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Abstract. In free-boundary problems, the accuracy of a goal quantity of interest depends on
both the accuracy of the approximate solution and the accuracy of the domain approximation. We
develop duality-based a posteriori error estimates for functional outputs of solutions of free-boundary
problems that include both sources of error. The derivation of an appropriate dual problem (linearized
adjoint) is, however, nonobvious for free-boundary problems. To derive an appropriate dual problem,
we present the domain-map linearization approach. In this approach, the free-boundary problem
is first transformed into an equivalent problem on a fixed reference domain after which the dual
problem is obtained by linearization with respect to the domain map. We show for a Bernoulli-type
free-boundary problem that this dual problem corresponds to a Poisson problem with a nonlocal
Robin-type boundary condition. Furthermore, we present numerical experiments that demonstrate
the effectivity of the dual-based error estimate and its usefulness in goal-oriented adaptive mesh
refinement.
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1. Introduction. Free-boundary problems arise in various applications such as
free-surface flow, fluid-structure interaction, and Stefan problems; see [15,18]. The nu-
merical simulation of free-boundary problems is a challenging endeavor, as it requires
the simultaneous solution of both the unknown function and its domain of definition
and these two solution components can display distinct length (and/or time) scales. In
many free-boundary problems, practical interest is restricted to a prescribed response
quantity in the form of a goal functional of the solution rather than full norm resolu-
tion. However, the accuracy of the goal quantity depends on both the accuracy of the
approximate solution and the accuracy of the domain approximation. In general, this
dependence is nonobvious, and heuristic approaches, such as a priori mesh refinement
in the vicinity of the free boundary [14, 42], lead to inefficient approximations of the
goal quantity.

Finite-element techniques employing goal-oriented adaptive strategies can offer
a significant efficiency improvement in such simulations. Starting with a coarse
discretization, only those refinements are made which benefit substantially to the
accuracy of the goal functional, in contrast to global norm-oriented adaptive strate-
gies which make refinements which benefit the accuracy of the solution in the full
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norm [1, 50]. Such goal-oriented adaptive-refinement strategies result in optimal dis-
cretizations of both the unknown function and its domain of definition for the goal
functional under consideration, each with appropriate resolution.

Goal-oriented adaptive strategies rely on local error indicators obtained from
duality-based a posteriori error estimates for the functional of interest. These so-called
goal-oriented error estimates require the solution of a dual problem, which is essen-
tially a linearized adjoint problem. Pioneering work on a posteriori estimation of errors
in goal functionals has been performed by Becker and Rannacher and Prudhomme
and Oden; see their comprehensive overviews [3, 36, respectively] and also [16, 41].
The error estimation procedure was coined goal-oriented error estimation in 1999 by
Prudhomme and Oden [35].

The goal-oriented error estimation framework is in principle immediately ap-
plicable to all (non)linear problems that can be cast in canonical variational form.
Goal-oriented adaptive methods have recently been applied to a large variety of prob-
lems, although the convergence of several specific goal-oriented adaptive methods has
only recently been established theoretically; see [31, 32].1 Examples of goal-oriented
adaptivity applied to problems with elliptic operators can be found in [28, 30, 38].
Examples with hyperbolic operators can be found in [19, 20, 23, 24]. Applications to
multiphysics problems can be found in [10, 27, 48].

Free-boundary problems elude the standard goal-oriented error estimation frame-
work on account of the fact that their typical variational form is noncanonical: The
trial and test spaces in the variational formulation are domain dependent, but the
domain itself constitutes an unknown. This impedes the direct derivation of an ap-
propriate linearized adjoint.

In this work we consider the application of goal-oriented error estimation to free-
boundary problems and, in particular, the formulation of appropriate linearized ad-
joints for this class of problems. As a model problem, we consider a Bernoulli-type
free-boundary problem. By means of a domain map, which provides an isomorphism
between the unknown domain of the free-boundary problem and a fixed reference
domain, the free-boundary problem can be transformed into an equivalent problem
on the fixed domain. The variational formulation of the transformed problem is in
canonical form, although it contains intricate terms involving the domain map. The
linearized adjoint is obtained by linearizing the transformed problem with respect
to the domain map. We refer to this linearization technique as domain-map lin-
earization. We show that the dual solution obtained by the domain-map linearization
approach is essentially independent of the selected reference domain, in that the dual
solutions corresponding to two distinct reference domains are related by the obvious
map between the reference domains. Furthermore, we give an interpretation of the
dual problem by showing that it corresponds to a Poisson problem with a nonlocal
Robin-type boundary condition.

The present article is one of a pair of papers on goal-oriented error estimation
for free-boundary problems. In the companion paper [49] we consider an alternative
type of domain linearization based on shape derivatives [8, 34, 37]. It is noteworthy
that these two linearization approaches have recently been investigated for Newton-
type iterative solution algorithms for free-boundary problems. The domain-map
linearization has been used in the context of fluid-structure-interaction problems;

1The convergence of adaptive finite-element methods is not only nontrivial for goal-oriented
adaptive strategies but also for conventional energy norm–based adaptive methods [33, 39].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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see [2,13]. The shape-linearization approach has been investigated for Bernoulli-type
free-boundary problems in [14, 25].

The content of this paper is arranged as follows: Section 2 introduces the free-
boundary model problem and specifies some relevant goal functionals for this problem.
In section 3 we review the basic theory of goal-oriented error estimation for canonical
variational forms. In section 4 we consider the domain-map linearization approach
and apply the canonical framework to the free-boundary model problem. Section 5
presents an analysis of the associated dual problem. Numerical experiments are pre-
sented in section 6. Finally, section 7 contains concluding remarks. We present a
comparison of the domain-map linearization approach and the shape-linearization
approach in the companion paper [49].

2. Problem statement. In this work, we shall focus on a Bernoulli-type
free-boundary problem; see [11,14], for instance. In particular, we consider the Laplace
operator on a variable domain, with Dirichlet boundary conditions along the entire
boundary and Neumann boundary conditions along the part corresponding to the free
boundary. We present a weak formulation for this problem based on a parametrization
of the domain. In addition, we present several relevant goal functionals.

2.1. Bernoulli-type free-boundary problem. Let u denote an unknown
scalar function from an a priori unknown bounded open domain Ω ⊂ RN into R.
The boundary ∂Ω of Ω consists of two complementary parts, viz., a fixed part, ΓD, on
which Dirichlet boundary conditions are imposed and a variable part, Γ, referred to
as the free boundary, on which both Dirichlet and Neumann boundary conditions are
imposed; see Figure 1. Within this setting, we formulate the following Bernoulli-type
free-boundary problem: Find the domain Ω (or equivalently, its free boundary Γ) and
a function u : Ω → R such that

−Δu = f in Ω ,(2.1a)

∂nu = g on Γ ,(2.1b)

u = h
∣∣
Γ
= 1 on Γ ,(2.1c)

u = h
∣∣
ΓD

on ΓD ,(2.1d)

where we assume f ∈ C0,1(RN ), g ∈ C1,1(RN ), together with a lower bound g ≥ g0 >
0, and h ∈ C1,1(RN ), with Cp,q the (p, q) Hölder space. Note that, in accordance
with (2.1c), h|Γ = 1 is required for all admissible free boundaries. In the following,
we assume that the data is such that there exists a (possibly nonunique) Lipschitz
domain Ω and a corresponding solution u ∈ H1(Ω) which solve (2.1).2

Let us remark that for f = 0 and Γ ∩ ΓD = ∅ (typically, annular domains),
this problem corresponds to the interior or exterior Bernoulli free-boundary problem.
A concise review of existence and regularity results as well as numerical solution
algorithms for this case can be found in Flucher and Rumpf [14]. Other numerical
approaches can be found in, for instance, [5, 11, 21, 26, 44, 51].

To enable an interpretation of (2.1), we note that in two dimensions, the function
u can be thought of as the stream function of a steady free-surface potential-flow
problem. The constant Dirichlet condition at the free boundary expresses flow tan-
gency, and the Neumann boundary condition corresponds with a simplified version of
Bernoulli’s equation (no surface tension); see, for instance [25, 29].

2Note that for certain trivial data, such as f = 0, g = g0 > 0, and h = 1 on ΓD , one can show
that there does not exist any solution to (2.1). We exclude such trivial data.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ESTIMATION FOR FREE-BOUNDARY PROBLEMS 1067

Fig. 1. Geometric setup of the free-boundary problem: domain Ω, fixed boundary ΓD, and free
boundary Γ.

2.2. Parametrization of the unknown domain. To avoid the complications
of searching for an unknown domain in some set of subsets of RN , one often resorts
to finding a parametrization of the variable domain in a vector space. We construct
variable domains as transformations of a reference domain Ω0 by perturbations of the
identity map Id : RN → RN ; see, for instance, [7, 8]. Let us note that, alternatively,
the domains could have been constructed by means of the velocity method; see [7,37].
The boundary ∂Ω0 = Γ0 ∪ ΓD consists of the fixed parts ΓD and Γ0, where Γ0

corresponds to the free boundary in the reference configuration.
Let us denote by ΘLip := ΘLip(Ω0) the space of Lipschitz perturbation-vector

fields which vanish at ΓD, i.e.,

ΘLip(Ω0) :=
{
θ ∈ C0,1(Ω0;R

N )
∣∣ θ = 0 on ΓD

}
.

