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Summary

Title: Fundamental Properties of Wireless Mobile Ad-hoc Networks

Wireless mobile ad-hoc networks are formed by mobile devices that set up a possibly
short-lived network for communication needs of the moment.
Ad-hoc networks are decentralized, self-organizing networks capable of forming a

communication network without relying on any fixed infrastructure. Each node in
an ad-hoc network is equipped with a radio transmitter and receiver which allows it
to communicate with other nodes over wireless channels. All nodes can function, if
needed, as relay stations for data packets to be routed to their final destination. In
other words, ad-hoc networks allow for multi-hop transmission of data between nodes
outside the direct radio reach of each other.
Ad-hoc networks have distinct advantages over traditional communication networks.

For example, ad-hoc networks can be more economical as they eliminate fixed infrastruc-
ture costs, and they can be more robust because of their non-hierarchical distributed
control and management mechanisms. Ad-hoc networks increase mobility and flexibil-
ity, as they can be brought up and torn down in a very short time.
Ad-hoc networks form a relatively new and very diverse field of research. In this

thesis we focus our attention on the fundamental properties of ad-hoc networks. For
an ad-hoc network to function properly in the first place it must be connected, or
mostly connected. Otherwise the network would consist of scattered isolated islands
and could not support networking applications. Secondly, the ad-hoc network must
have enough capacity to transport the required amount of data between network nodes.
By fundamental properties we mean those properties of the network that directly and
substantially affect the connectivity or the capacity of the network.
In this thesis we have introduced a new mathematical model for ad-hoc networks

which is based on realistic assumptions for radio propagation. By using this model
we were able to modify connectivity theorems for wireless ad-hoc networks, and have
contributed substantially to a better understanding of degree distribution and hopcount
in ad-hoc networks. Another novel aspect in this thesis is a new method proposed
for the calculation of interference statistics. Also, we have shown that interference
in ad-hoc networks is upper bounded and have derived a mathematical formula for
this upper bound. Our interference calculation methods have allowed us to investigate

xi



xii SUMMARY

the capacity of ad-hoc networks. We have found capacity limits for ad-hoc networks
and have established that in multi-hop ad-hoc networks there is a trade-off between
the network size and the maximum input bit rate possible per node. Large ad-hoc
networks, consisting of thousands of nodes, can only support low-bit-rate applications.

Author: Ramin Hekmat



Chapter 1

Introduction to Ad-hoc Networks

We start this thesis with a brief introduction into ad-hoc networks. The purpose of
this short introductory chapter is to familiarize the reader with the concept of ad-hoc
networking before describing the fundamental research topics of this thesis in Chapter
2.
In this chapter we will outline ad-hoc networks by comparing them with wireless

cellular communication systems. Some advantages and application possibilities of ad-
hoc networks are mentioned as well. Like any other wireless communication system,
ad-hoc networks are restricted in their capabilities by radio technology limitations on
data transmission speeds and range. In order to get a fair idea of these restrictions, we
will summarize in this chapter basic characteristic features of some radio technologies
commonly used at the physical layer in ad-hoc networks. Further, because mobility
support is a challenge in ad-hoc networks, we will evaluate two methods for resolving
this issue.

1.1 Outlining ad-hoc networks

Ad-hoc networks are formed in situations where mobile computing devices require net-
working applications while a fixed network infrastructure is not available or not pre-
ferred to be used. In these cases mobile devices could set up a possibly short-lived
network for the communication needs of the moment, in other words, an ad-hoc net-
work. Ad-hoc networks are decentralized, self-organizing networks and are capable of
forming a communication network without relying on any fixed infrastructure. A high-
level description of ad-hoc networks and related research topics can be found in [86]
and [62].
In Figure 1.1 wireless ad-hoc networks are conceptually compared to traditional

wireless cellular networks. Wireless multi-hop ad-hoc networks are formed by a group
of mobile users or mobile devices spread over a certain geographical area. We call the

1
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Fixed
Network

Fixed
Network

Conventional Networks: central management role for base stati ons

Multi-hop ad-hoc networks with (optional) connection to fixed networks

Fixed
Network

Fixed
Network

Stationary node/
Gateway

Stationary node/
Gateway

Large scale Multi-hop ad-hoc 
networks: self sustained networks

Figure 1.1: Comparison of wireless cellular and wireless ad-hoc network concepts.

users or devices forming the network nodes. The service area of the ad-hoc network
is the whole geographical area where nodes are distributed. Each node is equipped
with a radio transmitter and receiver which allows it to communicate with the other
nodes. As mobile ad-hoc networks are self-organized networks, communication in ad-
hoc network does not require a central base station. Each node of an ad-hoc network
can generate data for any other node in the network. All nodes can function, if needed,
as relay stations for data packets to be routed to their final destination. A mobile
ad-hoc network may be connected through dedicated gateways, or nodes functioning
as gateways, to other fixed networks or the Internet. In this case, the mobile ad-hoc
network expands the access to fixed network services.
Although single-hop ad-hoc networks are often used in practice1, when we refer

to ad-hoc networks in this thesis we always mean multi-hop ad-hoc networks. The
multi-hop support in ad-hoc networks, which makes communication between nodes out
of direct radio range of each other possible, is probably the most distinct difference

1For example, a laptop communicating with devices like a PDA, a memory storage device and a
video camera by using Bluetooth forms a single-hop ad-hoc network.
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between mobile ad-hoc networks and other wireless communication systems.

1.2 Advantages and application areas

Mobile ad-hoc networks have certain advantages over the traditional communication
networks. Some of these advantages are:

• Use of ad-hoc networks can increase mobility and flexibility, as ad-hoc networks
can be brought up and torn down in a very short time.

• Ad-hoc networks can be more economical in some cases, as they eliminate fixed
infrastructure costs and reduce power consumption at mobile nodes.

• Ad-hoc networks can be more robust than conventional wireless networks because
of their non-hierarchical distributed control and management mechanisms.

• Because of multi-hop support in ad-hoc networks, communication beyond the Line
of Sight (LOS) is possible at high frequencies.

• Multi-hop ad-hoc networks can reduce the power consumption of wireless devices.
More transmission power is required for sending a signal over any distance in one
long hop than in multiple shorter hops. It can easily be proved that the gain in
transmission power consumption is proportional to the number of hops made.

• Because of short communication links (multi-hop node-to-node communication
instead of long-distance node to central base station communication), radio emis-
sion levels can be kept low. This reduces interference levels, increases spectrum
reuse efficiency, and makes it possible to use unlicensed unregulated frequency
bands.

Examples of potential applications of mobile ad-hoc networks are only limited by
imagination. We may think of a group of people with laptop computers at a conference
that wish to exchange files and data without mediation of any additional infrastructure.
We also can think of deploying ad-hoc networks in homes for communication between
smart household appliances. Ad-hoc networks are suitable to be used in areas where
earthquakes or other natural disasters have destroyed communication infrastructures.
Ad-hoc networks perfectly satisfy military needs like battlefield survivability, operation
without pre-placed infrastructure and connectivity beyond the line of sight. Figure 1.2
shows an interesting commercial application of ad-hoc networks for local hazard warning
on the road. Real-time hazard warning is just one possible commercial application of
ad-hoc communication networks.
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Figure 1.2: BMW talking cars for local hazard warning: a working example of a com-
mercial application of ad-hoc networks. The car’s on-board computer uses data coming
from the brakes and ABS monitoring systems to decide whether and when to transmit a
hazard warning to other vehicles in its vicinity. This hazard waning can then be relayed
up to a predefined number of hops to other cars.

A specific kind of ad-hoc network is the sensor network (see e.g. [5]), where the nodes
forming the network do not or rarely move. Sensor networks have received much atten-
tion in recent years because they have huge potential applications. A sensor network is
composed of a large number of sensor nodes, which are densely deployed either inside
the phenomenon to be observed or very close to it. The position of sensor nodes need
not to be engineered or pre-determined. This allows random deployment in inaccessible
terrains or in disaster relief operations. The physical dimensions of sensor nodes, which
can be in the order of a few cubic millimeters, along with their low costs due to mass
production, makes them suitable for many applications. Weather and seismological
monitoring, inventory control, chemical and biological monitoring, and defense-related
networks are just a few examples.
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1.3 Radio technologies

In wireless ad-hoc networks, communication between nodes takes place over radio chan-
nels. The radio technology used for this purpose can be any of a wide range of systems
and standards. Details of such radio communication technologies used in ad-hoc net-
works are beyond the scope of this thesis. However, in order to get an impression
regarding possibilities and restrictions imposed by radio communications we provide an
overview of basic characteristics of some radio technologies suitable for ad-hoc networks.
Depending on the service area size, a radio technology developed for Wireless Per-

sonal Area Networks (WPAN), Wireless Local Area Networks (WLAN), or Wireless
Metropolitan Area Networks (WMAN) may be adopted for ad-hoc networks [77]. The
coverage radius of a WPAN is roughly in the order of a few meters up to 20 meters.
WLAN coverage radius is limited to about 100 meters, while WMAN coverage is in
the order of a few kilometers. For each network type various wireless technologies have
been proposed. Some examples are:

