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summary

The blast furnace is used for the production of steel, the most widely used construction material world-
wide. Engineers want to make this process as efficient as possible by getting insight in the segregation
of different raw materials, in this case pellet and sinter. However, placing sensors in this furnace to get
insight in the dynamics is difficult due to the harsh conditions. To improve the efficiency of the blast
furnace, digital simulations are a useful tool for optimizing the process in a cost-effective and efficient
manner. Discrete Element Method (DEM), in particular, is very useful for this purpose. Small changes
can easily be made to the system to check the effect of these changes. However, the accuracy of these
simulations is critical for reliable results. One of the main challenges in using DEM simulations lies in
determining the correct values for the input parameters, as these directly affect the simulation’s valid-
ity. Input values, such as the interaction between different particles, the particle shape, particle shape,
are a few examples of the many input parameters necessary for a DEM simulation. Consequently,
calibrating these input parameters is an important step.

Methods for finding input values of DEM simulations are broadly categorized into two approaches:
direct measurement and bulk calibration. Direct measurement involves the use of specific equipment
to measure the physical properties of materials directly. While effective, this method is not always
feasible due to limitations in accuracy or practicality. Bulk calibration, on the other hand, adjusts the
input parameter values to ensure that the Key Performance Indicators (KPIs) obtained from simulations
align with those obtained from laboratory experiments. This method is particularly useful when direct
measurement is not viable.

The calibration process is complex when dealing with materials, such as sinter and pellet, due to the
amount of input parameters. To maintain the viability of the calibration process, a fundamental principle
must be followed: the number of input parameters should match the number of outputs. If this is not
achieved, multiple combinations of parameter values could result in identical KPIs, leading to ambiguity.

To address this challenge, a sensitivity analysis is conducted to identify the parameters that significantly
influence the outputs (KPIs). In this study, the Plackett-Burman design was employed to simulations
of pellet, to determine the parameters that account for 90% of the effect on the KPIs. This analysis
narrowed down the amount of parameters to five dominant parameters. These selected parameters
were then used to develop fitting models through a central composite design. Polynomial regression is
used as a fitting model in this study.

These models were initially optimized using a local optimization technique. Although this method is
computationally efficient, it demonstrated a high dependency on the initial guesses for the parameter
values, which makes it unsuitable for most applications. To overcome this limitation, global optimization
methods were employed, these algorithms avoids being trapped in local minima in early iterations and
are able to explore globally for better solutions. Specifically, two techniques were used: genetic algo-
rithm, and particle swarm optimization. These methods provided a more robust optimization process,
capable of exploring a wider range of parameter values and giving reliable results regardless of initial
conditions unlike local optimization.

With the optimal parameter set found using these optimization techniques, the DEM model calibration
for both pellet and sinter was successfully completed. The results demonstrated that PSO required
fewer computational runs than GA in order to converge to a objective function value, making it the most
computationally efficient method. Most of the KPIs of the DEM simulations with the optimal parameter
set were sufficiently close to the experimental values for the KPIs. The validation further showed that
the optimal parameter set found for pellet was accurate. The validation for sinter showed less accurate
results meaning the optimal parameter set found could be inaccurate.

Lastly, a mixture of pellet and sinter was created using the optimal parameter set found for the individual
components. The interaction parameters between sinter and pellet were taken as an average between
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the interaction parameters of the individual materials. This yielded accurate results for the segregation
of the materials when compared to the experimental values. Most of the KPIs are also very close to the
experimental values except for the shape of the heap KPIs. This could be because of the inaccurate
sinter input parameters.

Overall, the combination of sensitivity analysis, central composite design, and global optimization meth-
ods forms a calibration framework. This framework ensures the accuracy of DEM simulations for pellet,
ultimately leading to more efficient and reliable blast furnace operations. Future research could include
an in depth sensitivity analysis, different sampling techniques, different regression techniques and the
effect of the performance of GA and PSO with different regression techniques.
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Introduction

Steel production begins with the extraction of molten iron from raw iron ores, a ferrous material, and
the blast furnace is the primary tool for this step. It is a vertical shaft furnace that uses heat, pressure,
and chemical reactions to extract iron from a mixture of ferrous materials and fuel. The ferrous material
consist of pellets (small, rounded particles made from iron ore fines), and sinter (clumps of iron-rich
dust heated until they partially fuse). Coke is added to the furnace as fuel and helps drive the necessary
reactions.

Steel is the most widely used engineering and construction material worldwide [1]. Figure 1.1 shows
the role of the blast furnace in the overall steel production process. As can be seen in this figure, the
blast furnace is one of the first steps. After iron is extracted, the molten material is transported to the
steel factory for further processing into steel products.

p—

Ferrous
Material @

Blast
Furnace

Figure 1.1: This study focuses on the ferrous material fed into the blast furnace, this figure highlights its position within steel
making. Modified from [2].

The blast furnace process begins as follows: the mixture of the ferrous material and coke are charged
into the top of the blast furnace forming a layer. This layer forms a packed bed of the different materials.
A powerful blast of hot, pressurized gas is then injected from below, forcing its way upward through the
bed and reacting with the particles along the way. This reaction gradually melts the iron within the
ferrous material, and the molten iron collects at the bottom, ready for further processing.

A crucial aspect of this process is the initial arrangement of the ferrous material, which consists of pellet
and sinter. This is known as the bed configuration. This configuration directly impacts gas flow through
the furnace, which in turn affects permeability, a key factor in the efficiency of iron extraction [3, 4, 5, 6,
7], it is the ability of a substance to allow gases or liquids to go through it. Since the configuration of
materials influences permeability, understanding and optimizing their configuration is interesting. It is



found that when pellet and sinter are mixed well, the permeability increases [1]. Figure 1.2 provides a
schematic view of the top of the blast furnace, where the pellet-sinter mixture and coke is loaded.
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Figure 1.2: Top of the blast furnace, a) pellets, b) sinter. Modified from [8, 9].

Segregation of pellet and sinter, also known as de-mixing, is undesirable because it reduces gas perme-
ability and makes the furnace less efficient. However, monitoring this distribution in real time is difficult.
The extreme conditions inside the furnace make it challenging to place sensors directly. To gain more
insight into the behavior of these materials, engineers often use computer simulations. One method
that helps with understanding the behavior of granular material mixtures is the discrete element method
(DEM), developed by Cundall and Strack [10]. DEM provides detailed, particle-level information that
is difficult and expensive to obtain through experiments. This makes it a useful tool for improving the
design of production processes where bulk materials are involved, as well as for the design of the
equipment used to handle them.

DEM is a computational method that simulates the behavior of granular materials. It was developed in
the 1970s, but it has only started gaining popularity in recent years, which makes it a relatively modern
approach [11]. In DEM, the flow of particles is simulated by calculating the forces acting on each particle
and using numerical integration to predict how they move over time. These particle interactions are
governed by contact models, each of which has a variety of different parameters that must be quantified.
The values of these parameters affect both the overall and the particle-level behavior of the material.

Finding the values to these parameters is the main difficulty for the application of DEM [12]. For most
parameters, direct measurement cannot directly determine the values, and thus, the model requires
calibration. This is due to the stochastic nature of the particles; the particles are not identical. The goal
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of the calibration process is to identify a parameter set whose resulting system response corresponds as
closely as possible to the real physical behavior. This is an optimization problem and there are different
ways to come up with the values for the parameters. A method often used by researchers is trial and
error, this is a straightforward technique which is usually very inefficient, requires an experienced user
and rarely leads to an optimal parameter set [11].

That is why the calibration process in DEM has been a topic of scientific research for years and will
be the focus of this study. Different approaches for the calibration process have been suggested [11,
13, 12], however, this research on the calibration of DEM models focuses mainly on single-component
materials. The studies focused on the calibration of multi-component mixtures remain scarce. There
are studies which investigate pellet-sinter mixtures [14, 15, 16, 17, 18], however, these studies are
lacking because of one or more of the following reasons: the study assumes the interaction parameter
values from literature, leaves out sinter-pellet interactions, or calibrates for only one Key Performance
Indicator (KPI). There are several short-comings in this approach as will be described in the next section,
including the resulting problem statement.

1.1. Literature Gap

To summarize from the previous section, there are three main short-comings in the DEM calibration
of materials in general: assuming values, leaving out values or only using one KPI which creates
ambiguity. This section explains why this is problematic and what has been done in literature.

Assuming interaction parameter values from literature can be insufficient because the parameters
obtained from these resources also have not conducted calibration. Furthermore, the material should
be similar or exactly the same as the resource to be usable [1]. Also leaving out sinter-pellet interaction
can be inaccurate because as shown by Hadi et al. [19] these have an effect on the heap.

Generally when an effort is made to experimentally find the values for the input parameters, there
are two approaches to obtaining input values accurately, referred to as direct measurement approach
and bulk calibration approach [20]. The first approach is measuring the particle or contact properties
directly to obtain the input values. In this study, the particle size distribution (PSD) and density of sinter
and pellet were collected from Roeplal et al. [21]. There are many methods to determine additional
parameter values, however they are not possible for all parameters and do not account for the stochastic
nature of the parameters. These are the main disadvantages of direct of measurement. This is why
many researchers use a combination of both [20, 22, 23, 24, 25, 26, 27].

The second approach is the determination of DEM simulation parameters by comparing simulation
results with bulk experiments and calibrating the input parameters to achieve a combination thereof
such that the simulation and experiments give comparable KPls. This approach will be the focus of this
study. For bulk calibration it is important the amount of KPIs is the same as the amount of unknown input
parameters. When there are not enough KPIs the model is underdetermined. In an underdetermined
system, there are more unknown parameters than there are KPls, leading to ambiguity and multiple
possible combinations of parameter values. This lack of sufficient KPIs means that the system does
not have a unique combination of parameter values and additional information is required to resolve the
ambiguity. This is one of the main gaps in research, where often only one KPI is used to calibrate, often
the angle of repose (a metric which describes the steepness of the heap) in bulk calibration of sinter
and pellet, while several input parameters are being determined [17, 15, 28, 29, 30]. Using multiple
KPIs to find the optimal input parameter set, multi-objective optimization, has not been performed in
studies with sinter and pellet, even though it is necessary to prevent ambiguity.

Additionally, a specific research gap for blast furnace DEM calibration should be mentioned. Most blast
furnace research performed using DEM calibration have done so by using the ledge test or the pouring
test according to the review of Hadi et al. [1]. This leads to static experiments and this does not account
for the effects of high velocities in the blast furnace. This is taken into account in the experiments of
Roeplal et al. [21] where the material velocities reach up to 10 m/s.

Lastly, little research has been done on the calibration of multi-component mixtures. Despite the grow-
ing interest in DEM calibration, there is a lack of established strategies for accurately calibrating in-
dividual components within multi-component systems such as sinter-pellet mixtures. Existing studies
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often overlook parameter interactions, rely on assumed parameter values, or focus on only a single
KPI, resulting in underdetermined and potentially inaccurate models. As such, there is a clear need
to investigate systematic and comparative calibration approaches for the individual components as a
foundation for reliable multi-component simulations. This literature gap leads to the following research
objective, as posed in the following section.

1.2. Research Objectives

The aim of this study is twofold. The primary objective is to evaluate how different multi-objective
optimization algorithms influence the calibration outcomes of DEM simulations for sinter and pellet
materials. This means assessing their performance when multiple KPIs are simultaneously considered.

As a secondary objective, this study investigates a practical case: whether the input parameters ob-
tained from calibrating sinter and pellet materials individually can be applied directly to simulate a mix-
ture of both. The interaction parameters between sinter and pellet are then taken as the average of the
individual interaction parameters, following the successful method applied by Chakrabarty et al. [8].

To guide this research, the following main question and subquestions are posed.
Main Research Question:

”In the context of DEM calibration for sinter and pellet, how do different multi-objective optimization
algorithms compare during the parameter optimization step?”

Subquestions:

1. What are the key steps in determining input parameters for a DEM simulation, and which tech-
niques are suitable for each step?

2. What are the most significant input parameters affecting KPIs in DEM simulations of sinter and
pellet?

3. Which optimization techniques be used to accurately determine DEM input parameters for sinter
and pellet with multiple KPIs and how can the calibrated parameter values and simulation results
be validated against experimental data?

4. Can an accurate multi-component mixture be created using interaction parameters derived from
individually calibrated materials?

To answer these research questions and achieve the aim of this study the following methodology is
applied in this study, as described in the following section.

1.3. Methodology

This study follows a step-by-step approach to calibrating a simulation model that can accurately rep-
resent how pellet and sinter behave. The simulation technique used is called the Discrete Element
Method, which models how individual particles move and interact with each other and with their sur-
roundings. To do this, a contact model is selected that describes how forces act between the particles
when they touch.

Some of these input values, such as particle size, density, and stiffness, are known from earlier ex-
periments or available from literature. Others, such as the shape of the particles and the time interval
between simulation steps, must be selected based on a balance between accuracy and computational
time. Once these values are set, the required number of simulations can be determined to account for
the variability of the results.

Other input values define how particles behave when they collide or slide against each other. These are
more difficult to determine directly and are therefore estimated through calibration. Before calibration,
it is important to identify which input values have the most significant influence on the simulation results.
This is done through a sensitivity analysis, which determines the parameters that most strongly affect
the key performance indicators (KPIs).

To further reduce the number of simulations, a structured sampling method is used. Instead of testing
every possible combination of input parameter values, a selection is chosen. The results of these
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simulations are used to create polynomials that describe the relationship between input parameter
values and KPls.

Once these polynomials are determined, different optimization methods are used to find the input pa-
rameter values that produce the most similar simulation results to the experimental results. These input
parameter values are validated using additional experiments.

The final step of this study is to assess whether the calibrated input values for the individual compo-
nents can be applied effectively to a multi-component mixture. Upon completion of these steps, the
main research question and subquestions can be addressed. A visual representation of these steps is
presented in the next figure, Figure 1.3.
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between match experimental Validation component RQs
L input/output data ) KPIs to simulation KPIs J mixture

Figure 1.3: Visual representation of the steps performed in this study. The steps are from left to right and after DoE the next
step is the setting up the model relation.

The next chapter outlines the structure of this thesis, detailing the content and focus of each chapter.

1.4. Thesis Outline

Chapter 2 presents the framework for calibration techniques in DEM simulations. It introduces the chal-
lenges of parameter selection in multi-component mixtures and reviews existing calibration methodolo-
gies. The concepts of bulk calibration, direct measurement, and optimization techniques are discussed
in detail. This section establishes the methodology for the following calibration procedures and will an-
swer subquestion 1.

Chapter 3 details the experimental setup and methodology used for data collection. It describes the
experiments, focusing on the measurement of the KPIs. The technical aspects of DEM modeling are
covered, including material parameter selection, and simulation setup. Additionally, the parameter
sensitivity analysis is explained which is used to identify dominant factors influencing DEM simulations.
This section provides an answer to subquestion 2.

Chapter 4 focuses on the calibration procedure for single-component materials, sinter and pellet. The
implementation of CCD for response surface analysis is discussed, alongside various optimization
techniques used to determine parameter values. The effectiveness of local and global optimization
methods is compared to ensure robust parameter estimation. This section explains the answer to
subquestion 3 and 4. This chapter also reflects on the results of the experiments and touches upon
specific challenges encountered during the study.

Chapter 5 investigates the feasibility of deriving interaction parameters for multi-component mixtures
from individually calibrated materials. Instead of performing direct calibration, the interaction parame-
ters for sinter-pellet contacts are determined by averaging the individually calibrated values of sinter
and pellet. The accuracy of this approach is evaluated by analyzing simulation results and comparing
them to experimental observations. This section will answer subquestion 5.

Chapter 6 concludes the thesis, summarizing key findings and assessing the extent to which the re-
search objectives have been met. Finally, recommendations are given for further refining the calibration
process and expanding its use in systems with multi-component mixtures.



Framework Calibration Procedure

In Figure 2.1 all the steps are shown in the gray boxes, under each step the techniques are presented,
except for the second gray box, here the parameters are sorted and the techniques are shown in bold.
It is important to note that selecting and representing particle shape in the DEM simulation involves a
more nuanced process than direct measurement alone; this is discussed in greater detail in Chapter
3. This chapter describes the substantiation for every technique chosen for each calibration step, and
can be seen as a methodology chapter. In the following chapters, the results are described.
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Figure 2.1: Visual representation of the steps performed in this study. The steps are from left to right and after DoE the next
step is the setting up the model relation.
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2.1. Introduction to DEM: Contact Model and Input Parameters

DEM is a technique used to simulate the behavior of particles in a flow by tracking each particle’s
movement over time. DEM works by calculating the forces and torques on each particle at every
step of the simulation. Using these forces, the method applies Newton’s second law to predict how
each particle will move. In simpler terms, DEM determines all the pushes and pulls on a particle and
then uses these to figure out the particle’s trajectory. This process is repeated for each particle in the
simulation to model how they all interact and move together. Contact models are used in the DEM to
define the physical collision between particle materials or particles and geometries. The contact model
should be selected according to its application.

Forces that act on particles can come from a few different sources: short-range interactions like colli-
sions between particles or between particles and walls, body forces, and long-range interactions. While
body forces and torques can be calculated using basic physics principles, figuring out the forces and
torques from short and long-range interactions is a bit more complicated.

When particles come into contact, the normal forces are crucial because, without them, particles would
simply pass through each other. For tangential movements, there are three types of interaction laws
to think about: friction (which resists sliding), rolling resistance, and torsion resistance. A diagram
showing how sliding, spring, and dashpot forces are represented in two interacting particles, is shown
in Figure 2.2. This is why contact models necessary, for example, the Hertz-Mindlin model calculates
the normal force based on Hertzian contact theory [31].

x friction
¥ coefficient
B

before the
impact 77
F

durin:

particle i
(28 impaci

(m,,1) —

particle j Soverlap

(m, b)
after the
impact vy, vy,

Figure 2.2: Schematic of general contact model between two particles according to Capozzi et al [32]

We want to simulate three materials; sinter, pellet and a mixture of sinter and pellet. There are several
DEM parameters which need to be determined. In this chapter the methodology of finding these pa-
rameters is described, in the next chapter, the results are presented. The model inputs can generally
be divided into three categories: morphological parameters, material parameters and interaction pa-
rameters [1]. An overview of the parameters, each in their respective category, can be found in Table
2.1 below.
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DEM Parameter Pellet Sinter Sinter-Pellet
Morphological Parameters
Particle shape Sphere Clumped Sphere N/A
Size distribution Direct Measurement  Direct Measurement N/A
Material Parameters
Density (p) Direct Measurement  Direct Measurement N/A
Shear modulus (G) Literature Literature N/A
Poisson’s ratio (v) Literature Literature N/A
Particle-Particle Interaction
Coefficient of restitution (Cp)) Bulk Calibration Bulk Calibration Average
Coefficient of rolling friction (ur—pp) Bulk Calibration Bulk Calibration Average
Coefficient of static friction (us—pp) Bulk Calibration Bulk Calibration Average
Particle-Geometry Interaction
Coefficient of restitution (Cpg) Bulk Calibration Bulk Calibration N/A
Coefficient of rolling friction (ur—pg) N/A N/A N/A
Coefficient of static friction (15— pg) Bulk Calibration Bulk Calibration N/A

Table 2.1: Overview of parameters associated with Hertz-Mindlin and rolling model C, including their determination method

and corresponding symbol.

What is not shown in Table 2.1, is the Rayleigh time step (DtR), which is a simulation-specific parameter

rather than a material property [33].

2.2. Direct Measurement and Literature Sourcing
Before beginning the calibration steps, a subset of the input parameters was determined using direct

measurements or values sourced from literature. These include:

* Particle size distribution (PSD)

+ Particle shape (initial classification)

* Density (p)
» Shear modulus (G)
» Poisson’s ratio (v)

Using direct measurement and sourcing from literature for these input parameters is very suitable be-
cause these properties are fundamental and not typically influenced by bulk behavior or particle in-
teractions, so direct measurement is preferred [34]. The particle shape, although initially categorized
here, requires further substantiation due to its effect on simulation outcomes and its complexity; this is

explained further in Section 2.4.

2.3. Calibration of Interaction Parameters

The remaining parameters which are not found using literature or direct measurement, are calibrated
based on bulk material behavior. These parameters include:

+ Coefficients of restitution (Cy,,, Cpg)

+ Coefficients of static friction (us—pp, tts—pg)

+ Coefficients of rolling friction (. —pp, ttr—pg)



2.4. Sensitivity Analysis 9

The calibration process to find these interaction parameters is structured as follows: a sensitivity anal-
ysis to identify dominant parameters, and a design of experiments (DoE) approach to construct and
optimize polynomial models. Each of these steps lead to numerical input values for the remaining
parameters. These steps are elaborated in the sections that follow.

2.4. Sensitivity Analysis

As mentioned earlier, there are several input parameters that still need to be determined but cannot
be found using direct measurement. The first being the time-step. In DEM simulations, the time-step
is defined as the time between each iteration. A simulation is stable only if the time-step employed is
lower than a critical time-step which in the DEM simulation is defined as a percentage of the Rayleigh
time-step (DtR). The DtR is determined by the following formula [9]:

mry/ L&
DtR = G 2.1
tr 0.1631v + 0.8766 1)

As can be seen in the formula for the Rayleigh time-step, it is dependent on the characteristic dimension
of the particle (such as the radius of the smallest particle, r), the density of the particle material (p), the
shear modulus of the particle material (G) and the Poisson’s ratio of the material (v). The time-step is
set to 20 % of DtR by default [33]. According to literature, a value between 10 and 40 % of DtR should
be used for the time step [9] and the selected value depends on the coordination number and energy
in the system. If the time-step is too small, the simulation will take a long time to run. If the time-step is
too large, particles can behave erratically [33]. Research has demonstrated that the percentage of DR
taken affects the KPIs, the stability of the simulation, and if optimized, can reduce the computational
cost [35, 36, 9].

The shape of the particles is another characteristic that will be evaluated. It is not a continuous variable,
making it challenging to evaluate. In most DEM calibrations the particle shape is simulated as spherical
or the particle shape is based on previous studies [37]. It is seldomly calibrated, and if it is looked at,
the common conclusion is to use fewer spheres to reduce computational costs.

