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ARTICLE INFO ABSTRACT

Keywords: Pentamodes (first conceived theoretically by Milton and Cherkaev) are a very interesting class of mechanical

Pentamo‘ie_s metamaterials that can be used as building blocks of structures withdecoupled bulk and shear moduli. The

xetax?lat.znals pentamodes usually are composed of double cone-shaped struts with the middle diameter being large and the end
eta-fluids

diameters being tiny (ideally approaching zero). The cubic diamond geometry was proposed by Milton and
Cherkaev as a suitable geometry for the unit cell and has since been used in the majority of the works on
pentamodes. In this work, we aim to evaluate the degree to which the base unit cell design contributes to high
bulk to shear modulus ratio, also known as Figure Of Merit(FOM). In addition to the diamond unit cell, three
other well-known unit cell types are considered, and the effect of small diameter size and the ratio of large-to-
small diameter, o, on the FOM is evaluated. The results showed that regardless of the base unit cell shape, the
FOM value is highly dependent on the d (the smaller diameter size of double-cone) value, while its dependence
on the D (the greater diameter of double-cone) value is very weak. For d/h«x0.05 (h representing the linkage

3D printing

length), figures of merit in the range of 10° could be reached for all the studied topologies.

1. Introduction

Mechanical metamaterials are a new class of designer materials that
exhibit elastic properties rarely found in nature [1-5]. Such
rationally-designed materials include materials with negative Poisson’s
ratio (known as auxetics) [6-8], materials with negative stiffness [9,10],
and pentamodes [11-13].

The inverse problem of finding a microstructure that can give the
wanted mechanical properties is very difficult. This can be attributed to
the fact that, unlike many other fields such as heat conduction, electric
conduction, diffusion, etc., the underlying equations for mechanical
response of continuum-mechanics equations are not form-invariant
[14]. Direct lattice transformation approaches are simpler and easier
to implement. Many efforts have been made toward design approaches
to gain prescribed constitutive properties, the first of which can be
attributed to the pentamode structures introduced theoretically by
Milton and Cherkaev [15].

Pentamodes are metamaterials that, at least in theory, can be used as
building blocks of materials with any arbitrarily chosen elastic proper-
ties in different directions. This has led to a very practical application of
pentamode metamaterials where the bulk and shear moduli can be
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decoupled. In many use cases, pentamodes have very large bulk moduli
compared to their shear moduli [16-18], leading to the use of the term
“metafluids” for them [19]. Ideally, the 6 x 6 elasticity tensor of these
materials has 5 (“penta”) zero members, and only one member is
non-zero [15,19]. The pentamodes usually are composed of double
cone-shaped struts with the middle diameter being large and the end
diameters being tiny (ideally approaching zero). A perfect pentamode
metamaterial flows away with very small shear forces, and that’s why, in
practice, a small but “finite” shear modulus is needed. Therefore, in the
majority of the previously manufactured pentamode metamaterials [16,
19], the end diameters of the struts are small (but non-zero). Using
numerical and experimental studies, Kadic et al. [17], Martin et al. [13],
Schittny et al. [16], and Hedayati et al. [20] have shown that the smaller
diameter of the double cones (in the vertices of the lattice structure) are
the most determinant parameter in the mechanical properties of
low-density pentamode metamaterials. There are other more recent
works that have explored the change of struts cross-sections within the
lattice structures with struts that are not cone-shaped [21,22].

Milton and Cherkaev [15] proposed a diamond unit cell for such a
structure in which four linkages meet in equal angles at each vertex of
the structure. They proposed this morphology in analogy with bimode
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metamaterials, which can only support a single stress in
two-dimensional space. In their proposed design for bimode, three
linkages met at a point. Therefore, they concluded that a natural way
towards 3D extremal material (pentamodes) is to consider a unit cell
shape where only four linkages meet at the vertices. The diamond ge-
ometry has since been used in majority of the works on pentamodes.