• WPAN: Bluetooth, UWB

• WLAN: IEEE 802.11a, IEEE 802.11b, IEEE 802.11g

• WMAN: IEEE 802.16e

Basic characteristic features of these technologies are given in the Table 1.1 along
with GPRS and UMTS cellular radio systems for comparison reasons. This table serves
only for rough quality and performance comparison between technologies. The maxi-
mum supported bit rate, frequency allocation and typical ranges are important features
that determine the appropriateness of each technology for applications to be provided
by the ad-hoc network. For example, dense low-bit-rate sensor networks may be built
based on a WPAN technology, while for communication between moving cars at dis-
tances in the order of tens of meters aWLAN technology like IEEE802.11b may be more
suitable. It is also worth mentioning that ISM frequency bands are license-exempt fre-
quency bands. This makes deployment of ad-hoc networks in these frequency bands
commercially attractive.
A look at the last column of Table 1.1 reveals that, in contract to cellular systems,

the WPAN, WLAN and WMAN radio technologies have not been designed specifically
to support mobility or only allow very moderate forms of mobility. However, wireless
ad-hoc networks can consists of (fast) moving nodes. How mobility is catered for when
these radio technologies are used at the link layer is briefly discussed in the next section.
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Table 1.1: Technical characteristics of wireless technologies
Maximum
data rate
(17)

Frequency
allocation

Channel
bandwidth

Number of
RF Chan-
nels

Multiple
Access
technology

Typical
range

Mobility
support

Bluetooth 1 Mbps 2.4 GHz
(ISM)

1 MHz 79 FHSS 10 m (1)

UWB 110 Mbps
(at 10m)

3.1-10.6
GHz

Min. 500
MHz Max.
7.5 GHz

1-15 THSS
OFDM
(11)

10-15 m (1)

IEEE
802.11b

11 Mbps 2.4-2.497
GHz (ISM)

25 MHz 3 DSSS 50-80 m (9) (2)

IEEE
802.11g

54 Mbps 2.4-2.497
GHz (ISM)

(10) (10) (10) 50-80 m (9) (2)

IEEE
802.11a

54 Mbps various
bands in 5
GHz region

20 MHz US: 12 EU:
8 Japan: 4

OFDM 40-60 m (9) (2)

IEEE
802.16e

75 Mbps 2-11 GHz
10-66 GHz
(3)

1.5 — 20
MHz (3)

(3) (15) 30 km (4) 4
km (5)

(6)

GPRS 171 kbps
(12)

800, 900
and 1800
MHz bands
(13)

200 kHz
(13)

(13) TDMA
with FDD

1-5 km (14) Handover
possible
also at high
speeds

UMTS(W-
CDMA)
(8)

2 Mbps 1920-1980
MHz 2110-
2170 MHz

5 MHz (7) DSSS 1-3 km (16) Handover
possible
also at high
speeds

Notes:
(1) Technology by itself does not support handover.
(2) Movement within a cell is possible. Technology by itself does not support handover.
(3) IEEE 802.16 is designed for a wide range of licensed and license-exempt frequencies with
flexile bandwidth allocation to accommodate easier cell planning throughout the world.
(4) With line of sight condition.
(5) Without line of sight condition.
(6) Mobility is only supported in the 2-6 GHz band. At walking speeds, handoff between
adjacent cells is possible.
(7) Number of frequency bands depends on the operator’s license.
(8) Of different variants of UMTS, here we only consider the European W-CDMA.
(9) Lower bound corresponds to 11 Mbps data rate, and upper bound corresponds to 2 Mbps
data rate.
(10) For data rates 1, 2, 5.5 and 11 Mbps the same channel spacing, bandwidth and modu-
lation is used as in IEEE 802.11b (for backwards compatibility). Other supported bit rates
use OFDM.
11) UWB can be implemented using several spreading technologies. Most implementations
use OFDM or THSS.
(12) This is the maximum data rate using 8 time slots and Coding Scheme 4 (CS-4).
(13) Same as in GSM.
(14) With Coding Scheme 1 (CS-1), the coverage radius of GSM voice and GPRS data is the
same, with CS-2, CS-3 and CS-4 the coverage radius reduces. Typical range in this table is
for urban areas. Theoretically the maximum range could be as much as 30 km.
(15) IEEE 802.16 physical layer supports three access technologies: 1. Single Carrier Modu-
lation (CS), 2. OFDM in combination with TDMA and 3. OFDMA. OFDM and OFDMA
are mainly proposed for no line of sight operation.
(16) Typical range in this table is for urban areas. Theoretically the maximum range could
be as much as 20 km.
(17) Figures given here are for a single user. In the case of shared use of the radio channel,
the capacity is divided amongst all users.
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1.4 Mobility support

The main advantage of wireless mobile communication systems is the support of mobil-
ity, which frees the users from restrictions of being attached to a fixed location. Cellular
systems like GSM/GPRS and UMTS support mobility through handover and roaming
procedures. Handover is applied when a user moves through the coverage areas of vari-
ous cells in a wireless network and crosses cell boundaries. To support handover, cellular
systems depend on dedicated signaling systems in parallel to the content transmission
part of their network. In cellular systems the handover between wireless cells of the
same type is often referred to as Horizontal Handover, and the handover between wire-
less cells of different network types (e.g., GPRS and UMTS) as Vertical Handover [74].
Roaming can be considered as a special case of handover that requires traffic handling
agreements between operators and network providers across country borders.
WLAN, WMAN and WPAN networks were designed for portable terminals, often

in a single-cell configuration. They cover specifications for the Physical Layer and the
Data Link Layer of the OSI model. These systems can handle mobile stations but with
serious restrictions. For example in IEEE 802.11, station mobility is handled within
the MAC sub-layer, which implies that a station may move, but maintenance of upper
layer connections cannot be guaranteed when a station moves across different LAN
segments [56]. Therefore mobility needs to be managed at higher OSI layers. Because
ad-hoc networks are designed with cost efficiency and simplicity in mind, they tend to
be based entirely on the IP protocol suit. It seems then logical to attempt an IP based
solution for mobility support in ad-hoc networks. However, since IP was not designed
with mobility in mind, there are several problems that need to be solved before "all-IP"
wireless networks can be deployed for moving users. Looking at the ad-hoc network
developments and the research in the past few years, we distinguish two basic methods
for solving the mobility issue in ad-hoc networks:

Mobile IP: The Mobile IP [101], with two flavors Mobile IPv4 and Mobile IPv6 ([100]
and [54]), is a well-known approach for mobility support in "all IP" networks and
an accepted standard by the IETF community [61]. Mobile IP offers a pure
network layer architectural solution for mobility support and isolates the higher
layers from the impact of mobility. However, an inter-domain Mobile IP solution
for handover can take up to a few seconds to complete. This is certainly an
adequate solution for nomadic users2, but for fast and frequent handover of delay-
sensitive voice and multimedia applications, better solutions are required. For
this purpose, various adjustments and enhancements to Mobile IP have been
proposed. Examples are Hierarchical Mobile IP, Cellular IP (CIP) and Handoff-

2A nomadic user moves from location to location requiring access to the network at each location
but not while on the move. An example of a nomadic user is a person with a laptop who logs into a
cooperate network to read his emails either at the office or at home.
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aware Wireless Access Internet Infrastructure (Hawaii) for local handover control
[20]. However, none of these proposals has been implemented and proved to work
on a large-scale basis yet.

Fast routing protocols: Routing protocols are designed to cope with changes in the
network topology. In fixed networks, when a router or a link becomes unavailable,
the routing mechanism finds an alternative route from source to destination [55].
In ad-hoc networks, movement of nodes continuously changes the topology of the
network. Some nodes become unreachable while new nodes become available,
old links are broken while new ones are established at a fast rate. Theoreti-
cally, a routing protocol could still trace network changes and allow nodes to find
each other. In other words, the mobility issue can be seen as a routing problem.
However, the routing protocols developed for fixed networks (like RIP or OSPF
[106]) cannot handle rapid changes in the network and create a relatively large
routing overhead. Therefore, for ad-hoc networks special routing protocols are
needed. These protocols, provided that they are fast and efficient, do solve the
mobility problem. Routing in ad-hoc networks is basically a compromise between
the method of dealing with fast topology changes and keeping the routing over-
head minimal. There are proactive and reactive protocols, and protocols that use
a hybrid solution ([62], [77]). Proactive methods maintain routes to all nodes,
including nodes to which no packets are to be sent. These protocols react to
topology changes, even if no traffic is affected by the changes. Reactive meth-
ods, on the other hand, find a route between a source and a destination only
when there is a demand for data transmission. Reactive protocols are also called
on-demand protocols. Reactive routing protocols can significantly reduce routing
overhead in situations where the traffic load is low and the topology changes are
fast. However, proactive protocols suffer less from delay because a route between
the source and the destination is already known and needs not to be found when
the need arises. Hybrid methods try to combine the best of both proactive and
reactive methods [95], [41]. There is a huge amount of reach dedicated to routing
protocols for ad-hoc networks (see e.g. [92]). Although a single standard has
not emerged yet, the IETF working group MANT [57] is working intensively on
a number of promising solutions like TBRPF [60], AODV [58], and OLSR [59].
These protocols have already been tested in various realistic settings with good
results [52].

To summarize, there are two distinct methods for mobility support in wireless ad-
hoc networks: mobile IP, and fast routing protocols. Research in both areas is still
progressing. At this moment it seems that a solution based on fast routing protocols is
more widely accepted.