Since pellets are almost spherical, single spheres work well for the particle shape of pellets, this has
often been done in previous studies as shown by the review by Hadi et al [1]. However, as shown
in Figure 2.3, sinter particles have a highly irregular form, meaning a non-spherical representation is
needed for DEM modeling. Different studies have different approaches to modeling the sinter particle
shape.

It is known that the segregation of a mixture is dependent on the particle shape [38, 39, 40, 41, 42,
19, 43, 44], making it a factor to take into account. One method that avoids the high computational
cost associated with using multiple spheres to represent particle shapes is the rolling model, which
introduces ‘shape-like’ behavior [45]. However, the rolling friction approach underestimates the segre-
gation tendency even when it is calibrated to predict the repose angle. This is most likely because of
the effect of particle-particle mechanical interlocking as well as the particle’s different aspect ratios and
moment of inertia, which only occurs in the real system and the clumped sphere approach [46].

Therefore, we used a clumped sphere approach to depict the irregular shape of sinter particles. A total
of 285 different sinter particles scans were available. Ideally, these shapes would be directly replicated
in the DEM simulation; however, increasing the number of spheres in each clump to closely match the
real particle shape leads to a significantly increased computational cost. Due to these reasons, the
sinter particle shape is simplified in this study. The method of simplification is presented in Section
3.3.3, along with the sensitivity analysis of the way it is simulated in the DEM simulation.
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Figure 2.3: Sinter and pellet shape [19]

Finally, the remaining input parameters are interaction parameters. These consist of friction coefficients
and coefficients of restitution between particles and between particle and geometry. To reduce the
complexity of the calibration task, it first needs to be tested which interaction parameters are useful to
calibrate. Therefore, a sensitivity analysis is applied, to find out which interaction parameters have a
dominant effect on the KPIs. Plackett-Burman (PB) is employed to efficiently explore the relationship
between certain input variables and one or more outputs (or KPIs).

PB is chosen because it is computationally the least expensive DoE, it is sufficient for the sensitivity
analysis, and it is available in Altair Hyperstudy. Once the parameters which have an influence on the
KPls have been determined the dominant parameters can be calibrated.

2.5. Experiments in Laboratory

To measure the dominant input parameters found during the sensitivity analysis the simulation needs
to be calibrated. This is done by comparing the experiments in the laboratory to the simulation ex-
periments in DEM. The experiments are taken from the experiments performed by Roeplal et al. [21].
This study performs hopper experiments with pellet, sinter and a mixture of sinter and pellet. The dis-
charge time is measured, images are extracted and mass measurements are performed from which
the following KPIs can be extracted:

. KPI 1: The discharge time of the material flowing from the hopper.
. KPI 2: The mass of material that falls to the left side of the scale.

. KPI 3: The mass of material that falls to the right side of the scale.
. KPI 4: The mass of material that remains on the scale.

a A WODN =

. KPI 5: The x-coordinate of the highest point of the heap (the peak), indicating its position along
the horizontal axis. The MATLAB code used for identifying this coordinate can also be found in
Appendix D.

6. KPI 6: The y-coordinate of the highest point of the heap, representing the height of the heap’s
peak.

7. KP17, 8, 9: The y-coordinate is taken of the heap at a quarter, halfway and three quarters of
the width, which represent KPI1 7, 8, and 9 respectively.

The experimental setup developed by Roeplal et al. [21], which forms the basis for this study, is shown
in Figure 2.4. In their work, experiments were carried out to investigate the bulk behavior of sinter
and pellet materials. In these experiments, the material was placed into a hopper; once the gate was
opened, it flowed out onto a scale positioned below. Tests were performed using sinter, pellet, and a
mixture of both. In this study, the raw experimental data generated by Roeplal et al. [21] was used to
evaluate KPIs. The methodology used to extract these KPIs from the data is described in the following
section, while the results are presented and compared with simulation outcomes in Chapter 4.
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lifted by crane

Figure 2.4: The experimental setup in the laboratory performed by Roeplal et al [21].

A camera was positioned at the of the bottom of the hopper to record the opening of the gate. This
footage gave a view of the material’s flow at the opening of the hopper and the dynamics of the hopper
gate. Taking the moment when the last particles flows out of the hopper gives us the discharge time,
KPI 1. The discharge times for the different materials were given as raw data by Roeplal et al. [21]

Figure 2.5: Video recording of the hopper gate.

The mass is measured at three different locations after the hopper is emptied. The mass that falls
directly on the scale, and the mass which flows over onto the left and right side of the scale is measured.
In front of the scale, at the bottom of the container a partition is placed to have a clear division between
the left and right side. These measurements provide the values for KPI 2, 3 and 4. These values were
also given by Roeplal et al. [21]

Images of the heap, formed on the scale, were taken at the scale’s level after the hopper was emptied.
To obtain images suitable for analysis, a green background was used to create contrast to enhance the
visibility of the heap’s shape.The angle of repose, a commonly used KPI in DEM studies, is challenging
to measure due to this varying heap shape. To address this, the highest point of the heap is analyzed
instead. The pixel height is taken at three set locations (at a quarter, halfway and three quarters) and



2.5. Experiments in Laboratory 12

the x and y coordinate of the peak of the heap are taken. For a more accurate image analysis of the
experimental results, the background is made completely green and the image of the heap is edited so
that it consists entirely of pellets or sinter. The images are provided by Roeplal et al. [21]

a7y

(Peak X, Peak Y)

X

Figure 2.6: Five KPIs found using the image of the heap.

To be able to compare it to the DEM simulation, both images are cropped and scaled so that they have
the same pixel dimensions, as shown in Figure 2.7. The width of both should be the same, it is the
same container, so it is scaled accordingly. The height is not scaled in order not to effect the heap
properties, a green box has been added to the top of the experimental image to match the height of
the simulation image so as not to interfere with the experimental results.

910 pixels 910 pixels ————*

Figure 2.7: Dimensions of the images of the heaps.

These measurements give us the values for KPI 5, 6, 7, 8, and 9.
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2.6. Experiments in DEM

The experimental setup was designed by Roeplal et al. [21] to closely replicate the laboratory environ-
ment. For the purpose of this study, the STL files of the experimental geometries were obtained directly
from their work and used to reconstruct the setup in the simulation environment. Figure 2.8 illustrates
the geometries as implemented in the simulations of this study.

Hopper Gate
Container
i 4 e ta

Right

YEE QLR L

Figure 2.8: The geometries used in the simulations, imported from [21]. Note that in this image the scale is made partly
transparent to show the heap but the imported scale is made of one material (steel) in the simulations.

The KPIs taken from the simulations need to be as similar as possible as the KPIs taken from the
physical experiments. These include an image of the heap, the masses of the heap (scale, left side,
and right side), and the discharge of the material at the hopper gate.

The time of the simulation and maximum y-coordinate of all particles is exported from the DEM simu-
lation. When the maximum y-coordinate is below that of the hopper gate for the first time, the corre-
sponding time is taken as the discharge time, KPI 1. The particle locations and masses are extracted
from the simulations. Using MatLab the masses at different locations are extracted, to find KPI 2, 3,
and 4. The shape of the heap is very sensitive to the input parameters as can be seen in Figure 2.9.
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Figure 2.9: Different heap shapes due to variation of the interaction parameters.

The x-coordinate of this point indicates the position of the highest point, while the y-coordinate provides
information about its height. Combined with the height at set positions in the heap (at a quarter, halfway
and three quarters), this approach provides an analysis of the heap shape, the remaining KPls, 5 to 9.

For this calibration procedure 12 interaction parameters are studied, each with their respective upper
and lower bounds as can be seen in Table 2.2. They are taken as broadly as possible to maximize the
likelihood of finding accurate parameter values.

Parameter Lower Bound Upper Bound

Chpp 0.0001 0.9
Hs—pp 0 0.9
Lor—pp 0 0.9

Chg 0.0001 0.9
Ps—pg 0 0.9
Hr—pg 0 0.9

Css 0.0001 0.9
Ps—ss 0 0.9
P —ss 0 0.9

Csg 0.0001 0.9
Hs—sg 0 0.9
Hr—sg 0 0.9

Table 2.2: Simulation parameters with corresponding ranges.

To accurately calibrate the DEM model, it is necessary to understand how changes in input parameters
affect the simulation outputs. However, running exhaustive simulations for every possible parameter
combination would be computationally infeasible. Therefore, a Design of Experiments (DoE) approach
is used to strategically sample the design space with a limited number of simulations. These samples
are used to construct polynomial models that describe the relationships between input parameters and
outputs. This modeling process, known as response surface methodology (RSM), allows for efficient
exploration of the parameter space.
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2.7. Design of Experiments: Central Composite Design

KPls can be expressed as a function of multiple independent parameters and can often be represented
as a linear combination of these parameters. However, to accurately predict responses, experiments
must be structured to capture interaction effects and even quadratic relationships among the param-
eters. To achieve this, the Central Composite Design (CCD) method is applied which is capable of
estimating interaction and quadratic effects [47]. This technique provides high-quality predictions of re-
sponse surfaces, accounting for linear, quadratic, and interaction effects across the entire design space.
Alternative DoE techniques commonly used in DEM calibration include Latin Hypercube Sampling, Full
Factorial Design, Box-Behnken Design, and Fractional Factorial Design. However, CCD was chosen
because it provides a balance between accuracy and efficiency, requiring fewer simulations while still
covering a wide range of input variables [47].

CCD is a widely used experimental design method that combines an embedded factorial or fractional
factorial design with center points, augmented by points to estimate curvature. It comes in three varia-
tions as can be seen in Figure 2.10: Circumscribed (CCC), Inscribed (CCl), and Face-Centered (CCF).
CCC designs are the original form, with star points located at a distance beyond the factorial space,
creating circular, spherical, or hyperspherical symmetry. These designs require five levels per variable
and allow the exploration of extended variable ranges. CCl designs, on the other hand, scale the CCC
design to fit entirely within the specified variable limits, using those limits as the pink square points.
This makes them ideal for situations where the variable settings are strictly constrained, like this case.
Lastly, CCF designs place the pink square points at the center of each face of the factorial space,
requiring only three levels per variable.

CcccC CCF CCl

+1 7/", - 1 -
\

Figure 2.10: Three types of CCD [33].

For this study, the CCl design was chosen due to the strict limits of the parameter ranges, itis impossible
to have a negative coefficients or a coefficient of restitution that is larger than 1. The specific CCD used
for this thesis is described in Figure 2.11, showing an example with two factors.
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Figure 2.11: Complete design matrix for Central Composite Design inspired from [47].

The middle point is repeated five times to account for the variability of the KPIs. The « of the corner
points can be found using scaling factor, and in the case of a rotatable design, it is found using the
following formula, where k is amount of parameters:

SF = (2%)3 (2.2)

The amount of runs are dependent on the amount of parameters which are used for the calibration.
From those runs the KPlIs are extracted and used for the polynomials, which model the relationship
between the inputs and KPls, as described in the next section.

2.8. Model Relations between Input and Output

Once the results of the CCD have been evaluated, they can be used to fit a model which relates the
KPlIs to the inputs. Using the results of the simulations, a polynomial can be created, one for every KPI.
These polynomials contain a constant, a linear variable, a squared variable and interaction variables.
It is a widely used and easy to understand statistical tool [48], and has been used in combination with
CCD [47]. Using MATLAB’s built-in function "fitlm”, a second-order polynomial model was fitted using
the least squares method. The model minimizes the sum of squared errors between predicted values
and actual values.

The predicted KPI value is calculated as follows:

Predicted KPI = Constant + > 8P, + > %P?+ Y > ;PP (2.3)

i=1 i=1 i=1 j=i+1
Where:

* (3;: Linear coefficients.

* ~;: Quadratic coefficients.

* 0;;: Interaction coefficients.
e P,;: Parameters
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Note: Indicesiand j, in this case, refer to the parameters in the ordered list {C,,,, tr-pp, ts-pps Cpgs ths-pg } -

To compare the fitting of different models and measure their accuracy, R? can be used. The coefficient
of determination (R?) as shown in equation 2.8 measures how well a model explains the variance in
the data, with values closer to one indicating a better fit.

>t (ke — 4k)?

R?=1- =k 4
D1 (ke — Yk)?

(2.4)

The fitting model is also verified first by using a parameter set which was not used during CCD. Once
the polynomials have been established they can be used in the next step. Here the parameter set
which gives the predicted KPIs closest to the experimental values is found.

2.9. Optimization Polynomials

Using the KPIs from the experiments (the target KPIs), the optimal values can be found for the param-
eters. Optimizing the polynomials can be done in different ways, different techniques and how often
they appear in literature are shown in Figure 2.12. Several techniques are compared in this thesis, and
are described below.

} Genetic Algorithms: 1,800

Metaheuristic & Evolutionary: 3,680 ] o
I Particle Swarm Optimization: 900

Differential Evolution: 400

Simulated Annealing: 580

Artificial Neural Networks: 2,000

BP Neural Networks: 370

Machine Learning & Surrogate: 4,520 ~
. Random Forest: 680

Bayesian Optimization: 170

Surrogate-Based Optimization: 1,300

Nelder-Mead Simplex: 135
Levenberg-Marquardt; 400
Gauss-Newton Algorithm: 260
Weighted Least Squares: 200
Local Optimization: 211

Classical Optimization: 1,206 I:

EEE BN BN BN B

Figure 2.12: A Sankey chart of the optimization techniques used for finding the optimal parameter values in DEM simulations.
The values represent the number of papers found when the following keywords are applied: "discrete element method” AND
“calibration” AND "technique”. Year: 1970-2025.

From this figure, it can be seen that Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) are
among the most commonly used optimization techniques, apart from Artificial Neural Networks (ANN).
Although ANN is widely used in DEM calibration, it was not considered in this study due to its complex-
ity and potential challenges in comparison with other techniques. Instead, GA and PSO were chosen
because they are both well-established metaheuristic methods capable of handling non-linearities, and
high-dimensional search spaces, which are some of the main challenges in DEM calibration [11]. Ad-
ditionally, a local optimization method was included as a baseline comparison due to its simplicity and
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ease of implementation. These optimization techniques are described in the rest of the section, includ-
ing the objective function, upper and lower bounds, and stopping criteria.

2.9.1. Objective Function

The objective is to make the absolute value of the difference between all KPI values, one from the
physical test and the other from the simulation, close to zero. To prevent larger KPI values from dispro-
portionately influencing the optimization process, the objective function is normalized. The error is also
squared to give a balanced outcome between the parameter values. This objective function combines
the errors of all KPIs and can be written as follows:

< [ Target KPI, — Predicted KPI;
Error = ; ( Target KPI,, ) (2:9)

The parameter bounds in which the optimal solution is allowed, are defined in Table 2.3.

Parameter Lower Bound Upper Bound

Cop 0.0001 0.9
fir—pp 0 0.9
s pp 0 0.9
Chy 0.0001 0.9
Lis—pg 0 0.9

Table 2.3: Bounds for the optimization parameters.

Local optimization, GA and PSO use the same objective function and parameter bounds.

2.9.2. Local Optimization

The "Fmin” function in MATLAB represents a calculus-based optimization (CBO) method. CBO relies on
the gradients (or derivatives) of the objective function to identify optimal values [49]. The optimization
process starts from an initial guess and iteratively moves in the direction of the negative gradient to
minimize the objective function. This approach assumes that is differentiable across the search space.
The method continues until it converges to a local minimum.

Key aspects for local optimization:

* Initial guess for the optimization.
» Convergence criteria (e.g., maximum iterations, tolerance).

2.9.3. Global Optimization

Global optimization has several techniques, in this thesis, genetic algorithm, and particle swarm opti-
mization are compared. These techniques are readily available in the Global Optimization Toolbox in
MatLab [50]. These two methods belong to the category of metaheuristic approaches and they are
population-based techniques.

Genetic Algorithm

Genetic Algorithms (GAs) are population-based metaheuristic optimization techniques that simulate
natural evolutionary processes [51]. The algorithm starts with an initial population of candidate solutions
(referred to as elements or chromosomes). Each element represents a potential solution, a set of
parameter values.

GAs employ genetic operators like crossover, mutation, and elitism to evolve the population over suc-
cessive generations. These operators iteratively refine the population, improving the solutions based
on their fitness (the objective function value). The algorithm continues until a predefined stopping con-
dition is reached, such as a maximum runtime, a certain objective function value, or a fixed number of
generations.
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Key aspects for Genetic Algorithm:

» Population size and initialization strategy.

» Genetic operators: crossover, mutation, and elitism.

» Fitness function for evaluating solutions.

+ Stopping criteria (e.g., max number of generations, fithess threshold).

Particle Swarm Optimization

Particle Swarm Optimization (PSO), is another population-based metaheuristic method inspired by the
collective behavior observed in animal groups, such as bird flocks or fish schools [52, 53]. In this
algorithm, a group of particles (potential solution sets) is initialized with random positions and velocities
within the design space.

Each particle evaluates the objective function and remembers both its best position and the global
best position found by the entire swarm. The velocity of each particle is updated based on its current
velocity, its best-known position, and the global best position. This update ensures that particles move
toward promising regions of the search space while maintaining diversity. The process continues until
a stopping condition is reached, such as a maximum computational time or a desired solution.

Key aspects for Particle Swarm Optimization:

+ Swarm size and initialization of particles’ positions and velocities.
+ Fitness evaluation of particles.
 Stopping criteria (e.g., number of iterations, fitness threshold).

2.9.4. Stopping Criteria

In this study, the optimization algorithms, GA and PSO, were configured to prioritize convergence as
the stopping criteria. Rather than relying on fixed limits for the number of generations or iterations,
the focus was placed on allowing each algorithm to run until meaningful improvements in the objective
function ceased. For the GA, stopping occurred when the average change in the fitness values across
the population fell below the specified ‘FunctionTolerance’, indicating that the population had effectively
converged to a stable solution. Similarly, the PSO algorithm was set to stop when the relative change
in the objective value over the course of several iterations ‘MaxStalllterations’ dropped below the same
tolerance threshold. This approach ensured that optimization was driven by solution stability rather
than arbitrary computational limits, allowing each run to naturally converge to a minimal error.

2.9.5. Evaluation Metrics for Optimization Algorithms

When assessing the efficacy of optimization algorithms, there are several factors that are taken into
consideration. Most importantly, the value of the objective function that the optimization can find, in
this the ‘quality of the solution’, the difference between the target KPIs from the experiments and the
predicted KPIs. A lower value is preferable, as it indicates a stronger alignment between the predicted
KPls and the target KPIs. Secondly, the variability in the objective function value is important. Specif-
ically, it is important to determine whether the optimization algorithm consistently identifies the same
optimal value or if the results exhibit significant variability. Consistency is desirable because it ensures
reliability and reduces the necessity for multiple runs.

Another comparison metric is the computational speed; the faster an optimizer can find an optimal so-
lution, the better, as this minimizes computational costs and speeds up decision-making. This includes
the number of function evaluations needed to find the solution. Finally, the complexity of user-defined
parameters plays a role in usability. If an optimization algorithm requires a large number of key inputs,
it can be more challenging to fine-tune and less user-friendly. Additionally, high sensitivity to these user
inputs can increase the risk of selecting suboptimal parameter sets, making the optimization process
more error-prone.
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Overview of evaluation metrics:

1. Objective function value

2. Variability in the objective function value
3. Amount of necessary iterations

4. Sensitivity to user-inputs

From these optimization algorithms, several ‘optimal’ parameter inputs will be found. These input pa-
rameters will be tested in the DEM simulations to check if they provide the predicted KPlIs. If they are
similar, the input parameters need to be validated as described in the next section.

2.10. Validation

Once the optimal parameter values have been found, it is important to check if these are accurate and
make sure that these values are not only exclusively accurate for this specific situation. The physical
experiments have been conducted with the hopper at varying heights, as shown in Section 2.5 and
displayed in Figure 2.13 shown below. The KPIs for sinter and pellet have been measured at hopper
heights of 1 meter, 3 meter, and 4.665 meter. The experimental KPIs change when the hopper height
varies and this study checks if this same change occurs in the DEM simulation. The mixture has been
measured at a hopper height of 4.665 meters. Therefore, the experimental results of hopper heights 1
and 3 meters will be used as validation experiments for sinter and pellet.
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Figure 2.13: Different hopper heights in the DEM simulation.

2.11. Case Study: Mixture

As described in Table 2.1, the interaction parameters for the mixture of sinter and pellet will be taken
as an average of the individual material’s interaction parameters. This was applied successfully by
Chakrabarty et al. [8] and is tested in this study.
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2.12. Summary

To answer subquestion one, bulk calibration is a process involving several steps, starting with the exper-
imental setup and proceeding to DEM model configuration, parameter determination, and optimization.
In this study, the experimental setup included measuring the mass distribution of the material, ana-
lyze the heap shape using images, and record the mass flow at the hopper gate. These experiments
provided 9 KPIs that are sensitive to DEM input parameters, allowing for bulk calibration.

To establish relationships between input parameters and KPls, Central Composite Design is chosen.
CCD is chosen due to its ability to capture interaction effects and quadratic relationships, making it
well-suited for developing accurate response surface models. Polynomial regression is chosen as the
regression technique, with model evaluation metric, R2, which will be used to test the fit.

Subsequently, optimization techniques which are going to be applied to determine the best parameter
values which minimize the difference between the experimental results and the simulation. Local opti-
mization and global optimization methods such as genetic algorithm, and particle swarm optimization
are chosen to be compared.

Finally, validation will be performed to ensure that the optimized parameters are not overfitted to a
specific scenario and can be accurately used in different situations. This is done using different hopper
heights.



Configuration DEM Model and
Sensitivity Analysis
This chapter describes the setup of the DEM model. It describes the model inputs, the set parameters,

and determines the interaction parameters which have an influence on the KPIs. The steps in the
flowchart which are discussed in this chapter are highlighted by an orange box, in Figure 3.1.
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Figure 3.1: Steps described in this chapter.
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3.1. Contact Model

We use Hertz-Mindlin (no-slip) [54] contact model and rolling friction model C, an elastic-plastic spring-
dashpot model, according to Ai et al. [55]. For more information, EDEM theory reference guide should
be referred to [33]. This contact model is widely used in blast furnace research, making it relevant for
our study [1].

