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On the Regret of Model Predictive Control
With Imperfect Inputs

Changrui Liu , Shengling Shi , and Bart De Schutter , Fellow, IEEE

Abstract—Implementing model predictive control (MPC)
in practice faces many subtle but prevalent problems,
including modeling errors, solver errors, and actuator
faults. In essence, the real control input applied to the
system always deviates from the ideal one based on
a perfect controller, resulting in an imperfect controller.
In this letter, we provide a general analysis to quantify
the suboptimality of MPC for Lipschitz-continuous nonlin-
ear systems due to imperfect control inputs in terms of
dynamic regret. Based on a general assumption about how
the imperfect controller may improve over time, sublinear
regret upper bounds are established for cases where the
closed-loop system under the ideal controller is Lipschitz-
contractive (i.e., its Lipschitz constant is smaller than
one). In addition, we also discuss how the regret scales
when the closed-loop system under the oracle controller is
not Lipschitz-contractive. The results provide insights into
designing suitable MPC strategies, especially for learning-
based MPC.

Index Terms—Optimal control, predictive control, regret
analysis, input errors.

I. INTRODUCTION

MODEL Predictive Control (MPC) is a powerful control
method due to its ability to account for future behavior,

handle constraints, and provide closed-loop guarantees (e.g.,
stability and robustness) [1]. The advantages of MPC have
facilitated numerous applications in fields like robotics [2]
and aerospace [3]. However, despite its theoretical soundness,
implementing MPC in real-world scenarios often encounters
limitations that compromise its performance. Common prob-
lems include model mismatch [4], [5], solver errors [6], and
actuator faults [3]. Although the source of these problems
differs, the common result is having discrepancies between the
ideal input derived with all ideal assumptions (e.g., the model
is fully known, and the actuator is flawless) and the actual
input applied in practice. Notably, the imperfect input causes
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accumulated deviations from the ideal trajectory, leading to a
gap between the expected and the actual control performance.

To improve the performance of MPC due to previously
mentioned factors, several strategies have been developed,
e.g., fault-tolerant MPC [3], adaptive MPC [7], and learning-
based MPC [8]. Nevertheless, obtaining the true model, an
exact optimizer, and accurate fault estimation is demanding.
Therefore, imperfect inputs are unavoidable, and analyzing the
performance gap due to the associated input deviation is thus
crucial for developing improved MPC strategies when perfect
inputs cannot be realized. This letter focuses on theoretical
performance analysis of MPC in the presence of imperfect
inputs instead of providing specific MPC designs.

In terms of the performance analysis of MPC, suboptimality
due to model mismatch has been studied, focusing on both
the transient performance using dynamic regret [2], [8], [9] as
well as infinite-horizon performance [4], [5]. Besides, several
methods have been developed to reduce suboptimality caused
by modeling errors, e.g., Bayesian learning with active explo-
ration [8], recursive-least-square (RLS) identification with
deterministic [7] or probabilistic guarantees [2], and offset-free
MPC design for improved tracking performance [10], [11].
The suboptimality due to early termination of the solver has
also been studied [6]. For actuator faults, the performance
analysis of MPC is an open problem. Moreover, the existing
results are mostly for linear systems [4], [5], [6] or assume a
dominant linear model [8]. For nonlinear systems, the effect
of parametric modeling errors has been investigated [9], and
the suboptimality due to a general imperfect controller has
been studied in [12] under the assumption that the closed-loop
system under the ideal controller satisfies a type of incremental
stability condition. Considering that all of the contributions
towards the performance analysis of MPC in the literature
studied a tailored MPC controller (e.g., MPC with Bayesian
learning [8] and certainty-equivalence MPC [4], [9]) and linear
models are still dominantly considered, it is imperative to
focus on a more general class of systems and to develop a
more fundamental analysis that can benefit the performance
analysis due to general imperfect inputs.

