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ABSTRACT Quantum error correction (QEC) is required in quantum computers to mitigate the effect of
errors on physical qubits. When adopting a QEC scheme based on surface codes, error decoding is the most
computationally expensive task in the classical electronic back-end. Decoders employing neural networks
(NN) are well-suited for this task but their hardware implementation has not been presented yet. This work
presents a space exploration of fully connected feed-forward NN decoders for small distance surface codes.
The goal is to optimize the NN for the high-decoding performance, while keeping a minimalistic hardware
implementation. This is needed to meet the tight delay constraints of real-time surface code decoding. We
demonstrate that hardware-based NN-decoders can achieve the high-decoding performance comparable to
other state-of-the-art decoding algorithms whilst being well below the tight delay requirements (& 440 ns)
of current solid-state qubit technologies for both application-specific integrated circuit designs (< 30 ns) and
field-programmable gate array implementations (< 90 ns). These results indicate that NN-decoders are viable
candidates for further exploration of an integrated hardware implementation in future large-scale quantum
computers.

INDEX TERMS Application-specific integrated circuit (ASIC), complementary metal-oxide semiconduc-
tor (CMOS), CMOS integrated circuits, combinational circuits, cryo-CMOS decoding, cryogenic elec-
tronics, digital integrated circuits, error correction codes, feedforward neural networks (NNs), field pro-
grammable gate array (FPGA), fixed-point arithmetic, machine learning, NNs, pareto analysis, quantum
computing, quantum-error-correction (QEC) codes, supervised learning, surface codes (SCs).

I. INTRODUCTION

For certain problems, quantum-computing algorithms have
been demonstrated to run with polynomial time complexity,
where classical counterparts would scale with an exponential
time complexity [2]-[5]. This speed-up is ascribed to the use
of quantum bits (qubits) that, unlike classical bits, can exploit
quantum effects, such as superposition, entanglement, and
interference [6], [7]. Unfortunately, the information stored in
the qubits can be lost via decoherence, due to their sensitiv-
ity to their environment. The errors due to decoherence can
be mitigated by adopting quantum-error-correction (QEC)
schemes that encode multiple imperfect physical qubits into
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a logical quantum state, similar to classical error correction.
However, while classical bits can be simply copied to intro-
duce redundancy, the quantum no-cloning theorem prevents
the copying of qubits [8], [9], thus calling for ad-hoc QEC
schemes.

The surface code (SC), a planar form of the toric code [10],
is among the most popular QEC schemes thanks to its high
error threshold, scalable 2-D structure and the need for
only next-neighbor interactions [11]. This makes it suitable
for integration in promising solid-state qubit technologies,
such as superconducting qubits [12], [13] and quantum-
dot-based qubits [14]. Although encoding a logical state in
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FIGURE 1. Schematic representation of the four smallest distances of the rotated SC. The white dots represent the data qubits, the blue dots the
X-ancillas and the red dots the Z-ancillas. The connections between the qubits correspond to the local interactions whilst performing the measurement

round.

an SC is straightforward, detecting the errors occurring on
the physical qubits typically requires a complex decoder
[15]-[18], as physical qubits cannot be directly measured
without losing quantum information. In addition to the com-
putational complexity of QEC decoding algorithms, the
decoder should run orders of magnitude faster than the
decoherence process affecting the physical qubits, with a
required execution time well below 1 us for typical solid-
state qubits. This stringent timing requirement has raised
the question whether the decoders need to be implemented
in hardware instead of running in software for even faster
inference [19]. Furthermore, hardware decoders would be
preferred to support the scalability of quantum computers.
Promising candidates for large-scale quantum computers
comprise large arrays of cryogenic solid-state qubits con-
trolled by local electronics also operating at cryogenic tem-
peratures to ensure compactness and reliability by avoid-
ing long interconnects between several temperature stages
[20]-[28]. Thus, the QEC decoder must also run at cryogenic
temperature and an integrated hardware implementation is
favorable to minimize the area occupation (for compact-
ness) and the power dissipation (to comply with the lim-
ited cooling budget of cryogenic refrigerators). Recent work
has demonstrated hardware-based decoders that run fast
enough [29]-[32], but research is lacking on the hardware
implementation of a decoding solution that has the potential
to outperform them all: neural networks (NNs).

NN decoders have attracted large interest, thanks to their
fast and constant inference time and state-of-the-art decod-
ing performance [19], [33]-[40]. The hardware requirements
for NN decoders have been estimated before [19], [38], but
the tradeoffs between hardware cost and performance have
not been explored. This work bridges this gap by focusing
on the hardware implementation of an NN decoder for SC
QEC [33]. First, the relation between decoder performance
and the NN design parameters, such as the number of layers
and their size, the neuron transfer function, signal quanti-
zation, and symmetries, are explored. Then, the tradeoffs
between the decoding performance (error rate, computing
delay) and the hardware cost (area, power) are evaluated for
an implementation on both an application-specific integrated
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circuit (ASIC) and a commercial FPGA, with explicit atten-
tion to the cryogenic operation of both platforms.

This work demonstrates that hardware NN-based decoders
can achieve the high-decoding performance comparable to
other state-of-the-art decoding algorithms while satisfying
with ample margin the tight delay requirements of current
solid-state qubit technologies. The hardware cost in terms of
silicon area and power quickly increases with NN size and
SC distance. The obtained decoding times are low enough for
future work to explore further optimization of the hardware
costs.

The rest of this article is organized as follows. First, Sec-
tion II gives a short background on decoding the SC. This is
followed by Section III, which shows the proposed decoder.
Next, Section I'V outlines the simulation setup. The decoding
performance results and design space exploration are shown
in Section V. The results are combined with the hardware
cost estimations in Section VI. The results are then discussed
in Section VII. Finally, Section VIII concludes this article.

Il. DECODING THE SC

The SC, as shown in Fig. 1, is a simple 2-D scalable structure
of physical qubits (denoted by the dots) that only requires
local interactions between qubits (as illustrated by the lines
in between the dots). Only a brief overview of the SC op-
eration is given in this section; the interested reader is re-
ferred to [11] for a complete treatment. This work focuses
on rotated SCs [41], which use the least amount of physical
qubits per logical qubit. Each code has a distance d, meaning
that a perfect decoder can correctly identify a maximum of
(d — 1)/2 physical errors. A rotated SC of distance d consists
of a d x d grid of data qubits (white dots in Fig. 1) that
encode a single logical qubit. The d> — 1 colored dots in
Fig. 1 represent two types of ancilla qubits. These X- and
Z-ancillas can be measured to find the errors on the adja-
cent data qubits without destroying the quantum state of the
encoded logical qubit. This measurement outcome is called
the error syndrome and needs to be continuously measured
to detect errors in every so-called SC cycle. The task of the
decoder is to find the errors on the data qubits from this error
syndrome.
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FIGURE 2. CNOT gate sequence. The number on each data qubit
indicates the order in which the four adjacent data qubits are addressed
by both the X-ancilla (blue, on the left) and the Z-ancilla (red, on the
right). This process is performed on each ancilla qubit of the rotated SC
shown in Fig. 1.
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FIGURE 3. (Left) Quantum circuits for the commonly used SC cycle
employing Hadamard and CNOT gates. (Right) Equivalent circuit with CZ
and R, (+3) on the right based on [42]. The Ry (+%) are denoted as +. In
both figures, the top circuit shows the circuits for the X-ancillas and the
bottom circuit for the Z-ancillas. The colored qubits are the ancillas. The
other gray qubits are the data qubits surrounding this ancilla. Top to
bottom this is the same order as the 1 to 4 shown in Fig. 2 in the CNOT
dance. Although some Ry (+%) seem to cancel, those rotations are
needed as the data qubits are interacting with other ancilla qubits in
between.

A. SCCYCLE

During an SC cycle, all ancillas are first initialized into the
ground state |0). Next, the X-ancillas (Z-ancillas) are brought
onto the x-axis (z-axis) using a Hadamard gate (identity
gate!).