We used commercial software EDEM version 2024.1 to develop the DEM model and we conducted all
simulations on the DelftBlue high performance cluster [56].

3.2. Direct Measurement & Literature

Three materials are simulated; sinter, pellet and a mixture of sinter and pellet. For those materials there
are several material properties which will have a fixed value in this calibration process and will not be
adjusted during this study, these are summarized in Table 3.1.

DEM Parameter Pellet Sinter Geometry
Shear modulus (G)  2.5e+8 Pa [57, 8] 2.5e+8 Pa [57, 8] 2e+11 Pa [58]
Poisson’s ratio (v) 0.25[57, 8] 0.25[57, 8] 0.3 [58]

Solid density (p;) 3602 (kg/m?) [57, 8] 3449 (kg/m?) [57, 8] 7800 (kg/m?) [58]

Table 3.1: Material properties used in DEM simulations

Available data was used for the particle shape distribution. This was scaled by volume and every
volume was given as a percentage of the total mass.

3.3. Sensitivity Analysis
The remaining parameters include the sinter particle shape, the DtR and the interaction parameters of
both materials. In this section the results of the sensitivity analysis for these parameters are described.

3.3.1. Rayleigh Time Step
To optimize computational efficiency while ensuring simulation stability and accuracy, a time step anal-
ysis was conducted using Rayleigh time step percentages of 5%, 10%, 20%, 30%, and 40%.
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Figure 3.2: Time step analysis of pellet.
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The results indicated minimal influence of the time step on the KPIs across this range. Consequently,
a time step of 40% was initially chosen for subsequent simulations, as it was the least computationally
expensive. The chosen values for the interaction parameters are shown in Table 3.2. These are taken

based on literature where pellets are used [19, 8, 46].

Parameter Value
Chp 0.5

Ws—pp 0.455

Lor—pp 0.145

Chg 0.41
Ks—pg 0.405
tr—pg 0.2

Table 3.2: Values for the interaction parameters of pellet for the time step analysis.

However, during the sensitivity analysis, which involved a broader range of interaction parameters,
simulations with a 40% time step were instable as can be seen in Figure 3.3. Therefore, the simulations
were repeated using a more conservative time step of 10%, which was stable across the parameter

space. 10% was also used for the simulations of sinter.
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Figure 3.3: Instable simulation with a DtR of 40%.

The lack of an initially observed correlation between the KPIs and the Rayleigh time step contradicts
the results of previous studies [35, 36, 9], where such a relationship was typically reported. It is likely
that this discrepancy resulted from the initial narrow parameter selection, which obscured potential
dependencies. The revised approach, which uses a more conservative time step, ensures stability
across a range of interaction conditions.

3.3.2. Amount of Runs

The KPIs exhibit some variation, which is why it is important to have multiple runs, this ensures that
observed differences in output are due to input changes rather than random chance. That is why the
simulation is repeated seven times and the results are analysed to determine when the KPIs converge.
In Table 3.3 the parameter values used for this analysis are presented.

Parameter Value

Chp 0.45
Ps—pp 0.45
Hor—pp 0.45

Chg 0.45
Ps—pg 0.45
tr—pg 0.45

Table 3.3: Values for the interaction parameters of pellet for the amount of runs analysis.

The convergence of the KPI values is shown in Figure 3.4. As can be seen in this graph, all KPIs
converge at 4 runs.
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Figure 3.4: Convergence of the KPI values, pixel count of the heap and value of the x-coordinate of the highest point of the
heap are transformed to compress their magnitudes while maintaining their relative differences.

Due to time constraints, these tests were not repeated for sinter but assumed to have similar results.
Once the amount of necessary runs and the percentage of DtR have been determined, it is possible to
look at the remaining configuration of the DEM model, starting with the particle shape.

3.3.3. Sinter Particle Shape

As mentioned in Section 2.4, the pellet particle shape is represented as a sphere in EDEM. For sinter
particle shape, it is decided for this study, to choose one particle shape to represent all sinter particles,
instead of multiple particle shapes, to reduce complexity and computational cost. Therefore, if feasible,
we would like a “typical” particle shape for this DEM model. This approach should adequately capture
the effects of particle shape within the scope of this study. However, if not, it could prevent us from
achieving an optimal parameter set. To get a typical particle shape, the particle shapes need to be put
in order.

There are several characteristics of the particle shape which have an influence on the segregation of
the mixture. We categorize the particle shape in two ways. One is on the basis of the elongation,
flatness and compactness of the particle shape as can be seen in Figure 3.5a and the other is based
on the complexity of the particle shape as can be seen in Figure 3.5b.
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Figure 3.5: Comparison of particle properties: elongation, flatness, compactness, and complexity.

285 STL files of sinter particles were available. Each STL file describes the surface geometry of a
three-dimensional sinter particle. The 285 measured sinter particles were categorized based on elon-
gation, flatness, compactness, and complexity using the dimensions of the STL file. Their distribution
is visualized in Figure 3.6.
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(a) Sinter shapes categorized based on elongation, flatness and
compactness (b) Sinter shapes catergorized based on complexity

Figure 3.6: Categorization of the measured sinter particles.

To determine the sinter particle shape, we analyzed the distribution of 285 measured sinter particles
based on their shape characteristics. Specifically, we categorized them using elongation, flatness,
compactness (as shown in Figure 3.6a), and complexity indices (as shown in Figure 3.6b).

From these datasets, shown in Figure 3.6, we computed the average characteristics of the distributions.
The 15 particles which are closest to these average characteristics are colored orange in the graphs.

Among these 15, we looked for a single particle shape that appeared consistently across both ranking
criteria. STL file number 158 emerged. This particle shape, shown in Figure 3.7, was selected for use
in the DEM simulation.
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Figure 3.7: STL file 158, chosen as the sinter particle shape

In EDEM, an STL file can be imported and used as a template to generate a particle, with its properties
automatically computed by the software. Users can adjust two key parameters for the generated multi-
sphere: the smoothing value and the minimum radius. A higher smoothing value (greater than 1)
reduces the fidelity of the particle, leading to fewer used spheres. The minimum radius ensures that
excessively small spheres are not included in the multi-sphere representation. Smaller spheres require
a smaller simulation time step, increasing computational cost [33]. To assess the impact of these two
parameters on the KPlIs, a small study was conducted using different values for both.

For the smoothing value, three levels were selected: 5, 7 and 10. For the minimum radius 0.15 or 0.3
was set. The different multi-spheres are shown in Figure 3.8, where the first multi-sphere represents
the original template. These values were chosen to have an acceptable multi-sphere for the sinter
simulations, meaning that the sphere count does not exceed 40 spheres. A multi-sphere with more
than 40 spheres (a very low smoothing value) and a minimum radius of less than 0.15 would result in
very costly simulations, an example of how a multi-sphere would look without constraints is the second
multi-sphere shown in Figure 3.8. Different combinations of these values are tested, resulting in six
simulations. The results of these simulations can be found in Appendix B.

Original 1 2 3 4 5 6 7
STL
‘/ \ " { : A ( ! K }
‘ L ) C J ) | ‘ ‘
Smooth 0 5 5 7 7 10 10
Min Rad 0 0.15 0.3 0.15 0.3 0.15 0.3
Spheres 1540 36 20 20 14 8 6

Figure 3.8: Different multi-spheres of the sinter particle.

The effects of these two parameters on the KPIs are described in Figure 3.9, the numerical results
can also be found in Appendix B, Table B.1. As can be seen in the figure, and is further confirmed
by the ANOVA analysis in Appendix B, Table B.2, these two parameters have almost no effect on the
KPlIs of the system. This could be because the 6 shapes are still very similar in the performed study.
Consequently the smallest smoothing factor was selected, as it matches the original shape as closely
as possible. The largest minimum radius was chosen as it significantly influences the computational
cost as also demonstrated in Appendix B, Table B.3. Based on these findings, a smoothing value of 5
with minimum radius of 0.3 were used, sphere number three in the figure.
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Figure 3.9: Main effect plots of the smoothing value and the minimum radius on the KPIs

3.4. Dominant DEM Parameters using Plackett-Burman

For the sensitivity analysis of the interaction parameters, Plackett-Burman (PB) will be used, as men-
tioned in Section 2.4. There are two levels possible for PB and they selected values for the parameters
and levels are shown in Table 3.4 for pellet. The values for the 8 simulations and the resulting KPIs
can be found in Appendix C, in Section C.1.

Parameter Low Level (-1) High Level (+1)

o 0.0001 0.9
faepp 0 0.9
Lir—pp 0 0.9

Chy 0.0001 0.9
lis—pg 0 0.9
Lir—pg 0 0.9

Table 3.4: Parameters with corresponding levels for the Plakett-Burman (PB) Design of Experiments (DoE).

3.4.1. Results Plackett-Burman

Table 3.5 displays the effect of DEM interaction parameters on the KPIs. It is a summary of the Pareto
plots of each KPI which can be found in Appendix C, Section C.2. The parameters which are significant,
influence the KPI for up to 90%. One of the key observations that arise from Table 3.5 is that y,_, is
not a significant parameter for any of the measured KPIs. Another observation is that C,,, has an affect
on almost every KPI. Here it should be noted that the pixel count of the heap is taken into account
instead of the height at different points of the heap because this was changed during the study.
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Parameter Discharge Pixel Highest Highest Mass Left Mass Mass
Time Count Point X Point Y Right Heap
Heap
Chp X ) ) (+) ) ) )
Fs—pp (+) (+) X ) X X (+)
Hr—pp (+) (+) X ) X () (+)
Chg X X () X Q] Q] X
Is—pg X (+) ) X X ) (+)
tr—pg X X X X X X X

Table 3.5: The effect of DEM interaction parameters on the KPlIs, with the effect of each significant parameter on the KPIs in
parentheses (e.g., “(+)” denotes that with an increase in the parameter value, KPI increases.). “x” means insignificant effect.

A visual representation of the results can be seen in Figure 3.10, where the dotted line represents 90%
of the contribution to the KPI.

Discharge Time Peak Pos X Peak Pos Y
| I E gi
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Figure 3.10: Overview of the Pareto plots of each KPI. The line with 90% is placed where the parameters have 90% effect on
the KPI. For a more detailed graph, see Appendix 3.

One potential explanation for the insignificance of 11, ,,, may be that the particle shape itself governs the
rolling behavior more than the rolling friction coefficient does. Another potential explanation is that PB
is not well-suited for capturing interaction effects between parameters [60]. This limitation could result
in some interaction effects being overshadowed by main effects, thereby masking the true significance.
However, further research is necessary to confirm this hypothesis.
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3.5. Concluding Remarks

To summarize, decisions were made on the DEM model inputs, such as the particle shapes: a sphere
for pellet and a clumped sphere for sinter, the Rayleigh time step: 10% of the DtR is used for the
simulations, and the amount of necessary runs: 4 runs are performed of each simulation.

The sensitivity analysis using the Plackett-Burman DoE has revealed that most interaction parameters
significantly influence the simulation KPIs. The coefficient of restitution between pellet particles (Cp,,)
was found to be one of the most dominant parameters, affecting nearly all KPIs. In contrast, the rolling
friction between pellet and and the geometry had no significant effect on any of the measured KPIs,
answering subquestion two of the research questions. As a result, this parameter will not be included
in the calibration process, as adjusting it would not improve the simulation accuracy. These findings
are used to define which parameters are used into the response surface modeling and optimization in
the next chapter.



Calibration of Sinter and Pellet

The calibration procedure is one of the final steps in establishing an accurate DEM simulation. This
chapter outlines the steps used to calibrate the parameters to ensure consistency between experimen-
tal and simulated results, under which different optimization techniques are compared.

The same methods used for measuring the KPlIs of pellet are also used for sinter. The calibration of
sinter and pellet is performed at a hopper height of 4.665 m. The steps in the flowchart which are
discussed in this chapter are highlighted by an orange box, in Figure 4.1.

Contact model ) Categorize the Sensitivity A_nalyﬂs T
: input parameters & Interaction .
selection . . Experiments
simulation setup parameters
/

l Shear modulus,
Hertz-Mindlin Poisson’s Ratio: Plackett-Burman CCD
literature
gl %I PSD, particle shape:
. direct measurem ent

DiR., number of runs:
sensitivity analysis

/

Interaction

parameters: bulk

calibration

Model Relation Optimize polynomials: Apply to multi- )
between match experimental Validation component RQs

input/output data KPIs to simulation KPIs mixture
Pul}'nucqial l LO.GA. PSO DL{'?fermt Hopper
Regression Heights

Figure 4.1: Steps described in this chapter
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4.1. Polynomial Regression using CCD

As mentioned in Chapter 2, Section 2.7 this study uses CCD and polynomial regression to create a
RSM for pellet and sinter. The result of the CCD can be found in Appendix E. The resulting polynomial
model can also be found in that appendix, in Section E.2, Table E.4 displays the polynomial model for
pellet and Table E.5 shows the polynomial model for sinter. In Table 4.1 the R? of the models which

measures how well a model explains the variance in the data are shown per KPI, with values closer to
one indicating a better fit.

\ Time M heap M left M right PeakX PeakY 0.25Y 0.5Y 0.75Y

Pellet | 0.98776 0.96546 0.81121 0.70841 0.86276 0.96751 0.96942 0.97609 0.90973
Sinter | 0.77077 0.98438 0.98438 0.70017 0.87183 0.98468 0.97609 0.98889 0.93775

Table 4.1: Comparison of R-squared values for pellet and sinter models.

As can be seen in this table most R? values are above the 0.95. Notably, the discharge time for sinter,

the mass on the right side of the container are lower values (=< 0.7). This could have an affect on the
quality of the predicted values.

What was interesting to see was that during the CCD simulations, sometimes one of the sinter particles
remains "stuck” in the hopper as can be seen in Figure 4.2. This means that the maximum y-coordinate
of all particles remains above that of the hopper gate, meaning the discharge time cannot be measured
using the maximum y-coordinate. When this happens, the measurement is excluded from the analysis,
so instead of 4 runs, 3 runs are used for the discharge time because it would take too long to rerun
those runs specifically, and it is found that it does not vary significantly over runs as can be seen in
Appendix F, where the instances are written as ‘NaN’. This probably occurs because of the specific
particle shape which can ‘interlock’ with the sides of the hopper, there seems to be no clear correlation

with the input parameters of why this might occur, and it does not happen with pellet simulations, leaving
only the particle shape as possible reason.

Time: 155 \

\ Altair EDEM”

Figure 4.2: Screenshot of DEM simulation where one of the particles is "stuck” in the hopper.

This did not significantly affect the overall calibration results, but it does highlight a potential limitation
in capturing irregular particle interactions.
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4.2. Optimization Setup and Results

This section describes the different optimization techniques used to calculate the parameter values that
give the closest match between the results from the laboratory tests and those from the simulations.

4.3. Local Optimization

This gradient-based optimization, used in this study, performs polynomial regression on CCD data
and optimizes parameters to match the target KPIs values using the function ‘fmincon’ provided in the
MatLab optimization toolbox (version R2024b). At each computational step, a set of parameter values
is determined, whilst the optimization solver monitors the objective function value, searching for the
optimal solution.

4.3.1. Effect of Initial Guess

Besides the bounds and the objective function, the initial guess has to be determined from where
the optimization can be taken. The parameter values are very dependent on the initial guess of the
parameters as can be seen in Figure 4.3a, where different combinations of initial guesses are taken
from [0.1, 0.1, 0.1, 0.1, 0.1], [0.5, 0.5, 0.5, 0.5, 0.5] and [0.8, 0.8, 0.8, 0.8, 0.8]. In the figure only the
initial guesses of C,,, and ., are shown; however, the optimization process has a five-dimensional
parameter space to determine the optimal solution.

Figure 4.3a shows the difference in the optimal parameter value found with different initial guesses. P1,
P2, P3, P4, and P5 stand for Cp,,, ftr—pp, fts—pp» Cpg, @aNd ps_p, respectively. In Figure 4.3b the effect
of the different initial guesses on the objective function value of pellet is shown.
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In Appendix G, the graphs with different combinations of parameters can be found. From these initial
guesses, the combination which gives the smallest optimal solution was used as the final initial guess
for pellet.

Initial Guess: [0.10, 0.10,0.80, 0.80, 0.80]

As can be seen in Figure 4.4a, the optimization of sinter is more dependent on the initial guess than for
pellet. The parameter values change drastically depending on the initial guess. Figure 4.4a shows the
different results for u,_,, with different initial guesses for p;_,, and C,,. The same results are found
for the remaining four input parameters, these graphs can be found in Appendix G. Note that in these
graphs only the values of initial guess for two parameters are shown but that during the analysis, all
five parameters were adjusted.
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From the 243 different combinations of initial guesses, the following initial guess gives the smallest
error (object function value) for the sinter simulations:

Initial Guess: [0.80, 0.10,0.80,0.80, 0.10]

4.3.2. Results Local Optimization
Once the algorithm is fine-tuned and the best initial guess from the tested combinations is selected, it
converges to an objective function value of * for pellet and * for sinter.

With the best initial guess found for pellet, the optimization has been run 10 times and each time the
same optimal values are found, meaning there is little variability in the results. The optimization gives
an objective function value of ‘0.0242’ when compared to the target KPls.

Parameter | C,,  fir—pp fis—pp  Cpg  fs—pg | Error
Value | 0.151 0.453 0.04 0.359 0.83 | 0.1465

Table 4.2: Optimal parameter set found for pellet with local optimization.

When taking the best initial guess for sinter the optimization gives the following optimal parameter set,
which gives an objective function value of ‘3.1753’ when compared to the target KPIs.

Parameter | C,,  fir—pp fis—pp Cpg [s—pg | Error
Value ‘ 0258 09 0350 09 0.532 ‘ 3.1753

Table 4.3: Optimal parameter set found for sinter with local optimization.

4.4. Global Optimization Methods

Local optimization methods, such as ‘fmincon’, are designed to converge to the nearest local minimum
based on the initial guess. The objective function has many local minima, meaning the result will depend
heavily on the starting point, as was found. A global optimization method explores the parameter space
more comprehensively and increases the likelihood of finding the global minimum rather than getting
stuck in a local one. In this case genetic algorithm (GA) and particle swarm optimization (PSO) are
applied using the convenient MatLab Global Optimization Toolbox [50].

For both GA and PSO there are several inputs which can be tuned to look at the effect it has on the
objective function value.
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4.4.1. Effect of Swarm and Population Size

As mentioned in Section 2.9.3, GA and PSO have several user-defined inputs. In this section the
population size of GA and the swarm size of PSO are compared. Both sizes represent the number
of candidate solutions considered per iteration. Comparing them provides insight into how efficiently
each algorithm uses its agents to converge toward solutions.

Although GA and PSO both have several user-defined parameters, this section focuses specifically on
comparing population size in GA and swarm size in PSO. These parameters are directly comparable,
as they represent the number of candidate solutions evaluated per iteration. They have a similarimpact
on the convergence behavior and computational effort of the optimization process.

Other parameters, such as mutation rate and crossover probability in GA, or inertia weight and ac-
celeration coefficients in PSO, influence the algorithm in more algorithm-specific ways. For example,
the mutation rate controls genetic variation in GA, while the cognitive and social coefficients in PSO
determine how particles are influenced by their own best position and that of the swarm. Since these
parameters do not have a direct counterpart in the other algorithm, comparing them would not provide
a fair or consistent basis for evaluation.

Therefore, all algorithm-specific parameters were kept constant to isolate the effect of population and
swarm size on the optimization results.

In Figure 4.5 the effect of the particle swarm and the population size on the objective function value of
the pellet simulation are shown.
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Figure 4.5: Pellet optimizer objective function value for different population and swarm sizes of GA and PSO with error bars.

As can be concluded from this figure, the population size of GA needs to be significantly bigger than
the particle swarm of PSO in order to converge to an objective function value.Additionally, The error
bars indicate that GA results showed more variability across runs, possibly due to stochastic effects in
crossover and mutation, whereas PSO showed less variable outcomes. The following figure, Figure
4.6, shows the same but then for sinter simulations.
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Figure 4.6: Sinter optimizer objective function value for different population and swarm sizes of GA and PSO with error bars.

This figure looks different than the one for pellet. Although GA still needs a larger population, the
difference is smaller compared to pellet, and GA converges almost as quickly as PSO. Therefore,
based on the observed convergence behavior and stability, the following swarm and population sizes
were selected for the pellet and sinter optimizations, as shown in Table 4.4.

Material \ Swarm size  Population size
Pellet 100 1000
Sinter 20 20

Table 4.4: Swarm and population size for the optimization of pellet and sinter.

The corresponding optimal input parameters found, are described in the following section.

4.4.2. Results Global Optimization

Once the algorithm has been fine tuned, they converge to an objective function value of ‘0.0024213’
for pellet and ‘0.077’ for sinter. This is a much smaller objective function value compared to the one
found using the local optimization.

In Appendix G, Table G.1 shows the results of the five best cases and their corresponding optimal pa-
rameters for GA and PSO for each material. These cases were obtained after fine-tuning the population
and swarm sizes, followed by 15 optimization runs per algorithm. The number of runs was chosen to
assess variability across multiple trials while keeping the total computational effort manageable. From
these, the five runs with the lowest objective function values were selected to reduce the impact of
outliers of GA and present the results more clearly. The outcomes are visualized in Figure 4.7 and
Figure 4.8.

Input parameter value

Lo
o

o
3

o

g
-

Error of pellet optimization

]

PSO

GA

1

o

0.6

Input parameter value
2

o

Optimal parameters PSO pellet

Cyp Hr—pp Hs—pp Cyg Ho—pg

Input parameter value

19

Optimal parameters GA pellet

=

=4

e

Cy

B Es—pp Chg Hs—pg

(b) Values for the input parameters
corresponding to smallest error of PSO

(c) Values for the input parameters

(a) 5 smallest errors of 15 runs of GA and PSO corresponding to smallest error of GA

Figure 4.7: Optimization results for pellet
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Figure 4.8: Optimization results for sinter

Based on these findings, Table 4.5 shows the optimal parameter sets found for each material. PSO
and GA find the same optimal parameter set, once they are fine-tuned.