Contributions: In this letter, a general analysis is provided
to quantify the suboptimality of MPC in terms of dynamic
regret when imperfect control inputs are used. When the
ideal MPC is employed, the resulting closed-loop system
is called the oracle closed-loop system. Compared to most
of the existing results on linear models [4], [6], [8], we
focus on Lipschitz-continuous nonlinear systems with also
Lipschitz-continuous cost functions. More importantly, our
analysis framework does not specify the error source of the
control input or the specific MPC controller, encompassing
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a broad range of MPC control problems. The most relevant
work to our results is [12], compared to which the major
differences of our results are that i) only the simpler and less
restrictive Lipschitzness is assumed to quantify the trajectory
perturbation instead of using the E-δ-ISS property or other
related stability notions [13], ii) sufficient conditions on the
online learning (adaptation) rate of the suboptimal MPC
controller is specified to guarantee sublinear regret when the
oracle closed-loop system is Lipschitz-contractive (i.e., its
Lipschitz constant is smaller than 1), and iii) the cases where
the oracle closed-loop system is Lipschitz-noncontractive (i.e.,
its Lipschitz constant is greater than or equal to 1) are also
discussed. The regret analysis in this letter is the first in the
literature to preserve this high-level generality, making the
results applicable in different scenarios. Specifically, given
some additional assumptions on the control laws, we derive
regret upper bounds and provide sufficient conditions ensuring
sublinear regret when the closed-loop system under the ideal
control inputs is Lipschitz-contractive.

The remainder of this letter is organized as follows. In
Section II, the MPC control problem is introduced. Section III
formulates the performance analysis problem, where the
regret metric is defined. The analysis pipeline is provided in
Section IV, and Section V concludes this letter.

II. PRELIMINARIES

A. Notation
The sets of real and non-negative real numbers are denoted

by R and R+, respectively. The set of natural numbers is N,
and I[a,b] := N ∩ [a, b]. The two-norm is denoted by ‖ · ‖.
The sum

∑j2
i=j1

and product
∏j2

i=j1
with j2 < j1 are defined,

respectively, as 0 and 1. A function α : [0, a) → R+ for some
a ∈ R+ is said to belong to class K (i.e., α ∈ K) if α(0) = 0
and α is strictly increasing. Asymptotic bounds using Big-O
notation are obtained under T → ∞ with T being the horizon.

B. Optimal Control Problem
Consider a discrete-time dynamical system given by

xt+1 = f (xt, ut), (1)

where xt ∈ X = R
n and ut ∈ U ⊆ R

m are, respectively, the
state and input at time step t, and the function f : X ×U → X
is Lipschitz continuous in the state x and input u, i.e., ∀x′, x′′ ∈
X and ∀u′, u′′ ∈ U , it holds that

‖f
(
x′, u′)− f

(
x′′, u′′)‖ ≤ Lf ,x‖x′ − x′′‖ + Lf ,u‖u′ − u′′‖, (2)

where Lf ,x and Lf ,u are the Lipschitz constants. Input affine
nonlinear systems satisfy (2) if X is bounded [12], and similar
assumptions are also frequently used in MPC [8], [14]. The
set U is assumed to be compact, and U := {u ∈ R

m | gu(u) ≤
0}, where gu : R

m → R
cm . We further define diam(U) :=

supu1,u2∈U ‖u1 −u2‖, where diam(U) < +∞ as U is bounded.
At time step t, the system incurs a stage cost �(xt, ut), where
the function � : X ×U → R is also Lipschitz continuous, i.e.,
∀x′, x′′ ∈ X and ∀u′, u′′ ∈ U , it holds that

|�(x′, u′)− �
(
x′′, u′′)| ≤ L�,x‖x′ − x′′‖ + L�,u‖u′ − u′′‖, (3)

where L�,x and L�,u are the Lipschitz constants. Lipschitz-
continous costs are commonly used in MPC [8], [9] and
optimal control [12], and examples are the linear cost in
economic MPC [15] and 1-norm or ∞-norm costs [16]. Given

a prediction horizon N ∈ I[1:∞], at each time step t, the MPC
controller solves the following optimization problem:

