
In this thesis, we present an automatic polyp detection approach that integrates 
knowledge from fl ow visualization techniques. Our primary goal was to compute 
additional characteristic polyp features that improve the CAD performance of 
existing polyp detection approaches by eliminating found false-positive polyp 
candidates. We found that surface principal curvature directions presented dis-
criminating patterns on surface areas that belong to colonic polyps. These could 
be visualized using lines of curvatures. We developed novel approaches for gen-
erating lines of curvature on the colon wall. In order to provide suffi cient shape 
information, lines of curvature were distributed using curvature-adaptive stream-
line seeding and spacing strategies. Geometric features of lines of curvature 
were used to differentiate between true polyp detections and false positives. The 
visualization of the colon wall was also enhanced by visualizing lines of curvature.
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CHAPTER1

Introduction

This thesis documents research on techniques for the extraction of structures of interest from

CT data for application in CT colonography-related computer-aided diagnosis. Our approach

is unique in that it applies scientific visualization knowledge, namely advanced volume and

surface geometry processing, to extract useful information from CT images for automatic

polyp detection.

In this chapter, we will first introduce background knowledge of colorectal cancer, which

is the target of computer-aided diagnosis in our research. Then we discuss colonography

techniques, particularly the role of CT colonography and automatic polyp detection. Motiva-

tions and objectives of our research project are also presented and contributions of our work

to related research fields are outlined. At the end of this chapter, an overview of the rest of

this thesis is given.

1.1 Colon Cancer and Polyps

Cancer is a serious illness and currently the second major cause of death. For most types

of cancer, there is no effective cure yet. In many cases, the disease mechanisms underlying

cancer are not well-understood.

The colon (Figure 1.1) or large intestine (bowel) is an important segment of the human

body alimentary canal, where waste materials are temporarily stored and water and some

vitamins are absorbed. Cancerous growths can develop on the interior surface of colon. Col-

orectal cancer (also called colon cancer or large bowel cancer) has a high mortality rate. It

accounts for approximately 639000 deaths worldwide per year [Org09] and is the third lead-

ing cause of cancer deaths in the western world [col09a].

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Structure of the human colon (Left image from [Cro]).

Colon cancer is a common type of the malignant tumor that is located on the colon wall.

Like most other cancers, it occurs when some cells in the body begin to divide and multiply in

an uncontrolled manner. Normally after a long period of development, the group of abnormal

cells gets bigger and bigger. Finally, it forms a mass (also called a tumor) that invades into the

colon wall, where normal cells are replaced and destroyed. Colon cancer can lead to a change

of colon behavior, a feeling of incomplete defecation and a reduction of stool diameter. A

large tumor can obstruct the colon and even cause bleeding inside. In some cases, cancer

cells can also spread to other areas of the human body and damage organic functionalities

there.

Factors that increase a person’s risk of developing colon cancer include:

• Age: Older people are at a higher risk of developing colon cancer. More than 90%

of people diagnosed with colon cancer are older than 50 [col09b]. Younger cases are

uncommon.

• Heredity: Members of a family that has a history of colon cancer are at a higher risk of

developing colon cancer [LdlC03].

• Diet and living habits: Studies show that diets high in red and processed meat and

lacking in fresh fruits, vegetables, poultry and fishes increase the risk of colon cancer

[CTC+05]. Certain living habits, e.g. smoking, drinking alcohol and physical inactiv-

ity, also increase the colon cancer risk.

• Other factors are, for instance, viruses, having inflammatory bowel disease, environ-

mental impacts and so on.

Colonic polyps have been studied as an important precursor of colon cancer. It is nor-

mally a benign growth of tissue projecting from the mucous membrane of the interior colonic

surface. In terms of their shapes, colon polyps can be categorized into two types:

• The pedunculated polyp (Figure 1.2(a)) is attached to the colon wall by a narrow elon-

gated stalk. It typically presents as a protrusion shaped like a mushroom.
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(a) (b)

Figure 1.2: (a) A pedunculated polyp (Image from [TA]), (b) a sessile polyp (Image from [KLL+07]).

• The sessile polyp (Figure 1.2(b)) grows directly into the inner wall of the colon and is

similar in appearance to a drop of spilled paint.

Depending on their severities, polyps can also be classified as:

• Hyperplastic polyps: small polyps (normally less than 5mm in diameter).

• Adenomatous polyps: bigger polyps (larger than 10mm in diameter).

Hyperplastic polyps are usually considered to be harmless and usually don’t turn malignant.

They are not always distinguishable from adenomatous polyps. Adenomatous polyps are re-

ally pre-cancerous and have a greater malignancy potential. They account for approximately

two-thirds of all colonic polyps, although only a minority will develop into colon cancer over

years. The risk of malignancy increases with both the size of the polyp and the degree of

villous component.

Colonic polyps commonly occur in about 30% to 50% of adults. The development from

an adenoma to colon cancer usually takes about 10 years. In the early stage of such a cancer

development, pre-symptoms are detectable. Although not all polyps will become cancer-

ous, almost all colon cancer incidences are developed from colonic polyps. Therefore, early

detection of colonic polyps is important.

1.2 Diagnosis and Therapy of Colonic Polyps

Fortunately, colon cancer can be effectively prevented by early detection and removal of

colonic polyps. Diagnostic techniques are applied to first find colonic polyps on the colon

wall. Then the patient must undergo a surgical polyp removal treatment. This procedure can

help to keep a survival rate after 5 years of 92% [KvCMS04].

1.2.1 Detection of Colonic Polyps

Currently, available polyp diagnosis techniques include fecal occult blood test, barium enema,

sigmoidoscopy and colonoscopy. Screening options, e.g. colonoscopy, which enable visual
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examination inside the colon, are preferred.

There are currently two screening techniques for colon cancer diagnosis: traditional opti-

cal colonoscopy and CT colonography. Optical colonoscopy is suggested as the gold-standard

screening approach for colon cancer diagnosis by some professionals. CT colonography is

a modern and more advanced screening approach that allows the visual inspection of the

interior colon wall using radiation technology.

1.2.2 Removal of Colonic Polyps

After polyps are found, the patient must undergo optical colonoscopy to remove them. Op-

tical colonoscopy has the advantage that the detection and surgical removal of polyps can be

accomplished in one single procedure. This is favorable for those patients who prefer to have

everything done without having to go through another preparative regime and colonoscopic

examination.

Since the mucous membrane of the interior colonic surface does not have nerve endings,

the removal of a colonic polyp is a relatively painless surgical procedure. When a colonic

polyp is found during the examination of optical colonoscopy, the doctor uses the colono-

scope to hitch the target with a looped wire inserted through the tube. The polyp is then cut

and removed out of the body. Such a procedure is called polypectomy. A 90% reduction of

colon cancer development and 92% reduction of mortality has been claimed if the patient has

optical colonoscopy and subsequent polyp removal.

1.3 Colonography and Automatic Polyp Detection

In this section we will discuss the two methods for colonoscopy (optical colonoscopy and CT

colonography) in more detail.

1.3.1 Optical Colonoscopy

Traditional optical colonoscopy allows the complete and direct visual inspection through the

entire colon. The procedure is accomplished by inserting a flexible probe (called the colono-

scope) into the anus and then moving it slowly into the rectum and further through the colon

(Figure 1.3). The colonoscope is as thick as a finger and has a bright light and a video camera

on its tip. During the examination, video images are transmitted from the camera and dis-

played on a television monitor in realtime. In such a way, the examiner is allowed to evaluate

the inside appearance of the colon.

Optical colonoscopy requires the patient’s colon to be emptied in advance using laxatives.

This preparation enlarges the exposed area of the colon wall and facilitates the visual inspec-

tion. Immediately prior to the examination, an intravenous infusion is started and sedation is

administrated. Normally, adults over 50 years of age are recommended to have colonoscopy,

particularly those with colon cancer risk factors or even with pre-symptoms.
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Figure 1.3: Optical colonoscopy (Images: (a) from [cola], (b) from [colb] and (c) from [colc]).

One major disadvantage of optical colonoscopy is its potential harm and discomfort to the

patient. The invasion and movement of the colonoscope often leads to a feeling of pressure,

cramping and bloating. Currently, notable discomfort can only be minimized with the aid of

medication. Optical colonoscopy generally is well tolerated by applying conscious sedation,

which is safer than general anesthesia.

However, technical limitations arise in the application of optical colonoscopy. The colono-

scope has a unidirectional nature. Due to the geometric complexity of the colon wall, a num-

ber of hidden areas are difficult to reach. For example, there are many folds that curtain deep

valleys of the colon wall. Furthermore, the visual inspection can be time-consuming. De-

pending on the expertise of the examiner, the full inspection can take half an hour or so, and

additional time has to be taken for the sedative medication. This makes optical colonoscopy

inefficient for screening low incidence rates.

1.3.2 CT Colonography

The application of radiation technology in medicine has evolved significantly since the com-

puted (axial) tomography (CT) device was first invented by a British engineer, Godfrey N.

Hounsfield (1919-2004) [Hou73], who hereby earned the 1979 Nobel Prize in Medicine. CT

screening allows inspection of the colon wall in an less-invasive way. Modern CT scans

commonly have a slice resolution of 512×512 and include up to thousands slices, providing

details within 0.5−1.0 mm. The CT scanning process has also been accelerated to finish in

seconds to favor the acquisition of time-dependent data.

CT colonography is a modern and effective screening approach that allows radiologists

to inspect the interior surface of the colon for colonic polyp detection. It makes use of CT

scans and computer imaging and visualization techniques and is minimally invasive without

the need to insert any detection instrument into the colon. It allows to take cross-sectional

views through the abdomen, and then reconstruct virtual images of the colon using specific

computer software. The result provides a radiologist with essentially a similar view to that a



6 CHAPTER 1. INTRODUCTION

gastroenterologist would have using an optical colonoscopy.

(a) (b)

(c)

Figure 1.4: (a) A Philips MX8000 CT scanner, (b) the 3D view of CT colonography (Image from [Pic]), (c) left is

a CT image of supine position, right is a CT image of prone position.

CT colonography normally consists of three steps:

1. Preparation: Similar to optical colonoscopy, the removal of stool or fecal residues using

laxatives is required before the patient undergoes CT scanning.

2. CT data acquisition: In general, the patient’s body is scanned by a multi-detector spiral

CT scanner (Figure 1.4(a)) in both supine and prone direction (Figure 1.4(c)). During

the scanning, the colon is inflated by inserting a thin tube into the rectum and then

pumping carbon dioxide air into the colon for better viewing. The scanning result is a

stack of 2D cross-sectional gray images.

3. Visual examination: Using the CT data of the colon, a radiologist can perform a direct

examination based on the 2D axial viewing provided by 2D CT images. The stack

of 2D CT images are also manipulated by computer software to reconstruct 3D vir-

tual viewing (Figure 1.4(b)) of the colon, which is similar to the display of optical

colonoscopy, however with more advantages for colon cancer diagnosis.
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CT colonography alleviates the twomajor drawbacks of conventional optical colonoscopy.

First, it has a lower invasiveness level and provides much less discomfort to the patient, al-

though it still involves air infusion to the colon. No conscious sedation is required. Second,

the virtual examination is less time-consuming than optical colonoscopy. It takes about 15

minutes for the radiologist to examine the colon data of a patient using CT colonography.

Hidden areas of the colon can be inspected well and even better with the assistance of digital

colon cleansing techniques.

CT colonography has been well researched and used for clinical applications. However,

a significant question arises: Is CT colonography reliable enough or does it have a com-

parable performance for colonic polyp detection as the gold-standard optical colonoscopy?

There have been several trials for evaluating CT colonography over recent years. Some of

them showed that CT colonography had significant limitations, particularly in finding small

polyps. However, Pickhardt et al. [PCH+03] reported that CT colonography is an accurate

screening method and compares favorably with optical colonoscopy in terms of the detection

of clinically relevant polyps. This greatly encouraged research on CT colonography. Later,

more evaluations have been conducted and concluded that CT colonography has a polyp de-

tection rate equivalent to that of optical colonoscopy [PTK+06, KPT+07, BBJ+07, DBK+09,

Dac09].

In general, Optical colonoscopy has better performance than CT colonography in detect-

ing small polyps (less than 5mm in diameter), which are mostly benign. CT colonography

provides a less-invasive screening technique than conventional optical colonoscopy. How-

ever, it is not likely that CT colonography will render optical colonoscopy obsolete, since the

removal of polyps is conducted in optical colonoscopy.

Since the CT device was invented, there have been innovations of advanced radiology

hardware and computer technology. Medical imaging and visualization techniques have

been widely studied and applied in CT colonography. CT scanning provides detailed three-

dimensional structural information on the internals of the human body. However, from the

acquired visualization of the internal colon wall it is not easy to detect possible polyps among

all protrusions and folds. It helps if some local shape properties such as curvature and size

of the protrusion are first derived. These shape properties can be computed on the surface

by 2D imaging and 3D geometry processing techniques. First, image features are computed

from the original CT data and interpreted visually to unveil connotative and characteristic

structures. In this way, clinicians can get more insight into the data and review the internal

structures of the human body. Second, certain structures of interest can be located by an-

alyzing related quantitative information. Visualization and automated detection techniques

assist medical specialists to better understand the complex internal structures of their patients

and hence to perform more precise diagnosis. Computer-aided diagnosis is one of the main

reasons why CT colonography is getting more interest in medical research.

1.3.3 Computer-Aided Diagnosis (CAD)

There are currently several active research topics in CT colonography, e.g. fast realtime vol-

ume rendering, accurate colonic surface segmentation, automatic navigation path tracking,
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digital cleansing, automatic polyp detection and so on. Computer-aided diagnosis, i.e. auto-

matic polyp detection, is among the most interesting of these topics.

Computer-aided diagnosis (CAD) is the technique that facilitates the visual inspection by

the radiologist with potential polyp candidates, which are pre-detected by applying automatic

polyp detection schemes (Section 2.5.2). On the basis of geometric feature calculation (e.g.

curvature, shape, size, etc...), the CAD procedure roughly includes three steps: colonic sur-

face segmentation, polyp candidate generation and selection of the most likely candidates on

basis of pattern recognition. First, a preferable colonic surface representation is either com-

puted as an explicit triangle mesh or rendered directly as an implicit iso-surface using volume

ray casting. Second, characteristic surface or volumetric features are computed based on the

surface representation. Then these features are used for the intermediate polyp candidate gen-

eration and subsequent false-positive reduction using pattern recognition techniques. Feature

calculation and pattern recognition for polyp candidate selection (false-positive reduction)

are two key steps that strongly determine the sensitivity and specificity of automatic polyp

detection. Having potential polyp candidates, the remaining task for the radiologist is the

confirmation or rejection of candidate detections.

It has been demonstrated that automated detection of colonic polyps is a feasible tech-

nique, especially for clinically important large polyps [SJP+01]. Sensitivity and specificity

are two criteria to evaluate the performance of polyp detection. Sensitivity measures the por-

tion of correct polyp detections in all true polyps. Specificity measures the portion of polyps

identified correctly in all detections. A high sensitivity of automatic polyp detection can be

achieved with an acceptable specificity [YMM+02].

1.4 The Project

The research project documented in this thesis focuses on improving current techniques for

computer-aided diagnosis in CT colonography by integrating knowledge from scientific vi-

sualization. Among the key steps of the automatic polyp detection pipeline, we focus on

polyp feature computation and pre-detected polyp candidate classification for false-positive

reduction.

1.4.1 Motivation

In recent years, many attempts have been made for automatic polyp detection in CT colonog-

raphy. A variety of polyp features have been defined and used in numerous existing automatic

polyp detection schemes. These polyp features include surface and image, geometric or vol-

umetric properties. Each of them covers a specific part of the information that can be used to

describe polyp characteristics in terms of shapes or internal structures. For example, surface

curvatures and derived measurements have been frequently used in early CAD research.

A good CAD scheme should be selective, i.e healthy tissue should not be wrongly iden-

tified as polyp. However, several problems stand in the way of applying automatic polyp
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detection schemes in CT colonography for clinical diagnosis. First of all, most features pro-

posed in literature are too localized to outline the overall information of a large scale area and

to be robust against image noise. This usually limits CAD performance with a large num-

ber of false-positive detections. Second, one single feature is seldom enough for successful

detection, and a combination of different shape measures is needed.

In this project, we will explore additional polyp features that better characterize the sur-

face area of a polyp, use several geometric shape characteristics in the classification, and are

also less prone to image noise. Our primary motivation is to improve the performance of

existing automatic polyp detection schemes. We will explore the use of surface and volume

geometry processing. To evaluate the improvement associated with applying geometry pro-

cessing techniques, we integrate our work into a prototype CAD system and incorporate our

new polyp features with other useful information for polyp detection.

1.4.2 Research Objectives

The project presented in this thesis consists of the following research tasks:

Define and compute characteristic polyp features Features based on scalar curvature val-

ues used in existing CAD schemes do not supply sufficient shape information for polyp

characterization. This is mainly because point-wise principal curvatures are incapable

of describing shape characteristics of a large scale surface area. Our research focuses

on the improvement of CAD performance by applying a proper polyp shape model

based on surface principal curvature direction fields.

Improving feature computation Having a better polyp model and additional feature def-

initions is not always enough. The computation of polyp features should be able to

deal with image noise. CT imaging may introduce noise that can badly affect feature

computation and reduce polyp detection accuracy. We develop robust computation ap-

proaches that provide accurate features for the false-positive reduction step and help to

improve polyp detection results.

Polyp surface partitioning The partitioning of a polyp surface has two benefits: (1) it sup-

ports the computation of overall shape features within each surface partition; (2) Each

surface partition is geometrically homogeneous and can be used for the initial segmen-

tation of polyp candidates.

Evaluation Visualization-based techniques for polyp feature computation are integrated into

a prototype CAD system. Additional features are used in supervised pattern recogni-

tion approaches to reduce the number of false positives pre-detected in a pre-processing

step. The performance in terms of sensitivity and specificity is evaluated using pattern

recognition techniques. The evaluation results also suggest research directions for im-

provement.



10 CHAPTER 1. INTRODUCTION

1.4.3 Contributions

The work described in this thesis contributes to the research field of colonic polyp detection

in CT colonography with the following:

1. We find that surface principal curvature direction fields show characteristic shape fea-

tures that can be used to identify colonic polyps. We use such vector fields as a basis

for calculating shape features in a large scale surface area, as opposed to point-wise

features. A new polyp shape model is constructed for the feature calculation. Curva-

ture streamlines are generated and used to describe characteristics of the two principal

curvature direction fields. New features for polyp detection (mainly the false-positive

reduction step) are calculated on curvature streamlines. In particular:

(a) To generate curvature streamlines on the colonic surface, principal curvature di-

rections need to be estimated first. Robust curvature estimation methods are ap-

plied to cover CT data noise.

(b) We present algorithms that compute surface constrained curvature streamlines for

both explicit triangle meshes and implicit iso-surfaces embedded in 3D volume

data. In order to sufficiently describe polyp shapes, curvature streamlines are

distributed over the polyp surface using novel curvature-controlled seeding and

spacing strategies.

(c) Our new polyp model models a polyp as two parts: (1) polyp cap and (2) polyp

neck. The polyp neck is of great interest and typically a closed-ring and anticlastic

surface. Approximately closed curvature streamlines are used to locate polyp

neck areas. The Winding Angle of curvature lines and Mean Radius of closed

curves are used as two new geometric features for colonic polyp detection.

2. In further work, we present two major improvements of the curvature streamline com-

putation:

(a) The streamline seeding strategy is adapted to the local surface curvatures so that

the streamline generation becomes more efficient.

(b) A streamline defragmentation approach is developed to generate sufficiently long

curvature streamlines that better describe surface shapes.

3. A novel colonic surface partitioning method is used to aggregate shape features in large

scale surface areas for automatic polyp detection.

4. Our features are incorporated with other existing techniques (i.e. protrusion based

polyp detection method) in the false-positive reduction step of a complete automatic

polyp detection pipeline (See Figure 1.5). The evaluation results showed that our cur-

vature streamline based features are highly correlated with true-positive polyp detec-

tions.
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(a)

(b)

Figure 1.5: Our technique is integrated into a prototype CAD system: (a) shows the overall pipeline of our CAD

system, (b) shows the procedure of our false-positive reduction scheme.

1.5 Thesis Structure

The remainder of this thesis is structured as follows:

• Background knowledge of CT colonography and computer-aided diagnosis techniques

is given in chapter 2. Colonic surface rendering techniques, display modes, navigation

and user interaction approaches, digital colon cleansing and existing automatic polyp

detection schemes are discussed.

• Chapter 3 presents a survey of visualization techniques related to our automatic polyp

detection method, including 3D surface principal curvature computation, curvature

streamline generation and streamline seeding and spacing strategies.

• Chapter 4 describes our automatic polyp detection approach using 3D surface curvature

streamlines. Curvature-controlled streamline generation and distribution algorithms

are presented in detail. Features are computed on selected curvature streamlines and

used for the classification of polyp candidates. Preliminary evaluation results indicate

that these streamline features are highly correlated with true-positive polyp detections.

• Two important improvements are documented in chapter 5. A streamline defragmenta-

tion approach is used to generate sufficiently long curvature streamlines. A curvature-

adapted streamline seeding strategy makes the streamline generation more efficient.

• Chapter 6 presents a colonic surface partitioning approach based on clustering of cur-

vature streamlines. This approach is used to aggregate surface geometric information

within each geometrically homogeneous surface partition for automatic polyp detec-

tion.
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• A more in depth evaluation of the role of our curvature streamline features in the clas-

sification of pre-detected polyp candidates is given in chapter 7. Different data re-

sources are included and our features are used with protrusion-based and volumetric

polyp features in the supervised pattern recognition step. The results showed that our

visualization-based techniques help improve the sensitivity and specificity in an exist-

ing CAD scheme.

• In chapter 8 we draw our conclusions and discuss potential avenues for future research.



CHAPTER2

CT Colonography and Computer-Aided Diagnosis

This chapter provides a survey of existing techniques used in CT colonography and particu-

larly for automatic polyp detection. It starts with a short introduction of important topics in

current CT colonography research in Section 2.1. Then it discusses visualization techniques

of colonic surfaces in Section 2.2. Navigation and interaction approaches are outlined in

Section 2.3, followed by a brief description of electronic cleansing techniques in Section 2.4.

Existing automatic polyp detection schemes, including feature extraction and pattern recog-

nition, are outlined with the discussion of their performances from Section 2.5 to Section 2.8.

In Section 2.9, we give a short summary and position our project within the whole research

context.

2.1 Problems and Methods of CT Colonography

The pipeline of colon cancer diagnosis in CT colonography is described in Figure 2.1. Before

the CT colonography examination, patients are required to clean their bowels by taking lax-

atives, e.g. pills or cathartic liquid, so that the screening of the colon wall can be sufficiently

clear. Then they undergo CT scanning and 3D volume data of their body are acquired. Such

a 3D volume is represented as a stack of 2D DICOM images. Voxels of the 3D volume that

belong to the colon part are segmented. Voxels of remaining stool residues are removed by

electronic cleansing, which obtains a clean colon volume. Radiologists can directly examine

the patient data based on the 2D slice view of 3D DICOM images, or using 3D visualiza-

tion as a review process for confirmation. Virtual navigation facilitates the inspection of the

colon wall. Computer-aided detection techniques may be applied to provide potential polyp

candidates and support the diagnosing.

13
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Figure 2.1: CT colonography pipeline.
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In CT colonography, the following four topics are important:

• Visualization of the colon wall: To support the visual inspection of the colon wall

using 3D scans, e.g CT volume data, the colonic surface is firstly segmented from the

3D volume and rendered using various 3D visualization techniques.

• Navigation and Interaction: The usability of a CT colonography system is determined

by the navigation of a virtual camera through out the colon and the interaction ap-

proach. Algorithms have been developed for automatic generation of the navigation

path and the “unfolding” of the colon surface.

• Electronic cleansing: In order to reduce the influence of remainder stool and fluid

residue inside colon for the examination, electronic cleansing techniques are necessary

to replace these non-tissue materials with air in 3D volume data.

• Computer-aided diagnosis: For the reduction of examination time and cost, automatic

polyp detection schemes have been suggested as a helpful addition to the CT colonog-

raphy pipeline. Automatic polyp detection has attracted significant research interests

and efforts in recent years.

A recent State of the Art survey for techniques used in CT colonography is written by Blachar

et al. [BGKS07]. In the following sections, we discuss existing work that deals with the four

issues mentioned above.

2.2 Visualization of the Colonic Surface

CT volume data is usually represented on a regular 3D grid. A commonly used volume

element is the 3D voxel. It has two slightly different definitions in the literature. One of the

interpretations defines a voxel as a small volumetric block, centered at each grid point and

associated with the data value at this point. The data value is constant everywhere inside.

Another voxel definition considers a voxel as a cell in between eight grid points in the 3D

volume space. Data values of the in-between space are obtained using trilinear or cubic

interpolation schemes. The second interpretation offers more flexibility and is used in this

thesis.

Two types of 3D rendering techniques are widely used in CT colonography:

• Surface Rendering based on triangle meshes generated using the Marching Cubes al-

gorithm [LC87].

• Volume Rendering based on the volume ray casting technique for implicit iso-surfaces

embedded in 3D volume [MJC02].
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(a) (b)

Figure 2.2: (a) Surface rendering of the colon wall triangle mesh, extracted using the Marching Cubes algorithm, (b)

volume rendering of the colon wall implicit iso-surface embedded in 3D volume data, using CPU-based ray-casting

technique.

2.2.1 Surface Rendering

The surface rendering process starts with surface mesh construction. The Marching Cubes

(MC) algorithm [LC87] segments volume voxels on the colon wall using a simple threshold-

ing approach. Triangles are generated in each grid cell using linear interpolation to find exact

vertices and building edges according to the inter-slice connectivity. Normals at triangle mesh

vertices are also calculated by interpolating image gradients at neighboring voxels.

There are several advantages of the MC algorithm:

1. Memory costs for the implementation of MC mainly contribute to the storage of the

resulting triangle mesh, not much memory is required by overhead of the algorithm

itself.

2. Triangles of the surface mesh are calculated directly, no intermediate data structures

are needed.

as well as some disadvantages:

1. The resulting mesh is an approximation of the original surface with loss of shape in-

formation.

2. Many mesh triangles with bad shapes can be generated.

3. A large number of triangles can be generated and this leads to difficulties for interactive

rendering.

4. Topological ambiguities can occur.
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The main problem of the MC algorithm is that the approximation accuracy is highly

dependent on the grid resolution. A number of approaches have been developed to com-

pensate for this drawback by applying surface remeshing [ACSD+03, AUGA05], mesh re-

finement [ACMS98, WDSB00, dBVP+00], and other methods that generate surface triangles

with local decisions [BMR+99, KS01] and use a set of sampling conditions to bound errors

[SSFS06, sSS06].

Irregularities of triangle sizes and shapes have a significant impact on the image quality

and surface geometry processing step [AG01]. There are regularization techniques [Fre01,

FF91, Boe94, dBvMV+02], decimation algorithms [KT96, SZL92] and re-tiling schemes

[Tur92] to reprocess the resulting triangle mesh.

Normally millions of triangles are generated by MC in CT colonography. Such a large

number of triangles leads to (1) high computational cost of MC and (2) an insufficient in-

teractive frame rate. Problem (1) was addressed by [CMM+97, LSJ96, SHLJ96, WvG92]

using span space or octrees, while problem (2) was solved by [MiHiT+96, HMK+97, BS99,

KT96, SZL92, MSS94, MSS00, SFYC96] using occlusion culling, mesh simplification or

mesh decimation techniques.

The original MC algorithmmay introduce topological ambiguities, where multiple topolo-

gies could be interpreted for one configuration of cell-surface intersection [vGW94]. The

Asymptotic Decider [NH91] is one of the earliest approaches to address this problem based

upon bilinear interpolation of data values along faces of the grid cell. Trilinear interpolation

based methods were also developed in [CGMS00, Nie03].

For the 3D view in CT colonography, triangle meshes extracted using the MC algorithm

are directly rendered using the graphics hardware. Such a surface rendering technique of-

fers relatively higher frame rate for the interaction. However it is usually applied with care

to trade off between the image quality and rendering speed. Particularly the piece-wise lin-

ear representation of the colonic surface exposes diamond artifacts. Figure 2.2(a) shows a

triangle mesh of the colonic surface extracted using the MC algorithm and rendered in CT

colonography.

2.2.2 Volume Rendering

Direct volume rendering (DVR) technique may be used to directly render the implicit iso-

surface of the colon wall embedded in the 3D CT volume data. In contrast to surface render-

ing (discussed in Section 2.2.1), the volume rendering technique offers better image quality

at the cost of lower frame rates. Its main advantage is the ability to render translucent struc-

tures and reveal internal structures. As high-quality visualization is more important than

interactivity in CT colonography, volume rendering is the preferred rendering technique.

Volume rendering techniques can be classified as either image-order or object-order meth-

ods, in terms of the way that the 3D volume data is traversed. There are traditional CPU-based

techniques and more up-to-date GPU-based approaches.

The most widely used object-order volume rendering techniques are projection-based

techniques, such as shear-warp [LL94] and splatting [Wes91, HMSC00, MMC99, MSHC99].

