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Bayesian posterior density 
estimation reveals degeneracy 
in three‑dimensional multiple 
emitter localization
Raymond van Dijk 1,3, Dylan Kalisvaart 1,3, Jelmer Cnossen 1 & Carlas S. Smith 1,2*

Single‑molecule localization microscopy requires sparse activation of emitters to circumvent the 
diffraction limit. In densely labeled or thick samples, overlap of emitter images is inevitable. Single‑
molecule localization of these samples results in a biased parameter estimate with a wrong model of 
the number of emitters. On the other hand, multiple emitter fitting suffers from point spread function 
degeneracy, which increases model and parameter uncertainty. To better estimate the model, 
parameters and uncertainties, a three‑dimensional Bayesian multiple emitter fitting algorithm was 
constructed using Reversible Jump Markov Chain Monte Carlo. It reconstructs the posterior density 
of both the model and the parameters, namely the three‑dimensional position and photon intensity, 
of overlapping emitters. The ability of the algorithm to separate two emitters at varying distance 
was evaluated using an astigmatic point spread function. We found that for astigmatic imaging, the 
posterior distribution of the emitter positions is multimodal when emitters are within two times the 
in‑focus standard deviation of the point spread function. This multimodality describes the ambiguity 
in position that astigmatism introduces in localization microscopy. Biplane imaging was also tested, 
proving capable of separating emitters up to 0.75 times the in‑focus standard deviation of the point 
spread function while staying free of multimodality. The posteriors seen in astigmatic and biplane 
imaging demonstrate how the algorithm can identify point spread function degeneracy and evaluate 
imaging techniques for three‑dimensional multiple‑emitter fitting performance.

Single-molecule localization microscopy (SMLM)1,2 circumvents the diffraction limit through localization of 
sparsely activated emitters and reaches theoretical minimum  uncertainty3. For localization, SMLM assumes 
a single molecule is contained in a region of interest (ROI). Overlap of emitter signal is inevitable in densely 
labeled samples and thick samples for 3D imaging. In SMLM, denser ROIs result in inaccurate estimates that 
have to be discarded.

Multiple emitter  fitting4–8 mitigates this problem by extending the model to account for more than one emit-
ter in the ROI. For two-dimensional localization, various high density localization methods exists, including 
temporal  correlation4, compressed  sensing5,6, deep  learning7, and posterior density  reconstruction8. These meth-
ods work by simultaneously estimating the model and parameters, or by making a model-free reconstruction. 
Fazel et al.8 used reversible jump Markov chain Monte Carlo (RJMCMC), a Bayesian method to sample directly 
from the posterior distribution, reconstructing the posterior by making a histogram of the samples. Bayesian 
approaches have the added advantages of including prior information and more accurately representing the 
uncertainty of model and parameter estimates. The RJMCMC sampler also makes model space jumps, changing 
the number of parameters while estimating the model.

However, PSF  degeneracy9 complicates multiple emitter fitting in three-dimensional localization. Figure 1b–d 
illustrates these problems with high density imaging and PSF degeneracy. As the PSF changes over depth, the 
image of an emitter at a given depth may match that of a sum of emitters at different depths. Figure 1e shows how 
an astigmatic and tetrapod PSF change over depth. This ambiguity increases model and parameter uncertainty, 
where a k-emitter model can be represented by a different number of emitters at different positions. It thus 
complicates the use of most 2D multiple emitter fitting methods for 3D, as they misrepresent these uncertainties.
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In this article, we use Bayesian posterior density estimation to identify the PSF degeneracy in 3D multiple 
emitter fitting. To do so, we construct a 3D Bayesian localization algorithm using  RJMCMC10. The algorithm 
is described in detail in the Supplementary Note and extends the approach from Fazel et al.8 to 3D. It provides 
an accurate reconstruction of the estimation uncertainty through posterior density sampling, constructing 