To each θ ∈ ΘLip we associate a transformation map Tθ := Id+ θ on Ω0. This trans-
formation leads to the perturbed domain Ωθ and the corresponding free boundary Γθ:

Ωθ := Tθ(Ω0) =
{
x ∈ RN

∣∣x = Tθ(x0) ∀x0 ∈ Ω0

}
,

Γθ := Tθ(Γ0) =
{
x ∈ RN

∣∣x = Tθ(x0) ∀x0 ∈ Γ0

}
;

see Figure 2. Note that the free boundary is fixed at possible intersections with the
fixed part of the boundary. For Lipschitz domains and Lipschitz perturbation fields,
the transformation Tθ is invertible and both Tθ and T -1

θ are Lipschitz continuous,
provided that θ is not too large. Moreover, Tθ maps interior (resp., boundary) points
of Ω0 onto interior (resp. boundary) points of Ωθ [7, 8]. In practice, this means that
the reference domain should be sufficiently close to the actual domain.

Obviously, many perturbation fields in ΘLip vanish at the free boundary Γ0 and,
accordingly, do not yield perturbed domains. Furthermore, a particular perturbed
domain has nonunique parametrizations in ΘLip; i.e., there exist distinct perturba-
tion fields that give the same domain. To have a unique association between the
domains and their parametrization, we need to consider a subspace Θ ⊂ ΘLip of
suitable perturbation fields. These perturbation fields are Lipschitz continuous ex-
tensions of functions that are only defined on the free boundary Γ0. Examples of such

Fig. 2. Illustration of the transformation Tθ, mapping the reference domain Ω0 onto Ωθ.
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extensions are the classical normal extension [34], smoothed-normal extensions [43],
and extensions of hypograph perturbations [8, 22].

2.3. Weak form of the free-boundary problem. For admissible θ ∈ Θ and
corresponding domain Ωθ, we denote by H1

0,γ(Ωθ) the space of H1-functions with a
zero trace on γ ⊆ ∂Ωθ, i.e.,

H1
0,γ(Ωθ) :=

{
v ∈ H1(Ωθ) : v = 0 on γ

}
.

To deal with nonzero traces, we define the (affine) space incorporating h as

H1
h(Ωθ) := h|Ωθ

+H1
0,∂Ωθ

(Ωθ) .

A weak formulation of (2.1) is obtained by multiplying (2.1a) with v ∈ H1
0,ΓD (Ωθ),

integrating over Ω = Ωθ, and integrating by parts the Laplacian. As v is nonzero
on Γθ, we invoke (2.1b) to incorporate the Neumann boundary condition weakly.
Furthermore, the Dirichlet boundary conditions (2.1c) and (2.1d) can be imposed
strongly. We then arrive at the variational formulation:3

Find θ ∈ Θ and u ∈ H1
h(Ωθ) :∫

Ωθ

∇u · ∇v =

∫
Ωθ

f v +

∫
Γθ

g v ∀v ∈ H1
0,ΓD(Ωθ) .

(2.2)

Because the solution of (2.2) consists of both θ and u, the variational problem is of
mixed type. Moreover, it is nonlinear in θ. Standard variational arguments show that
smooth solutions of (2.2) satisfy (2.1).

Last but not least, it is important to observe that the variational statement (2.2)
is noncanonical in the sense that u and v reside in function spaces that depend on the
solution component θ. We will return to this issue in section 4.

2.4. Goal functionals and approximation errors. Our interest is restricted
to specific qoal quantities of the solution (θ, u) of (2.2), i.e., quantities of inter-
est Q(θ, u) ∈ R. This implies that approximations to the solution are only viewed
as a means to produce approximate goal quantities. An example goal quantity is the
weighted average of u defined by 4

Qave(θ;u) :=

∫
Ωθ

qave u,

where the weight qave ∈ H1(RN ) is a given function. Another example of relevance
in free-surface flows is the weighted elevation of the free boundary:

Qelev(θ) :=

∫
Γ0

qelev αθ .

Here, the weight qelev ∈ L2(Γ0) is given, and the elevation αθ := α(Ωθ) : Γ0 → R is a
scalar function which associates to a specific domain Ωθ the vertical deviation of the
free boundary with respect to the rest position, Γ0.

3For notational convenience, we often neglect the integration measure in integrals. Domain and
boundary integrals are to be integrated with respect to the usual volume and surface measures. For
example, we write

∫
Γθ

f instead of
∫
Γθ

f dΓθ.
4For semilinear functionals, we use the convention that the functional is linear with respect to

the arguments after the semicolon “;”.
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Let θh ∈ Θ and uh ∈ H1
h(Ωθh) be approximations obtained by applying, for ex-

ample, the Galerkin method to (2.2) with suitable finite-dimensional subspaces. For
later reference, we note that the approximation uh thus satisfies the Dirichlet bound-
ary condition, uh = 1, on the approximate free boundary Γθh . The corresponding
approximate value of the goal functional is Q(θh, uh). It is our objective to derive a
dual-based estimate of the goal error,

EQ := Q(θ, u)−Q(θh, uh) ,

and to employ this estimate to control the goal error using goal-oriented adaptive
strategies. In the next section we review relevant theory on goal-oriented error esti-
mation for canonical variational forms, and following this, in section 4 we show how
to apply this theory to our model free-boundary problem.

3. Goal-oriented error estimation for canonical variational forms. A
general paradigm for a posteriori error estimation of quantities of interest has been
established for canonical variational formulations (canonical in the sense that it fits the
form in (3.1) below); see in particular [1,3,16,36,50]. In this paradigm, a computable
error estimate is obtained by evaluating the residual at the solution of a suitable
dual problem. This section gives a brief summary of the theory established in the
literature.

3.1. Canonical setting. Let U and V denote Banach spaces. Consider the
canonical variational problem, referred to as the primal problem:

Find μ ∈ U :

N (μ; ν) = �(ν) ∀ν ∈ V ,
(3.1)

where N : U × V → R is a semilinear form (nonlinear in the first entry) and �(·) is a
linear functional on V . The quantity of interest is the value of the (possibly nonlinear)
goal functional Q : U → R for the solution μ of (3.1). Given any approximation
μh ∈ U , the purpose of a posteriori error estimation is to obtain an estimate of the
error EQ := Q(μ)−Q(μh) .

3.2. Dual-based error representation. In a dual-based approach, one solves
the dual (or linearized adjoint) problem:

Find ζ ∈ V :

N ′(μh; ζ)(δμ) = Q′(μh)(δμ) ∀δμ ∈ U ,
(3.2)

where the prime indicates the Gâteaux differentiation with respect to the nonlinear
arguments. That is, N ′(μh; ζ) and Q′(μh) are linear functionals on U such that

N ′(μh; ζ)(δμ) = lim
t→0

N (μh + t δμ; ζ)−N (μh; ζ)

t
,

Q′(μh)(δμ) = lim
t→0

Q(μh + t δμ)−Q(μh)

t

∀ δμ ∈ U . Note that the dual problem (3.2) is a linear problem obtained by lineariza-
tion of N and Q at the approximate solution μh. Compared with the primal problem,
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the test and trial spaces have reversed roles. The dual solution ζ is the key element
in relating the error in the quantity of interest to the residual at μh:

R(μh; ·) := �(·)−N (μh; ·) .

Theorem 3.1 (error representation). Given any approximation μh ∈ U of the
solution μ of (3.1), let ζ ∈ V be the solution of the dual problem (3.2). It holds that

EQ := Q(u)−Q(μh) = R(μh; ζ) +R ,(3.3)

with quadratic remainder R := RQ −RN , where

RQ :=

∫ 1

0

Q′′(μh + t e)(e)(e) (1− t) dt ,

RN :=

∫ 1

0

N ′′(μh + t e; ζ)(e)(e) (1 − t) dt ,

and e := μ− μh is the error.
Proof. The proof makes use of the following standard Taylor series formulae:

Q(μ) = Q(μh) +Q′(μh)(e) +RQ ,

N (μ; ζ) = N (μh; ζ) +N ′(μh; ζ)(e) +RN ,

which are valid for any ζ ∈ V . Consider the goal error EQ = Q(μ) − Q(uh). Using
the first Taylor series formula gives

EQ = Q′(μh)(e) +RQ = N ′(μh; ζ)(e) +RQ ,

where we used the dual problem (3.2) in the second step. It follows from the second
Taylor series formula that

EQ = N (μ; ζ)−N (μh; ζ) +RQ −RN .

Finally, we obtain the proof by noting that N (μ; ζ) = �(ζ) according to the primal
problem (3.1) and by definition of R.