Volume ray casting [Lev88] is an image-order technique that integrates data values along the
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viewing ray. It is the most important and popular volume rendering method for the visu-

alization of the colon wall in CT colonography, which provides good image quality for the

visual inspection. However, because of the expensive computation, its rendering speed is

usually not high enough for realtime interaction in CT colonography using old hardwares.

Some CPU-based methods tried to accelerate the volume rendering speed [Kni00, MJC02,

GBKG04b, GBKG04a]. GPU-accelerated techniques have recently gained more attention

[CN93, CCF94,WE98, MHS99,WS01, GWGS02, KW03, RGW+03]. GPU-accelerated vol-

ume ray-casting usually provides fast rendering speed when the volume data fits into graphics

memory. However, once the data size exceeds the graphics memory, expensive data transfer

has to be performed between system main memory and graphics memory, which may sig-

nificantly slow down the rendering. Therefore there is some reluctance to adopt GPU-based

volume rendering in CT colonography.

CPU-based approaches are still dominant in most of the CT colonography applications.

Figure 2.2(b) shows the colon wall rendered using CPU-based volume ray-casting technique

in the ViewForum system of Philips Healthcare.

2.2.3 Display Modes

One general requirement for CT colonography is the effectiveness, in terms of how much of

the colonic surface area is actually displayed. An effective screening of the entire colon must

display the surface area as complete as possible. This problem has been addressed in the

literature.

Beaulieu et al. [BJK+99] outlined three widely used display modes for CT colonography

(Figure 2.3):

• Axial CT is a 2D slice-based view, in which CT images are displayed in a cine or stack.

In 2D axial CT view, the direction of the viewing plane can be interactively changed

inside the volume and the displayed 2D images are obtained using interpolation. For

each patient data set, all the CT slices have to be examined.

• Perspective 3D view displays 3D colon wall based on surface or volume rendering.

In the evaluation of the 3D view mode by Dachille et al. [DKW+01], the single view

performed in a single-direction fly-through can only review approximately 70% of the

colonic surface, while a dual-direction fly-through can review up to 95%. Serlie et al.

[SVvG+01] designed a novel visual representation of the surface 3D viewing based

on image-based rendering using a cubic environment map. Vos et al. [VvGS+03] con-

ducted an experimental comparison between the conventional single 3D view and the

unfolded-cube display. On average, 93.8% of the colonic surface can be reviewed us-

ing conventional display mode and 99.5% for unfolded-cube display mode. Sensitivity

and specificity for polyp detection were not significantly different between these two

methods.

• Panoramic display is an alternative to the conventional 3D single view and unfolded-

cube view. In such a method the 3D colonic surface is flattened and fitted into a 2D
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(a)

(b)

(c)

Figure 2.3: Three display modes in CT colonography: (a) shows axial CT mode, (b) shows unfolded cube mode

and (c) shows flattened colon wall.
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rectangular plane [WV95,WMBV98, BWK+01, BWKG01]. Somemethods have been

developed for angle preserving to minimize the distortion [HATK00, HGQ+06].

2.3 Navigation and Interaction

Visualization of the colon wall determines the effectiveness of a virtual colonoscopy system.

Whereas, the employed interaction and navigation approaches determine its usability.

2.3.1 Automatic Navigation Path Computation

The first problem for navigating through the colon is the pre-computation of a navigation

path. A navigation path is usually defined as the centerline of the colon, from a start point to

an end point specified by the user. Automatic path tracking techniques have been proposed

to facilitate the navigation and interaction in CT colonography [CK97, Set99, DC00, DC01,

TDC01, WLK+02, LKS06, Hon08].

2.3.2 Navigation Paradigms

Various navigation approaches have been applied in current CT colonography systems. These

schemes can be roughly classified into three classes as presented in [HMK+97]:

• Automatic navigation, also called planned navigation, generates an offline animation

flying though the colon after the navigation path is specified. No flexibility is of-

fered to the users. If important areas are not covered, the only way for improve-

ments is to refine the pre-computed navigation path. Examples of such systems are

[HKW+95, RBA+96]. Many other systems, e.g. [NHKG01, HH99], employ multi-

mode navigation schemes to provide more options to the users.

• A manual or free navigation approach is a fully interactive method without any pre-

specified assistance. It can be very difficult in such a way to navigate to the target

structures. Most current commercial CT colonography systems use the surface-based

rendering technique based on the triangle mesh representation (Section 2.2.1), for the

manual navigation approach.

• Guided navigation provides full flexibility to the user. It assists the user to have a more

effective and efficient examination of the colon wall by combining user guidance (i.e.

specific constraints) and an efficient collision-avoidance scheme. Different techniques

can be applied to add constraints to guided navigation in CT colonography [HMK+97,

BKG99].

Using only one of the above mentioned navigation schemes is normally insufficient. Usu-

ally multiple interaction approaches are employed in each of the current CT colonography

systems. The user can select a suitable one for a specific application.
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2.3.3 Dealing With Interaction

Interactivity is an important issue for the visual examination of the colon in CT colonography.

To facilitate a reasonably interactive screening of the colonic surface, both an interactive

rendering technique and a flexible navigation scheme are required. It is necessary to find a

tradeoff between image quality and rendering speed.

In CT colonography, the most important task is to identify colonic polyps. Sufficient

shape information has to be demonstrated for the visual inspection by the radiologist. There-

fore, the requirement of high image quality is considered to be more important than rendering

speed. With the fast development of graphics hardware, GPU-accelerated volume rendering

is gaining more interest.

However, for the comfort of users and optimizing the examination efficiency, interactiv-

ity of CT colonography systems still needs to be addressed. Many approaches have been

implemented to improve the user interaction of volume rendering based CT colonography.

The FreeFlight system [VSA+97] reduces the resolution of the volume data set to adapt to

the actual rendering capabilities of the graphics hardware. ViewForum by Philips Healthcare

includes a first-hit ray-casting technique that renders the images at a lower resolution when

the camera is moving through the colon, and at full resolution for still images. CT colonog-

raphy on the Syngo platform of Siemens Healthcare applies a space leaping technique as its

main acceleration technique for volume ray-casting. General Electric’s system also employs

an acceleration technique based on a reduction of rendering quality.

2.4 Electronic Cleansing

The volume data set of a clean colon is crucial for a good examination in CT colonography.

Unfortunately, the patient preparation is never sufficient to get an ideally clean colon. Stool

remains that have an equivalent data value as the tissue may make important parts of the colon

wall invisible in 3D views of CT colonography. Sometimes their shapes are even polyp-like.

Electronic cleansing techniques have been introduced to discriminate between soft tissue and

remains.

Electronic cleansing addresses the problems of partial-volume effect, non-uniform distri-

bution of materials and CT data noise [STF+03]. Positions where air-fluid level interfaces

with the colon wall can have segmentation artifacts [PC03]. Such surface areas covered by

the three-material transitions have to be carefully processed.

Many approaches have been published for electronic cleansing in CT colonography. Nor-

mally the patient CT images are obtained using an oral contrast agent for tagging the intra-

luminal remains inside the colon. This helps to classify multi-material transitions. The tech-

nique presented by Laidlaw et al. [LFB98] is based on voxel intensity histograms. Lakare et

al. [LWSK00] developed an approach based on the characteristics of two-material transition

areas. In later work, the authors [LCL+03] proposed an automatic tagged-residue detec-

tion technique using vector quantization based classification. Zalis et al. [ZPFH03] made

use of a binary subtraction mask to classify the opacified residues. The approach of Serlie
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(a) (b) (c)

Figure 2.4: Electronic cleansing of the colon CT data: (a) shows volume rendering of the colon wall without

electronic cleansing, (b) shows electronic cleansing was only applied to 2-material transitions, (c) shows electronic

cleansing was applied to 3-material transitions.

et al. [STF+03, SdVV+08] specifically allowed the proper classification of transitions be-

tween three materials: air, tissue and tagged residues, using the L−H histogram. Wang

et al. [WLL+06] presented an improved electronic cleansing method based on the well-

established statistical expectation-maximization (EM) algorithm. Figure 2.4 demonstrates

an example of the electronic cleansing result in CT colonography, based on the work in

[STF+03, SdVV+08].

Electronic cleansing is an important technique in CT colonography. It digitally removes

residues in the colon and a more completely visible colonic surface can be visualized. This

increases the sensitivity and specificity of polyp detection, not only for visual inspection but

also for automatic detection.

2.5 Introduction to Computer-Aided Diagnosis

Computer-aided diagnosis (CAD) techniques can facilitate the laborious visual examination

for identifying colonic polyps. In this section, background knowledge and existing CAD

techniques are discussed.

2.5.1 Motivation and Goals

CT colonography provides a visual mode for radiologists to virtually fly through the human

colon and observe the inside surface. Several problems have been encountered in applications

of CT colonography. First, current visual examination techniques are still time-consuming.

Second, direct visual inspection has several factors that limit the polyp detection sensitivity:

• Insufficient patient preparation: the colon is not always well distended.

• Examiner performance: less experienced radiologists normally have longer interpreta-

tion time and high variability of diagnostic accuracy.
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• Colon surface complexity: Hidden areas might be missed and some of them are impor-

tant for diagnosing.

Since the colonic surface has a high geometry complexity, even with assistant navigation

and interaction schemes, a thorough examination of all structures is complicated and time-

consuming. The efficiency of diagnosing colon cancer only based on visual inspection is still

low, particularly in mass screening of low-incidence populations. Furthermore, important

structures may be missed during the inspection. This can be due to incompletely cleaned

colon or limited skills of radiologists. The sensitivity of diagnosing colon cancer in this

way is not guaranteed. These aspects make CT colonography unattractive for large scale

population screening. Computer-aided diagnostic techniques have been suggested in order to

reduce expenses of the visual examination, as well as ensure high sensitivity and efficiency

of diagnosing.

In CT colonography, computer-aided diagnosis mainly refers to automatic colonic polyp

detection schemes. These methods support the diagnosis of colon cancer by pre-detecting

suspected areas on the colon wall. By first automatically detecting and visualizing polyp

candidates, the procedure of visual inspection in CT colonography can then be more focused,

while a high sensitivity and a high specificity are both maintained. It has been suggested that

automatic polyp detection as a second reader has great potential in improving colon cancer

diagnosis [BCD+05].

2.5.2 Methods of Automatic Polyp Detection

Computer-aided diagnosis usually consists of five basic steps:

1. Colonic surface segmentation.

2. Pre-detection of polyp candidates with high sensitivity.

3. Candidate collection and feature extraction.

4. Reduction of false positive detections based on supervised pattern recognition.

5. Polyp segmentation and size measurements.

Steps 2, 3 and 4 form the process of an automatic polyp detection scheme. In general, good

patient preparation and image data preprocessing (e.g. denoising) can improve the automatic

detection results. Detected polyp candidates or calculated features can be visualized to help

the final visual diagnosis.

Polyp candidate pre-detection step is usually based on filtering CT images by hysteresis

thresholding of image features, e.g. curvatures. These image features normally should be

calculated on the colon wall. Then image features are filtered to identify suspected positions

that possibly belong to colonic polyps. Pre-detected candidates are obtained by fuzzy cluster-

ing of connected elements. Usually these pre-detections are represented as central locations

of candidate areas. Due to discretization and limited accuracy of these preliminary features,
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the pre-detection step can produce a large number of candidates. All true polyps should be

included. Among these pre-detections, the non-polyp candidates (i.e. false positives) need

to be eliminated. The number of false positives is reduced in the following steps, by which

polyps and non-polyps are differentiated.

Having pre-detected candidate locations, various features are further used to reduce false

positives. These additional features are estimated per candidate, sometimes based on a pre-

segmentation of the target object. They represent various properties of the candidate and are

able to capture characteristics within large scale areas. For example, shape information of the

candidate area can be quantified as a geometric feature. Underlying voxel intensities can be

used as a volumetric feature. A collection of such features can have stronger discriminating

power for the identification of true polyps than a single feature.

The final candidate classification step is performed based on supervised pattern recogni-

tion techniques. A classifier is trained using sufficient training data sets. These training data

sets are prepared using real patient CT scans. Polyp candidate pre-detection and collecting

additional features per candidate are first performed for each CT scan. Then true polyps are

annotated among these candidates by experienced radiologists. Parameters of the classifier

are configured according to additional features and true polyp annotations of the patient data

sets for training. Then the classifier is applied to patient data sets for testing to differentiate

true polyps and false positive pre-detections. In such a way, the performance of an automatic

polyp detection approach can be evaluated in the pattern recognition step, in terms of:

• Sensitivity: the proportion of candidates that are correctly identified as polyps against

the total set of pre-selected candidates that are true polyps.

• Specificity: the proportion of candidates that are correctly identified as non-polyps

against the total set of pre-selected candidates that are actually non-polyps.

These two criteria can be described mathematically as follows:

Sensitivity=
TP

TP+FN
×100% (2.1)

Speci f icity=
TN

TN+FP
×100% (2.2)

where TP is the number of true positives, FP is the number of false positives, TN is the

number of true negatives and FN is the number of false negatives. A high performance of

automatic polyp detection means both a high sensitivity and a high specificity.

The receiver operating characteristic (ROC) curve is remarkably useful for assessment of

the performance of a feature or classifier. It is a widely-used tool for the evaluation of auto-

matic polyp detection. The ROC curve is a 2D graphical plot of sensitivity against specificity.

Normally the vertical axis denotes sensitivity and the horizontal axis denotes specificity. For

automatic polyp detection, the ROC curve is often represented as a plot of true positive rate

against false positive rate (or just the number of false positives). A higher sensitivity is usu-

ally accompanied by a higher false positive rate (or a large number of false positives), which
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means a lower specificity. The shape of the ROC curve indicates the tradeoff between sen-

sitivity and specificity. The closer the ROC curve bends towards the upper left corner of the

ROC space, the more accurate an automatic polyp detection approach is.

As described above, the accuracy of automatic polyp detection depends on two factors:

• The discriminating power of the extracted features.

• How sensitive the classification scheme (or the classifier) is.

Therefore, current research on automatic polyp detection in CT colonography has been di-

vided into two directions:

• Feature extraction: methods for the computation of characteristic image features.

• Pattern recognition: classification approaches for the discrimination of polyp candi-

dates.

Extraction of image features is crucial for automatic polyp detection. Definitions of fea-

tures that are more discriminating are the basis of a more accurate polyp detection result.

Robustness and efficiency are two major concerns of the image feature computation. Ro-

bustness deals with the feature computation accuracy, which can be influenced by CT image

noise and the computation algorithm itself. Data noise manifests itself as distorted geom-

etry in CT images. A robust feature computation method should be resistant to data noise

since noise cannot be completely eliminated. With regard to the scale of CT image noise,

point-wise image features are more susceptible. Features that take larger scale areas into ac-

count are more characteristic and robust. Furthermore, due to the nature of CT scanning, CT

images are discrete representations of physical objects in terms of a volume of samples. In

order to support an accurate feature estimation result, higher order interpolation schemes are

normally employed to provide a continuous representation of the image structure. However,

either feature computation within larger scale areas or higher order interpolation requires

more computational expenses. A tradeoff between robustness and efficiency should be care-

fully considered for feature extraction. This helps to accelerate the detection procedure with

loss of effectiveness as less as possible.

To classify candidates as true or false polyps we can apply supervised pattern recognition

techniques. This procedure makes use of a collection of additional image features and takes

pre-detected polyp candidates as the input. An important task of supervised pattern recogni-

tion is feature selection. The selection of useful features depends on the configuration of the

classifier. For a good classification a set of well-chosen parameters is needed. To derive bet-

ter estimates for some measures such as the largest diameter of the polyp, we apply a surface

segmentation to the polyp region. As will be shown later, a proper surface segmentation is a

crucial step towards a more reliable feature computation and polyp classification.

Following automatic polyp detection is the step of polyp segmentation and size measure-

ments. Polyp segmentation offers the possibility for a further analysis of the polyp candidate.

For example, based on the segmented part, the largest diameter of a detected polyp can be

computed as a size measurement of it. Polyp size measurement is important for diagnosis
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and decision making. A proper polyp segmentation approach is crucial to perform reliable

feature computations for the polyp candidate classification.

A state-of-the-art survey of existing computer-aided polyp detection techniques was given

by Bielen and Kiss [BK07]. The remainder of this chapter mainly focuses on feature extrac-

tion techniques. Pattern recognition techniques used for the analysis of image features and

the evaluation of a CAD system will be discussed in Section 2.7.

2.6 Feature Extraction for Automatic Polyp Detection

Most of the features used in automatic polyp detection methods are derived from the CT

image properties, in 2D or 3D. The majority of these features explicitly or implicitly model

polyps as spherical protrusions. Feature definitions proposed in the literature can be roughly

classified into four classes:

• Surface features describe characteristics represented by the polyp surface geometry.

• Volumetric features describe characteristics inside the image volume of the polyp.

• Model-based features describe correlations with predefined polyp models.

• Other features refer to features that do not fill into any of the categories above.

In following subsections, methods based on these feature types will be discussed in the order

as outlined above.

2.6.1 Surface Features

In 3D perspective view of CT colonography, visual identification of polyps greatly depends

on perceiving surface shape information by the radiologist. Surface features can be used to

quantitatively describe local surface shapes. These features have been widely used in existing

automatic polyp detection schemes to characterize polyp shapes.

Surface features are normally computed based on the surface representation. Therefore,

an accurate colonic surface extraction is important. To reduce the effects by stool and residues

and enable a full review of the complete colon wall, cleansing techniques (see Section 2.4)

are applied to get the correct segmentation of a cleaned colon. In addition, surface improve-

ment techniques are necessary preprocessing steps for surface feature estimation. For triangle

meshes, mesh smoothing and regularization methods are normally employed to enhance the

mesh quality. For implicit iso-surfaces, denoising and blurring approaches are normally ap-

plied.

Surface features are normally calculated at discrete positions on the colon wall. The com-

putation of surface features throughout the complete colonic surface is relatively inexpensive,

compared to going through the whole volume. Many surface features were derived from

mathematical concepts of differential geometry. Among these concepts, surface curvature is

a most popular one.
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An early attempt to use surface curvature for polyp detection is made by Summers et al.

[SSM+98]. In their method, the colonic surface mesh was first smoothed using Taubin’s ap-

proach [Tau95a]. Then principal curvature values (discussed in Section 3.1) were calculated

at vertices of the colonic surface mesh. These mesh vertices were classified based on the signs

of principal curvatures. Hyperbolic and parabolic (see Section 3.1) vertices were discarded

and elliptic (see Section 3.1) vertices were retained. A polyp candidate was detected as a

cluster of connected vertices that shared the desired classification and together covered an

area larger than a preset threshold. However, such an approach can result in a large number

of false positives. In their later work [SBP+00], the curvature estimation method was updated

applying a faster convolution-based kernel method. More restrictive criteria were used to dis-

criminate false positives, including the mean curvature, the sphericity and the polyp size. An

assessment was performed by Summers et al. [SJP+01], using real CT data sets from twenty

patients. Nine shape criteria and three iso-surface threshold were examined. They achieved

71% sensitivity with a mean of six false positives per patient for polyps of 10mm or larger.

However for smaller polyps, the performance significantly decreased.

Volumetric shape index (SI) and curvedness (CV) are two well-known surface features for

automatic polyp detection, first used by Yoshida et al. [YN01, YNM+02, YMM+02]. They

were defined as:

SI =
1

2
−

1

π
arctan

kmin+ kmax

kmin− kmax
(2.3)

and

CV =

√

k2min+ k2max

2
(2.4)

where Kmin and Kmax are principal curvature values. The volumetric shape index charac-

terizes the shape in the vicinity at a point on the surface. Particular values of SI describe

unique surface shapes, e.g. the cap, ridge and cup, which correspond to polyps, folds and

normal colonic walls. The volumetric curvedness represents the magnitude of how the sur-

face is curved. Suspicious regions were found by hysteresis thresholding of SI and CV and

polyp candidates were generated by fuzzy clustering of connected components. The authors

claimed that they got a 95% (100%) sensitivity with 1.2% FPs/data set (2.0% FPs/case). SI

is often used to first find candidate regions. Unfortunately the method can result in a large

number of false-positives.

There are other surface features used for automatic polyp detection in the literature. Paik

et al. [PBR+04] developed a surface normal overlap method that detected concentrations

of neighboring surface normal vectors as indicators of polyps. This method was applied to

colonic polyp detection and lung nodule detection in helical CT images. The performance

was evaluated using 8 colon CT data sets and the authors were able to achieve a 100% sen-

sitivity for polyps of 10mm and larger with an average of 7.0 FPs/dataset. In the work of

Huang et al. [HSH05], kernel-based and surface patch based methods for principal curvature

estimation were compared. The authors proposed a two-stage curvature estimation method

to estimate surface curvatures at vertices on the triangle mesh. Mesh vertices were filtered by

their mean curvature values. The passed vertices were aggregated to form regions of interest
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(ROI). Finally, suspicious areas were found by screening ROI using the sphericity index:

SPi= 2× |
Kmin−Kmax

Kmin+Kmax

| (2.5)

where Kmin and Kmax are principal curvature values. An experimental study based on 29

patients (58 data sets) demonstrated 88.7% sensitivity with an average of 18.6 Fps/dataset.

Surface evolution is another CAD approach that indirectly measures surface shapes. Van

Wijk et al. [vWvRV+06] used a shape and size invariant surface feature for robust polyp

detection. Surface evolution was performed on triangle meshes at those regions where the

minimum curvature value was larger than zero implying a convex surface shape. This surface

area was flattened until the minimum curvature was smaller or equal to zero. The amount

of deformation was computed and used as a protrusion measure for finding polyp candi-

dates. This method achieved a result of 95% sensitivity at 10 FPs/dataset. Konukoglu et

al. [KAP+07] developed an approach that was applied directly to implicit iso-surfaces em-

bedded in 3D volume data. This method was based on a use of level set theory. The basic

idea was not flattening the surface but evolving polyps towards ideally spherical protrusions.

Thus the characteristic features defined in existing CAD schemes were enhanced to be more

discriminating for colonic polyps. It was claimed that this approach increased the sensitivity

of an arbitrarily chosen CAD method by 8.1% for small polyps of sizes ranging from 5.0 to

9.0 mm in diameter.

The above mentioned automatic polyp detection methods are mostly based on scalar sur-

face curvature values. Our work in [ZBB+06, ZBT+08] explored the potential of principal

curvature direction fields. Polyp surface shapes were characterized using curvature directions

and patterns in circular curvature lines. Details of our approach are presented in Chapters 4,

5, 6 and 7.

As a summary, most of the proposed surface features are directly or indirectly surface

curvature based. Surface normal overlaps and protrusion measure are indirectly curvature-

based. If a voxel within the tissue has a high concentration of intersecting surface normals,

this means its neighboring surface area has an approximately uniform distribution of con-

vex surface curvatures, i.e. spherical shape. Protrusion measures are highly correlated with

surface curvatures. Typically, elliptic surface areas have larger protrusion measures with sur-

face evolution. These elliptic areas are also characterized by principal curvatures. Lines of

curvature deal with principal curvature directions. Such curves always follow the direction

of maximum or minimum curvature. For CAD methods based on surface features, surface

curvature estimation is crucial for the detection accuracy. Robust 3D surface curvature esti-

mation will be discussed in Chapter 4.

2.6.2 Volumetric Features

Volumetric features can be computed directly using intensity values of CT images, in the

subvolume of interest. They are mainly used to characterize the organic structures of polyps.

The computation of volumetric features is usually more expensive than that of surface features

for the complete colonic surface. Therefore, volumetric features are normally calculated
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at pre-detected candidate positions and used in the polyp candidate selection step for false

positive reduction (see Section 2.5.2).

Several volumetric features have been proposed to characterize internal structures of

polyps for automatic polyp detection. Summers et al. used a shape-based approach based

on elliptic curvature [SSM+98] to pre-detect polyp candidates and improved the specificity

of automatic polyp detection using CT attenuation [SJP+01]. Their results showed that 39%

false positives could be discarded by sampling CT attenuation at the candidate position, with-

out losing the sensitivity.

Göktürk et al. proposed that computing volumetric image features on triples of planes,

rather than on individual planes, captured 3D shape aspects more completely [GTA+01a,

GTA+01b]. Polyp candidate subvolumes were generated using an existing polyp detector,

e.g. [PBR+04, YN01]. For each candidate subvolume, several geometric features were cal-

culated from many triples of perpendicular random images. Histograms of these geometric

features were used as a feature vector for the classification of true polyps and false positives.

The authors achieved a reduction of 80% false positives at a sensitivity of 80%.

Acar et al. [ANP+01, ABG+02] developed an automatic polyp detection method that

attempted to model the way that a radiologist recognizes a polyp in 2D axial slice viewing

using the optical flow field (OFF). In their method, polyp candidates were pre-detected using

a Hough Transform-based polyp detector (HTD) [PBR+04]. The optical flow field, which is

a vector field embedded in a candidate subvolume, was computed and used to characterize the

change of intensity at the air-tissue boundary in the diagnosing direction of the image plane.

A 3D vector feature was computed in OFF and used for the classification of true polyps and

false positives. They tested their method on 8 real patient data sets. The pre-detection step

generated 220 polyp candidates and 20 of them were true polyps. A preliminary 10-fold cross

validation study resulted in an average of 75% specificity at 100% sensitivity.

Volumetric texture analysis is another automatic polyp detection approach using volu-

metric features. Näppi and Yoshida [NY02, NY03] made use of CT texture features for

the reduction of false-positive detections returned by their polyp candidate generation step

[YN01]. In their evaluation, a combination of mean shape index and directional gradient

concentration (DGC) and the variance of CT values yielded 100% (95%) sensitivity with 2.4
(1.7) false positives per patient (per data set), using a quadratic classifier.

Kiss et al. [KvCSM03] presented a two-pass method based on a volumetric feature. Vol-

ume voxels of colonic polyps and folds were first segmented. Then a slope density function

(SDF) was used to differentiate between colonic polyps and folds. The SDF can be seen as

the statistical histogram of gradients at voxels. Since polyps were modeled as circular or el-

liptic objects, SDF of polyps usually presented smooth patterns while SDF of folds presented

peaks. Finally colonic polyps were identified and segmented using fuzzy clustering and the

mean position of clustered voxels was returned as a polyp candidate. They claimed to have

above 85% sensitivity for polyps larger than 6mm as initial results.

Yao et al. [YMFS04] proposed an automatic polyp segmentation method and based on

the segmentation of each pre-detected candidate, several features were computed for the re-

duction of false positives. These features included average density and standard deviation
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of density inside the model, volume of the polyp segmentation and three-dimensional aspect

ratio of the polyp. The resulting FROC curve demonstrated a 100% sensitivity with 11.5 false
positives (reduced 30% pre-detected FPs) per data set, and further a 80% sensitivity with 5.5
false positives (reduced 50% pre-detected FPs).

In the work of Wang et al. [WLL+05b], three types of internal volumetric features were

used to reduce the number of false positives. For each pre-detected candidate subvolume, CT

image density distribution was analyzed. Geometrical features, textural features and morpho-

logical features were directly calculated in the subvolume. Volume and Axis Ratio were two

geometrical features providing shape information of the candidate. Growth Ratio was a tex-

tural feature that reflected the whole image density distribution pattern within the subvolume.

Another textural feature was the CT density mean value, which could be used to differentiate

some false positives caused by stool or residues. There were two morphological features as

well, Coverage Ratio and Radiation Ratio. These six internal volumetric features were used

in their final pattern recognition step to eliminate false positives. 93.1% of the false positives

were discriminated from the pre-detected polyp candidates. Their approach achieved 100%

sensitivity with on average 2.0 false positives per data set for polyps of 10−30mm, and 100%

sensitivity with 3.44 false positives per data set for polyps of 4−10mm.

Volumetric features are normally derived from the underlying data values of the colon

wall. Some of them are based on a pre-segmentation of the polyp candidate. For methods us-

ing these volumetric features, the accuracy of the polyp pre-segmentation plays an important

role.

2.6.3 Model-Based Features

Several model-based features are also presented in the literature. The basic idea of model-

based features is to match local surface or image shapes to some pre-defined polyp models.

Usually, the correlation between shapes and models is quantified and this information is used

to detect polyp candidates or differentiate between polyps and non-polyps. Model matching

approaches can be applied on the colonic surface or on 3D volume images.

Colonic polyps are often modeled as spherical objects. Kiss et al. [KCT+02] developed

an approach taking advantages of both surface normal overlap [PBR+04] method and sphere

fitting method. The scheme was tested using data sets of 18 patients. The results showed

100% sensitivity with approximately 8 false positives per patient for polyps of 10mm or

larger. The method proposed by Kiss et al. [KvCD+05] was applied to solve CAD problems

in CT colonography using low-dose data sets. This method modeled colonic polyps using

gray level intensity profiles and extended Gaussian images. A sphere fitting method was

used to find initial polyp candidates. To separate false positives, intensity profiles sampled

along a sphere (the spherical harmonics) and mapping gradient information onto the unit

sphere (extended Gaussian images) were chosen to characterize the shape of a polyp. A

polypoid model database was built on previously acquired cases. Those features allowed an

easy comparison between a polyp candidate and pre-built polyp models in the database.