Figure 1.  Schematic of the algorithm and problem description. (a) 3D RJMCMC localization flowchart. 
Frames are gathered and converted to photon counts. Then, priors and hyperparameters are set. An initial run 
of RJMCMC samples from the joint posterior of the parameters and model, from which the MAP number 
of emitters is determined. Using this MAP model, another MCMC run is used to condition the parameter 
distribution on the estimated model. Finally, the image is reconstructed by plotting histograms of the MCMC 
chains. The dashed rectangle demonstrates the (RJ)MCMC algorithm. Each loop, a move is randomly selected 
(RJMCMC moves that act on model space are highlighted in red) and used to propose a new set of parameters. 
This jump in parameters is accepted or rejected based on the ratio of posteriors. The algorithm repeats this loop, 
storing the parameters at each iteration to finally output the chain of iterations. (b) Diagram of two overlapping 
emitters separated by distance d and under angle β . (c) Ideal image of two nearby emitters. (d) Simulated 
data and reconstruction using astigmatic and tetrapod PSFs. Frames are shown in rows 1 and 3, while the 
reconstructed posterior distribution is shown in rows 2 and 4. (e) Z-scan of the PSFs used in d) to generate and 
reconstruct the data.
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probability distributions for the number of emitters and their parameters. The reconstructed posteriors are used 
to quantify the circumstances in which 3D PSF degeneracy occurs in multiple emitter imaging.

Using this method, we show that multiple emitter fitting on two emitters with an astigmatic PSF results in 
degeneracy when the separation between the emitters is smaller than 2 standard deviations of the in-focus PSF 
( σPSF ). Between 2σPSF and 1σPSF , the multiple emitter fitting problem has two statistically equivalent solutions. 
Below 1σPSF , the emitters are no longer individually identifiable. Additionally, we show that degeneracy in three-
dimensional multiple emitter fitting can be avoided using biplane imaging.

Figure 1a shows a schematic of the algorithm. After gathering the frames and correcting for the camera gain, 
the user sets priors and hyperparameters that are appropriate for the imaging conditions. Then, an RJMCMC 
localization algorithm is ran on each of the frames, finding the posterior of the parameters and number of emit-
ters given the data. Using the posterior, the maximum a posteriori (MAP) number of emitters is selected, and 
the estimates within this model are used to start a Markov chain Monte Carlo (MCMC) localization run. The 
MCMC output is used to form the histogram that reconstructs the object.

Results
Two emitter separability for astigmatic imaging
We first evaluate the posterior distribution of multiple emitter fitting using an astigmatic PSF, as it is the most 
commonly used PSF for 3D localization. Two emitters were simulated at varying distance to one another, from 
3 σPSF to 0.75σPSF , to analyze the ability to separate emitters. This is shown in Fig. 2. As MCMC generates sam-
ples from the posterior distribution, the reconstructions are made by plotting histograms of the MCMC chains 
for all of the 100 simulated frames. From Fig. 2, we see that the algorithm can separate the two emitters up to a 
distance of 2.5σPSF , as the histogram of the reconstructed posterior distribution shows two isolated peaks. For 
separations between 2 σPSF and 1 σPSF , four peaks can be distinguished in the reconstructed posterior distribu-
tion, despite the MAP model finding two emitters. At a distance less than 1 σPSF , the four individual peaks col-
lapse into one cluster. Running a k-means clustering algorithm on the chain outputs for two clusters finds both 
clusters at the same position, in the middle of the frame. This shows the emitters can no longer be separated at 
distances lower than 1 σPSF.

