51) to yk+1 and d̄k, respectively, (b) follows from Cauchy–
Schwartz inequality, and (c) since ‖Ψ(k, s)− 1

N 11�‖ ≤ θρk−s

for all k ≥ s ≥ 0, by Lemma 1. Now we build an upper bound
for ‖(2x̃s − xs)− (2x̃s−1 − xs−1)‖ in (52)

‖(2x̃s − xs)− (2x̃s−1 − xs−1)‖
(a)
≤ 2‖x̃s − x̃s−1‖+ ‖xs − xs−1‖
(b)
≤ 2‖x̃s − x̃s−1‖+ γs−1BΩ (53)

where (a) follows from the triangular inequality and (b) follows
from (46). Next, we build an upper bound for the term ‖x̃s −
x̃s−1‖ in the right-hand side of (53).

‖x̃s − x̃s−1‖
(a)
= ‖projΩ(xs − αd(F (xs, σ̂s) + C�

d ẑ
s)

− projΩ(x
s−1 − αd(F (xs−1, σ̂s−1) + C�

d ẑ
s−1)‖

(b)
≤ ‖xs − xs−1 − αd

· (F (xs,W (s)σs)− F (xs−1,W (s−1)σs−1)

+C�
d W (s)zs − C�

d W (s−1)zs−1
) ‖

(c)
≤ ‖xs − xs−1‖

+ LF ‖αd‖
∥∥∥∥∥
[

xs − xs−1

W (s)σs −W (s− 1)σs−1

]∥∥∥∥∥
+ ‖αd‖‖Cd‖‖W (s)zs −W (s− 1)zs−1‖

(d)
≤ (1 + LF ‖αd‖)‖xs − xs−1‖
+ LF ‖αd‖‖W (s)σs −W (s−1)σs−1‖
+ ‖αd‖‖Cd‖‖W (s)zs −W (s−1)zs−1‖ (54)

where (a) follows by exploiting the compact update of x̃s in (20),
(b) follows by the nonexpansiveness of the projection operator,
(c) follows by exploiting, in sequence, the triangular inequality,
the Lipschitz continuity of F (Assumption 5) and the Cauchy–
Schwartz inequality, and, finally, (d) follows from the relation
‖[ab ]‖ =

√
‖a‖2+‖b‖2≤‖a‖+‖b‖. Now, we find an upper bound the

last two terms in (54).

‖W (s)σs −W (s−1)σs−1‖
(a)
= ‖W (s)σs − σs + xs − xs−1‖
(b)
≤ ‖W (s)σs − σs‖+ ‖xs − xs−1‖
(c)
= ‖W (s)σs − 1x̄s − (σs − 1x̄s)‖
+ ‖xs − xs−1‖

(d)
≤ ‖W (s)σs − 1x̄s‖+ ‖σs − 1x̄s‖
+ γs−1BΩ

(e)
≤ θBΩρ

s + θBΩ

s∑
�=1

ρs−�γ�−1

+ θBΩρ
s−1 + θBΩ

s−1∑
�=1

ρ(s−1)−�γ�−1 + γs−1BΩ

+ γs−1BΩ

(f)
≤ 2

(
θBΩρ

s−1
)
+ 4

(
θBΩρ

−1
s∑

�=1

ρs−�γ�−1

)
(55)

where (a) follows since W (s−1)σs−1 = σs − xs + xs−1 by
(41), (b) from the triangular inequality, (c) by summing and
subtracting x̄s1 within the fist term, (d) by the triangular in-
equality and substituting to ‖xs − xs−1‖ the bound in (46), (e)
by substituting to ‖W (s)σs − 1x̄s‖ the upper bound derived
in Lemma 5 (i) and to ‖σs − 1x̄s‖ a bound similarly derived,
and (f) follows by noticing that ρs < ρs−1, since 0 < ρ < 1 by
Assumption 3. Similarly, for the last addend in (54), we can
derive the following bound:

‖W (s)zs −W (s−1)zs−1‖

≤ 2θBDρ
s−1 + 4θBDρ

−1
s∑

�=1

ρs−�γ�−1. (56)

Finally, by combining (54) with (55) and (56), we obtain an
upper bound for ‖x̃s − x̃s−1‖, i.e.,

‖x̃s − x̃s−1‖
≤ ‖αd‖2θ(LFBΩ + ‖Cd‖BD)︸ ︷︷ ︸

:=ε1

ρs−1

+ 4θρ−1‖αd‖(LFBΩ + ‖Cd‖BD)︸ ︷︷ ︸
:=ε2

s∑
�=1

ρs−�γ�−1

+ (BΩ + ‖αd‖LFBΩ)︸ ︷︷ ︸
:=ε3

γs−1

≤ ε1ρ
s−1 + (ε2 + ε3)

s∑
�=1

ρs−�γ�−1. (57)