Chowdhury et al. [CWG06] made use of morphological characteristics of colonic polyps

in their CAD method. Initial polyp candidates were detected using the surface normal inter-
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section values. Polyps were modeled as either spherical or ellipsoidal in this method. Addi-

tional model-based features for false positive reduction were sphere fitting error and radius,

three axes of the fitted ellipsoid and ellipsoid fitting error. The proposed method was tested to

have 100% sensitivity for polyps larger than 10mm and 91.67% for polyps of 5mm− 10mm

with 4.5 false positives per data set.
Bhotika et al. [BMS+01] presented a model-based technique for polyp detection in CT

colonography that used analytical shape models to map the local shape at individual vox-

els to anatomical labels. Analytical shape models were introduced for haustral folds and

for pedunculate and sessile polyps. Surface principal curvatures were estimated on implicit

iso-surfaces embedded in CT volume data to characterize these primitive shape models. Pa-

rameters were computed for these models of relevant anatomical colon structures, resulting

in a simple voxel labeling scheme. They were used as features to map local principal curva-

tures at volume voxels to anatomical labels, which correspond to polyps or folds or neither.

Their FROC curve analysis indicated a sensitivity of 81.6% at 10.4FPs (76.3% at 6.2FPs) per
data set for polyps of 6mm or larger. For polyps of 4mm or larger, the method achieved a

sensitivity of 77.2% at 12.9FP or 75.4% at 10.4FP per data set.

In general, the CAD performance of model-based features and corresponding techniques

is highly dependent on the quality of pre-defined models and the modeling method. Current

used models are usually built based on the abstraction of known shape characteristics of

colonic polyps. Therefore, the applicability of model-based CAD schemes is limited by the

variability of polyp shapes in practice. Large colonic polyps can be very complex in their

shapes. They often have many concave or cylindrical regions on their caps. These are not

polypoid shapes as addressed in most of existing CAD methods and their combinations result

in significant irregularities. Sometimes even small polyps can have irregular shapes. The

problem of flat lesions is actually due to the lack of a generalized characterization. Therefore,

model-based features and techniques often suffer from low sensitivities and low specificities.

Human vision and perceiving abilities can handle these problems by training and experience.

However this is currently a difficult issue for computer systems. As a summary, a good

generalization of colonic polyp shapes is crucial for a robust polyp detection approach.

2.6.4 Other Features

Besides surface, volumetric and model-based features, several features of other types have

been investigated. In this section, we briefly discuss two techniques that convert the 3D

detection problem into a 2D one.

In the automatic polyp detection pipeline developed by Hong et al. [HQK06], the colonic

surface extracted from the CT data set as a triangle mesh was first mapped to a 2D rect-

angle image using conformal mapping. Thus geometric features and texture features were

computed in 3D and mapped to 2D. Polyp candidates were detected using a 2D clustering

method on the 2D electronic biopsy image. The RGB values of a given pixel and its neigh-

bors formed a 39-dimensional local feature vector for finding polyp candidate. False positives

were further reduced using a gradient concentration feature that was only calculated at candi-

date positions in the volume. The authors achieved 100% sensitivity with a very low FP rate
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as their priliminary result.

Wang et al. [WLL05a] developed a different technique that used a volume-based algo-

rithm to flatten the colonic surface. Different rendering schemes were used to transfer the 3D

flattened colon volume into a 2D image. This 2D image displayed the intensity variations be-

hind the colon wall. It was used for polyp detection, according to different intensity variation

patterns of polyps and other structures.

2.6.5 Discussion of Features

There are varieties of features computed in different ways using CT data sets for automatic

polyp detection. Each feature has certain advantages as well as limitations. Proposed features

can have discriminating power for polyp candidate pre-detection and false positive reduction,

however usually only under specific circumstances. A collection of features can retain all ad-

vantages while their limitations are mutually compensated. Hence, many existing prototype

CAD systems employ a combination of features for detection and classification. In this case,

a feature selection procedure has to be conducted. This is an important issue for the pattern

recognition step, which will be discussed below.

2.7 Pattern Recognition for Polyp Candidate Classification

After candidate pre-detection and feature extraction, a supervised pattern recognition (PR)

step is performed to identify whether a polyp candidate is a true polyp or a false positive.

There are two essentials of the PR step: feature selection and classifier design. The main task

is to devise an optimized combination of features and classifiers that provides high automatic

polyp detection accuracy. As a result, a decision boundary is computed in the selected feature

space and used to separate polyps and non-polyps.

In early stages of CAD research, simple linear classifiers were widely used. Features

were simply thresholded to detect polyp candidates. In the methods by Summers et al.

[SSM+98, SJP+01], a linear classifier was applied on curvature-based features. Polyp de-

tections were identified by hysteresis thresholding of Gaussian and mean curvatures and the

size of connected structures. Van Wijk et al. [vWvRV+06] and Acar et al. [ANP+01] used

linear classifiers to evaluate their polyp detection methods. Huang et al. [HSH05] applied

a linear filtering of surface curvatures, sphericity indices and size of potential clusters. A

Mahalanobis distance based linear classifier was used in [ABG+02]. This classifier provided

linear and non-linear decision surfaces in feature space. A significant drawback of linear

classifiers is the resulting low sensitivity and specificity.

Non-linear classifiers can generate more correct boundaries in feature space. An effec-

tive classifier introduced in [Fuk90] is based on quadratic discriminant analysis (QDA). This

classifier was used in [YN01]. It is a statistical classifier that uses a hyper-quadratic surface

for the decision boundary. It can optimally partition the feature space into a polyp class and

a false positive class. For each pre-detected polyp candidate, the distance from the decision

boundary was computed as the polyp likelihood. This value provided the ranked ordering of
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the likelihood that a candidate is a polyp. A thresholding of the polyp likelihood determined

the final detected polyps.

The support vector machine (SVM) classifier is another non-linear classifier used for

differentiating between polyps and false positives [GTA+01a]. It generates a hypersurface

boundary between the two classes [Vap95]. This boundary not only correctly classifies the

data, but also maximizes the margin of the closest data points to the hypersurface. SVM

implicitly maps the given feature vector onto new vectors in a higher-dimensional space.

The hypersurface boundary becomes a plane in higher dimensional space. Thus, the linearly

inseparable data in the original feature space can be separated in higher dimensional space.

Classifiers are designed by setting up their parameters. There are also non-parametric

classifiers, such as neural networks. To apply the neural network for the classification of

polyp candidates, it must be first efficiently trained using training data sets. Jerebko et al.

[JSM+03] compared the classification results of two approaches: neural networks and binary

trees. They designed a backpropagation neural network with one hidden layer and trained it

with Levenberg-Marquardt algorithm. The neural network performed better with a sensitiv-

ity of 90% and 16 false positives per study. They proposed a revised classification method

using a collection of multiple neural networks [JMFS03]. The final decision for each polyp

candidate was based on the majority vote across the neural network committee and reflected

the weighted votes of all networks. This multiple neural network approach reduced 36% false

positives and improved the sensitivity by 6.9% compared to the method using a single neu-

ral network. A new scheme assembling SVMs for classification, a smoothed leave-one-out

cross-validation method for obtaining error estimates and a bootstrap aggregation for training

and model selection was introduced by their later work [JMFS05].

2.8 Automatic Polyp Segmentation and Size Measurement

Automatic polyp detection can support visual inspection by indicating suspect locations for

colon cancer diagnosis in CT colonography. The size of a detected polyp is important for

diagnosis and decision making. In clinical experiences, polyps with diameter ≥ 5mm require

removal via optical colonoscopy, whereas smaller polyps are not significant. Usually the

largest polyp diameter is taken as the size of a polyp. Manual measurement has significant

inter- and intra-observer variability. Automatic methods enable more accurate measurements

of polyps. Robust polyp measurement is usually based on a proper segmentation of the polyp.

Such a procedure is also useful in CAD schemes, to provide more accurate and complete

information for the detection.

Early methods for automatic colonic polyp segmentation directly worked on CT images.

Jerebko et al. [JTFS03] developed a method employing the Canny edge detector and Radon

transformation to segment 2D subvolume images of polyp candidates. Näppi and Yoshida

[NY03] made use of feature-guided analysis in the segmentation and feature extraction of

polyp candidates.

Yao et al. [YMFS04] proposed an automatic polyp segmentation method based on a com-

bination of fuzzy clustering and deformable models. The segmentation step first took the
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candidate position as input and computed a subvolume centered at the candidate seed. Then

a fuzzy c-mean (FCM) clustering is applied to compute the membership values of “lumen

air”, “polyp tissue” and “non-polyp tissue” classes for each voxel of the subvolume. This

resulted in an approximated polyp region on a 2 slice. An initial deformable model was fitted

to this potential polyp region. Once one slice was processed, this procedure was propagated

to neighboring slices until no segmentation could be found. Finally, the 3D segmentation was

reconstructed by stacking up all 2D segmentations.

Dijkers et al. [DvWV+05] applied an iterative method on triangle mesh surfaces for polyp

segmentation and size measurement. The method started at the candidate position and prop-

agated to its neighborhood if local surface normals did not deflect too much from the center

point. In such a way, the edge of the polyp was defined as the boundary of the segmentation.

Based on the segmentation, the polyp size was automatically derived by projecting the edges

of the segmentation along the polyp axis onto a plane and then taking the largest diameter of

a fitted ellipse.

2.9 Value and Positioning of the Thesis

This chapter outlined CT colonography and related techniques. These topics include visual-

ization schemes for displaying the colonic surface, navigation and interaction approaches for

supporting the visual inspection, electronic cleansing methods for virtually removing stool

and residues, and computer-aided diagnosis techniques for automatic polyp detection. For

each of these topics, background knowledge and current existing techniques in literature were

discussed.

We mainly focus on the research of automatic polyp detection in this thesis. The survey of

existing CAD schemes covers two research directions: extraction of discriminating features

and the subsequent pattern recognition step for polyp candidate classification. A taxonomy of

derived features used in current automatic polyp detection methods is presented. These fea-

tures are classified as: 3D surface features, volumetric image features, model-based features

and other features. Proposed methods using combinations of features and classifiers are dis-

cussed, as well as approaches for automatic polyp segmentation and size measurement. One

important problem that still remains for automatic polyp detection is that existing techniques

based on point-wise features generate many false-positive polyp candidates. This is because

polyp shape and size vary greatly in practice.

The subject of this thesis is novel feature extraction techniques for the classification of

polyp candidates to improve detection sensitivity and specificity. In the following chapters,

we will introduce techniques for calculating new additional features for the reduction of false

positive detections in a prototyping automatic polyp detection system. These features are de-

rived from surface principal curvature direction fields and curvature line geometries, instead

of point-wise features based on scalar principal curvatures and other image features used in

existing methods presented in this section. Geometric information of a whole surface area

is taken into account, so that our features better describe the overall shape of a surface area

than those features that only take point locations into account. To compute such new features,
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techniques for generating curvature lines on 3D surfaces will be presented. Our feature ex-

traction methods for polyp detection integrate flow visualization techniques for surface and

volume geometry processing and form part of the CAD functionality of a CT colonography

pipeline. The evaluation shows that our curvature line based features can significantly help

to reduce the number of false-positive detections of an existing polyp detection approach.

Our features based on curvature lines are derived using 3D surface curvature estimation

and streamline generation techniques, which will be discussed in the next chapter.
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CHAPTER3

3D Surface Curvature and Lines of Curvature

Our automatic polyp detection method uses features derived from surface principal curvature

directions and streamline geometry. In this chapter, we discuss 3D surface curvature estima-

tion and streamline techniques in specific applications. These are two research topics most

related to the work presented in this thesis. In the first section (Section 3.1), mathematical

concepts of surface curvatures are given. Existing curvature estimation algorithms are sur-

veyed in Section 3.2. There are two types of surface curvature estimation methods applied on

different surface representations: explicit triangle meshes and implicit iso-surfaces. Curva-

ture lines are introduced in Section 3.3 and existing generation methods on 3D surfaces are

discussed in Section 3.4. An overview of streamline placement techniques, particularly in

flow visualization, is given at the end of this chapter in Section 3.5.

3.1 3D Surface Curvature

Curvature is an important quantity for describing shapes of 2D curves and 3D surfaces in

differential geometry [DS96]. It measures how much a 2D curve bends or a 3D surface is

curved. 3D surface curvature is widely used in computer graphics applications. The CAD

scheme presented in this thesis is based on the use of principal curvature directions. In this

section, mathematical definitions of curvature are described.

3.1.1 Definitions in Differential Geometry

Basically, curvature is defined as the magnitude of the rate of rotation of the tangent vector

along a plane curve in 2D. In differential geometry, the concept is defined as a quantity of

37
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Figure 3.1: The curvature of a plane curve is equal to the inverse of the local osculating circle radius: P is a point

on a plane curveC, where the tangent direction is T and local osculating circle is O with radius R.

second order derivatives. This concept is extended for 3D surfaces, which is considered as an

integral of infinite curves. There are several definitions of 3D surface curvatures.

Normal Curvature and Principal Curvatures

On 3D surfaces, the normal curvature kn is defined as the curvature of the normal curve.

At a point P of surface S, the normal curve is the intersection curve of the surface and the

normal plane, which is defined by the surface normal N and an arbitrary tangent direction

T (Figure 3.2). The rotation of T around P results in a continuous change of kn. Thus the

value of kn can be considered as a continuous function with its minimum and maximum

values: kmin and kmax. kmin and kmax are defined as principal curvature values at P. Their

corresponding tangent directions: Tmin and Tmax, are called principal curvature directions,

which are orthogonal. Principal curvature values do not directly represent surface shapes. To

provide quantified descriptions of surface shapes, Gaussian curvature and Mean curvature are

derived.

Gaussian Curvature and Mean Curvature

Gaussian curvature is defined as the product of principal curvature values:

K = kmin · kmax (3.1)

Based on the signs of principal curvatures, Gaussian curvature can be used to classify three

characteristic shapes of the 3D surface (Figure 3.3).

Gaussian curvature is not able to clearly describe how much a 3D surface is curved,

while Mean curvature is introduced for this purpose. It is defined as the average of principal

curvature values:

H =
kmin+ kmax

2
(3.2)
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Figure 3.2: Definition of the normal curvature and principal curvatures: the red plane is the tangent plane of surface

S at a point P. The blue plane is a normal plane defined by the surface normal N and an arbitrary tangent vector T .

The corresponding normal curve is presented as a thick black curve. Tmin and Tmax are principal curvature directions

at P with their corresponding normal curves presented as thin black curves.

(a) (b) (c)

Figure 3.3: Three surface shapes characterized using Gaussian curvature: (a) parabolic surface has K= 0, (b) elliptic

surface has K > 0 and (c) hyperbolic surface has K < 0.
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Principal curvatures, Gaussian curvature and Mean curvature are important geometric

properties of 3D surfaces. In computer graphics and visualization applications, representa-

tions of objects are normally not analytical models but composed of discrete surfaces. As

discussed in Chapter 2 Section 2.2, explicit triangle meshes are used in surface rendering and

implicit iso-surfaces are used in volume rendering. In such cases, it is not viable to use ana-

lytical methods for curvature estimation. Therefore discrete curvature techniques have been

developed and applied for surface geometry processing in visualization applications.

3.1.2 Applications of Surface Curvatures

There are a variety of applications for surface geometry processing using curvatures. Cur-

vature measures can be used in segmentation, shape detection, geometric modeling, surface

remeshing, mesh simplification, surface smoothing, image noise diffusion and so on.

Scalar curvatures are popular mesh features used in mesh segmentation methods [Sha04,

LDB05, BJ88, MW99]. Curvature-driven geometric partial differential equations were used

to solve several surface modeling problems [XPB06]. Alliez et al. [ACSD+03, AUGA05]

made use of lines of curvature for triangulated surface remeshing. In mesh simplification,

surface curvatures were used as the most important information for the decision of mesh

vertex removal and to get edges of reasonable lengths for optimal triangulations [YCL02].

Desbrun et al. [DMSB99] developed an algorithm for 3D data noise removal by using mean

curvature flow to smooth surface meshes. Kindlmann et al. [KWTM03] used curvature-based

transfer functions to enhance volume rendering effects in three different applications: non-

photo realistic rendering, surface smoothing via anisotropic diffusion and visualization of

iso-surface uncertainty.

Curvature-based surface geometry processing techniques have been extensively applied

to automatic polyp detection in CT colonography. Features derived from surface curvatures

are used to identify characteristic polyp shapes [SSM+98, YN01, HSH05, ZBB+06]. In this

thesis, we present a prototype automatic polyp detection system based on the use of surface

curvature lines to characterize shape features of colonic polyps. As the first step in our CAD

scheme, robust and accurate curvature estimation is crucial to the detection result.

3.2 Curvature Estimation on 3D Surfaces

In this section, existing curvature estimation approaches are surveyed. The performance of

each method will be discussed, in terms of speed, robustness and accuracy.

Corresponding to the triangle mesh and implicit iso-surface representations, there are in

general two classes of surface curvature estimation methods:

• Kernel methods work directly on voxel gray-values of 3D volume images.

• Mesh methods calculate curvatures at vertices of triangle meshes generated by the

Marching Cubes algorithm.
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Due to the discrete nature of 3D surfaces in computer graphics, both of these estimation

methods are discrete curvature techniques. This means that analytical surface functions are

not directly known and original curvatures are actually approximated based on discrete sam-

plings of the surface. Analytical theories and concepts in differential geometry can still be

used yet need to be transfered and adapted in discrete cases.

3.2.1 Curvature Estimation on Implicit Iso-surfaces Embedded in 3D

Volumes

Kernel-based curvature estimation methods are applied to the implicit representation of the

surface in 3D volume data. They calculate curvature values and directions based on the

partial derivatives of 3D images. Partial derivatives of the implicit iso-surface can be directly

computed using gray values of 3D image voxels, without extracting the surface first. Such

methods are known as kernel-based, because the partial derivatives are normally calculated

by convolution with Gaussian derivative kernels.

Before the development of kernel-based methods for 3D surface curvature estimation, tra-

ditional methods were based on surface fitting [MAS91]. These methods fitted a parametric

surface to the 3D image and iso-surface curvatures were then approximated using the analyt-

ical function of the fitted surface. A major problem of such methods is the significant fitting

error.

Monga et al. [MBF92] developed a fundamentally new approach whereby they first de-

fined a local coordinate system using the gradient vector and two arbitrary orthogonal vectors

in the tangent plane. Principal curvature values and directions were computed using the Hes-

sian matrix. All entries of the Hessian matrix are second order partial derivatives of the 3D

image and can be calculated using recursive filters or Gaussian convolution masks. Similar to

the method in [MBF92], van Vliet and Verbeek developed a method also based on the Hes-

sian matrix for isophote curvature estimation in 3D [vVV93]. The authors later developed

a new strategy to design recursive Gaussian derivative filters, which yielded a high accuracy

and excellent isotropy in n-D space [vVYV98]. This method were used to improve their

kernel-based isophote curvature estimation.

Thirion and Gourdon proposed a classical kernel-based curvature estimation method in

[TG95a]. In their method, implicit iso-surface curvatures and directions were represented

using only the first and second partial derivatives of the 3D image in the three axial directions.

This helped to avoid the problems of parameterizing the iso-surface.

Kindlmann et al. [KWTM03] developed a method using the Hessian matrix to calculate

iso-surface curvatures. Curvatures were described as the change of image gradients within the

tangent plane of the iso-surface. They derived a simple matrix, called the Geometry Tensor,

to estimate principal curvature values.

As pointed out by Campbell and Summers [CS04], and van deWeijer et al. [vdWvVVvG01],

kernel-based methods might lead to tremendous errors when applied to curved plates, hollow

objects and concentric shells. This is due to zero gradients at such thin structures. To solve

these problems, van de Weijer et al. [vdWvVVvG01] proposed to use parametric curvilinear
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models that were fitted to the local gradient vector fields. Also based on the use of local

gradient vector fields, Rieger et al. [RTvVV04] proposed to incorporate the kernel-based ap-

proach with the gradient structure tensor and Knutsson mapping for thin shells and hollow

objects. Van Wijk et al. [vWTvG+04] used normalized convolution to measure curvature fea-

tures on the implicit iso-surface of the colon wall for detecting colonic polyps. Their method

optimized the trade-off between noise reduction and mixing of adjacent image structures.

In summary, kernel-based curvature estimation methods for implicit iso-surfaces embed-

ded in 3D volume are significantly dependent on the kernel design. The partial derivatives of

3D images computed by convolving with Gaussian derivative kernels are crucial to the cur-

vature estimation accuracy. Concerning the nature of 3D volume, which is normally a rect-

angular grid in CT colonography, these partial derivatives have to be computed as isotropic

quantities, in order to preserve balanced image characteristics. Therefore the directional sam-

pling for the convolution and the kernel size of the Gaussian filter should be isotropic. This

can significantly help to guarantee the curvature estimation accuracy. In general, due to the

nature of Gaussian convolution theories and the implicit surface representation, kernel-based

methods can provide more accurate curvature estimation results and therefore are usually

favored for iso-surface geometry processing in CT colonography.

3.2.2 Curvature Estimation on TriangleMeshes Extracted from 3DVol-

umes

A lot of efforts have been done for the development of curvature estimation methods on

polygonal meshes. These methods take a certain neighborhood of the mesh vertex of interest

and estimate curvatures based on connections of the central vertex and its neighbors. Only

positions of mesh vertices and edges are used, without any convolution and Gaussian filter-

ing involved. This is the major difference between mesh-based methods and kernel-based

methods.

Several surveys have been published in the literature [GS03, SMS+03a, TT05, MSR07].

Various taxonomies of curvature estimation methods on triangle meshes were proposed in

these surveys. Following these taxonomies, current methods in this section are classified into

five classes:

• Parametric Surface Fitting (or Paraboloid Fitting): This method approximates a small

neighborhood of a vertex on the triangle mesh using a parametric surface. Principal

curvature values and directions are approximated using second order derivatives of the

fitted analytical surface function.

• Circular Fitting: This method makes use of directional normal curvatures of the tri-

angle mesh. Each neighboring vertex corresponds with a directional curvature value.

Principal curvature values and directions are computed by merging these directional

curvatures based on Euler and Meusnier theorems [Car76].

• Discrete Differential Geometry Approach: This method derives discrete approximation

forms of the original differential geometry formulas and computes surface curvatures
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by directly solving these discrete equations based on the central mesh vertex and its

neighbors.

• Curvature Tensor Voting: This method computes mesh surface curvatures by estimat-

ing the curvature tensor and the eigen analysis of it. Different voting mechanisms are

employed to improve the accuracy of curvature tensor computation.

• Approach based on Multiscaling and Smoothing: This method obtains a more robust

curvature estimation by means of surface mesh smoothing in advance or using a mul-

tiscale local surface description.

Parametric Surface Fitting

By fitting an analytically smooth mesh to surface mesh patches, surface mesh noise and irreg-

ularities were expected to be covered. The principal curvatures that need to be estimated are

considered to be identical to the principal curvatures of the fitted parametric surface. Second

order partial derivatives can be calculated analytically using the fitted surface function. In

these methods, the local mesh surface is normally assumed to be planar, biquadratic, bicubic

or biquartic. An important problem here is to find a proper parametric surface fitted to the

local mesh.

Paraboloid fitting [SW92, KLM98] is an often used approach for parametric surface

fitting. Alternative fitted functions are cubic B-spline [Die93] and quadratic polynomials

[Ham93]. A comparison of these surface fitting methods was performed by Huang et al.

[HSH05]. They found that cubic B-spline fitting performed the best regardless of large ori-

entation variances. Cubic B-spline fitting and quadratic polynomial fitting performed equally

well for large samples while the latter performed better for small ones. The authors proposed

a two-stage curvature estimation approach, in which the cubic B-spline fitting was performed

first for its insensitivity to orientation and then a small data sample was fitted by a quadratic

function if the spline fitting errors was too large.

Circular Fitting

By definition (Section 3.1.1), principal curvatures are maxima of directional curvatures of

normal curves passing through a surface point. The two methods developed by Chen and

Schmitt [CS92], and by Martin [Mar98], made use of directional normal curvatures to com-

pute principal curvatures. A circle is fitted to the central mesh vertex and two of its immediate

neighbors. Then the curvature of this fitted circle is considered as the corresponding direc-

tional normal curvature. For the central vertex and its all neighbors, corresponding normal

curvatures are then merged to compute principal curvatures.

The circular fitting method proposed by Watanabe and Belyaev [WB01] produced higher

quality estimates. They derived integral formulas for calculating Gaussian and Mean cur-

vatures. Then these equations were approximated using the trapezoid approximation for the

discrete neighborhood of the central mesh vertex. These approximated equations were solved

using the central vertex and its immediate neighbors to get Gaussian and Mean curvatures.
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Discrete Differential Geometry Approach

In discrete differential geometry, analytical equations are reformulated to piecewise repre-

sentation. Original quantities and concepts are redefined or approximated using the 3D shape

information represented by mesh vertices and edges. This means that deduced discrete formu-

las only consist of variables of mesh vertices and directly express how to compute principal

curvatures using these vertices. The deduction of discrete forms is based on finite element

theories. These discrete formulas are usually short and have small computational complexity

at the cost of some accuracy loss. For example, the average of the dihedral angles between

all faces surrounding a mesh vertex can be used.

Several works using discrete differential geometry were outlined by Krsek et al. [KLM98].

The Gauss-Bonnet theorem [Car76] was widely used in these methods. The discrete approx-

imation of the Gauss-Bonnet theorem applied on triangle meshes is based on the angle deficit

computation. It was used to calculate the Gaussian curvature using immediate neighboring

triangles of the central vertex [DHKL01, MDSB02, KKL02]. The meaning of angle deficit

is that, for a flat surface with zero curvature, the sum of angles of neighboring triangle outer

edges at a central vertex is 2π , while for nonzero-curvature surfaces, this sum is smaller

than 2π . Particularly in the work by Meyer et al. [MDSB02], a set of differential geometry

operators were defined as well as their discrete approximations. Principal curvatures were

calculated in a straightforward way using these simple formulas.

Curvature Tensor Voting

The curvature tensor associates the normal curvatures to each tangent direction at a point on

the surface [Car76]. The principal curvature values and directions can be computed by first

restricting the curvature tensor matrix (a 3×3 symmetric matrix in 2D manifolds) to the tan-

gent plane at a surface point, and then performing eigenanalysis of the resulting 2×2 matrix.

Its eigenvectors are equivalent to principal curvature directions and principal curvature mag-

nitudes can be computed by applying a fixed homogeneous linear transformation to the eigen

values.

Taubin’s method [Tau95b] is considered as the basis for triangle mesh curvature esti-

mation using curvature tensor. This method works on the 1-ring neighborhood, which is

composed of the immediate neighbors of the central mesh vertex. The curvature tensor was

approximated using directional normal curvatures corresponding to a finite set of neighboring

edges. The normal of the central vertex was computed as the average of its 1-ring neighboring

triangle plane normals. The resulting eigenvalues were used to compute principal curvature

values. Corresponding eigenvectors were principal curvature directions.

Various approaches for improving the computation of curvature tensor on triangle meshes

followed Taubin’s work. These approaches either used extended neighboring regions to cover

noise impacts [GKS00] or applied reasonable voting mechanisms to better approximate the

overall shapes [TT05]. Page et al. [PKS+01, PSK+02] improved Taubin’s method by em-

ploying a more accurate directional normal curvature approximation and an enlarged neigh-

borhood bounded by the geodesic distance.
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Multiscaling and Smoothing Schemes

Researchers have noticed that curvature estimation results are highly sensitive to noise. This

problem has been handled in three ways:

1. Some methods were proposed to have more robust curvature estimation by means of

smoothing or using a multiscale local surface description.

2. Some methods tried to smooth the surface mesh first and then computed principal cur-

vatures using an existing estimation approach on the smoothed mesh.

3. Others modified the surface mesh parameterization for the curvature computation,

while actually smoothing was performed within their formulation.

The advantage of multiscale techniques is that they improve multiple computation problems,

e.g. interpolation, smoothing and segmentation.

A representative approach of them was developed by Mokhtarian et al. [MKY02]. This

method first smoothed the surface mesh by iteratively convolving local parameterization of

the surface with 2D Gaussian filters. Semigeodesic coordinates were constructed at each

mesh vertex. Then Gaussian and Mean curvatures were computed on the smoothed surface

mesh at multiple scales. Their results showed that curvature estimation became more robust

after surface smoothing. Also in [DT97], a multiscale curvature technique was presented for

more stable shape representation and recognition.

3.2.3 Discussions on Accuracy and Robustness

There are three essential factors that influence the quality of iso-surfaces in CT colonography:

• CT data noise lead to distorted shapes.

• Triangle mesh resolution determines how much details are presented.

• Triangle mesh irregularity results in unbalanced sampling for curvature estimation.

CT data noise is inevitable in practical applications, in spite of the use of denoising and

smoothing techniques during preprocessing. For the accuracy of later stages in the analysis

pipeline, having curvature estimation methods that are robust to varying surface quality is

important. The problem is how to cover image data noise and surface mesh irregularities.