Material | Cpp  pir—pp  ps—pp  Cog  fr—pg Hs—pg | Error
Pellet | 0.071 0.045 0465 0.329 0.5 0.83 | 0.0024213
Sinter | 0243 09 035 0.9 05 0514 0.077

Table 4.5: Optimal parameter set found for each material.

4.5. Comparison Performance of the Optimization Techniques
Based on these findings, the following overview has be created in Figure 4.9. In the case of pellet, GA
also has a higher variability in the objective function value than PSO, which can also be seen in the
resulting optimal parameters found for pellet using GA. For the sinter optimization, this difference is not

observed.
. L .. Minimum Error
Algorithm Optimization Efficiency Found Cop | Hr—pp |Bs—pp | Cpg | Bspg
. Affectedbyinitializationvariables Pellet: 0.1465 0.151 0.04 0.453 0.359 0.83
LO (initial guess)
* Only locates local minima of error
surface Sinter: 3.1753 0.258 | 0.9 0.35 0.9 | 0.532
Pellet: 0.0024213 0.071 | 0.045 | 0.465 | 0.329 | 0.83
* Able to identify global minima
PSO + Requires fewer processing steps
than GA
Sinter: 0.077 0.243 0.9 0.355 0.9 0.514
Pellet: 0.0024213 0.071 | 0.045 | 0.465 | 0.329 | 0.83
+ Able to identify global minima
GA * Requires more processing steps
than PSO
Sinter: 0.077 0.243 0.9 0.355 0.9 0.514

Figure 4.9: Comparison of the performance of the three algorithms

Looking back on the evaluation metrics mentioned in section 2.9.5, these optimization techniques can
be compared. The differences between the global and local optimization is clear, the objective function
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value is much larger of the local optimization and the global optimization. However, it is interesting to
see that the parameter inputs which are found for the local optimization are very similar to those found
using global optimization. Only C,,, has a slightly larger difference for both materials. This is in line with
what was found in the sensitivity analysis, that C,,, has an affect on all KPIs, and a slight difference in its
value could cause a larger deviation in the objective function values. Local optimization does have the
smallest variability and a significantly shorter run time than the global optimization methods. However,
it is still not recommended due to its significant sensitivity to the user inputs.

The performance of PSO and GA are very similar, both are able to reach a small objective function and
are not as sensitive to user inputs as local optimization. PSO is recommended because of its lower
variability in the objective function value and PSO needs less iterations to converge to the minimum
error. However, it should be highlighted that GA is also able to reach that minimum error.

That the performance of local optimization would be the least was anticipated. In literature it is docu-
mented that is very dependent on the initial guess [48] and these findings align with the results found
in this study.

That PSO finds the optimal solution quicker than GA is also in line with research. PSO tends to con-
verge faster in problems with smooth or continuous search spaces, often requiring fewer iterations
or population evaluations. GA’s operators (crossover, mutation) introduce more diversity, which can
delay convergence but potentially avoids local minima better [61]. The fact that PSO performs better
in this study means our fitting model is smooth and continuous, which could be expected because
second-order polynomials are continuous and differentiable.

Another observation which was made, in these results, is the difference between the optimization results
of pellet and sinter. LO, GA and PSO behave differently for both materials. This may be due to the
smoother nature of the response surface for sinter compared to pellet, or due to differences in sensitivity
of certain KPIs to parameter variation. It is also observed that the optimal input parameters for sinter
are 0.9 for i, and Cp, (the upper bound of the parameter range), which could mean that the optimal
value lies outside this range. Further exploration would be needed to confirm this.

According to the polynomial model these parameter sets corresponding to the minimum objective func-
tion, should give KPIs closest to the experimental values. Using these input parameters the results of
the polynomial model and the optimization are validated. The KPIs are discussed in the next section.
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4.6. Simulation Results Pellet

Figure 4.10 compares the experimental KPIs and the simulation KPIs. The deviation between the mean
of the two values are shown as percentages on the bars. The exact values can be found in Appendix
H, where the values for sinter can also be found.
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Figure 4.10: Comparison of the experimental and simulation KPIs of pellet. The percentages display the deviation of the mean
compared to the experimental values. Note that some KPIs have been scaled for a better visualization.

In addition to numerical KPls, visual comparison of heap shapes offers insight into simulation accuracy.
Figure 4.11 overlays the contours of the experimental and simulated heaps, showing a visual analysis
of how well the model replicates observed behavior. The standard deviation of the edges of the heaps
are shown in the light red and blue color, the average edge is shown as a dark line and the highest
points are shown as dots.
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Figure 4.11: Edges of the heap of the optimal solution of pellet compared to the experimental heap edges.
Discharge time and the mass distribution all show very low deviations between simulation and experi-

mental values, ranging from 0.4% to 5.2%, and the means lie well within each other’s 95% confidence
intervals. This suggests the simulation is able to capture the discharge time and mass distributions of
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pellet.

For the heap shape KPIs (PeakX, Peaky, 0.25Y, 0.5Y, 0.75Y), the deviations are also very small, all
under 3.5%, and again, the confidence intervals largely overlap. This indicates the simulated material
closely resemble the experimental values.

The confidence intervals for the simulation values are generally narrower, indicating less variability,
while the experimental data exhibit broader Cls, which is expected due to greater variability inherent in
physical measurements.

As mentioned in Section 2.10, it is necessary to validate the results to ensure no overfitting has oc-
curred.

4.7. Validation Pellet Simulations

Using the same optimal parameter set the height of the hopper is adjusted as shown in Section 2.5,
Figure 2.4. The hopper height is decreased from 4.665 m to 3 m and 1m. The resulting KPIs of these
simulations are again compared to their experimental counterparts, the results for 3m are shown in
Subfigure 4.12a, and the resulting KPIs for 1m are shown in Subfigure 4.12b. Figure 4.13 shows the
contours of the heaps and the highest points of the heaps. Like the simulations at 4.665m, these
validation experiments are also run 4 times.
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Figure 4.12: KPlIs of the pellet simulation at different hopper heights. The percentages display the deviation of the mean
compared to the experimental values. Note that some KPIs have been scaled for a better visualization.
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Figure 4.13: Edges of the pellet simulation at different hopper heights.

Generally it can be observed that the deviations increase when the hopper height decreases. When
taking into account the confidence intervals they generally overlap for all KPIs, with the exception of the
height halfway (0.5Y) and the y-coordinate of the peak (PeakY) at a hopper height of 1m. These are
underpredicted when compared to the experimental results. Note that the graph may be misleading
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because the simulation results of the heap shape are shown as higher values than the contour images,
this is because pixels in the vertical direction are counted the other way around than a traditional coor-
dinate system (so a high pixel count means a lower position of the heap). An equivalent analysis was
conducted for the sinter simulations.

4.8. Simulation Results Sinter

Figure 4.14 compares the sinter experimental KPIs and the simulation KPIs. Figure 4.15 shows the
edges of the heap of the sinter simulation compared to the experimental contours of the heap. These
are presented the same way as the results of pellet.
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Figure 4.14: Comparison of the experimental and simulation KPIs of sinter. The percentages display the deviation of the mean
compared to the experimental values. Note that some KPIs have been scaled for a better visualization.

Height (pixels)

200 -

250

450

500

Heap Contours Sinter 4.665m

——Sim Mean
Sim Std

¢ Sim Peak

Exp Mean
Exp Std

e Exp Peak

550
0

100

200

300

400 500 600 700 800 900
Width (pixels)

Figure 4.15: Edges of the heap of the optimal solution of sinter compared to the experimental heap edges.

Note that the deviations between the means of the KPIs are quite large, where most are around to 10%
and the discharge time and the mass on the right even above 20%. However, some deviations look
large numerically, but the confidence intervals do overlap in many cases, indicating that the variation
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in the experimental data might account for the observed differences.

For the discharge time, the experimental value is 4.6191 + 0.72, giving a 95% confidence interval (Cl)
of [3.8991, 5.3391], while the simulation reports a value of 3.61 with no variation (found in Appendix H).
Although the simulation mean falls just below the experimental Cl, it is close to the lower bound, making
this a borderline case for overlap. In the case of the mass on the right side, the experimental value
is 20.68 + 3.82, yielding a Cl of [16.86, 24.5], and the simulation gives 26.2 + 2.46, corresponding
to a Cl of [23.74, 28.66]. Here, the Cls slightly overlap because the experimental upper bound (24.5)
overlaps with the simulation’s lower bound (23.74). Despite the noticeable difference in means, the
overlapping confidence intervals suggest the values are not drastically inconsistent, and the difference
may be explained by the variability in the experimental data.

4.9. Validation Sinter Simulations
Like pellet, the experiments of sinter are performed at different hopper heights if which the results are
shown in Figure 4.16 and the contours of the edges are shown in Figure 4.17.
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Figure 4.16: KPlIs of the sinter simulation at different hopper heights. The percentages display the deviation of the mean
compared to the experimental values. Note that some KPIs have been scaled for a better visualization.
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Figure 4.17: Edges of the sinter simulation at different hopper heights.

As can be seen in these figures, the deviation becomes larger when the hopper height decreases,
especially the deviation for the heap height halfway, where the deviation increases from 0.9% to 4.7%
to 12.6%. This can be seen clearly in the figures of the contours. Also when taking into account the
variability of the results, there is no overlap for the KPI results of the heap height halfway and at three
quarters at a hopper height of 1m. Notably, the mass distribution shows less deviation when compared
to the hopper height of 4.665m. The deviation of the discharge time remains large and the other KPIs
keep a similar deviation.
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4.10. Discussion Results

The deviation between the simulation and experimental results could be attributed to several factors.
A notable observation is the higher degree of deviation exhibited by sinter in comparison to pellet.
Furthermore, the validation results demonstrated greater deviation than the results obtained from the
highest hopper height. These observations will be discussed in the following section.

4.10.1. Sensitivity Analysis

During the sensitivity analysis, the original KPI, pixel count of the heap, was used to assess parameter
influence. However, in later stages of the study, this KPI was refined to pixel height at different fixed
locations, providing a more detailed representation of heap shape. This change may have influenced
the sensitivity analysis results, as the selected dominant parameters were based on the initial metric
rather than the final one. This would need to be investigated further to check if it affects the results of
the sensitivity analysis.

4.10.2. Objective Function Value
As can be seen in the Figures 4.10 and 4.14, the experimental results of sinter have a higher variability
than pellet because the error bars of sinter are mostly wider than those of pellet.

As can be seen in Table 4.6, the experimental KPIs of sinter like the x-coordinate of the peak has a
high variability. However, the average of the experimental values is taken into with the same weights
as, say the masses at different location even though their variability is much lower.

KPI \ Time M heap M left M right Peak X Peak Y 0.25Y 0.5Y 0.75Y

Pellet | 0.246906 0.169967 2.65623  2.694851 15.36952 2.94392 5557777 7.133645 8.041559
Sinter | 0.950216 0.56356  2.554486 2.752562 47.04296 11.51347 10.22546 8.158431 15.71751

Table 4.6: Standard deviation of the experimental results of sinter and pellet.

What could therefore improve the results, is adding weights to the objective function based on the
standard deviation as shown the following equation.

R Target KPI, — Predicted KPI;, \ *
Error = ; Wi < Target KPI, ) (4.1)

where wy, is a weighting factor applied to each KPI. For the sinter calibration, these weights were chosen
based on the inverse of the squared relative standard deviation (RSD) of the experimental values:

1

= — 4.2
RSD; (42)

Wk

This weighting approach could ensure that KPIs with high experimental variability contribute less to
the total error, allowing the optimization to focus more strongly on reliable measurements. Further
investigation would be needed to confirm this.

4.10.3. Fitting Model

There was a low R? value for several KPIs as could be seen in Table 4.1, especially for the discharge
time, which is in line with the results. The R? value was the lowest value for the discharge time and
the discharge time also showed the highest deviation in the results. This means more simulations with
different input parameters need to be performed in order to increase the R? value. Another option would
be to try a different fitting model instead of polynomial regression. Different fitting models are better at
capturing different relationships and will therefore likely give different results [48], it would need to be
tested to see if these results improve.
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4.11. Conclusion

It can be concluded that particle swarm optimization and genetic algorithm are both capable of finding
the minimum error, and have a better performance than local optimization. While the global optimization
methods require more computational time than local optimization, the improved accuracy and reduced
sensitivity to initial guesses makes them more suitable for this calibration task.

Both GA and PSO converge to the same optimal objective function, however, PSO needs less runs to
achieve this. Meaning PSO is the recommended optimizer in this situation. The optimal parameter set
found using PSO, gives excellent simulation results for pellet, including the validation results. However,
the KPIs of the sinter validation results come close but still has some significant deviations from the
experimental values.

This work provides a strong foundation for multi-objective optimization of DEM models of sinter and
pellet. One of the most important takeaways from this study is the value of evaluating the calibration
using multiple KPls. If the comparison had only been based on one KPI, the calibration might have
looked much better than it actually was. By using a range of KPIs that describe discharge time, mass
distribution and heap shape, a more complete picture of the material behavior was captured. This made
it possible to identify where the model performed well and where it did not, and helped avoid drawing
conclusions based on limited information. It also made sure that there were no multiple parameter sets
possible as the optimal result.

It also became clear how important the validation step is. While the calibration results initially showed
good agreement between the simulation and experimental KPIs at the original hopper height, this
changed when the hopper height was adjusted. As the validation results showed, the deviations in-
creased, especially for sinter, which highlights that a good agreement under one condition does not
necessarily mean the model will perform well under different conditions. Without this validation step, it
would have been easy to assume the calibration was accurate, while in reality the model was overfitted
to a single setup.



Case Study: Mixture Simulation

Once pellet and sinter have been calibrated the mixture model can be made and tested. The mixture
consists of 50% of pellet and 50% of sinter.

5.1. Results Mixture Simulation

In a study performed by Chakrabarty et al [8], the interaction parameter values are found by taking the
average between the interaction parameter values of sinter and pellet. These lead to good results and
is therefore tested in this thesis. The averages of sinter and pellet interaction parameters lead to the
following interaction parameters for the mixture as seen in Table 5.1.

DEM input parameter Pellet-Sinter

C.. 0.157
Lir—es 0.473
Hs—es 0.41

Table 5.1: DEM parameters chosen for pellet-sinter interactions.

With these input parameters the following KPls, see Figure 5.1, were found. The exact results can also
be found in Appendix H.

46
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Figure 5.1: Resulting KPIs of the simulations compared to the experimental values.

The edges of the heaps from the experimental and simulation heaps can be observed in Figure 5.2.
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Figure 5.2: Edges of the experimental and the simulation heap of the mixture. Note that some KPIs have been scaled for a
better visualization.

As can be observed from the table, the deviation of most KPIs are under the 10%. Only the mass at
the right side is slightly higher, which can also be observed in the figure. This was also the case for
sinter simulations.

What is interesting to see is that the simulation heap height is slightly higher than the experimental
heap height. Interestingly, this is a different outcome than for the pellet and sinter components, where
the experimental heap was slightly higher than the simulation heap. Further investigation is necessary
to come up with reasons for this difference.
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5.2. Segregation

One of the key factors influencing the efficiency of the blast furnace, as outlined in Chapter 1, is the
segregation of the sinter-pellet mixture. Therefore, one of the main goals for researchers, is to even-
tually develop a model that can predict segregation behavior inside the blast furnace. For that reason,
segregation in the mixture is an important KPI to consider and evaluate here.

To quantify segregation, the Relative Standard Deviation (RSD) is used. This index gives a measure
of how well mixed or segregated the material is across the heap. The calculation is based on image
analysis of the colored heap.

Figure 5.3 is used to calculate the RSD of the mixture. In the experiments, pellets were dyed blue to
allow easier distinction between pellet and sinter particles in the images. These images were imported
into MATLAB, and the pixel count of pellets and sinter was used to determine the RSD.

The MatLab script used for this analysis is adapted from code provided by Ahmed Hadi, PhD researcher
at Dingena Schott’'s Lab, with some modifications including the color mask and the exclusion of tiles
with zero pixels, as shown in Appendix D, Section D.3. The heap image is divided into tiles and the
pixel fraction (R;;) is calculated for each tile as follows:

ZEij

Here, >  E;; and }_ S;; represent the number of white pixels (i.e., detected particles) for pellet and
sinter, respectively, in tile (i, 7). The RSD is calculated using the average (R) and standard deviation
(0;) of R;; over all tiles as follows:

RSD = (5.2)

i
R
This process is visualized in Figure 5.3, showing how the image is processed from raw data to tiled
analysis. In this image the top row show the experimental and the simulation heap, the following rows
only show the simulation results, however the same technique has been applied to the experimental
results.
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Figure 5.3: Segregated heap of the multi-component mixture, analyzed by dividing the image into tiles for RSD (relative
standard deviation) calculation. From top left to bottom right: (a) edited experimental heap image, (b) edited simulation heap
showing colored components, (c) highlighted simulation pellet particles, (d) highlighted simulation sinter particles, (e) tiled
image of simulation pellet particles, and (f) tiled image of simulation sinter particles.

The results of the experimental and simulation values are found in Table 5.2. The values are close,
with overlapping confidence intervals.

Exp RSD (95% CI, n=5) 0.311 +0.075
Sim RSD (95% CI, n=4) 0.313 £+ 0.191

Table 5.2: RSD values for the mixture of sinter and pellet.

See Appendix | for all the simulation results and the experimental results. The simulation slightly over-
predicts the segregation, but the difference falls within the range of experimental variation. A possible
explanation is the difficulty in detecting all pellet particles in the experimental images. In some cases,
the blue color was not picked up cleanly, which may have led to a slightly lower RSD value.
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5.3. Conclusion

The calibration process for the mixture, composed of 50% pellet and 50% sinter, was performed using
averaged interaction parameter values from the individually calibrated materials. This method, fol-
lowing the approach by Chakrabarty et al. [8], led to relatively accurate results when compared with
experimental data. Most KPIs showed deviations below 10%. With the exception being the mass on
the right, with a deviation of 13.5%. A notable discrepancy was observed in the heap shape over the
whole profile. This difference is likely caused by the relatively high rolling friction values assigned to
sinter in the model, which may restrict material from flowing to the sides and result in a taller heap
shape.

Segregation of the mixture was also evaluated, since this is a key performance indicator for blast
furnace applications where segregation of components can affect process efficiency. The RSD was
used as a measure of segregation, and was calculated from both simulation and experimental images
using the same image analysis method. The simulated RSD was 0.313, while the experimental RSD
was 0.311. These values are very close, and the confidence intervals overlap. While the simulation
slightly overpredicts segregation, the results show that the model captures the degree of separation
between pellet and sinter well. Minor differences may also be due to limitations in image detection and
processing.

Although the RSD shows strong agreement, the simulation is less accurate in predicting the other KPIs.
This suggests that the model is more successful in reproducing the distribution of different materials
in the heap than in fully capturing the behavior responsible for heap formation, mass distribution and
discharge time. The geometric KPIs, such as heap height, are more sensitive to contact parameters
like rolling friction and restitution, which remain a source of uncertainty, particularly for sinter, which
already showed deviations during its individual validation.

In summary, the mixture model was successful in reproducing the segregation, and showed moderate
accuracy in heap geometry. These results indicate that the current model is capable of capturing some
behavior of the sinter—pellet mixture. However, some differences remain, particularly in heap shape
and mass distribution, which could potentially be improved by refining frictional parameters and further
validating the individual components, however, further investigation would need to be performed.



Conclusion and Recommendations

6.1. Conclusion

This study aimed to compare different optimization techniques for pellet and sinter DEM simulations.
These could be compared by looking at the efficiency of the optimizer and the accuracy of the KPIs found
with the optimal parameter set. The results show that both PSO and GA were able to identify highly
accurate parameter sets that produced DEM simulation results closely matching experimental KPIs.
However, PSO consistently required fewer iterations to converge, making it the most computationally
efficient method. Local Optimization, while fast, showed high sensitivity to initial guesses and was
therefore not recommended. These findings show that global optimization methods, particularly PSO,
are more suitable for DEM calibration when multiple KPIs are considered.

The determination of DEM input parameters follows a structured approach that includes three key steps:
defining known material and morphological properties, identifying influential parameters, and calibrat-
ing those parameters against experimental outcomes. Parameters such as particle size, density, and
shape can often be sourced from literature or measured directly. Parameters that influence the interac-
tion between particles, like friction and restitution coefficients, are more complex and require calibration.
A sensitivity analysis helps to prioritize which of these have the most impact on the simulation results.
Finally, optimization techniques are applied to adjust these dominant parameters so that the simulation
outputs closely match experimental data.

The sensitivity analysis revealed that the coefficient of restitution and the static friction coefficients had
the most significant effect on the KPIs. In contrast, the rolling friction between geometry and pellet had
minimal influence and was therefore excluded from the calibration. These findings helped narrow the
focus to the parameters with the highest impact on simulation accuracy.

PSO consistently outperformed GA in computational efficiency, requiring fewer iterations while achiev-
ing high accuracy. LO proved sensitive to initial parameter guesses, making it less suitable for com-
plex parameter spaces. To validate the calibrated parameter values, simulation results were compared
against experimental data at multiple hopper heights. The optimized DEM models generally replicated
experimental KPls successfully, especially the pellet simulations, validating the framework’s effective-
ness. The validation of the sinter simulation lead to less accurate KPlIs, meaning further investigation
is necessary. Both GA and PSO converged to the same optimal objective function, however PSO did
so in less runs, leading to a preference of the latter.

Lastly a case study was performed where the sinter and pellet were combined to create a DEM simula-
tion of the mixture. The average of the interaction parameters of the individual components was taken
as the interaction coefficients of the pellet and sinter. In the mixture, a new KPI was measurable, the
segregation index, which plays an important part in the blast furnace efficiency. The simulation in this
study was able to capture the segregation well because it was found that the indices of the simulation
and the experiments are very close. However, the values of the other KPIs had a larger deviation,
meaning a more in-depth investigation needs to be performed.
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6.2. Recommendations

Many studies about the calibration of DEM simulations have been performed, it is a large field with a
lot of potential for further investigation. This thesis lays a groundwork for multi-objective optimization.
There are several recommendations for future work to further expand this study.