We further investigate the multimodal posterior distribution between 2 σPSF and 1 σPSF . To investigate the 
multimodality, a single frame with four peaks in the reconstruction was analyzed as shown in Supplementary 
Fig. S12. The four peaks formed two pairs of possible modes, one at the true positions and one perpendicular 
to those. A chi-squared test was done to determine if either mode was representative of the frame. Interestingly, 

Figure 2.  Two emitter separability using an astigmatic PSF, collecting 100 simulated frames into one 
reconstruction while varying emitter distance. (Columns 1 and 4) Example frames. (Columns 2 and 5) Zoomed 
in XY plane reconstruction. (Columns 3 and 6) Zoomed in XZ plane reconstruction. Emitters were placed in 
focal plane, with an intensity of 2000 photons each and a background of 20 photons. The ROI is 20 by 20 pixels, 
scalebars assume an effective pixel size of 100 nm. The reconstructed image consists of histograms from MCMC 
chains which used the MAP number of emitters as model.
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the chi-square values of 408 and 407 showed that both modes are representative for the frame, as the chi-square 
value at the 95% confidence interval is 456. We tested the probability of selecting the correct mode under both 
of these hypotheses. The probability of error was found to be 49.8%, making the modes indistinguishable in 
terms of likelihood. This confirms that the posterior distribution of the emitter position is indeed multimodal.

While the true mode localizations find the ground truth, the alternate mode localizations (at least for this 
particular astigmatic PSF model) are placed not just perpendicular to the ground truth, but also at a greater 
depth. At a separation of 0.75σPSF , the alternate mode is found at a depth of − 600 nm. This can be explained 
by the astigmatic PSF characteristics. When moving below the focal plane, the astigmatic PSF stretches along 
the same axis that separates the emitters. Thus, two emitters in the focal plane separated along the x axis can be 
represented by a pair on the y axis far below focal plane. This same problem occurs when emitters are separated 
along the y axis, resulting in an alternative pair along the x axis above the focal plane. These results show that 
posterior density reconstruction can be used to analyse 3D PSF suitability for high density localization micros-
copy. Specifically, these two special cases in which degeneracy occurs increase the maximum error that can be 
expected from 3D localization. This allows us to bound the worst-case localization error. Note that with randomly 
oriented emitters, only a subset of emitter pairs will be separated along a vector close to the x or y axis, so the 
impact on the mean squared error over all localizations will be limited.

From the XZ plots in Fig. 2, it can be seen that as the separation increases, the alternative mode starts to fall 
outside the provided PSF range of [− 1.3, 1.3] µ m, disappearing at large emitter separation. As the PSF range gets 
constrained further, this alternative mode disappears faster. This is consistent with the multimodality we found 
as a result of the PSF degeneracy, as constraining the PSF range decreases the solution space, thereby excluding 
ambiguous solutions.

Influence of priors on multimodality
Fazel et al.8 identified that the intensity prior plays a critical role in multiple emitter fitting using RJMCMC. We 
therefore study the dependency of the multimodality on the intensity prior, as shown in Fig. 3. The image data 
from Fig. 2 was used for localization with four different intensity priors, P0(I) to P3(I) . P0(I) and P1(I) combine 
a sloped and uniform probability at lower intensities with a Gaussian distribution around the expected count of 
2000 photons, similar to what is done by Fazel et al.8. The intention of this prior is to increase the convergence 
speed of 3D RJMCMC by improving the ability to escape from local minima and to increase inter-model jumps. 
Priors P2(I) and P3(I) are strictly Gaussian. The standard deviation of the Gaussian peak in the intensity prior 
was varied from 150 up to 1000 photons, as shown in Fig. 3b. The first column of Fig. 3a matches the results 
of Fig. 2, as it uses the same priors and data. The algorithm separates emitters up to 2.5σPSF , multimodality is 
present from 2 σPSF down to 1 σPSF , and emitters are no longer separable within 1 σPSF . Using P1(I) , column 2 
again shows multimodality from 2 σPSF down to 1 σPSF , with failure to separate emitters within 1 σPSF . Using P2(I) , 
multimodality is now observed at distances from 2 σPSF down to 1.25σPSF , failing to separate emitters within 
1.25σPSF . Finally, using P3(I) , multimodal reconstructions are found from 2 σPSF down to 1.5σPSF . Within this 
distance, the correct number of emitters is not found consistently. Figure 3c plots the accuracy of the estimated 
model for the priors used, calculated by counting the number of correct estimates and dividing by the frame 
count. For P0(I) and P1(I) , the model accuracy is greater than 98% over the range of tested distances. For P2(I) , 
model accuracy only goes below 95% at a distance of 0.75σPSF . Prior P3(I) decreases in model accuracy from a 
distance of 1.5σPSF , going from 94% down to 5% at a distance of 0.75σPSF . This shows that Gaussian intensity 
priors wider than 500 photons cannot consistently separate emitters within 1.5σPSF of one another. While three 
out of four used priors can retrieve the model over 3 σPSF down to 0.75σPSF distance, all of the used priors returned 
multimodal posterior densities within the range of 2 σPSF down to 1.5σPSF.