Since a preprocessing step is not always the best solution, some approaches tried to make the

estimation procedure relatively invariant to the surface quality.

In order to cover image noise and preserve details of small but important structures, a

proper kernel size has to be carefully selected for kernel-based methods applied on implicit

iso-surfaces. In order to reduce the influence of image noise, a larger kernel is normally

desired, while a smaller kernel is used to preserve more detailed information of the iso-

surface. The trade-off between implicitly smoothing the surface and the sensitivity to surface

details needs to be carefully considered.
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For explicit triangle meshes, many approaches [Tau95b, DHKL01, MDSB02, KKL02]

performed their computations at a mesh vertex within the immediate 1-ring neighborhood,

which is usually a small surface area. The 1-ring neighborhood by definition is very sensi-

tive to data noise and mesh irregularities, since the data noise normally has a similar scale.

Consequently, it is very difficult to have an accurate curvature estimation against mesh arti-

facts only based on the 1-ring neighborhood, unless an ideally smoothed and regular mesh

is given. Researchers have proposed extended regions on neighbors for the improved com-

putation [GKS00, PKS+01, PSK+02]. The enlarged surface area couples more global shape

information around so that the local surface is implicitly smoothed. In principal surface fitting

approaches [KLM98, Mar98], a large sampling area is employed to obtain a better parame-

terization of local surface.

An important issue for extending the sampling neighborhood is how to configure the

boundary of this area. This problem determines whether surface shape information can be

captured isotropically in all directions. It is necessary to have a balanced description of local

surface shapes by collecting neighboring contributions. This is very significant for accurate

curvature estimation results. A simple definition is to bound the neighborhood using the

Euclidean distance. This leads to a coarsely approximated balanced sampling. The Normal

Vector Voting approach by Page et al. [PKS+01, PSK+02] made use of geodesic distance,

which is a more reasonable definition and better supports the balanced directional sampling.

Due to the high complexity of ideal geodesic distance computation, the authors proposed a

linear approximation which still performed with robust results.

A robust curvature estimation approach should be able to overcome bad iso-surface qual-

ities, i.e. image data noise and mesh artifacts and irregularities. The computation can be

improved by a larger sampling scale and more balanced sampling. This can be achieved by

enlarging the computation area and employing a reasonable area boundary. These improve-

ments are particularly useful for approaches based on curvature tensor voting.

3.3 Lines of Curvature

The automatic polyp detection method presented in this thesis is based on the use of lines

of curvature on the 3D colonic surface. These surface curves are used to visualize principal

curvature direction vector fields. In this section, the definition and applications of lines of

curvature are outlined.

3.3.1 The Definition and Properties

A line of curvature or curvature line is a curve on the 3D surface that is everywhere tangent

to one of the two principal curvature directions. A more formal mathematical definition is

given in [Gal00].

There are two lines of curvature passing through a point on the surface. By the definition

of principal curvature directions (Section 3.1.1), these two curves are perpendicular to each

other at this surface point. Figure 3.4 shows the two lines of curvature passing through the
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(a) (b) (c)

Figure 3.4: Two perpendicular lines of curvature passing through surface points with three different characteristic

shapes: (a) passing through a parabolic surface point, (b) passing through an elliptic surface point and (c) passing

through a hyperbolic surface point. Red curves indicate curvature lines of maximum curvature, while blue curves

indicate curvature lines of minimum curvature.

parabolic, elliptic and hyperbolic points on the surface. Lines of minimum and maximum

curvatures indicate respectively the slowest and steepest variation of the surface normal.

On isotropic surface areas around umbilical points, principal curvature values are equal

and principal curvature directions are indeterminable. The orthogonal net of lines of cur-

vature becomes singular at an umbilical point. Typical examples of such isotropic surface

shapes are spheres and planes. Lines of curvature through umbilicus typically form one of

the three configurations: star, lemon and monstar, while other configurations are possible

for transitional cases. In computer graphics applications, these umbilicus regions need to be

processed with particular operations.

3.3.2 Applications in Computer Graphics and Visualization

Line drawings are often used to facilitate the visual perception of shape features. A well

known application is artistic drawings. For example, hatched line strokes are used to exhibit

cascaded objects in charcoal drawings and a caricaturist only uses a few featured strokes to

convey strong geometric information. In engineering design and manufacturing, reflection

lines projected onto surfaces help automobile designers to improve the quality of their prod-

ucts [PM02]. In the scientific community of computer graphics and visualization, surfaces

curves, including lines of curvature, have been increasingly used in the fields of computer-

aided geometric design (CAGD), non-photorealistic rendering (NPR), surface remeshing and

so on.

There are a number of papers dealing with lines of curvature in the field of computer-

aided geometric design. Principal patches were introduced by Martin [Mar83] as a surface

area bounded by lines of curvature. Among the principal patches, Dupin’s cyclide patches of

which lines of curvature are all circular arcs were used for surface blending [DMP93]. Lines

of curvature obtained considerable attentions for plate-metal-based manufacturing [Mun87].

The computation of lines of curvature around umbilical points on implicit surfaces were an-

alyzed in [MWP96, CPZ07].

Surface curves have been widely used to enhance the displaying of 3D surfaces in non-
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photorealistic rendering. Many techniques of using ridge and valley lines for shape recogni-

tion, coding and quality evaluation were developed by [KWTM03, IFP95, OBS04]. Lines of

curvature were used in hatching techniques that generated perceptually convincing displays

of complicated surfaces [RK00, GIHL00, HZ00].

Alliez et al. [ACSD+03] presented a surface remeshing algorithm that used anisotropic

information represented in geometries of lines of curvature. To the best knowledge of the

author of this thesis, lines of curvature have not been used for computer-aided detection of

colonic polyps yet. In this thesis, we will present a novel technique using these curves to

characterize polyp surface shapes (in Chapter 4).

3.4 Curvature Line Generation on 3D Surfaces

The generation of lines of curvature on 3D surfaces is a nontrivial issue in computer graphics

and visualization applications. This may demand complex computations for iso-surfaces

extracted from real data sets. A number of generation approaches have been developed for

different applications.

3.4.1 Problems of Curvature Line Generation

Lines of curvature are special streamlines tangent to surface principal curvature direction

fields. As streamlines, the generation of lines of curvature is normally based on the stepwise

linear integration. There are three well known problems of streamline integration:

1. The order of the integration scheme.

2. The integration step length.

3. The interpolation of the vector fields.

There are first order, second order and even higher order streamline integration schemes.

First order integration has the smallest computational complexity, while higher order integra-

tion leads to a more accurate result that better couples with features of the vector field. In the

sense of efficiency and quality, there is a trade-off between computation cost and accuracy.

Fixed and non-fixed (or adaptive) step length for the streamline integration has been used

in visualization techniques. The choice of step length is crucial for an accuracy streamline

integration. Normally a small step length is desired to trace a more accurate streamline in

the vector field. However, this needs more computation costs with regard to the resolution of

the field. Smaller step length is necessary in the regions where the vector direction changes

rapidly, while in gentle regions they introduce unnecessary costs. Therefore, adaptive step

length has been proposed in order to optimize the computation efficiency while presenting

the vector field features.

In real data sets, the vector field is usually piecewise linear and discrete. The original con-

tinuous vector field has to be reconstructed using interpolation schemes. There are linear and
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higher order interpolation approaches. As discussed above, higher order schemes normally

indicate higher computational complexities.

Computation efficiency and accuracy should be taken into account to achieve a good

streamline generation method. Therefore, streamline integration and interpolation schemes

have to be carefully selected. Normally, adaptive integration and higher order interpolation

perform better. However, they require more computational expenses.

3.4.2 Methods for the Calculation of Lines of Curvature

Figure 3.5: Crest lines are detected and rendered on 3D surface meshes.

Since lines of curvature are surface-constrained 3D curves, algorithms for generating

surface curves can be used for generating lines of curvature. The adaption is to trace surface

curves in one principal curvature direction vector field, instead of other vector fields on the

surface.

There are a few existing algorithms developed for the generation of surface curves on

triangle meshes. Ridge and valley lines and crest lines are two similar types of surface curves

as lines of curvature. They are often used for the enhanced illustration of surface shapes. A

ridge point on the surface is a point where curvature magnitude in the maximum curvature

direction is a local maximum. A valley point is a point where the curvature magnitude is

a local minimum in the maximum curvature direction. Monga et al. [MBF92] introduced
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Figure 3.6: The line art of an technical part rendered by Rössl and Kobbelt.

a method that connected ridge and valley points on the surface to form feature lines for

the enhanced visualization. Interrante et al. [IFP95] assigned additional opacity functions

of principal curvatures to ridge and valley points and then used ridge and valley lines for

rendering transparent skin surfaces.

Stylianou and Farin [SF03] developed an automatic crest line extraction method on trian-

gle meshes. The authors presented a method using crest lines for surface segmentation and

flattening in [SF04]. Hildebrandt et al. [HPW05] proposed two novel concepts for a more

stable algorithm producing visually more pleasing feature lines. Yoshizawa et al. [YBS05]

presented a fast and robust crest line integration method on triangle meshes (Figure 3.5). Cur-

vature tensor and extremity coefficients were firstly estimated at mesh vertices. Each edge

was examined to determine whether it contained curvature extrema. Crest lines were then

detected and connected using the procedure presented in [OBS04]. These crest lines were

used for adaptive mesh simplification.

Most of the techniques developed for curvature line calculation on triangle meshes were

used in non-photorealistic rendering applications. A majority of them was used in appli-

cations of non-photorealistic rendering. Interrante et al. [IFP96] introduced a technique for

texturing a transparent surface with uniformly distributed opaque short strokes. Interrante

also described how principal curvatures and directions were used to control the placement of

lines of curvature over a stroke texture on 3D surfaces [Int97]. Principal direction vector field

on the surface was used to generate a single scan-converted solid stroke texture. This surface

texture illustrated the essential shape information of any level iso-surface in the volume data.

Elber [Elb99] produced an interactive line art rendering method for freeform polynomial

and rational surfaces. Line strokes following principal curvature directions were constructed

on the parametric surface using the sketching scheme in [Elb98]. Rössl and Kobbelt [RK00]

designed an interactive system for computer-aided generation of line art drawings to illustrate

3D models represented as triangle meshes. Curvature lines were traced in a 2D view of the



3.5. STREAMLINE SEEDING AND SPACING 51

Figure 3.7: Lines of curvature were applied for anisotropic remeshing: from left to right, images are input mesh,

minimum curvature direction field, maximum curvature direction field and the network of curvature lines generated.

scene and used for defining line strokes. An intuitive and simple tone mapping technique was

derived to generate the final rendering shown in Figure 3.6, by exploring the special structure

of the line strokes. A set of algorithms for line art rendering of smooth surfaces was presented

in [HZ00].

Girshick et al. [GIHL00] developed a technique for generating lines of curvature on either

implicit iso-surfaces or triangle meshes in non-photorealistic rendering. The stepwise line

integration was constrained within the mesh triangle plane. The distribution of curvature

lines followed the evenly-spaced scheme proposed by Jobard and Lefer [JL97]. Lines of

curvature were also applied for anisotropic polygonal remeshing [ACSD+03]. The network

of curvature lines was traced on a flattened triangle mesh, using fourth-order Runge-Kutta

integration and an adaptive step length [PFTV92]. The distribution of curvature lines were

guided by the local curvature magnitudes (Figure 3.7). This surface constrained curvature

line distribution scheme is used as the basis of curvature line generation in this thesis.

As far as the author of this thesis knows, no explicitly surface-constrained curvature line

generation approach has been developed for the implicit iso-surface embedded in 3D volume

data, and for automatic polyp detection in CT colonography. However, the implicit iso-

surface rendered using volume ray-casting is usually the preferred surface representation for

the visualization of colonic surfaces in CT colonography. In later chapters of this thesis, a

novel technique for generating surface constrained curvature lines with curvature controlled

seeding and spacing is presented for automatic polyp detection in CT colonography.

3.5 Streamline Seeding and Spacing Strategies

For visualization techniques of flow fields, normally a collection of streamlines are used to

interpret topological or geometrical features of the vector field. For the same purpose, lines
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of curvature need to be well distributed to describe shapes of 3D surfaces.

3.5.1 Essentials of Streamline Placement in Visualization Techniques

An optimal distribution of streamlines is crucial to make these lines better correlate with over-

all or local features in the domain space. Two pivotal problems are the seeding and spacing

schemes in streamline generation. Streamline seeding and spacing address the questions of

where to trace streamlines and how many streamlines should be generated.

There are two competing objectives of visualization techniques using streamlines [CCK07]:

• Features of interest should be represented as completely as possible.

• Illustration should cause as little as possible cluttering.

Ideally, no information of the vector field is missed when using a dense enough streamline

distribution. However, this may lead to severe cluttering effects. Also redundant and expen-

sive computations can be generated in the implementation. Particularly in 3D cases, cluttering

effects can be severe. A balance between the streamline density and represented field features

should be carefully selected. That is: Generate streamlines as sparsely as possible while still

representing features as completely as possible.

A collection of streamlines forms a sparse representation of a vector field. Its ability for

presenting features is highly dependent on three factors:

• Seed location: the starting position for each streamline tracing.

• Spacing distance: how close two streamlines can be.

• Streamline length: the length of each streamline.

The seed position is the most important factor controlling streamline distribution. It controls

the overall appearance of the generated streamlines. The spacing distance between stream-

lines is a criterion for the termination of each streamline tracing. It significantly influences

the density of streamline placement. With regard to the variations of vector fields, the spac-

ing distance also determines lengths of generated streamlines. For a better characterization of

the vector field, longer streamlines are usually preferable to represent features of large scale

areas.

There are feature-guided methods and density-guided methods for streamline placement.

In specific applications, if features of interest are known and well-modeled, the feature-

guided method can manage the streamline distribution to emphasize these features, which

are of interest for certain research or engineering problems. Otherwise, a density-guided

method is typically applied when features of interest are not certain. In this case, the distri-

bution of streamlines is independent to the underlying vector flow function. These methods

employ a user-specified density function over the vector field. However, such a function is

usually not related to the vector flow.
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Figure 3.8: Classification of critical points based on the eigenvalues of the local Jacobian: R1 and R2 are eigenval-

ues, I1 and I2 are eigenvectors (Image source is the article [PVH+03]).

3.5.2 Existing Streamline Seeding and Spacing Algorithms

Streamline techniques are widely used in flow visualization [PVH+03, LHD+04]. As out-

lined in the previous section (Section 3.5.1), streamline placement strategies are classified

into two classes: feature-guided methods and density-guided methods [CCK07].

Feature-Guided Streamline Placement

Feature-guided streamline placement starts with the identification of specific features in the

vector field. Example features are boundary layers, separation lines and bubbles, critical

points and so on. Critical points have gained particular attention for their specific attributes

in flow vector fields. Critical points are defined as positions in the vector field with all zero

magnitudes of local vectors. In a velocity field, a critical point has zero velocity so that

no streamlines pass through it. Critical points can be classified into different types by the

eigenvalues of the local Jacobian [PVH+03] (Figure 3.8). According to the topology in the

vicinity of different critical points, different streamline seeding and spacing strategies are

applied in order to more specifically characterize these features with different topologies.

Verma et al. [VKP00] first introduced a feature-guided streamline seeding method to cap-

ture flow patterns around critical points in 2D vector field. Streamlines were also distributed

to obtain sufficient coverage in non-critical regions and guarantee that the overall presentation

is aesthetically pleasing. Ye et al. [YKP05] extended the method of Verma et al. to 3D vector

fields. They proposed a continuous α − β map of 3D critical points such that the seeding

templates applied to critical points of different types could change shape depending on how

far the critical point is from transitioning into another type of critical point.
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Figure 3.9: Comparison of density-guided approach and feature-guided approach: left images are generated using

Turk and Banks’ image-guided method, right images are generated using feature-guided approach of Verma et al. .

Streamline spacing distance is set as 1.67% of image width for the upper row and 3% for the lower row.

There are two drawbacks of feature-guided streamline placement. First the identification

of critical points is not always available and may introduce tremendous computation costs.

Second, cluttering problems maybe very significant with a large number of critical points.

In this case, a sparse and visually pleasing streamline representation won’t be necessarily

produced.

Density-Guided Streamline Placement

Density-guided streamline placement approaches are normally based on user-specified den-

sity or distance metrics. A function for bounding the distance between streamlines is prede-

fined over the vector field and used to terminate the tracing procedure of each streamline. As

the result, the distribution of generated streamlines is independent to the vector field itself

and actually controlled by the appearance of these streamlines.

Turk and Banks [TB96] proposed an image-guided streamline placement method in 2D.

An energy function was defined as the gray level of the low-pass filtered version of the image

and used to guide streamline placement. Compared with the flow feature-guided streamline

placement by Verma et al. [VKP00], this method might miss topological importance (Figure

3.9).

The evenly-spaced streamline seeding and spacing technique was developed by Jobard

and Lefer [JL97]. The separating distance between adjacent streamlines was controlled by

a fixed threshold, in terms of Euclidean distance and according to the overall density of the
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Figure 3.10: Comparison of three density-guided streamline placement: results are generated using the methods in

[JL97] (Left), [LMG06] (middle) and [MAD05] (right).
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Figure 3.11: Streamlines generated using the viewing plane based method of Li and Shen in a 3D flow field.

image. In order to make a better global appearance of the streamline representation, the

threshold (spacing distance) for the streamline termination was tuned as half of the seeding

distance. Liu et al. [LMG06] improved the computation efficiency and quality of streamline

generation in 2D flow fields for the evenly-spaced strategy. Mebarki et al. [MAD05] pre-

sented a farthest point seeding strategy to favor the generation of long streamlines. Figure

3.10 shows a comparison of above three methods presented by Liu et al. [LMG06].

Mattausch et al. [MTHG03] extended the 2D evenly-spaced streamline placement to 3D

flow fields. The seeding and spacing distances between adjacent streamlines were thresh-

olded using a 3D Euclidean distance metric. Li and Shen [LS07] argued that streamlines

generated in 3D flow fields without considering their projections on the screen plane pro-

duced visually cluttered rendering results. They proposed a streamline seeding and spacing

strategy in image space to avoid visual cluttering and allow a more flexible exploration of the

flow field. The quality of streamline placement was highly dependent on the pre-computed

depth image (Figure 3.11).

Schlemmer et al. [SHH+07] proposed a “Priority Streamlines” method based on a def-

inition of the streamline density as the ratio between the number of occupied pixels by

streamlines and the total number of pixels of the region. Streamlines were placed with in-

creased density in interesting regions, while sparsely in less interesting regions. Allieze et al.

[ACSD+03] controlled the distribution of curvature lines on 3D surfaces using the principal

curvature magnitudes. Considering the fact that more streamlines were required to preserve

sufficient shape information on highly curved surface areas, principal curvature values were

used to define a density function adaptive to the surface curvedness for curvature line place-

ment.

Density-based streamline placement methods generally include many redundant stream-

lines. This significantly increase the computation expense and cluttering effect. To address

such problems, Chen et al. [CCK07] introduced an adaptive streamline placement algorithm

based on a robust and effective streamline similarity metric. It not only considered the Eu-

clidean distance between streamlines, but also statistically measured the similarities of their

shapes and directions. This method implicitly enhanced the representation of flow features by

providing streamlines that naturally accentuate regions of geometric interest (Figure 3.12).
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Figure 3.12: The method by Chen et al. (right column) is compared with the density-based method (upper left)

using Euclidean distance and the feature-based method (lower left) based on critical points pre-identified.

3.6 Summary

This thesis presents research on automatic polyp detection using visualization techniques in

CT colonography. More specifically, the use of surface principal curvature direction vector

fields is explored and integrated in our CAD system. Lines of curvature following along

principal curvature directions on the colonic surface are used to visualize this vector field and

perspectively characterize surface shapes of colonic polyps.

In order to provide context for the use of lines of curvature for surface shape visualization

and recognition, this chapter outlined curvature and curvature line computation techniques

and visualization techniques using streamlines. Essentials of curvature estimation with re-

gard to robustness and accuracy are also discussed. Streamlines are an important and widely

used visualization technique for feature extraction and tracking. Since lines of curvature are

considered as a special form of streamlines constrained on 3D surfaces, streamline-based

techniques are of significant interest and valuable in our automatic polyp detection scheme.

We expect that there is a promising relation between surface shapes and surface principal

curvature directions. Therefore, as a sparse representation of principal direction fields, lines

of curvature can be used to extract features of these two vector fields. These features have

high correlations with characteristic surface shapes, e.g. colonic polyps that are typically

spherical protrusions. On the other hand, lines of curvature are also used to enhance the

visualization of the colon wall as a valuable addition to the traditional shaded colonic surface.

In the following chapters of this thesis, techniques of generating lines of curvature are
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presented. Existing methods for curvature line seeding and spacing are adapted to our appli-

cation and a novel approach applied on implicit iso-surfaces embedded in 3D volume data

is introduced. These curves are used in our prototyping automatic polyp detection pipeline.

An evaluation using a large number of real patient data sets demonstrates the discriminating

power of curvature line features for polyp detection in CT colonography.



CHAPTER4

Lines of Curvature for Polyp Detection in CT Colonography

This chapter is based on our paper published in IEEE Transactions on Visualization and

Computer Graphics, volume 12, number 5, Sep-Oct 2006 [ZBB+06].

Abstract

Computer-aided diagnosis (CAD) is a helpful addition to laborious visual inspection for pre-

selection of suspected colonic polyps in virtual colonoscopy. Most of the previous work on

automatic polyp detection makes use of indicators based on the scalar curvature of the colon

wall and can result in many false-positive detections. Our work tries to reduce the number of

false-positive detections in the preselection of polyp candidates.

Polyp surface shape can be characterized and visualized using lines of curvature. In this

paper, we describe techniques for generating and rendering lines of curvature on surfaces and

we show that these lines can be used as part of a polyp detection approach. We have adapted

existing approaches on explicit triangular surface meshes, and developed a new algorithm on

implicit surfaces embedded in 3D volume data. The visualization of shaded colonic surfaces

can be enhanced by rendering the derived lines of curvature on these surfaces.

Features strongly correlated with true-positive detections were calculated on lines of cur-

vature and used for the polyp candidate selection. We studied the performance of these fea-

tures on 5 data sets that included 331 pre-detected candidates, of which 50 sites were true

polyps. The winding angle had a significant discriminating power for true-positive detec-

tions, which was demonstrated by a Wilcoxon rank sum test with p < 0.001. The median

winding angle and inter-quartile range (IQR) for true polyps were 7.817 and 6.770− 9.288
compared to 2.954 and 1.995−3.749 for false-positive detections.

59
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4.1 Introduction

Colonic polyps are an important precursor of colon cancer, which is among the leading causes

of cancer deaths in the western world [PSBG93]. A polyp is a benign growth of the colon

lining. It typically presents as a sphere protruding from the colon wall. Early detection and

removal of polyps significantly decrease the incidence of colon cancer. For this purpose,

virtual colonoscopy has been developed as a procedure to inspect the interior wall of the

human colon by using CT or MRI-scans.

Virtual colonoscopy is a minimally-invasive technique, which causes much less discom-

fort to the patient than traditional optical colonoscopy [Bar05, PCH+03]. The CT or MRI-

scans are processed by iso-surface extraction or by direct volume rendering (DVR) to allow

for visual inspection by a radiologist. However, a thorough, visual examination of the com-

plete colon wall is rather time-consuming, which makes the method unattractive for large

scale population screening. Therefore, computer-aided techniques have been proposed to

pre-detect and highlight colonic polyps in order to reduce the examination time and cost,

especially in mass screening of low-incidence populations [SYP+05].

A considerable amount of work has been done for automatic polyp detection; many

schemes make use of curvature. Curvature is an important quantity from differential ge-

ometry [Car76], which is widely used in computer vision and visualization applications to

characterize 3D surface shapes. It can be represented by a scalar (e.g. mean or Gaussian

curvature), and by two vectors, indicating the directions of principal curvatures at a given

point.

Indicators based on scalar curvature values have been frequently used in previous work

for computer-aided diagnosis (CAD) of colonic polyps. Yoshida et al. [YNM+02] made use

of 3D geometric features called the volumetric shape index and curvedness to develop a CAD

scheme for polyp detection. Näppi and Yoshida [NY03] proposed to use feature-guided anal-

ysis for achieving high sensitivity and a low false positive rate in their CAD scheme. Huang et

al. [HSH05] developed a two-stage curvature estimation method on triangular surface meshes

and performed a filtering based on the sphericity index to identify potential polyps. Van Wijk

et al. [vWTvG+04] introduced the technique of normalized convolution to measure curvature

features in 3D volume data for automatic polyp detection. Accurate and noise-insensitive cur-

vature calculation is essential for any such scheme. Representations based on point-sampling

will in general be more sensitive to noise, whereas aggregation within a region of interest

will enhance the robustness at the cost of some sensitivity. Using scalar curvature by itself

for polyp detection can result in a large number of false-positive detections.

The potential of principal curvature direction fields has not yet been explored in current

polyp detection techniques. On a surface, the two principal curvature directions define two

orthogonal vector fields, and these can be visualized by lines of curvature, which are lines

everywhere tangent to one of these vector fields. We will call these curves streamlines of cur-

vature. They have also been used for surface shape analysis in engineering design [BFH86].

However, to the best of our knowledge, no attempt has been made to apply streamlines of cur-

vature for colonic polyp characterization in medical visualization. We hypothesize that the

patterns in streamlines of curvature are a good indicator of specific features to detect polyps,
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both visually and automatically.

In our work, the proposed CAD process proceeds in three steps: pre-detection of polyp

candidates, candidate selection, and finally enhanced visualization. Polyp candidates are pre-

detected using an existing polyp detection scheme. These polyp candidates include many

false-positive detections. The main contribution of our work is to propose a new additional

polyp candidate selection approach based on the use of streamlines of curvature, which helps

to reduce the number of false-positive detections. We will present methods to generate

streamlines of curvature on the colon wall. We have improved existing algorithms for ex-

plicit triangle mesh surfaces, and developed a new method for implicit surfaces embedded in

3D volume data. The basis of our work is a robust technique for the computation of principal

curvature directions so that the streamlines are as smooth as the surface itself. Subsequently,

we ensure that a streamline accurately traces the true principal curvature directions of the

surface. Note that constraining the streamlines to the surface will require extra operations

compared to unconstrained streamline generation in a 3D vector field. For a good view of

the local surface shape, a set of streamlines with controlled spacing must be generated, to

reveal the important shape features, and to cover all important details. Therefore, the seeding

and spacing of the streamlines is governed by local surface curvature. We extract features

strongly correlated with true-positive detections from the generated streamlines. These new

features provide a new basis for an automatic polyp detection algorithm. The streamlines of

curvature support the perception of surface morphology in addition to the traditional shading.

The shape is summarized using the streamlines that have specific patterns at polyp positions.

The rest of the paper is organized as follows. A brief survey of relevant research is

given in section 4.2. In section 4.3, a relation between principal curvature directions and

polyp surface characteristics is established. In section 4.4, our approach to generate surface-

constrained streamlines of curvature and the seeding strategy is described. We start with an

improvement of the existing algorithm on triangle meshes and then we describe a new scheme

based on implicit iso-surfaces. The performance and applicability of these two methods are

compared. In section 4.5, new features are defined on streamlines of curvature and used to

select true-positive polyp detections. An experimental study of our polyp selection scheme

and enhanced visualization of the colon wall are given in section 4.6. At the end of the paper,

we draw some conclusions and suggest items for future work.

4.2 Related Research

Our work is related to many other research fields. The main purpose is to generate and render

streamlines of curvature on the colonic surface and use them for improving automatic pre-

detection of polyps.

Drawing from computer vision and visualization, surface curvature estimation is the basis

of our curvature streamline generation. Triangle meshes are problematic for surface curvature

estimation. We often do not have an analytical function describing the continuous surface

approximated by the mesh. Concepts in differential geometry are no longer applicable in this

discrete case. Approaches have been developed to approximate original surface curvature
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[SMS+03b]. Mesh quality significantly influences the estimation results. Current triangle

mesh extraction techniques often introduce strong artifacts. Most estimation methods suffer

from mesh irregularities and data noise. Computing curvature directly from 3D volume data

is based on derivatives of 3D images. These derivatives are usually estimated using kernel

methods [vVYV98]. Parameters of the kernel must be properly set to achieve accurate and

reliable results [CS04].

For triangle meshes, some methods [KPH97] fit an analytic surface to a neighborhood

of a mesh vertex and calculate curvature from the fitted function. Other methods estimate

curvature for a surface region using total curvature defined in [O’N97]. Lin and Perry [LP82]

used the angle deficit to measure the Gaussian curvature. Meyer et al. [MDSB02] defined dis-

crete differential geometry operators on triangle meshes. Taubin’s method [Tau95b] is unique

among other methods. It calculated curvatures at mesh vertices using the curvature tensor.

For implicit iso-surfaces in 3D volume data, Thirion and Gourdon’s method [TG95b] was

based on the implicit surface representations defined in differential geometry. The Hessian

matrix of 3D volume data was introduced as another tool in [MBF92].