PMPC(xt): min
{uk|t}N−1

k=0 ,{xk|t}N
k=0

F
(
xN|t

)+
N−1∑

k=0

�
(
xk|t, uk|t

)

s.t. xk+1|t = f
(
xk|t, uk|t

)
,∀k ∈ I[0:N−1],

gu
(
uk|t
) ≤ 0,∀k ∈ I[0:N−1],

x0|t = xt,

where xk|t and uk|t are the k-step-ahead predicted state and
input at time step t, F : X → R is the terminal cost that is used
to approximate the tail cost for the associated infinite-horizon
optimal control problem [1], [16], and xt is the measured
state.1 Solving PMPC returns the inputs {u�

k|t(xt)}N−1
k=0 , and only

u�
0|t(xt) will be applied. This optimization problem defines an

implicit control law as μOPT(xt) := u�
0|t(xt) [1]. The subscript

OPT indicates that μOPT : X → U is the ideal control law,
under which the closed-loop system is

x�
t+1 = fOPT

(
x�

t

)
:= f

(
x�

t , μOPT
(
x�

t

))
, (4)

where x�
t is the closed-loop state generated by (4) under the

ideal optimal control law μOPT at time step t. In the sequel,
OPT will be referred to as the oracle controller that has perfect
knowledge of the true model and can calculate the optimal
input without numerical errors.

III. PROBLEM FORMULATION

The ideal control law is based on perfect control, neglecting
practical considerations. The actual control applied to the
system is always a perturbed one, and a practical controller
could be designed that may have more functionalities (e.g.,
model learning [8], [17] or fault detection and isolation [3]),
or that may follow the baseline design without any additional
modules to tackle those practical problems (e.g., certainty-
equivalence MPC [4], [5], [9]).

We preserve the generality in this letter and uniformly
indicate the practical MPC controller by ALG and its induced
(time-varying) control law as μALG,t. Then, the (time-varying)
closed-loop system under μALG,t is given by

x̃t+1 = fALG,t(x̃t) := f
(
x̃t, μALG,t(x̃t)

)
, (5)

where x̃t denotes the state evolving under the controller ALG.
Assumption 1 (Existence of Invariant Set): There exists a

compact set Xinv ⊂ X such that it is positive invariant under
fOPT and fALG,t, (t = 0, 1, 2, . . . ), i.e., if x ∈ Xinv, it holds that
fOPT(x) ∈ Xinv and ∀t ∈ N, fALG,t(x) ∈ Xinv.

Assumption 1 states that there exists an implicit state
constraint set that will not be violated for the considered input-
constrained control problem, which eases the analysis of state
perturbation. Similar assumptions have been made in [12].
Moreover, since the set Xinv is compact and thus bounded, the
Lipschitz-continuous stage cost requirement (cf. (3)) becomes
less restrictive since the popular quadratic function �(x, u) =
xQx + uRu also fits the framework.

1In this letter, state-feedback MPC is considered and it is assumed that the
state can be accurately measured.
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To evaluate the performance of ALG compared to OPT, the
dynamic regret is used as the metric. Starting from x = x�

0 =
x̃0 ∈ Xinv, the dynamic regret RegT is defined as

RegT :=
T−1∑

t=0

[
�
(
x̃t, μALG,t(x̃t)

)− �
(
x�

t , μOPT
(
x�

t

))]
. (6)

The problem is to find a theoretical framework to derive an
upper bound of RegT and to specify conditions under which
the regret is sublinear in T , i.e., limT→∞ RegT/T = 0. A
sublinear regret upper bound implies that ALG performs at
least as well as OPT in the long run. It is also noted that
RegT is a function of the prediction horizon N. However, this
explicit dependency on N is out of the scope of the analysis
pipeline in this letter and is left for future work.

Remark 1: One important aspect of MPC controllers is
stability, which is often guaranteed by design or imposing
additional assumptions. Stability is not needed in the analysis
of this letter, and the primary concern of the MPC controller
formulated as in PMPC(xt) is to minimize the cost in the long
run instead of regulating the state to a certain equilibrium.
However, as will be discussed in Remark 4, stability can help
achieve sublinear regret under weaker conditions.