One of the main challenges of this study was the computational expense of simulations, largely due to
the complex shape of sinter particles but also the general complexity of DEM simulations. This led to
assumptions about the dominant parameters in sinter simulation. Therefore, to improve this study, one
of the first areas to look at in further depth, is the sensitivity analysis of sinter.

The current study used a Plackett-Burman design to identify the most influential parameters, but this
method has limitations in terms of the number of levels it considers and its ability to capture interaction
effects between parameters. For this study it was sufficient for pellet but might not be for sinter. Plackett-
Burman has limitations in the number of levels it considers and its ability to capture interaction effects
between parameters.

Beyond the sensitivity analysis, there is a much broader range of techniques which can be used for the
steps of calibrating a material. Instead of using CCD there are many other options such as Latin Hyper-
cube Sampling, Full Factorial Design, and Box Behnken. Since the choice of sampling method directly
influences the response surface model’s ability to capture parameter-KPI relationships, comparing and
identifying the most effective technique could improve the calibration process.

The same goes for the fitting method used to model the relationship between input parameters and KPls.
Alternative techniques, such as Gaussian Process Regression, Neural Networks, or Support Vector
Regression, to name a few, could offer advantages. Furthermore, these could also have an effect on
the performance of the optimization algorithms, leading to a different variability, different amount of
necessary iterations or a smaller objective function.

Additionally, the interaction parameters of the sinter-pellet mixture could also be calibrated. Using the
same techniques as the calibration of sinter and pellet instead of taking the average of the individual
materials for the interaction parameters could lead to different results.

Lastly, looking at different KPIs which were not measured in the experiments could be useful as they
might be affected by the input parameters. Examples could include the shape of the heap on the side of
the container or flow properties of the materials when it flows of the scale. Further investigation would
be necessary to see if these are affected by the parameters.

The investigation of these aspects could lead to an improved calibration strategy.

6.3. Broader Impact

This study has implications for the scientific community, industry, and society as a whole, as it develops
a more reliable DEM calibration framework using multi-objective optimization.

From a scientific perspective, this research highlights the importance of using multiple KPIs during the
calibration process. Many prior studies have often relied on single KPIs (often the angle of repose)
which leads to underdetermined systems and a blind-spot for the accuracy of the parameter sets. By
using a broader range of KPlIs, this study demonstrates how to reduce ambiguity in the calibration
process. This approach sets a start for future DEM studies, encouraging multi-objective calibration
strategies that better reflect the complexity of granular material behavior.

From a societal and industry level, more accurate and efficient DEM simulations have a direct implica-
tion for the steel industry, one of most energy-intensive and polluting sectors worldwide [62]. Improved
calibration can help engineers better predict material flow in blast furnaces, ensuring smarter design,
minimizing waste, and reducing the energy consumption. In turn, this contributes to the broader goals
of sustainability, decarbonization in manufacturing, and a stronger competitive position. Contributing
to better health, a stronger economy, and a more sustainable planet.

Moreover, the benefits of accurate DEM models extend beyond steelmaking to industries such as agri-
culture, pharmaceuticals, and mining. In these fields, improved calibration can support more efficient,
data-driven, and environmentally conscious industrial processes.
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Comparison of Calibration Strategies for Mixture-Components: A DEM
study of pellet and sinter

Department of Multi-Machine Engineering, Delft University of Technology

Sabine van Epen

Abstract— To improve the accuracy of Discrete Element
Method (DEM) simulations for blast furnace materials, we
present a structured calibration methodology for pellet and sin-
ter particles based on nine key performance indicators (KPIs).
For each material, the following process is followed: a Plackett-
Burman sensitivity analysis to identify influential parameters,
a Central Composite Design to develop polynomial regression
models, and a comparison of multi-objective optimization
techniques, including local optimization, genetic algorithms,
and particle swarm optimization (PSO). This approach enables
parameter input estimation of the DEM model. Experimental
data is used to find input parameter values for the calibrated
models, showing that PSO achieves faster convergence than
GA and delivers accurate predictions at the original hopper
height. However, discrepancies in the validation model suggest
the need for refined parameter estimation to ensure robustness
under varied conditions.

Keywords-Discrete element method, sensitivity analysis,
particle swarm, genetic algorithm, multi-objective opti-
mization, calibration

I. INTRODUCTION

The blast furnace, shown in context in Figure 1 is used
for steel production, the most widely used engineering and
construction material worldwide. It is a vertical shaft furnace
containing a mixture of ferrous materials such as pellet, sin-
ter, along with coke, which serves as fuel. The arrangement
of these materials, known as the bed configuration, affects
gas flow through the furnace. This permeability plays a key
role in the efficiency of the iron extraction process. Since bed
configuration influences permeability, understanding their
configuration is crucial. However, placing sensors inside
the furnace to monitor this distribution, and thus assess
permeability, is challenging due to harsh conditions.

Iron Ore

Fig. 1: The blast furnace is context of the steel making process. Modified
from [1, 2, 3].

Dingena Schott

Raisa Roeplal

To overcome these challenges and gain deeper insights
into granular material mixtures, the discrete element method
(DEM), developed by Cundall and Strack [4], can be used.
DEM provides particle-level insights that are difficult and
expensive to obtain experimentally, making it a valuable
tool for designing production processes and optimizing bulk
material handling. As a computational approach, DEM sim-
ulates granular material behavior by calculating forces acting
on each particle and predicting their motion over time using
numerical integration. These interactions are governed by
contact models, each with multiple parameters that must
be quantified. These parameters influence both the bulk and
particle-level behavior of the simulated material.

Determining these parameters remains a major obstacle
to the adoption of DEM [5]. Many parameters cannot be
directly measured due to the stochastic nature of granular
materials, necessitating calibration to align simulations with
real-world behavior. Calibration is inherently an optimization
problem, yet common approaches such as trial-and-error
remain inefficient, requiring expert knowledge and often
failing to yield optimal parameter sets [6].

Additionally, usually only one KPI is used to determine
multiple input parameters, often the angle of repose [7, 8,
9, 10, 11]. This leads to an underdetermined system because
there are more unknowns than outputs.

The remainder of this paper is structured as follows.
Section II introduces the calibration procedure, simulation
setup, and optimization methods: genetic algorithm (GA),
particle swarm optimization (PSO), and local optimization.
Section III begins with an analysis of the appropriate time
step and particle shape, followed by the calibration results,
a comparison of different optimization techniques, and an
evaluation of the sinter and pellet simulations.

The main contribution of this work is that, for the first
time, to the best of the author’s knowledge, this study is the
first to systematically compare multiple optimization tech-
niques (GA, PSO, and local optimization) within the context
of DEM calibration using multi-objective optimization.

II. METHODS

A. DEM Simulation

The Discrete Element Method is used to model flows
of particles by tracking the motion of particle by using
Newton’s second law. Hertz-Mindlin (no-slip) [12] contact
model is used and rolling friction model C, an elastic-



plastic spring-dashpot model, according to Ai et al. [13]. We
used commercial software EDEM version 2024.1 to develop
the DEM model and we conducted all simulations on the
DelftBlue high performance cluster [14]. When using the
Hertz-Mindlin contact model with rolling friction type C,
all the parameters necessary to define a DEM model for
the mixture of pellet and sinter as well as the approach for
determining them are listed in Table I. Each category with
its corresponding DEM Parameters are shown. In Table I,
bulk calibration refers to the calibration of parameters by
replicating the Key Performance Indicators (KPIs) found in
experiments in the laboratory.

B. Laboratory and DEM setup

The experimental setup used by Roeplal et al. [15] consists
of a hopper, a hopper gate and a container. The hopper height
can be adjusted, with calibration experiments conducted at
4.665 m and validation experiments for sinter and pellet at
3mand 1 m.

In the physical experiments shown in Figure 2a, the
material (sinter, pellet, or a combination) was placed into the
hopper, and upon opening the gate, the material flowed onto
a scale positioned below. A camera recorded the discharge
process at the hopper gate to determine the discharge time.
The mass was measured at three locations: directly on the
scale and on both sides of the scale, separated by a partition
for clear distinction. Additionally, images of the heap formed
on the scale were captured with a green background for
enhanced contrast, for the heap shape analysis. This raw
data was provided by Roeplal [15]. To ensure comparability
with simulations, the experimental images were cropped and
scaled to match the DEM-generated images.

The DEM simulation was designed to replicate the labora-
tory setup as closely as possible, as illustrated in Figure 2b.
The same KPIs can be extracted from the simulations: the
discharge time, heap mass distribution, and heap shape. The
discharge time was determined by tracking the maximum
y-coordinate of particles over time. Masses at different
locations were obtained using MATLAB post-processing of
particle positions, and heap shape parameters were extracted
from simulation images.

From these experiments the discharge time is extracted
(Time), the masses at heap, the left side, right side of the
container (M heap, M left, and M right) are measured, and
using an image of the heap the x-, y-coordinates of the
peak, and the pixel height at three different locations are
measured as shown in Figure 3 (PeakX, Peaky, 0.25Y, 0.5Y,
and 0.75Y), resulting in a total of nine KPIs.

C. Set Parameters

The model parameters are taken from provided data [15]
and are shown in Table II. The particle shape of sinter is
one particle which has average characteristics with regards
to elongation, flatness, compactness and complexity as de-
scribed by [16, 17], from the available STL files for sinter.
Most of the interaction coefficients are used for the sensitivity
analysis and their corresponding ranges used in the Design
of Experiments are shown in Table II as well.

lifted by crane

Hopper

—— Gate

Container

Right

Altalr EDEM™

(a) Experimental setup in the laboratory (b) Geometries in DEM and the ex-
with the image of the heap. tracted image of the heap.

Fig. 2: Experimental setups in the laboratory and setup in DEM, made to
match the laboratory setup.

(Peak X, Peak Y)

X

Fig. 3: KPIs: PeakX, PeakY, 0.25Y, 0.5Y, and 0.75Y extracted from the
image of the heap.

D. Sensitivity Analysis

To reduce the complexity of the calibration task, it first
needs to be tested which interaction parameters are useful to
calibrate. Therefore, a sensitivity analysis is applied, to find
out which interaction parameters have a dominant effect on
the KPIs. Plackett-Burman (PB) is employed to efficiently
explore the relationship between certain input variables and
one or more outputs (or KPIs). PB is chosen because it
is computationally the least expensive DoE, it is sufficient
for the sensitivity analysis, and it is available in Altair
Hyperstudy. It consists of two levels for the input parameters
and 8 runs with different combinations of these levels. The
dominant parameters found, will be used in the calibration
approach.

E. Calibration Approach

The calibration process follows a structured approach us-
ing polynomial regression as the Response Surface Method-
ology (RSM) and Central Composite Design (CCD) to effi-



Category DEM Parameter Pellet Sinter Sinter-Pellet

Morphological Parameters ?arti(fle 'sha[.)e . Sphere 'Clumped Sphere N/A
Size distribution Direct Measurement  Direct Measurement N/A
Density Direct Measurement  Direct Measurement N/A
Material Parameters Shear modulus Literature Literature N/A
Poisson’s ratio Literature Literature N/A

Coefficient of restitution Bulk Calibration Bulk Calibration Average

Particle-Particle Interaction Coefficient of rolling friction Bulk Calibration Bulk Calibration Average

Coefficient of static friction Bulk Calibration Bulk Calibration Average
Coefficient of restitution Bulk Calibration Bulk Calibration N/A
Particle-Geometry Interaction  Coefficient of rolling friction N/A N/A N/A
Coefficient of static friction Bulk Calibration Bulk Calibration N/A

TABLE I: Overview of DEM parameters and corresponding approach for determination of the numerical value.

ciently explore the relationship between DEM input param-
eters and the experimental KPIs. The Face-Centered Central
Composite Design (CCI) variation is selected due to strict
parameter constraints, such as the limitation that restitution
coefficients cannot exceed 1 or be negative. CCD ensures
that linear, interaction, and quadratic terms, are accounted
for, allowing for an accurate DEM response surface.

Once the CCD-generated simulations are completed, poly-
nomial regression is applied to fit response surfaces for
each KPI. These polynomial models incorporate linear, in-
teraction, and quadratic terms. With the response surfaces
established, the next step is to determine the optimal param-
eter values that minimize the difference between simulation
results and experimental KPIs. To achieve this, three opti-
mization methods are compared: local optimization (LO),
genetic algorithm (GA), and particle swarm optimization

(PSO).

Local optimization, implemented using MATLAB’s fmin
function, serves as a baseline approach due to its simplicity
and computational efficiency. However, it is susceptible to
local minima and may not always yield globally optimal
solutions. To address this limitation, global optimization
is used. GA and PSO are widely used global optimiza-
tion techniques in DEM calibration. GA is employed as a
population-based heuristic that evolves solutions iteratively
through selection, crossover, and mutation [20]. Similarly,
PSO is applied as another population-based optimization
technique, inspired by collective behaviors in nature, where
particles iteratively adjust their positions based on both their
individual best-known solutions and the global best solution
found by the swarm [21]. The effectiveness of these methods
is assessed based on their ability to minimize the error

Parameter (symbol)

Pellet

Sinter Steel (Geometry)

| \;\‘
§ |

Particle shapes
Density (p)

A 4

3602 kg/m? [18, 2]

3449 kg/m3 [18, 2]

L4

7800 kg/m? [19]

Poisson’s ratio (v) 0.25 [18, 2] 0.25 [18, 2] 0.3 [19]

Shear modulus (G) 2.5e+8 Pa [18, 2] 2.5e+8 Pa [18, 2] 2e+11 Pa [19]
Restitution coefficient (C) P-P [0.0001-0.9] [0.0001-0.9] -
P-w [0.0001-0.9] [0.0001-0.9] -
Static friction coefficient (us) P-P [0-0.9] [0-0.9] -
P-W [0-0.9] [0-0.9] -
Rolling friction coefficient (1)  P-P [0-0.9] [0-0.9] -
P-W 0.5 0.5 -
Numerical time step (Dt) 10% 10% -

TABLE II: Model parameters or parameter ranges for this study. Abbreviations: P-P = particle-particle, P-W = particle-wall.



between simulated and experimental KPIs, computational
efficiency, and variability in parameter estimates.

The objective is to make the absolute value of the differ-
ence between all KPI values, one from the laboratory test
and the other from the simulation, close to zero. To prevent
larger KPI values from disproportionately influencing the
optimization process, the objective function is normalized.
The error is also squared to give a balanced outcome between
the parameter values. The objective function combines the
errors of all KPIs and can be written as follows:

: 2
Error — i <Target KPI, — Predicted KPIk> W

— Target KPI,

where k refers to each individual KPI. Both GA and PSO
were configured to prioritize convergence by using stopping
criteria based on minimal changes in the objective function.
Using this objective function and the chosen optimization
methods, a parameter set is identified that closely predicts
the experimental KPIs at the calibrated hopper height. These
results are tested in DEM and then validated by testing
the calibrated parameters at different hopper heights, as
illustrated in Figure 2.

III. RESULTS AND DISCUSSION

A. Sensitivity Analysis

The sensitivity analysis results, shown in Appendix I,
summarized in Table III, highlight the effect of DEM in-
teraction parameters on various KPIs. This table condenses
the findings from the Pareto plots. A key observation from
these results is that the rolling friction coefficient between
particles and geometry, ji_pg, does not have a significant
effect on any KPI, and is set to 0.5 in this study. In contrast,
the coefficient of restitution for particle-particle interactions,
Cpp, has a noticeable influence across almost all KPIs.
Additionally, the heap’s shape is assessed using the total
pixel count rather than height at specific locations, as the
methodology evolved during the study.

B. RSM

Using CCD and polynomial regression the RSM is created
for pellet and sinter. The results of the CCD can be found
in Appendix II. The resulting polynomial model can also
be found in that appendix, in Section III, Table X displays
the polynomial model for pellet and Table XI shows the
polynomial model for sinter. In Table IV the R? of the
models which measures how well a model explains the
variance in the data are shown per KPI, with values closer
to one indicating a better fit.

As can be seen in this table most R? values are above
the 0.95. Notably, the discharge time for sinter, the mass on
the right side of the container are lower values (< 0.7). This
could have an affect on the quality of the predicted values.

C. Local optimization

Using the polynomials, local optimization is used to min-
imize the error. As can be seen in Figure 4, the results of
local optimization is highly dependent on the initial guess.

In this figure different combinations of initial guesses are
taken from [0.1, 0.1, 0.1, 0.1, 0.1], [0.5, 0.5, 0.5, 0.5, 0.5]
and [0.8, 0.8, 0.8, 0.8, 0.8].
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Fig. 4: Objective function value dependency on initial guess for both
materials.

From the different combinations the following initial
guesses give the best results (the smallest error) for pellet
and sinter respectively: [0.10, 0.10, 0.80, 0.80, 0.80], [0.80,
0.10, 0.80, 0.80, 0.10]. These initial guesses are used to arrive
at the results presented in Table V.

D. Global optimization: PSO & GA

The optimization is also performed using PSO and GA,
and different population and swarm sizes are compared.
These sizes represent the number of candidate solutions
considered per iteration. Comparing them provides insight
into how efficiently each algorithm uses its agents to con-
verge toward solutions. As can be concluded from Figure 5,
the population size of GA needs to be significantly bigger
than the particle swarm of PSO in order to converge to
an objective function value. The same results are found for
sinter but then with a much faster convergence.

From these experiments, the following swarm and popu-
lation sizes were selected based on where the error values
converged. For pellet, a swarm size of 100 was used along
with a population size of 1000. For sinter, both the swarm
size and the population size were set to 20. The optimal
parameters sets found are presented in Table V. These results



Parameter Time Pixel Count PeakX PeakY M Left M Right M Heap
Heap

Crp X ) ) ) ) O] )
Hs—pp ) +) X Q) X +)
Hr—pp (+) +) X O] X Q) +)

Chpg X X ) X ) ) X

Hs—pg +) ) X X ) (+)
Hr—pg X X X X X X

TABLE III: The effect of DEM interaction parameters on the KPIs, with the effect of each significant parameter on the KPIs in parentheses (e.g., “(+)”

denotes that with an increase in the parameter value, KPI increases.). “x

Gy

means insignificant effect.

‘ Time M heap M left M right  PeakX PeakY 0.25Y 0.5Y 0.75Y
Pellet | 098776 0.96546 0.81121  0.70841 0.86276  0.96751  0.96942  0.97609  0.90973
Sinter | 0.77077 0.98438  0.98438  0.70017 0.87183 0.98468 0.97609  0.98889  0.93775
TABLE IV: Comparison of R-squared values for pellet and sinter models.
opte ‘ === Pellet | Cpp  pr—pp ps—pp Cpg  Hs—pg Error
sst il LO 0.151 0.04 0.453 0.359 0.83 0.1465
g st 1 GA 0.071  0.045 0.465  0.329 0.83 0.0024213
é i PSO 0.071 0.045 0.465 0.329 0.83 0.0024213

é 1 Sinter | Cpp  pr—pp Ms—pp Cpg  Hs—pg Error

E 7 LO 0.258 0.9 0.35 0.9 0.532 3.1753

c i GA 0.243 0.9 0.355 0.9 0.514 0.077

¥ PSO 0.243 0.9 0.355 0.9 0.514 0.077
* " Swamn Size/Popuiation size - TABLE V: Best results from the three optimization techniques. These are
(a) Pellet optimization results. the parameter input values which give the smallest error for each optimizer.
§ 3 | mass distribution are minimal, ranging from 0.4% to 5.2%,
_‘; | with overlapping 95% confidence intervals, indicating the
% R | model captures these behaviors well. The heap shape KPIs
El | (PeakX, Peaky, 0.25Y, 0.5Y, 0.75Y) also show deviations
d 1 | below 3.5%, with confidence intervals that largely overlap,

5 2 further supporting the accuracy of the simulation.

2 i R 3 "
" Swarm Size/Population Size  ° i

(b) Sinter optimization results.

Fig. 5: Pellet and sinter optimizer objective function value for different
population and swarm sizes of GA and PSO with error bars.

are found after the fine-tuning of the optimizers.

As can be seen in the table, GA and PSO find the smallest
error for both materials, but since PSO converges faster it is
preferred. Consequently, the parameter set found using PSO
will be used in DEM simulations.

E. Simulation Results at Calibrated Height

In Figure 6a, the simulation and experimental KPIs of
pellet are compared. The DEM simulations created with the
optimal parameter sets taken from Table V. The same results
are shown for sinter in Figure 6c. Figure 6b and 6d show
the edges of the heap of the experimental results and of the
simulation results. Note that some KPIs have been scaled for
a better visualization.

The simulation results for pellet show a strong agreement
with the experimental data. Deviations in discharge time and

For sinter, the differences between simulated and exper-
imental KPIs are more pronounced. Most deviations are
around 10%, with some exceeding 20%, notably the dis-
charge time and M right. While these differences appear
significant, overlapping confidence intervals in many cases
suggest that experimental variability may account for the
discrepancies. For example, the experimental discharge time
(mean = 4.62, CI = [3.90, 5.34]) and the simulated value
(3.61) show minimal overlap at the lower bound. Similarly,
the mass on the right side has CIs of [16.86, 24.50] for the
experiment and [23.74, 28.66] for the simulation, with slight
overlap at the bounds.

F. Validation Results

The validation of these optimal parameter sets is found by
testing the simulation results when the hopper is positioned
at different heights. A comparison of experimental and
simulated results is shown in Figure 7. The pellet validation
shows that deviations between simulated and experimental
values tend to increase as hopper height decreases. For most
KPIs, the 95% confidence intervals overlap, indicating good
agreement. However, at a hopper height of 1 meter, the
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(c) Sinter simulation KPIs compared to experimental KPIs.

Fig. 6: Results of sinter and pellet simulations

y-coordinate of the peak (PeakY) and the midpoint height
(0.5Y) are underpredicted, and their confidence intervals do
not overlap.