Lines are often used to express shape features. Reflection lines on surfaces give designers

crucial feedback on the quality of their product [PM02]. Interrante et al. [IFP95] made use

of line textures to enhance the perception of surface shape. In [ANP+01], streamlines in 2D

optical flow were used to examine interesting features for polyp detection.

Streamlines of curvature can be traced on the surface and should be well distributed for

efficient shape characterization. Nagy et al. [NSW02] presented an interactive technique

based on streamlines of curvature in 3D volume. Girshick et al. [GIHL00] introduced a simple

scheme to trace streamlines of curvature on triangle meshes. In their work, streamlines were

evenly spaced by using a special seeding method [JL97]. Mebarki et al. [MAD05] proposed

a fast farthest point seeding algorithm that can trace longer streamlines in 2D vector fields.

Other work made use of local surface features to control the streamline density. Verma et al.

[VKP00] discussed characteristics of a good seeding strategy and presented a method using

local flow topology. Alliez et al. [ACSD+03] applied streamlines of curvature for surface

remeshing. They traced streamlines in the parameter space of a surface after the original

surface was flattened. Curvatures were employed to optimize the streamline density in order

to preserve surface information after remeshing. However their work did not apply to implicit

iso-surfaces.

4.3 Polyp Characterization Using Lines of Curvature

The idea of using streamlines of curvature for polyp candidate selection is inspired by visu-

alizing the two vector fields of surface principal curvature directions. Our work starts with

curvature estimation on triangular surface meshes, both for scalar curvature and for principal

curvature directions.

A robust curvature estimation approach, named the Normal Vector Voting (NVV) method

[PSK+02], is applied on triangular colonic surfaces extracted from real CT scans using

Marching Cubes. We will discuss the NVV method later in Section 4.4.1. Visual inspec-
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Figure 4.1: Distinctive patterns on polyp surfaces. Upper: Circular pattern in maximum curvature directions.

Lower: Focusing pattern in minimum curvature directions.
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Figure 4.2: A polyp surface has two parts: ideally, the cap is spherical and convex, the neck is a closed-ring and

anticlastic surface.

tion of principal curvature directions shows patterns on polyp surfaces that may discriminate

polyps from healthy tissue (Figure 4.1). In the case that mesh surface normals point towards

the interior of the colon, the maximum curvature directions around the polyp present a circu-

lar pattern while the minimum curvature directions present a focusing pattern. This relation

can be explained with a generalization of the polyp surface.

A polyp surface consists of two parts, the top part and the bottom part (Figure 4.2). We

call the top part the polyp cap and the bottom part the polyp neck. The polyp cap is the

most protruding area on a polyp surface. It is ideally represented as a spherical or ellipsoidal

surface. The polyp neck is the transition area from the background to the polyp cap. It is

typically a closed-ring and anticlastic surface, i.e. all points on the polyp neck are hyper-

bolic. Considering the local geometric properties, surface principal curvature directions on

the polyp cap do not always show characteristic patterns. Sometimes, a polyp can not be eas-

ily identified only according to its cap. Most existing polyp detection methods use indicators

based on scalar curvatures, e.g. the volumetric shape index [YNM+02] and the sphericity

index [HSH05]. Such indicators only work on the polyp cap. Therefore, they sometimes can

introduce many false-positive detections. The polyp neck is a distinctive part of the polyp.

Every polyp has a neck as long as it protrudes from the colon wall. Around such an anti-

clastic area, principal curvature directions present particular patterns of polyps, i.e. circular

or focusing patterns.

Streamlines of curvature can be used to visualize principal curvature directions on the

colonic surface. Therefore, specific patterns in streamlines of curvature can help to discrimi-

nate polyps from background. The circular pattern in maximum curvature directions around

the polyp neck suggests potential. Since the polyp neck is typically a closed-ring area, ap-

proximately closed streamlines are expected to locally represent the polyp narrow part or

neck. For this reason, we propose to supplement existing polyp detection methods with an

analysis on the polyp neck.
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4.4 Generating and Rendering Lines of Curvature on

Colonic Surfaces

Streamlines of curvature support polyp candidate selection and enhance polyp visualization

when they are superimposed on the colon wall. This section describes techniques to generate

these curves on explicit triangle meshes as well as on implicit iso-surfaces.

4.4.1 Lines of Curvature on Explicit Triangle Mesh Surfaces

The first step to generate streamlines of curvature on triangle meshes is curvature estimation.

Smooth and regular principal curvature directions are desired to correspond with surface

shape. The NVV method developed by Page et al. [PSK+02] is a robust curvature estimation

approach on general triangle meshes even with low quality. It uses the geodesic neighborhood

as an improvement of other types of neighborhoods, e.g. the k-ring (k= 1,2,3, . . .) neighbor-
hood. It is defined to be a surface region bounded by a user-specified geodesic distance from

the central mesh vertex. A k-geodesic neighborhood not only enlarges the computation area

but also supports balanced directional sampling around a mesh vertex. This is very useful to

reduce the effects of mesh irregularity and noise.

The NVVmethod provides robust curvature estimation on triangle meshes, for both scalar

curvature values and principal curvature directions. We extended and improved the streamline

tracing technique described in [GIHL00] on triangular colonic surfaces, by integrating the

NVV method and a simplified computation. This algorithm traces the streamline on the mesh

by projecting each integration onto the local mesh triangle. When the streamline reaches

a mesh edge, the intersection point with that edge is added and the local mesh triangle is

updated. We found calculating intersection points of mesh-constrained streamlines and edges

to be complicated by the limited floating point precision. The inaccuracy caused by this

accumulates as an error during streamline integration. To alleviate this problem and simplify

the computation of intersection points, we transform the problem to 2D. We define a local 2D

coordinate system for each triangle plane. A triangle vertex is set to be the origin. One axis

coincides with a triangle edge. Intersections with edges can be easily computed in this 2D

coordinate system and then transformed to 3D.

We characterize the local surface shape using collections of streamlines. Therefore it is

important that streamlines of curvature are distributed regularly over the triangle mesh using a

seeding strategy. The evenly distributed streamlines in [GIHL00] may lose details of surface

shape. An adaptive and efficient way was presented in [ACSD+03]. Although the application

is different, curvature controlled seeding contributes much to polyp surface characterization.

Streamlines of curvature on a colonic surface mesh are shown in Figure 4.3. In this case,

the appearance and accuracy of streamlines are significantly affected by the mesh quality and

estimated principal curvature directions.
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Figure 4.3: Streamlines of maximum curvature are generated and rendered on the triangular colonic surface.

4.4.2 Lines of Curvature on Implicit Iso-surfaces

Implicit surfaces are widely used in Virtual Colonoscopy. Compared to an explicit triangle

mesh, an implicit surface provides a smoother and clearer visualization of the colon wall.

An implicit surface is embedded in a 3D volume as an iso-surface. It is usually visualized

using volume ray casting techniques. In this section, we describe a new approach to generate

streamlines of curvature on implicit iso-surfaces. We first discuss iso-surface curvature esti-

mation. Then we describe our curvature streamline tracing on implicit iso-surfaces. We have

adapted the strategy of curvature controlled seeding and spacing for this case.

Curvature Estimation on Iso-surfaces

We use the method proposed by Van Vliet and Verbeek [vVYV98] to estimate principal

curvatures on an iso-surface in 3D volume data. There are three steps in this algorithm.

First, we calculate the gradient vector g and the Hessian matrix H at a position P on the

iso-surface in 3D volume based on the following definitions:

g= ( fx, fy, fz) H=





fxx fxy fxz
fxy fyy fyz
fxz fyz fzz





Entries in these definitions are partial derivatives of the 3D image:

fx =
∂ f

∂x and fxx =
∂ 2 f
∂x2
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These derivatives can be estimated in a 3D volume by convolution with the derivative of a

Gaussian function with a specific kernel width σ .
Second, the Hessian matrixH is rotated to align one axis with the local gradient direction

g. The rotated Hessian matrix can be written as:

Hr =









fgg · · · · · ·
... fuu fuv
... fuv fvv









=

(

fgg · · ·
... Ht

)

where fgg is the second order derivative along the gradient direction, u and v are the other

two axes in the local coordinate system and Ht is a 2D Hessian matrix in the plane uv.

Finally we perform eigen analysis on the 2D Ht. Local principal curvature values at P

can be computed based on the local gradient magnitude and two eigenvalues λ1 and λ2:

k1 =
−λ1
‖g‖ and k2 =

−λ2
‖g‖

The two eigenvectors correspond to principal directions in the tangent plane uv at P. They

must be transformed to the original 3D coordinate system.

Since most 3D CT images involve noise, we must choose a proper Gaussian convolution

kernel width σ . In our implementation, σ is set to be 2.0 millimeters and kernel size is 11

voxels with regard to covering noise and computational efficiency.

Tracing Lines of Curvature on Implicit Iso-surfaces

Tracing a streamline of curvature on an implicit iso-surface is different from a triangle mesh.

The position of the surface is not explicitly known. The work in [GIHL00, NSW02] also

included approaches tracing streamlines of curvature in 3D volume. But such streamlines

are not constrained to iso-surfaces. In our approach, we restrict streamline points to the iso-

surface in an implicit way when tracing through the 3D volume.

A streamline is traced using stepwise integration from a seed point in forward and reverse

directions. For each integration step, first we calculate principal curvature directions at the

current streamline point on the iso-surface using the method in Section 4.4.2. Currently we

use linear interpolation to estimate the gradient, the Hessian and the data value at an arbitrary

position in the 3D volume. Higher order interpolation, e.g. cubic interpolation, may give a

better result. Then the streamline is propagated one step further following the local principal

curvature direction. This is a first order integration and higher order schemes, e.g. second

and fourth order Runge-Kutta methods, are other improvements. Higher order interpolation

will work better only with higher order integration. Since the principal curvature directions

are tangents to the iso-surface at the current point, the next point initially integrated in first

order generally is not on the iso-surface (See Figure 4.4). Therefore, we project it back onto

the iso-surface. First, the gradient vector g and data value i are calculated at the initial point

P. If i is smaller than the isovalue I of the implicit iso-surface, the projection direction ~D is

g. Otherwise, ~D is −g. Then we iteratively move P along ~D for a step length d and compute
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Figure 4.4: Left: Streamline tracing on iso-surfaces. Right: Projection of initially integrated point on iso-surfaces.

i at P after each step. i1 and i2 are defined to be two consecutive values of i. If one of them is

smaller than I and the other is larger, we stop this procedure and compute P′ as the projection

of P on the implicit iso-surface using:

P′ = P− ( i1−I
i1−i2

·d) ·~D

Streamline tracing and projection on implicit iso-surfaces are explained in Figure 4.4. A

reasonable value for the projection step length d is 1
20

×VoxelLongestDiagonal, where Vox-

elLongestDiagonal is the longest diagonal of a volume voxel. If we use a very small step

length in first order integration or use the fourth order Runge-Kutta method to trace a stream-

line in 3D volume, this projection technique may not be necessary.

L

Figure 4.5: Use curvatures to adapt streamline integration step length on iso-surfaces.

On a highly curved surface area, a long streamline integration step may miss important

surface information. This can be improved by using the surface curvature to adapt the step

length. We developed the approach shown in Figure 4.5. The osculating circle is used to
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Figure 4.6: A pair of seeds is initially placed perpendicularly to each streamline segment. Then they are projected

onto the iso-surface.

approximate the relative local iso-surface normal curve. When tracing in a principal curvature

direction, the integration step length L is dependent on the corresponding curvature value k:

L=

√

εL

(

2
|k| + εL

)

where εL is specified by the user to bound the distance how far the point is allowed to move

away from the iso-surface. Our implementation sets εL =
1
10

×VoxelLongestDiagonal. We

also specify a longest step length Lmax = 0.3mm when tracing on a flat surface area.

Curvature Controlled Seeding on Implicit Iso-surfaces

We modified the curvature-adapted seeding strategy in [ACSD+03] to distribute streamlines

on implicit iso-surfaces. The basic idea of using curvatures to control streamline density

on surfaces is to use minimum curvature value to determine the spacing distance between

streamlines following maximum curvature direction, and vice versa. We follow a procedure

similar to the evenly spaced seeding [JL97]. We first start a streamline from a chosen point on

the surface. For each integration step of tracing, a pair of new seeds placed perpendicularly to

the integration segment at the local curvature controlled spacing distance (Figure 4.6) is put

into a seed queue. Then we iteratively pick another seed in the seed queue and start another

new streamline. Except for the first streamline, every time a new streamline is generated, we

must remove invalid seeds from the queue before new valid seeds are added. This seeding

procedure stops when there is no valid seed. A seed is valid if the distance between it and any

streamline point is not less than its local curvature controlled spacing distance. A streamline

stops when it is too close to other streamlines or reaches a certain maximum number of

integrations.

We developed a method to place the seed on the implicit iso-surface. For each streamline

integration (Figure 4.6), we initially place a pair of seeds perpendicular to the current stream-
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line segment on the local tangent plane. At every streamline point S, we construct a normal

plane containing the streamline integration direction T and the local gradient vector g. We

then compute two vectors V1 and V2, orthogonal to and pointing outwards from the normal

plane:

V1 = T ×G and V2 = G×T

The next problem is to decide the spacing distance ds to place the initial seeds along V1 and

V2. In the case shown in Figure 4.7, the distance from the initial seed point to the iso-surface

is bounded by ε1. Then the spacing distance ds will be specified based on the controlling

curvature k:

ds =

√

ε1

(

2
|k| + ε1

)

These two initial seeds generally are not exactly on the iso-surface. Therefore they are pro-

jected using the projection technique described in Section 4.4.2.

12

Figure 4.7: Use curvatures to control streamline spacing distance and seed validating distance.

Invalid seeds in the potential seeds queue are removed after a new streamline is traced.

To validate a seed, we specify another error boundary ε2. In Figure 4.7, an osculating circle

approximates the intersection arc of the iso-surface between the local streamline point S and

a seed on the iso-surface. The optimal spacing distance between these two points is the arc

length. The Euclidean distance is used as an approximation to simplify the computation. Its

path is offset from the circle arc by a small distance. This distance is bounded by ε2. Thus
the local curvature controlled spacing distance is dependent on the controlling curvature k:

dv = 2×

√

ε2

(

2
|k| − ε2

)

dv can also be used to validate when to stop the tracing of a streamline. As ε2 can be computed

based on ε1, we only need to specify one error boundary ε1:
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ε2 =
1
|k|

(

1−
√

2+|k|×ε1
2×(1+|k|×ε1)

)

In our experiments, ε1 =
1
10
×VoxelLongestDiagonal yielded the best result.

When tracing in one principal curvature direction, the controlling curvature k corresponds

to the other principal curvature direction. Figure 4.8 shows the results of our algorithm on an

artificial 3D volume data. On both triangle meshes and implicit iso-surfaces, a streamline of

curvature is rendered as a ploy line. In order to make a streamline more visible, a thin tube is

rendered around it.

Figure 4.8: Streamlines of curvature on the implicit iso-surface embedded in an artificial 3D volume. Left: A

synthetic colon model with many polyp-like bumps. Central: streamlines of maximum curvature. Right: streamlines

of minimum curvature.

4.4.3 Comparison

We compared our two techniques described to generate streamlines of curvature on triangle

meshes and implicit iso-surfaces. We only focused on the streamline tracing and spacing.

Surface curvature estimation was performed as part of the preprocessing stage and we as-

sumed comparable and robust curvature estimations in both cases. Linear interpolation and

first order integration were used. We tested on both synthetic data sets and real data sets. Our

workstation had a 2.60GHz Pentium 4 CPU with 1GB of memory. The graphics card was

NVIDIA GeForce4 MX440 with 64MB.

Table 4.1: Comparison of Computation Time: Streamlines are generated per detection patch.

triangle meshes Iso-surfaces

Average Number of Streamlines 43.3 41.2

Average Number of Points 1781 1072

Average Computation Time (sec.) 6.60 3.78

We first recorded computation time in each implementation. Nine synthetic data sets and

five real data sets were used. Streamlines were generated for each detection patch with a
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radius of 16 millimeters. Spacing distance between streamlines was less than 2 millimeters.

Table 4.1 gives a first result for both techniques. It indicates that our technique applied

to implicit iso-surfaces offers a faster computation for streamline tracing and spacing on a

certain part of a surface. The main reason is that mesh-constrained streamlines have more

integrations including many intersections with mesh edges.

Figure 4.9: Comparison of curvature streamline appearance on the triangle mesh and the iso-surface of a medical 3D

volume data: Left two show streamlines of minimum curvature, right two show streamlines of maximum curvature.

Another comparison criterion was the appearance of the streamlines. Since we want to

use streamlines of curvature as a tool to characterize specific features of polyps, the shape of

the streamline is most important. In Figure 4.9, streamlines of curvature are generated on a

triangle mesh and an iso-surface in a real medical data. This 3D volume data is 512×512×
255. Judged by visual inspection, our technique for implicit iso-surfaces gives better results.

Streamlines in this case appear to be smoother, longer and more characteristic.

Both triangle meshes and implicit iso-surfaces offer relative advantages in different visu-

alization applications. These two different techniques should be employed on corresponding

surface representations. If both of them are applicable, the technique for implicit surfaces is

preferred. It favors our improved CAD process in virtual colonoscopy.
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4.5 Feature Calculation on Lines of Curvature

Streamlines of curvature with specific patterns, i.e. (almost) closed streamlines, are inspected

around the polyp neck. The polyp neck can be identified by detecting such characteristic

curves on the colonic surface. To do this, we generate streamlines of curvature for each pre-

detected polyp candidate area and select streamlines on each polyp neck. Then we calculate

features on the selected streamlines to detect specific patterns.

4.5.1 Selecting Lines of Curvature on the Polyp Neck

We generate collections of streamlines on the colonic surface. Only those streamlines pre-

senting distinctive patterns characteristic of the polyp neck are used for the diagnosis, others

may even confuse the result.

We present a method to automatically select important streamlines. In our case, we are

most interested in streamlines on the polyp neck area. We combined the use of curvature

magnitudes with streamline selection. Considering the fact that the polyp neck area is an

anticlastic surface (Section 4.3), the two principal curvature values everywhere on such a

surface have opposite signs. In other words a streamline generated around the polyp neck

should have many hyperbolic points. We define a quantity, named hyperbolic percentage

HP, as a feature to select streamlines on the polyp neck:

HP= nh
N
×100%

where nh is the number of hyperbolic points and N is the total number of points on a stream-

line. A hyperbolic point on the surface has principal curvature values with opposite signs.

TheHP is computed for each streamline generated. Then we select the firstN streamlines

with the largest nh. Each selected streamline must have a HP≥ 50%. Our experience shows

that N = 3 or 5 offers simplified computation and guarantees that streamlines on the polyp

neck are always selected.

4.5.2 Calculating Streamline Features for Polyp Characterization

We want to find (almost) closed streamlines of maximum curvature in the region of the polyp

neck. Therefore, our problem seems to be the topic of detecting (almost) closed streamlines

on 3D surfaces.

The detection of specific patterns of streamlines, e.g. closed streamlines and swirling

streamlines, is a topic in flow visualization techniques. Our polyp candidate selection scheme

is similar to the detection of flow vortices using streamlines. In 2D flow fields, Portela [Por97]

introduced the winding angle of streamlines to detect vortices. Sadarjoen et al. [SP99] pro-

posed to use the sum of signed angles along a streamline as a simplification. In 3D cases,

winding angles are no longer meaningful. Portela [Por97] suggested reducing the problem

from 3D to 2D by projecting local vectors onto the swirl plane. Jiang et al. [JMT02] presented

an algorithm to detect swirling features based on the geometry of streamlines.
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Swirling streamline patterns used to detect vortices in fluid flow are different from the

curvature line patterns to detect polyps. We want to find (almost) closed streamlines, but we

can use similar techniques such as the winding-angle technique [SP99]. In 2D flow fields, the

winding angle is defined as the cumulative change of direction of the streamline segments.

It measures the rotation of a streamline. A swirling streamline must have a winding angle

of at least 2π . This feature is used to detect swirling patterns of vortices in 2D flow fields.

However the winding angle is inherently limited to 2D.

Figure 4.10: Adapt the winding angle method: the changing angle of streamline direction is projected onto the local

tangent plane.

We generalized the winding angle concept to space curves. Since streamlines of curvature

are traced on 3D colonic surfaces, surface normals could be obtained at streamline points. For

each streamline point, the changing angle of streamline direction is projected onto the local

tangent plane (Figure 4.10). This projected angle is signed according to the right-hand rule.

The sum of such signed angles along a closed streamline may be less than 2π . Therefore, a
streamline is considered to be closed if it has two points within a certain very small distance

from each other, however the arc length of the streamline in between should be above a certain

threshold. The winding angle is computed for each selected streamline, and then the largest

winding angle is used as an important feature per pre-detected polyp candidate.

Only polyps larger than 5mm in diameter are significant for clinical diagnosis. There are

also small bumps on the colon wall, which are not real polyps. Our streamline generation

algorithm also generates (almost) closed streamlines around them. To separate them from

true polyp detections, we also measure the size of the area enclosed by the (almost) closed

streamline in terms of the mean radius. The mean radius of a closed streamline is defined as

the average distance from the mean center of the streamline to its points. The mean radius of

the selected streamline that has the largest winding angle is used as an additional feature per

candidate area in our polyp candidate selection.
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4.6 Experimental Study and Results

In this section we document the results of a study that we performed on 5 patient data sets to

demonstrate the utility of our streamline selection and streamline-based feature calculation

for polyp detection strategies. We also show renderings which illustrate how our surface-

constrained curvature streamlines enhance the visual perception of colonic surface shape in

virtual colonoscopy.

4.6.1 Polyp Candidate Selection Study

We are planning to integrate our streamline selection and streamline-based feature calculation

in a complete polyp detection protocol. The first stage of the protocol is a polyp pre-detection

phase [YNM+02] that yields all true-positive detections (as confirmed by medical diagnosis),

and also a large number of false-positive detections. Suspect locations are first detected on

the colonic surface based on the volumetric shape index. During the second stage, the number

of false-positive detections will be reduced using various classification techniques.

We assessed the value of our streamline selection and the winding angle calculation to

discriminate between true- and false-positive polyp detections in a large number of candidate

areas, with the goal of integrating these techniques in the second stage of polyp detection and

classification. CT scans were performed on five patients with a Philips Mx8000 multislice

scanner. The average voxel size of the 3D volume image is 0.77mm× 0.77mm× 1.60mm.
The preprocessing algorithm [YNM+02] detected 331 polyp candidate areas in total. An

expert opinion of an experienced radiologist was used to classify these candidate areas into

true- and false-positive detections, where true-positive detection indicates a definite polyp

and false-positive detection a non-polyp. Of the 331 candidate areas, 50 sites (15.1%) were

classified as true-positive detections. True-positive detections were found in all 5 patients.
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Figure 4.11: Features of Streamlines: Mean Radius and Alternative Winding Angles. True- and false-positive

detections are visually clustered.
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We applied our streamline selection and winding angle calculation method on all 331

candidate areas. The winding angle was significantly higher for true-positive detections than

for false-positive detections (Wilcoxon rank sum test, p< 0.001). The median winding angle

and inter-quartile range (IQR) for the true-positive detections was 7.817 and 6.770–9.288
compared to 2.954 and 1.995–3.749 for the false-positive detections. Figure 4.11 shows

clustering of the true- and false-positive detections. These results indicate that streamline

selection and winding angle measurements in candidate areas could make a valuable con-

tribution to an approach for discriminating between true- and false-positive polyp candidate

areas as detected by the preprocessing algorithm.

4.6.2 Enhanced Visualization

The visualization of the shaded colon wall can also benefit from streamlines of curvature

(images on the left of Figure 4.12). This can greatly enhance the perception of colonic surface

features, e.g. polyps. We also show the results of our automatic streamline selection method

in the images on the right of Figure 4.12. As can be seen in these images, one or more of the

selected streamlines are situated on the polyp neck.

4.7 Conclusions and Future Work

Our work explored the potential of surface principal curvature directions to characterize spe-

cific surface shape features, e.g. colonic polyps in virtual colonoscopy. Streamlines of cur-

vature were used to visualize such vector fields. The most important elements are robust

methods for curvature calculation, surface-constrained streamline integration, and the use of

adaptive seeding and spacing of the streamlines. We developed a new scheme for curvature

controlled spacing of streamlines on implicit iso-surfaces. Both the implicit and explicit sur-

face implementations showed good results for surface curvature streamlines. In particular,

our approach is useful for implicit surface characterization based on 3D volume data.

(Almost) closed streamlines can be generated on the polyp neck area. Therefore we

expect that such characteristic patterns are a good indicator of colonic polyps in virtual

colonoscopy. Streamlines are selected based on the local surface geometry and new features

are calculated on selected streamlines. A statistical analysis indicated that such streamline

features are highly correlated with true-positive detections of a preprocessing polyp detec-

tion method. The polyp neck area is considered as an addition to the polyp cap, which is

often the main focus of current polyp detection techniques. Our newly defined features on

curvature streamlines are expected to reduce the number of false-positive polyp candidates

in a pre-detection. We proposed a new polyp candidate selection scheme that can be easily

combined with other techniques to improve current computer-aided detection. An enhanced

visualization of the colon wall by curvature line patterns can also improve the perception of

colonic surface shape for radiologists.

There are a number of promising avenues for future research towards a robust polyp

detection technique. For the techniques described, the use of higher order integration and
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interpolation methods can possibly lead to more accurate results. The streamline-enhanced

visualization must be compared with the standard visualization in a clinical environment. Our

polyp candidate selection scheme will also be tested with a large number of clinical CT scans

to obtain a generalized specification of its performance.
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Figure 4.12: Five pairs of images for enhance visualization using streamlines of curvature and selected streamlines

around the polyp neck area. Images in the upper row: The perception of colonic surface shape is enhanced us-

ing streamlines of curvature; Images in the lower row: Streamlines are automatically selected using the algorithm

described in Section 4.5.1, one or more of the selected streamlines are situated on the polyp neck area.



CHAPTER5

Efficient Seeding and Defragmentation of Curvature Lines for

Colonic Polyp Detection

This chapter is based on our paper for the SPIE Conference on Medical Imaging, 2008

[ZBT+08].

Abstract

Many computer-aided diagnosis (CAD) schemes have been developed for colon cancer de-

tection using Virtual Colonoscopy (VC). In earlier work, we developed an automatic polyp

detection method integrating flow visualization techniques, that forms part of the CAD func-

tionality of an existing Virtual Colonoscopy pipeline. Curvature streamlines were used to

characterize polyp surface shape. Features derived from curvature streamlines correlated

highly with true polyp detections. During testing with a large number of patient data sets, we

found that the correlation between streamline features and true polyps could be affected by

noise and our streamline generation technique. The seeding and spacing constraints and CT

noise could lead to streamline fragmentation, which reduced the discriminating power of our

streamline features.

In this paper, we present two major improvements of our curvature streamline generation.

First, we adapted our streamline seeding strategy to the local surface properties and made

the streamline generation faster. It generates a significantly smaller number of seeds but still

results in a comparable and suitable streamline distribution. Second, based on our observa-

tion that longer streamlines are better surface shape descriptors, we improved our streamline

tracing algorithm to produce longer streamlines. Our improved techniques are more efficient

79
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and also guide the streamline geometry to correspond better to colonic surface shape. These

two adaptations support a robust and high correlation between our streamline features and

true positive detections and lead to better polyp detection results.

5.1 Introduction

In recent years, significant progress has been made for using computer technology in clinical

examinations. Computer imaging and visualization techniques are now widely used in visual

diagnosis. Virtual colonoscopy is a patient-friendly technique that enables effective screening

of the large intestines for colorectal polyps, which are well-known precursors of colon cancer

[Bar05, Pic04]. The interior colon wall is extracted from the patient data set, usually CT

scans, and then rendered to allow for visual inspection by a radiologist. Due to the complexity

of the colon wall, a thorough examination of the entire colon is very time consuming. In

order to achieve high efficiency and effectiveness in virtual colonoscopy, computer-aided

techniques are developed to pre-detect and visualize polyp candidates.

A large number of automatic polyp detection schemes have been developed as helpful

additions to the virtual colonoscopy pipeline [LFP+06, YN01, SYP+05, HSH05, KvCD+05,

vWvRV+06, HQK06, ZBB+06]. Many of them are based on 3D surface curvature measures,

i.e. scalar principal curvature values. An early example of the use of curvature concepts from

differential geometry is due to Summers et al. [SSM+98]. Yoshida et al. [YN01] derived

two geometric features, namely the shape index and volumetric curvedness, to character-

ize polyps, folds and colonic walls at voxels and indicate polyp candidates by a hysteresis

thresholding. Huang et al. [HSH05] developed a two-stage curvature estimation method and

derived the sphericity index as a shape-based discriminator to find polyp candidates. Accu-

rate and noise-insensitive curvature estimation is essential for any such scheme. Only using

scalar curvature measures can result in many false-positive detections.