IV. REGRET ANALYSIS

In this section, the regret analysis is provided.
Section IV-A presents assumptions and preparatory analysis.
In Section IV-B, a refined analysis under the contractive
perturbation condition is given, extending the results of [12].
The final Section IV-C discusses the case without contractivity.

A. Preparatory Analysis
Based on the Lipschitz continuity of �, the regret can be

bounded as

RegT ≤
T−1∑

t=0

[
L�,x‖x̃t − x�

t ‖ + L�,u‖μALG,t(x̃t) − μOPT
(
x�

t

)‖],

(7)

where μALG,t(x̃t) − μOPT(x�
t ) needs to be evaluated. In this

letter, μOPT(x̃t) is used as a bridge to connect μALG,t(x̃t) and
μOPT(x�

t ). Some additional assumptions are needed.
Assumption 2 (Oracle Perturbation): The control law μOPT

is Lipschitz continuous, i.e., there exists a constant LOPT > 0
such that ∀x′, x′′ ∈ X , it holds that

‖μOPT
(
x′)− μOPT

(
x′′)‖ ≤ LOPT‖x′ − x′′‖. (8)

Assumption 2 requires μOPT being at least continuous,
which holds when f , �, and F are all continuous, U
is a polytope, and the solution u�

0|t(xt) is unique ∀xt ∈
Xinv [1, Th. 2.7 and C.34]. Additional conditions to estab-
lish the Lipschitz continuity (8) require regularity of the
optimization problem [5], [9]. Nonetheless, in the litera-
ture, the perturbation relation (8) is often either directly
assumed [12], [18] or established with additional regularity
properties [5], [8], [9].

Assumption 3 (Input Error Bound): There exist {δt}∞t=0,
each of which is a mapping X → R+, such that

‖μALG,t(x) − μOPT(x)‖ ≤ δt(x), ∀x ∈ X ,∀t ∈ N, (9)

where δt(x) is called the per-step control error.

Assumption 3 provides a quantitative bound for
‖μALG,t(x) − μOPT(x)‖, and deriving an exact δt usually
requires relaxations [5], [6], and thus (9) holds with inequality
in general.

Remark 2 (Bounded Input Error): Assumption 3 is inter-
preted as the norm of the difference between the inputs
generated using ALG and OPT is upper bounded by an explicit
function of the state x, reflecting the input errors. One may
also use a more conservative state-independent bound as δ�

t :=
maxx∈Xinv δt(x). It should be noted that δt(x) (and thus also δ�

t )
is bounded, i.e., δt(x) ≤ diam(U). The specific form of δt(·)
depends on specific practical controllers.

According to (7) and (8), the regret upper bound depends
on ‖xt − x�

t ‖. In addition, it is obvious that the input error at
any time t may also impact ‖x(k) − x�(k)‖ for all k ≥ t + 1.
Define the closed-loop disturbance df ,t(x) as

df ,t(x) := fALG,t(x) − fOPT(x). (10)

The closed-loop system in (5) can then be rewritten as

x̃t+1 = fOPT
(
x̃t
)+ df ,t

(
x̃t
)
. (11)

In addition, due to the Lipschitz continuity of f (cf. (2)) and
Assumption 3, it holds that

‖df ,t(x)‖ ≤ Lf ,u‖μALG,t(x) − μOPT(x)‖ ≤ Lf ,uδt(x). (12)

To study the state perturbation, Lipschitz continuity of (4)
is helpful. Given that both the system and the oracle controller
are Lipschitz continuous (see (2) and (8)), the closed-loop
dynamics fOPT under the oracle controller μOPT is thus
Lipschitz continuous on Xinv, i.e., for all x′, x′′ ∈ Xinv, there
exists a constant Lf ,OPT ≥ 0 such that

‖fOPT
(
x′)− fOPT

(
x′′)‖ ≤ Lf ,OPT‖x′ − x′′‖. (13)

Based on the reformulated dynamics in (11) and the dis-
turbance bound in (12), a quantitative bound on the state
perturbation ‖x̃t − x�

t ‖ can be established, which is given in
the following lemma.