Chapter 2

Positioning of Research and Scope
of the Thesis

Despite their evident advantages and potential application possibilities, ad-hoc net-
works are yet far from being deployed on a large-scale basis. Some fundamental ad-hoc
networking problems remain unsolved or need optimized solutions. Here we give a few
examples. Robustness of ad-hoc networks in highly dynamic environments with chang-
ing loads and variable speeds of the nodes has not been investigated thoroughly yet.
Although various routing protocols have been suggested and tested for mobile ad-hoc
networks, performance metrics like throughput, delay and protocol overhead in relation
to successfully transmitted data need better understanding and optimization. This op-
timization would depend on the application type and on whether the throughput is
to be maximized or the delay to be minimized. One single protocol would probably
not work efficiently across the entire range of design parameters and operating condi-
tions. An additional complexity factor in ad-hoc network design is that the different
layers of the system are highly interdependent. Therefore, layers one, two, and three
of the standard OSI model probably could not be separated and optimized indepen-
dent of the other layers. To the list of research areas we can certainly add searching
for a suitable position determination system and position upgrade mechanisms. One
other major research topic is the interaction between ad-hoc networks and the existing
telecommunication systems and networks.
In addition to these technical points, there are various commercial, social and eth-

ical topics that require attention. For example, it is still unclear whether large-scale
deployment of mobile ad-hoc networks can be seen as complementary to existing cellu-
lar networks or as a threat to mobile operators. Further, it is conceivable that public
use of ad-hoc networks would require specific regulations and charging mechanisms that
are not clear yet. In multi-hop ad-hoc networks, the willingness of general public to
share their communication device and its resources (as a relay station) with the total
community of ad-hoc network users is far from trivial. Although simple incentives like

9
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Figure 2.1: Positioning our study in the filed of ad-hoc and sensor networks research:
The inner zone shows topics in our main research and focus area. The second zone,
around the inner zone, includes topics about which we have made assumptions or have
performed light research. The third zone shows topics that have not been included in
our study.

call credits could prove to be commercial motivating factors, it is questionable whether
these incentives would be sufficient from an ethical point of view to motivate ad-hoc
network users to function as relay stations for someone else’s data.
From the short discussion above it may be evident that ad-hoc networking is a

vast research area. It is not surprising then to see that many aspects of wireless ad-
hoc networks are under investigation or have already been studied by the international
research community.
On the technical front, which is the focus of our work, various aspects of ad-hoc

networking have been studied in the past few years. For example, extensive work has
been done in the development and optimization of ad-hoc network routing protocols
([57], [92]). Others have investigated the capacity and the scalability of wireless ad-hoc
networks ([39], [38], [79], [122]).The effect of selfish nodes or misbehaving nodes on the
stability of ad-hoc networks is an interesting topic that has also received the necessary
attention [70]. Due to the complexity of ad-hoc networks, many of the study results in
this field are based on simulation models 1. However, in comparison to mathematical

1In particular simulations based on ns-2 [63] are widespread and commonly used. Network Simulator
version 2 (ns-2) is a discrete-event simulator targeted at networking research. The source code of
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models, simulation models could be less suitable to provide an in-depth understanding of
the system dependency on various parameters. Fortunately, literature survey reveals
that mathematical modeling of ad-hoc networks is gaining increased attention ([82],
[80], [35]). Furthermore, many publications are emerging that analyze ad-hoc networks
based on measurements rather than on pure theoretical models ([3], [15]). We see this
latter point as a positive development and a clear indication that ad-hoc networking is
moving from an academic concept towards a practical real-life solution.
Considering the diversity of research, it is important to outline the contours of our

work precisely and to formulate clearly the scientific contribution of this thesis. In
this thesis we have investigated fundamental properties of multi-hop ad-hoc networks
through realistic mathematical modeling of the network. We explain what we mean by
fundamental properties. For an ad-hoc network to function properly, in the first place
it must be connected (or mostly connected). Otherwise the network would consist of
scattered isolated islands of nodes and could not support networking applications be-
tween most of the nodes. Secondly, the ad-hoc network must have enough capacity
to transport the required amount of data between the nodes. By fundamental prop-
erties we mean those properties of the network that directly affect the connectivity or
the capacity of the network. One novel aspect in our work is the use of a realistic
mathematical model for ad-hoc networks. By using this model we believe that we have
contributed substantially to a better understanding of connectivity, degree distribu-
tion, and hopcount in ad-hoc networks. Another novel aspect in this thesis is a new
method for calculation of interference statistics. Further, we have been able to show
that interference in ad-hoc networks is upper bounded and have derived a mathemat-
ical formula for this upper bound. Our interference calculation methods have allowed
us to investigate the capacity of ad-hoc networks. We have found capacity limits for
ad-hoc networks and have shown that the maximum supported data transmission speed
per node in ad-hoc networks is inversely proportional to the mean hopcount. In other
words, in ad-hoc networks there is a trade-off between the network size and the maxi-
mum bit rate possible per node. For example, only ad-hoc networks of small size with
few hops can support high-bit-rate multimedia applications.
To position our main focus areas in relation to other possible technical research

topics we refer to Figure 2.1. In this figure2, the core topics of our study are shown in
the inner zone in the middle of the figure. We will call these topics the primary research
topics of this thesis. For the study of primary research topics we have made assumptions
with respect to the topics depicted in the second zone (the zone immediately around

the program in C++ is open for adjustments and additions. Many routines and modules in ns-2
are contributed by researchers worldwide. ns-2 is often used for the simulation of routing protocols
and MAC protocols in wireless ad-hoc networks. However, this tool needs numerous improvements,
especially regarding the physical layer and MAC modeling, in order to provide results fitting realistic
scenarios [117].

2We don’t claim the list of topics depicted in Figure 2.1 to be exhaustive.
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Figure 2.2: Scope of the research and the relation between research topics.

the inner zone). The topics in this zone have not been studied in depth. However,
when needed we obtained information available in the literature and projected it a
way suitable for the study of the primary research topics. We will call the topics in the
second zone the secondary research topics. The third zone (the outer zone) shows topics
of research that although very valuable to the study of ad-hoc networks in general, are
not relevant to our study.

The way that the primary and the secondary research topics are related to each
other is shown in Figure 2.2. Throughout this thesis we will see that connectivity is
affected by degree distribution and capacity by factors like the hopcount distribution,
Medium Access Control (MAC) protocols, and interference.

Figure 2.2 can also be used to understand the structure of this thesis and the way
in which different topics are ordered. We present in Chapter 3 our method for realistic
modeling of wireless ad-hoc networks. The degree distribution and the hopcount, based
on our model for ad-hoc networks, are discussion topics in Chapters 4 and 5, respectively.
The connectivity of ad-hoc networks, which can be seen as a first indicative parameter
for the robustness of the network, is handled in Chapter 6. For the study of interference
in ad-hoc networks it is necessary to have a good model for effects of the MAC protocols
on simultaneously allowed transmissions. MAC protocols are the topic of Chapter 7
and interference is studied subsequently in Chapter 8. For the study of interference we
have proposed a simplified model that facilities mathematical analysis. This model is
described in Chapter 9. The capacity of ad-hoc networks is studied in Chapter 10. In
that chapter we also explain our assumption regarding the routing protocols and traffic
patterns. Finally, our overall conclusions are summarized in Chapter 11.
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Its needs to be mentioned here that our study covers not only ad-hoc networks but
also sensor networks, which can be considered as a specific case of ad-hoc networking
with fixed nodes. Therefore, all results found in this thesis are also applicable to sensor
networks. We mention this point here and avoid persistent repetition of the applicability
of our results to sensor networks in the rest of the thesis.
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Chapter 3

Modeling Ad-hoc Networks

In wireless multi-hop ad-hoc networks, any node may have direct radio links with some
other nodes in its vicinity and each node can, if needed, function as a relay station
routing traffic to its final destination. Regardless of the radio technology used or the
movement pattern of nodes, from the topology point of view, at any instant in time an
ad-hoc network can be represented as a graph with a set of vertices consisting of the
nodes of the network and a set of edges consisting of the links between the nodes (see
Figure 3.1). We assume that links between nodes are two-way, undirected links. There
is a link between two nodes if a signal transmitted from one node is received at the other
node above a minimum required power threshold (for more details see Section 3.4.1).
Two nodes are connected if there is a link between them. It needs to be emphasized
that we look at the network topology based on the above-mentioned requirement for
connectivity between nodes. Whether two connected nodes can communicate with each
other at the desired data communication speed at all times is a matter of interference
and capacity calculation that are considered in this thesis in Chapters 8 and 10. In other
words, we have chosen to separate network topology from network capacity. Whenever,
due to interference, communication between two connected nodes drops to lower speeds
or even becomes impossible we say that the link capacity is reduced, instead of saying
that the probability of connectivity between these two nodes has decreased.
In this thesis we focus on fundamental properties of ad-hoc networks, including

the connectivity, the degree distribution and the hopcount. These properties can be
studied using a graph representation of the ad-hoc network. The study of graphs is
known as graph theory (see e.g. [16], [17], [30]). A graph, G, is defined as a set of
vertices V and a set of edges E and can be denoted as G = (V,E). The sets V and
E are always assumed to be finite. An edge is a link between two vertices. An edge
that joins the vertices i and j is denoted by (i, j). The vertices i and j are the end-
vertices of this edge. If an edge exists between two vertices, then these two vertices
are called adjacent or neighboring vertices of G. Two edges are called adjacent if they
have exactly one common end-vertex. To the edges of a graph specific values or weights

15
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Figure 3.1: Snapshot of an ad-hoc network. In this graph, dots represent nodes forming
the network and lines indicate links between nodes. Links are assumed to be established
over wireless channels.

may be assigned, in which case the graph is called a weighted graph. The edges of
graphs may also be accommodated with directedness, in which case each edge is given
a unique direction. A simple graph, also called a strict graph [109], is an unweighted,
undirected graph containing no self-loops1 and at most one edge connecting any two
vertices. Unless stated otherwise, the unqualified term "graph" in this thesis will refer
to a simple graph.
When graph theory is used to describe a network, the nodes in the network corre-

spond to the vertices in the graph and the links between the nodes correspond to the
edges of the graph.
Before proceeding with the description of graph models for ad-hoc networks we

describe here a few general terms and definitions that will frequently be used throughout
this chapter.