Note that the remainder term R in (3.3) is quadratic in the error e. Hence, the
residual evaluated at the dual solution, R(μh; ζ), provides an error estimate which is
second-order accurate. This estimate is exact if N (·; ·) and Q(·) are linear functionals.

By employing a dual problem obtained by linearizing in between μ and μh, it is
possible to obtain an error representation formula with zero remainder for nonlinear
problems and quantities of interest. However, this dual variant cannot be used directly
in practice for error estimation, since it involves the unknown solution μ. Instead,
it is used to study the effect of the nonlinearity in error estimators; see [3] for more
details.

3.3. Approximate dual solution. The dual problem (3.2) cannot in general
be solved exactly, and we will have to deal with approximations instead. Let ζh ∈ V
be an approximation to the solution ζ of (3.2). Furthermore, setting eζ := ζ − ζh, we
have the representation formula

EQ = R(μh; ζh) +R(μh; eζ) +R .(3.4)
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Accordingly, we can estimate the goal error by using the residual evaluated at the
approximate dual solution, giving the dual-based error estimate

EstQ := R(μh; ζh) .

This estimate is first-order accurate with respect to the dual error eζ and second-order
accurate with respect to the primal error e.

If one uses a test space V̂ ⊂ V for the approximation of the primal problem and
a trial space V̄ ⊂ V for the approximation of the dual problem, then R(μh; ζh) = 0
if V̄ ⊆ V̂ on account of the Galerkin orthogonality. The estimate is then useless, of
course. Therefore, in practice, the dual problem is either solved using a larger space,
V̄ ⊃⊃ V̂ , or it is solved on a dedicated dual-problem space such that V̂ � V̄ � V̂ . For
such choices of the dual trial space, moreover, the dual error eζ is relatively small so
that the second term in the right member of (3.4) can indeed be ignored; see also [3].

4. Goal-oriented error estimation by domain-map linearization. We
now turn our attention to goal-oriented error estimation for the free-boundary prob-
lem (2.2). For convenience, we rewrite (2.2) in abstract form as:

Find θ ∈ Θ and u ∈ H1
h(Ωθ) :

N (
(θ, u); v

)
= 0 ∀v ∈ H1

0,ΓD (Ωθ) ,
(4.1)

where

N (
(θ, u); v

)
:= A(

θ;u, v
)−F(

θ; v
)− G(θ; v)(4.2)

and the semilinear forms are defined as

A(
θ;u, v

)
:=

∫
Ωθ

∇u · ∇v , F(
θ; v

)
:=

∫
Ωθ

f v , G(θ; v) :=
∫
Γθ

g v .

Furthermore, we recall our interest in the goal functional Q(θ, u). The variational
problem (4.1) eludes the general error estimation paradigm of section 3 because it is
in noncanonical form: The functions u and v reside in spaces that depend on θ, which
is itself an unknown in the problem.

To elucidate this complication, let us consider a central element of the proof of
Theorem 3.1, viz., the Taylor series formula

Q(θ, u)−Q(θh, uh) = Q′(θh, uh)(eθ, eu) + higher-order terms,

where eθ := θ−θh ∈ Θ. However, at this point it is not clear how eu should be defined.
Simply setting eu := u − uh is meaningless, since u ∈ H1

h(Ωθ) and uh ∈ H1
h(Ωθh).

The essential issue is that we are comparing functions on different domains; see the
illustration in Figure 3.

To cast (4.1) into canonical form, we introduce a domain map, which provides
an isomorphism between the θ-dependent domain and a fixed reference domain, and
apply this map to remove the θ-dependence of the test and trial spaces from the
variational formulation. In section 4.1 we consider the transformation to the most
obvious reference domain, Ω0. In section 4.2 we consider the transformation to the
approximate domain, Ωθh , which yields a more natural dual formulation. Finally, it is
shown in section 4.3 that the dual problems corresponding to the two transformations
are equivalent.
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Fig. 3. Comparing functions on different domains. The solution u ∈ H1
h(Ωθ) lives on Ωθ (left),

and the approximation uh ∈ H1
h(Ωθh ) lives on Ωθh (right).

4.1. Domain-map linearization at reference domain. Recall from sec-
tion 2.2 the transformation Tθ = Id + θ from the reference domain Ω0 to Ωθ. For all
admissible θ ∈ Θ, Tθ constitutes a C0,1-diffeomorphism, and the function transporta-
tion map

H1(Ω0) 
 v0 �→ v0 ◦ T -1
θ ∈ H1(Ωθ)

is a linear bijection; see [17, p. 21] or [8, p. 406]. In essence, this transportation of
domain-dependent functions allows a reformulation of the free-boundary problem on
a fixed domain. As ΓD is invariant under Tθ, we have the equality of spaces

H1
0,ΓD(Ωθ) =

{
v = v0 ◦ T -1

θ : v0 ∈ H1
0,ΓD (Ω0)

}
.(4.3)

4.1.1. Transformed free-boundary problem. Let us introduce the semilin-
ear form N0 : (Θ ×H1(Ω0))×H1(Ω0) → R defined as:

N0

(
(θ, w0); v0

)
:= N (

(θ, w0 ◦ T -1
θ ); v0 ◦ T -1

θ

) ∀v0, w0 ∈ H1(Ω0) .(4.4)

This is essentially the transformed form of N taking functions on Ω0. Furthermore,
if we denote by

u0 := u ◦ Tθ ∈ H1
h(Ω0)(4.5)

the solution of (4.1) transformed to Ω0, then by using (4.3), we can easily verify that
the solution (θ, u0) satisfies

N0

(
(θ, u0); v0

)
= 0 ∀v0 ∈ H1

0,ΓD (Ω0) .

To specify this abstract variational statement, let us denote by

DTθ := ∂Tθ(x1, . . . , xN )/∂(x1, . . . , xN ) and Jθ := detDTθ

the Jacobian matrix and the Jacobian determinant, respectively, of the transformation
map Tθ. Furthermore, let

ωθ := Jθ |DT -T
θ n|

denote the tangential Jacobian on Γ0, which is of use in transforming surface integrals.
The variational statement is explicitly given in the following.

Proposition 4.1. The transformed free-boundary problem solution (θ, u0) ∈
Θ×H1

h(Ω0) satisfies

∫
Ω0

(Aθ∇u0) · ∇v0 −
∫
Ω0

fθ v0 −
∫
Γ0

gθ v0 = 0 ∀v0 ∈ H1
0,ΓD(Ω0) ,(4.6)
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where

Aθ := Jθ DT
-1
θ DT -T

θ , fθ := Jθ (f ◦ Tθ) , gθ := ωθ (g ◦ Tθ) .
Basically, this proposition follows by transforming the integrals in (4.1) to Ω0.

We first recall the following basic results; see, for example, [8, 37].
Lemma 4.2. Let φ ∈ L2(Ωθ) and ψ ∈ L2(Γθ). Then∫

Ωθ

φ =

∫
Ω0

(φ ◦ Tθ)Jθ ,(4.7a)

∫
Γθ

ψ =

∫
Γ0

(ψ ◦ Tθ)ωθ ,(4.7b)

with φ ◦ Tθ ∈ L2(Ω0) and ψ ◦ Tθ ∈ L2(Γ0).
Proof of Proposition 4.1. Consider any v ∈ H1

0,ΓD (Ωθ). To transform A(θ;u, v)
in (4.2), we use (4.7a) and the identity

(∇w) ◦ Tθ = DT -T
θ ∇(w ◦ Tθ) ∀w ∈ H1(Ωθ) ,

to obtain

A(
(θ, u); v

)
=

∫
Ω0

(
DT -T

θ ∇(u ◦ Tθ)
)
·
(
DT -T

θ ∇(v ◦ Tθ)
)
Jθ .

Replacing u◦Tθ with u0 in accordance with (4.5) and setting v◦Tθ =: v0 ∈ H1
0,ΓD(Ω0),

we obtain the first term in (4.6). The other two terms follow from Lemma 4.2 by
replacing v ◦ Tθ with v0.

The goal functional Q can be expressed in terms of u0 as

Q(θ, u) = Q(θ, u0 ◦ T -1
θ ) =: Q0(θ, u0) .

Note that Q0 is defined on Θ × H1(Ω0). For the weighted average functional, we
obtain, in particular,

Qave
0 (θ;u0) =

∫
Ω0

qaveθ u0 ,

where

qaveθ := Jθ (q
ave ◦ Tθ) .

As the other goal functional, the weighted elevation functional, is independent of u,
we simply have Qelev

0 = Qelev.

4.1.2. Dual-based error representation. Because N0 and Q0 act on fixed
spaces, we can essentially follow the standard framework of section 3 hereafter. First,
we denote by

uh0 := uh ◦ Tθh ∈ H1
h(Ω0)(4.8)

the approximation uh transported to Ω0. Accordingly, we define the dual problem by
linearizing N0 and Q0 about (θh, uh0).

Find z0 ∈ H1
0,ΓD (Ω0) :

N ′
0

(
(θh, uh0); z0

)
(δθ, δu0) = Q′

0

(
θh, uh0

)
(δθ, δu0)

∀(δθ, δu0) ∈ ΘΓ0 ×H1
0,∂Ω(Ω0).