In this work, we aim to evaluate the degree to which the main unit
cell design contributes to high bulk-to-shear modulus ratio (known as
FOM). As shown in Fig. 1, in addition to the diamond unit cell, three
other well-known unit cell designs are considered, and the effect of small
diameter size and the ratio of large-to-small diameter ratio, @, on the
FOM is evaluated.

2. Materials and methods

Creality LD-002R LCD 3D printer with ESUN PLA resins (Poly-
urethane acrylate) was used to manufacture all the specimens with a
layer height of 30 ym. The curing time was set to 7 s. The geometrical
dimensions of h = 4 mm, D = 1200 ym, and d = 400 yum were used for
all the manufactured specimens (Fig. 2). All the lattice structures were
composed of 5 x 5 x 5 unit cells in each direction. The dimensions of the
lattice structures based on cube, truncated cube, truncated octahedron,
and diamond unit cells were 21.42 4+ 0.45mm, 49.72 + 0.37 mm,
57.83 £ 0.15 mm, and 40.83 £ 0.25 mm, respectively. The mechanical
properties of the constituent polymer were obtained using dog-bone
specimens according to ISO D638-14. The bulk material had an elastic
modulus of E; = 0.51 GPa, yield strength of 6,; = 28.0 MPa, Poisson’s
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ratio of u; = 0.4, and density of p, = 1020 kg/m?®.

The compression experimental tests were performed using SANTAM
STM-20 (Tehran, Iran) mechanical test bench under a displacement rate
of 2.5 mm/min. Moreover, 20 kgf load cells were implemented to
measure the load level in the truncated cube and truncated octahedron
topologies, while 100 kgf load cells were used for measuring the forces
in the cube topology. One of the crucial factors influencing the accuracy
of the results is the load cell’s capacity. Given the delicate nature of the
manufactured samples and the anticipation of limited force-bearing
capacity, a load cell with lower capacity has been opted for measuring
the load level in the truncated cube and truncated octahedron
topologies.

Based on the microscopic measurements performed on the manu-
factured specimens, numerical finite element (FE) models were con-
structed and solved in COMSOL Multiphysics package (Sweden). To
discretize the models, approximately ~107 tetrahedral elements were
employed. A mesh sensitivity analysis was conducted to ensure nu-
merical convergence, resulting in optimum element sizes smaller than
14 pm at diameter d and 110 pm at diameter D. The MUMPS static solver
in COMSOL was utilized to solve the continuum mechanics equations. A
linear elastic material model was implemented, adopting the mechani-
cal properties of the constituent polymeric material that was obtained
from standard tensile test. A uniform displacement of 1010 pm was
applied to the top side of the lattice structure in ten incremental steps.

In the models constructed for uniaxial compressive loading (Table 1),
all the nodes at the lowermost surface of the lattice structures were
allowed to move in their plane only, and they were constrained in the

(e)

Fig. 1. The unit cells and corresponding lattice structures considered for this study: (a) cube, (b) truncated cube, (c) truncated octahedron, and (d) diamond to-

pologies. (e) The dimensions of struts.
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Fig. 2. The macroscopic and microscopic images of the manufactured pentamodes based on (a) cube, (b) truncated cube, (c) truncated octahedron, and (d) dia-

mond topologies.

Table 1
Geometrical parameters of all topologies.
h (mm) d (um) h/d a :D/d
12 200 60 1,2,3,4,5
400 30 1,2,3,4,5
600 20 1,23,4,5
800 15 1,2,3,4,5
1000 12 1,2,3,4,5

vertical direction. To obtain the elastic modulus, the elastic energy
absorbed in the structure was measured, and inserted in the relationship
E = 2UL/A&%, where U, L, A, and & denote the strain energy, dimension
of the lattice structure parallel to the loading direction, structure’s cross-
sectional area perpendicular to the loading direction, and the resulting
displacement. Similar simulations were carried out for obtaining the
shear modulus, where the lattice structure top surface was moved par-
allel to its plane. In the models constructed for hydrostatic compressive
loading, in each cartesian direction, one face of the lattice structure was
constrained, and the other face was displaced uniformly. The bulk
modulus was obtained from the elastic energy: B = 2U/ 9L5*. The shear
modulus was obtained from G = 2UL/A&%. Mesh sensitivity analyses
were performed, and it was found that element sizes in the range of
14-110 um gives acceptable results.