Complete graph A complete graph has an edge between every pair of vertices.

Adjacency matrix When a network is presented as a graph, the topological structure
of a network withN nodes can be described by the adjacency matrix A. Adjacency
matrix is a N×N matrix where each element aij of A is either zero or one: aij = 1

1An edge having same vertex as both its end-vertices is called a self-loop.
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if there is a link between node i and node j, else aij = 0. Hence, the adjacency
matrix expresses how the nodes in the network are interconnected.

Degree The degree of node i is the number of direct neighbors of that node in the
network: di =

PN
j=1 aij.

Connectedness A graph G is connected if there exists a path {i, ..., j} between any
pair of vertices i and j. To achieve a fully connected network, there must be a path
from any (source) node to any other (destination) node. The path between the
source and the destination may consist of one hop (when source and destination
are neighbors) or several hops. When there is no path between at least one source-
destination pair, the network is said to be disconnected. A disconnected network
may consist of several disconnected islands or clusters.

Giant component: The largest connected cluster in the network is called the giant
component. In a fully connected network the giant component covers the entire
network. When the network is not fully connected, we only speak of a giant
component when a single cluster clearly dominates in size all other clusters.

Hopcount The hopcount specifies the number of hops on the path between a source
and a destination. The average hopcount in a network is the average value of the
hopcount between all possible source-destination node pairs.

Shortest path The shortest path between two nodes is the one having the shortest
length (shortest number of hops).

Diameter Let S be the set of the lengths of the shortest paths between all pairs of
nodes in the network. The diameter of the graph is the maximum of S.

Clustering coefficient For node i with di ≥ 2, an edge (u, v) is opposite to node i if
there exist edges (i, v) and (i, u). The clustering coefficient of node i is defined
as:

ci =
number of opposite edges of i

di (di − 1) /2 .

The clustering coefficient is thus the ratio between the actual number of links be-
tween the neighbors of node i and the maximum possible number of links between
these neighbors. In other words, the clustering coefficient is the ratio between the
number of triangles that contain i and the number of triangles that would contain
i if all neighbors of i were interlinked (see Figure 3.2). The clustering coefficient
of G, denoted by CG, is the average of ci for all nodes with di ≥ 2.

Local correlation Let node i be connected to node j. If the probability of node i
being connected to the neighbors of node j is higher than the probability of node
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Figure 3.2: Example of clustering coefficient for a node.

i being connected to other nodes in the network (all nodes except node i’s one-
hop and two-hop neighbors), we say that edges are locally correlated. If edges
are independent, the probability of node i being connected to any node in the
network is the same. It is obvious that local correlation increases the clustering
coefficient. However, a high clustering coefficient value does not necessarily mean
strong local correlation between nodes. For example, a complete graph has the
highest clustering coefficient value while all edges may still be independent.

Small-world property A network is said to have the small-world property when the
hopcount in that network is not strongly affected by an increase in the network
size. Please note that we use the term "strongly" in a rather loose sense. This phe-
nomenon is addressed very often in the literature (see e.g. [115]). In a network
with the small-world property, there is a high probability that there is a rela-
tively short path between any two nodes, despite the large size of the network.
The small-world property has already been observed in social networks as well as
neural networks [116]. Even the World Wide Web pages seem to possess the small
world property [19]. The most famous manifestation of the small-world property
has been formulated as "six degrees of separation", uncovered by the social psy-
chologist Stanley Milgram in 1967 [14]. It refers to the concept that everyone is
connected to everyone else in the world by only six degrees of separation, or six
sets of acquaintances.

For the study of network characteristics in general, different graph models may be
proposed. In this chapter we consider the Erdös and Rényi random graph model, the
regular lattice model, the scale-free model, and the geometric random graph model.
Although knowledge of all these models is essential for our study, it will become clear
that not all of these models are equally suitable to characterize wireless multi-hop ad-
hoc networks.
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3.1 Erdös and Rényi random graph model

The random graph of Erdös and Rényi [31] is one of the best studied models of a
network [103]. This model is exactly solvable for many of its average properties [16].
Unless stated otherwise, the term "random graph" in this thesis will refer to the Erdös
and Rényi random graph.
A random graph with N vertices and L edges can be constructed by starting with

N vertices and zero edges. Then L edges are chosen randomly and independently from
the N(N − 1)/2 possible edges. In total, there are ¡N(N−1)/2

L

¢
equiprobable random

graphs with N vertices and L edges. Another way of looking at random graphs is the
assumption that any pair of vertices in a random graph is connected with the probability
p. The number of edges L in the random graph is then a random variable with the
expectation E[L] = pN(N−1)

2
.

It should be obvious by now that the random graph model is not a realistic repre-
sentation of a wireless ad-hoc network. After all, in ad-hoc networks two nodes at close
range have a higher probability of being connected than nodes at farther distances.
However, we will proceed with a description of some of the properties of the random
graphs in this section, because these results are required for a better understanding of
the model of ad-hoc networks presented later in this chapter.
We denote a random graph by Gp(N), where N is the number of nodes in the

graph and p is the probability of having a link (edge) between any two nodes [16]. The
fundamental assumption in random graphs is that the presence or absence of a link
between two nodes is independent of the presence or absence of any other link. As
mentioned before, the degree of a node i, denoted as di, is defined as the number of
nodes connected directly to node i. In other words, the degree of a node is the number of
neighbors of that node. In a random graph, di has by definition a binomial distribution
[16]:

Pr [di = k] =

µ
N − 1
k

¶
pk (1− p)N−1−k ' zke−z

k!
, (3.1)

where z is the mean (average) node degree: z = E [di] = (N − 1)p. The variance of the
node degree is (N − 1) p(1− p). The second term in (3.1) is the Poisson approximation
for large N .
As each node in the random graph is connected to about z other nodes, after h hops,

zh nodes have been reached (assuming a tree-like graph structure with no short loops,
which is a correct assumption when z is sufficiently small compared to N). All nodes
are reached typically when zh ' N . This implies that the typical average hopcount
E[h] in random graphs is

E[h] ' log (N)

log(E[d])
. (3.2)
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Figure 3.3: Comparison of three hopcount formulas with simulated values for a random
graph of 500 nodes. Simulation results are average values for 1000 experiments, with
standard deviation shown as error bars. For better visibility, we have blown up the
section around the mean degree of 6.

This formula for the expected hopcount in random graphs is also given by Albert
and Barabasi [6]. Although (3.2) is a rough approximation, it indicates clearly that the
average hopcount in random graphs scales with the logarithmic value of the number of
nodes. A better approximation is provided by Newman, Strogatz and Watts in [82]:

E[h] ' log (N/E[d])

log (E[d(d− 1)]/E[d]) + 1. (3.3)

There exists a very close approximation for the mean hopcount given by Hooghiem-
stra and Van Mieghem ([51], [23]). Although an explanation of the latter formula is
beyond the scope of this thesis, we have compared these three formulas with simulated
values of the hopcount in Figure 3.3. As we can see from this figure, the simulation
results match best with the Hooghiemstra and Van Mieghem estimate, however, despite
its simplicity, (3.2) seems to be a good approximation of the hopcount as well.
An interesting aspect of random graphs is the existence of a critical probability at

which a giant cluster forms. This means that at low values of p, the random graph
consists of isolated clusters. When the value of p increases, above a threshold value a
giant cluster emerges that spans almost the entire network. This phenomenon is similar
to the percolation transition, a topic much studied in both mathematics and statistical
mechanics (see e.g. [53]). If S is the fraction of the graph occupied by the giant
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Figure 3.4: Growth of the giant component size as function of the mean nodal degree
in a random graph.

component, for large N in random graphs, S is the solution to the following equation
[82], [76]:

S = 1− exp(−zS), (3.4)

where z = E [d] is the mean degree of the graph. Fast converging series have been found
[112] to solve (3.4), but a standard zero finding algorithm like the Newton-Raphson
method can also be used to find S as function of z. Figure 3.4 shows the values of S
found as function of the mean degree by solving 3.4.
Because clustering coefficient is the percentage of neighbors of a node that are

connected to each other, and in a random graph links between nodes are established
independently with probability p, we may expect the clustering coefficient in a random
graph to be:

CG = p.

This result has been proved in both [110] and [6].

3.2 Regular lattice graph model

A regular lattice graph is constructed with nodes (vertices) placed on a regular grid
structure. Adjacent nodes on the grid are all equidistant (although this distance can
be defined to be non-metric). The probability that two adjacent nodes on the grid are
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p = 0.3 p = 0.8

Figure 3.5: A 2-dimensional lattice graph on a 10× 20 square grid with p = 0.3 (figure
on the left) and p = 0.8 (figure on the right).

connected is p. Non-adjacent nodes cannot be liked directly. Links (edges) are then
created independently and are all equiprobable. Figure 3.5 shows an example of a 2-
dimensional lattice graph on a square grid of size 10 × 20 for two different values of
p.
Let us see how suitable the lattice graph model is to represent ad-hoc networks.

In wireless ad-hoc networks, nodes use radio communications to form links with other
nodes. Because radio signal powers decay with increasing distance between nodes,
the link probability is bound to be a function of the distance between nodes. We see
that the lattice model and ad-hoc networks share the notion that the distance between
nodes influences the link probability. From this point of view, the lattice model is
more suitable to represent an ad-hoc network than the random graph model discussed
previously. However, the position of nodes in an ad-hoc network (or even a sensor
network) is generally not fixed to a regular lattice. Further, in radio communication
the distance over which nodes can "see" each other is not a fixed value. Despite these
differences, we will here study some basic characteristics of lattice graphs in more detail
to gain a better understanding of the properties of our model for ad-hoc networks, which
is descried later in Section 3.4.3.
We denote a 2-dimensional lattice graph on a‘ square grid of size m× n with Gm,n.