A sequence of CNOT gates is then performed, as shown
in Fig. 2, to entangle each ancilla with its four adjacent data
qubits. In case an ancilla is at the edge of the SC, only the two
neighboring data qubits are used. Finally, the X-ancillas are
brought back onto the z-axis and all ancillas are measured in
the z-basis. This whole cycle is shown in Fig. 3 on the left.

The measurement on each ancilla will return either +1 or
—1, reflecting the parity of the four (or two) adjacent data
qubits. The set of all ancilla measurements in an SC is called
the error syndrome. After all the ancillas are pushed into a
state, there are still some degrees of freedom of the SC. These
degrees of freedom define the logical state of the logical
qubit. Any operation that does not change the error syndrome
and logical state is called a stabilizer. The following section
shows this in more detail. Measuring the ancillas puts the

IThe identity gate (idling) is shown to keep the two execution flows
synchronized.
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FIGURE 4. (a) Product of four stabilizers on the distance 5 SC. (b) Single
logical X-operations. (c) Two logical Z-operations. (d) Two illustrations of
the product of a logical X-operation and an X-stabilizer.

total SC into an eigenstate of all stabilizers where the error
syndrome represents the eigenvalues.

After the first measurement cycle, the SC is initialized
and all ancillas will either be +1 or —1. These do not rep-
resent errors, but the random initial quiescent state of the
data qubits. Repeated measurement cycles will keep it in the
same quiescent state. Any change in the error syndrome after
measurement indicates a deviation from the quiescent state
and, thus, an error.

B. LOGICAL OPERATIONS AND ERRORS

To understand how a stabilizer does not change the error syn-
drome [see Fig. 4(a)]. Performing four X-operations (shown
in blue) on the data qubits around X-ancilla 3, does not
change the parity of the (13, 14, 16) Z-ancilla measurements
and, thus, does not change the error syndrome. Similar rea-
soning applies to the Z-operations around Z-ancilla 15. A
product of two stabilizers is performed around X-ancillas 2
and 4. Due to the double X-operation on data qubit 16, an
identity operation is performed on that qubit. It can be seen
that this product of two stabilizers also does not change any
of the adjacent Z-stabilizer measurements and also forms a
continuous loop of single qubit operations.

In general, a product of X- or Z-stabilizers will always
form a closed chain (or loop) of X- or Z-single-qubit op-
erations. Thus, these loops will never change the quiescent
state and the error syndrome. Since an error is modeled here
as a random and nonintentional operation on a data qubit,
errors that, by chance, form loops will not change the error
syndrome and the logical state.

Next, Fig. 4(b) shows a chain of X -operations running be-
tween the top and bottom edge. Such an edge-to-edge chain
performs a logical X-operation. One can check that this does
not affect any of the Z-ancilla parity measurements.
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@IEEE Transactions on,
uantumEngineering

Overwater et al.: NEURAL-NETWORK DECODERS FOR QUANTUM ERROR CORRECTION

FIGURE 5. Decomposition of the error E into a product of stabilizers S, a
logical error L, and a pure error P. Of this product, only the pure error
leads to a change in the error syndrome outcome.

Similarly, Fig. 4(c) shows two logical Z-operations, which
should correspond to a logical /-operation. Not altering the
logical state and error syndrome, those operations could also
be written as a product of stabilizers. In general, any even
number of logical operations can be written as a product
of stabilizers and every odd number of logical operations
can be written as a single logical operation and a product of
stabilizers.

Finally, Fig. 4(d) shows a product of a logical X-operation
as a chain between data qubits 2 and 22 with a stabilizer
around X-ancilla 7. A product of these two results in a chain
with the same shape as the one drawn between data qubit
0 and 20 and with the same effect on the logic state. This
exemplifies that any odd number of chains, not necessarily
straight, between the top and bottom will result in a logical X -
operation. Similarly, chains between the left and right sides
of the SC result in logical Z-operations.

C. PURE ERRORS

The errors and operators discussed in the previous section
do not change the error syndrome. Note that these operation
chains do not end in the center of the SC. If they do end in
the center, the error syndrome will change. For instance, the
Z-error chain shown in Fig. 5 denoted by the error E starts
at the edge at data qubit 10 and ends in the center at data
qubit 17. As this is not a product of just stabilizers and logical
operators, the error syndrome will be different, in this case at
X-ancilla 8.

As Fig. 5 shows, any stabilizer S or logical operators L
can be applied on top of the error E without changing the
error syndrome. We call any state that gives the same error
syndrome as the original error, and thus is only separated by
stabilizers and logical operators, a pure error P [19], [43].
This pure error can, thus, be logically different from the orig-
inal error E, but it will always give the same error syndrome.
To phrase it differently, any error can be decomposed into a
product of stabilizers, a logical operator, and a pure error.
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FIGURE 6. Sketch of the logical versus physical error rate of an
unencoded qubit (black line) and five different distances of the SC. The
Pt is shown by colored circles and the decoder threshold by the gray
circle. For a larger code distance, both the slope and the py, increase.

D. DECODING

The purpose of the decoder is to identify an error configura-
tion on the data qubits that produces the same error syndrome
as was measured and is logically equivalent to the actual data
error configuration. In other words, the decoder must output
any data error configuration that only differs from the actual
data error configuration by a product of stabilizers. This can
then either be used to immediately correct the errors or can
be tracked for later correction using Pauli frames [44]. The
error syndrome must be the same to ensure that the SC returns
to a logical state. The logical error must also be the same to
prevent logical errors during the computation. As stabilizers
do not influence either the error syndrome or the logical state,
they can be neglected.

Since many data qubit configurations produce the same er-
ror syndrome, the error syndrome generation is a noninvert-
ible function, thus making it impossible to unambiguously
find the real data qubit configuration. This constitutes the
main challenge for the decoder implementation and necessar-
ily requires the decoder to make an arbitrary choice, which
can be optimal if it is the one occurring with the highest
probability.

E. DECODING PERFORMANCE

In order to quantify the decoding performance, the relation
between the error rate of the logical qubit and the error rate
of the physical qubits must be analyzed, as shown in Fig. 6.
In this figure, both the logical error rate for an increasing SC
distance (colored lines) and the error rate for an unencoded
physical qubit (black line) are shown. The physical error
rate for which the decoder achieves approximately? the same
performance independent from the SC distance is defined as
the decoder threshold.

2In practice, it is possible that all lines do not cross exactly in a single
point
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FIGURE 7. Model fit of (1) on the simulation of the MWPM decoder for
the distances 3, 5, 7, and 9. The error bars represent the 99.9%
confidence interval.

For any physical error rate in the following, the decoder
threshold, it pays off to invest in a larger distance. The de-
coder threshold is often used as a single parameter to quantify
the performance of a decoding algorithm. However, as shown
in this sketch, operating at this physical error rate will be
outperformed by a single unencoded qubit.

The physical error rate at which the logical qubit will
outperform the physical qubit is called the pseudo-threshold
(pm)- The py, is different for every distance and is used to
compare decoders at the same SC distance. A higher py, is
preferred as it allows obtaining an advantage of using QEC
with worse qubits. Even for a fixed physical error rate well
below the py,, a higher py, will still give a lower logical error
rate, assuming a constant slope of the lines in Fig. 6. Thus,
the decoder slope is also an important parameter. Both the
slope and the py, increase when going to larger distances, but
due to the exponential relation, the slope typically dominates
the decoding performance at lower physical error rates.

As this article mainly compares decoders operating at
a certain SC distance, we will focus on comparing the
pw and the decoder slope. The proposed decoders will be
benchmarked against the minimum weight perfect matching
(MWPM) algorithm [15], also known as Blossom or Ed-
monds’ algorithm. Although better decoders exist [16], the
MWPM algorithm is adopted as benchmark, as commonly
done in prior works [16], [17], [19], [29]-[33], [35]-[37],
[39], [40].