Two emitter separability using biplane imaging
Biplane imaging was tested for its ability to separate emitters and the multimodalities that may occur when doing 
so. For biplane imaging, the PSF can be approximated by a Gaussian. Unlike the astigmatic PSF, the 3D Gaussian 
PSF stays radially symmetrical over its range. It can therefore be expected that the same multimodality shown in 
astigmatic imaging will not be present here. Figure 4 shows that is indeed the case. As the emitter distance var-
ies over the same range of 0.75σPSF to 3 σPSF , the algorithm consistently finds a model of two emitters while the 
reconstruction also consists of just two peaks. Under these conditions, biplane imaging can separate two emitters 
up to a distance of 0.75σPSF , entirely free of multimodality. This not only validates the idea that multimodality 
is caused by 3D PSF degeneracy, it also demonstrates how the algorithm can be used to determine which PSFs 
suffer the least from this problem and which are best used in dense 3D imaging.

Conclusion
3D localization microscopy suffers from overlapping emitter images, often not being able to determine the num-
ber of active emitters in the ROI and leading to inaccurate position estimates. Multiple emitter fitting algorithms 
can find the number of emitters, but the added complexity of 3D PSF degeneracy means that these algorithms 
often misrepresent the uncertainty of their estimates.

We constructed 3D RJMCMC to identify PSF degeneracy in multi-emitter fitting problems, by using the 
reconstructed posterior density of emitter positions. For astigmatic and biplane imaging, 3D RJMCMC is capa-
ble of separating emitters up to a distance of 1 σPSF and 0.75σPSF , respectively, localizing emitters in 3D where 
SMLM methods would fail. However, astigmatic imaging at these densities will result in multimodal reconstruc-
tions. This is an accurate representation of the posterior and a consequence of the 3D PSF structure. Therefore, 
posterior density reconstruction is the tool of choice to identify potential PSF degeneracy problems in dense 
3D localization.
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Figure 3.  Two emitter separability using an astigmatic PSF, varying the width of the intensity prior, using the 
same frames as shown in Fig. 2. (a) XY plane reconstructions, each column using a different intensity prior. 
Images were formed by constructing histograms of the MCMC chains. (b) Plots of the respective intensity priors 
used in each column in (a). (c) Accuracy of the found model as a function of the emitter separation plotted for 
each intensity prior used. Accuracy is found using N

frames,k̂=k
/Nframes with N

frames,k̂=k
 the frames where the 

estimated model matches the ground truth and Nframes the total frame count. The widths of the Gaussian peaks 
in the priors are 150, 300, 500, and 1000 photons, for P0(I) up to P3(I) , respectively. P0(I) and P1(I) additionally 
use a uniform and sloped probability at lower intensities to facilitate model space moves. Priors were set to 0 at 
intensities beyond 2000+ 3σprior.
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Figure 4.  Two emitter separability using biplane imaging with planes separated by 300 nm. 100 pairs of 
frames were simulated and used to make one reconstruction. As photons are split evenly among the planes, 
the intensity prior was changed to be a Gaussian with mean 1000 photons and width 150 photons. (Columns 1 
and 2) Example frames at both the positive and negative depth. (Column 3) XY plane reconstruction. (Column 
4) XZ plane reconstruction. Emitters were placed in focal plane, with an intensity of 2000 photons each and a 
background of 20 photons. The ROI is 30 by 30 pixels, scalebars assume an effective pixel size of 100 nm. The 
reconstructed image consists of histograms from MCMC chains which used the MAP-estimated number of 
emitters.
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Discussion
As a main result of our 3D RJMCMC analysis, we found that single-frame astigmatic multiple emitter fitting 
can result in a multimodal posterior distribution. Due to the practicality of astigmatic imaging and its ability 
to acquire high-density data, this should serve as an important warning when using it for multiple emitter 
localization.