The number of nodes in this lattice graph is N = m×n. For a dense lattice graph with
p ' 1, it is easy to verify that the mean degree is
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Figure 3.6: Hopcount along a one-dimensional lattice.

E[dm×n] = 4− 2(m+ n)

m× n
. (3.5)

The expected value of the hopcount is

E[hm×n] =
m+ n

3
= O(

√
N). (3.6)

where O(.) is the big-O asymptotic order notation [42]2.

To prove (3.6), we start with a one—dimensional lattice of 1×n nodes. In this lattice,
there are always n− k node combinations with hopcount k, where 1 ≤ k ≤ n− 1 (see
Figure 3.6, top part). Based on this distribution:

Pr[h = k] =
n− kPn−1
i=1 i

=
2(n− k)

n(n− 1) ,

and

2Notation f(N) = O (ϕ(N)) whereN is an integer which tends to infinity means that asymptotically
|f(N)| < cϕ(N) for some constant c.
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E [hk=1...n−1] =
n−1X
k=1

kPr [h = k] =
n−1X
k=1

2k(n− k)

n(n− 1) =
n+ 1

3
.

In a 2-dimensional lattice, any hopcount from one node to another can be projected
to a corresponding number of one-dimensional horizontal and vertical hops. However, it
is possible that either the horizontal or vertical hopcount is zero. For a one-dimensional
lattice of 1×n nodes, if we consider the possibility of zero-length hops, there are always
n − k node combinations hopcount k where 0 ≤ k ≤ n − 1 (see Figure 3.6, bottom
part). Based on this distribution:

Pr [h = k] =
n− kPn

i=1 i
=
2(n− k)

n(n+ 1)
,

and

E [hk=0...n−1] =
n−1X
k=0

kPr [h = k] =
n−1X
k=0

2k(n− k)

n(n+ 1)
=

n− 1
3

.

In the 2-dimensional lattice of size n×m, that has n nodes in horizontal direction
and m nodes in vertical direction, we have:

hn×m = hhorizontal + hvertical

E [hn×m] = E [hhorizontal] +E [hvertical]

For each occurrence of hn×m, either hhorizontal or hvertical can be 0 but not both
simultaneously. Either way for the mean hopcount value we can write:

E [hn×m] = E [hk=1...n−1] +E [hk=1...m−1]− 2
3

=
n+m

3
,

which proves (3.6).

When we compare the hopcount in lattice graphs (3.6) with that in random graphs
(3.2) we note that in lattice graphs the hopcount growth is polynomial with respect
to increasing network size N , while in random graphs the expected hopcount is only
logarithmic in N . We can thus say that lattice networks do not have the small-world
property while random graphs do. The question is then which of these two more closely
resembles the behavior of ad-hoc networks. In other words, do wireless ad-hoc networks
possess the small-world property? Because radio signals have limited range, when the
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size of the service area of an ad-hoc network increases, to reach farther nodes, the
hopcount needs to increase as well. From this point of view, ad-hoc networks seem to be
like lattice graphs and can be expected not to have the small-world property. However,
radio signal powers always fluctuate and are unpredictable. As a result, depending
on the strength of the power fluctuations and the actual service area size, as we will
see later on in this chapter, ad-hoc networks may show some degree of the small-world
property. A different matter is when ad-hoc networks increase in size (number of nodes)
while the service area does not change. In this situation, the diameter of the network
is not expected to change by the increase in network size.

3.3 Scale-free graph model

Various authors have observed ([82], [81], [27]) that real-world networks such as the
Internet, social networks and biological networks cannot be modeled as random graphs.
The binomial degree distribution in random graphs seems to be an unrealistic assump-
tion for these network types. Further, the clustering coefficient in these networks is typ-
ically much larger than in random graphs of equal number of vertices and edges [116].
Based on experimental studies, a more realistic model is suggested for the presentation
of real-world networks which assumes that the degree distribution has a power-low tail
[8]. In other words,

Pr [d = k] ' k−γ, (3.7)

where γ is a constant independent of the size of the network. Because of the indepen-
dence of the degree distribution from the network size, these networks are referred to
as scale-free networks. The value of γ is found to be different for various network types.
For experimentally found values of γ in ecological networks, movie actor collaboration
network, science collaboration graph and the Internet we refer to [6]. A specific method
for generating a scale-free network is a process in which vertices are added to a graph
one at a time and joined to a fixed number of earlier vertices, selected with probabilities
proportional to their degrees. This process creates a scale-free network with γ = 3 [18].
The power-low degree distribution influences the way in which the network operates,

including how it responds to catastrophic events. A scale-free graph, where a very small
number of network nodes (called hubs) are far more connected than other nodes, shows
striking resilience against random breakdowns. In scale-free networks, in spite of large
sizes of the networks, the distances between most vertices is short because these paths
usually go through the hubs. The small-world property is more strongly present in
scale-free networks than in random graphs.
Despite the suitability of the scale-free network model for many social and man-

made networks, we argue here that the scale-free network model is not appropriate for
ad-hoc networks. In an ad-hoc network where nodes are uniformly distributed over
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the service area, and radio propagation conditions as well as radio transmit power and
receiver sensitivity are the same for all nodes, there is no reason to assume that some
nodes may have a much higher number of neighbors than other nodes.

3.4 Geometric random graph model

Having considered the random graph, the lattice and the scale-free graph models, we
discuss in this section the geometric random graph model and will show how this model
can be adapted to become a realistic model for ad-hoc networks.
A wireless ad-hoc network consists of a number of nodes (radio devices) spread over

a certain geographical area. Each node may be connected to other nodes in its vicinity.
In wireless ad-hoc networks, because of node movements and radio signal fluctuations,
the topology of the network can change from time to time. However, as mentioned
before, at any instant in time, an ad-hoc network can be considered as a graph with a
certain number of nodes and links between nodes.
Ad-hoc networks cannot be modeled as pure random networks. As discussed in

previous sections, in a wireless ad-hoc network the actual set of connections, in contrast
to random graphs or scale-free networks, depends on the geometric distance between
nodes. A direct consequence of the dependency of the links on the distance between
nodes is that in wireless ad-hoc networks there is an increased probability of two nodes to
be connected when they have a common neighbor. In other words, in a wireless ad-hoc
network links are locally correlated. In the literature, graphs with distance-dependent
links between nodes and correlated links are referred to as geometric random graphs
(see e.g. [80]). Local correlation between nodes increases the clustering coefficient [6].
We denote an undirected geometric random graph with N nodes by Gp(rij)(N),

where p(rij) is the probability of having a link between two nodes i and j (or j and i)
at metric distance rij. We assume in a geometric random graph N nodes are uniformly
distributed over the entire service area. This is not an obligatory requirement for
the model in general, but it is always assumed to be the case in our study. The
reliability of a geometric random graph model depends directly on the accuracy of
p(rij). In other words, for a reliable model we need to have an accurate description
of radio propagation characteristics that determine the link probability between nodes
in wireless environments. In Section 3.4.1 we provide an incomprehensive overview of
radio propagation theory. This theory will be used to describe two different geometric
random graphs models for ad-hoc networks in Sections 3.4.2 and 3.4.3.

3.4.1 Radio propagation essentials

Radio propagation characterization and modeling the radio channel has always been one
of the most difficult parts of the design of terrestrial wireless communication systems.
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A mobile wireless ad-hoc network is no exception. Stronger yet, good modeling of the
radio channel could be more important in the design of ad-hoc networks than in the
traditional wireless communication systems. In ad-hoc networks not only the service
quality but also the whole routing and network topology is affected by the impairments
over the radio links.
Radio channel is generally hostile in nature and it is very difficult to predict its

behavior. Any model for a radio link is bound to be a simplification of the reality. In
general the radio channel is modeled in statistical way using real propagation measure-
ment data. A lot of measurements have been done to obtain information concerning
propagation loss and signal power variations (fading) in classical radio communication
systems ([10], [7], [34], [75]). These measurements have shown that generally the signal
fading over a radio channel between a transmitter and a receiver can be decomposed
into 3 components ([88], [90]):

1. a large scale pathloss power component,

2. a medium scale slow varying power component having a lognormal distribution,
and

3. a small scale fast varying amplitude component with a Rayleigh (Rician) distrib-
ution without (with) a Line-of-Sight connection between the transmitter and the
receiver.

The large scale pathloss indicates the dependency of the expected received signal
mean power to the distance between the transmitter and the receiver. The small scale
fading is used to describe rapid fluctuations of the amplitude of a radio signal experi-
enced by a mobile user over a short period of time (in the order of a few milliseconds
up to seconds) or travel distance (in the order of a few wavelengths) [90]. The medium
scale component captures variations in the radio signal power over distances much larger
than a few wavelengths. It is related to the fact that the signal power measured at two
different locations having the same transmitter-receiver separation may vastly be dif-
ferent from each other. Figure 3.7, although a rough simplification of reality, relates
the large scale, medium scale and small scale propagation effects to each other. As
indicated in this figure, when a nodes moves, in the order of a few wavelengths, in the
vicinity of each of the locations 1 to 5 or when the radio channel characteristics change
overtime, the received radio signal level fluctuates according to the small scale model.
The mean received signal power values at locations 1 to 5 are, respectively, p1 to p5.
These values are different from each other and are, when expressed in dBm or dBW,
normally distributed according to the medium scale propagation model. The mean
values of all pi’s taken at many positions with the same distance to the receiver is the
large scale pathloss component.
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Figure 3.7: Simplified indication of small scale and medium scale (pi’s) power fluctua-
tions. The mean of many pi values, corresponds to the large scale area mean power at
distance r.