As an example, Fig. 7 shows the simulated performance of
the MWPM decoder for the smallest four SC distances. The
data are fitted using (1), adapted from [11, eq. 11] where €,
and € are, respectively, the physical and logical error rate,
and py,, s and c are fitting parameters representing the py,,
the slope for €, < py and the flattening of the curve for
increasing physical error rates, respectively. The good fitting
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TABLE | State-of-the-Art Operation Times for the Two Target
Technologies, and the Resulting SC Duration Assuming the Circuit in
Fig. 3(Right)

Operation Transmons  Single-electron spin
qubit (Silicon)
Single qubit gate 20 ns [47] 1 ps [47]
Two qubit gate 40 ns [47] 0.1 ps [47]
Measurement 200 ns [48] 1 ws [49]
SC cycle duration 440 ns 5.4 us

of the model up to the decoder threshold in Fig. 7 indicates
that interpolation in the logarithmic domain is necessary to

calculate the py,

€ s:(I—c-€p)

€ = pun (—”) : (1
Pth

F. HARDWARE REQUIREMENTS AND COSTS

In addition to the decoding performance, decoder implemen-
tations must also be compared based on their hardware re-
quirements (delay) and hardware costs (area and power).

When using quantum error detection with Pauli frames,
the main requirement is the minimum decoder throughput
to avoid a data backlog [11], [44]. In principle, the decoder
can run in parallel with the main algorithm execution and,
to ensure the throughput, the decoding delay should be just
lower than the measurement cycle, but not necessarily much
smaller. However, tracking of errors is not enough when us-
ing non-Clifford gates, and the physical correction of errors
is needed [44]. Since such a correction must be performed
before the next cycle after the error detection, the decoding
can only take a fraction of the cycle time.

The maximum allowed delay in case of transmons and
silicon-based single-electron spin qubits are estimated in Ta-
ble I assuming the SC cycle shown in Fig. 3. For the targeted
qubit technologies, the circuit on the left of Fig. 3 can be
replaced with the circuit on the right [42], [45], as the ¢z and
Ry(%7 /2) gates can be performed faster and more accurately
in those physical platforms. The minimum reported duration
for each operation is used to obtain the most stringent con-
straint on the delay. Also, the initialization of the ancillas is
neglected [42], [45] to get a lower bound of the estimated
cycle time. For quantum error detection, the delay must be
below 440 ns. However, when including a correction step for
using non-Clifford gates, the delay needs to be as small as
possible. This work will, thus, strive to minimize the delay
and report the corresponding power and area.

Since the decoder is used once per QEC cycle and the cycle
duration is fixed by the qubit technology, the hardware cost
in terms of power is accounted for by computing the energy
per decoding cycle. The dissipated energy per cycle should
be as small as possible to allow for the largest number of
logical qubits before running into the cooling power limita-
tions. When fully integrating the decoder with the qubits on
the same chip (or in the same package), the area must also be
as small as possible to ease the integration requirements [46].
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1Il. PROPOSED DECODER

In this work, we focus on decoding the smallest four rotated
SCs, see Fig. 1. The goal is to obtain a decoder that has the
high-decoding performance, runs fast enough to avoid a data
backlog, and can be efficiently implemented in hardware.

NNs are a promising solution for several reasons. First,
they have shown higher p;, compared to other decoders,
such as the MWPM algorithm [19]. They can also adapt to
many error models during training, perhaps even tailored to
a specific qubit technology or even an individual quantum
computing sample. After training, their execution (inference)
time is constant and independent of the input. On the one
hand, the inference time of NN decoders in hardware im-
plementations has been estimated before [19], [38], but did
not satisfy the throughput requirement. On the other hand,
these analyzes do suggest that an optimized design on an
ASIC could meet such a requirement. Finally, their regular
structure makes them well suited for hardware optimization
by parallelization and pipelining.

However, they also have their drawbacks. A large enough
training dataset is needed to avoid overfitting. Even though
any dataset can be generated using an error model, the size
requirement of this dataset can still be a problem [33]. Next,
NNs are quite complex and self-trained algorithms that are
difficult to thoroughly understand, thus risking unexpectedly
failing in untested situations. On top of that, there are a lot
of additional parameters that need to be optimized during
training [33], [38], making the search space for finding the
optimum solution even greater. The main challenge, how-
ever, is that NNs are not well suited for direct application
to the decoding problem. Fig. 8(a) shows the NN in such
a direct, so-called low-level decoder (LLD) application. In
this configuration, the NN takes in the error syndrome and
guesses the error on every data qubit. The goal is that this
data qubit configuration returns the correct logical error and
also results in the same error syndrome as was measured.
The problem is that the NN has no notion of what such
a valid solution entails. This will limit the chance that a
valid data error configuration is obtained. Consequently, a
rerun of the algorithm is needed until a satisfying solution is
found. To circumvent this limitation, we adopt the solution
proposed in [19] and use a high-level decoder (HLD). In an
HLD, the task of obtaining any correct error syndrome is
performed by a pure error decoder (PED). This reduces the
task of the NN to finding the type of logical error, allowing
the NN to be a classifier, a task that is well suited to NN,
see Fig. 8(b).

This work focuses on fully connected feed-forward NNs.
Although they show limits in scalability, those can be solved
by opting for more complex topologies, such as convolu-
tional neural networks (CNNs) [39]. However, for near-term
small-distance SCs, we deem that the advantages of fully
connected NN still outweigh their disadvantages. The fol-
lowing sections will explain the basic functionality of the NN
and the PED chosen in this work.
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FIGURE 8. (a) NN in an LLD. This takes the error syndrome as inputs and
gives the data qubit errors as output. (b) NN together with a PED in an
HLD. Here, the PED gives the data qubit errors. The NN outputs the
expected logical error that the PED makes compared to the actual data
qubit errors.

A. PURE ERROR DECODER

The only task of the PED is finding a configuration for the
data qubit errors that produces the error syndrome measured
by the ancillas [19], [43]. As shown in Fig. 5, this pure
error will only differ from the actual data qubit errors by a
product of stabilizers and logical operators. As the product
of stabilizers does not influence the error syndrome or the
logical error, it can be neglected. Thus, the only significant
difference between the error estimation given by the PED and
the effective error is a logical error. Leaving the task of the
NN to guess the logical error.

The benefit of this approach is that the guess made by the
PED does not need to be the most probable. As a result, the
PED can be optimized for other properties, and in this work,
we focus on the following three main points.

1) Software simulation speed: As the PED must run every
time the NN is run or trained, the speed of the PED
must be maximized.

2) Hardware simplicity: The area and power of the PED
must be minimized.

3) Exploiting symmetries: The SC is characterized by sev-
eral symmetries that can be exploited in the training
of the NN. However, as the NN also learns on the
basis of the PED output, the PED should also show the
same symmetries as the SC for fully optimizing the NN
training.

The algorithm for the PED illustrated in Fig. 9(d) com-
plies with the three abovementioned optimization targets.
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FIGURE 9. Figure illustrating the steps to obtain the PED used in this
work. (a) Boundaries where the error chains end for the ancillas of that
given color. (b) Data qubits are grouped to the corresponding ancillas at
the boundary. (c) Chains of equal length and equal distance apart for all
the Z-ancillas, routing them to the corresponding edge. (d) Chains of
equal length and distance apart for all ancillas.

To understand how this PED is obtained, we recall Fig. 5,
which shows that pure errors form chains of contiguous an-
cilla errors from the inner part to the boundaries. This means
that our PED must find chains that connect all the ancilla
errors to the boundaries corresponding to the appropriate
logical error. These boundaries are shown in Fig. 9(a). For
this discussion, we will first focus on the top half (Z-ancillas).
The full decoder can then be obtained by rotating this Algo-
rithm 3 times by 90°.

For any distance, one semiplane has (d*> —1)/4 (6 for
the example in Fig. 9) ancillas to be routed to the edge. As
highlighted in Fig. 9(b), at the edge, there are (d + 1)/2 (3)
ancillas and d (5) data qubits. As we need only one data qubit
per ancilla, we only need (d + 1)/2 (3) data qubits as well.
For symmetry, we choose to route each ancilla to the data
qubits on the boundary that are equally spaced, as shown in
Fig. 9(c). To be invariant to translations, all (d + 1)/2 (3)
error chains are kept equidistant when moving toward the
boundary. Since we have (d> — 1)/4 (6) ancillas, each chain
will be (d — 1)/2 (2) ancillas long. By rotating this scheme
3 times by 90°, each ancilla is routed to the boundary as
in Fig. 9(d). Combining this pattern with the numbering as
shown, an algorithm to be executed in software or hardware
can be derived. This algorithm has minimized the length of
the longest chains, making the hardware as fast as possible.
As it turns out this means that all chains have equal lengths.