(4.9)
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We refrain here from a precise specification of the derivatives in (4.9). In section 4.3 it
will be shown that (4.9) can be equivalently expressed on the approximate domain Ωθh ,
and this equivalent formulation will be considered in more detail in section 5. Pro-
ceeding under the assumption that there exists a unique dual solution z0 to (4.9),
this z0 is indeed appropriate for linking the error in the goal with the residual of the
primal problem (4.1),

R(
(θh, uh); ·) := −N (

(θh, uh); ·) .(4.10)

This is expressed by the following theorem.
Theorem 4.3 (error representation based on z0). Given any approximation

(θh, uh) ∈ Θ × H1
h(Ωθh) of the solution (θ, u) ∈ Θ × H1

h(Ωθ) of the free-boundary
problem (4.1), let z0 ∈ H1

0,ΓD(Ω0) be the solution of dual problem (4.9). It holds that

EQ := Q(θ, u)−Q(θh, uh) = R(
(θh, uh); z0 ◦ T -1

θh

)
+R ,(4.11)

with quadratic remainder R = RQ0 −RN0 , where

RQ0 :=

∫ 1

0

Q′′
0

(
θh + t eθ, uh0 + t eu0

)
(eθ, eu0 )(e

θ, eu0 ) (1− t) dt ,

RN0 :=

∫ 1

0

N ′′
0

(
(θh + t eθ, uh0 + t eu0 ); z0

)
(eθ, eu0 )(e

θ, eu0 ) (1− t) dt ,

and the errors are defined as eθ := θ − θh and

eu0 := u ◦ Tθ − uh ◦ Tθh .

This error representation formula for free-boundary problems is the analogue of
the canonical formula (3.3). It shows how the dual solution z0 in the reference domain
is employed in the residual evaluation for obtaining the error estimate. That is, before
evaluation in the residual, z0 is transported back to the approximate domain Ωθh .

Theorem 4.3 also provides an interpretation of the error terms in the quadratic
remainder R. With respect to the exact u ∈ H1(Ωθ) and approximate uh ∈ H1(Ωθh),
which reside on different domains, the remainder forms a quadratic term in their
difference on the reference domain, that is, eu0 ∈ H1

0 (Ω0). Moreover, trivially, R is a
quadratic term in the error eθ = θ − θh ∈ Θ.

We end this section with a proof of Theorem 4.3. An essential element of the
proof is provided by Taylor series formulae of the functionals Q and N .

Lemma 4.4. The following Taylor series formulae hold:

Q(θ, u) = Q(θh, uh) +Q′
0

(
θh, uh0

)
(eθ, eu0 ) +RQ0 ,(4.12a)

N (
(θ, u); z0 ◦ T -1

θ

)
= N (

(θh, uh); z0 ◦ T -1
θh

)
+N ′

0

(
(θh, uh0); z0

)
(eθ, eu0 ) +RN0(4.12b)

for any z0 ∈ H1
0,ΓD (Ω0), with remainders RQ0 and RN0 as defined in Theorem 4.3.

It is to be noted that these formulae relate the values of the functionals on different
domains and for different functions by a linear functional on the reference domain (up
to higher-order terms).

Proof. By the definitions of N0, u0, and u
h
0 in (4.4), (4.5), and (4.8), respectively,

we have the identity

N (
(θ, u); z0 ◦ T -1

θ

)−N (
(θh, uh); z0 ◦ T -1

θh

)
= N0

(
(θ, u0); z0

)−N0

(
(θh, uh0); z0

)
.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ESTIMATION FOR FREE-BOUNDARY PROBLEMS 1075

The first two entries of N0

(
(·, ·); z0) are elements of the fixed spaces Θ and H1

h(Ω0).
Therefore, we can apply a standard Taylor series formula to the right-hand side,
yielding (4.12b). Equation (4.12a) can be established analogously.

Proof of Theorem 4.3. Consider the goal error EQ = Q(θ, u) − Q(θh, uh). Us-
ing (4.12a), and subsequently invoking the dual problem (4.9), we obtain

EQ = Q′
0(θ

h, uh0)(e
θ, eu0 ) +RQ0 = N ′

0

(
(θh, uh0); z0

)
(eθ, eu0 ) +RQ0 .

Next, applying (4.12b), it follows that

EQ = N (
(θ, u); z0 ◦ T -1

θ

)−N (
(θh, uh); z0 ◦ T -1

θh

)
+RQ0 −RN0 .

Notice that N (
(θ, u); z0 ◦ T -1

θ

)
= 0 in accordance with our primal problem (4.1).

Finally, we obtain the proof by substituting the residual R = −N according to
(4.10).

4.2. Domain-map linearization at approximate domain. A more natural
dual formulation is obtained by transforming the free-boundary problem to the ap-
proximate domain corresponding to θh. For convenience of notation, we introduce the
notations

Ω̂ := Ωθh and Γ̂ := Γθh .

We now require a bijective transformation which maps Ω̂ onto admissible domains Ωθ.
We denote this map by

T̂θ : Ω̂ → Ωθ .

It is convenient (but not necessary) to define T̂θ via the transformation T(·) introduced
in section 2.2:

T̂θ := Tθ ◦ T -1
θh = Id + (θ − θh) ◦ T -1

θh ∀θ ∈ Θ ;(4.13)

see Figure 4 for a graphical illustration. Note that T̂θ constitutes a perturbation of
the identity with perturbation-vector field (θ− θh) ◦T -1

θh . The corresponding function
transportation map leads to the following equality of spaces:

H1
0,ΓD(Ωθ) =

{
v = v̂ ◦ T̂ -1

θ : v̂ ∈ H1
0,ΓD(Ω̂)

}
.(4.14)

4.2.1. Transformed free-boundary problem. Proceeding as in section 4.1.1,
let us now introduce the transformed functional N̂ :

(
Θ×H1(Ω̂)

)×H1(Ω̂) → R:

N̂ (
(θ, ŵ); v̂

)
:= N (

(θ, ŵ ◦ T̂ -1
θ ); v̂ ◦ T̂ -1

θ

) ∀v̂, ŵ ∈ H1(Ω̂) .(4.15)

Next, let us denote the u-solution of (4.1) transformed to Ω̂ by

û := u ◦ T̂θ ∈ H1
h(Ω̂) .(4.16)

By invoking (4.14), it follows that

N̂ (
(θ, û); v̂

)
= 0 ∀v̂ ∈ H1

0,ΓD (Ω̂) .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1076 VAN DER ZEE, VAN BRUMMELEN, AND DE BORST

Fig. 4. Defining the map T̂θ : Ω̂ → Ωθ via the reference domain, i.e., T̂θ : Ω̂
T -1

θh−−−→ Ω0
Tθ−−→ Ωθ.

The precise specification of this abstract variational statement can be derived by
applying Proposition 4.1 to this situation with the necessary modifications. First, we
define the Jacobian and tangential Jacobian associated with T̂ by

Ĵθ := detDT̂θ and ω̂θ := Ĵθ |DT̂ -T
θ n| .(4.17)

Proposition 4.5. The transformed free-boundary problem solution (θ, û) ∈ Θ×
H1

h(Ω̂) satisfies

∫
Ω̂

(Aθ∇û) · ∇v̂ −
∫
Ω̂

fθ v̂ −
∫
Ω̂

gθ v̂ = 0 ∀v̂ ∈ H1
0,ΓD(Ω̂) ,

where 5

Aθ := Ĵθ DT̂
-1
θ DT̂ -T

θ , fθ := Ĵθ (f ◦ T̂θ) , gθ := ω̂θ (g ◦ T̂θ) .

The corresponding transformation of Q is given by

Q̂(θ, û) := Q(θ, û ◦ T̂ -1
θ ) = Q(θ, u) .

4.2.2. Dual-based error representation. In this case, contrary to lineariza-
tion at Ω0, it is not necessary to transport the approximation uh, as it is already
defined on Ω̂. Hence, we can immediately proceed to the following definition of the
dual problem at (θh, uh):

Find ẑ ∈ H1
0,ΓD (Ω̂) :

N̂ ′((θh, uh); ẑ)(δθ, δû) = Q̂′(θh, uh)(δθ, δû)
∀(δθ, δû) ∈ Θ×H1

0,∂Ω(Ω̂) .