Lemma 1 (State Perturbation): For any time step t ∈ N, the
state perturbation ‖x̃t − x�

t ‖ satisfies

‖x̃t − x�
t ‖ ≤ Lf ,u

t−1∑

i=0

Lt−1−i
f ,OPTδi(x̃i), (14)

where Lf ,OPT is given in (13), Lf ,u is given in (2), and δi(·) is
given in Assumption 3.

The proof of Lemma 1 is in Appendix A. Having established
the state perturbation bound, the regret upper bound can be
further streamlined.

Proposition 1 (Preparatory Regret Upper Bound): The
regret RegT satisfies

RegT ≤
T−1∑

t=0

[

Ll,u + SL

T−2−t∑

i=0

Li
f ,OPT

]

δt
(
x̃t
)
, (15)

where SL := (L�,x + L�,uLOPT)Lf ,u.
The proof of Proposition 1 is in Appendix C. To elab-

orate, (15) provides an upper bound of RegT in terms of
the per-step control error δt(x̃t), explicitly reflecting how
suboptimal the practical controller ALG is. The error bound
in (15) is also consistent, i.e., the bound degenerates to 0 when
δt(·) = 0 for all t ∈ N. We further impose an assumption about
ALG, describing how ALG may improve online.

Assumption 4 (Algorithmic Improvement): There exists a
critical time step Tct < +∞ such that
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δt
(
x̃t
) ≤ ηt−Tct

[
δt−1(x̃t−1) + ct

(
�x̃t

)]
,∀t ≥ Tct, (16)

where ηt−Tct ∈ [0, 1], ct ∈ K, and �x̃t = ‖x̃t − x̃t−1‖.
The inequality (16) captures a broad range of scenarios.

First, ηt−Tct can be interpreted as learning rates, characteriz-
ing how ALG improves and thus approximates OPT online.
Besides, ct(�x̃t) specifies the additional cost due to state vari-
ation, and this type of cost typically exists in MPC with model
learning [8] and real-time iteration [12], and in approximate
MPC with interpolation errors [19]. It should be noted that (16)
is valid after the critical time step, reflecting data collection
procedures in, for example, online identification [17]. Based
on Assumption 4, an upper bound of δt(x̃t) can be provided,
which is given in the following lemma:

Lemma 2: For t ≥ Tct, δt(x̃t) satisfies

δt
(
x̃t
) ≤

(t−Tct∏

i=0

ηi

)

diam(U) +

t−Tct∑

i=0

⎛

⎝
t−Tct∏

j=i

ηj

⎞

⎠
[
cTct+i

(
�x̃Tct+i

)]
. (17)

Lemma 2 quantifies how the learning rates {ηi}∞i=0 influence
δt(x̃t), and thus how {ηi}∞i=0 determine the quality of ALG.
Therefore, investigating the relationship between RegT and
{ηi}∞i=0 is necessary to quantify the suboptimality of ALG
compared to OPT as well as to gain insights on designing ALG
to achieve better control performance.

B. Lipschitz-Contractive Oracle Controller
We first consider the case where the closed-loop system (4)

admits a contractive perturbation, i.e., Lf ,OPT < 1. In terms of
analyzing the state perturbation, there is no significant differ-
ence between imposing the incremental stability (E-δ-ISS [12])
condition and the contractive perturbation condition.2 In this
case, (15) can be simplified as

RegT ≤
(

L�,u + SL

1 − Lf ,OPT

)

︸ ︷︷ ︸
:=L

T−1∑

t=0

δt
(
x̃t
)
. (18)

As such, the regret scales linearly with
∑T−1

t=0 δt(x̃t), and the
next step is to evaluate the accumulated per-step control error
along {x̃t}T−1

t=0 . The main results discussing the requirement of
the learning rates {ηi}∞i=0 are given next.

Theorem 1 (Sublinear Regret): Assume that the closed-
loop system (4) is Lipschitz-contractive, i.e., Lf ,OPT < 1.