The resulting algorithm is just a series of XOR gates and
can be described by the iterative formula in (3) with initial
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FIGURE 10. lllustration of a computing node in an NN. The picture
shows node j in layer /.

step 2. Here, i indicates the step in the algorithm, starting
from the center at i =0 to the edge at i = (d — 1)/2 — 1.
E(q;) is the error on data qubit with number ¢;, and E(q;) is
the error on the ancilla a;

E(q0) = E(aop) 2)
E(g;) = E(a;) ® E(gi—1). 3)

The indices g; and g; correspond to the data and ancilla qubits
in Fig. 9(d) and can be calculated as

qi = %+r.(z’+1)+1}~[t~d+(1—t)]—1
+2-c-[d-(1—1)—1] 4
2 _

a4 = _d 7 1:|~[1+2~t]+|:%+r-i:|-|:$i|+c

&)

where ¢ is either 0 or 1 for an X- or Z-chain, respectively, »
is the rotation of the algorithm, being —1 or +1 for left or
right for X-chains and up or down for Z-chains and c is the
specific chain. For example, if there is an error on X-ancilla
8, we take a look at r =0, r = +1, and ¢ = 2. If we plug
these values into (4) and (5), we obtain

gi= 23+i ©6)
a; = 8+3i. 7)

The initial step i = 0 says that there is an error at go = 23
because there is an error at ancilla ay = 8. Next, there is also
an error at g = 24, as there is no error at ancilla a; = 11.
This results in the same pure error, as shown in Fig. 5 P. The
output of the PED is the sum of all data errors after running
this iterative process over all chains on both sides of both
ancilla types.

B. NEURAL NETWORK

As mentioned earlier, an NN is used to determine the logical
error made by the error estimation of the PED. The input to
the NN is the error syndrome that consists of all the ancilla
measurements and its output is the estimated logical error,
i.e., one of the possible logical errors. This work uses a fully
connected feed-forward NN, which is a regular multilay-
ered structure consisting of computing nodes. Every node
in a layer is connected to all the nodes in the previous and
following layer, as illustrated in Figs. 10 and 11. There are
two main variations, which are sparsely connected or CNNs,
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FIGURE 11. lllustration of a fully connected feed-forward NN. This work
uses two hidden layers and two outputs as depicted here.

which only connect a selection of nodes between two layers,
and recurrent neural networks (RNNs), which connect the
outputs of a layer back to its inputs, thus obtaining memory.
Effectively these two variations, respectively, decrease or
increase the number of inputs seen by every node, compared
to the basic fully connected feed-forward neural network.
Every node sums its weighted inputs, adds a bias to the
resulting sum and applies a nonlinear function to the result
to generate the output. This is expressed analytically as
1 -1 -1 -1
=T WA

J !
i

W=7 (a) ©

I . (I-1) . .
where y; is the output of node i on layer [, W, is the weight

to be applied to the output of node i of the previous layer
(I — 1) when contributing to the node j of the layer [, by*]) is

the bias, a'" is the accumulated output, and f(-) is a nonlinear

transfer function (or activation function). The nonlinearity
of the transfer function is crucial to avoid the whole neural
network collapsing into a single-linear layer.

A neural network always contains an output layer. As the
name suggests, all the nodes in this layer produce the outputs
of the neural network. The vector of inputs is sometimes
called the input layer. However, as can be seen in Fig. 11,
this layer does not contain any nodes. If more layers are used
between the input layer and the output layer, they cannot be
directly observed, and are, hence, called hidden layers.

Even though a single hidden layer is enough to map any
function [50], having multiple layers reduces the number of
nodes needed in each layer. Previous work showed us that
two hidden layers perform better than a single layer in terms
of decoding accuracy [33]. Since adding another layer did
not yield any significant improvement, we will focus on two
hidden layers in this work.

The number of inputs of every node depends on the num-
ber of nodes of the previous layer, except for the first hidden
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FIGURE 12. Overview of the simulation setup used in this work.

layer. In this layer, the number of inputs is equal to the num-
ber of ancilla qubits, i.e., d? —1.

The number of nodes in the output layer depends on the
classification scheme. One can use the classification scheme
shown in Fig. 8(b), using four nodes to represent the different
errors. This can either be no error, called a logical identity /,
or one of the logical X, Y, or Z errors. These logical errors
represent the logical difference between the PED output and
the actual data errors. However, this can again lead to dif-
ferent output nodes competing and deciding independently.
For this reason, we choose only two output nodes, one for
signaling a logical X error and the second one for a logical
Z-error. This has the added benefit of reducing the number
of output nodes, and thus, the weights and size of the neural
network, whilst still keeping the four output classes as no or
both X and Z give I and Y, respectively.

This work opts for the simplest implementation of a fully
connected feed-forward neural network as a first step toward
the hardware implementation of NN QEC decoders. More
complex architectures include CNNs, which only connect a
selection of nodes between two layers, and RNNs, which
connect the outputs of a layer back to its inputs to imple-
ment memory capabilities. While CNNs and RNNs would be
more suited for this application when considering scalability
and a more realistic error model, they would only require
small modifications in the hardware of the individual nodes,
as CNNs and RNNss, respectively, decrease or increase the
number of inputs seen by every node compared to the ba-
sic fully connected feed-forward neural network. However,
including these options is beyond the scope of this initial
study, as it would drastically increase the search space in
the performance/hardware-cost tradeoffs. At the same time,
thanks to the similarity in hardware, the proposed results can
form the basis for future extensions to these more complex
architectures.

IV. METHODS FOR SIMULATION AND TRAINING

Before delving into the design and optimization of the dif-
ferent parameters of the neural network, the details about
the simulation infrastructure are first described. The flow of
the simulation setup is shown in Fig. 12. First, to generate
a realistic error pattern for both NN training and evaluation,
the data qubit errors are sampled using the depolarizing error
model as discussed in the following section. Those are then
fed to the SC simulator to obtain the corresponding error
syndrome. The error syndrome is passed to the PED, which
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returns the pure error. The pure error is compared with the
actual data qubit errors and the logical difference between the
two is saved as the target output for the neural network. The
error syndrome is also given to the neural network, which
produces a logical error estimate. By comparing such an
estimate to the target logical difference, the correctness of the
estimation can be derived, which can then be used to assess
during the training of the NN or to evaluate its performance.

A. SAMPLING

Since this work only focuses on feed-forward neural net-
works that are unable to deal with measurement errors due
to their lack of memory, we adopted the depolarizing error
model without measurement errors. The error model is im-
plemented by applying a random physical error on each data
qubit in every cycle chosen among a X-, Y-, or Z-error with
equal probabilities p/3. This sampling is done on the fly just
before the neural network is run, without pregenerating a
dedicated training and testing dataset.

Prior work [33] investigated the optimal way of generating
such a dataset without overfitting. To generate their dataset,
they sampled a large number of data qubit error configura-
tions and recorded the resulting error syndrome and logical
error of the PED. For every error syndrome, a distribution
of the four resulting logical errors (I, Xy, Y7, Z ) was saved.
The neural network was then trained on this finite error syn-
drome dataset with the target output being the corresponding
logical error distribution until it reached a certain accuracy
on such a training dataset. However, due to the huge space
of possible error syndrome for SC distances larger than 5,
only a small set of all possible error syndromes is represented
in the dataset. Furthermore, the logical error distribution for
each error syndrome is also undersampled. Especially for the
rarer error syndromes, only a single logical error might be
sampled. This will inevitably result in an incorrect training
data set, with no guarantee of generalization and a large risk
of overfitting to incorrect data.