In the sinter simulations, deviations also increase with
decreasing hopper height. The deviation in midpoint height
rises from 0.9% at 4.665 meters to 12.6% at 1 meter, with
the largest differences observed at the lowest height. At this
height, the confidence intervals for both midpoint and three-
quarters width (0.75Y) no longer overlap, indicating notable
disagreement. In contrast, the mass distribution aligns better
than at the highest height. The discharge time continues to
deviate across all cases, and other KPIs show consistent
deviation.

The differences between simulation and experimental re-
sults can be attributed to several factors.
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(b) Pellet edges of the heap.
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(d) Sinter edges of the heap.
at the calibrated hopper height of 4.665m.

Sinter showed greater deviation than pellet, which may
relate to its higher experimental variability and broader
particle shape distribution. Additionally, the initial sensi-
tivity analysis used a different metric than the final KPIs,
potentially affecting which parameters were identified as
most influential. The unweighted objective function may also
have contributed to deviations, particularly for KPIs with
high variability. Incorporating weights based on the relative
standard deviation of experimental values could improve
accuracy by reducing the influence of uncertain measure-
ments. Finally, low prediction accuracy for some KPIs,
especially discharge time, suggests that more simulations
may be needed or that alternative fitting models should be
explored to better capture the relationships.
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IV. CONCLUSIONS

This study evaluated different calibration strategies for
DEM simulations, focusing on sinter and pellet materials
used in blast furnaces. The calibration process combined
sensitivity analysis, structured sampling of the parameter
space, and optimization techniques to determine the most
accurate interaction parameters.

A key finding is that PSO consistently outperformed the
GA in terms of computational efficiency, requiring fewer
iterations to converge while maintaining high accuracy. Local
optimization proved less reliable due to its strong dependence
on initial parameter estimates. This research makes three
main contributions to the advancement of calibrating DEM
simulations.
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First, it demonstrates the value of using multiple KPIs in
the calibration process. Relying on a single KPI can create
blind spots, whereas multiple KPIs offer a more complete
and reliable calibration of the simulation model. Second,
the study highlights the necessity of thorough validation.
Although good agreement was found at the original hopper
height, increased deviations at lower heights suggest that
overfitting may have occurred. Third, the results show that
PSO is an effective optimization method within the proposed
calibration framework.

Further research is needed to understand the reasons for
the higher deviations observed during validation and to
explore whether the suggestions outlined in the discussion
could improve the accuracy of the calibration approach.



APPENDIX I
RESULTS PLACKETT-BURMANN

Sim # Cpp Spp Rpp Cpg Spg Rpg Time Pixel X y M-left M-right  M-scale
Siml 0.9 0.9 0.9 0.0001 0 0.9 6.21 247157 1012.3 415.0 71.25 61.65 42.72
Sim2 0.0001 0.9 0.9 0.9 0.9 0 9.54 341332 1055.8 2723 63.04 50.93 55.81
Sim3 0.0001 0.9 0 0.9 0 0.9 5.10 149617 1292.8 566.8 67.25 81.29 25.39
Sim4 0.9 0 0 0.9 0.9 0.9 8.96 43414 841.0 718.8 56.15 55.44 6.72
Sim5 0.0001 0 0.9 0.0001 0.9 0.9 7.79 148799 1264.0 589.5 77.32 71.01 27.74
Sim6 0.9 0.9 0 0.0001 0.9 0 7.15 180789 1002.8 542.8 75.10 69.91 30.20
Sim7 0.9 0 0.9 0.9 0 0 5.31 22104 963.0 746.3 56.00 75.14 3.81
Sim8 0.0001 0 0 0.0001 0 0 4.56 97332 1258.3 660.3 80.27 76.60 18.49

TABLE VI: Simulation parameters with corresponding KPIs.
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APPENDIX II
REsuLTs CCD

Run | Cpp Hr—pp Hs—pp Chg Hs—pg

1 0.2608693  0.260798  0.260798  0.260869  0.260798
2 0.2608693  0.260798 0.260798  0.260869  0.639202
3 0.2608693  0.260798  0.260798  0.639231  0.260798
4 0.2608693  0.260798 0.260798  0.639231  0.639202
5 0.2608693  0.260798  0.639202 0.260869  0.260798
6 0.2608693  0.260798  0.639202 0.260869  0.639202
7 0.2608693  0.260798  0.639202 0.639231 0.260798
8 0.2608693  0.260798  0.639202 0.639231 0.639202
9 0.2608693  0.639202 0.260798  0.260869  0.260798
10 0.2608693  0.639202 0.260798  0.260869  0.639202
11 0.2608693  0.639202 0.260798  0.639231  0.260798
12 0.2608693  0.639202 0.260798  0.639231  0.639202
13 0.2608693  0.639202 0.639202 0.260869  0.260798
14 0.2608693  0.639202 0.639202 0.260869  0.639202
15 0.2608693  0.639202 0.639202 0.639231 0.260798
16 0.2608693  0.639202 0.639202 0.639231  0.639202
17 0.6392307 0.260798  0.260798  0.260869  0.260798
18 0.6392307 0.260798  0.260798  0.260869  0.639202
19 0.6392307 0.260798  0.260798  0.639231  0.260798
20 0.6392307 0.260798  0.260798  0.639231  0.639202
21 0.6392307 0.260798  0.639202 0.260869  0.260798
22 0.6392307 0.260798  0.639202 0.260869  0.639202
23 0.6392307 0.260798  0.639202 0.639231 0.260798
24 0.6392307 0.260798  0.639202 0.639231  0.639202
25 0.6392307 0.639202 0.260798  0.260869  0.260798
26 0.6392307 0.639202 0.260798  0.260869  0.639202
27 0.6392307 0.639202 0.260798  0.639231 0.260798
28 0.6392307 0.639202 0.260798  0.639231  0.639202
29 0.6392307 0.639202 0.639202 0.260869  0.260798
30 0.6392307 0.639202 0.639202 0.260869  0.639202
31 0.6392307 0.639202 0.639202 0.639231 0.260798
32 0.6392307 0.639202 0.639202 0.639231 0.639202
33 0.0001 0.45 0.45 0.45005 0.45

34 0.9 0.45 0.45 0.45005 0.45

35 0.45005 0 0.45 0.45005 0.45

36 0.45005 0.9 0.45 0.45005 0.45

37 0.45005 0.45 0 0.45005 0.45

38 0.45005 0.45 0.9 0.45005 0.45

39 0.45005 0.45 0.45 0.0001 0.45

40 0.45005 0.45 0.45 0.9 0.45

41 0.45005 0.45 0.45 0.45005 0

42 0.45005 0.45 0.45 0.45005 0.9

43 0.45005 0.45 0.45 0.45005 0.45

44 0.45005 0.45 0.45 0.45005 0.45

45 0.45005 0.45 0.45 0.45005 0.45

46 0.45005 0.45 0.45 0.45005 0.45

47 0.45005 0.45 0.45 0.45005 0.45

TABLE VII: Input parameter values for CCD
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Run | Time +3 Mh M1 M.r HighX HighY 0.25Y 0.5Y 0.75Y
1 6.45 36.68015 94.01253  45.6913 626 321 399.25 371 335.75
2 7.58 40.56808 86.43811 49.35311  587.5 300.5 359 32725 3175
3 6.45 37.13583  93.38976 45.66619  614.5 320.5  398.75 363 334.75
4 7.58 40.69089  85.30302 49.24754  608.5  305.75 357.25 321.75 327.25
5 6.89 40.92542  88.58243  46.87409 5465  286.25 358 308 313
6 8.09 44.66442  81.70815 49.98505 482.75  253.5  324.25 266 305.25
7 6.90 41.01399  89.05329  46.1574  576.25 286.25 363 309 316.75
8 8.07 4478455  82.06709 48.56278  476.5  257.75 333 262.75 302.25
9 6.59 40.80903  93.2345  42.34343  632.75 2905 368.5 327 314.25
10 7.68 44.45355 87.04547 44.86426 5225  271.25 3345  288.75 304
11 6.62 40.96381 94.32931 40.87765 594.75  296.5 376.25 336.5 311
12 7.70 44.49632  85.77401 45.15074  524.75 271 328 289.25  298.5
13 7.43 49.84414  83.3522  43.18652  501.5  201.25 296.75 210.75 247.75
14 8.55 53.27353  75.72827 4737756 476.75 164.25 2465  173.25 244
15 7.47 50.24528  83.7251  42.24707  489.5 200.5 29275 2115  255.75
16 8.55 53.16328 75.07804  47.2197 47225 169.5  263.75 17775 241.25
17 6.43 35.76399  90.31018  50.28574 633 327 402.75 3775 3375
18 7.58 39.11967 82.33834  54.8536 52525 316.75 3705 341.75 343
19 6.45 3571481 88.65436  51.58316  645.5  339.25 40475 380.25 346.25
20 7.57 39.18475 80.61357 54.60616 529.25  322.75 365 336.75 347.75
21 6.86 40.56241  85.74752 50.05134 568.25  288.5 359.5 319.5  314.25
22 7.99 43.98508  78.96905  53.3807 4435  264.25 3285 276.5  314.75
23 6.85 40.68909 85.00901  50.3328  510.25  300.5 361.5 317.25 325.25
24 7.94 445189 7734351 53.05047 5325 27275 323.75 280.25 308
25 6.59 39.10674  89.21604 48.04464 596.25 3125 37925 3445 32775
26 7.70 42.00348  80.62535 53.70718 509.25 299.75 344 305.75 325.75
27 6.59 39.10798  89.23658  47.59931 596 316.5 38525 34725 3295
28 7.66 42.07947  80.14214 5249904  529.5  299.25 351.25 31375 3245
29 7.28 48.894 78.50738  48.96004 464 214.75  300.5 223 269.25
30 8.43 51.9976 72.8187  51.50185 501.25 1865 27775  199.5 254
31 7.27 49.01394  78.52692  48.40921 500.75 227.75  304.5 235.5  276.75
32 8.29 51.59355  72.57155  50.73755 482 191.25 277.75 203.75 269
33 7.50 47.5254  86.87821 41.97218 523 237.5 309 249.75  274.75
34 7.28 37.57443  77.09311 61.19166 500.25 333.75 38525 351.25 35825
35 6.84 32.85769  85.74917  57.7025 635 370.5  408.25 409 379.25
36 7.76 53.17426  77.81742  45.33966 497 189.25 270 200 246
37 6.28 23.70403  80.31799  71.4959  703.25  460.5 493 500.25  469.5
38 7.82 48.0105  81.19631  47.13049 490 220.75 310 231.5 269
39 7.45 46.3087  83.61504 46.45573 502 238.5  310.25 259 291.75
40 7.47 46.56074 84.04358 44.35102 553 251.5 3245  257.5 289
41 5.60 41.21905 75.669 59.13641 502 298.25 35825 308.75 331.25
42 8.99 49.68634  71.34851 55.07318  466.5 218.5 285.5 225.5 282
43 7.46 46.1905  86.18969 43.95401 53425 250.75 3225 262 282
44 7.48 46.30918  85.85627  44.1812 508 249.25 324 26425 285.75
45 7.49 46.63257  83.9534  45.7633 521.5 24475 327 254 280.75
46 7.49 46.68384  84.06608 45.59198 537.75 246.25 323.75 253.75 281
47 7.46 46.53806 84.61121 45.20596  525.5 241 326 261.75 285

TABLE VIII: Results CCD of pellet. The input parameters are displayed in the previous table.
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Run | Time +3 PeakX PeakY M-heap M-left M-right 0.25Y 0.5Y 0.75Y
1 5.723333 610.5 325 37.86236  75.60987  36.52563 395.75 387.25 334
2 6.315 579.75 297.75 40.84144  82.04778  27.10528 387 343.5 318.5
3 5.715 593.75 318.5 38.42059  77.96515 33.58133 410 369.25 328
4 6.32 575.25 299.75 41.09753  81.43499 27.18243 383.75 337.25 318
5 6.175 568 279.25 41.84885 75.33801 32.81353 355.25 307.25 304.25
6 6.98 510.75 252.75 45.18698  74.58308  30.22053 338.75 261.25 297.25
7 6.19 550.5 289 41.37694  73.8439  34.72725 357.25 310.75 313.25
8 6.995 522.25 255.25 45.17105 73.51231  31.00657 335.25 271.25 297.5
9 5.845 619.5 306.25 39.68603  78.05972  32.25304 387.5 354.75 313.25
10 6.48 567.25 276.75 42.73814  83.09411 24.15421 373.5 308.5 304.5
11 5.83 635.75 307.5 39.41071  78.6637 31.8902 383.75 358 318.25
12 6.485 580.5 281.75 42.65491 81.34524  25.73893 365.75 313.25 302
13 | 6.383333 515 228 46.50189  73.79153  29.70144  318.6667 253 265.6667
14 | 7.206667 507.3333  206.3333  48.96552  71.14055 29.87743 301.3333 217 265
15 6.3775 477 229.25 46.50213  72.80169  30.65563  311.6667 238.5 277
16 7.23 478 204.25 4937879  71.76559  28.5404 305 216.5 265.5
17 5.72 637.75 319.25 38.07514  77.46079  34.43902  409.25 376.75 328.5
18 6.385 581.75 308.5 40.89826  80.98641 28.082 381 339.5 319
19 5.72 644.5 322 37.88226  78.65275 33.40428  402.75 390.5 328.75

20 6.34 587 306 41.03083  79.07933  29.52863 382.25 341.5 329.25
21 | 6.186667 530.25 286.25 4224012 71.49637 36.22754  357.75 313.75 312.5
22 6.98 477 249.75  45.80338 74.60394  29.52386 339.75 264 303.25
23 6.16 558 283 4243465 749372 3255311 344.75 312.75 307.75
24 6.9725 517.25 257.5 45.49859  72.83626 31.32476 330.25 268.75 300.5
25 5.84 602 308.75 39.01468  79.15118 31.81379 386.25 362.5 317
26 | 6.466667  568.75 287 42.12993  80.98399  26.85712 371 316.25 307.25
27 5.8625 623 308.75 39.60846  79.41717  30.89963 388.25 351.25 319.5
28 | 9.303333 564.5 287 42.19508  80.11359  27.36886 372.25 320.25 309.5
29 6.3275 500 232 46.8388  70.91749  32.2088 335.75 239 284.5
30 7.19 483.75 215.5 49.4481  68.83597 31.65264  304.25 221.25 265.75
31 6.3375 510.5 233 46.24977  70.74005  32.92569 337 254.25 279.75
32 7.175 491.25 208.75 49.67364  71.56681  28.37448 308.5 224.25 263.75
33 6.45 540.6667 243.6667 46.20383  73.09346 30.68875 342.6667 266 277
34 6.425 530 268.5 45.03356  71.66356  32.95549 342.25 289.75 293.5
35 6.19 565 311.75 39.98262  80.19888  29.80303 396.5 350 328.75
36 6.63 514.5 217 48.90558  72.07197  29.01189 312.75 239.75 259
37 | 5.566667  641.25 424.75 28.45555  72.52367 48.90715 472 480.5 426.75
38 | 6.846667 507.6667 245.6667 44.98039  72.00209  32.95565 332 266.3333  288.3333
39 6.43 540 259.5 45.50506  74.64499  29.84353 328.5 290 290.5
40 6.4475 562 252 4577776 75.13847  28.57529 340.5 275 285.25
41 5.1525 507 306 41.32419  56.55238  52.09474 359 319.25 33255
42 7.255 506.5 236.5 4793706 64.93363 36.97124  316.75 248 282.5
43 6.42 542.5 255.75 45.68792  75.03282 29.26132 349.25 285.25 288
44 | 6.466667 568.5 264.25 45.37045 76.33119  28.2719 348.25 280 283
45 6.455 557.5 259.25 45.39721  77.58587  27.00266 347.75 281.25 283.25
46 6.455 512.25 252.25 46.07919  75.34051  28.56153 343.25 272.25 282.25
47 6.449 545.2 257.88 45.63 76.08 28.24 347.13 279.69 283.2

TABLE IX: Results CCD of sinter. The input parameters are the same as pellet.
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APPENDIX III

POLYNOMIALS
Pellet Time M heap M left M right X peak Y peak 0.25Y 0.5Y 0.75Y
Constant | 43.118 14.373 87.827 71.835 93.68 47.743 54.577 63.233 48.576
P1 7.5632 12.663 -5.8712 -4.3645  -11.116  -14.337 -5.1764 -17.213  -10.073
P2 8.1241 21.6 15.838 -37.22 -36.188  -12.093 -12.053 -26.655  -13.936
P3 27.416 49.403 7.462 -55.09 -73.115  -37.819 -39.55 -56.634  -34.748
P4 2.4892 0.9383 -3.4368 7.664 -6.8941  2.7301 3.4109 -2.2578  0.26415
P5 41.381 16.175 25.734 -38.181  -17.755  -5.8483 -12.052 -17.001  -10.488
P12 -2.4413 -18.676 -5.5434 22.829 -5.539 17.513 9.9502 19.689 13.712
pP272 -7.0086 -16.37 -6.5415 22.523 21.314 14.669 8.5899 21.66 11.302
P32 -19.169 -51.722 -11.609 61.003 36.438 44.669 38.899 51.969 39.45
P42 0.89253 0.5125 3.5631 -7.6893  2.3023 -2.5536 -3.0157 -1.1176  -1.044
P52 -7.3171 -4.3371 -47.403 50.097 -19.056  4.0519 -0.54587  3.2036 7.413
P1P2 -4.0597 -5.699 -4.412 10.115 9.3855 6.8172 8.2214 5.0347 7.0646
P1P3 -8.25 6.161 7.499 -13.245  12.223 -2.0008 -4.2635 1.1932 -5.2457
P1P4 -2.6195 -0.70387  -4.412 2.2518 10.172 3.107 -3.9147 24158 2.001
P1P5 -1.3532 -2.486 0.65584 0.30838  -1.6588  2.6701 0.058205  3.8124 3.6596
P2P3 22915 33.801 -40.781 6.4996 0.26189  -40.557 -28.866 -38.251  -23.825
P2P4 -0.61121  -1.032 4.8267 -3.472 -9.3855  -0.96765  0.81486 5.1366 0.44381
P2P5 -3.623 -3.4524 -0.31973  4.3584 14.404 -2.3643 1.4695 4.1757 -0.16732
P3P4 -1.746 0.005922  3.264 -2.3457  2.8811 0.69118 1.3387 1.3824 -0.9531
P3P5 0.56754 -0.45501  6.8823 -5.7555  26.233 -10.134 4.5249 2.3425 -3.5719
P4P5 -2.7065 -0.74434  -5.0115 -1.2092  11.786 -0.66208  1.4697 -1.0622  1.055

TABLE X: Polynomial model for the pellet KPIs. P1, P2, P3, P4, and P5 stand for Cpp, ftr—pp, ths—pp, Cpg, and prs_pg respectively.

Sinter Time M heap M left M right X peak Y peak  0.25Y 0.5Y 0.75Y
Constant | 53.685 22.429 56.776  70.268 69.545 44.483 -222.63 -159.85 -177.45
P1 -19.495  0.7622 8.9546 -9.0925 3.3208 0.9244 296.21 237.51 242.04
P2 -18.168  7.9645 0.4826  -8.4843 2.8821 -2.5462  285.98 226.6 236.87
P3 56.422  46.138 16.714  -62.482 -28.706 -39.11 260.56 179.65 205.51
P4 -21.592  2.0898 -4.7871  4.0941 -9.8772 1.7051 302.28 232.17 241.27
P5 1.9683 13.891 82.989 -96.025 -0.77411  -12.753  296.28 220.49 229.14
P172 2.9608 -1.931 -5.8737  7.0625 -1.029 -0.9699  -330.37 -265.01 -268.35
pP272 1.6021 -7.731 12.68 -4.8633 1.1523 3.125 -324.29 -256.56 -264.03
P32 -8.4391  -45.885 -6.4434  52.045 18.292 38.104 -300.89 -217.77 -232.59
P42 3.0225 -1.8188 6.54 -5.8426 6.7093 -1.1345  -3343 -262.73 -267.05
P52 -8.5831  -6.8099 -63.332  69.831 -15.144 6.52 -332.56 -262.11 -257.3
P1P2 22.823 -2.3898 -4.0631  6.4337 -5.1802 2.2409 6.7517 0.85124 1.4915
P1P3 -27.349  4.4806 -7.3924  2.8688 -9.4146 -1.0768  1.9935 -0.37105  0.88034
P1P4 23.932 -0.22404  4.5746 -4.4505 15.702 -1.237 -1.7172 4213 -1.4043
P1P5 25.195 -0.07937  -5.7769  5.7297 -7.4938 3.0703 -3.2304 0.45836  0.47291
P2pP3 -19.955  19.789 -23.73 3.8517 -19.395 -22.93 -10.417 -21.41 -13.669
P2P4 25.443 0.1698 0.2651 -0.43269  -4.8746 -1.1204  0.53839  -0.41471  0.57477
P2P5 26.502 -1.7595 -14 9.178 8.8025 0.77112  1.1785 5.8707 -1.5641
P3P4 -24.38 -1.3991 1.7625 -0.42089  -2.1245 0.71301  -1.1641 2.4664 -0.38561
P3P5 -10.89 1.3156 -25.427  24.004 12.251 -3.3318  -1.2222 3.9502 -0.60381
P4P5 24.671 0.76048 -8.5721  6.057 2.5901 -0.0291  -0.77121  2.6847 -0.61842

TABLE XI: Polynomial model for the sinter KPIs. P1, P2, P3, P4, and P5 stand for Cpp, ftr—pp, ths—pp> Cpg, and prs_pg respectively.
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System Inputs

B.1. Sinter particle shape in EDEM

Smoothing Value Min Radius Time+3 MLeft M Scale MRight Pixels Heap Peak X PeakY

10 0.15 6.765  72.5987 47.2408 28.8565 198361.75 511.25 95.75
10 0.3 6.715  71.2548 47.0456 30.5639 195065.75 497.25 84.75
7 0.15 6.7125 73.8400 46.7034 30.3710 193557.00 514.75 98.75
7 0.3 6.6875 74.5675 46.9284 29.4545 195121.75 538.50 92.75
5 0.15 6.765  71.6496 47.0496 27.8292 196347.75 524.00 87.50
5 0.3 6.6075 724461 46.2757 27.7051 191228.75 523.25 99.75

Table B.1: Parameters and KPI Values.