Attenuation of radio signals due to the pathloss effect has been modeled by aver-
aging the measured signal powers over long times and over many distances around the
transmitter. The averaged power at any given distance to the transmitter is referred
to as the area mean power Pa (in Watt or milliwatt). The pathloss model states that
Pa is a decreasing function of the distance r between the transmitter and the receiver,
and can be represented by a power law [88]:

Pa(r) = c

µ
r

r0

¶−η
. (3.8)

In this formula r0 is a reference distance3. Parameter η is the pathloss exponent
which depends on the environment and terrain structure and can vary between 2 in
free space to 6 in heavily built urban areas. In indoor environments with line-of-sight
condition, pathloss exponent values of about 1.6 to 1.8 have been measured as well [90].
The constant c depends on the transmitted power, the receiver and the transmitter
antenna gains and the wavelength [90].
The medium scale power variations are modeled with a lognormal distribution. In

the lognormal radio model the mean received power taken over all possible locations

3This distance for low-gain antennas in 1-2 GHz region is typically chosen to be 1 m in indoor
environments and 100 meter or 1 km is outdoor environments [90].
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that are at distance r to the transmitter is equal to the area mean power, similar to the
pathloss model. However it is further assumed that the average received power varies
from location to location in an apparently random manner [10]. More precisely, the
lognormal radio model assumes that the logarithmic value of the received signal power
at distance r is normally distributed with standard deviation σ around the logarithm of
the area mean power. The magnitude of the standard deviation indicates the severity
of signal fluctuations caused by irregularities in the surroundings of the receiving and
transmitting antennas. The lognormal model allows then for random power variations
around the area mean power. The medium scale power variation is often referred to as
lognormal shadowing model [90]. However, in our opinion the term "shadowing" used
in the name of this model is somehow confusing because shadowing may imply that
the model considers correlated fading in the received power at two locations blocked
from the transmitter by means of a physical obstruction. This however is not the
case. Variations in radio signal power at different locations with the same distance to
the receiver are assumed to be random and independent. The dependent reduction in
radio signal powers due to obstruction by buildings is better referred to by the term
"blocking" and is not included in the model.
Let the received power at distance r from the transmitter be denoted by P(r). In

the lognormal model the basic assumption is that the logarithm of P(r) is normally
distributed around the logarithmic value of the area mean power:

10 log10 (P(r)) = 10 log10 (Pa(r)) + x. (3.9)

In this expression x is a zero-mean normal distributed random variable (in dB) with
standard deviation σ (also in dB). The standard deviation is larger than zero and, in
case of severe signal fluctuations due to irregularities in the surroundings of the receiving
and transmitting antennas, measurements [90] indicate4 that it can be as high as 12.
We notice that when σ = 0, the lognormal model reduces to the pathloss model. So,
the pathloss model can be seen as a specific case of the more general lognormal model.
The small scale signal fluctuations without Line-of-Sight component5 are repre-

sented with a Rayleigh distribution, and therefore are also referred to as Rayleigh
fading. Rayleigh fading, named after Lord Rayleigh [83], is the fading of a communica-
tions channel generated by the combination of different out-of-phase signals traveling
along different paths. The probability density function of a signal amplitude subject to
Rayleigh fading is [22]:

4It should be noted the measurements that we refer to have been done on lower frequencies than
frequencies used in WLAN networks. If a wireless ad-hoc network is making use of WLAN radio
modules, the range of variation in σ could be different.

5In this thesis we will not describe the small scale fading model with Line-of-Site component which
is presented with a Rician distribution. For more information about Rician fading we refer to [88,
Chapter 2].
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fα (α/p) =

(
2α
p
exp

³
−α2

p

´
0 ≤ α <∞

0 α < 0

where α is the signal amplitude and p is the average power of the signal. The instan-
taneous power of Rayleigh faded signal is p = α2. Using the transformation [37]:

ϕ(z) = f(x)

¯̄̄̄
dx

dz

¯̄̄̄
if z = h(x),

we obtain the following expression for the instantaneous power of a Rayleigh faded
signal:

fp (p/p) =
1

p
exp

µ
−p
p

¶
. (3.10)

3.4.2 Pathloss geometric random graph model

Geometric random graphs have been proposed to model wireless ad-hoc networks before
(see e.g. [25], [85], [12], [11]). As we mentioned in the beginning of this section, for
realistic modeling of ad-hoc networks it is essential to have an accurate model for the
link probability between nodes. All geometric random graph models proposed in the
literature prior to our model suggestion (see [45]) were based on the pathloss radio prop-
agation model. Due to the dependency of the link probability in this geometric random
graph model on the pathloss radio propagation model, we call this model throughout
this thesis the pathloss geometric random graph model.
Let us assume that for correct reception of radio signals it is required that the

received power at the receiver is more than a certain threshold value P. The coverage
area of node i in a wireless ad-hoc network is the collection of all the points j in the
2-dimensional space where the received signal power from i is more than P. A node can
communicate directly with nodes that fall inside its coverage area but not with other
nodes. If the pathloss radio model is used, based on (3.8) all nodes within the range
R = r0

¡
c
P
¢1/η

can communicate with each other. This means that the necessary and
sufficient condition for two nodes to be connected is that the distance between them is
less than R. Depending on the value of R graphs representing ad-hoc networks can be
dense or sparse, connected or not connected.
The pathloss geometric random graph model results into a perfect circular coverage

area around each node with radius R. In this model the link probability between two
nodes p(rij) is a simple step function:

p(rij) =

½
1 0 < rij ≤ 1
0 rij > 1

. (3.11)
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Figure 3.8: Schematic view showing the nondeterministic nature of radio links where
in reality short distance links may not exist while longer distance links do.

The pathloss geometric random graph model resembles a highly clustered lattice
network with the difference that in the pathloss geometric random graphs, due to strict
distance dependency, links between nodes are locally correlated.
Although used extensively in the literature, the pathloss geometric random graph

model is in our opinion not a realistic model for ad-hoc networks. In reality the received
power levels may show significant variations around the area mean power. Due to these
variations, the coverage area will deviate from a perfect circular shape and consequently,
some short links could disappear while long links could emerge (see Figure 3.8). In the
next section we propose a more realistic model for ad-hoc networks than the pathloss
geometric random graph model. Our model allows for random signal power variations
and is described by us in [45] and [47].

3.4.3 Lognormal geometric random graph model

We discussed earlier that the random graph model is not a suitable model for ad-hoc
networks, because in random graphs there is no correlation between links and any
two nodes have the same probability of being connected. When researchers realized
that random graphs are not suitable to model ad-hoc networks, they shifted en masse
towards the pathloss geometric random graph model, with very strict and deterministic
view, implying that every node within a circle must be connected to the center node.
The pathloss geometric random graph model is an attempt towards better modeling
of ad-hoc networks. It indeed introduces the notion of distance dependency and adds
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Reality is somewhere in-between.

Figure 3.9: Shift in views for modeling ad-hoc networks.

correlation between links, but it oversimplifies the reality by assuming a perfect circular
coverage area for all nodes. Because the nature of radio propagation is nondeterministic
and to some degree random, we argue here that the best model for representation of
wireless ad-hoc networks lies probably in-between a random graph approach and the
pathloss geometric random graph approach. Therefore we propose a model with more
relaxed local correlation between links. In this regard we suggest a shift back towards
(but not completely back to) the random graphs that have no notion of local correlation
(see Figure 3.9).
The approach used in this thesis to make a more realistic geometric random graph

model is by taking the medium scale radio signal power variations into account. Medium
scale power fluctuations are assumed to have lognormal distribution, as described in
Section 3.4.1. Due to the dependency of the link probability in our model on the
lognormal radio propagation, we call our model throughout this thesis the lognormal
geometric random graph model. In the rest of this thesis whenever the term geometric
random graph is used without explicit mentioning of pathloss or lognormal, we always
mean the lognormal geometric random graph.
In our modeling we have not considered the small scale fluctuation of signal am-

plitudes (the Rayleigh or Rician fading). If we may assume that during the life time
of a link the small scale fading effects are averaged-out (over time or over distance),
then including small scale fading effects is not sensible. However, we do not exclude
the possibility of adding more accuracy to the model by taking the small scale fading
into account as well. As a matter of fact, we believe that radio modeling for better
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understanding of ad-hoc network characteristics is a research area where a lot needs to
be done yet. Our approach here should therefore be seen as an attempt towards this
goal. Shortly after the publication of our geometric random graph model [45], the log-
normal model of medium scale power variations appeared to be suggested for modeling
ad-hoc networks by Bettstetter as well [13]. This naturally strengthened our belief in
our model and encouraged us to continue the study of fundamental properties of ad-hoc
networks based on the lognormal radio model.
The power received at node j from node i with distance rij between them according

to the lognormal radio model is found using (3.9):

10 log10 (P(rij)) = 10 log10 (Pa(rij)) + x.