This work proposes a different method. Our simulation
setup does not generate a predetermined finite dataset. In-
stead, this work keeps sampling new data on the fly only
providing a single syndrome with the corresponding logical
error at each step, which will always be correct. The training
procedure itself will then average out all of these points and
the neural network will learn the error distribution. Overfit-
ting is avoided as all the data will be new, and the neural net-
work will only benefit from training longer. In addition, since
the dataset is uncorrelated, the resulting logical error rate at
the end of the training will always represent the performance
of the neural network. Thus, instead of finishing training by
matching the training dataset, our work stops training when
the current decoding performance is saturating or deemed
sufficient.

The work in [33] found that training at a certain physical
error rate will optimize the performance of the neural net-
work at that physical error rate. Because we want to optimize
the performance at the py,, we sample at the physical error
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rate corresponding to the py, of the MWPM algorithm for
that distance.

B. TRAINING AND TESTING
The training is done using the ADAM optimizer [51] with a
batch size of 4992. As we have no finite dataset to optimize
for, we trained the neural network for 300 000 batches. This
results in a total dataset of ~ 1.5 x 10° for each training.
Fig. 14 plots the logical error rate during training per iteration
of 2000 batches on the largest used neural network, showing
the performance saturation after 150 iterations. The testing
after training is done similarly to training. We again run 2000
batches to obtain the desired statistical accuracy. This is done
for several logarithmically spaced values in a range between
0.03 and 0.3. As can be seen in Fig. 7, this range includes the
Dth, the decoder threshold, and clearly shows the slope differ-
ence. To obtain the slope, a fit is performed using the model
in (1), and to obtain the py,, we interpolate the two values
above and below the ler = per line in the logarithmic domain.
The reported variance used in the confidence interval is the
sum of the variances of these two points. For the simulations
that include quantization, this process is repeated for every
combination of quantization levels and regularization levels.
All training and testing were done on custom-written code
in C++ and Cuda, which was run on NVIDIA Tesla K40
GPUs over a span of a couple of months. All code is available
at [1].

C. COST FUNCTION FOR QUANTIZATION

Due to the targeted hardware implementation, some addi-
tional regularization terms are added to the typical mean-
squared-error cost function used during the NN training. The
process is illustrated in Fig. 13. Usually, the weights are ran-
domly initialized in a certain range [see Fig. 13(a)]. During
training, the weights expand outward [see Fig. 13(b)] [52],
which usually is not a problem for weights using the floating-
point representation. However, if we want to quantize those
weights to a set of discrete levels [see Fig. 13(c)], issues
arise when limiting the number of bits used in quantization.
If, for example, all the weights are quantized between —1
and +1, all weights outside this region are clipped to —1 and
+1 [see Fig. 13(d)]. To push the weights toward O during
training, we can add the sum of all squared weights |w]|?
to the cost function [see Fig. 13(e)] [52]. This will push
less important weights to zero and decrease the average size
of all weights. Another problem is that before quantization
all the weights are uniformly distributed between the +1
range. To minimize the quantization error, we can also try
to push the weights toward certain quantization levels during
training [see Fig. 13(f)]. This can be done by adding the sum
of the squares of the difference between every weight and
the nearest quantization level |w — wy |2. Combining the two
[see Fig. 13(g)] results in the following cost function:

S o= (P Y w-wl) 0
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FIGURE 13. Method adopted for training to optimize the representation
of the weight using fixed point rather than floating point. This involves
using weight regularization to push the weights toward zero and toward
the nearest quantization level. The weights and outputs are then
quantized after training.
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FIGURE 14. Logical error rate during training for a distance 9 code with
the maximum neural network used in this work (hidden layer sizes: 256
and 64), comparing to the MWPM decoder the final error rate for
different transferfunctions (TanH and SQNL) and for the use of the
rotational symmetry (0 or 1). The error bars show a confidence interval
of 99.9%.

where y is the output, 7 is the target output, w is the value of
the weight, and w, is the quantized weight. The additional
scaling term r decreases the influence of the weight regular-
ization compared to the output error.

To further decrease the quantization error, a different num-
ber of quantization bits can be used to sample the weights
than is used for the regularization. An example where we
sample with an additional bit is shown in Fig. 13(h). The
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final reported performance is the optimum over all possible
regularization bits. Finally, because we use two’s comple-
ment signed fixed-point numbers, the discussion mentioned
above should be in the range [—1, 1 — 1/2b’]], where b is
the number of bits.

V. DECODING PERFORMANCE RESULTS

The main objective of this work is to minimize the com-
plexity of the neural network used in the HLD, while still
obtaining a competitive decoding performance. Reducing the
complexity implies a reduction in the number of free param-
eters. For instance, this can be done by reducing the size of
the neural network, or by constraining the architecture and
weights. Constraining should be done with care [53], but can
reduce the size while still improving the performance [54].
An example is CNNs, where the connectivity is limited and
weights are reused.

In this work, we focus on four tuning knobs that influence
both the decoding performance and the hardware cost: the
rotational symmetry, the transfer functions, the layer sizes,
and the number of bits used for quantization. When looking
at these parameters, we will compare the obtained decoder
slope and the py,. First, the influence of rotational symmetry
is determined. Next, different transfer functions are com-
pared. These results are then used in a layer-size sweep and
in a bit-width sweep for the quantization.

A. ROTATIONAL SYMMETRY

This work focuses on fully connected neural networks, thus
leaving exploration of other SC symmetries using CNNs for
future work. However, the rotational symmetry of the SC
and our PED can be investigated. The weights of the neural
network can be copied and rotated four times. If we then
use an initial neural network with a quarter of the size, the
number of independent weights is divided by four, while still
keeping the same total amount of weights and connectivity.
This will both reduce the hardware cost by reducing on-chip
memory, and ease the optimization during training.

In order to compare the performance difference between
rotating the neural network or not, we ran simulations for all
different distances, transfer functions (TanH, ReLU, SQNL,
see following section), and layer sizes (from 4 to 256). For all
these simulations, both a version with and without rotational
symmetry is trained. The py, and slope have been extracted
and the averages over the different transfer functions and
layer sizes are presented in the top two rows of Table II. The
average is calculated by taking the geometric mean of the
ratio between including and excluding symmetry for every
configuration. If the ratio is larger than 1, an improvement
is found by rotating. Since the performance for some con-
figurations was too low, resulting in an undefined slope or
P, those configurations were excluded from the computed
average.

We find that including rotational symmetry has a positive
effect on both the pg, and the slope for all distances. This is
mainly attributed to the training having an easier time finding
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TABLE Il Average py, and Slope Improvements When Comparing the Use
of Rotational Symmetry and the Different Transfer Functions

Performance Distance
comparison 3 5 7 9 All

Rotated @  pg  1.0133  1.0320 1.0563 1.0850  1.0411

Unrotated  Slope  1.0042  1.0107  1.0290 1.0546  1.0207
SQNL® pm 10201 11637 12830 13154 1.1703
Tant Slope  1.0021 1.0552 1.1378 12137  1.0822
ReLU® pn 09771 09957 10177 1.0387  1.0008
TanH Slope 09936 09978  1.0127 1.0605 1.0101

*Averaged over all transfer functions.

b Averaged over both rotated and unrotated configurations.

The ratio of the geometric means of the performance over different layer sizes (exclud-
ing cases when the parameter is undefined) is reported.

an optimum and is in line with the results in [55] for a Toric
code. The improvement increases for larger distances, which
is likely due to the larger neural networks performing better
and benefiting more from the weight regularization. This is in
line with the results found on layer sizes later in this section.

B. TRANSFER FUNCTIONS

Different transferfunctions will have different hardware
costs and decoding performance, with this work will fo-
cus on, in descending hardware cost, hyperbolic tangent
(TanH), squared nonlinearity (SQNL), and rectified linear
unit (ReLLU), defined as

et —e*
TanH(r) = <% 1
) = S (11)
0, f 0
ReLU(x) = orx = (12)

x, forx>0

-1, forx < —1
2x+x2, for —1<x<0

SONL(x) =
ANLOI =15 2 for0<x<1

13)

1, forx > 1

For simplicity, every node will use the same transfer function.