KPI P-value (Smoothing) P-value (Min Radius)

Left 0.35184 0.35812
Right 0.41427 0.45432
Scale 0.82859 0.48567
X 0.54321 0.77542
Y 0.73277 0.86637
Time 0.80006 0.63582
Pixel 0.90712 0.63865

Table B.2: ANOVA Results for Smoothing and Minimum Radius Effects on KPIs. As can be seen in this table no value is below
0.05, meaning neither the smoothing value and the minimum radius have an significant effect on the KPlIs.

Simulation Real Time (s)

10_0.15 23594.4
10_0.3 13276.2
7 0.15 25765.99
7 0.3 12779.89
5 0.15 42145.29
5 0.3 23936.49

Table B.3: Simulation and Real Time Data
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Results Plackett-Burmann

C.1. Levels of PB and resulting KPIs

Sim# Cpp Spp Rpp Cpg Spg Rpg Time Pixel X y M left M M
right scale
Sim1 0.9 0.9 0.9 0.0001 O 0.9 6.21 247157 10123 415.0 71.25 61.65 42.72
Sim2 0.0001 0.9 0.9 0.9 0.9 0 9.54 341332 1055.8 2723 63.04 50.93 55.81
Sim3 0.0001 0.9 0 0.9 0 0.9 5.10 149617 1292.8 566.8 67.25 81.29 25.39
Sim4 0.9 0 0 0.9 0.9 0.9 8.96 43414  841.0 718.8 56.15 55.44 6.72
Sim5 0.0001 0 0.9 0.0001 0.9 0.9 7.79 148799 1264.0 589.5 77.32 71.01 27.74
Sim6 0.9 0.9 0 0.0001 0.9 0 7.15 180789 1002.8 542.8 75.10 69.91 30.20
Sim7 0.9 0 0.9 0.9 0 0 5.31 22104  963.0 746.3 56.00 75.14 3.81
Sim8 0.0001 0 0 0.0001 0 0 4.56 97332  1258.3 660.3 80.27 76.60 18.49

Table C.1: Simulation parameters with corresponding KPls.

C.2. Pareto Plots for the KPIs
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Figure C.1: Pareto plot of KPI 1, the discharge time.
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C.2. Pareto Plots for the KPIs
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MATLAB Codes

D.1. Local Optimization and polvnomaial regression

clc; clear; close all;

filename = 'KPIs_pellet.xlsx';

parameters = readmatrix(filename, 'Sheet', 'CCDparameters');
responses = readmatrix(filename, 'Sheet', 'CCDkpis');
parameters (any (isnan(parameters), 2), :) = [];
responses (any (isnan(responses), 2), :) = [];

[num_samples, num_params] = size(parameters);

[~, num_responses] = size(responses);

poly_degree = 2;

models = cell(1l, num_responses);
for i = 1:num_responses
X_poly = parameters;

if poly_degree >= 2
X_poly = [X_poly, parameters. 2];
end
for j = 1l:num_params
for k = j+l:num_params
X_poly = [X_poly, parameters(:, j) .* parameters(:, k)I;
end
end
models{i} = fitlm(X_poly, respomses(:, i));
end

target_kpi = [82.4, 77.53, 58.23, 52.1, 31, 34.7, 32.8, 35.3];

1b
ub

[0.0001, 0, O, 0.0001, 0];
[0.9, 0.9, 0.9, 0.9, 0.9];

init_values = [0.80, 0.50, 0.80, 0.10, 0.80];
options = optimoptions('fmincon', 'Display', 'off', 'Algorithm', 'sqp');
optimal_params = fmincon(@(x) compute_kpi_error(x, models, num_params, poly_degree,

target_kpi),
init_values, [1, [1, [1, [, 1b, ub, []1, options);

X_poly_best = optimal_params;
if poly_degree >= 2
X_poly_best = [X_poly_best, optimal_params.”2];
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end
for j = 1l:num_params
for k = j+l:num_params
X_poly_best = [X_poly_best, optimal_params(j) * optimal_params(k)];
end
end

predicted_kpis = zeros(l, length(models));
for i = 1:length(models)

predicted_kpis (i) = predict(models{i}, X_poly_best);
end

fprintf ('Best Optimized Parameters: pl=}.4f, p2=}%.4f, p3=%.4f, p4=J.4f, p5=J.4f\n',
optimal_params) ;

fprintf ('Predicted KPIs: ');

fprintf('),.4f ', predicted_kpis);

fprintf('\n');

%% Function to compute KPI error
function error = compute_kpi_error(x, models, num_params, poly_degree, target_kpi)
X_poly = x;
if poly_degree >= 2
X_poly = [X_poly, x.72];
end
for j = 1:num_params
for k = j+1l:num_params
X_poly = [X_poly, x(j) * x(k)1;
end
end

predicted_kpi = zeros(l, length(models));
for i = 1:length(models)

predicted_kpi(i) = predict(models{i}, X_poly);
end

error = sum(((target_kpi - predicted_kpi)."2) ./ target_kpi);
end

D.2. PSO and GA

num_runs = 15;
results_ga = zeros(num_runs, num_params + 1);
results_pso = zeros(num_runs, num_params + 1);

target_kpi = [82.4, 77.53, 58.23, 52.1, 31, 34.7, 32.8, 35.3];

1b = [0.0001, 0, 0, 0.0001, 0];
ub = [0.9, 0.9, 0.9, 0.9, 0.9];
for run = 1:num_runs
fprintf ('Run %d:\n', run);
opts = optimoptions('ga', 'Display', 'off', 'MaxGenerations', 500, 'PopulationSize',
5000) ;
[optimal_ga, error_gal = ga(@(x) compute_error(x, models, target_kpi, poly_degree),
num_params, [], [1, [1, []J, 1b, ub, [], opts);
results_ga(run, :) = [optimal_ga, error_gal;
opts_pso = optimoptions('particleswarm', 'Display', 'off', 'SwarmSize', 50, '
MaxIterations', 100);
[optimal_pso, error_pso] = particleswarm(@(x) compute_error(x, models, target_kpi,
poly_degree), num_params, lb, ub, opts_pso);
results_pso(run, :) = [optimal_pso, error_pso];
end

fprintf ('\nComparison of GA Results:\n');
disp(array2table(results_ga, 'VariableNames', [arrayfun(@(x) sprintf ('Param_%d', x), 1:
num_params, 'UniformOutput', false), {'Objective'}]));

fprintf ('\nComparison of PSO Results:\n');
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disp(array2table(results_pso, 'VariableNames', [arrayfun(@(x) sprintf('Param_7%d', x), 1:

num_params, 'UniformOutput', false), {'Objective'}]));

%% Function to compute KPI error
% Same function error as local optimization

D.3. Searegation

clear;
close all;
clltel:
% Prompt user for direction input
prompt = 'Which direction? Enter 1 for Horizontal, 2 for Vertical, or 3 for cubic: ';
userInput = input (prompt);
if userInput == 1
Direction = 'Horizontal';
elseif userInput ==
Direction = 'Vertical';
elseif userInput ==
Direction = 'Cubic';
else
error ('Invalid input. Please enter 1 for Horizontal, 2 for Vertical, or 3 for cubic.
end

% Specify the base folder where images are stored
Source_folder = 'C:\Users\LocalAdmin\Desktop\Calibration\Mixture\Mixture_v4\';

% List of repetition folders
repFolders = {'Repl', 'Rep2', 'Rep3', 'Rep4'};

O ok ok ko ok ok K ok ok ok ok ok ok ok ok ok o ok ok K ok ok ok ok ok ok ok ok ok ok K ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok Kk ok Kk ok ok ok ko kY
KT h Ik Dl kD hhhh SPLITTING SETTINGS %%hhhhhhthhhhhtoshth
O ok ok K ok ok K ok ok ok o ok ok K ok ok K ok ok K ok ok ok K ok ok K ok ok ok K ok ok K o ok ok K ok ok K K ok ok Kk ok ok ok ok K K ok ok K ok ok K K ok K ok kK kY
%hhht% Create output folder %%%hh%
Results_folder = fullfile(Source_folder, 'Results');
outputFolder = fullfile(Results_folder, ['Segregation_', Direction]);
if ~exist(outputFolder, 'dir')

mkdir (outputFolder) ;
end

% Initialize output text file
outputFile = 'Pixel_ratio_pellets.txt';
fid = fopen(fullfile (outputFolder, outputFile), 'w');

% Define fixed width and precision for the output file
width = 10;
precision = 3;

% Define the number of sub-figures in horizontal and vertical directions
if strcmp(Direction, 'Horizontal')

numHorizontalSubfigures = 6;

numVerticalSubfigures = 1;

% fprintf (fid, '%-20s\t%-*s\n', 'Folder Name', width, 'RSD');
elseif strcmp(Direction, 'Vertical')

numHorizontalSubfigures = 1;

numVerticalSubfigures = 3;

% fprintf (fid, '%-20s\t%-*s\t%-*s\t/i-*s\n', 'Folder Name', width, 'RSD');
else

numHorizontalSubfigures = 6;

numVerticalSubfigures = 3;

% fprintf (fid, '%-20s\t%-*s\t%-*s\t)i-*s\n', 'Folder Name', width, 'RSD');

end
fprintf (fid, '%-20s\t%-*s\n', 'Folder Name', width, 'RSD');
% Process each repetition folder

for repldx = 1:numel(repFolders)
repFolder = repFolders{repIdx};

¥
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imagePath = fullfile(Source_folder, repFolder, 'HeapEdited RGB.png');

% Check if the .png image exists in the folder
if ~isfile(imagePath)
fprintf ('Image not found in %s, skipping.\n', repFolder);
continue; Y Skip this folder if the file doesn't exist
end

% Read the image
MixRGB = imread(imagePath);

% If image has 4 channels (RGBA), strip alpha

if size(MixRGB, 3) ==
MixRGB = MixRGB(:, :, 1:3);
end

imshow (MixRGB) ;

MixRGB = imread(imagePath);

if isempty (MixRGB)

end

error ('Image could not be read or is empty: %s', imagePath);

disp(['Trying to read: ', imagePath]);

Dt hh b hhhhhhhhhhhh — (PELLET)  %hhhhhhhhhhhhhhhs

[PelletBW, PelletM] = Mask_Pellet_v2(MixRGB);
imwrite (PelletBW, fullfile(outputFolder, strcat("Pellet_BW_", repFolder,

S hhhhhhhhhhhhh%hhh — (SINTER) — %hhhhhhhhhhhhhhh%
[SinterBW, SinterM] = Mask_Sinter_v2(MixRGB);
imwrite (SinterBW, fullfile(outputFolder, strcat("Sinter_BW_", repFolder,

Y4 3 K Kok ok ok o ok sk ok o o K ok ok ok o o K ok ok ok o K ok ok ok o o Kok ok ok o K K sk ok o o Kk ok ok o o K ok ok ok o K ok ok ok o o Kok ok ok o K K ok ok ok
D%t h o hhthhhhth SINTER %hhhhhhhhhhhhhhh

Y o o ko ok ok o ok ok sk ok o o K ok ok ok o o ok ok ok ok o K ok ok ok o o Kok ok ok o K K ok ok o o Kok ok ok o o K ok ok o o K ok ok ok o o Kok ok ok o K ok ok ok )
% Get the size of the binary image

[Height, Width] = size(SinterBW);

% Calculate the size of each sub-figure
subfigureHeight = floor(Height / numVerticalSubfigures);
subfigureWidth = floor(Width / numHorizontalSubfigures);

% Initialize an array to store the counts
counts_sinter = zeros(numVerticalSubfigures, numHorizontalSubfigures);

% Initialize figure
figure('visible', 'off');

% Loop through each sub-figure
for i = 1l:numVerticalSubfigures
for j = l:numHorizontalSubfigures

% Define the coordinates of the sub-figure
startY = (i - 1) * subfigureHeight + 1;
endY = min(i * subfigureHeight, Height);
startX = (j - 1) * subfigureWidth + 1;
endX = min(j * subfigureWidth, Width);

% Extract the sub-image
subImage = SinterBW(startY:endY, startX:endX);

% Plot the sub-image in a subplot

subplot (numVerticalSubfigures, numHorizontalSubfigures, (i-1) *
numHorizontalSubfigures + j);

imshow (subImage) ;

% Count the number of true pixels in the sub-image

'.png')));

'.png')));
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rati

for

end

vali
if ~

else

end

counts_sinter(i, j) = sum(subImage(:));
end
end

% Save the figure
saveas (gcf, fullfile(outputFolder, strcat('subfigures_sinter_', repFolder, '.jpg')));

T K 3 ok ok ke ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok sk ok sk ok sk ok ok ok ok sk ok s ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok Y]
Db I b Db Db hhhhhh PELLETS hhhhhhhhhhhhhhhh

o 4 3 ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Y]
% Get the size of the binary image

[Height, Width] = size(PelletBW);

% Calculate the size of each sub-figure
subfigureHeight = floor(Height / numVerticalSubfigures);
subfigureWidth = floor(Width / numHorizontalSubfigures);

% Initialize an array to store the counts
counts_pellet = zeros(numVerticalSubfigures, numHorizontalSubfigures);

% Initialize figure
figure('visible', 'off');

% Loop through each sub-figure
for i = l1l:numVerticalSubfigures
for j = l:numHorizontalSubfigures

% Define the coordinates of the sub-figure
startY = (i - 1) * subfigureHeight + 1;
endY = min(i * subfigureHeight, Height);
startX = (j - 1) * subfigureWidth + 1;
endX = min(j * subfigureWidth, Width);

% Extract the sub-image
subImage = PelletBW(startY:endY, startX:endX);

% Plot the sub-image in a subplot

subplot (numVerticalSubfigures, numHorizontalSubfigures, (i-1) x*
numHorizontalSubfigures + j);

imshow (subImage) ;

% Count the number of true pixels in the sub-image
counts_pellet(i, j) = sum(subImage(:));
end
end

% Save the figure
saveas (gcf, fullfile(outputFolder, strcat('subfigures_pellet_', repFolder, '.png')));

os = nan(numVerticalSubfigures, numHorizontalSubfigures); 7 Initialize with Nals

i = 1:numVerticalSubfigures
for j = l:numHorizontalSubfigures
denominator = counts_sinter (i, j) + counts_pellet(i, j);
if denominator > O
ratios(i, j) = counts_pellet(i, j) / denominator;
end
end

d_ratios = ratios(~isnan(ratios));
isempty(valid_ratios)

mean_ratios = mean(valid_ratios);
std_ratios = std(valid_ratios);
RSD = std_ratios / mean_ratios;

RSD = Nal;

% For Horizontal or Cubic, output RSD
fprintf (fid, '%-20s\t%-*.*f\n', [repFolder, ' (RSD)'], width, precision, RSD);
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206 close all;

207| end

208

209 fclose (fid);
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Run | Cpp Hr—pp Hs—pp Chg Hs—pg

1 0.2608693 0.260798 0.260798 0.260869 0.260798
2 0.2608693 0.260798 0.260798 0.260869 0.639202
3 0.2608693 0.260798 0.260798 0.639231 0.260798
4 0.2608693 0.260798 0.260798 0.639231 0.639202
5 0.2608693 0.260798 0.639202 0.260869 0.260798
6 0.2608693 0.260798 0.639202 0.260869 0.639202
7 0.2608693 0.260798 0.639202 0.639231 0.260798
8 0.2608693 0.260798 0.639202 0.639231 0.639202
9 0.2608693 0.639202 0.260798 0.260869 0.260798
10 0.2608693 0.639202 0.260798 0.260869 0.639202
1" 0.2608693 0.639202 0.260798 0.639231 0.260798
12 0.2608693 0.639202 0.260798 0.639231 0.639202
13 0.2608693 0.639202 0.639202 0.260869 0.260798
14 0.2608693 0.639202 0.639202 0.260869 0.639202
15 0.2608693 0.639202 0.639202 0.639231 0.260798
16 0.2608693 0.639202 0.639202 0.639231 0.639202
17 0.6392307 0.260798 0.260798 0.260869 0.260798
18 0.6392307 0.260798 0.260798 0.260869 0.639202
19 0.6392307 0.260798 0.260798 0.639231 0.260798
20 0.6392307 0.260798 0.260798 0.639231 0.639202
21 0.6392307 0.260798 0.639202 0.260869 0.260798
22 0.6392307 0.260798 0.639202 0.260869 0.639202
23 0.6392307 0.260798 0.639202 0.639231 0.260798
24 0.6392307 0.260798 0.639202 0.639231 0.639202
25 0.6392307 0.639202 0.260798 0.260869 0.260798
26 0.6392307 0.639202 0.260798 0.260869 0.639202
27 0.6392307 0.639202 0.260798 0.639231 0.260798
28 0.6392307 0.639202 0.260798 0.639231 0.639202
29 0.6392307 0.639202 0.639202 0.260869 0.260798
30 0.6392307 0.639202 0.639202 0.260869 0.639202
31 0.6392307 0.639202 0.639202 0.639231 0.260798
32 0.6392307 0.639202 0.639202 0.639231 0.639202
33 0.0001 0.45 0.45 0.45005 0.45

34 0.9 0.45 0.45 0.45005 0.45

35 0.45005 0 0.45 0.45005 0.45

36 0.45005 0.9 0.45 0.45005 0.45

37 0.45005 0.45 0 0.45005 0.45

38 0.45005 0.45 0.9 0.45005 0.45

39 0.45005 0.45 0.45 0.0001 0.45

40 0.45005 0.45 0.45 0.9 0.45

41 0.45005 0.45 0.45 0.45005 0

42 0.45005 0.45 0.45 0.45005 0.9

43 0.45005 0.45 0.45 0.45005 0.45

44 0.45005 0.45 0.45 0.45005 0.45

45 0.45005 0.45 0.45 0.45005 0.45

46 0.45005 0.45 0.45 0.45005 0.45

47 0.45005 0.45 0.45 0.45005 0.45

Table E.1: Input parameter values for CCD
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Run | Time +3 M_h M_I M_r HighX HighY 0.25Y 0.5Y 0.75Y
1 6.45 36.68015 94.01253 45.6913 626 321 399.25 371 335.75
2 7.58 40.56808 86.43811 49.35311 587.5 300.5 359 327.25 3175
3 6.45 37.13583 93.38976 45.66619 614.5 320.5 398.75 363 334.75
4 7.58 40.69089 85.30302 49.24754 608.5 305.75 357.25 321.75 327.25
5 6.89 40.92542 88.58243 46.87409 546.5 286.25 358 308 313
6 8.09 4466442 81.70815 49.98505 482.75 2535 324.25 266 305.25
7 6.90 41.01399 89.05329 46.1574 576.25 286.25 363 309 316.75
8 8.07 4478455 82.06709 48.56278 476.5 257.75 333 262.75 302.25
9 6.59 40.80903 93.2345 42.34343 632.75 290.5 368.5 327 314.25
10 7.68 44 45355 87.04547 44.86426 5225 27125 3345 288.75 304
1" 6.62 40.96381 94.32931 40.87765 594.75 296.5 376.25 336.5 311
12 7.70 44 49632 85.77401 45.15074 524.75 277 328 289.25 298.5
13 7.43 49.84414 83.3522 43.18652 501.5 201.25 296.75 210.75 247.75
14 8.55 53.27353 75.72827 47.37756 476.75 164.25 246.5 173.25 244
15 7.47 50.24528 83.7251 42.24707 489.5 200.5 292.75 211.5 255.75
16 8.55 53.16328 75.07804 47.2197 472.25 169.5 263.75 177.75 241.25
17 6.43 35.76399 90.31018 50.28574 633 327 402.75 377.5 337.75
18 7.58 39.11967 82.33834 54.8536 525.25 316.75 370.5 341.75 343
19 6.45 35.71481 88.65436 51.58316 645.5 339.25 404.75 380.25 346.25
20 7.57 39.18475 80.61357 54.60616 529.25 322.75 365 336.75 347.75
21 6.86 40.56241 85.74752 50.05134 568.25 288.5 359.5 319.5 314.25
22 7.99 43.98508 78.96905 53.3807 4435 264.25 328.5 276.5 314.75
23 6.85 40.68909 85.00901 50.3328 510.25 300.5 361.5 317.25 325.25
24 7.94 445189 77.34351 53.05047 5325 272.75 323.75 280.25 308
25 6.59 39.10674 89.21604 48.04464 596.25 3125 379.25 3445 327.75
26 7.70 42.00348 80.62535 53.70718 509.25 299.75 344 305.75 325.75
27 6.59 39.10798 89.23658 47.59931 596 316.5 385.25 347.25 329.5
28 7.66 42.07947 80.14214 52.49904 529.5 299.25 351.25 313.75 3245
29 7.28 48.894 78.50738 48.96004 464 214.75 300.5 223 269.25
30 8.43 51.9976 72.8187 51.50185 501.25 186.5 277.75 199.5 254
31 7.27 49.01394 78.52692 48.40921 500.75 227.75 304.5 2355 276.75
32 8.29 51.59355 72.57155 50.73755 482 191.25 277.75 203.75 269
33 7.50 47.5254  86.87821 41.97218 523 237.5 309 249.75 274.75
34 7.28 37.57443 77.09311 61.19166 500.25 333.75 385.25 351.25 358.25
35 6.84 32.85769 85.74917 57.7025 635 370.5 408.25 409 379.25
36 7.76 53.17426 77.81742 45.33966 497 189.25 270 200 246
37 6.28 23.70403 80.31799  71.4959 703.25 460.5 493 500.25 469.5
38 7.82 48.0105 81.19631 47.13049 490 220.75 310 231.5 269
39 7.45 46.3087 83.61504 46.45573 502 238.5 310.25 259 291.75
40 7.47 46.56074 84.04358 44.35102 553 251.5 3245 257.75 289
41 5.60 41.21905 75.669 59.13641 502 298.25 358.25 308.75 331.25
42 8.99 49.68634 71.34851 55.07318 466.5 218.5 285.5 225.5 282
43 7.46 46.1905 86.18969 43.95401 534.25 250.75 3225 262 282
44 7.48 46.30918 85.85627 44,1812 508 249.25 324 264.25 285.75
45 7.49 46.63257 83.9534 45.7633 521.5 244.75 327 254 280.75
46 7.49 46.68384 84.06608 45.59198 537.75 246.25 323.75 253.75 281
47 7.46 46.53896 84.61121 45.20596 525.5 241 326 261.75 285