(4.18)

We provide a specification of the functionals in (4.18) in section 5.1. Continuing under
the assumption that (4.18) has a unique solution ẑ, we provide the error representation
formula based on ẑ:

5To avoid the proliferation of “ˆ” symbols, we allow ambiguous notations here. The precise
connotation of Aθ, fθ, or gθ will be clear from the context.
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Theorem 4.6 (error representation based on ẑ). Given any approximation
(θh, uh) ∈ Θ ×H1

h(Ω̂) of the solution (θ, u) ∈ Θ ×H1
h(Ωθ) of the free-boundary prob-

lem (4.1), let ẑ ∈ H1
0,ΓD (Ω̂) be the solution of dual problem (4.18). It holds that

EQ := Q(θ, u)−Q(θh, uh) = R(
(θh, uh); ẑ

)
+R ,(4.19)

with quadratic remainder R = RQ̂ −RN̂ , where

RQ̂ :=

∫ 1

0

Q̂′′(θh + t eθ, uh + t êu
)
(eθ, êu)(eθ, êu) (1− t) dt ,

RN̂ :=

∫ 1

0

N̂ ′′((θh + t eθ, uh + t êu); ẑ
)
(eθ, êu)(eθ, êu) (1 − t) dt ,

and where eθ := θ − θh and

êu := u ◦ T̂θ − uh .

Note that the remainder now forms a quadratic term in the difference on the approx-
imate domain, that is, êu ∈ H1

0 (Ω̂).
Proof. The proof proceeds analogously as the proof of Theorem 4.3.

4.3. Equivalence of dual problems. The essential difference between map-
ping to Ω0 and Ω̂ occurs in the corresponding dual problems (4.9) and (4.18). The
corresponding dual solutions z0 on Ω0 and ẑ on Ω̂ are, however, equivalent in the
following sense.

Proposition 4.7. Given the transformation T̂θ according to (4.13), the solu-
tion z0 of dual problem (4.9) transported to the approximate domain Ω̂ is equal to the
solution ẑ of dual problem (4.18), that is,

z0 ◦ T -1
θh = ẑ ∈ H1

0,ΓD(Ω̂) .

Note that this implies that the residuals and the remainders in the error represen-
tations corresponding to Ω0 and Ω̂, in (4.11) and (4.19), respectively, coincide. In
fact, it does not matter which domain is taken as a reference: The dual solutions
corresponding to two distinct reference domains are related by the map between the
domains.

Proof of Proposition 4.7. The proof is obtained by showing that z0 ◦T -1
0,θh satisfies

dual problem (4.18). Consider v0 ∈ H0,ΓD (Ω0) and w0 ∈ H1
h(Ω0). By the definitions

of N0 and N̂ , in (4.4) and (4.15), respectively, we have the key identity

N0

(
(θ, w0); v0

)
= N (

(θ, w0 ◦ T -1
θ ); v0 ◦ T -1

θ

)
= N̂ (

(θ, w0 ◦ T -1
θ ◦ T̂θ); v0 ◦ T -1

θ ◦ T̂θ
)

= N̂ (
(θ, w0 ◦ T -1

θh ); v0 ◦ T -1
θh

)
,

where we used (4.13) in the last step. Taking the derivative at the approximation
(θh, uh0) yields the following relation between N ′

0 and N̂ ′:

N ′
0

(
(θh, uh0); v0

)
(δθ, δu0)

= lim
t→0

1

t

(
N0

(
(θh + t δθ, uh0 + t δu0); v0

)−N0

(
(θh, uh0); v0

))

= lim
t→0

1

t

(
N̂ (

(θh + t δθ, uh + t δu0 ◦ T -1
θh ); v0 ◦ T -1

θh

)− N̂ (
(θh, uh); v0 ◦ T -1

θh

))

= N̂ ′((θh, uh); v0 ◦ T -1
θh

)
(δθ, δu0 ◦ T -1

θh ) .
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Notice that we used uh0 = uh ◦ Tθh in the second step; see (4.8). Similarly, we have

Q′
0

(
θh, uh0

)
(δθ, δu0) = Q̂′(θh, uh)(δθ, δu0 ◦ T -1

θh ) .

Hence, substituting the above identities in the Ω0-dual problem (4.9), it follows that
z0 satisfies

N̂ ′((θ, uh); z0 ◦ T -1
θh )

)
(δθ, δu0 ◦ T -1

θh ) = Q̂′(θ, uh)(δθ, δu0 ◦ T -1
θh )

∀ (δθ, δu0) ∈ Θ × H1
0,∂Ω0

(Ω0). Finally, recall that the function transportation map,

δu0 �→ δu0 ◦ T -1
θh , is a linear bijection (cf. (4.3)), implying the equality of spaces

H1
0,∂Ω̂

(Ω̂) =
{
δû = δu0 ◦ T -1

θh : δu0 ∈ H1
0,∂Ω0

(Ω0)
}
.

Hence, we have

N̂ ′((θ, uh); z0 ◦ T -1
θh )

)
(δθ, δû) = Q̂′(θ, uh)(δθ, δû)

∀ (δθ, δû) ∈ Θ×H1
0,∂Ω̂

(Ω̂), which concludes the proof.

5. Analysis of the dual problem. In this section, we analyze the Ω̂-dual
problem (4.18). First, we specify the derivatives in (4.18). Then, we interpret the dual
problem by extracting the corresponding partial differential equation and boundary
conditions.

Recall the Ω̂-dual problem (4.18):

Find z ∈ H1
0,ΓD (Ω̂) :

N̂ ′((θh, uh); z)(δθ, δu) = Q̂′(θh, uh)(δθ, δu)
∀(δθ, δû) ∈ Θ×H1

0,∂Ω(Ω̂) .

(5.1)

The semilinear form N̂ is given by

N̂ (
(θ, w); v

)
=

∫
Ω̂

(Aθ∇w) · ∇v −
∫
Ω̂

fθ v −
∫
Γ̂

gθ v

= Â(
θ;w, v

) − F̂(
θ; v

)− Ĝ(θ; v) ,
where, for convenience, we have introduced transformed functionals of A, F , and G:

Â(
θ;w, v

)
= A(

θ;w ◦ T̂ -1
θ , v ◦ T̂ -1

θ

)
,

F̂(
θ; v

)
= F(

θ; v ◦ T̂ -1
θ

)
,

Ĝ(θ; v) = G(θ; v ◦ T̂ -1
θ

)

∀ v, w ∈ H1(Ω̂). We consider the dual problem for a goal functional consisting of
the sum of the average and elevation functional. When transformed to Ω̂, the goal
functional is given by

Q̂(θ, û) = Q̂ave(θ; û) + Q̂elev(θ) =

∫
Ω̂

qaveθ û+

∫
Γ0

qelev αθ ,

with

qaveθ := Ĵθ (q
ave
θ ◦ T̂θ) .(5.2)
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5.1. Specification of the dual problem. The variational statement (5.1) can
be logically separated into two equations corresponding to δu and δθ. Since only Â
and Q̂ave depend on u and, moreover, the dependence is linear, the δu-equation is
simply

Â(
θh; δu, z

)
= Q̂ave

(
θh; δu

) ∀δu ∈ H1
0,∂Ω̂

(Ω̂) .

Furthermore, in view of T̂θh = Id, we have Â(
θh; ·, ·) = A(

θh; ·, ·) and Q̂ave
(
θh; ·) =

Qave
(
θh; ·). Hence, the above expression corresponds to

∫
Ω̂

∇δu · ∇z =

∫
Ω̂

qave δu ∀δu ∈ H1
0,∂Ω̂

(Ω̂) .(5.3a)

The δθ-equation, on the other hand, is given by

Â′(θh;uh, z)(δθ) − F̂ ′(θh; z)(δθ)− Ĝ′(θh; z)(δθ)
= Q̂ave′(θh;uh)(δθ) + Q̂elev′(θh)(δθ) ∀δθ ∈ Θ .

For a specification of this equation, we require the derivatives of Aθ, fθ, gθ, q
ave
θ , and

αθ. Let us first state some elementary derivatives. Generally, such derivatives are
given for a linearization at θ = 0, that is, at the unperturbed configuration; see [8,37],
for example. However, linearizations about nonzero θ can simply be obtained by
translation. In particular, note that T̂θ can be written as a perturbation of the
identity starting from θh:

T̂θh+t δθ = Id+ t (δθ ◦ T -1
θh ) = Id + t δ̂θ ,

where

δ̂θ := δθ ◦ T -1
θh ∈ Θ̂ :=

{
δ̂θ = δθ ◦ T -1

θh ∀δθ ∈ Θ
}
;

see (4.13). A proof of the following lemmata then follows from standard results
in [8, 37], for example.

Lemma 5.1. For T̂θ, Ĵ , and ω̂ defined in (4.13) and (4.17), we have

〈
∂θDT̂θh , δθ

〉
= Dδ̂θ ,

〈
∂θĴθh , δθ

〉
= div δ̂θ ,〈

∂θDT̂
-1
θh , δθ

〉
= −Dδ̂θ ,

〈
∂θω̂θh , δθ

〉
= divΓ δ̂θ

∀ δ̂θ ∈ Θ̂.
The tangential (or surface) divergence in Lemma 5.1 is defined as [9]:

divΓ(·) := div(·)∣∣
Γ
− ∂n(·) · n .