The lower half of Table II compares the performance for
different transfer functions similarly to the comparison for
the rotational symmetry. The more computationally expen-
sive TanH is taken as a reference. The average performance
difference of the ReLU over the TanH is not significant. Since
the ReLU is much cheaper in hardware implementation (not
requiring any exponential), it is attractive even for roughly
equal performance.

The SQNL does show a large improvement, up to 31%.
This, in combination with the simplicity of the required hard-
ware, make SQNL the preferred choice.

The transfer functions show the same performance in-
crease for larger distances, similar to the rotational symmetry
results. This strengthens our belief that this trend is due to the
need for larger neural networks for larger distances.

Based on these results, we limit the search space for the
follow-up analyzes by adopting rotated neural networks with
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FIGURE 15. py, performance for the smallest four SC distances as a
function of the number of nodes used in the first hidden layer. For each
distance, we report the results for a second hidden layer with 64 nodes
(line with higher py,) and with 4 nodes (line with lower py,). The dashed
lines show the MWPM py,. The error bars represent a confidence interval
of 99.9%.

the SQNL function. The results with the other options are
available in the supplementary materials [1]. We also limit
ourselves to the py, performance.

C. LAYER SIZES

As discussed in Section III, this work uses two hidden layers
and an output layer with two nodes, as there are two outputs,
thus using the neural network shown in Fig. 11 for [ = 3.
We assume that reducing the number of nodes in any of the
hidden layers will reduce the hardware cost but, as shown in
the following, will degrade the decoding performance due to
the reduced computational power of the neural network.

A summary of the layer size sweep is shown in Fig. 15 by
plotting py, as a function of the number of nodes in the first
hidden layer. The achieved slope is not shown in this section
and the next, but the correlation between py, and the slope is
shown at the end of this section in Fig. 17. For each distance,
we report the results for a second hidden layer with 64 nodes
(line with higher py,) and with 4 nodes (line with lower pg,).
All other investigated second layer sizes lie in between these
two cases.

All lines in Fig. 15 show a similar trend, saturating to max-
imum performance with increasing layer sizes. This maxi-
mum py, increases for larger distances, and, as expected be-
fore, a larger distance requires a larger neural network for the
same py,. The largest tested neural network decoder (256 and
64 nodes in the first- and second-hidden layer, respectively)
is enough to outperform MWPM, whose performance is in-
dicated by the dashed lines. For the smallest distance of 3,
almost any neural network reaches maximum performance.
For distance 9, the maximum is not yet visible, indicating
that future research should include larger neural networks.
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FIGURE 16. py, performance degradation of the quantized neural
networks with respect to their floating-point counterparts. All
configurations are shown in lighter colours. The thicker lines represent
the average performance degradation.

The effect of the second layer size is shown as the dif-
ference between the higher and lower line for each distance.
More detailed data are included in [1]. The first hidden layer
size has a stronger impact on performance than the second
layer, although this is stronger for larger distances.

D. QUANTIZATION

Using a fixed-point representation for the data in the NN
instead of a floating-point representation can significantly
save on hardware costs, at the price of the decoding perfor-
mance. Since there is no strategy to determine the optimal
number of bits in the fixed-point representation [56], we
explore how performance varies for different quantization
levels. Ideally, the optimum number of bits for each node
depends on the number of input nodes and the domain of
the transfer function, and in principle can be different for
node output, weights, and biases. However, for simplicity of
the study, we adopt the same number of bits to represent the
outputs, the weights, and the biases in all layers, except for
the 1-bit global inputs and outputs of the NN.

To see the effect of quantization, we compare the perfor-
mance of the neural network before and after quantization.
This is done by dividing the quantized (fixed-point) py, by
the floating-point py,. The floating-point performance before
quantization does include the regularization term that attracts
the weights to certain quantization levels. These results are
shown in Fig. 16, plotting the performance degradation due
to the quantization for all different configurations of layer
sizes and quantization levels used in weight regularization.
For layer sizes, this is between 4 and 256 in the first hidden
layer and between 4 and 64 in the second hidden layer. The
weight regularization levels are varied between 4 and 256
levels (2 and 8 bits). The x-axis shows the number of bits
used for representing the data during evaluation.
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TABLE Ill Decoding Performance of This Work Compared to the MWPM
Decoder and the Work of [33]

Performance Used Distance
parameter Decoder 3 5 7 9
MWPM  0.08251 0.10372  0.11368  0.11932
[33] 0.09815  0.12191  0.12721  0.12447
Pth Float 0.09769  0.12657  0.12917  0.12490
Fixed 0.09781  0.12637  0.12934  0.12430

MWPM 1.856 2.723 3.601 4.496
Slope Float 1.886 2.869 3.812 4.663
Fixed 1.894 2.866 3.820 4.667

Min. Bits Fixed 3 4 5 7

Results are limited to the use of the rotational symmetry and the SQNL transfer
function, for both the best floating-point performance and the best performing fixed
point neural network. We also report the minimum number of bits needed to obtain a
P higher than that of the MWPM decoder.

A couple of trends can be observed. First, 9 bits are enough
for most configurations to reach floating-point performance
(a value of 1). Next, larger distances need more bits for the
same performance degradation. These trends are captured in
the thick lines as cumulative average performance degrada-
tion. These lines represent the average degradation in the per-
formance when going down to fewer bits. First, all points at 9
bits are averaged for a certain distance. Then, every following
step down in bits, we subtract the average degradation of all
lines in that distance.

From the data [1], we also see that we need more bits
to reach the MWPM performance for larger distances. For
increasing distances we need 3, 4, 5, and 7 bits. One expla-
nation could be due to the relation between layer sizes and
quantization discussed at the start of this section. This would
indicate that more research into quantization dependent on
layer size is needed. However, another option would be to
look into CNNs, which effectively decreases the number of
inputs per node.

E. COMPARING DECODING PERFORMANCES
Table III combines all the results discussed so far. It compares
the maximum py, and slope found in this work to the neural
network decoders in [33] and the MWPM decoder. The data
in the table are limited to the use of the rotational symmetry
and the SQNL activation function, and to a layer size of
256 and 64 for the first and second-hidden layer, respec-
tively. Even with neural networks smaller than in [33], we
obtain slightly higher py,, thus confirming the validity of our
training method. It also means that our choice for a simpler
transfer function does not affect the performance. Finally, we
see that quantizing (at least 8 or more bits) does not result in
any significant degradation in the performance.
Interestingly, a distance-3 decoder requires only a very
small neural network and a few bits. Because, as shown
before, the added symmetry improves the performance, an
interesting possibility is using CNNs [39] or distributed
decoders [40] based on distance-3 kernels, thus requiring
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FIGURE 17. Correlation between the slope and py, for the four
distances. Every dot represents a different neural network configuration
(rotated with SQNL function and all layer sizes). The dashed lines
indicate the slope and py, of the MWPM decoder.

simpler hardware, allowing the decoding of larger distances
and even increasing the decoding performance.

Finally, an overview of all decoders is shown in Fig. 17.
In this figure, every decoder is depicted with a dot in the
color of the corresponding distance, and the dashed lines
represent the performance of the MWPM decoder. The cor-
relation between the slope and the py, is quite apparent. The
main takeaway from this plot is that a decoder at a larger
distance can have a worse slope than a decoder at a smaller
distance. Thus, if the decoder cannot achieve the sufficient
performance, it might not be economical to go for a larger
distance. For example, a decoder could be too large to be
cointegrated with the qubits, consume too much power, or
have too large a delay to keep up with the generated data. For
this reason, the following section will analyze the estimated
hardware cost.

VI. HARDWARE COSTS

A. HARDWARE ESTIMATE

As we want to find out the minimal achievable delay and
we do not need any memory for recurrency inside of the
neural network, we chose a fully parallel combinatorial im-
plementation. Some flip-flops would be needed to store the
input and outputs of the neural network during inference,
and the weights and the biases would be stored in some
external RAM. However, for illustrating the effects of solely
the neural-network logic on the hardware, the cost in area
and power of those memories and the memory access are not
included in the following estimates.