Fortunately, the multimodality in multiple emitter fitting using astigmatic imaging can be reduced by ana-
lyzing a larger time window or by limiting the PSF depth range. Constraining the range reduces the variety of 
shapes the PSF can take on, limiting PSF degeneracy. Multimodality may also be reduced by encoding the axial 
position in intensity. Modifying the algorithm to work with total internal reflection fluorescence (TIRF)11,12 is 
therefore a promising method to image without multimodality. Modulation-enhanced localization microscopy 
(meLM)13 techniques such as  ModLoc14,  SIMFLUX15, and  ROSE16 could all be decoded with 3D RJMCMC 
localization and a position-dependent intensity prior. A combination of these techniques with RJMCMC may 
result in a posterior distribution free of multimodality.

With our analysis, we show the importance of including the localization uncertainty in localization algo-
rithms. In multiple emitter fitting, 3D RJMCMC reveals the multimodality of the posterior. This allows us to 
reveal degeneracy, whereas traditional point estimates would have resulted in overconfident position estimates. 
Furthermore, 3D RJMCMC also shows that the position uncertainty for individual emitters is not well-repre-
sented by Gaussian uncertainty ellipses with a diagonal covariance matrix. Future research should therefore look 
at incorporating the full uncertainty covariance matrix into the localization algorithm.

The 3D RJMCMC algorithm is best used to analyze imaging techniques for their effectiveness in 3D multiple 
emitter fitting. Though no multimodality was revealed when testing biplane imaging with 3D RJMCMC locali-
zation, orientations of emitter pairs were not exhaustively tested. Furthermore, 3D RJMCMC assumes the PSF 
model to be accurately known during localization. In the case of PSF uncertainty, we expect this results in an 
increase of the localization uncertainty contained in the posterior. Within the current methodological framework 
of 3D RJMCMC, there is however no obvious way to incorporate a PSF mismatch. This combined with the slow 
and memory intensive nature of RJMCMC means we do not recommend using the algorithm for localization.

However, it should be used to analyze PSFs for possible multimodality in dense samples. Specifically, it 
remains an open question which PSF allows for both the evasion of degeneracy and an accessible implementation. 
Additionally, we recommend studying the occurrence of multimodality of the tetrapod PSF, as it is a popular 
choice for 3D imaging. Our initial study (see Supplementary Note) suggests that multimodality occurs for mul-
tiple emitter localization with the tetrapod PSF at 45-degree angles with respect to the x axis. Further study is 
needed into the conditions, such as the emitter separation, in which this multimodality occurs. 3D RJMCMC is 
the method of choice to study this. Testing imaging techniques that would require a position dependent intensity 
prior, such as TIRF or meLM techniques, is also a topic of great interest.

Methods
Image formation model and key probabilities
For multiple emitter fitting, the expected photon count per camera pixel can be described as:

with µi the photon count in pixel i, θI ,j the intensity of the jth emitter in the frame, k the amount of emitters in the 
frame, Ak the pixel area, H(x, y, z) the PSF, θx,j , θy,j , θz,j the 3D position of the jth emitter, and θb the background 
photon count. For a high gain camera, such as an electron multiplying charge coupled device (EMCCD), the 
readout noise is negligible and thus the likelihood function has a Poisson distribution:

with P(Di|θ , k) the likelihood of observing measured data D on the ith pixel as function of parameter vector 
θ =