Now, by substituting (57) into (53), we obtain

‖(2x̃s − xs)− (2x̃s−1 − xs−1)‖

≤ 2ε1ρ
s−2 + 2(ε2 + ε3)

s∑
�=1

ρs−�γ�−1 + γs−1BΩ

≤ 2ε1︸︷︷︸
:=δ1

ρs−1 + (2ε2 + 2ε3 +BΩ)︸ ︷︷ ︸
:=δ2

s∑
�=1

ρs−�γ�−1

=: φs (58)

where (φs)s∈N is the scalar (vanishing) sequence in (24), with
ρ is as in (4) and (γk)k∈N as in Assumption 7. Finally, by
combining (58) and (52), we obtain the upper bound in Lemma
5(iii). �
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F. Proof of Lemma 7

From ‖[ab ]‖ =
√

‖a‖2+‖b‖2≤‖a‖+‖b‖, it follows that

‖ek‖ = ‖ col(x̃k, λ̃
k
)− col(x̃k

A2, λ̃
k

A2)‖

≤ ‖x̃k − x̃k
A2‖+ ‖λ̃k − λ̃

k

A2‖. (59)

Next, we upper bound ‖x̃k − x̃k
A2‖, where x̃k and x̃k

A2 are
defined in (20) and (18), respectively.

‖x̃k − x̃k
A2‖

= ‖projΩ
(
xk − αd(F (xk, σ̂k) + C�

d ẑ
k
)

− projΩ
(
xk − αd(F (xk, x̄k1) + C�

d λ̄k
) ‖

(a)
≤ ‖αd‖ ‖F (xk, σ̂k)− F (xk, x̄k) + C�

d (ẑ
k − λ̂

k
)‖

(b)
≤ LF ‖αd‖‖(W (k)⊗ In)σ

k − 1⊗ x̄k‖
+ ‖αd‖‖Cd‖‖(W (k)⊗ Im)zk − 1⊗ λ̄k‖ (60)

where the first inequality (a) follows by the nonexpansivity of the
projection operator, and (b) follows by the triangular inequality
and the Lipschitz continuity of F (Assumption 5).

Now, consider ‖λ̃k − λ̃
k

A2‖, where λ̃
k

and λ̃
k

A2 are defined in
(21) and (19), respectively. By exploiting the nonexpansiveness
of the projection operator, we have

‖λ̃k − λ̃
k

A2‖ ≤ ‖βd‖‖(W (k)⊗ Im)zk − 1⊗ λ̄k‖
+ ‖βd‖‖yk+1 − 1⊗ d̄k‖. (61)

Finally, by combining (61) and (60) with (59), we obtain the
upper bound in Lemma 7. �

G. Proof of Lemma 8

By substituting the bounds on the estimation errors of
Lemma 5 into the error bound in Lemma 7, we obtain

γk‖ek‖ ≤ a1 γ
kρk︸ ︷︷ ︸

Term 1

+a2 γ
k

k∑
s=1

ρk−sγs−1

︸ ︷︷ ︸
Term 2

+ a3 γ
kφk︸ ︷︷ ︸

Term 3

+a4 γ
k

k∑
s=1

ρk−sφs−1

︸ ︷︷ ︸
Term4

(62)

where a1, a2, a3, and a4 are positive constants de-
fined as a1 := θBΩ(‖αd‖LF + ‖βd‖) + θBD(‖αd‖‖Cd‖+
‖βd‖), a2 := θBΩ‖αd‖LF + θBD(‖αd‖‖Cd‖+ ‖βd‖), a3 :=
‖βd‖‖Cd‖, and a4 := ‖βd‖. Now, we show that each term on
the right-hand side of (62) is summable, hence also the sequence
(γk‖ek‖)k∈N is such, i.e.,

∑∞
k=0 γ

k‖ek‖ <∞.
Term 1: To establish the convergence of

∑∞
k=0 γ

kρk, we
note that γk ≤ γ0, for all k ∈ N, by Assumption 7, imply-
ing that

∑∞
k=0 γ

kρk ≤ γ0
∑∞

k=0 ρ
k <∞, since 0 < ρ < 1 by

Lemma 1.

Term 2: Since γk ≤ γs−1, for all k ≥ s−1 (Assumption 7),
the following relations hold for the second term in the right-hand
side of (62):

∞∑
k=0

γk

(
k∑

s=1

ρk−sγs−1

)
=

∞∑
k=0

k∑
s=1

ρk−sγkγs−1

≤
∞∑

k=0

k∑
s=1

ρk−s(γs−1)2.

It follows by Lemma 6 (b) that
∑∞

k=0

∑k
s=1 ρ

k−s(γs−1)2 <∞,
since

∑∞
k=0(γ

k)2 <∞, γk ≥ 0 for all k (Assumption 7) and
0 < ρ < 1.