Other work has been done trying to find complementary solutions instead of only relying

on curvature and corresponding derivatives. Hong et al. [HQK06] presented a CAD polyp de-

tection pipeline based on an integration of texture and shape analysis with volume rendering

and conformal 3D colonic surface flattening. Kiss et al. [KvCD+05] fitted a spherical model

to the colonic surface normals and considered convex regions as suspected polyps. Van Wijk

et al. [vWvRV+06] considered that polyp shape and size vary greatly and are often far from

the widely-used ellipsoidal polyp model, showing many irregularities. They proposed a shape

and size invariant approach, in which the local colonic surface is deformed until the minimum

curvature is close to zero. The amount of deformation is computed as a “protrusion” measure

and used for detecting polyp candidates.

Our previous work [ZBB+06] explored the potential of surface principal curvature direc-

tions, which are represented as two orthogonal vector fields on the surface. We integrated flow

visualization techniques in a complete polyp detection protocol. Useful features were calcu-

lated on curvature streamlines and used to reduce the number of false-positive detections,

which are the result of a pre-detection stage. However, during further testing with a larger

number of patient data sets, we found that the correlation between our curvature streamline
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features and true polyp detections could be affected by CT noise and the characteristics of our

streamline generation scheme. In this paper, we present two major improvements of our cur-

vature streamline generation to strengthen the discriminating power of curvature streamline

features. We adapt our streamline seeding strategy to the local surface geometry so that the

integration of curvature streamlines becomes more efficient. Our experiments also suggested

that longer curvature streamlines are more suitable for feature calculation. We improved our

streamline tracing algorithm to produce longer streamlines that better correspond to colonic

surface shape. These two adaptations support a better polyp detection result using curvature

streamline features.

The rest of the paper is organized as follows: a more detailed discussion of our previous

work is given in section 5.2. We present our surface-adaptive streamline seeding strategy

and improved longer streamline tracing algorithm in section 5.3. In section 5.4, we give an

analysis for using improved streamline features in automatic polyp detection. Finally, we

summarize our work with some conclusions and propose for future work in section 5.5.

5.2 Background

The proposed CAD process in our previous work [ZBB+06] consists of three steps: pre-

detection of polyp candidates, candidate selection and finally enhanced visualization. Polyp

candidates were pre-detected using the approach developed by Yoshida et al. [YN01] based

on the shape index and volumetric curvedness. These pre-detections included all true polyps

as documented with the data sets used and a large number of false-positive detections. We

made use of curvature streamlines as additional information to avoid false-positive detections

without losing sensitivity.

The idea was based on a generalization of the polyp surface. We modeled a polyp as com-

posed of the top part and the bottom part, namely the cap and the neck. Visualization of prin-

cipal curvature direction fields around the polyp showed a circular pattern in the maximum

curvature direction and a focus pattern in the minimum curvature direction, with consistently

outward-pointing surface normals. To exploit such polyp characteristics, we distributed cur-

vature streamlines in the neighborhood per polyp candidate. We developed techniques that

trace surface-constrained streamlines for both explicit and implicit surface representations.

In order to cover necessary surface shape information, curvature streamlines were distributed

using a curvature-controlled spacing approach. Distance between neighboring streamlines

is dependent on local surface curvatures. Geometric properties of curvature streamlines are

good descriptors of local surface shape. Circular or closed streamlines that follow maximum

curvature direction were inspected around the polyp neck area. Therefore such patterns could

be used as indicators of colonic polyps. The winding angle and mean radius were calculated

on curvature streamlines as features used in our polyp candidate selection process. The wind-

ing angle is defined as the cumulative change of direction along a streamline (Figure 5.1).

Mean radius is a coarse measure of the polyp size. As the indicator of a polyp instance, a

closed streamline has a winding angle of at least 2π . We performed an experimental study

of these features on 5 patient data sets, including 50 true polyps and 281 false-positive detec-
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Figure 5.1: Winding angle is the cumulative change of direction of a streamline.

tions. The result showed a high correlation between curvature streamline features and true

polyp detections. We used this correlation to separate true and false positive detections.

We performed further test with a larger number of data sets and found that this correlation

sometimes could be significantly affected by noise and the characteristics of our curvature

streamline generation scheme. Due to the thresholding for streamline spacing and inevitable

data noise, many short streamline fragments were generated. Importantly, expected circular

or closed streamlines could be fragmented. This streamline fragmentation made the winding

angle feature less robust particularly for larger polyps. Often short streamline segments were

distributed around the polyp neck area, and none of them had a winding angle of at least

2π . In this case, the enclosed polyp could not be characterized by the winding angle feature

because of these short streamline fragments. Long streamlines are preferable for obtaining

high values of winding angle. Therefore the streamline spacing technique should promote

the generation of long streamlines.

In addition, our streamline seeding strategy was inefficient due to its greedy nature, in

which a pair of seed points was placed on both sides of the streamline for each integration

step. This fact increased the computational complexity of our method and slowed down the

system.

An improvement of our curvature streamline based CAD system is required to achieve a

low number of false positives, but without losing sensitivity. In the next section, we present

two major improvements to increase the efficiency of our streamline computation and make

our streamline features more robust.

5.3 Methods

5.3.1 Adaptive Curvature Streamline Seeding

The greedy streamline seeding strategy [JL97] used in our previous work generated a large

number of seed points (Figure 5.2(a)). For each integration step of streamline tracing, a pair
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(a)

(b)

Figure 5.2: Curvature streamline seeding: (a) Greedy streamline seeding generated potential seed points for each

streamline integration step, many redundant seed points were not actually used for streamline generation; (b) Adap-

tive streamline seeding improves the efficiency of streamline computation, the density of seed points is controlled

by local surface geometry. Gray dots indicate seed points, black dots are integration steps where seeds are placed,

and hollow white dots are integration steps where seeds are not placed.
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of potential new seed points was placed perpendicular to the local streamline segment on

both sides. All these seed points were put into a seed queue for starting new streamlines.

After a new streamline was generated, seed points too close to existing streamlines were

removed from the queue. Thus many potential seeds were calculated but not used for stream-

line tracing and it was always needed to validate these redundant seeds and remove them if

necessary. These seeds were also very close to each other. Only a small number of them were

actually used as starting points for tracing new streamlines. This significantly increased the

computational complexity of our streamline generation.

In order to increase the efficiency of our streamline seeding strategy, the number of re-

dundant seed points calculated on the fly can be reduced. In our streamline spacing, local

surface curvature magnitudes are used to estimate the optimal distance between two neigh-

boring streamlines. We adopt this idea to improve the streamline seeding. The density of

potential seed points is adapted to the local surface shape, i.e. controlled by the local curva-

ture values. Seed points are only calculated if they have a high probability to be actually used

for tracing new streamlines.

This surface-adaptive streamline seeding is explained in Figure 5.2(b). When tracing a

streamline, integration steps are selected to place seed pairs. After a pair of seeds is placed at

an integration step A, we calculate a seeding distance using:

dseeding =

√

εs

(

2

|k|
+ εs

)

(5.1)

where εs is a user-specified error boundary to constrain the local surface approximation and

|k| is the controlling curvature value that corresponds to the curvature direction that the

streamline follows. This equation is similar to the one that we used in our previous work

[ZBB+06] for the calculation of optimal streamline spacing distance. The only difference

is that we are now using the same principal curvature that the streamline follows. With this

seeding distance, we continue to integrate the streamline until we arrive at integration step

B that is far enough, i.e. the Euclidean distance between integration A and B is no less than

dseeding. Then we place another pair of seeds and continue. We set a maximum seeding

distance to ensure that necessary seed points can always be calculated. Although not all

adaptively calculated seed points are actually used for streamline generation, the number of

redundant seeds is significantly reduced.

5.3.2 Curvature Streamline Defragmentation

Our work employs flow visualization techniques, more specifically streamlines in vector

fields, for polyp surface characterization. The streamline generation in our work is based on

the algorithm for generating evenly-spaced streamlines proposed by Jobard and Lefer [JL97].

A problem introduced is the stringent thresholding for streamline spacing distance. This can

result in many short streamlines, which are less meaningful for characteristic features. To

promote the computation of many long streamlines, Jobard and Lefer suggested to reduce

their fixed threshold by half for spacing.
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Figure 5.3: Connection of a newly integrated streamline with an existing streamline at the end points. The new

streamline is shown in gray, the existing streamline is shown in black. Dotted line indicates a tentative connection,

dash-dotted line indicates the direction at the end of the existing streamline.

We adapted the streamline spacing threshold to local surface curvatures and followed

Jobard and Lefer’s suggestion. However our observation showed that curvature streamlines

were often terminated when they could have continued. This fact made our curvature stream-

line features less robust for polyp candidate selection. To avoid this, we develop a streamline

defragmentation approach and obtain sufficiently long streamlines.

Our streamline defragmentation is based on the correlation between two streamlines.

Streamline correlation is a similarity measure that quantifies the probability that two stream-

line segments belong to the same streamline. An application of streamline similarity is

streamline clustering. Many streamline clustering methods have been presented in the lit-

erature, particularly for fiber tracks in diffusion tensor imaging (DTI) [MVvW05]. Brun et

al. [BPKW03] defined a DTI fiber similarity based on the Euclidean distance between end

points of fibers. Corouge et al. [CGG04] computed point pairs of two streamlines and used

them to define fiber distance.

Our streamline defragmentation approach consists of two stages. In the first stage, we

trace streamlines that are as long as possible so that they capture more surface information.

In the second stage, neighboring fragments with endpoints that are very close are connected,

only if the direction of the connecting line segment is similar to the respective directions of

the two streamline fragments at their connecting endpoints. Each connection combines two

streamline fragments into a longer streamline fragment.

In our previous work, streamline spacing was dependent on local surface curvature. In or-

der to generate longer streamlines, spacing is now also dependent on the correlation between

streamline directions at their endpoints. We use a correlation-based streamline spacing dis-

tance to determine when and where a streamline stops. We compute the correlation between

a newly integrated streamline point P and an existing streamline end point Q by (Figure 5.3):

{

R= Tc·Te = cosα,

i f R< 0 then R= 0.
(5.2)
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Figure 5.4: Correlation-based streamline spacing: For a streamline indicated by the central black line, the area

filled with diagonal lines is the correlation-based spacing region. The area filled with vertical lines demonstrates the

difference from purely curvature-controlled spacing.

with:






Tc =
−→
PQ

‖
−→
PQ‖

,

Te =
−→
QO

‖
−→
QO‖

.
(5.3)

where O is the previous streamline point of Q. For the correlation between P and an existing

streamline point that is not an end point, R is always equal to 0. Then we compute the local

spacing distance between two streamlines by:

dspacing = ls

√

1−R2 (5.4)

where ls is the curvature-controlled streamline spacing distance defined in our previous work

[ZBB+06].

Figure 5.4 shows the spacing region of a streamline. New streamline integration stops at

the region border. If a new streamline integration step is approaching the end of an existing

streamline and has a high correlation with it locally, they can be very close at their end

points. For streamline fragments that are arbitrarily close at their end points, we need to

examine both the tentative connection direction and the two streamline propagating directions

at corresponding end points. We define a measure:

η =

√

(Tn·Tc)2+(Tc·Te)2

2
(5.5)

to quantify the probability that two streamline fragments belong to one single streamline

(Figure 5.5). Tn and Te are local directions of the two streamline fragments and Tc is the

tentative connection direction. All vectors are of unit length. We define a tolerance for this

quantity by a suitable threshold and connect streamline fragments that fulfil the criteria.
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Figure 5.5: When two streamline fragments are very close and locally propagate almost in the same direction, we

assume that they belong to one single streamline and connect them.

5.4 Experimental Results

We have evaluated the effects of streamline defragmentation on our polyp detection strategy.

We first compare the new surface-adaptive streamline seeding with the previous greedy strat-

egy and show how the efficiency of curvature streamline computation is improved. We then

demonstrate that the discriminating power of our curvature streamline features for character-

izing true polyp detections is significantly strengthened by the streamline defragmentation.

We also illustrate how our streamline defragmentation enhances the visualization of polyp

surface shape.

5.4.1 Streamline Computation Efficiency

As in earlier work, streamline generation and feature calculation are integrated in a com-

plete polyp detection protocol. Polyp candidates are pre-detected using an existing detection

scheme [YN01]. Many false-positive detections are included and all true-positive detec-

tions are annotated by radiologists. Colonic surfaces are represented as implicit iso-surfaces

embedded in 3D volume data and rendered using volume ray casting technique. Surface-

constrained curvature streamlines are directly traced in the 3D volume and distributed over

a small neighborhood surrounding the polyp candidate. Linear interpolation and first-order

integration were used in streamline tracing.

We compared our improved streamline computation with our previous work. The stream-

line computation also included implicit iso-surface curvature estimation. Our workstation

had dual 3.20GHz Intel Xeon CPUs with 3GB memory. The average computation times for

both seeding strategies are shown in table. 5.1. The result indicates that our surface-adaptive

streamline seeding is more than twice as fast as the greedy seeding approach. A far smaller

number of redundant seed points were generated while maintaining a good adaptation to the

local surface shape.
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Table 5.1: Comparison of streamline seeding strategies: using surface-adaptive seeding, curvature streamline com-

putation is accelerated to be twice as fast.

Per candidate area Greedy Seeding Surface-adaptive Seeding

Average number of streamlines 66.2 63.1

Average number of seeds 2056.8 631.6

Average number of streamline points 2352.3 2216.6

Average computation time (sec.) 15.233 5.786

5.4.2 Discriminating Power of Curvature Streamline Features

In previous work [ZBB+06] we presented an assessment of our curvature streamline features

to discriminate between true- and false-positive polyp detections, based on 5 patient data sets.

50 sites were true polyps and 281 candidates were false-positive detections. These candidates

were pre-detected based on the volumetric shape index. Curvature streamlines were applied

to all 331 detections. A scatter plot of the streamline winding angle and mean radius features

showed a high correlation with true polyp detections.

In further testing, we included another 13 patients. Each patient had 2 CT scans, per-

formed using a Philips Mx8000 multislice scanner. The average voxel size of the 3D volume

image is 0.75mm× 0.75mm× 1.60mm. Some of these data sets have a higher noise level.

4598 polyp candidates were pre-detected in the preprocessing stage. An experienced radi-

ologist classified all candidate areas as either true- or false-positive detections. 168 sites

were annotated as true polyp detections, found in all 13 patients. Some of them were large

(10− 19mm) polyps and in some cases even classified as masses (20mm and above). We

calculated curvature streamline features, i.e. the winding angle and mean radius, on all these

candidates. A scatter plot (Figure 5.6(a)) based on the previous work shows that the discrim-

inating power of curvature streamline features can be significantly reduced due to data noise

and the size of the polyps. For large polyps, our previous winding angle feature became much

less meaningful. An important reason for this was the streamline fragmentation.

We applied our curvature streamline defragmentation approach to improve the discrimi-

natory power of curvature streamline features. The average streamline length was increased

by 25%. Figure 5.6(b) shows the scatter plot of our improved winding angle and mean ra-

dius features on all polyp candidates in the 26 patient data sets. The result indicates that

the discriminating power of the curvature streamline features is significantly strengthened by

streamline defragmentation, especially for large true polyp detections.

The visualization of the shaded colon wall is also improved by longer curvature stream-

lines. We compared our correlation-based long streamline approach with our previous work

in Figure 5.7. In these images, it appears that longer streamlines better emphasize polyp sur-

face features. We expect that this will facilitate visual inspection and expert detection. In
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(a)

(b)

Figure 5.6: Scatter plot of curvature streamline features for polyp candidates: (a) features calculated on curvature

streamlines without using streamline defragmentation; (b) features calculated on defragmentized curvature stream-

lines. By streamline defragmentation, the discriminating power of curvature streamline features for classifying true

polyp detections is increased.



90 CHAPTER 5. ENHANCED CURVATURE LINE GENERATION

Figure 5.7: Comparison of previous streamline generation (left images) and improved approach using streamline

defragmentation (right images): we often inspect streamline fragments using our previous tracing algorithm. If this

case happens around a polyp surface, then we will not detect closed streamlines using winding angle feature. Our

streamline defragmentation is a helpful addition to solve this problem.
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future work, this hypothesis will be experimentally evaluated.

5.5 Conclusions and Future Work

Our curvature streamline based polyp detection scheme explored the characteristics of colonic

polyps embedded in principal surface curvature direction fields. Streamlines of curvature

were used to visualize these two vector fields and extract specific features. A crucial prob-

lem was that streamline generation significantly influences the discriminating power of our

curvature streamline features to classify true polyp detections. In this paper, we presented

two major improvements to increase the efficiency and robustness of our previous work.

We adapted our streamline seeding to local surface shape and reduced the computational

complexity of streamline generation. The process was accelerated generating a significantly

smaller number of seed points. Our streamline defragmentation approach yielded longer cur-

vature streamlines that better characterize the colonic surface shape. We applied our curvature

streamline technique on more data sets, of which some have a higher noise level. The result

shows that our features calculated on longer curvature streamlines correlate more strongly

with true polyp detections.

In addition, the robustness of our improved streamline features will be further validated in

later research. We will also work on deriving other useful features from curvature streamlines

as helpful additions for our polyp candidate classification.
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CHAPTER6

Colonic Surface Partitioning Based on Curvature Line

Clustering for Polyp Detection in CT Colonography

This chapter is based on our paper for the first Eurographics Workshop on Visual Computing

for Biomedicine 2008 (VCBM’08) [ZvRB+08].

Abstract

Automatic polyp detection is a helpful addition to laborious visual inspection in CT colonog-

raphy. Traditional detection methods are based on calculating image features at discrete

positions on the colon wall. However large scale surface shapes are not captured. This pa-

per presents a novel approach to aggregate surface shape information for automatic polyp

detection. The iso-surface of the colon wall can be partitioned into geometrically homoge-

neous regions based on clustering of curvature lines, using a spectral clustering algorithm

and a symmetric line similarity measure. Each partition corresponds with the surface area

that is covered by a single cluster. For each of the clusters, a number of features are calcu-

lated, based on the volumetric shape index and the surface curvedness, to select the surface

partition corresponding to the cap of a polyp. We have applied our clustering approach to

nine annotated patient datasets. Results show that the surface partition-based features are

highly correlated with true polyp detections and can thus be used to reduce the number of

false-positive detections.

93
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6.1 Introduction

CT colonography is a minimal-invasive technique that enables effective screening of the large

intestine [vGVS+02, Bar05, KPT+07]. The main task is to identify adenomatous colonic

polyps, which are well-known precursors of colon cancer. Typically, colonic polyps are visi-

ble as protrusions on the interior colonic surface. In virtual CT colonography, the iso-surface

of the colon wall is first extracted as a triangle mesh, or as an implicit iso-surface using vol-

ume ray casting techniques. Unfortunately, a complete visual inspection of the colon wall is

rather time consuming and important areas are inevitably missed. To maintain high effective-

ness and efficiency, computer-aided diagnosis (CAD) has been proposed as a helpful addition

to the CT colonography pipeline.

The majority of existing CAD schemes [YN01, SYP+05] for automatic polyp detection

are based on calculating image features, e.g. surface principal curvatures, at discrete points

on the colon wall. These image features are then filtered using hysteresis thresholding to

identify suspected regions that belong to colonic polyps. Polyp candidates are detected by

fuzzy clustering of these connected components. Such approaches mainly focus on point-

wise surface shape characteristics. Large scale shapes of the colonic surface are not captured.

Point-sampling features are in general more sensitive to CT data noise and surface irregu-

larities. Aggregation of shape information within a certain area is necessary to enhance the

robustness of polyp surface characterization.

Instead of calculating point-sampling features on the colon wall, we first partition the

colonic surface into regions that exhibit consistent behaviour with respect to surface geome-

try. We perform this partitioning by clustering surface-constrained curvature lines. Curvature

lines are curves everywhere tangent to one of the two principal curvature direction vector

fields on the surface. Geometric features are then computed within each surface partition,

over the clustered curvature lines, and used to classify these surface partitions into vari-

ous predefined types. These features are also used to identify surface partitions that contain

polyps.

We integrated our colonic surface partitioning and aggregated surface shape feature cal-

culation with an existing CAD pipeline. Polyp candidates are pre-detected using an existing

automatic polyp detection scheme [vWvRV+06], which yields all true polyp detections for

the data set we used, as confirmed by an experienced radiologist, and also a large number of

false detections. We make use of techniques from [ZBB+06] to generate surface-constrained

curvature lines in the area around each detected candidate position. Then each candidate area

is partitioned into geometrically homogeneous regions by clustering curvature lines. New

features are derived as aggregation of surface shape information within each surface parti-

tion. These features are integrated at curvature line points of each cluster that covers a sur-

face partition. Our experimental study showed that these features can be used to discriminate

between clusters that contain polyps and clusters that do not.

Our contribution is two-fold:

• We present surface-constrained curvature line clustering algorithm as a new method for

surface partitioning in polyp detection. This idea can also be applied in other problems



6.2. RELATED WORK 95

where larger scale surface shapes have to be captured and analyzed.

• We show that features calculated over surface partitions could be used to discriminate

effectively between polyps and non-polyps.

The remainder of the paper is structured as follows. Related research is briefly reviewed

in Section 6.2. Section 6.3 explores the relation between curvature line clustering and colonic

surface partitioning. In Section 6.4, our curvature line clustering method is described. We

discuss how to compute geometric features within each surface partition in Section 6.5. An

experimental study to analyze the discriminative power of these features is given in Section

6.6. We draw conclusions in Section 6.7, as well as outline our future work.

6.2 Related Work

Many existing polyp detection schemes make use of surface shape features derived from

scalar principal curvatures, which are important concepts in differential geometry. It was

shown that the per patient sensitivity of computer-aided polyp detection in an asymptomatic

screening population is comparable to that of optical colonoscopy for polyps of 8 mm or

larger and is generalizable to new CT colonography data in [SYP+05]. Yoshida et al. [YN01]

developed a method that started by computing volumetric shape index and curvedness to

characterize polyps, folds and colonic walls at each voxel in the extracted colon. After-

wards, polyp candidates were obtained using fuzzy clustering to connected components fil-

tered based on these geometric features. Huang et al. [HSH05] introduced a two-stage cur-

vature estimation approach based on cubic spline fitting on triangulated surface meshes for

automatic polyp detection.

There are also methods not or indirectly based on scalar surface curvatures. Hong et al.

[HQK06] presented an automatic polyp detection pipeline that integrated texture and shape

analysis with volume rendering and conformal colon flattening. VanWijk et al. [vWvRV+06]

proposed a shape and size invariant approach in which a “protrusion”measure was used to

find polyp candidates. In [ZBB+06], the potential of surface principal curvature direction

fields for automatic polyp detection was explored. Techniques were developed for computing

surface-constrained curvature lines on the colon wall. Features strongly correlated with true

positive polyp detections are derived from the geometry of curvature lines and used to reduce

the number of false positive detections in a complete polyp detection protocol.

Techniques have been developed for surface partitioning. Based on Morse-Smale com-

plex, Natarajan et al. [NWB+06] proposed a method using topological analysis of a scalar

function defined on the surface. Partition-based techniques are also widely-used in flow visu-

alization. A survey article on this topic was recently published by Salzbrunn et al. [SJWS08].

Chen et al. [CML+07] provided a technique for vector field modification.

Many line clustering methods can be found in the literature. In flow visualization, Chen

et al. [CCK07] presented a streamline similarity distance metric that considered not only

Euclidean distance but also shape and directions. A well-known application is the clustering

of fibers to obtain bundles in diffusion tensor imaging (DTI) [MVvW05]. An important
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issue of clustering fibers (or streamlines) is to define a good similarity (or distance) metric

between fibers. Brun et al. [BKP+04] mapped fibers to a Euclidean feature space and used a

Gaussian kernel for pairwise fiber comparison. They proposed a clustering method in which

a normalized cut criterion was used to partition a weighted undirected graph derived from

their fiber similarity measure. Corouge et al. [CGG04] computed closest point pairs to define

distance between fibers. Based on this distance measure, they propagated cluster labels from

fiber to neighboring fibers. Klein et al. [KBL+07] calculated an affinity matrix based on the

use of a reconstructed 3D grid to represent fiber similarity. The number of clusters were

automatically determined by performing a linear eigenvalue regression of this affinity matrix.

Brain white matter fibers were clustered using a spectral clustering method based on multiple

eigenvectors.

6.3 Colonic Surface Partitioning

Point-sampling features are not capable to characterize large scale surface shapes, which are

necessary to identify polyps. It is important for automatic polyp detection schemes to aggre-

gate surface shape information within a certain region to avoid localization. This requires a

partitioning of the colonic surface before feature calculation.

Figure 6.1: Maximum curvature lines on a polyp surface.

By applying curvature lines [ZBB+06], colonic surface shape is well outlined (Figure

6.1). We calculate principal curvature values and directions on implicit iso-surfaces using the
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method developed by van Vliet et al. [vVYV98]. This method is based on the eigen analysis

of Hessian matrix, of which entries are second order partial derivatives. Gaussian convolution

is used to compute these 3D image derivatives. We choose σ = 2.0 for the Gaussian kernel

with regard to iso-surface smoothing and computational efficiency. Curvature lines are traced

directly in 3D volume and constrained on the colonic iso-surface using an iso-projection

approach. The seeding and spacing distance is determined by principal curvature values. In

rare cases, there are umbilics on the colonic iso-surface. Curvature line integration stops at

these isotropic points.

We use principal curvature direction vectors to cluster coherent surface shapes for surface

partitioning. For arbitrarily close positions on the surface, they have coherent shapes when

their principal curvature directions are sufficiently parallel. Otherwise, even their shape types

are analogical, their shapes are not coherent and belong to different structures. By definition,

curvature lines are curves that everywhere follow one principal curvature direction field. It is

intuitive that parallel curvature lines link coherent shapes over a surface area and demonstrate

meaningful structures. Such a structure presents homogeneous geometry since its embedded

shapes are coherent. This leads to the idea that the colonic surface can be partitioned by

grouping parallel curvature lines.

In our surface partitioning approach, each partition corresponds with the surface area

covered by a single group of parallel curvature lines. Thus the surface partitioning problem

is converted into a curvature line clustering problem.

6.4 Clustering Curvature Lines

This section decribes our curvature line clustering method for colonic surface partitioning,

using a new curvature line similarity measure and a multiple-eigenvector spectral clustering

algorithm.

6.4.1 Symmetric Curvature Line Similarity Metric

A number of clustering algorithms exist, for example agglomerative hierarchical clustering

and spectral clustering. By using different similarity metrics between clusters, variations

are devised for the same clustering method. In our work, a similarity measure based on

parallelism between curvature lines is desired. The Euclidean distance should of course also

contribute to the similarity.

We define a symmetric line-to-line similarity measure in our application, based on the

work by Chen et al. [CCK07]. As a symmetric measure, the similarity between two curvature

lines is unchanged no matter it is calculated from one curvature line to the other or the other

way around. In our definitions, the similarity between two curvature lines is always calculated

from the shorter line to the longer line.

For a point p on a curvature line li, a windowW of size m+1 centered at p is computed.

On both sides of point p, m
2
neighboring points of p on li are included inW . W is a portion

of li. On the other curvature line l j, we find the point q, closest to p in an Euclidean sense.
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Figure 6.2: Similarity measure between curvature lines li and l j: point pairs are formed by corresponding window

w and v. Solid black dots indicate window centers and grey dots indicate point pairs. This similarity is direction-

independent.

Another window V of size m+ 1 is centered at q on l j. Thus we yield p0, p1, · · · , pm−1 in

window W about p and q0,q1, · · · ,qm−1 in window V about q. A correspondence between

these two windowsW andV is defined such that pi and qi (i= 0,1, · · · ,m−1) form one point

pair. There are now m+ 1 point pairs including the center point pair {p,q}. The similarity

distance dsim from point p to curvature line l j is computed as:

dsim = ‖p−q‖+α
∑m−1
i=0 (‖pi−qi‖−‖p−q‖)

m
(6.1)

This computation is described in Figure 6.2. dsim is computed from every point on curvature

line li to curvature line l j. Then the average value of dsim is taken as the overall similarity

distance di j from li to l j. Since we only consider the parallelism and Euclidean distance be-

tween curvature lines, note that this similarity distance is direction-independent, as described

in Figure 6.2. This is different than the similarity distance defined by Chen et al. [CCK07].

Larger similarity distance di j indicates less similarity between curvature lines li and l j.

This distance is transformed to a similarity measure using:

Si j = exp(−di j) (6.2)

This similarity measure can be affected by the Euclidean distance between curvature lines and

their parallelism. A larger Euclidean distance increases the term ‖p−q‖ in Eq.6.1. This leads
to a lower similarity measure. A larger deviation of point pair distances within the window

from the center point pair distance indicates less parallelism between two curvature lines.
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This increases the second term in Eq.6.1 and results in a smaller similarity. The coefficient α
is a scale factor that can be used to strengthen the effect of parallelism. The window size m

also influences this similarity measure. A zero window size will result in a similarity metric

purely based on the Euclidean distance. In our experience, α = 2.0 and WindowSize = 20

yielded the best result as suggested by Chen et al. [CCK07].

6.4.2 Spectral Clustering Algorithm

We applied our new similarity metric described in Section 6.4.1 in a spectral clustering algo-

rithm [KBL+07] to cluster curvature lines. There are also alternative hierarchical clustering

methods [CHH+03]. A disadvantage of hierarchical clustering is that the number of clusters

is application dependent and sometimes difficult to determine.