To eliminate parameters not relevant to our study, we normalize variables as follows.
In Section 3.4.2 we already defined R as the distance where the area mean power Pa(rij)
is equal to P, the receiver sensitivity. In other words, P = c (R/r0)

−η. By dividing
powers by P and using (3.8) we find:

10 log10

µ
P(rij)

P
¶

= 10 log10

³³rij
R

´
−η
´
+ x

10 log10 bP(brij) = 10 log10
¡br−ηij ¢+ x, (3.12)

where we define brij , rij/R as the normalized distance and bP(brij) , P(rij)/P as the
normalized power. From this formula we see that the logarithm of normalized power
has normal distribution with the mean 10 log10

¡br−ηij ¢ and the variance σ2 (variance of
x). The condition for correct reception of signals at normalized distance brij is that the
normalized power at this distance is more than 1 (or zero dB). The probability that
two nodes are connected (link probability) is then [47]:

p(brij) = Pr
h
10 log10(bP(brij)) > 0i

=
1√
2πσ

Z ∞

0

exp

"
−(t− 10 log10 (brij −η))2

2σ2

#
dt

=
1

2

·
1− erf

µ
υ
log (brij)

ξ

¶¸
, ξ , σ/η (3.13)

where υ = 10/(
√
2 log 10), and ξ is defined as the ratio between the standard deviation

of radio signal power fluctuations, σ, and the pathloss exponent, η. Low values of ξ
correspond to small variations of the signal power around the area mean power and
high values of ξ correspond to stronger power variations. Based on the aforementioned
range of possible values for η and σ in Section 3.4.1, we note that theoretically ξ
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Figure 3.10: Link probability in lognormal geometric random graph model for different
ξ values. In the case ξ = 0 the lognormal model reduces to the pathloss model with
circular coverage per node.

may vary between 0 and 6 [47], although values higher than 3 seem to be unrealistic
[49], because high values of σ correspond to heavily built and irregular areas where
the pathloss exponent is high as well. The best way to determine the most probable
value range for ξ is through extensive measurements. To our knowledge reliable and
extensive measurements of this type for typical wireless ad-hoc network environments
are not available yet. We have performed ourselves some limited measurements that
will be discussed in Section 3.5.
In the case of ξ → 0, our model is equivalent to the pathloss model (3.11) with a

simple step function as link probability:

lim
ξ→0

p(brij) = ½1 if brij < 1
0 if brij > 1 .

This means that our lognormal geometric random graph model is a more general
case of the pathloss geometric random graph model. Figure 3.10 shows for different
values of ξ the link probability calculated with (3.13). It should be noticed that the
normalized distance 1 depends directly on pathloss exponent η. So, the actual length
of the normalized distance 1 for any of the lines in Figure 3.10 need not to be the same.
With the lognormal radio model for ξ > 0 there is a nonzero probability that nodes at

a distance larger than 1 are connected, while there is a nonzero probability that nodes at
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distances less than 1 are disconnected. In Figure 3.10 we see that as signal fluctuations
becomes more severe (as the value of ξ increases), the link probability at short distances
reduces, while at large distances the link probability increases. We mention here briefly
that especially the long-distance connectivity probability will affect the hopcount and
connectivity in the network; similar to the small world networks extended with a few
"long" links [115]. This matter will be investigated extensively in Chapters 5 and 6.
Figure 3.11 shows results where we used (3.13) to located points in a squared area

of normalized size 10× 10 that at a certain instant in time are connected to a node in
the center of this area at coordinates (0, 0). The points shaded in this figure represent
the connected points to the center node. This collection of points can be considered as
the coverage area around the center node for different values of ξ. It should be noticed
that the area of coverage is not an area with fixed boundaries. It can change according
to the distribution function of the lognormal model. When ξ = 0 (upper left subplot in
Figure 3.11), variance of the received power around the area mean power is zero, and
the coverage area is a perfect circular area with normalized radius 1. As the value of ξ
increases, variations in the received power increase as well. Consequently we will have
more nodes at normalized distances larger than 1 that may have a link with the center
node. From the reduced density of shaded points at close distances to the center node,
we conclude that there are nodes at distances less than the normalized distance 1 that
do not have a link with the center node.

3.5 Measurements

We mentioned before that there are not enough measurement results in the literature
to verify the lognormal radio propagation model for wireless ad-hoc networks in indoor
and outdoor environments. We have performed our own limited measurements. In this
section we describe general set up of the measurements and discuss final results. For
more details about these measurements we refer to Appendix A.
We have used WLAN (IEEE 802.11b) access points installed in three railways sta-

tions in The Netherlands to perform measurements on the received signal powers6. In
these three railway stations in total ten WLAN access points were installed at conve-
nient locations, varying in height between 2.5 to 14 meters. Using a WLAN receiver
card with a laptop, we have measured the received signal powers from the access points
while moving in and around these train stations at walking speed. We logged on the
laptop the received signal power and the distance to the access point at the rate of 1
sample per second. After filtering unreliable data we had 9 hours of measurement data.

6WLAN equipment used in these measurements was installed within the frame work of an coopera-
tive research project by ProRail, a company responsible for reliability, security and capacity of railways
in The Netherlands.
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Figure 3.11: Coverage of a node in the center of a service area of size 10 × 10, for
different values of ξ.

For position determination we used a GPS receiver with 10 meters position accuracy 7.
Figure 3.12 shows as function of the distance to the access points the measured

signal powers. In this figure we have smoothed the data by taking the average of the
measured signal powers for all distances that fall within intervals of 10 meters to the
access points. We notice that there is a good match between the measured area mean
power values and the pathloss propagation model, with the pathloss exponent value
given in the figure.
We have also noticed that measured power values have an approximately normal

distribution around the expected area mean power values for each distance, as the
lognormal propagation model predicts. This can be seen from Figure 3.13.
Our measurements roughly agree with the theoretical lognormal radio propagation

model. However, despite this match, based on these measurements alone we may not
conclude with certainty that radio propagation in ISM bands for wireless ad-hoc net-
works can be modeled with a lognormal radio model. Our measurements are unfortu-

7We may expect that the measured position falls with 68% probability (one sigma confidence inter-
val) within the stated distance from the actual position. This accuracy is achieved with the civilian
code of GPS without selective availability (S/A). S/A is an intentional degradation in the accuracy of
GPS introduced originally for civilian users. In the year 2000 the United States Department of Defense
decided to switch off selective availability.
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Figure 3.12: Power as function of the distance to access points. Error bars show the
standard deviation of measured data.
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nately not extensive enough and, foremost, not very reliable. There are several reasons
for the unreliability of the data:

1. The position determination method used by us is inaccurate. For reliable mea-
surements we need a position determination accuracy in the order of 1 meter or
better. However due to budget restriction we were not able to achieve this goal.
One direct consequence of position inaccuracy is the high values of the standard
deviation for measured powers at close distances to the access points (see Figure
3.12).

2. We have aggregated the data from all access points, without any correction for
the height of the antenna at each access point.

3. The WLAN card and the software used to log the data were unable to measure
beyond about -94 dBm power levels. Consequently, we were not able to perform
measurements at relatively longer distances to the access points.

4. The structure of the areas where we have performed the measurements has been
very diverse, from heavily obstructed indoor environments without line-of-sight to
vast open spaces with line-of-sight. Putting measured date from all these different
areas together is a very crude way of statistical analysis. Our measurement data
is not extensive enough for statistical analysis of each area type separately.

3.6 Chapter summary

In this chapter we described important characteristics of random graphs, lattice graphs,
scale-free graphs and the pathloss geometric random graphs to position our model for
ad-hoc networks. Our model for ad-hoc networks is based on the medium scale signal
power fluctuations in radio communications and assumes that these power fluctuations
have a lognormal distribution. We have discussed why our lognormal geometric random
graph model can be a realistic way of modeling ad-hoc networks. For easy comparison
we have summarized some of the important characteristics of wireless ad-hoc networks
and different graph models discussed in this chapter in Table 3.1. As it can be seen from
this table, our lognormal geometric random graph model matches the characteristics of
wireless ad-hoc networks better than other models.
We have argued that our modeling of ad-hoc networks, based on the lognormal

assumption of power variations, is a step in the right direction for better and more real-
istic modeling of ad-hoc networks. However, we emphasized at the same time that more
measurements are needed for better understanding of radio channel characteristics in
typical ad-hoc network environments and frequencies. A set of measurements performed
by us supports so far the lognormal model, but has limited extend and accuracy.
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Table 3.1: Comparison of network models.
link probability local correla-

tion
small-world
property

ad-hoc networks depends on the distance and fading yes, grows
weaker as fad-
ing increases

(1)

random graph distance independent, same for any
two nodes

no yes

regular lattice graph distance dependent, same for any two
adjacent nodes

no no

scale-free graph distance independent, higher for links
to "hubs"

(2) yes (strongly)

pathloss geometric random graph distance dependent, same for any two
nodes at the same distance

yes (3)

lognormal geometric random graph distance dependent, a probabilistic
function of distance and ξ (4)

yes, grows
weaker as ξ
increases

depends on ξ
(5)

Notes:
(1) If the increase in number of nodes is combined with an increase in the size of the service area, network
diameter increases and small-world property is not present. If only node density is increased, network
diameter does not change and ad-hoc network shows small-world property. In both cases, with strong power
fluctuation of radio signals (fading), the network diameter and the mean hopcount tend to reduce due to
the appearance of occasional long links.
(2) Scale-free graphs show strong clustering, but this is not necessarily because of local correlation. For
example, on the Internet two pages may have a link to the same popular websites, while there is no increased
probability of these two pages to be linked as well. However, in social networks, two acquaintances of a
popular person may be introduced to each other by that person. Only in the latter case, local correlation is
present.
(3) Same as (1), except that there is no way to reflect effects of the fading.
(4) ξ is the ratio between the standard deviation of radio signal power fluctuations and the pathloss exponent.
(5) Same as (1). Parameter ξ in this model reflects effects of the fading. For each number of nodes and node
density, network diameter and the mean hopcount reduce as ξ increases.
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Chapter 4

Degree in Ad-hoc Networks

In Chapter 3 is mentioned that random graphs have binomial (Poisson) degree distri-
bution (see (3.1)) and in scale-free networks degree distribution has a power-law form,
according to (3.7). In this chapter we focus on the mean degree and degree distribution
in wireless ad-hoc networks. As indicated in Figure 2.2, the degree and the degree
distribution in ad-hoc networks directly affects connectivity of the networks.