3. Results and discussions

The discrepancies between the elastic modulus obtained from the
numerical models and experimental tests were less than 9.5%, 21.5%,
and 15.5% for the cubic, truncated cube, and truncated octahedron
structures, respectively. The observed discrepancies between the
experimental and numerical results can be attributed to surface imper-
fections inherent in the fabricated samples. The presence of microcracks
on the surface disrupts the material’s homogeneity, leading to a reduc-
tion in its mechanical properties. Furthermore, the layered fabrication of
the piece introduces additional inhomogeneity, contributing to the
observed deviations. The elastic modulus obtained for the cube structure

was one order of magnitude greater than the corresponding values in
other geometries. In general, increasing the smaller diameter d increased
the elastic modulus in all the geometries exponentially (Fig. S2). The
exponential effect of increasing d on the elastic modulus was more sig-
nificant in the diamond structure compared to other geometries. The
relative elastic modulus for small diameter of d = 400 ym and for @ = 5
was 3.9x 107% 527 x 1074, 6.7x 1073, and 2.56 x 107° for the
truncated octahedron, truncated cube, cube, and diamond Ilattice
structures, respectively (Fig. S2). The effect of a on the increase in the
elastic modulus was almost linear for the cubic structure, while its effect
on other topologies was exponential (Fig. S2). As expected, in all
structures, the highest strain and stress levels occurred at the tip of
double-cones (Fig. 3). A relatively high level of similarity between the
stress and displacement contours in different struts of the lattice struc-
ture could be observed in the bending-dominated structures, i.e. the
diamond structure where all struts are inclined and to some degree in the
truncated octahedron structure where a high percentage of struts are
inclined. This is due to more homogeneous distribution of the applied
external load in all the struts when the arrangement of the struts is
similar throughout the whole structure.

Increasing the smaller diameter had a monotonic decreasing effect
on the Poisson’s ratio of the truncated octahedron, while it had negli-
gible effect on the Poisson’s ratio of the truncated cube and diamond
structures, and it had a non-monotonic effect on the cubic structure
(Fig. S3). For all the ranges of d and «, the Poisson’s ratio of the trun-
cated octahedron, truncated cube, cube, and diamond lattice structures
were in the range of 0.49 — 0.57, 0.15— 0.22, 0.04 — 0.4, and 0.48 —
0.62, respectively (Fig. S3). Increasing the @ value had a negligible effect
on the Poisson’s ratio of the truncated octahedron and diamond struc-
tures, while its effect on the cube structure was non-monotonic (Fig. S3).
Increasing the a value changed the Poisson’s ratio of the truncated cube
structure only for very large d and a values (Fig. S3d).

Increasing the smaller diameter d had a monotonic increasing effect
on the yield stress of the truncated cube and diamond structures
(Fig. S4). In the truncated octahedron and cube topologies, on the other
hand, the exponential growth diminished at d = 1000 ym (Fig. S3). The
relative yield stress for the small diameter of d = 400 ym and for a = 5
was 1.1 x 107%, 816x 107>, 1.1 x 1073, and 2.98 x 108 for the
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Truncated octahedron Diamond

1 o

Fig. 3. The discretization, strain contours, stress contours, and displacement contours for pentamodes based on cube, truncated cube, truncated octahedon, and

diamond topologies (d = 400 ym and @ = 4).

truncated octahedron, truncated cube, cube, and diamond Ilattice
structures, respectively (Fig. S4). Therefore, the yield strength of the
cubic structure was three orders of magnitude greater than that of the
truncated cuboctahedron and five orders of magnitude greater than that
of diamond structure. Increasing the a ratio had a more or less increasing
effect on the yield stress of all the structures other than truncated oc-
tahedron (Fig. S4). In the truncated octahedron topology, the ¢, — a
curve could get a bell-shaped geometry (Fig. S4b).