The algorithm proposed by Klein et al. [KBL+07] uses a linear eigenvalue regression

technique to compute a reasonable number of clusters. It takes an affinity matrix as input.

Based on our new curvature line similarity metric, the affinity matrixM is computed as:
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(6.3)

where N is the total number of curvature lines generated on the colon wall at the candidate

position and in its vicinity. The entry Si, j (i, j ∈ {0,1, · · · ,N−1}) of the affinity matrix is the

similarity measure defined by Eq. 6.2 between curvature lines li and l j. Since by definition

Si, j = S j,i, this affinity matrix is symmetric. It has N eigenvalues and eigenvectors.

The affinity matrixM is normalized by:

Si, j =
Si, j

Smax
(6.4)

where Smax is the maximum value of entries in matrix M, except diagonal items. These

diagonal items are set to 1. Eigenvalues of the normalized matrix M̂ are indexed and plotted

against their indices in descending order. At each index, these eigenvalues are splitted. The

resulting two halves are fitted with two linear functions. The index at which the smallest

fitting error occurs corresponds with the number of clusters. This number K enables the

identification of inner clusters within coarse structures.

The K largest eigenvectors of M̂ are selected and assembled as columns in a N×K matrix

X . Rows of X are considered as K-dimensional vectors. Each of these vectors corresponds

with a curvature line with the same index. A hierarchical clustering method [MVvW05] is

performed on these N K-dimensional vectors to create K clusters. The indices of rows of X

in each resulting cluster correspond to the indices of curvature lines that belong to the same
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(a) (b)

Figure 6.3: Clustering curvature lines: (a) A synthetic colonic surface; (b) Curvature line clusters on a fabricated

polyp, different colors represent different clusters.

cluster. In our experiments, using the complete linkage in the hierarchical clustering provided

the best result.

There are two advantages of this spectral clustering algorithm. First, a reasonable number

of clusters is automatically determined, considering the inter-cluster connectivity. Second,

using multiple eigenvectors for clustering leads to more accurate and robust results [AKY99].

Figure 6.3 shows the result of our curvature line clustering algorithm on a synthetic 3D vol-

ume data. The simulated colonic surface is rendered as an implicit iso-surface using volume

ray casting. Curvature lines that follow maximum curvature direction are traced. Parallel

curvature lines are clustered into several groups, each of which corresponds with a surface

partition. This clustering algorithm can also be used in other applications, e.g. clustering

white matter fibers to find bundles in DTI of the human brain.

6.5 Geometric Features for Surface Shape Analysis

In this section, we describe how geometric features are calculated to characterize the large

scale shape of each surface partition. These features are used to identify the surface partition

that captures a colonic polyp.

To describe the overall shape of a surface area, a traditional way is to calculate the average

or mean values of geometric features in most existing automatic polyp detection approaches.

Unfortunately, important surface shape information could be neglected in such a way. There-

fore we need to aggregate surface shape information as much as possible within the surface

partition for shape analysis.

Volumetric shape index and curvedness of iso-surfaces are two well-known features used

for automatic polyp detection. They were firstly introduced by Yoshida et al. [YN01] to



6.5. CURVATURE LINE FEATURES 101

CAD schemes in CT colonography. These two features are derived from surface principal

curvatures:

SI =
1

2
−

1

π
arctan

kmin+ kmax

kmin− kmax
(6.5)

and

CV =

√

k2min+ k2max

2
(6.6)

where kmin is the minimum curvature value and kmax is the maximum curvature value. How-

ever, SI and CV were mostly used as point-sampling measures for shape analysis and large

scale shapes were difficult to be described in existing approaches. We define a new feature

based on the aggregation of SI and CV at curvature line points corresponding to a surface

partition to characterize its overall shape.

6.5.1 Feature Definition

Curvature line points of a cluster are treated as sampling points of the corresponding surface

partition. To identify the overall shape of a surface partition, surface shape information is

aggregated through these sampling points. SI and CV are calculated and aggregated within

each surface partition.

The most important feature is the shape index SI. A unique value of SI describes a distinct

surface shape [YN01]. The value of SI varies in the closed interval [0.0,1.0]. Five predefined
shape types are represented by their characteristic shape index values (Table 6.1):

Table 6.1: Five predefined shape types and their corresponding shape index values.

Shape type Shape index value

Cup 0.0
Rut 0.25

Saddle 0.5
Ridge 0.75
Cap 1.0

These values divide the shape index value range into four subintervals. Values that fall

into one of these subintervals represent transitional shapes from one predefined shape type to

another. Such a shape transition is continuous over the whole domain of SI.

The iso-surface curvedness CV is a complementary feature to the shape index SI. The

shape index only measures the shape type of a surface. The curvedness can represent how

significant the surface shape is. The value of CV varies in the interval [0.0,+∞), where a

small value implies a more flat surface and a large value implies a sharp edge or peak. Using

the mean value of SI andCV as an aggregation for surface analysis has a significant drawback.

For example, if a surface partition has most of its sampling points where SI values fall into the
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Figure 6.4: Using SI subintervals to characterize the overall shape of a surface partition: a surface partition has its

SI value range a (red line) overlapped with 2nd, 3rd and 4th SI subintervals. In this case, the surface partition has

overall cap-like shapes.

intervals [0.0,0.25] and [0.75,1.0], the mean value of its SI is close to 0.5. Thus the dominant

shape of this surface partition is represented as the saddle, which is obviously incorrect.

We define new features, which account not only for values of SI and CV but also for the

shape types at sampling points over the surface partition. This definition is demonstrated in

Figure 6.4. Values of SI over a surface partition are mapped to the four subintervals of the

SI value domain. Assuming a geometrically homogeneous surface partition has analogical

shapes over it in general, we intend to use shape subintervals, in which shapes described by

the majority of sampling points are included, to characterize the overall shape of a surface

partition. Values of SI and CV are calculated through curvature line points of the single

cluster that corresponds with a surface partition. The value ranges a and b of these discrete SI

and CV values can be determined. Then we compute four overlaps of range a with the four

subintervals of SI (Figure 6.4):

Fi =
ni

N
×100%,(i= 0,1,2,3) (6.7)

where ni is the number of curvature line points that have their SI values included in the

ith SI subinterval. N is the total number of curvature line points that belong to the cluster

corresponding to the surface partition. If there is no overlap of a with a SI subinterval, then a
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negative value is calculated as:

Fi =−
‖C−A‖

‖A−B‖
×100% (6.8)

where A and B are the two values at the border of range a and C is the closest value of the

non-overlapped SI subinterval to a. In the case shown in Figure 6.4, C and A are the closest

domain border values. The overlap of range b with a proper value domain is also computed

for the iso-surface curvedess of the surface partition using similar functions. This proper

CV value domain is determined as suggested by Yoshida et al. [YN01]. Reasonably curved

surface partitions are significant for shape analysis in our automatic polyp detection scheme,

whereas approximately flat regions are much less meaningful. For finding surface significant

overall shapes, the CV value domain is [0.08,+∞). We compute a percentage FCV of the

number of points with their CV values of at least 0.08 against the total number of points to

characterize the general curvedness of a surface partition. Now we have a 5-dimensional

vector feature F = {F0,F1,F2,F3,FCV} for each surface partition. It can be used to identify

the surface partition that captures a polyp surface.

6.5.2 Shape of Colonic Polyps

The vector feature defined in Section 6.5.1 has four SI components and one CV component.

If a SI component of this vector has a larger value than other SI components, the overall

shape of the corresponding surface partition is described by that shape subinterval. As shown

in Figure 6.4, the SI range a of an example surface partition has larger overlaps with the 3rd

and 4th SI subintervals, while just a very small overlap with the 2nd SI subinterval and no

overlap at all with the 1st SI subinterval. Its feature vector F has a negative 1st component

and a small and positive 2nd component. Its 3rd and 4th components have larger positive

values. This indicates that the overall shapes are ridge and cap-like.

In most current CAD schemes, colonic polyps are usually modeled as approximately

spherical or ellipsoidal protrusions. A polyp surface consists of the head and the neck. As

shown in Figure 6.5, the polyp head is a cap-like surface while the polyp neck is an anticlastic

(or saddle) surface. Since irregularities are included on most significant polyps, sometimes

not all points on a polyp head present a cap shape. Ridge-like or even saddle-like shapes

could also be presented on the polyp head. The polyp neck presents saddle-like shapes in

general. Therefore, overall shapes on a polyp surface have significant overlaps with the 3rd

and 4th SI subintervals. As discussed by Yoshida et al. [YN01], the vector feature F for a

surface partition that captures a polyp surface also has a significant overlap of itsCV range b

with the interval of [0.08,+∞).
Summarizing these issues, we hypothesize that overall shapes of a polyp are mainly in-

cluded in the 3rd and 4th SI subintervals, i.e. these overall shapes correspond to SI values in

[0.5,0.75] and [0.75,1.0]. Importantly, the SI component F3 has a larger value to represent

the polyp head. Otherwise, the corresponding surface partition does not capture the polyp

cap. We calculate {F0,F1,F2,F3,FCV} for each surface partition of a pre-detected polyp can-

didate. If the sum of its 3rd and 4th SI components (F2,F3) is larger than the value of F0 or
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(a) (b)

Figure 6.5: (a) A polyp surface consists of a cap and a neck. (b) Irregular shapes of a large polyp.

F1, and F3 is significant by itself, such a surface partition is considered to correspond with

a polyp surface. On the other hand, its CV component should be able to indicate that it is

a sufficiently curved surface partition. For each polyp candidate, we pick one of its surface

partitions that most likely captures a polyp surface. The vector feature F of this partition is

used to represent corresponding polyp candidate. We use this feature to discriminate between

true polyps and false detections.

6.6 Results

This section documents the results of an experimental study in which our surface partition-

based features were tested on nine real patient data sets.

6.6.1 Materials and CAD approach

Our patients underwent CT colonography before optical colonoscopy, which is considered

as the golden standard. Each patient has two CT scans in prone and supine directions. The

average resolution of these CT data is 512×512×267 and the average voxel size is 0.77mm×
0.77mm×1.60mm.

Our automatic polyp detection system consists of three fully automatic steps. First an

existing approach [vWvRV+06] was used to pre-detect polyp candidates. These candidates

included all true polyps and a large number of false detections. In second step, we took

pre-detected candidate positions as the input and applied our approach to calculate surface

partition-based features for the vicinity of each candidate. The third step is supervised pattern

recognition, by which these features were processed and the number of false detections was

reduced.
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6.6.2 Colonic Surface Partitioning

Curvature lines are directly traced in 3D volume data and rendered as polylines [ZBB+06].

In our study, curvature lines that follow the maximum principal curvature direction were

used for colonic surface partitioning. The average time cost for curvature line computation

per candidate area (centered at the pre-detected position with a radius of 15mm) is 16.871
seconds. For curvature line clustering, the average time cost per candidate area (on average

221 lines and 7− 9 clusters) is 1.082 seconds. We show our colonic surface partitioning

results at some true polyp detection areas in our CAD pipeline (Figure 6.6). Visual inspection

of our results shows that the curvature line clustering method provides a reasonable pre-

segmentation of the polyp candidate area. Most importantly, as shown in images on the lower

row of Figure 6.6 a surface partition that corresponds well with a true polyp surface can be

obtained. This indicates that our overall shape features calculated in such a surface partition

can be used to discriminate between true and false detections.

6.6.3 Discriminating Candidate Detections

The polyp candidate pre-detection step based on the method of van Wijk et al. [vWvRV+06]

returned 4036 candidates in total 18 scans. Protrusions are calculated on the surface through-

out the entire colon. Candidate detections are found by hysteresis thresholding of protrusions

as suggested in [vWvRV+06]. Medical diagnosis confirmed that these polyp candidates in-

cluded all polyps of the 9 patients. 30 polyps (larger than or equal to 6mm) were annotated

using an expert opinion of an experienced radiologist. A polyp was counted as a true positive

if it was classified as a polyp in at least one of the two scans. There were 4006 false-positive

detections, which needed to be significantly reduced.

In order to estimate the discriminating power of the five-dimensional vector feature, we

first performed basic statistic analysis on all pre-detected polyp candidates. In univariate

logistic regression analyses, each of the five components were separately found to be signif-

icantly related to the polypness of clusters (p= 0.000,0.000,0.001,0.000 and 0.011). How-
ever, in a multivariate logistic regression analysis, only F3 was found to be independently

associated with the polypness of clusters (p=0.000). In other words, each of the other fea-

tures does not significantly improve the prediction of polypness over that attainable with F3
by itself. This analysis does show that F3 could be used to discriminate between clusters over

polyps and non-polyps.

The features F3 and FCV were used in our pattern recognition step to classify polyps out

of false-positive candidates. Only candidates with a mean internal intensity of around that of

tissue were retained. This excluded all candidates that were detected as a result of the partial

volume effect and due to artifacts of CT. A nine-fold cross-validation was used to compute

the system’s performance. A logistic classifier [Web02] was trained on the training data set

consisting of 16 scans from 8 patients, and was used to classify the two scans of the remaining

patient to obtain the classification results. The results for all patients were summed up to get

an estimate of the performance of the CAD system.

The system achieved 95% sensitivity for polyps while presenting on average less than 11
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Figure 6.6: Five pairs of images for curvature line clustering based polyp candidate area partitioning and the line

clusters that capture polyps. Images in the upper row: Colonic surface partitioning based on clustering curvature

lines. Each surface partition corresponds with the surface area covered by a single cluster. Different colors indicate

different curvature line clusters. Images in the lower row: The curvature line cluster that corresponds with a colonic

polyp.
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false positives per scan and 80% sensitivity with on average 7 false positives per scan. This

means that more than 95% of the false-positive detections, i.e. 3808 false positives, were

discarded while retaining high sensitivity that 28 true positives were correctly detected. To

conclude, this analysis shows that the features derived from the surface partitions correlate

quite well with the polyp annotations.

6.7 Conclusions and Future Work

In this paper, we presented surface-constrained curvature line clustering as a new method for

surface partitioning in polyp detection. These surface regions are able to capture polyp char-

acteristics. They could also be used to capture and analyze other larger scale surface shapes.

We proposed a new direction-independent, line-to-line and symmetric similarity metric be-

tween curvature lines. This similarity metric was applied in a spectral clustering algorithm,

in which a reasonable number of clusters is automatically determined. Results showed that

polyp surfaces can be captured by corresponding surface partitions. A 5-dimensional feature

based on the volumetric shape index and iso-surface curvedness was proposed to describe

overall surface partition shapes. Statistical analysis showed that one of the five components

could be used to discriminate between clusters over polyps and non-polyps. We demonstrated

that our new proposed features can be used in a polyp detection system. Visual inspection of

the clustered curvature lines showed a strong correlation with expected polyp areas.

We plan to investigate the possibility of using our colonic surface partitioning approach

for polyp segmentation. Optimizing our scheme will be an important avenue for future work.

Our approach will be further tested with a larger number of clinical data sets and other clus-

tering algorithms will be explored, as well as more partition-based discriminative features for

polyp detection.
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CHAPTER7

Evaluation of Automatic Polyp Detection Integrating Curvature

Line Based Visualization Techniques

This chapter is partly based on our paper for the IEEE International Symposium on Biomed-

ical Imaging: From Nano to Macro, 2009 (ISBI’09) [vRZB+09]. The paper presented a

joint work on the evaluation of a prototype CAD system. Our curvature line based techniques

were integrated into a complete automatic polyp detection pipeline. This chapter mainly doc-

uments my contribution to the paper, as well as new results we obtained during further testing

on additional data sets. In order to have a full context of the work by the author, contributions

by our collaborators are also briefly explained.

7.1 Introduction

Previous chapters introduced a new technique from data visualization that can be applied

for automatic polyp detection in CT colonography. This technique used geometric features

of iso-surface curvature lines to facilitate the reduction of false positives obtained in a pre-

detection of polyp candidates. The detection performance was demonstrated via experimental

studies on a relatively small number of datasets, containing a large number of polyp instances.

This chapter presents a further evaluation of how surface curvature line features contribute

to improve CAD performance in CT colonography. Our evaluation made use of many more

real patient CT data sets than that of previous chapters, to achieve a better generalization of

CAD performance. A complete CAD system that integrates our curvature line generation

and feature calculation is introduced. Our new technique from data visualization is incorpo-

rated to increase the specificity of an existing polyp detection scheme [vWvRV+06] without

109
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regressively affecting sensitivity. Surface and volume characteristics with additional shape

information described by our curvature lines are applied to the detection and classification

of polyp candidates. Evaluation results demonstrate that surface curvature lines can provide

distinctive shape features for the reduction of false positive detections. A simple pattern

recognition approach based on these features indicated that the CAD performance can be

improved to be less than 1.6 false positives per scan at 92% sensitivity per polyp.

With regard to the automatic polyp detection pipeline, my main contribution to the work

presented in [vRZB+09] is supplying geometric features of curvature lines for the false pos-

itive reduction step. Polyp candidates including all true polyps were pre-detected by the

approach presented in [vWvRV+06]. Protrusion-based features and curvature line features

were selected and used in the supervised pattern recognition step for the CAD performance

evaluation. The FROC analysis was conducted by our collaborators.

Apart from the work presented in [vRZB+09], an additional resource of CT data sets

obtained using a different scanning protocol is employed in the evaluation. In section 7.2,

properties of the two data collections used in the evaluation are compared. Section 7.3 gives

an overview of our prototype polyp detection system. Evaluation results are presented in

Section 7.4. We discuss our evaluation results and draw our conclusions in Section 7.5.

7.2 Materials

Two collections of patient CT scans were used for the evaluation. Each collection has its

unique image and pathological properties, e.g. the voxel size, image noise level and the num-

ber of polyp instances. In such a way, not only the discriminating power of curvature line

features for polyp candidate classification was validated, but also the correlation between the

experimental result and the CT data set properties.

The evaluation presented in [vRZB+09] used 28 patients from a larger study [vGNF+04],

the AMC-ZON data. Further testing was conducted on additional data sets of 138 patients

from the MADISON CT scan repository. All testing data sets were obtained by scanning pa-

tients in both prone and supine positions. Every patient was subject to an extensive laxative

regime to clean colorectal residues and no fecal tagging agent was administered. The refer-

ence standard for the evaluation is optical colonoscopy. All true polyps were indicated by ex-

pert radiologists as positions in the 3D volume data and confirmed with optical colonoscopy.

A polyp was counted as a true positive detection if it was found in at least one of the two CT

scans per patient. Image and pathological properties of these two collections of CT data sets

are documented in Table 7.1.

7.3 Automatic Polyp Detection System

The automatic polyp detection process in our evaluation consists of three basic steps: (1)

Pre-detection of polyp candidates, (2) Feature calculation for false positive reduction, (3)

Polyp candidate classification using supervised pattern recognition. All polyp candidates are
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Table 7.1: Image and pathological properties of AMC-ZON data and MADISON data.

Repository AMC-ZON data MADISON data

Number of Patients 28 138

Number of Datasets 56 276

Image Properties

Slice Resolution 512×512 512×512

Slice Distance 1.60mm 1.00mm
Grey Value 12 or 16 bits 16 bits

Pathological Properties

Number of Polyp Annotations 65 302

Number of Polyps > 6mm 40 174

detected using the protrusion-based detection algorithm [vWvRV+06]. Surface protrusion

measurement, volume intensity and curvature line geometric features are then calculated per

candidate area. Finally, these features are used in a supervised pattern recognition step to

classify polyp candidates into false positives and true polyps.

7.3.1 Protrusion-Based Polyp Detection

Due to the shape of the cap (see Figure 4.2), a polyp can be characterized by the fact that

the smallest principal curvature is larger than zero. Such a polypoid shape can be flattened

applying a surface evolution technique. At a certain point of this evolution, the surface is

deformed so that the complete polyp is removed. The amount of surface displacement for

this deformation is defined as the “protrusion”, which can be used as a criterion to locate

possible polyps on the colon wall.

Van Wijk et al. [vWvRV+06] proposed two distinct, iterative schemes for the detection

of colonic polyps using the protrusion measure. The explicit method was applied to flatten

triangle mesh surfaces and the implicit method directly deformed iso-surfaces embedded in

3D volume data. In both approaches, the surface flattening process is conducted using an

abstracted surface evolution function:

X t+1 = X t +dt· f (−κ2) (7.1)

where f (−κ2) is a force function that is designed to operate on an object which has a positive
smallest principal curvature. dt means a time step for the repeat. The method deforms the

surface until the smallest principal curvature is smaller or equal to zero everywhere or some

convergence criterion is satisfied. The total amount of resulting surface displacement is then

taken as a protrusion measure. For triangle mesh surfaces, the force function is applied to

mesh vertices, which are iteratively repositioned until the surface is flattened. On implicit iso-

surfaces, the force function modifies the intensity of voxels in such a way that the protruding

intensities are smoothed into the background. The protrusion measure is computed at each

mesh vertex as either the displacement of the vertex in millimeters, or the number of voxels



112 CHAPTER 7. EVALUATION OF CAD USING VISUALIZATION TECHNIQUES

whose intensities are smoothed for the iso-surface flattening. Polyp candidates are generated

by applying a threshold on the displacement field.

All true polyps can be detected using the protrusion-based method. Resulting pre-detections

included a large number of false positives. It was found that in practice, the false detections of

both explicit and implicit methods are uncorrelated. Complementary protrusion analysis was

conducted for false positive reduction, in which additional features are derived from explicit

and implicit protrusion-based methods.

7.3.2 Curvature Line Based Visualization Technique

The protrusion-based method is used for the pre-detection of polyp candidates and features

derived from protrusion measure are applied to the candidate classification. However so

far surface shape information of the objects remains limited. Our curvature line techniques

presented in previous chapters of this thesis can provide important additional discriminat-

ing shape features for the polyp candidate classification. In our evaluation, we incorporated

shape information by our technique with protrusion-based features to see how curvature line

features improve the false positive reduction phase of the polyp detection. The winding angle

feature of surface constrained curvature lines was used to help improve the performance of

our prototype CAD system.

7.4 Experiments and Results

All polyp candidates detected by the protrusion-based technique [vWvRV+06] are used as

input for additional feature calculation and then supervised pattern recognition is applied for

false positive reduction. This section explains how additional features are used and docu-

ments details of our evaluation methods and results. At the end of this section, the improve-

ment of the curvature line winding angle feature is discussed.

7.4.1 Additional Features for False Positive Reduction

For classification of pre-detected polyp candidates, three additional features were derived

from the explicit and implicit protrusion-based methods. The explicit method involves two

features. The first feature φT measures the percentage of the candidate with a displacement

larger than a certain threshold T in millimeters. To favor candidates with steep edges and

compact forms, we set T = 0.6mm. The mean intensity of the candidate was used as the sec-

ond feature. It was calculated as a total weighted sum of all voxels included in a segmentation

mask, which consists of the area included between the original and the displaced iso-surface.

The third feature was calculated using the implicit method. Polyp candidates were pre-

detected on the triangle mesh of the colon wall. Volumetric properties were later analyzed

using underlying data of the colon wall, and in the vicinity of each candidate area. To do this,

the candidate area on the mesh emanating from the candidate position was mapped to a binary

image. This binary image was dilated ten times to define the region-of-interest (ROI) on the
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colon wall in 3D volume for the implicit method. Then, the original volume was smoothed

iteratively using the evolution function (7.1) to all voxels inside the ROI. A corresponding

segmentation for the implicit method was derived from the smoothed volume by thresholding

the intensity difference at a value of 100 Hounsfield units (HU). Each candidate from the

implicit method was therefore linked to a corresponding candidate on the mesh.

Figure 7.1 shows two scatter plots of the protrusion-based features: maximum displace-

ment of the mesh (in millimeters), maximum intensity difference (in HU) and φT . The maxi-

mummesh displacement and the maximum intensity difference correlate well for true polyps.

The indicated feature space boundaries (dash-dotted lines) were used as the two thresholds in

the polyp candidate generation. The two features: φT and mean intensity of each candidate

area were further used in the supervised pattern recognition step to separate true polyps from

false positive detections.

For all detections on the mesh, a center line through the center of gravity and the center of

curvature of the segmentation mask is computed [DvWV+05]. The intersection of this line

and the mesh defines the initial seed point for the streamline analysis. For each detection cur-

vature streamlines are generated within a spherical ROI with 16 mm radius around the initial

seed point. The winding angle is calculated on these streamlines as the cumulative signed

change of direction along the streamline. At each sample point, the differential curvature is

derived relative to the surface normal at that point. In other words, when a streamline forms

a loop, its absolute winding angle is 2π or more (for polyp characterization the sign of the

winding angle is not important). Importantly, an absolute winding angle of more than 2π is

not necessarily more “polyp-like” than a winding angle equal to 2π . Therefore, we clip this

feature to a maximum of 2π , i.e. ψc =min(|ψ|,2π). This hypothesis is confirmed by the later

FROC analysis in section 7.4.3.

Figure 7.2 shows scatter plots of (a) the absolute winding angle |ψ| and (b) the clipped

winding angle ψc vs. φT (derived from the mesh displacement field). Observe that almost all

polyps have a winding angle close to or larger than 2π , whereas many false detections have

lower winding angles. In other words, the winding angle might indeed help to distinguish

between polyps and false detections.

7.4.2 Evaluation Methods

The four above mentioned additional features, φT and the mean intensity (from the explicit

protrusion-based method), maximum intensity difference (from the implicit protrusion-based

method), and the winding angle (|ψc|) of curvature lines were used in a supervised pattern

recognition step for the classification of pre-detected polyp candidates. We evaluated the

improvement of the overall CAD performance by means of a FROC analysis. The FROC

curves are computed by a ten times repeated ten-fold cross-validation, which measures the

practical performance of our classification model. In all cases, a logistic classifier was used

and detections on the rectal tube were discarded.

Initially, the CAD systemmade use of the two protrusion-based features: φT and the mean

intensity. Then the maximum intensity difference feature was added by applying the implicit

protrusion-based technique. Finally the clipped winding angle feature ψc was included in
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(a)

(b)

Figure 7.1: Scatter plots of a larger data sets (86 patients): (a) the maximum mesh displacement of a candidate, and

(b) φT against the maximum intensity difference derived from the implicit method. Black dots indicate true polyps

and grey dots indicate false positives. Dash doted lines are boundaries of the feature space.
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(a)

(b)

Figure 7.2: Scatter plots of φT against (a) |ψ| and (b) ψc. Black dots indicate true polyps and grey dots indicate

false positives.
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both previous configurations. All these four scenarios were performed and the results are

presented in the next section.

7.4.3 Evaluation Results

For each of the two CT data set collections, four FROC curves were computed to describe

the performance of the CAD system, as elaborated in the previous section. First, the FROC

curves for the AMC-ZON data collection are shown in Figure 7.3. The result indicates ob-

vious improvements by using the curvature line based surface shape analysis approach. The

specificity of the protrusion-based polyp detection scheme was significantly increased with-

out any loss of sensitivity. Also, the curvature line winding angle feature clipped to 2π does

improve the CAD performance, compared to the non-clipped winding angle feature.

We concluded that 92% of the polyps were correctly detected in 28 AMC-ZON data sets.

When all four features were employed, less than 1.6 false positive detections were made

per CT scan. The error bars denote two times the standard deviation in the number of false

positives over all scans at 85% sensitivity. Actually, the standard deviation of these FROC

curves is over seven times smaller due to averaging over all scans.

Besides the test using AMC-ZON data, we made a further evaluation using a different data

resource, the MADISON CT data repository. We randomly selected 138 patients and would

like to see how our curvature line winding angle feature can improve the polyp detection

on various CT data sets. FROC curves shown in figure 7.4 demonstrates that our curvature

line technique indeed improves the reduction of false positive detections. The winding angle

feature of curvature lines provides surface shape information that improves classification of

polyps and non-polyps.

7.5 Discussion and Conclusions

7.5.1 Discussion

Our curvature line based winding angle feature makes the following contributions to the

improvement of the protrusion-based automatic polyp detection scheme:

• Our new feature provides additional geometric surface shape information for the char-

acterization of colonic polyps. As stated by the authors [vWvRV+06], the protrusion-

based feature is invariant to the surface shape and polyp size. This means surface shape

information is not included in the protrusion measure. A combination of surface pro-

trusion and our curvature line geometry can therefore better describe the polyp surface.

By applying our curvature line technique, helpful shape information is added to the

CAD pipeline and the performance of protrusion-based scheme is improved.

• Our curvature line geometric feature describes shapes of large scale surface areas. It is

more robust against image noise and polyp shape variation, and has more discriminat-

ing power than point-based surface shape features for automatic polyp detection.
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(a)

(b)

Figure 7.3: FROC curves for the polyp detection system on AMC-ZON data. Four features were used: φT and

the mean intensity from the explicit protrusion-based method (Ex), maximum intensity difference from the implicit

protrusion-based method (Im), clipped and non-clipped winding angle feature (ψc/ψ) by curvature line based shape

analysis.
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Figure 7.4: FROC curves for the polyp detection system on MADISON data. The four above mentioned features:

φT , mean intensity, clipped and non-clipped winding angle, as well as mean radius (Section 4.5.2) were used in the

supervised pattern recognition process.