Lemma 5.2. Let φ ∈ H1(RN ). Then the map θ �→ φ ◦ T̂θ is differentiable at
θh ∈ Θ in L2(Ω̂). The derivative is given by

〈
∂θ(φ ◦ T̂θ)

∣∣
θh , δθ

〉
= ∇φ · δ̂θ

∀ δ̂θ ∈ Θ̂.
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Using these results, we can easily derive the derivatives of Aθ, fθ, gθ, and qaveθ

from their definitions in Proposition 4.5 and (5.2):

〈
∂θAθh , δθ

〉
= (div δ̂θ) I −Dδ̂θ −Dδ̂θT ,

〈
∂θfθh, δθ

〉
= div(f δ̂θ) ,〈

∂θgθh, δθ
〉
= g divΓ δ̂θ +∇g · δ̂θ , 〈

∂θq
ave
θh , δθ

〉
= div(qave δ̂θ) ,

with I the identity matrix. The derivative of αθ required for the linearization of Q̂elev

is a bit more involved. Therefore, it is derived in Appendix A for the two-dimensional
case. Its final result is the linearization

Q̂elev′(θh)(δθ) =
∫
Γ̂

qelev δ̂θ · n ,

where since qelev is only defined on Γ0, it should be interpreted with the aid of a
projection along the xN -axis, that is,

qelev(x1, . . . , xN ) = qelev(x1, . . . , xN−1, x
Γ0

N ),

with xΓ0

N being the xN -coordinate of Γ0.
The above results lead to the following specification of the δθ-equation.
Proposition 5.3. Given an approximation θh ∈ Θ with corresponding do-

main Ω̂ = Ωθh and an approximation uh ∈ H1
h(Ω̂), the δθ-equation in dual prob-

lem (5.1) is given by

∫
Ω̂

([
div δθ I −Dδθ −DδθT

]∇uh) · ∇z

−
∫
Ω̂

div(f δθ) z −
∫
Γ̂

(
g divΓ δθ +∇g · δθ) z

=

∫
Ω̂

div(qave δθ)uh +

∫
Γ̂

qelev δθ · n ∀δθ ∈ Θ̂ .

(5.3b)

For a given approximate domain Ω̂ and approximation uh, the complete dual problem
for z ∈ H1

0,ΓD (Ω̂) is specified by (5.3a) and (5.3b). Note that the dual problem is
independent of the particular parametrization in ΘLip that gives Ω̂. The dual problem

is, however, dependent on the extension into Ω̂ of the perturbations δθ ∈ Θ̂; cf. the
final remark in section 2.2.

5.2. Interpretation of the dual problem. At this point, we are ready to
interpret the dual problem. A priori we know that the dual solution z is in H1

0,ΓD(Ω̂).
Hence, z satisfies the boundary condition

z = 0 on ΓD .

To extract the partial differential equation in Ω̂ and the boundary condition on Γ̂, we
assume that z ∈ H1

0,ΓD(Ω̂) ∩ H2(Ω̂) and, furthermore, that Γ̂ is smooth enough; for

example, Γ̂ is C1,1. By integration by parts and standard variational arguments, the
δu-equation (5.3a) yields a Poisson equation driven by our interest in the following
average goal:

−Δz = qave in Ω̂ .
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The δθ-equation in principle specifies a boundary condition on Γ̂, which completes
the boundary value problem for z. However, it does not generally correspond to an
ordinary local boundary condition. In particular, the δθ-equation enforces a boundary
condition involving a nonlocal operator associated with the residual. This is evidenced
by the following proposition, whose proof we delay until the end of this section.

Proposition 5.4. If Γ̂ is C1,1 and z ∈ H1
0,ΓD (Ω̂) ∩H2(Ω̂), then the δθ-equation

(5.3b) can be written as

R(
(θh, uh);∇z · δθ)−

∫
Γ̂

(
g ∂nz +

(
f + ∂ng + κ g

)
z + qave + qelev

)
δθ · n = 0

∀ δθ ∈ Θ̂, where κ := divΓ n coincides with the additive curvature (sum of N − 1
curvatures) of Γ̂.

To establish that the above condition indeed corresponds to a nonlocal boundary
condition, we recall from the final remark in section 2.2 that Θ̂ consists of perturbation
fields that are extensions of functions on Γ̂ and that yield unique perturbed domains.
For a C1,1 free boundary, this implies that δθ · n �= 0 ∀ δθ ∈ Θ̂ \ {0} and, moreover,
δθ1 · n �= δθ2 · n for distinct δθ1, δθ2 ∈ Θ̂. Accordingly, we can identify the residual
term with a local free-boundary term by means of the L2(Γ̂) Riesz representant rh(z):

∫
Γ̂

rh(z) δθ · n = R(
(θh, uh);∇z · δθ) ∀δθ ∈ Θ̂ .

Note that rh(z) is dependent on the particular extension into Ω̂ of perturbations
δθ ∈ Θ̂. With the L2(Γ̂) identification, we can summarize the dual problem for z as:

−Δz = qave in Ω̂ ,

z = 0 on ΓD ,

rh(z)− g ∂nz −
(
f + ∂ng + κ g

)
z = qave + qelev on Γ̂ .

At the solution (θ, u) the residual vanishes, and accordingly, the nonlocal boundary
term rh(z) vanishes too. The boundary condition on Γ̂ then reduces to an ordinary
Robin boundary condition, and its dependency on the particular extension into Ω̂ of
the perturbations δθ ∈ Θ̂ disappears.

Similar Robin problems are also encountered in the shape-linearized Bernoulli
free-boundary problem (cf. [14,25]) and in its shape-linearized adjoint which is consid-
ered in our companion work [49]. A standard sufficiency condition for well posedness
of the dual problem at the solution (for which rh(z) = 0) is (f + ∂ng)/g+κ ≥ 0 on Γ̂.
Such conditions on the data also appear in [11, 12].

Proof of Proposition 5.4. We will rewrite the terms in (5.3b) one after another.
To rewrite the first term, we need the gradient of an inner product. That is, let ξ and
η denote two H1 vector functions. Then ∇(ξ ·η) = DξT η+DηT ξ. We can then verify

∫
Ω̂

([−Dδθ −DδθT
]∇uh) · ∇z

=

∫
Ω̂

(
δθ · ∇(∇uh · ∇z)−∇uh · ∇(∇z · δθ)−∇z · ∇(∇uh · δθ)

)

=

∫
Ω̂

(
δθ · ∇(∇uh · ∇z)−∇uh · ∇(∇z · δθ) + Δz (∇uh · δθ)

)
−
∫
Γ̂

∂nu
h ∂nz δθ · n ,
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where in the last step, we performed an integration by parts on the third term.
Furthermore, we invoked δθ = 0 on ΓD and the fact that uh is constant (=1) on Γ̂
so that ∇uh = ∂nu

h n on Γ̂. Substituting the above result in the first term of (5.3b)
gives

∫
Ω̂

(
[div δθ I −Dδθ −DδθT ]∇uh) · ∇z
=

∫
Ω̂

(
div

(
δθ (∇uh · ∇z))−∇uh · ∇(∇z · δθ) + Δz (∇uh · δθ)

)

−
∫
Γ̂

∂nu
h ∂nz δθ · n

=

∫
Ω̂

(
−∇uh · ∇(∇z · δθ) + Δz (∇uh · δθ)

)
,(5.4a)

where in the last step we used the divergence theorem on the first term and invoked
the same arguments as before on δθ and uh to cancel the Γ̂-term. Next, we continue
with the terms involving f , qave, and qelev in (5.3b). By integration by parts, we
simply obtain

−
∫
Ω̂

div(f δθ) z =

∫
Ω̂

f ∇z · δθ −
∫
Γ̂

f z δθ · n ,(5.4b)

∫
Ω̂

div(qave δθ)uh +

∫
Γ̂

qelev δθ · n = −
∫
Ω̂

qave (∇uh · δθ) +
∫
Γ̂

(
qave + qelev

)
δθ · n .

(5.4c)

Finally, we take up the term involving g in (5.3b). For this, we require additional
tangential calculus; see, for instance, [8, 9]. At Γ̂, a gradient splits into a tangential
gradient and a normal component: ∇(·) = ∇Γ(·) + ∂n(·)n. Hence,

∇g · δθ = ∇Γg · δθ + ∂ng δθ · n .
We can combine the tangential divergence and tangential gradient and apply a tan-
gential Green’s identity as follows:

∫
Γ̂

(
g divΓ δθ +∇Γg · δθ

)
z =

∫
Γ̂

divΓ (g δθ) z =

∫
Γ̂

κ g z δθ · n−
∫
Γ̂

g δθ · ∇Γz .

It then follows that the term involving g in (5.3b) can be written as

−
∫
Γ̂

(
g divΓ δθ +∇g · δθ) z =

∫
Γ̂

(
g∇z · δθ − (

(∂ng + κ g) z + g ∂nz
)
δθ · n

)
.

(5.4d)

We finish by gathering the contributions in (5.4a)–(5.4d). Basically, we can distin-
guish three different groups: domain contributions involving ∇uh · δθ and ∇z · δθ and
free-boundary contributions involving δθ ·n. The first group cancels since −Δz = qave.
The second group adds up to the residual term R(

(θh, uh);∇z · δθ). The last group
forms the free-boundary integral as stated in the proposition.