Table E.2: Results CCD of pellet. The input parameters are displayed in the previous table.
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Run | Time +3 PeakX PeakY M-heap M-left M-right 0.25Y 0.5Y 0.75Y
1 5.723333 610.5 325 37.86236 75.60987 36.52563 395.75 387.25 334
2 6.315 579.75 297.75  40.84144 82.04778 27.10528 387 343.5 318.5
3 5.715 593.75 318.5 38.42059 77.96515 33.58133 410 369.25 328
4 6.32 575.25 299.75  41.09753 81.43499 27.18243 383.75 337.25 318
5 6.175 568 279.25  41.84885 75.33801 32.81353 355.25 307.25 304.25
6 6.98 510.75 25275  45.18698 74.58308 30.22053 338.75 261.25 297.25
7 6.19 550.5 289 41.37694  73.8439  34.72725 357.25 310.75 313.25
8 6.995 522.25 25525 4517105 73.51231 31.00657 335.25 271.25 297.5
9 5.845 619.5 306.25  39.68603 78.05972 32.25304 387.5 354.75 313.25
10 6.48 567.25 276.75  42.73814 83.09411 24.15421 373.5 308.5 304.5
11 5.83 635.75 307.5 39.41071  78.6637 31.8902 383.75 358 318.25
12 6.485 580.5 281.75  42.65491 81.34524 25.73893 365.75 313.25 302
13 | 6.383333 515 228 46.50189 73.79153 29.70144 318.6667 253 265.6667
14 | 7.206667 507.3333 206.3333 48.96552 71.14055 29.87743 301.3333 217 265
15 6.3775 477 229.25  46.50213 72.80169 30.65563 311.6667 238.5 277
16 7.23 478 204.25  49.37879 71.76559  28.5404 305 216.5 265.5
17 5.72 637.75 319.25 38.07514 77.46079 34.43902  409.25 376.75 328.5
18 6.385 581.75 308.5 40.89826 80.98641 28.082 381 339.5 319
19 5.72 644.5 322 37.88226 78.65275 33.40428  402.75 390.5 328.75
20 6.34 587 306 41.03083 79.07933 29.52863 382.25 341.5 329.25
21 | 6.186667 530.25 286.25  42.24012 71.49637 36.22754 357.75 313.75 312.5
22 6.98 477 249.75  45.80338 74.60394 29.52386 339.75 264 303.25
23 6.16 558 283 42.43465 749372  32.55311 344.75 312.75 307.75
24 6.9725 517.25 257.5 45.49859 72.83626 31.32476 330.25 268.75 300.5
25 5.84 602 308.75  39.01468 79.15118 31.81379 386.25 362.5 317
26 | 6.466667 568.75 287 42.12993 80.98399 26.85712 377 316.25 307.25
27 5.8625 623 308.75  39.60846 79.41717 30.89963 388.25 351.25 319.5
28 | 9.303333 564.5 287 42.19508 80.11359 27.36886 372.25 320.25 309.5
29 6.3275 500 232 46.8388 70.91749  32.2088 335.75 239 284.5
30 7.19 483.75 215.5 49.4481 68.83597 31.65264 304.25 221.25 265.75
31 6.3375 510.5 233 46.24977 70.74005 32.92569 337 254.25 279.75
32 7.175 491.25 208.75  49.67364 71.56681 28.37448 308.5 224.25 263.75
33 6.45 540.6667 243.6667 46.20383 73.09346 30.68875 342.6667 266 277
34 6.425 530 268.5 45.03356 71.66356 32.95549 342.25 289.75 293.5
35 6.19 565 311.75 39.98262 80.19888 29.80303 396.5 350 328.75
36 6.63 514.5 217 48.90558 72.07197 29.01189 312.75 239.75 259
37 | 5.566667 641.25 42475  28.45555 72.52367 48.90715 472 480.5 426.75
38 | 6.846667 507.6667 245.6667 44.98039 72.00209 32.95565 332 266.3333 288.3333
39 6.43 540 259.5 45.50506 74.64499 29.84353 328.5 290 290.5
40 6.4475 562 252 45.77776 75.13847 28.57529 340.5 275 285.25
41 5.1525 507 306 41.32419 56.55238 52.09474 359 319.25 332.5
42 7.255 506.5 236.5 47.93706 64.93363 36.97124 316.75 248 282.5
43 6.42 542.5 255.75  45.68792 75.03282 29.26132 349.25 285.25 288
44 | 6.466667 568.5 264.25 4537045 76.33119  28.2719 348.25 280 283
45 6.455 557.5 259.25 4539721 77.58587 27.00266 347.75 281.25 283.25
46 6.455 512.25 25225  46.07919 75.34051 28.56153 343.25 272.25 282.25
47 6.449 545.2 257.88 45.63 76.08 28.24 347.13 279.69 283.2

Table E.3: Results CCD of sinter. The input parameters are the same as pellet.
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E.2. Polynomials
Pellet Time M heap M left Mright Xpeak Y peak 0.25Y 0.5Y 0.75Y
Constant | 43.118 14.373 87.827 71.835 93.68 47.743 54.577 63.233 48.576
P1 7.5632 12.663 -5.8712  -4.3645 -11.116 -14.337 -5.1764 -17.213 -10.073
P2 8.1241 21.6 15.838 -37.22 -36.188 -12.093 -12.053 -26.655 -13.936
P3 27.416 49.403 7.462 -55.09 -73.115 -37.819  -39.55 -56.634 -34.748
P4 2.4892 0.9383 -3.4368  7.664 -6.8941 2.7301 3.4109 -2.2578 0.26415
P5 41.381 16.175 25.734 -38.181 -17.755 -5.8483  -12.052 -17.001 -10.488
P142 -2.4413 -18.676 -5.5434  22.829  -5.539 17.513 9.9502 19.689 13.712
P2/2 -7.0086  -16.37 -6.5415  22.523 21.314 14.669 8.5899 21.66 11.302
P342 -19.169  -51.722 -11.609 61.003 36.438 44.669 38.899 51.969 39.45
P4r2 0.89253 0.5125 3.5631 -7.6893 23023 -2.5536  -3.0157 -1.1176  -1.044
P5/2 -7.3171 -4.3371 -47.403 50.097 -19.056 4.0519 -0.54587 3.2036 7.413
P1P2 -4.0597  -5.699 -4.412 10.115 9.3855 6.8172 8.2214 5.0347 7.0646
P1P3 -8.25 6.161 7.499 -13.245 12223  -2.0008 -4.2635 1.1932  -5.2457
P1P4 -2.6195 -0.70387 -4.412 2.2518 10.172  3.107 -3.9147 2.4158 2.001
P1P5 -1.3532  -2.486 0.65584 0.30838 -1.6588 2.6701 0.058205 3.8124 3.6596
P2P3 22.915 33.801 -40.781 6.4996 0.26189 -40.557 -28.866 -38.251 -23.825
P2P4 -0.61121 -1.032 4.8267 -3.472 -0.3855 -0.96765 0.81486 5.1366 0.44381
P2P5 -3.623 -3.4524 -0.31973 4.3584 14404  -2.3643 1.4695 41757 -0.16732
P3P4 -1.746 0.005922 3.264 -2.3457 2.8811 0.69118  1.3387 1.3824  -0.9531
P3P5 0.56754 -0.45501 6.8823 -5.7555 26.233  -10.134  4.5249 2.3425 -3.5719
P4P5 -2.7065 -0.74434 -5.0115 -1.2092 11.786 -0.66208 1.4697 -1.0622 1.055
Table E.4: Polynomial model for the pellet KPIs. P1, P2, P3, P4, and P5 stand for Cyp, ftr—pp, tis—pps Cpg, @nd prs—pg
respectively.
Sinter Time M heap M left M right X peak Y peak  0.25Y 0.5Y 0.75Y
Constant | 53.685 22.429 56.776  70.268 69.545 44483  49.957 59.779 44.935
P1 -19.495 0.7622 8.9546 -9.0925  3.3208 0.9244  -0.33815 -1.4313 0.10166
P2 -18.168 7.9645 0.4826 -8.4843  2.8821 -2.5462 -10.474  -12.254  -4.9901
P3 56.422 46.138 16.714 -62.482 -28.706 -39.11 -35.892  -59.212  -36.346
P4 -21.592 2.0898 -4.7871  4.0941 -9.8772  1.7051 5.729 -6.7667  -0.66885
P5 1.9683 13.891 82989 -96.025 -0.77411 -12.7563 -0.16959 -18.368 -12.713
P142 2.9608 -1.931 -5.8737 7.0625 -1.029 -0.9699 5.1071 0.44799 0.43916
P2/2 1.6021  -7.731 12.68 -4.8633 1.1523 3.125 28.502 8.843 4.6983
P3/2 -8.4391 -45.885 -6.4434 52.045 18.292 38.104  -4.8322  47.629 36.139
P4r2 3.0225 -1.8188 6.54 -5.8426  6.7093 -1.1345 -3.1645  2.7325 1.7357
P512 -8.6831 -6.8099 -63.332 69.831 -15.144  6.52 6.7517 3.2874 11.427
P1P2 22.823 -2.3898 -4.0631 6.4337 -5.1802 2.2409 6.7517 0.85124 1.4915
P1P3 -27.349 4.4806 -7.3924 2.8688 -9.4146  -1.0768 1.9935 -0.37105 0.88034
P1P4 23.932 -0.22404 45746 -4.4505 15.702 -1.237 -1.7172  4.213 -1.4043
P1P5 25195 -0.07937 -5.7769 5.7297 -7.4938 3.0703  -3.2304 0.45836 0.47291
P2P3 -19.955 19.789 -23.73  3.8517 -19.395  -22.93 -10.417  -21.41 -13.669
P2P4 25443 0.1698 0.2651 -0.43269 -4.8746 -1.1204 0.53839 -0.41471 0.57477
P2P5 26.502 -1.7595 -74 9.178 8.8025 0.77112 1.1785 5.8707 -1.5641
P3P4 -24.38  -1.3991 1.7625 -0.42089 -2.1245 0.71301 -1.1641 2.4664 -0.38561
P3P5 -10.89 1.3156 -25.427 24.004 12.251 -3.3318 -1.2222  3.9502 -0.60381
P4P5 24671 0.76048 -8.5721 6.057 2.5901 -0.0291 -0.77121 2.6847 -0.61842

Table E.5: Polynomial model for the sinter KPIs. P1,

P2, P3, P4, and P5 stand for Cpp, ptr—pp, ths—pp, Cpg, and fis_pg

respectively.
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Sim | run1  run2 run3 run4 | Average | Stdev

1 NaN 572 572 5.73 | 5.723333 | 0.005774
2 6.33 6.31 6.3 6.32 | 6.315 0.01291
3 569 575 571 571 |5715 0.025166
4 6.33 NaN 6.31 NaN | 6.32 0.014142
5 6.15 6.18 6.18 6.19 | 6.175 0.017321
6 6.98 NaN 6.96 7 6.98 0.02

7 6.18 6.17 6.21 6.2 | 6.19 0.018257
8 7 7 6.95 7.03 | 6.995 0.033166
9 583 585 588 582 | 5845 0.026458
10 | 6.48 NaN 6.47 6.48 | 6.476667 | 0.005774
1 584 NaN 582 583 | 5.83 0.01

12 | 648 NaN 6.49 NaN | 6.485 0.007071
13 | 6.36 6.37 NaN 6.42 | 6.383333 | 0.032146
14 | 722 718 NaN 7.22 | 7.206667 | 0.023094
15 | 6.35 6.36 6.41 6.39 | 6.3775 0.027538
16 | 718 7.25 7.24 725|723 0.033665
17 | 572 NaN NaN 5.72 | 572 0

18 | NaN 6.4 NaN 6.37 | 6.385 0.021213
19 | 571 574 572 571|572 0.014142
20 | 632 NaN 6.35 6.35 | 6.34 0.017321
21 6.18 6.16 NaN 6.22 | 6.186667 | 0.030551
22 | NaN 6.99 6.99 6.96 | 6.98 0.017321
23 | 6.15 NaN 6.18 6.15 | 6.16 0.017321
24 | 699 698 6.96 6.96 | 6.9725 0.015

25 | 584 584 584 NaN | 584 0

26 | 645 6.47 NaN 6.48 | 6.466667 | 0.015275
27 | 587 584 589 585 | 58625 0.022174
28 | NaN 645 6.46 15 9.303333 | 4.933461
29 |6.32 631 635 6.33 | 6.3275 0.017078
30 | NaN NaN 7.19 7.19 | 7.19 0

31 6.35 6.3 6.38 6.32 | 6.3375 0.035

32 | 716 714 722 718 | 7175 0.034157
33 | 6.46 NaN 6.44 6.45 | 6.45 0.01

34 | 642 644 6.39 645 | 6425 0.026458
35 | 6.19 6.19 6.19 NaN | 6.19 0

36 | 663 664 665 6.6 | 6.63 0.021602
37 | 556 557 NaN 5.57 | 5566667 | 0.005774
38 | 6.83 6.89 NaN 6.82 | 6.846667 | 0.037859
39 |64 644 645 NaN | 6.43 0.026458
40 | 642 6.46 6.46 6.45 | 6.4475 0.01893
41 515 516 5.15 5.15 | 5.1525 0.005

42 | 726 726 7.23 7.27 |7.255 0.017321
43 | 645 NaN 6.39 NaN | 6.42 0.042426
44 | 643 NaN 6.52 6.45 | 6.466667 | 0.047258
45 | 6.44 6.43 6.47 6.48 | 6.455 0.023805
46 | 6.46 6.45 NaN NaN | 6.455 0.007071
47 | 6.45 6.43 6.47 NaN | 6.449 0.0185

Table F.1: Discharge time of sinter for the CCD. As can be seen in the last column the standard deviation is always very small,
even though some simulations have one or two runs excluded.



Optimization results

G.1. Sensitivity of the Local Optimization
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Figure G.1: Pellet parameter value, local optimization sensitivity to initial guess
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Figure G.2: Objective function value of pellet compared to initial guess
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G.1. Sensitivity of the Local Optimization
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G.2. Results of PSO and GA: 5 smallest errors

G.2. Results of PSO and GA: 5 smallest errors

Pellet | Error PSO (), Hor—pp Ps—pp Chg Hs—pg

0.0024213 0.070531 0.044578 0.46515 0.32915 0.83015
0.0024213 0.068667 0.045248 0.46405 0.32898 0.83046
0.0024214 0.067873 0.045663 0.46370 0.32911 0.83060
0.0024214 0.073298 0.043637 0.46668 0.32911 0.83007
0.0024215 0.072926 0.043858 0.46619 0.33083 0.83005

Pellet | Error GA  C,, tr—pp s —pp Chyg s —pg

0.0024215 0.075956 0.043131 0.46557 0.32932 0.83027
0.0024213 0.071766 0.044308 0.46486 0.32899 0.83035
0.0024225 0.066011 0.047165 0.45853 0.32860 0.83075
0.0024237 0.052827 0.051262 0.45778 0.32878 0.83120
0.0024286 0.104550 0.033843 0.48023 0.33575 0.82926

Sinter | Error PSO  C, Hr—pp s —pp Chy Hs—pg

pp
0.07769 0.24333 0.9 0.35487 0.9 0.51373
0.07769 0.24326 0.9 0.35486 0.9 0.51374
0.07769 0.24327 0.9 0.35486 0.9 0.51376
0.07769 0.24337 0.9 0.35488 0.9 0.51375
0.07769 0.24333 0.9 0.35487 0.9 0.51374
Sinter | Error GA Cpp tr—pp ths—pp Chg Hs—pg
0.07769 0.24346 0.9 0.35488 0.9 0.51367
0.077691  0.24413 0.9 0.35515 0.9 0.51319
0.077691  0.24314 0.9 0.35501 0.9 0.51414
0.077691  0.24451 0.9 0.35529 0.9 0.51354
0.077691  0.24277 0.9 0.35461 0.9 0.51409

Table G.1: Five best results per optimizer per material and their corresponding input parameter values.



Results of optimal parameter inputs

H.1. At4.665m
Exp Pellet Sim Pellet Dev (%) | Exp Sinter Sim Sinter Dev (%)
Time [s] 5244+0.34 521+0.04 0.48 46191 +0.72 361+0 21.85
M-heap [kg] | 40.63 + 0.52 38.52 + 0.28 5.20 42.58 + 0.78 47.01 +0.41 10.40
M-left [kg] 77.53 £8.08 77.23 +1.00 0.38 86.74 + 3.55 76.3 +£2.07 12.04
M-right [kg] | 58.23 +8.2 60.59 + 1.16 4.06 20.68 + 3.82 26.2 +2.46 26.7
PeakX [px] | 503 +46.76 486.25 + 122.19 3.33 486.6 + 107.72 538 + 28.48 10.46
PeakY [px] | 319 + 8.96 328.00 + 11.40 2.82 251.2 £139.27 240 + 13.78 4.65
0.25Y [px] 354 +16.91 362.50 + 8.37 2.40 345.2 +150.32 333 + 13.78 3.67
0.5Y [px] 336 +£21.7 340.25 £ 6.15 1.26 266.2 +72.16 269 + 10.11 0.86
0.75Y [px] 360 +£24.47 355.00 + 4.31 1.39 294.4 + 12519 265+ 11.02 9.99

Table H.1: Comparison of experimental and simulation KPls. Mean values are presented with 95% confidence intervals, and

deviations between experimental and simulation means are indicated.

H.2. Validation

Pellet 3m Exp 3m Sim Dev (%) | 1m Exp 1m Sim Dev (%)
Time [s] 5.24 £ 0.34 5.21 £ 0.01 0.67 5.24 + 0.34 5.23 + 0.00 0.19
M-heap [kg] | 42.33 + 1.37 39.34 + 0.47 7.07 4553 +1.12 42.03 + 0.14 7.69
M-left [kg] 76.95 + 1.43 77.59 £+ 2.02 0.83 69.35 + 2.94 70.37 £ 0.30 1.48
M-right [kg] | 57.12 + 1.43 59.46 + 2.00 4.10 61.52 + 3.23 64.00 + 0.44 4.03
PeakX [px] | 416 + 85.94 481.25 4+ 101.78 | 15.69 | 447 + 49.51 459.50 + 50.53 2.80
PeakY [px] | 301.33 £ 109 314.50 + 5.44 4.37 253 + 11.55 278.00 £ 3.67 9.88
0.25Y [px] 352 £6.75 357.50 £ 4.77 1.56 330.67 £ 23.25 343.00 + 18.37 3.73
0.5Y [px] 308.33 + 14.31 326.25 + 3.01 5.81 263.67 £ 9.4 288.00 + 12.86 9.23
0.75Y [px] 346 + 6.75 349.75 £ 11.79 1.08 338 +£7.23 344.50 + 13.78 1.92

Table H.2: Validation of the optimal parameter set with different heights of the hopper; experimental and simulation data of

pellet
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H.3. Mixture 96
Sinter 3m Exp 3m Sim Dev (%) | 1m Exp 1m Sim Dev (%)
Time [s] 462 +£0.72 3.59 £0.07 2229 | 462+0.72 3.62+0.04 27.62
M-heap [kg] | 43.6 £ 0.32  47.46 + 0.56 8.86 4584 £ 056 51.44 +£099 | 10.89
M-left [kg] 76.97 £ 4.48 72.04 + 3.02 6.4 5905+ 7.15 5595+ 296 6.35
M-right [kg] | 29.43 +4.56 30.34 + 3.12 3.1 4466 + 719 42.61 £3.85 4.81
PeakX [px] | 477 £ 47.89 507 + 157.51 6.4 452 +12.4 417 + 37.51 7.9
PeakY [px] | 243 +£9.82 228 +£ 517 6.3 191 £ 33.54 185+ 7.58 12.24
0.25Y [px] 338 +£13.82 327 £ 10.04 3.04 301 £ 1411 286 + 25.13 5.35
0.5Y [px] 254 +12.65 242 +15.18 4.74 190 £ 9.17 166 + 12.91 12.63
0.75Y [px] 309 +15.69 273 +7.59 11.6 310 £ 14.46 266 + 22.08 14.25

Table H.3: Validation of the optimal parameter set with different heights of the hopper; experimental and simulation data of

sinter

H.3. Mixture

KPI Exp Mixture Sim Mixture Dev (%)
Time [s] 44 +0.39 422 +0.08 417
M-heap [kg] | 41.96 & 0.52  44.92 + 0.50 7.06
M-left [kg] 82.71 +4.86 74.81+ 148 9.55
M-right [kg] | 35.35 +5.09 40.12 + 1.12 13.49
PeakX [px] | 514.4 +29.23 492.00 +40.82 | 4.35
PeakY [px] | 284.2 +3.09 262.00 + 8.91 7.81
0.25Y [px] 361.6 +14.09 339.25+ 12.07 | 6.18
0.5Y [px] 305.8 +10.87 282.00+6.62 | 7.78
0.75Y [px] 330 + 11.45 301.50 £9.94 | 8.64

Table H.4: Mean values with a 95% CI of the resulting KPIs of the simulations with the chosen DEM parameters for the mixture
of sinter and pellet.



Results of Processed Heaps of the
Mixture

I.1. Experimental runs

Figure 1.3: Run 3, a) pellet, b) sinter.
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1.2. Simulation runs 98

Figure 1.4: Run 4, a) pellet, b) sinter.

Figure 1.5: Run 5, a) pellet, b) sinter.

[.2. Simulation runs

Figure 1.6: Run 1, a) pellet, b) sinter.

Figure I.7: Run 2, a) pellet, b) sinter.



1.2. Simulation runs 99

Figure 1.8: Run 3, a) pellet, b) sinter.

Figure 1.9: Run 4, a) pellet, b) sinter.
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