1) If ct(·) = 0 and {ηi}∞i=1 satisfy

ηi ≤
(

i

i + 1

)α

, for α ∈ (0, 1), (19)

then it holds that RegT = O(T1−α
)
. In addition, if (19)

holds for α = 1, then RegT ≤ O(log T).
2) If ct(�x) ≤ c̄ (i.e., bounded) and {ηi}∞i=1 satisfy

ηi

(

1 + 1
∑i−1

k=0
∏i−1

j=k ηj

)

≤
(

i

i + 1

)α

,

for α ∈ (0, 1), (20)

2The structure of the inequality in (14) is the same as the incremental
input-to-state stability condition in [13, Definition 1].

Fig. 1. Regret of MPC with online model learning.

then it holds that RegT = O(T1−α
)
. In addition, if (20)

holds for α = 1, then RegT = O(log T).
The first case in Theorem 1 states that, when no state-

variation cost exists, the regret can be sublinear if the learning
rate satisfies a weak condition in the sense that the bound of
the learning rate converges to 1 (i.e., no learning is required
eventually). For example, with η0 = 1 and ηi = (i/i +
1)

1
2 (i = 1, 2, . . . ), the regret satisfies RegT = O

(√
T
)

.
Several existing results [2], [6], [8] fit our analysis framework,
and the decreasing bound (19) is consistent with the general
results in RLS identification, where the convergence rate is
of O

(
T− 1

2

)
[20], [21]. To showcase the regret behavior, a

numerical example of a parametric linear system in [22] is
simulated. The system model is given by

xt+1 = A(θ)xt + B(θ)ut + wt,

where A(θ) and B(θ) are parameterized matrices and wt are
i.i.d. bounded disturbance. OPT uses the true θ∗ whereas ALG
applies an RLS estimator that generates estimates θ̂t online.3

Specific code implementations can be accessed via https:
//github.com/lcrekko/mpc_reg_error_input. For this example,
the closed-loop state is bounded, μOPT is continuous and
piecewise-affine, and the learning rate of δt(x̃t) satisfies the
time-varying decreasing behavior [2], [21] with ct(·) = 0 (see
Remark 3). As such, Assumptions 1 to 4 are all solid. Fig. 1
presents the regret curve for 100 realizations of wt, from which
a sublinear behavior can be observed.

On the other hand, for the more general case where the
state-variation cost is bounded, a stronger requirement of the
learning rate is needed to guarantee sublinear regret. A typical
example is choosing η0 = 1, η1 = √

2/4, and ηi = (i
√

i + 1−√
i(i + 1))(i2 − 1)−1 (for i = 2, 3, . . . ), and then it holds that

RegT = O
(√

T
)

. Theorem 1 serves as a design guideline
when a sublinear regret is desired such that, when input errors
are present, the learning-based MPC controller is performing
as well as its ideal counterpart in the long run. Specifically,
one can directly aim to design a learning-based module to
assist MPC such that (16) holds with the condition (19)
or (20) satisfied. Moreover, the results in Theorem 1 can
be used as sufficient conditions to check the validity of
sublinear regret given a designed learning-based controller.
Since a constant learning rate is commonly encountered and
adopted in design [8], [12], it is also important to discuss the
corresponding consequence in terms of the regret, which we
present in the following theorem.

3Unlike the robust MPC algorithm in [22], for simplicity, both OPT and
ALG adopt certainty-equivalence principle and ignore wt . The disturbance wt
is only added to excite the system for effective parameter identification [21].
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Theorem 2 (Constant Learning Rates): Assume that the
closed-loop system (4) is Lipschitz-contractive (i.e., Lf ,OPT <
1) and ηi = η∗ ∈ (0, 1), (for i = 1, 2, . . . ).

1) If ct(·) = 0, then RegT = O(1).
2) If ct(�x) ≤ c̄ (i.e., bounded), then RegT = O(T).
Essentially, Theorem 2 highlights that i) the regret is

finite when ct is not present and ii) the regret is linear
when ct is bounded. In other words, when ct is non-zero, a
constant learning rate is insufficient to ensure sublinear regret,
thereby necessitating the more stringent condition (20). As this
condition requires the learning rate to asymptotically approach
zero–an inherently more restrictive requirement–we present
potential refinements in the subsequent remarks.