Term 3: By exploiting the definition of the sequence (φk)k∈N

in Lemma 5, we can write
∞∑

k=0

γkφk =

∞∑
k=0

γk

(
δ1ρ

k−1 + δ2

k∑
�=1

ρk−�γ�−1

)

= δ1

∞∑
k=0

γkρk−1 + δ2

∞∑
k=0

γk
k∑

�=1

ρk−�γ�−1

≤ δ1γ
0

∞∑
k=0

ρk−1 + δ2

∞∑
k=0

k∑
�=1

ρk−�(γ�−1)2

By exploiting the same technical reasoning in (i) and (ii), we
can show that each term on the right-hand side of the previ-
ous inequality globally converges. Therefore, we conclude that∑∞

k=0 γ
kφk <∞.

Term 4: Since γk ≤ γs, for all k ≥ s (Assumption 7), the
following hold for the last term in the right-hand side of (62):

∞∑
k=0

γk

(
k∑

s=1

ρk−sφs−1

)
=

∞∑
k=0

k∑
s=1

ρk−sγkφs−1

≤
∞∑

k=0

k∑
s=1

ρk−s(γs−1φs−1).

It follows by Lemma 6(b) that
∑∞

k=0

∑k
s=1 ρ

k−sγs−1φs−1 <
∞, since

∑∞
k=0 γ

kφk <∞ by (iii), and 0 < ρ < 1.
To conclude, since all the terms in the right-hand side of (62)

are summable, then we have
∑∞

k=0 γ
k‖ek‖ <∞. �
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the smart grid,” IEEE Signal Process. Mag., vol. 29, no. 5, pp. 86–105,
Sep. 2012.

[3] Z. Ma, D. Callaway, and I. Hiskens, “Decentralized charging control of
large populations of plug-in electric vehicles,” IEEE Trans. Control Syst.
Technol., vol. 21, no. 1, pp. 67–78, Jan. 2013.

[4] N. Li, L. Chen, and M. A. Dahleh, “Demand response using linear supply
function bidding,” IEEE Trans. Smart Grid, vol. 6, no. 4, pp. 1827–1838,
Jul. 2015.

[5] J. Barrera and A. Garcia, “Dynamic incentives for congestion control,”
IEEE Trans. Autom. Control, vol. 60, no. 2, pp. 299–310, Feb. 2015.

[6] S. Grammatico, F. Parise, M. Colombino, and J. Lygeros, “Decentralized
convergence to Nash equilibria in constrained deterministic mean field
control,” IEEE Trans. Autom. Control, vol. 61, no. 11, pp. 3315–3329,
Nov. 2016.

Authorized licensed use limited to: TU Delft Library. Downloaded on May 07,2021 at 06:32:32 UTC from IEEE Xplore.  Restrictions apply. 



BELGIOIOSO et al.: DISTRIBUTED GENERALIZED NASH EQUILIBRIUM SEEKING IN AGGREGATIVE GAMES ON TIME-VARYING NETWORKS 2075

[7] S. Grammatico, “Dynamic control of agents playing aggregative games
with coupling constraints,” IEEE Trans. Autom. Control, vol. 62, no. 9,
pp. 4537–4548, Sep. 2017.

[8] D. Paccagnan, B. Gentile, F. Parise, M. Kamgarpour, and J. Lygeros, “Nash
and wardrop equilibria in aggregative games with coupling constraints,”
IEEE Trans. Autom. Control, vol. 64, no. 4, pp. 1373–1388, Apr. 2019.

[9] G. Belgioioso and S. Grammatico, “Semi-decentralized Nash equilib-
rium seeking in aggregative games with coupling constraints and non-
differentiable cost functions,” IEEE Control Syst. Lett., vol. 1, no. 2,
pp. 400–405, Oct. 2017.

[10] P. Yi and L. Pavel, “An operator splitting approach for distributed gener-
alized Nash equilibria computation,” Automatica, vol. 102, pp. 111–121,
2019.

[11] H. H. Bauschke et al., Convex Analysis and Monotone Operator Theory
in Hilbert Spaces, vol. 2011. Berlin, Germany: Springer, 2017.

[12] T. Tatarenko, W. Shi, and A. Nedić, “Accelerated gradient play algorithm
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[28] A. Nedić and A. Ozdaglar, “Subgradient methods for saddle-point prob-
lems,” J. Optim. Theory Appl., vol. 142, no. 1, pp. 205–228, 2009.

[29] M. Zhu and S. Martínez, “On distributed convex optimization under
inequality and equality constraints,” IEEE Trans. Autom. Control, vol. 57,
no. 1, pp. 151–164, Jan. 2012.
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