Increasing the smaller diameter d had a monotonic decreasing effect
on the B/G ratio of the truncated octahedron and diamond structures
(Fig. 4). The B/G ratio in the truncated cube topology had a peak at d =
400 ym for @ = 5 and a = 4 (Fig. 4). The B/G ratio for the small diameter
of d =400 ym and for a = 5 was 456, 575, 640, and 600 for the trun-
cated octahedron, truncated cube, cube, and diamond lattice structures,
respectively (Fig. 4). The greatest measured B/G ratio for the truncated
octahedron, truncated cube, cube, and diamond lattice structures was

835, 1273, 3092, and 1880, respectively. This shows that the cubic
structure had the greatest B/G ratio, while the truncated octahedron
demonstrated the smallest B/G ratio. After the cubic structure, the
greatest B/G ratio belonged to the diamond structure.

Independence of B/G from «a ratio has always been an important
characteristic of pentamode metamaterials. Hence, studying the effect of
aon B/G in topologies other than diamond is very important. The results
show that the B/G ratio of pentamode based on diamond unit cell is
almost independent of « for d = 400 — 1000 um (Fig. 4h). Some small
differences in the curve of B/G vs. a can be observed for the diamond
structure with d = 200 ym (Fig. 4h). Interestingly, the B/G ratio of the
truncated octahedron and cube topologies are independent from « for all
small diameter levels (Fig. 4b-f). The truncated cube structure is the
only structure that shows some dependencies on the « ratio, although it
is relatively small for d > 600 ym.

Comparing all the B/G ratios at all ranges of @ and small diameters d,
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Fig. 4. Effect of variation of the connection point diameter d (left column) and & (right column) on the ratio of bulk modulus to shear modulus for pentamodes based
on (a-b) truncated octahedon, (c-d) truncated cube, (e-f) cube, and (g-h) diamond topologies.
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insmall d, i.e. d =200 pm, the cubic structure has a very high B/ G ratio
in the range of 3 x 103, while the truncated octahedron unit cell has the
smallest B/G ratio (Fig. 5). In large d, i.e. d = 1000 ym, the truncated
cube structure has the highest B/G ratio (around 120), while the cubic
unit cell has the smallest B/G ratio (Fig. 5).

Looking at the results obtained, it can be seen that, the B/ G ratio is
almost independent from the « value, especially for structures with % >
0.05. This is because after exerting an external load, the stress is mostly
concentrated at the touching points of the double-cones, and the other

3500
2800 M
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parts do not significantly influence the load-bearing capacity of the
structure. Therefore, by varying the size of the thick part, one can adjust
the density of the lattice structure without changing its mechanical
response over a large range [17]. This can lead to structures with
decoupled modulus and relative density, in contrast to other porous
materials [23-27] which show a strong correlation between their den-
sity and mechanical properties [24,28,29]. Such a property can be very
appealing in designing biomedical implants where it is desired to have
independent distributions of mechanical properties and permeability
[20,30].

1000
g 800 A‘
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% 600
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Fig. 5. Effect of variation of & on the ratio of bulk modulus to shear modulus for smaller diameters of (a) 200 um , (b) pm, (c) 00 pm, (d) 800 um, and (e) 1000 pum.
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4. Conclusions

In summary, the mechanical properties of four types of lattice
structures (cube, truncated cube, diamond, and truncated octahedron)
with double-cone struts were studied experimentally and numerically,
and the effect of sizes of the smaller d and larger D diameters of the
double-cones on the figure of merit (FOM), i.e. the B/ G ratio, was
studied. It was observed that regardless of the base unit cell shape, the
FOM value is highly dependent on the tip diameter d value, but its
dependence on the thicker part with D value is very weak. For d/ hx 0.05
(h representing the linkage length), FOMs in the range of 10° could be
reached for all the topologies considered.
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