Although one could expect that the absence of a clock
and flip-flops would decrease the power consumption, this
is not always the case [57]. A fully combinatorial circuit will
propagate any glitch to the outputs, thereby increasing the
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FIGURE 18. Schematic of the hardware in one node. First, (a) m n-bit
inputs are combined with their corresponding weights into (b)
multiplicants needed for the Baugh-Wooley (BW) multiplication scheme.
(c) These multiplicants are then added in a carry-save adder (CSA) tree.
Finally, (d) result is split and passed through the SQNL block to obtain
(e) n-bit output.

amount of charging and discharging of the capacitance of
the digital cells and the interconnect parasitics. Instead, these
glitches would not be able to propagate in a more pipelined
approach. In combination with clock gating, this could even
decrease the power consumption [57], although pipelining
would increase the area and delay.

The data flow in each node are depicted in Fig. 18. First, all
the multiplicands are calculated using the Modified Baugh—
Wooley 2’s complement method [57], [58] (b). These are
then summed in a Wallace carry-save adder tree [59] (c). Fi-
nally, to implement the SQNL function [see (13)], the result-
ing fractional part of the sum (d) is passed through a squaring
unit [57] and added to or subtracted from a bit-shifted sum
depending on the sign (e). This process is different for input
nodes and output nodes. Each input is only one unsigned bit,
and thus, the Baugh—Wooley method is replaced by a simple
AND operation. The outputs are also just one bit, thus, only
the sign of the sum is needed.

A hardware description of the resulting digital circuit is fed
to the GENUS synthesizer using the CMOS standard static
library form the adopted TSMC 40-nm CMOS process to ob-
tain the circuit schematic. To efficiently obtain the hardware
estimates for all the neural network configurations, only the
individual nodes are synthesized. The resulting delay, area,
and power from the individual nodes are then summed to
obtain an estimate for the total neural network.

To estimate the delay of the NN, we extract from the
synthesis the critical path of the node, which is equal to the
critical path of the respective layer as every node in a layer
is the same. The total delay is simply obtained by summing
the critical path delays of the layers. This estimate does not
include the additional delay due to the interconnect between
layers.

The area of each node is estimated as the sum of the area
of the digital cells in the node, scaled by a fixed fill factor of
1. Since all the nodes are equal, the total area is just the sum
of the node areas, as we assume that the top-level layout can
be quite efficient and does not consume any additional area.

The power is defined as the average energy needed per
decoding cycle of 440 ns. To get a more accurate power esti-
mate, we perform transient simulations in Cadence Virtuoso
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FIGURE 19. py, of the quantized neural network decoders versus their estimated hardware cost. The figure shows the Pareto front of the different
distances and compares them to the MWPM decoder. The error bars represent a confidence interval of 99.9%.

of the nodes. This will include the extra power consumption
due to the propagation of glitches. The energy is then aver-
aged over 100 cycles. The simulations have an input activity
factor of 50%.

B. RESULTS

Figs. 19 and 20 show the hardware cost estimates (delay,
area, and power) of an ASIC design versus the obtained py,
and slope, respectively. For both figures, the hardware cost
is divided into three plots. The dots in these plots, colored
according to the corresponding distance, represent all the
quantized configurations, as shown in Fig. 16. The solid lines
show the Pareto front for every distance, i.e., the set of the
neural networks that perform better for that particular trade-
off. The horizontal dashed lines represent the performance of
the MWPM decoder. The hardware estimates of the individ-
ual nodes are included in [1].

As shown in Fig. 19, a larger circuit is needed to obtain
the same py, at a larger distance. This trend holds until the
Pareto fronts start to flatten out. The performance saturation
is very clearly visible for distances 3 and 5. For distances 7
and 9, the curves also seem to saturate but this is only visible
in the Pareto front and not in the whole dataset. We would
also expect py, to go on further, especially for distance 9, as
larger distances are expected to have a larger py,. The satu-
ration of the Pareto front is, therefore, attributed to the finite
size of our neural networks, which limits their performance
at larger distances. Similar trends appear in Fig. 20 on the
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slope data. Here, the data points also show less saturation for
the larger distances. However, increasing the neural network
sizes would be necessary to prove this in future work.

The data on the decoder slope in Fig. 20 also indicate
a correlation between the hardware cost and the obtained
performance. In contrast to the py,, the Pareto fronts for the
different distances seem to follow the same basic trend, and
differentiate only by a different saturation value.

The delays of the neural networks are all smaller than
30 ns, i.e., an order of magnitude lower than the required
440 ns, thus indicating that less parallelism in the hardware
implementation is feasible. Lower parallelism could help
reduce both the area and power, which are quite large and
scale exponentially with the performance. However, when
using non-Clifford gates, a decoding time faster than 440 ns
might be preferred. In case of errors, we either must correct
the state before applying the non-Clifford gate [44], or we
must update the logical Pauli frame and correct the state just
after applying the non-Clifford gate and before applying the
next gate to prevent the errors from spreading into a complex
multiqubit error [60], [61]. Both methods require the decoder
to keep up with the error syndrome generation, i.e., keep the
throughput faster than 440 ns, but a faster decoder would
be preferred so as not to limit the execution speed of the
quantum algorithm.

Not being limited by the delay, there should be enough
time to use RNN. RNNs are needed for decoding measure-
ment errors and would increase the number of inputs per
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FIGURE 20. Slopes of the quantized neural network decoders versus their estimated hardware cost. The figure shows the Pareto front of the different

distances and compares them to the MWPM decoder.

node, as their own outputs in the previous cycle are concate-
nated with the outputs of the previous layer. It also opens
the possibility to use the more complex recurrent cells of
long-short term memory that typically have longer delays,
consume more hardware, but also have shown a better decod-
ing performance. Finally, more (and thus perhaps smaller)
layers could be used as required by CNNs, which might need
a deeper neural network, especially for larger distances.

Looking at the py, and slope plot together, two considera-
tions can be drawn as follows.

1) If the highest py, is preferred given certain hardware
constraints, one can best choose a smaller SC distance.
As a high py, is mainly preferred when the physical
error rates are higher, this means the qubits probably
could not be integrated into larger distances anyway.
If the highest slope is preferred, it does not make sense
to choose a distance where the slope already starts to
saturate. Thus, the largest distance is the best choice.
Similar to the previous point, if a high slope is pre-
ferred, probably the qubits are performing quite well
at a low physical error rate. This means that the qubits
can probably be used together to form larger logical
qubits.

2)

Fig. 21 supports these conclusions. In this figure, the op-
timum distance is shown for certain area constraints. Every
line shows a different area constraint. This does not mean that
this configuration will fully occupy this area but it will never
exceed it. The markers on the lines change color depending
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FIGURE 21. Optimal distance to obtain the lowest logical error rate for a
certain physical error rate. The different lines indicate the maximum
allowed area for the decoder.

on what distance obtains the lowest logical error rate for that
physical error rate. As discussed, lower distances perform
better when the physical error rate is around the py,. In that
region, as also Fig. 19 illustrates, the best performance for a
restricted area is always for lower distances. However, when
the physical error rates become low enough, the slope starts
to dominate. This is seen by a shift toward larger distances
for lower physical error rates.
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TABLE IV Three Designs That Fit on the Artix-7 FPGA and Lie on the py,
Pareto Front

Distance 3 5
Layer 1 Size 8 16 64
Layer 2 Size 4 4 64
Bits 3 5 4
Pth 0.0823 0.0976 0.1037
Slope 1.8641 1.8868 2.6641
Delay 17.9 ns 719 ns 87.6 ns
FPGA Area 351 LUT 2942 LUT 44670 LUT
Power < 1mW 6 mW 132 mW
Delay 7.3 ns 12.3 ns 14.3 ns
ASIC Area  0.0031 mm?  0.0114 mm?  0.3937 mm?
Power 10.7 pW 43.2 uW 1.0 mW

The table shows the distances and configuration, along with the decoding perfor-
mance and hardware cost for both the FPGA and the ASIC design. All designs have
d? — 1 inputs for layer 1 and two nodes in the output layer.