[

θx,0 θy,0 θz,0 θI ,0 . . . θx,k θy,k θz,k θI ,k θb
]

 and number of emitters k. Given the pixels are independent, 
the likelihood of one frame becomes:

with Np the pixel count. The joint posterior distribution of the parameters and model can then be found using 
Bayes’ rule:

with P(k) the model prior, P(θ |k) the parameter prior given the model, and P(D) the evidence. The priors can be 
formulated from earlier attained knowledge of labeling density or emitter intensity, however the evidence term, 
P(D) =

∫

P(D|θ , k)P(θ |k)P(k)dθdk , only has a closed form solution when the prior distribution is conjugate 
to the posterior. This is often not the  case17, therefore Reversible jump Markov chain Monte Carlo (RJMCMC)10 
is employed to asymptotically sample from the posterior.

(1)µi =

k
∑

j=1

θI ,j

∫

Ak

H(θx,j , θy,j , θz,j)dxdy + θb,

(2)P(Di|θ , k) =
µ
Di
i exp (−µi)

Di!
,

(3)P(D|θ , k) =

Np
∏

i=1

µ
Di

i
exp (−µi)

Di!
,

(4)P(θ , k|D) =
P(D|θ , k)P(θ |k)P(k)

P(D)
,
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After attaining samples from P(θ , k|D) , the maximum a posteriori (MAP) number of emitters, k̂ , is used as 
the true model to condition the parameter estimate on, running a Markov chain Monte Carlo (MCMC) algo-
rithm to find P(θ |k̂,D) . This is done to avoid introducing bias in the parameter estimates coming from models 
of different dimension.

Priors and hyperparameters
The algorithm takes in priors for the 3D position, emitter intensity, background intensity, and emitter count. 
Throughout the tests, the prior on the lateral emitter position is kept uniform over the ROI plus four extra pixels, 
to account for the influence of emitters outside the ROI. The axial position prior is uniform over the presumed 
depth range of the PSF. Emitter intensity was set as a Gaussian distribution, enabling the algorithm to separate 
the emitters. In practice, it is  recommended8 to estimate the intensity prior using kernel density estimation on 
intensity data of a previous SMLM run. Finally, the emitter count prior is also kept uniform. Although it is pos-
sible estimate the emitter count within a sample given the label density, it can still vary widely on a local scale, 
thus we keep the prior uniform for smaller ROIs.

Each iteration, the move was randomly selected using user-determined selection probabilities [ Psingle , Pgroup , 
Pbackground , Psplit , Pmerge , Pg-split , Pg-merge , Pbirth , Pdeath ]. Throughout the tests, the RJMCMC burn-in portion uses 
[1/5, 1/5, 1/5, 1/15, 1/15, 1/15, 1/15, 1/15, 1/15], while post burn-in [1/4, 1/4, 1/4, 0, 0, 3/32, 3/32, 1/32, 1/32] 
are used. The burn-in portion uses higher model space move probabilities to ensure more model space mixing, 
while post burn-in focuses more on parameter space moves. The MCMC portion uses [2/5, 2/5, 1/5, 0, 0, 0, 0, 0, 
0], focusing mainly on emitter parameters. Each test runs for 30,000 RJMCMC iterations, using 10,000 of those 
as burn-in and following them up with 5000 MCMC iterations. The parameter space moves use random walk 
samplers, leaving jump sizes [ σx , σy , σz , σI , σb ] as parameters for tuning. For good mixing, the lateral jump size 
may vary from 0.05 to 0.1 pixels, the axial jump size from 0.07 up to 0.12 µ m, the emitter intensity between 10 
and 40 photons, and the intensity between 1 to 3 photons.