Remark 3 (Uniform Error Bound): Following Remark 2,
the worst-case perturbation δ� can quantify the quality of ALG.
Accordingly, (16) in Assumption 4 degenerates to

δ�
t ≤ ηt−Tctδ

�
t−1,∀t ≥ Tct, (21)

and the result from the first case of Theorem 1 is thus
directly applicable. If (21) can be guaranteed with ηi ∈ (0, 1),
less stringent requirements on the learning rates (19) can
achieve sublinear regret. For example, if the model (1) is
parametric, i.e., xk+1 = f (xk, uk; θ) with θ ∈ 	 ⊂ R

p and the
true parameter being θ∗, then the parametric control law is
μ(x; θ). It has been established that ‖μ(x; θ ′) − μ(x; θ ′′)‖ ≤
L‖θ ′ − θ ′′‖ for all θ ′, θ ′′ ∈ 	 and some L under mild
conditions4 [5], [9]. Therefore, consider μOPT(x) = μ(x; θ∗)
and μALG,t(x) = μ(x; θ̂t) with θ̂t being the online estimated
parameter, a state-independent bound δ�

t = L‖θ∗ − θ̂t‖ is thus
valid.

Remark 4 (Refinements Through Stability): In cases where
ALG stabilizes the system at an equilibrium xeq, then the
cost due to the state variation eventually vanishes, leading to
weaker learning rate requirements (19). Nonetheless, achieving
stability using ALG can be challenging [2].

C. Lipschitz-Noncontractive Oracle Controller
Next, we consider the case where the closed-loop system

in (4) satisfies a non-contractive perturbation, i.e., Lf ,OPT ≥ 1.
This scenario is also frequently encountered in practice, and
a naive example is linear systems x�

t+1 = fOPT(x�
t ) = Ax�

t with
‖A‖ ≥ 1. Given Lf ,OPT = 1, it holds that

RegT ≤
T−1∑

t=0

[
L�,u + SL(T − 1 − t)

]
δt
(
x̃t
)
, (22)

and when Lf ,OPT > 1, we again adopt (15) to derive the results.
Since δ0(x̃0) is non-zero in general, it can only be shown that
RegT = O(T) when Lf ,OPT = 1 and RegT = O

(
LT

f ,OPT

)
when

Lf ,OPT > 1. Thus, even though the true regret can be sublinear,
no sublinear regret can be concluded theoretically when the
oracle controller cannot yield a contractive closed-loop system.
This limitation explains why a stabilizable linear dominant
system is considered in [8] and why the incremental stability
is assumed in [12]. Leveraging the results in Section IV-B, it is
demonstrated that contraction is crucial to obtain meaningful
suboptimality guarantees. Similar insights have been reported
in other works using other contraction notions, where stability
and safety are the primary concerns [18].

4See the assumptions on linear independence constraint qualification and
strong second-order sufficient condition in [5], [9].

V. CONCLUSIONS & FUTURE WORK

This letter has presented a high-level regret analysis of
MPC for Lipschitz continuous nonlinear systems with imper-
fect inputs, revealing the suboptimality of a broad range of
MPC strategies with imperfect inputs. Specifically, considering
the oracle controller being Lipschitz-contractive, sufficient
conditions on the regulated learning rates of the practi-
cal controller are provided such that the dynamic regret
is sublinear. Besides, given a constant learning rate, it is
shown that sublinear regret cannot be achieved within the
used analysis framework if the state-variation cost persists.
Finally, it is demonstrated that, in our analysis framework, no
sublinear regret can be derived when the oracle controller is
non-contractive.

Future working directions include i) designing specific
MPC controllers that meet the learning-rate conditions,
ii) investigating the performance of learning-based output-
tracking MPC, and iii) extending the framework to general
optimal control strategies and problems with explicit state
constraints.