C. COMPARING ASIC TO FGPA

We demonstrated that for near-term QEC, smaller distances
are optimal. They obtain a higher py, given the same hard-
ware. Near-term QEC will also be a lot more experimental,
requiring more frequent changes to the configuration of the
neural network decoder and the corresponding weights and
biases. As ASIC designs are optimized for integration given
a certain configuration, they might not be suited for this task
due to very limited reconfigurability. On the contrary, FPGAs
can be reconfigured very easily and can even be synthesized
to incorporate certain weights and biases, thus even optimiz-
ing away unnecessary hardware. A downside to FPGAs is
that their hardware is more generic and, thus, less optimized
in terms of delay and power. Furthermore, their adoption
imposes a strict limit in the area, as only a fixed amount of
hardware primitives (look-up tables, flip-flops) can be used.

To compare the FPGA to the ASIC designs, the same hard-
ware was implemented on the Xilinx Artix-7 FPGA. How-
ever, instead of synthesizing all the nodes individually, the
whole design was synthesized and implemented as a whole,
thereby demonstrating if the design would actually fit on the
selected FPGA. The most promising designs were chosen,
either the ones lying on the Pareto front that would just barely
obtain the MWPM performance or the ones for which the
curves in Figs. 19 and 20 start to saturate.

After running synthesis and implementation using Xilinx
Vivado, only the designs in Table IV did actually fit on the
FPGA. These are the distance-3 decoders achieving the max-
imum performance and performance comparable to MPWM
and the distance-5 decoder with the MPWM performance.
All FPGA values are postimplementation room-temperature
estimates. The power estimate is the reported dynamic power
for a 440-ns clock period. The table shows that all decoders
still fit the delay requirements by a large margin. This means
that if this hardware would be optimized for area, e.g., by
reducing the parallelism, probably larger neural networks
could fit as well.

3101719

Despite those limitations, the results are very promising,
as even the FPGA designs can meet the required delay. The
delay and hardware costs would be even lower if the syn-
thesis was run with hard programmed weights but this was
omitted for a fair comparison to the ASIC designs.

D. MOVING TO CRYOGENIC TEMPERATURE

The values reported for ASICs are extracted from simu-
lations at 300 K. From these, we can draw some conclu-
sions about the performance at 4.2 K. The work of [62,
Fig. 10.1], [63] found that at cryogenic temperatures the
delay of digital cells decreases by up to 50% for mature
CMOS technologies thanks to the increase in mobility. How-
ever, the speed-up will be much less significant in advanced
commercial technologies as the increase in threshold voltage
combined with the reduction of supply voltages mitigates
those effects. As a result, the delay estimates can be assumed
to approximately hold also at 4.2 K. Due to the increased
subthreshold slope [64], the leakage power at cryogenic tem-
peratures is greatly reduced. Thus, the power at cryogenic
temperature is estimated to be lower than at 300 K. Finally,
due to the increase in mismatch [64] and latch-up [65], [66],
a larger area might be needed at 4.2 K to decrease the mis-
match and to increase the number of well-taps to combat
latch-up [67].

VII. DISCUSSION

We have proposed a new PED with more symmetries than
previous works. These symmetries were also incorporated
into the neural network resulting in the improved perfor-
mance. For future works, however, even more symmetries
could be exploited, for example, using a convolutional neural
network. Another benefit of the novel PED is the equal delay
of every chain.

A fully connected feed-forward neural network with two
hidden layers was used for the HLD. Two hidden layers were
chosen to minimize the delay and because this is enough to
fit any possible function given enough nodes. The hardware
estimates show, however that the delay is small enough to
allow for more layers.

For the space exploration, first the TanH transfer function
was approximated by the SQNL function, which is signif-
icantly cheaper in hardware cost and also outperforms the
TanH.

Next, the layer sizes of the two hidden layers were
swept and compared to the MWPM decoder and previous
work [19], [33]. Even though our layers were significantly
smaller, the obtained performance was on par with or better
than previous research. The results also showed that, espe-
cially for distances 7 and 9, the performance could be further
improved by increasing the layer sizes or the neural network
depth. These results for a feed-forward neural network can
be extended and compared to recurrent and CNNs in future
work.

To reduce the hardware cost, all weights and outputs were
quantized between 3 and 9 bits using a fractional fixed-point

VOLUME 3, 2022



Overwater et al.: NEURAL-NETWORK DECODERS FOR QUANTUM ERROR CORRECTION

@IEEE Transactions on,
uantumEngineering

two’s complement representation. For 9 bits, all distances
performed on par with the floating-point results before quan-
tization. Even fewer bits were needed to keep the perfor-
mance above that of MWPM. More bits are needed for larger
distances, possibly pointing to the need for some rescaling of
the transferfunction domain depending on the layer size. An-
other solution might be to use a sparsely connected or CNN.
This solution could also exploit the translational symmetry of
the SC and our PED. The final option to move toward fewer
bits is to either use a binary neural network or to train using
a different methodology than was used in this article.

Finally, the ASIC hardware cost was estimated for every
configuration in terms of delay, power, and area. The data
show clear trends for both the py, and the decoding slope.
The hardware cost for a certain py, is a lot higher for larger
distances. On the one hand, this means that, if the main objec-
tive is to obtain the lowest-cost hardware for physical qubits
with a high error rate, the lowest distance that can obtain that
P should be chosen. On the other hand, if the physical qubits
perform well below the py,, the data on the decoding slope
clearly show that there is a correlation between the steepest
slope and the hardware costs. It also indicates that with an
increasing distance, the maximum slope increases as well. If
the qubits perform well enough and a large enough SC can
be made, it is desirable to choose the larger distance.

The fully parallelized implementation chosen in this work
makes the needed hardware larger than necessary, as the
440 ns that are required to avoid a data backlog are met by
a large margin with by the ASIC and the FPGA designs.
This would justify designs with more hardware reuse to
tradeoff the extra delay for smaller and lower-power solu-
tions, which is needed to get the area well below 10 mm?
and the power below 1 W. Due to the reconfigurability of
FPGAs, the weights could also be synthesized into the de-
sign, removing a lot of unnecessary hardware. Both these
optimizations could significantly reduce the area and power.
Combined with the exploration of CNNs, this is a rele-
vant direction for future research. The hardware tradeoffs
for RNNs should also be explored when using a more re-
alistic error model including measurement errors, such as
circuit noise. Employing recurrency and using the circuit
noise error model would allow the comparison with other
competitive hardware decoders, such as [30], [31]. Currently,
our decoder shows competitive delays, while still perform-
ing better than the MWPM and Union-Find algorithms un-
der depolarizing error models. Previous work has shown
that this performance advantage also holds for RNNs under
a circuit noise model [33], [38]. Furthermore, our current
work focuses on fully connected neural networks, which are
not yet scalable for future large-scale quantum computers.
However, previous work [39] has shown scalable neural net-
works based on CNNs performing on par with MWPM up
to distance 64 Toric codes. Extrapolating these results, hard-
ware implementations of convolutional and/or RNNs repre-
sent a very promising alternative to be investigated in future
research.
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VIIl. CONCLUSION

This work presents an extensive space exploration of a HLD
for SCs consisting of a PED and a fully connected feed-
forward neural network with two hidden layers. The results
show that the decoder can be optimized for hardware sim-
plicity, while still obtaining state-of-the-art decoding perfor-
mance. The resulting hardware implementation allows the
decoder to obtain decoding times less than 30 ns in ASIC
and less than 90 ns in FPGA implementations, which is sig-
nificantly lower than the required 440 ns needed to keep up
with the SC cycles of current solid-state qubit technologies.
The required area and power dissipation for the ASICs are
realistic for a practical implementation at SC distances up to
9 and for decoding performance well superior to the MWPM
algorithm. This paves the way for QEC hardware that can be
cointegrated with the qubits at cryogenic temperatures.
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