Convergence and precision
To verify convergence of the algorithm, 100 frames with a single active emitter were localized. Emitters in the 
center of the ROI sampled their intensity randomly from the matching prior and were given a random sub-pixel 
displacement. Supplementary Figures S3 and S5 show the model and parameter autocorrelation as well as the 
time series and histogram of the model, for a high and low signal to background, respectively. The algorithm 
manages to converge to the correct model 100% of the time, while also converging in parameter space. By using 
only uniform priors, the algorithm yields an unbiased estimate that can be compared to the Cramér–Rao lower 
bound (CRLB)3 to verify the precision. For non-uniform priors, the Van Trees inequality (VTI)18,19 can be used 
as a Bayesian Cramér–Rao bound to find the theoretically minimum localization error. Supplementary Figure S8 
shows a violin plot of the precisions found with 3D RJMCMC localization compared to the CRLB over varying 
emitter intensity. It can be seen that the localization precision matches the CRLB over the plotted intensity range. 
Supplementary Figure S9 shows violin plots for the root mean squared error of the same data. The results show 
that the algorithm reaches the minimum theoretical uncertainty for low emitter density.

Synthetic data and results
For Fig. 2, two emitters were placed in focus and simulated using an astigmatic PSF, their center of mass in the 
middle of the ROI. The PSF was evaluated using a 3D Gaussian  approximation3, with parameters [ s0,x , γx , dx , Ax ] 
and [ s0,y , γy , dy , Ay ] of [ σPSF , 2, 3, 0] and [ σPSF , -2, 3, 0], respectively. Here σPSF is the width in focal plane, set at 
1.2 pixels. The PSF range was set at [− 1.3, 1.3] µ m, with a ROI size of 20 by 20 pixels. Emitter intensity was fixed 
at 2000 photons, with a background intensity of 20 photons. A total of 100 frames were simulated and their 5000 
iteration MCMC chains were merged to finally form the histogram reconstructions of the XY and XZ planes. The 
histograms were magnified in x and y direction by a factor 2.5 with respect to the sample frames. Move selec-
tion probabilities were as in Subsection Priors and hyperparameters, while the jump size hyperparameters were 
set to [0.1, 0.1, 0.08, 15, 1]. All priors were kept uniform except the emitter intensity, using a Gaussian around 
2000 photons with a width of 150 and a small uniform probability between 0 and 1500 that slopes down to 0, as 
shown in Fig. 3b. The prior is set to 0 for intensities greater than 2450 photons. The number of emitters ranges 
from 0 to 6 and lateral position estimates may exceed the ROI by four pixels. Background intensity was limited 
to a range of 1 to 40 photons.

Figure 3 uses the same data and settings as Fig. 2, only changing the random number generator seed and the 
emitter intensity priors used. Priors P0(I) to P3(I) all use Gaussian distributions centered around 2000 photons, 
with a width of 150, 300, 500, and 1000 photons, respectively. Again, P0(I) and P1(I) keep a uniform probability 
sloping to 0 at lower intensities to help facilitate splitting of emitters.

Figure 4 uses 100 frames simulated with biplane imaging, splitting the response of a Gaussian PSF between 
planes at + 150 and − 150 nm depth relative to the focal plane. A depth range of [− 1, 1] µ m was used. Again, 
the PSF was evaluated with a 3D Gaussian  approximation3 of an experimentally measured astigmatic PSF on 
the setup described in Ref.20, with [1.70, −4.64 , 8.34, 0.00] for the x and y parameters. Emitter intensities and 
background photons were split evenly across the planes. The ROI is now expanded to 30 by 30 pixels. All hyper-
parameters and priors used were identical to the previous experiments, except the emitter intensity prior, which 
is a Gaussian with mean 1000 and width 150 photons. The intensity prior is set to 0 for intensities greater than 
1450 photons and again is uniform between 200 and 500 photons, sloping upwards from 0 to 200 photons.
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Data availability
The data and code are available online from the Github repository at https:// github. com/ qnano/ rjmcm c3D. Two 
Jupyter notebook examples are also included and can be run with Google colaboratory at https:// colab. resea rch. 
google. com/ github/ qnano/ rjmcm c3D/ blob/ master/ colab_ examp le. ipynb and https:// colab. resea rch. google. com/ 
github/ qnano/ rjmcm c3D/ blob/ master/ colab_ examp le_ cspli ne. ipynb.
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