6. Numerical experiments. In this section, we present numerical experiments.
First, to exemplify essential attributes, we consider in section 6.1 the free-boundary
problem in one dimension. Similar one-dimensional free-boundary problems have been
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considered in [6, 14, 47]. One-dimensional free-boundary problems are attractive for
a number of reasons. The first is that the free boundary has no geometry; i.e., it
is merely a point. Also, it is rather effortless to obtain exact expressions for dual
solutions. Therefore, error estimates are inexact only due to nonlinearity.

In section 6.2 we take up the free-boundary problem in two dimensions. Approx-
imations to the free-boundary problem are obtained by using linear finite elements.
Here, we focus on the effectivity of the error estimate on uniform meshes. In addition,
we show an example of goal-oriented adaptive mesh refinement.

6.1. One-dimensional application. In the one-dimensional setting, we char-
acterize the variable domain as Ωϑ = (0, ϑ) ⊂ R. The Dirichlet boundary and free
boundary correspond to single points, ΓD = {0} and Γϑ = {ϑ}, respectively. The
semilinear form N (=−R) and the goal functionals are given by

N (
(ϑ, u); v

)
=

∫
Ωϑ

(
ux vx − f v

)
dx− g(ϑ) v(ϑ) ,

Qave(ϑ;u) =

∫
Ωϑ

qave u dx ,

Qelev(ϑ) = qelev ϑ ,

where (·)x = d(·)/dx and qelev ∈ R. To a free-boundary approximation ϑh > 0, we
associate a domain transformation from Ω̂ = Ωϑh to Ωϑ by the linear map

x = T̂ϑ(x̂) =
ϑ

ϑh
x̂ = x̂+

ϑ− ϑh

ϑh
x̂ .

Let, furthermore, uh ∈ H1
h(Ω̂) be given. It can be verified that the Ω̂-dual prob-

lem (4.18) reduces in this setting to the following: Find z ∈ H1
0,ΓD (Ω̂):∫

Ω̂

δux zx dx =

∫
Ω̂

qave δu dx ,

−δϑ
ϑh

∫
Ω̂

(
uhx zx + (f x)x z

)
dx− gx(ϑ

h) z(ϑh) δϑ =
δϑ

ϑh

∫
Ω̂

(qave x)x u
h dx+ qelev δϑ

∀ (δϑ, δu) ∈ R × H1
0,∂Ω̂

(Ω̂). The dual problem translates into the boundary value

problem:

−zxx(x) = qave(x) ∀x ∈ Ω̂ ,

z(0) = 0 ,

R(
(ϑh, uh); zx x/ϑ

h
)− (

g zx + (f + gx) z
)
(ϑh) = qave(ϑh) + qelev .

6.1.1. Typical error estimate. In the following numerical example, we con-
sider the data and goal functionals as indicated in Table 1. Table 1 also contains the

Table 1

Specification of the data for the one-dimensional example.

f(x) g(x) qave(x) qelev ϑ u(x) Qave(ϑ; u) Qelev(ϑ)

− 1
2

x− 1 1 1 2 1
4
x2 2

3
2



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1084 VAN DER ZEE, VAN BRUMMELEN, AND DE BORST

corresponding exact solution. Consider the following approximation of the solution
and the corresponding goal values:

(
ϑh, uh(x)

)
=

(
3

2
,
2

3
x

)
, Qave

(
ϑh;uh

)
=

3

4
, Qelev

(
ϑh

)
=

3

2
.

Figure 5 (left) shows a graphical illustration of the exact and approximate solutions.
Furthermore, Figure 5 (right) shows the dual solutions for Qave and Qelev:

zave(x) =
45

86
x− 1

2
x2 , zelev(x) = −24

43
x, respectively.

The corresponding dual-based error estimate, EstQ := R(
(ϑh, uh); z

)
, and the true

goal-error, EQ, are as follows:

EstQave =
15

344
, EstQelev =

39

86
,

EQave = − 1

12
, EQelev =

1

2
.

Note that the difference in the error estimate and the true error is caused by lin-
earization, which is rather large for Qave due to the crude approximation ϑh. The
only source of nonlinearity is the domain dependence, and one can easily verify that
the estimates are exact if ϑh = ϑ.

Fig. 5. Exact solution (ϑ, u) and approximation (ϑh, uh) (left). Dual solutions zave and zelev

corresponding to goal functionals Qave and Qelev, respectively (right).

6.1.2. Convergence of error estimates. In this example, the data is again
specified as in Table 1. To investigate the convergence of the dual-based error estimate,
we consider the following Δϑ-family of approximate solutions:(

ϑh, uh
)
=

(
ϑ−Δϑ , u ◦ T̂ϑ

)
.(6.1)

This family converges to the exact solution as Δϑ→ 0. Note that for each Δϑ, uh is
simply a scaling of u along the x-axis. This also implies that êu = u ◦ T̂ϑ − uh = 0.
Hence, from the perspective of the error representation (see Theorem 4.6), the only
relevant error is eϑ = Δϑ.

For the goal functional Qave, Figure 6 (left) plots the true value EQave and the
dual-based estimate EstQave with respect to Δϑ. It can be seen that the estimate
approaches the exact error as Δϑ → 0. Moreover, the slopes of the two curves are
identical at Δϑ = 0. To further elucidate the convergence behavior, Figure 6 (right)
presents a log-log plot of the error in the estimate |EQave − EstQave | versus the norm
of the error: ∥∥(eϑ, êu)∥∥2 = |ϑ− ϑh|2 + ∣∣u ◦ T̂ϑ − uh

∣∣2
H1(Ω̂)

= |Δϑ|2 .

Both figures confirm that the estimate converges as O(‖(eϑ, êu)‖2).
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Fig. 6. True goal error EQave and dual-based error estimate EstQave for the Δϑ-family of
approximations (ϑh, uh) given in (6.1) (left). Convergence of the error in the error estimate with
respect to the norm

∥
∥(eϑ, êu)

∥
∥ (right).

6.2. Two-dimensional application. Next, we turn to the two-dimensional
case. We denote coordinates by (x, y) ∈ R2. In the following examples, we compute
approximations (θh, uh) of (2.2) based on piecewise-linear finite elements on triangles.
Accordingly, the approximate free boundary is a piecewise-linear curve composed of
the edges of adjacent elements. The nonlinear problem is solved using a fixed point
iteration similar to the explicit Neumann scheme in [14], where we allow the vertices
of the free boundary to move only vertically. Hence, θh1 = 0 and θh2 = αθh on Γ0.

The dual problem (5.3) is solved on the same mesh as the approximation but
with quadratic shape functions. That is, z is piecewise-quadratic and vanishes on ΓD,
and the test functions δu are piecewise-quadratic shape functions that are zero on
∂Ω̂. Furthermore, the test functions δθ in (5.3b) are suitable extensions of vertical-
perturbation fields δϑ on Γ̂:

δθ2(x, y) =
y − yb(x)

yΓ̂(x)− yb(x)
δϑ2

(
x, yΓ̂(x)

) ∀(x, y) ∈ Ω̂ ,

where yb represents the bottom of the domain and yΓ̂ = yΓ0+αθh describes the position
of the approximate free boundary. Moreover, for δϑ2 we use piecewise-quadratic shape
functions which vanish on ∂Γ̂.

6.2.1. Effectivity for the parabolic free-boundary test case. First, we
investigate the effectivity of the dual-based error estimate under uniform mesh refine-
ment. We consider a test problem with a geometric lay-out and solution as depicted
in Figure 7. We have yb = 0 and yΓ0 = 1 and Ωθ = (0, 2) × (0, 1 + αθ). The data
{f, g, h} of the problem is manufactured to yield the parabolic free-boundary elevation
and solution

αθ(x) =
1

2
x (2 − x) ,

u(x, y) =
y

1 + αθ(x)
+ αθ(x)

y

1 + αθ(x)

(
1− y

1 + αθ(x)

)
.

Our interest is the average goal functional with qave = 1. For the exact solution,
we have Qave(θ;u) = 67/45 = 1.4888 . . . . An illustration of the coarsest mesh ap-
proximation is also visible in Figure 7. For this approximation, we find the value
Qave(θh;uh) = 1.1573 . . . .
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Fig. 7. Test problem of section 6.2.1. The exact domain and solution (contour plot) (left) and
the approximate domain and solution corresponding to the coarsest mesh (right).

Fig. 8. Test problem of section 6.2.1. The approximate dual solution (contour plot) associated
with a very fine mesh (left) and the coarsest mesh (right).

In Figure 8, we depict the approximate dual solution z for the coarsest mesh
and for a very fine mesh. The convergence of the corresponding estimates, EstQave =
R((θh, uh); z), on uniformly refined meshes is reported in Table 2. Note that the effec-
tivity index EstQave /EQave approaches 1, which clearly demonstrates the consistency
of the error estimate.