• Protrusion-based technique does not use the polyp neck area, which can also be used to

identify colonic polyps. Our curvature line feature can provide complementary surface

information of such a polyp characteristic. This useful shape feature improves the

performance of our prototype CAD system.

However, there is a limitation of our current curvature line based technique. Our curvature

line feature is only applied for the false-positive reduction step, but not suitable for the whole

CAD pipeline (including polyp candidate pre-detection step). This is mainly because of the

expensive computation of curvature line generation. Curvature lines are currently generated

per candidate area when these polyp candidates are pre-detected. However for the whole

colonic surface, the generation cost of curvature lines is too high. Therefore, the contribution

of our technique for the entire CAD system is dependent on the performance of the polyp

candidate pre-detection step, i.e. the protrusion-based technique. The sensitivity basically

has already been determined by the pre-detection algorithm and cannot be improved any

more. On the other hand, the specificity can be significantly improved if the false-positive

rate is high. This is demonstrated by our evaluation results. However, much less can be done

if the specificity is already high enough in the polyp candidates pre-detected.

7.5.2 Conclusions

In this chapter, we documented our evaluation of the new curvature line based technique for

automatic polyp detection in CT colonography. We combined our curvature line feature, the

winding angle, with protrusion-based features for discriminating between polyps and false
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positive detections, in the additional feature computation and supervised pattern recognition

phases of the CAD pipeline. Our technique added a useful colonic surface shape-descriptor

to identify polyps. It was shown that the feature based on the mesh displacement field, the

mean intensity, the maximum intensity difference and the curvature line winding angle are

comparable in CAD performance. We analyzed various CT data sets, 56 scans from 28

patients in the AMC-ZON data collection and 276 scans from 138 patients in the MADISON

data collection. It was found that the curvature line winding angle feature can significantly

improve the specificity of the polyp detection result by incorporating it into the candidate

classification process. Our prototype CAD system detected over 92% of the polyps with an

average of less than 1.6 false positives per scan.
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CHAPTER8

Conclusions and Future Work

This thesis documents our research towards the improvement of automatic polyp detection in

CT colonography by integrating techniques from scientific visualization. The focused theme

is applying curvature line based visualization techniques to surface and volume geometry

processing for polyp surface shape characterization. In this chapter, we summarize our results

and contributions, discuss some thoughts and findings, and provide our views on research

directions for the future.

8.1 Conclusions

Automatic polyp detection is a helpful addition to visual inspection using CT colonography.

It facilitates the laborious procedure of diagnosing colon cancer by radiologists. A common

CAD approach includes polyp feature computation, polyp candidate pre-detection and reduc-

tion of the false-positive rate (the number of false-positive pre-detections). As a prerequisite,

polyp feature computation plays an important role in subsequent steps and greatly influences

the performance of the entire CAD system. Most of the existing automatic polyp detection

schemes make use of surface geometric and volumetric features. However, many proposed

polyp features do not provide sufficient information for polyp shape characterization. There

are at least two reasons for this:(1) features are dependent on the pre-defined polyp shape

model whereas polyp shapes vary greatly in practice, (2) point-based features are incapable

of characterizing shapes of large scale areas (such as polyps) and are sensitive to image noise.

Therefore, a large number of false-positive polyp candidates is generated by the CAD proce-

dure. This is the research problem that is addressed by the work presented in this thesis.
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In chapter 2, background knowledge of CT colonography and particularly automatic

polyp detection techniques was reviewed. General techniques in CT colonography, e.g. vi-

sualization of the colonic surface, navigation and interaction approaches and digital colon

cleansing, were first discussed. Then the body of literature on CAD was outlined. Our

discussion focused mainly on polyp feature computation due to its importance to the en-

tire pipeline. Subsequently, current research of other CAD steps, such as supervised pattern

recognition and polyp segmentation and measurement, were also presented.

Chapter 3 gave an overview of visualization techniques related to our automatic polyp de-

tection technique. We first discussed existing methods for the estimation of 3D surface prin-

cipal curvatures and important applications of using these curvature measurements. These

algorithms were based on different geometric methods. Some made use of surface fitting

strategies and approximated the discrete surface representation with a parametric surface

function. Some directly computed principal curvatures using methods adapted to discrete

differential geometry. The accuracy and robustness of these approaches were also discussed.

It was concluded that a balanced directional sampling with a sufficiently large sampling scale

could overcome bad iso-surface quality and result in more robust and accurate curvature es-

timation results. We then discussed important vector field visualization techniques related to

our research. Surface curvature line generation was of interest in this regard. It has important

applications in non-photorealistic rendering and surface remeshing. How well lines of curva-

ture generated on a surface correlate with the global or local shapes is significantly controlled

by the streamline distribution, i.e. the streamline seeding and spacing strategies. Streamline

seeding and spacing are used for vector field visualization. Therefore, a suitable streamline

distribution approach is also crucial to our automatic polyp detection scheme.

The remaining chapters of the thesis presented three techniques that make use of curvature

line based visualization techniques for polyp detection and visualization.

In chapter 4, we presented a method that used lines of curvature to visualize the two vector

fields of surface principal curvature directions. Geometric features of curvature lines

were used for surface and volume geometry processing and to characterize colonic

polyp shapes. The work included the following aspects:

1. Robust estimation methods were applied on real CT images for the iso-surface

curvature computation, including curvature values and directions.

2. We developed methods that compute surface constrained lines of curvature on

both explicit triangle mesh surfaces and implicit iso-surfaces embedded in 3D

volume data. Curvature lines were distributed over the 3D surface by applying

curvature controlled streamline seeding and spacing strategies.

3. We proposed to identify colonic polyps by detecting polyp neck areas, which

are typically closed-ring and anticlastic surfaces. We considered approximately

closed curvature lines a good polyp indicator and used the winding angles of these

streamlines as a feature for polyp candidate classification.

In Chapter 5, we presented two techniques for the improvement of curvature line generation:
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1. To improve the computation efficiency, curvature values were used to control

the streamline seeding and spacing strategies. Redundant seeding points were

removed during the computation.

2. To improve the streamline quality, we developed a streamline defragmentation

approach that computed sufficiently long curvature lines.

Chapter 6 described a novel colonic surface partitioning algorithm based on the clustering

of curvature lines. We showed that colonic surface partitions can be used to aggregate

point-wise shape features within large scale surface areas for automatic polyp detec-

tion.

Chapter 7 documented the results of our evaluation. Our curvature line based techniques

were integrated into a prototype automatic polyp detection system. Curvature line fea-

tures were incorporated with other useful polyp features proposed in the literature for

the reduction of false positive pre-detections. The results indicated that our curvature

line features could be used to improve the specificity of existing automatic polyp de-

tection approaches without losing the sensitivity.

This above mentioned work makes contributions to the field of computer-aided diagnosis of

colonic polyps using CT colonography. Our new curvature line based techniques enabled 3D

surface and volume geometry processing based on the analysis of surface principal curva-

ture directions, which are two orthogonal surface vector fields. The curvature line features

have a significant discriminating power for the identification of true polyp detections. The

performance of existing CAD schemes can be improved by using these new polyp features.

Three important research themes related to our project are discussed in the following three

subsections.

8.1.1 Visualization-Based Surface and Volume Geometry Processing

3D surface geometry processing is the core topic of our research on automatic polyp de-

tection. Surface curvature is widely used in most existing surface geometry processing ap-

proaches. There are scalar curvature values, such as principal curvatures, and curvature di-

rections, which represent two orthogonal vector fields along the surface. Both scalar and

vector quantities are based on the local surface geometry. Surface shape features can be in-

tuitively identified by visualizing these scalar and vector fields on a 3D surface. Based on

such a visualization, the correlation between computed surface features and specific surface

shapes is examined. The research work documented in this thesis actually started with a

visual inspection for finding what is correlated with the polyp-like shape.

Furthermore, techniques developed in scientific visualization can be used for feature com-

putation and eventual shape characterization. There are common ideas between surface pro-

cessing and pure visualization problems. Surface shapes can be visually presented by apply-

ing visualization techniques. The main problem is to visualize a surface feature field that is

correlated with specific surface shapes. For instance, such a field can be curvature scalar val-

ues or direction vectors. Feature extraction techniques from scientific visualization were used
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in our research for finding characteristics of surface curvature direction fields. Such charac-

teristics correlated well with polyp-like shapes. Therefore the surface processing problem of

finding polyp-like shape is converted to a visualization problem of visualizing and extracting

curvature direction field features.

In the application of automatic polyp detection in CT colonography, the techniques pre-

sented in Chapters 4, 5 and 6 provide a new way of surface shape characterization, which

is visualization-based. Our surface geometry processing approach takes the surface princi-

pal curvature direction fields for feature identification, instead of scalar curvatures. This is a

novel application of surface geometry processing research. We evaluated the correlation of

polyp-like surface shape and circular pattern of the vector curvature fields. This correlation

was first reviewed via visualizing surface curvature lines in the neighborhood of polyps on

the colon wall and then used to identify colonic polyps.

8.1.2 Identifying Modeled Shapes

In order to find the correct correlation of specific surface shape (e.g. polyp-like shape) and

computed features, a proper model of the shape must be built first. It should be known what

behavior of these features is unique for the shape and this should be regularized to allow

for some variations. A improper shape model can result in incorrect identification. In our

experience, a proper shape model should cover all representative forms of a shape. Only the

variation of degree is tolerated, but not the variation of type. Otherwise, we lose sensitivity.

On the other hand, a proper model should only apply to the shape itself, not other shapes.

This means the model is unique for the identified shape and cannot be used to identify other

shapes. Otherwise, we lose specificity.

In our automatic polyp detection approach, the polyp surface is modeled to consist of

two parts, the polyp cap and the polyp neck. We found that the polyp neck area is usually

a smooth anticlastic surface, which is unique to colonic polyps on the colon wall. In our

experience, all polyps have such neck areas. Our evaluation presented in Chapter 7 shows

that our polyp model is adequate for the polyp surface shape characterization.

8.1.3 Effectiveness, Efficiency and Robustness

Three other important themes run through our research: efficiency, effectiveness and robust-

ness. We have applied these as criteria in the evaluation of our results and also in guiding

possible improvement.

In the application of automatic polyp detection in CT colonography, effectiveness is the

most important factor that explains how good our polyp detection technique is. It measures

how much the polyp detection sensitivity and specificity can be improved by our techniques.

Another criterion is efficiency, which measures computational expense. It also indicates the

feasibility of a polyp detection technique in clinical environment. The third factor is robust-

ness. Robustness shows the variation of the result accuracy if real-world effects are inevitable.

For example, CT image noise has strong impact on polyp detection accuracy.
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To achieve a high performance of automatic polyp detection, these three aspects may have

severe conflicts. In our experience, a higher effectiveness usually demands more accurate fea-

ture computation. This may require more expensive computations and therefore reduce the

efficiency. However, a faster computation may be rather simplified and can not guarantee

its robustness. A good example is the principal curvature estimation approach discussed in

Section 4.4.1. The enlarged k-ring geodesic neighborhood used for the sampling of curva-

ture estimation at a surface point leads to more complicated computations but more robust

results against surface noise and artifacts. Our approach needs more expensive computations,

although it provides more effective polyp detection results. The priority adjustment of these

three criteria is dependent on the practical application. For the polyp detection problem, the

effectiveness and robustness of the technique are more important. For other applications, the

choice of their priorities can be different.

8.2 Future Work

The most important contribution of the research work presented in this thesis is applying vi-

sualization techniques to CAD schemes in CT colonography. This differentiates our approach

from existing automatic polyp detection methods. There are still potential research directions

that can be addressed for further improvement.

8.2.1 Improving Lines of Curvature Generation

A significant drawback of our approach is that the current streamline generation is computa-

tionally expensive. The curvature estimation, streamline integration and streamline distribu-

tion consume much computation time. This makes our approach difficult for the pre-detection

of polyp candidates, and only suitable for the false-positive reduction step. This limits the

effectiveness of our technique in terms of overall CAD performance (sensitivity and speci-

ficity). The reason is that features of lines of curvature are only applied after polyp candidates

have been found. In this case, the sensitivity can not be improved, even if the result can be

very good when pre-detection specificity is already low.

Therefore, in order to make our approach suitable for the entire CAD pipeline and not

too much dependent on other steps and techniques, the computation of curvature lines and

their features has to be greatly accelerated. There are at least two directions for possible

improvements:

• Faster and more robust surface curvature estimation.

• Accelerated curvature line integration, seeding and spacing.

One important concern is that the acceleration method should not sacrifice the accuracy of

curvature estimation, the appearance of curvature lines and subsequent polyp detection speci-

ficity.
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8.2.2 Searching for More Characteristic Polyp Features

A longer term research direction is to search for more discriminating polyp features. A more

in-depth study of polyp shapes should be carried out. In order to have more discriminating

features for polyp detection, a more universal polyp model that can handle polyps of variant

shapes and sizes needs to be built. Such a model should be able to manage a diversity of

practical polyp shapes.

It has been suggested that features that describe information at a large scale are preferable

and more discriminating for polyp detection. These features are capable of overcoming the

effects of CT image noise and variability of the polyp shape. This is worthy of more research

effort in the future.

Surface shape features do not help to identify flat lesions, which are malignant growths

invading into the colon wall. This kind of polyps appears to be really flat in CT colonography

and have already attracted research interests in recent years. Particular image features not

exclusively based on surface shape are sought for the detection of flat lesions. The use of iso-

surface curvature lines of multiple depths in the colon wall is promising for future research.

These curvature lines may provide more useful features for the detection of not only normal

polyps but also flat lesions.

8.2.3 Polyp Surface Segmentation

In chapter 6, we presented initial experiments in using curvature line clustering for colonic

surface partitioning. The main purpose of this work is to explore the possibility of aggregating

point-based features in large scale surface areas for polyp detection. The partitioning result

also suggests a pre-segmentation of the polyp candidate.

There are some limits of using curvature line clustering for polyp surface partitioning.

First, the clustering does not always provide desired and stable results. For example, for a

perfect polyp cap, round and protruding, there are sometimes multiple streamline clusters on

it instead of only one. Second, we still have to investigate how accurately that a streamline

cluster fits a geometrically homogeneous surface partition.

8.2.4 Enhanced Visualization of the Colon Wall

An important benefit of our curvature line based technique is that the colonic surface visu-

alization can be significantly enhanced by displaying curvature lines on the colon wall. The

conventional shaded rendering of the colon wall sometimes limits the perceptibility of colon

wall features. Rendering curvature lines may help the observer to better understand the local

or global surface shapes.

Techniques from non-photorealistic rendering (NPR) can be applied for the rendering of

curvature lines on the colonic surface. For example, developing a stylized curvature line

rendering approach is a potential direction of our future research. Curvature lines can be rep-

resented using stylized line primitives with additional visual attributes, including color, line

width and texture. Suitable stylistic shading techniques, e.g. pen-and-ink illustration, pencil
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sketching, watercolor or cartoon shading, can be implemented to enhance the visualization of

colon wall in CT colonography.

The effectiveness has to be evaluated in practical applications and confirmed by radi-

ologists. A comparison between conventional shaded rendering and rendering with curva-

ture lines should be performed. In context of modern graphics and visualization techniques,

graphics hardware accelerated curvature line generation and rendering are of great interest.
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[DMSB99] Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H. Barr, Implicit Fairing of Irregular
Meshes Using Diffusion and Curvature Flow, Proceedings of ACM SIGGRAPH, August 1999,
pp. 317–324.

[DS96] Alan Davies and Philip Samuels, An introduction to computational geometry for curves and sur-
faces, Oxford University Press, Inc., New York, NY, USA, 1996.

[DT97] Gregory Dudek and John K. Tsotsos, Shape Representation and Recognition from Multiscale
Curvature, Computer Vision and Image Understanding 68 (1997), no. 2, 170–189.

[DvWV+05] Joost J. Dijkers, C. van Wijk, Frans M. Vos, J. Florie, Y.C. Nio, Henk W. Venema, Roel Truyen,
and Lucas J. van Vliet, Segmentation and Size Measurement of Polyps in CT Colonography, Pro-
ceedings of the International Conference on Medical Image Computing and Computer-Assisted
Intervention (MICCAI’05), 2005, pp. 712–719.

[Elb98] Gershon Elber, Line Art Illustrations of Parametric and Implicit Forms, IEEE Transactions on
Visualization and Computer Graphics 4 (1998), no. 1, 71–81.

[Elb99] , Interactive Line Art Rendering of Freeform Surfaces, EUROGRAPHICS 19 (1999),
no. 3.

[FF91] William H. Frey and David A. Field, Mesh Relaxation: A New Technique for Improving Triangu-
lations, International journal for Numerical Methods in Engineering 31 (1991), 1121–1133.

[Fre01] Lori A. Freitag, On Combining Laplacian and Optimization-Based Mesh Smoothing Techniques,
AMD Trends in Unstructured Mesh Generation (ASME) 220 (2001), 37–43.

[Fuk90] Keinosuke Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed., Academic Press
Professional, Inc., San Diego, CA, USA, 1990.

[Gal00] Jean Gallier,Geometric Methods and Applications For Computer Science and Engineer, Springer-
Verlag, London, UK, 2000.



BIBLIOGRAPHY 133
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[MMC99] Klaus Mueller, Torsten Möller, and Roger Crawfis, Splatting Without The Blur, Proceedings of
IEEE Visualization (VIS’99), 1999, pp. 363–370.

[MSHC99] Klaus Mueller, Naeem Shareef, Jian Huang, and Roger Crawfis, High-Quality Splatting on Rec-
tilinear Grids with Efficient Culling of Occluded Voxels, IEEE Transactions on Visualization and
Computer Graphics 5 (1999), no. 2, 116–134.

[MSR07] Evgeni Magid, Octavian Soldea, and Ehud Rivlin, A Comparison of Gaussian and Mean Cur-
vature Estimation Methods on Triangular Meshes of Range Image Data, Computer Vision and
Image Understanding 107 (2007), no. 3, 139–159.

[MSS94] Claudio Montani, Riccardo Scateni, and Roberto Scopigno, Discretized Marching Cubes, Pro-
ceedings of IEEE Visualization (VIS’94) (R.D. Bergeron and A.E. Kaufman, eds.), 1994, pp. 281–
287.

[MSS00] , Decreasing Isosurface Complexity via Discrete Fitting, Computer-Aided Geometric De-
sign 17 (2000), no. 3, 207–232.

[MTHG03] Oliver Mattausch, Thomas Theuβ l, Helwig Hauser, and Eduard Gröller, Strategies for Interac-
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Summary

Curvature lines for lesion detection and visualization in CT
colonography

Colon cancer is one of the leading causes of cancer deaths in the world. Colonic polyps

are an important precursor of colon cancer. Early detection and removal of colonic polyps

can effectively prevent colon cancer. For the diagnosis of colonic polyps, CT colonography

(virtual colonoscopy) is an advanced less-invasive screening technique which causes much

less discomfort to the patient than traditional optical colonoscopy. However even using CT

colonography, the visual detection of polyps can be complicated and time-consuming for the

entire colonic surface. Computer-aided diagnosis has been suggested and become a major re-

search topic for CT colonography. Many published approaches for automatic polyp detection

made use of features derived from surface curvature. These features are usually too localized

to fully describe characteristics of polyps. This can result in a large number of false-positive

detections.

In this thesis, we present an automatic polyp detection approach that integrates knowledge

from flow visualization techniques. Our primary goal was to compute additional characteris-

tic polyp features that improve the CAD performance of existing polyp detection approaches

by eliminating found false-positive polyp candidates.

We found that surface principal curvature directions presented discriminating patterns on

surface areas that belong to colonic polyps. These could be visualized using lines of cur-

vatures. This led us to the hypothesis that geometric features of lines of curvature could be

used for automatic polyp detection. A robust algorithm that takes both balanced directional

sampling and enlarged sampling area into account was used for curvature estimation. We

developed novel approaches for generating lines of curvature on the colon wall. Our tech-

niques can be applied to explicit triangle mesh surfaces and implicit iso-surfaces embedded

in a 3D CT volume. In order to provide sufficient shape information, lines of curvature were
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distributed using curvature-adaptive streamline seeding and spacing strategies. Two features

of lines of curvature: winding angle and mean radius, were used to differentiate between true

polyp detections and false positives. The visualization of the colon wall was also enhanced

by visualizing lines of curvature.

We present two major improvements of our lines of curvature generation in this thesis.

First, a more efficient streamline seeding strategy was developed. The placement of stream-

line seeds were adapted to the local surface curvature. This significantly removed redundant

seeds and accelerated the generation of lines of curvature, while still resulting in a compara-

ble streamline distribution. Second, we observed that the correlation between curvature line

features and true polyps was influenced by the quality of curvature lines generated. Our cur-

vature line tracing algorithm was improved by using a streamline defragmentation approach.

Sufficiently long lines of curvature that better describe polyp shapes were generated.

We also present a novel approach that was used to partition the colonic surface into ge-

ometrically homogeneous regions based on clustering of lines of curvature. This method

applied a spectral clustering algorithm and a symmetric line similarity measure. The paral-

lelism between lines of curvature was taken into account since we found that a collection of

parallel curvature lines covered a surface area that has a similar geometry everywhere. Such

a partitioning of the colon wall provided a possibility to aggregate shape information over the

polyp surface for automatic polyp detection.

Our curvature line based polyp detection technique was evaluated by integrating it into a

complete CAD system. Features of lines of curvature were used in the polyp candidate clas-

sification step for the reduction of the number of false-positive pre-detections. Two different

data resources were chosen and a large number of CT data sets from real patients were used.

The result showed that our new curvature line features are strongly correlated with true polyp

detections and can be used to improve the performance of existing CAD systems.

This research was conducted at the Delft University of Technology, in corporation with

Philips Healthcare Netherlands, who also partially sponsored the project.



Samenvatting

Curvatuurlijnen voor detectie en visualisatie van
darmpoliepen in CT colonografie

Colonkanker is één van de belangrijkste oorzaken van sterfgevallen door kanker in de wereld.

Dikke darmpoliepen zijn een belangrijke voorloper van colonkanker. Door vroegtijdige de-

tectie en verwijdering van deze poliepen kan colonkanker effectief worden voorkomen. CT

colonografie (virtuele colonoscopie) is een geavanceerde, minder invasieve onderzoekstech-

niek die de patiënt veel minder ongemak geeft dan optische colonografie. De visuele detectie

van poliepen is echter ook bij virtuele colonoscopie complex en tijdrovend bij inspectie van

het hele darmoppervlak. Met computerondersteunde diagnose (CAD) kunnen we deze prob-

lemen oplossen, en daarom werd dit een belangrijk onderzoeksthema in de CT colonografie.

De meeste gepubliceerde automatische poliep detectie algoritmen maken gebruik van ken-

merken gebaseerd op de kromming (curvatuur) van de colon-wand. Deze kenmerken zijn

meestal te lokaal om de eigenschappen van poliepen volledig te beschrijven. Dit kan resul-

teren in een groot aantal valse detecties.

In dit proefschrift presenteren we een aanpak voor de automatische detectie van poliepen

die mede gebaseerd is op technieken uit de stromings-visualisatie. Het primaire doel was

om nieuwe karakteristieke kenmerken te berekenen die de prestaties van bestaande detectie

technieken kunnen verbeteren door het verminderen van het aantal valse detecties.

We ontdekten dat met de hoofdrichtingen van curvatuur kenmerkende patronen voor

darmpoliepen kunnen worden bepaald. Deze patronen kunnen worden gevisualiseerd met

behulp van curvatuurlijnen. Dit deed ons vermoeden dat de geometrische eigenschappen

van deze curvatuurlijnen kunnen worden gebruikt om automatische polyp detectie te ver-

beteren. We ontwikkelden een robuust algoritme voor de berekening van de curvatuur, dat

gebaseerd is op een evenwichtige bemonstering in alle richtingen en een groter bemonster-

ingsgebied. Vervolgens ontwikkelden we nieuwe methoden om curvatuurlijnen te genereren
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op de darmwand. De methoden zijn zowel toepasbaar op expliciete oppervlaktemodellen met

driehoekjes als op impliciete iso-oppervlakken in een 3D CT dataset. Voorts hebben we gew-

erkt aan een curvatuur-afhankelijke verdeling van curvatuurlijnen over het oppervlak. We

gebruikten twee geometrische eigenschappen van de curvatuur lijnen, namelijk de winding

angle en de mean radius, om onderscheid te maken tussen echte en valse poliep detecties. De

visualisatie van de darmwand werd ook verbeterd door het afbeelden van de curvatuurlijnen.

We hebben onze techniek voor de berekening van curvatuurlijnen op twee manieren

verder verbeterd. Eerst hebben we een efficiëntere methode ontwikkeld voor het plaatsen

van startpunten voor de curvatuurlijnen, door de plaatsing afhankelijk te maken van de lokale

curvatuur van het oppervlak. Deze aanpassing leidde tot een veel kleiner aantal overbodige

startpunten en daarmee tot een snellere berekening, terwijl de kwaliteit niet significant werd

beı̈nvloed. Een tweede verbetering werd bereikt door de observatie dat de correlatie tussen

de eigenschappen van curvatuurlijnen en ware poliepen werd beı̈nvloed door de lengte van

de curvatuurlijnen. Het curvatuurlijn generatie-algoritme kan nu kortere curvatuur lijnen au-

tomatisch aan elkaar verbinden (defragmentatie). De aldus berekende langere curvatuurlijnen

leidden tot een betere beschrijving van de poliep vormen.

Door de curvatuur lijnen te clusteren, konden we de darmwand in de buurt van poliepen

opdelen in geometrisch homogene regio’s. Onze techniek maakt gebruik van een spec-

traal clustering algoritme en een symmetrische lijn similariteits maat, die gebaseerd is op

de mate van evenwijdigheid van de curvatuur lijnen. Een dergelijke partitionering kan wor-

den gebruikt om vorm informatie te aggregeren en daardoor detectie algoritmen verder te

verbeteren.

Onze detectie techniek werd geëvalueerd door het in een automatisch poliepdetectiesys-

teem te integreren. Kenmerken van de curvatuurlijnen werden gebruikt in het classificatie

stadium om het aantal valse pre-detecties te verminderen. Op basis van 332 datasets van 166

patiënten, lieten onze resultaten zien dat de winding angle eigenschap sterk correleert met

ware poliep detecties, waardoor deze gebruikt kan worden om de prestaties van bestaande

automatische detectie-systemen te verbeteren.

Dit onderzoek werd uitgevoerd bij de Technische Universiteit Delft, in samenwerking met

Philips Healthcare Nederland, die het project financieel ondersteunde.
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behorende bij het proefschrift

Curvature Lines for Lesion Detection and
Visualization in CT Colonography

1. Richtingsaggregatie van krommingslijnen is een betere basis voor karakterisering van
een vorm dan de aggregatie van scalaire krommingsmaten. (Dit proefschrift)

2. Bij vormanalyse van een oppervlak op basis van de principale krommingsrichtingen
kunnen we gebruik maken van feature extractie technieken inwetenschappelijke vi-
sualisatie. (Dit proefschrift)

3. Om ons begrip van vormen te ondersteunen is directe visualisatie van geometrische
eigenschappen van een oppervlak superieur aan directe rendering en shading van het
oppervlak.

4. Vlakke laesies kunnen niet betrouwbaar gedetecteerd worden met de huidige CAD-
technieken en CT-colonografie.

5. Clinici zullen altijd een computer-diagnose willen bevestigen met visuele inspectie.

6. De toepassing van visualisatie technieken in de geneeskunde demonstreert hoe de
integratie van twee schijnbaar ongelijksoortige gebiedenkan leiden tot waardevolle
resultaten.

7. In het hedendaagse onderzoek zijn communicatieve vaardigheden minstens zo be-
langrijk geworden als wetenschappelijke vaardigheden.

8. Computational science vereist minstens zoveel goede programmering als goede we-
tenschap.

9. Er zijn mooie gedichten en goede computerprogramma’s in elke taal.

10. Bepalen wat je wilt in het leven is belangrijker dan het bereiken daarvan.

Deze stellingen worden verdedigbaar geacht en zijn als zodanig goedgekeurd door de promotor prof. dr. ir. F.W. Jansen.



Propositions

accompanying the thesis

Curvature Lines for Lesion Detection and
Visualization in CT Colonography

1. The directional aggregation of curvature lines is a better basis for shape characteriza-
tion than the aggregation of scalar curvature measures. (This thesis)

2. Surface shape analysis based on principal curvature direction fields can benefit from
feature extraction techniques in scientific visualization. (This thesis)

3. Direct visualization of surface geometric properties issuperior to direct surface ren-
dering and shading in facilitating our understanding of shapes.

4. Flat lesions cannot be reliably detected with current CADtechniques or CT colonog-
raphy.

5. Clinicians will always want to confirm a diagnosis by visual inspection.

6. The application of visualization techniques in medicinedemonstrates how the inte-
gration of two apparently disparate fields can lead to valuable results.

7. In modern research, communication skills have become at least as important as sci-
entific skills.

8. Computational science requires at least as much good programming as it does good
science.

9. There are beautiful poems and excellent programs in everylanguage.

10. Determining what you want in life is more important than achieving it.

These propositions are considered defendable and are approved by the promotor prof.dr. ir. F.W. Jansen.
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