APPENDIX

A. Proof of Lemma 1
Proof: The proof is based on induction. Let t = 0, ‖x0 −

x�
0‖ = ‖x − x‖ = 0 as the sum

∑−1
0 is 0 by definition, (14) is

valid. Assume that (14) holds for t = k, i.e.,

‖x̃k − x�
k‖ ≤ Lf ,u

k−1∑

i=0

Lk−1−i
f ,OPT δi(x̃i). (23)

For t = k + 1, it holds that

‖xk+1 − x�
k+1‖ ≤ ‖fOPT(x̃k) − fOPT

(
x�

k

)‖ + ‖df ,k(x̃k)‖
(12),(13)≤ Lf ,OPT‖x̃k − x�

k‖ + Lf ,uδt(x̃k)(23)

≤ Lf ,u

k∑

i=0

Lk−i
f ,OPTδi(x̃i).

Thus, the proof is completed by induction.

B. Proof of Lemma 2
Proof: The proof is similar to the proof of Lemma 2 by

induction, and the details are omitted for brevity. The final
bound employs δTct−1(x̃Tct−1) ≤ diam(U).

C. Proof of Proposition 1
Proof: First, the mismatched input error μALG,t(x̃t) −

μOPT(x�
t ) can be bounded as

‖μALG,t(x̃t) − μOPT
(
x�

t

)‖
≤ ‖μALG,t(x̃t) − μOPT(x̃t)‖ + ‖μOPT(x̃t) − μOPT

(
x�

t

)‖
(8),(9)≤ δt

(
x̃t
)+ LOPT‖x̃t − x�

t ‖. (24)

Substituting (24) into (7) yields

RegT(x) ≤ L�,u

T−1∑

t=0

δt
(
x̃t
)+ (

L�,x + L�,uLOPT
) T−1∑

t=0

‖x̃t − x�
t ‖.

(25)
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Finally, we obtain (15) by substituting (14) into (25) and
rearranging the terms property.

D. Proof of Theorem 1
Proof: The proof starts with part 1). From (17), assigning

cTct+i(·) = 0 yields

δt
(
x(t)

) ≤
(t−Tct∏

i=0

ηi

)

diam(U). (26)

Based on (18), substituting (26) leads to

RegT

(19)≤ diam(U)L

[

Tct + η0

T−Tct∑

t=1

(
1

t

)α
]

. (27)

For α ∈ (0, 1), (27) implies that RegT(x) = O(T1−α
)
. On the

other hand, for α = 1, (27) entails that RegT(x) = O(log T).
In terms of part 2), given that both ct(·) and ωt are bounded,

by substituting (17) into (18), the following result can be
obtained:

RegT ≤ diam(U)L

[

Tct +
T∑

t=Tct

(t−Tct∏

i=0

ηi

)

+

T∑

t=Tct

t−Tct∑

i=0

⎛

⎝
t−Tct∏

j=i

ηj

⎞

⎠
]

. (28)

Since ηi > 0, it is obvious that 1 + (
∑i−1

k=0
∏i−1

j=k ηj)
−1 > 1,

indicating that (20) implies (19). Thus, following (27), we
again have

T∑

t=Tct

(t−Tct∏

i=0

ηi

)

≤ η0

T−Tct∑

t=1

(
1

t

)α

. (29)

Moreover, from (20), it holds that

T∑

t=Tct

t−Tct∑

i=0

⎛

⎝
t−Tct∏

j=i

ηj

⎞

⎠ ≤ η0

T−Tct∑

t=1

(
1

t

)α

. (30)

Substituting (29) and (30) into (28) yields

RegT(x) ≤ diam(U)L

[

Tct +

η0

(

1 + c̄

diam(U)

) T−Tct∑

t=1

(
1

t

)α]

. (31)

Similarly, given (31), it holds that RegT(x) = O(T1−α
)

for
α ∈ (0, 1) and RegT(x) ≤ O(log T) for α = 1.

E. Proof of Theorem 2
Proof: When ηi = η∗, it is easy to verify that

T∑

t=Tct

(t−Tct∏

i=0

ηi

)

≤ η∗

1 − η∗ = O(1), (32a)

T∑

t=Tct

t−Tct∑

i=0

⎛

⎝
t−Tct∏

j=i

ηj

⎞

⎠ ≤ Tη∗

1 − η∗ = O(T). (32b)

The rest of the proof is similar to that of Theorem 1 in
Appendix D.
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