6.2.2. Goal-oriented adaptivity for free-surface flow over a bump. To
investigate the applicability of the dual-based error estimate to drive adaptive mesh
refinement, we consider a domain with a reentrant corner at the bottom; see Figure 9
(top). We take yΓ0 = 1, Ωθ = (0, 4) × (yb, 1 + αθ), and f = 0, g = 1. Moreover,

Table 2

Convergence of the goal-oriented error estimate EstQave under uniform mesh refinement.

Elements DOFs Qave(θh;uh) EQave EstQave Effectivity

8 8 1.1573 0.33163 0.22131 0.667
16 15 1.3145 0.17440 0.13852 0.794
32 23 1.3694 0.11947 0.09994 0.836
64 45 1.4284 0.06045 0.05499 0.910

128 77 1.4555 0.03339 0.03055 0.915
256 153 1.4715 0.01740 0.01676 0.963
512 281 1.4803 0.00860 0.00808 0.940

1, 024 561 1.4843 0.00458 0.00450 0.984
2, 048 1,073 1.4867 0.00217 0.00205 0.947
4, 096 2,145 1.4877 0.00117 0.00115 0.991
8, 192 4,193 1.4883 0.00054 0.00051 0.949

16, 384 8,385 1.4886 0.00029 0.00029 0.993

∞ ∞ 1.4888 0
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Fig. 9. Test problem of section 6.2.2. The exact domain and solution (contour plot) (top), and
the approximate domain and dual solution corresponding to the coarsest mesh (bottom). We have
indicated the free-boundary elevation point of interest (at x0 = 2 +

√
2).

h is 0 at the bottom and increases linearly to 1 along the sides of the domain. Our
interest is the elevation of the free boundary at the specific point x0 = 2 +

√
2; see

Figure 9. This interest corresponds to the elevation goal functional Qelev with qelev a
Dirac measure at x0. The linearization of this functional is elaborated in Appendix A.
Figure 9 (bottom) displays the corresponding coarsest mesh dual solution.

To drive the adaptivity, element refinement indicators are extracted from the error
estimate formula, as usual (see [3], for example). (In particular, we integrate by parts
elementwise and assign weighted interior and edge residuals to the associated elements
to obtain element contributions. The absolute values of the element contributions are
then identified as the element indicators.) Based on these indicators, we mark a set of
elements for refinement. This set is the minimal set for which the sum is a fraction of the
total sum of indicators (a so-calledDörfler-typemarking; see [33]). We take this fraction
as 0.4. The marked elements are refined using newest vertex bisection. We introduce
additional refinements to preserve a conforming mesh [4, 40].

In Figure 10, we plot the convergence of the error estimate versus the total number
of degrees of freedom, which is denoted by n. A plot of the “true” error is also
displayed. This true error has been obtained by computing the goal on a uniformly
refined mesh with 245,760 elements and n = 123,585 resulting in the reference value
Qelev(θ) ≈ 0.02271. The results indicate that the accuracy of this reference value
is surpassed on adaptively refined meshes for n > 1,000. This explains the drop in
the true error for the adaptive case for n > 1,000. Furthermore, the plots reveal an
asymptotic convergence rate of O(n-1) for adaptive refinements. This is expected for
optimal refinements and should be compared with the suboptimal convergence rate of
approximately O(n-3/4) for uniform refinements. Figure 11 shows several adaptively
refined meshes. Apart from the refinement at the reentrant corner, the refinements at
the free boundary and particularly near the elevation point of interest are noteworthy.
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Fig. 10. Convergence of the “true” error E = EQelev and error estimate Est = EstQelev under
uniform and adaptive mesh refinement versus the total number of degrees of freedom n.

Fig. 11. Adaptively refined meshes, controlling the error in the free-boundary elevation at
x0 = 2 +

√
2, obtained after 10 (top), 18 (middle), and 29 (bottom) iterations with 120, 793, and

5,447 elements, respectively.

7. Concluding remarks. We showed that free-boundary problems elude the
standard goal-oriented error estimation framework on account of the fact that their
typical variational form is noncanonical. To obtain an appropriate dual problem
(linearized adjoint), we presented the domain-map linearization approach. In this
approach the free-boundary problem is transformed into an equivalent problem on
a fixed reference domain which has a canonical variational form. The dual problem
is then obtained by linearization with respect to the domain map. We showed that
the solution of the dual problem is essentially independent of the selected reference
domain: Dual solutions corresponding to distinct reference domains are related by
the obvious map between the reference domains.

For a Bernoulli-type free-boundary problem, we showed that the dual problem
corresponds to a Poisson problem with a nonlocal Robin-type boundary condition.
The nonlocal term depends on the particular extension of boundary perturbations
into the domain, but, being of residual type, the nonlocal term vanishes at the ex-
act free-boundary solution. The effectivity of the dual-based error estimate and its



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

ERROR ESTIMATION FOR FREE-BOUNDARY PROBLEMS 1089

usefulness in goal-oriented adaptive mesh refinement was demonstrated by numerical
experiments in one and two dimensions.

The presented approach admits several extensions. For example, we considered
constant Dirichlet data at the free boundary which means that the data is invari-
ant under domain transformations. Nonconstant Dirichlet data can be included by
means of a free-boundary Lagrange multiplier in the variational formulation. Such a
formulation, moreover, allows nonconforming trial functions that violate the Dirichlet
data.

The domain-map linearization approach bears similarities to the classical material
derivative in shape optimization in view of the comparison of functions in a reference
domain; see [37]. An alternative in the shape-optimization field is the so-called shape
derivative. The shape-linearization approach can also be used to obtain a suitable
dual problem for goal-oriented error estimation of free-boundary problems. This is the
subject of the companion paper [49]. Moreover, in that paper we present a comparison
of the two different approaches.

An extension of both the domain-map and shape-linearization approaches to a
fluid-structure-interaction problem is presented in [45, 46].

Appendix A. Linearization of the elevation goal. The elevation goal func-
tional is defined in section 2.4 as

Qelev(θ) =

∫
Γ0

qelev αθ ,

where αθ is, for a specific domain Ωθ, the vertical deviation of the free boundary
Γθ from Γ0. In this section, we present the linearization of Qelev at θh ∈ Θ by
differentiation of αθ.

6 For the sake of clarity, we consider the two-dimensional case.
However, the derivation extends without difficulty to three (and higher) dimensions.

Given Γ̂ = Γθh and its associated elevation function αθh , consider the perturbation
Γt := Γθh+t δθ and αt := αθh+t δθ; see Figure 12. Without loss of generality, we view
θh and δθ as functions of the horizontal coordinate x only. Next, fixing a particular
x, we observe from Figure 12 that the perturbed elevation can be given at a shifted
location:

αt

(
x+ θh1(x) + t δθ1(x)

)
= α0

(
x+ θh1(x)

)
+ t δθ2(x) .

This is the key identity to obtain the derivative of αθ. By introducing the Γ0 trans-
formation Tθh

1,t
(x) := x+ θh1(x) + t δθ1(x) and denoting Tθh

1
:= Tθh

1,0
, it holds that

〈
∂θαθh , δθ

〉
= lim

t→0

1

t

(
αt − α0

)
= δθ2 ◦ T -1

θh
1
+ lim

t→0

1

t

(
α0 ◦ Tθh

1
◦ T -1

θh
1,t

− α0

)
.

As Tθh
1
◦ T -1

θh
1,t

= (Id + t (δθ1 ◦ Tθh
1
)) -1, the limit on the right-hand side is equal to

−α′
θh δθ1 ◦ T -1

θh
1
(for a.e. x). Hence, we obtain

〈
∂θαθh , δθ

〉
=

(
δθ ◦ T -1

θh
1

) · (−α′
θh , 1

)
.

6Alternatively, one could reformulate Qelev as a shape functional involving a domain integral
and use a standard shape derivative [37].
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Fig. 12. Perturbation of the free boundary and associated perturbation of the elevation.

The elevation derivative, α′
θh , can be written in terms of θh by differentiating the

identity αθh ◦ Tθh
1
= θh2, yielding α

′
θh = θh2

′/(1 + θh1
′) ◦ T -1

θh
1
. Subsequently, we have

Qelev′(θh)(δθ) =
∫
Γ0
qelev (δθ·(−θh2 ′/(1+θh1′), 1))◦T -1

θh
1
. Performing a change of variables

through the Γ0-map Tθh
1
, thereby picking up a Jacobian (1 + θh1

′), we obtain the
expression

Qelev′(θh)(δθ) =
∫
Γ0

(
qelev ◦ Tθh

1

)
δθ · (−θh2′, 1 + θh1

′) .

This Γ0-supported integral can be transformed to Γ̂ by the transformation Tθh . Car-
rying out this transformation, we pick up the Jacobian ((θh2

′)2 + (1 + θh1
′)2)−1/2 ◦ T -1

θh

which nicely combines with (−θh2′, 1 + θh1
′) ◦ T -1

θh to form the unit normal vector n.

Furthermore, recalling δ̂θ = δθ ◦ T -1
θh , we finally obtain the concise result:

Qelev′(θh)(δθ) =
∫
Γ̂

qelev(x) δ̂θ · n .
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