4.1 Link density and expected node degree

In wireless ad-hoc network the actual set of connections, in contrast to random graphs or
scale-free networks, depends on the geometric distance between nodes. An undirected
geometric random graph with N nodes is denoted as Gp(rij)(N), where p(rij) is the
probability of having a link between two nodes i and j (or j and i) at distance rij
from each other. In this graph the total number of edges or links between nodes is by
definition:

L =
NX
i=1

NX
j=i+1

p (rij) .

Let us assume thatN nodes are uniformly distributed over a 2-dimensional area with
sizeΩ. To derive the expected number of links, E[L], we have used a dissection technique
and assumed that area Ω is covered with m > N small squares (or placeholders) of size
∆Ω. Assuming that ∆Ω is small enough to include only one node, the total number of
configurations that can be formed with N nodes over the whole area is

¡
m
N

¢
. We denote

these configuration by G1, G2, . . . , G(mN)
and the number of links in these configurations

by L1, L2, . . . , L(mN)
. The average number of links over all possible configurations is by

definition the number of links in each configuration multiplied by the probability of
occurrence of that configuration:

41
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E[L] = Pr [G1]L1 +Pr [G2]L2 + ....+Pr
h
G(mN)

i
L(mN)

=

(mN)X
k=1

Pr [Gk]

"
NX
i=1

NX
j=i+1

p (|∆Ωk,i −∆Ωk,j|)
#
.

Here ∆Ωk,x indicates the position of the placeholder containing node x in configura-
tion k, and |∆Ωk,i −∆Ωk,j| is the distance between two nodes i and j in configuration
k. This formula can be simplified and rearranged by taking the following into account:

• N nodes can be placed in m possible placeholders in
¡
m
N

¢
distinct ways. If nodes

are uniformly distributed over area Ω, all configurations are equally probable with
probability

¡
m
N

¢−1
.

• In the summation over all possible configuration possibilities, each node could
be positioned in any of the m possible positions. Therefore, the sum of the link
probabilities p(.) over all possible links between N nodes over all possible configu-
ration, can be written as summation of link probabilities p(.) over all combination
of placeholders themselves. Further, we notice that in placing N nodes in m
placeholders, a link between any two placeholders i and j occurs exactly in

¡
m−2
N−2

¢
configurations (if positions i and j are occupied, there are N − 2 nodes to be
positioned in m − 2 places, and this can be done in ¡m−2

N−2
¢
ways). Considering

these points, the formula for E[L] can be rewritten as:

E[L] =

µ
m− 2
N − 2

¶ mX
i=1

mX
j=i+1

p (|∆Ωi −∆Ωj|)
µ
m

N

¶−1
=

N(N − 1)
m(m− 1)

mX
i=1

mX
j=i+1

p (|∆Ωi −∆Ωj|)

=
N(N − 1)
m(m− 1)

mX
i=1

mX
j=i+1

p (rij) ,

where rij is the distance between two placeholders i and j. We mention here that the
above double summation can be simplified in several ways to make numerical computa-
tions faster. One method is to rearrange and regroup terms so that summations will be
over the number of nodes, rather than number of placeholders. An integral expression
is also possible [113].
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Link density L is the ratio between E[L] and Emax = N(N − 1)/2, the maximum
number of links in a full-mesh network:

L = E [L]

Emax
=

2

m(m− 1)
mX
i=1

mX
j=i+1

p (rij) . (4.1)

From this formula we see that link density is independent of the number of nodes in
the network. The link density depends only on the "strength of connectivity" (defined
by the function p(r)) over the area of consideration. In other words, the link density is
a measure that indicates how well different parts of the area can be reached from other
parts. Knowing the expected number of links in the network, the mean degree, E[d],
over all nodes is by definition:

E[d] =
2E[L]

N
= (n− 1)L. (4.2)

Formulas (4.1) and (4.2) are valid for any geometric random graph Gp(rij)(N). For
our lognormal geometric random graph model p(rij) is given by (3.13). Assuming
normalized distances and substituting p(rij) in (4.1) with (3.13) provides the formula
for link density with lognormal radio model, Llg:

Llg = 1

m(m− 1)
mX
i=1

mX
j=i+1

·
1− erf

µ
3.07

log (brij)
ξ

¶¸
, (4.3)

where brij is the normalized distance between two placeholders i and j in the service
area of the ad-hoc network. The service area of the ad-hoc network is the whole area
where nodes are uniformly distributed. Figure 4.1 shows the calculated values1 of the
link density found using (4.3) for different sizes of square-shaped service areas and
for different values of ξ. Important is to notice that when the size of the service area
increases, the link density tends to zero. Further, we see that the link density is higher
for larger values of ξ. From a radio propagation point of view, a higher value of ξ means
more signal power fluctuations that results into higher probability of having occasional
links with nodes at farther distances. As expected, this translates itself into a higher
value of the link density over the service area.
Having a formula for the link density; the expected node degree in an ad-hoc network

with lognormal radio model follows directly from (4.2):

E[d]lg = (N − 1)Llg (4.4)

Table 4.1 shows some values of the link density and the mean node degree found using
(4.3), respectively, (4.4); and compares them with values found through simulations.

1Wherever the link density is numerically calculated for an area of size Ω, we have assumed that
∆Ω is an area of normalized length 0.1 by normalized width of 0.1.
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Figure 4.1: Link density for square-sized areas and different values of ξ.

The simulation program used for verification of computed results, spreads N nodes
uniformly over a square-shaped area of given size, and establishes links between node
pairs using (3.13). The simulated value of the link density in each case is the ratio of
the established links to the maximum number of possible links. The simulated value of
the mean node degree is the mean value of the degree found for all nodes. It can be seen
from Table 4.1 that there is a good match between the simulated and the calculated
results.

4.2 Degree distribution

In the previous section we calculated the link density and the expected node degree
with the lognormal geometric random graph model and verified by simulation that
(4.3) and (4.4) provide accurate results, regardless of the size of the service area. In
this section we concentrate on the degree distribution. For random graphs we know
that by definition the degree distribution is binomial. The question considered in this
section is whether the degree distribution in ad-hoc networks is binomial as well.
When nodes are uniformly distributed over the service area, for any node i with

an arbitrary but fixed shape of coverage area the degree distribution is binomial with
a mean value that depends on the size of the coverage area of node i. This property
follows directly from the uniform distribution of nodes and can be verified easily. An
example with a star-shaped coverage area is shown in Figure 4.2.
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Table 4.1: Calculated versus simulated values of link density and average node degree
based on the lognormal geometric random graph model. In all simulations N = 2000.
area ξ calculated Llg calculated E[d]lg simulated Llg simulated. E[d]lg
5×5 0 0.1046 209.04 0.1051 210.02
5×5 3 0.1820 363.73 0.1823 364.42
10×10 0 0.0288 57.57 0.0287 57.41
10×10 3 0.0606 121.14 0.0610 122.00
20×20 0 0.0074 14.72 0.0074 14.85
20×20 3 0.0175 34.98 0.0178 35.52
50×50 0 0.0012 2.34 0.0012 2.45
50×50 3 0.0030 6.00 0.0030 6.08
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Figure 4.2: When N nodes are uniformly distributed over an area, the number of nodes
falling inside any subsection of irregular shape, like a star in this case, has a binomial
distribution, with a mean value directly depending on the ratio of the subsection surface
to the surface of the whole area.



46 CHAPTER 4. DEGREE IN AD-HOC NETWORKS

This observation implies that degree distribution in an ad-hoc network must be
binomial as well, even if the shape of the coverage area of any node may be very irregular.
However, in an ad-hoc network there are two factors that make the situation more
complex. At the first place because the coverage area is determined by a probability
function, the coverage area of each node does not have a fixed shape and can vary from
node to node. Secondly, for nodes close to the borders of the service area, the coverage
area is truncated physically by border limits of the service area. We will call the first
factor coverage fluctuations, and the second factor border effect. The border effect
reduces the expected number of neighbors for nodes in the border area in comparison
to nodes situated more towards the center of the service area. Taking these two aspects
into account, what is the distribution of node degree in an ad-hoc network when we
look at all nodes collectively?
We have investigated this question through simulations, using our geometric ran-

dom graph model, for different network sizes, network densities and ξ. The simulation
method is straightforward. In each simulation we distribute N nodes over an area of
x× y (normalized values). Then we establish links between nodes using p(brij) accord-
ing to (3.13) and calculate the degree distribution for all nodes. Our main conclusion
based on these simulations is that in wireless ad-hoc networks the node degree can be
considered to be binomially distributed, with a mean value given by (4.4), when the
border effect is negligible. The coverage fluctuations do not seem to distort the bino-
mial distribution of the node degree. In the following two paragraphs we elaborate this
conclusion.

Effect of coverage fluctuations

To be able to investigate the effect of coverage fluctuations separate from the bor-
der effect, the area can be considered as a torus with toroidal distances between the
nodes. This eliminates all borders, and consequently the border effects. A torus can be
constructed from a rectangle by gluing both pairs of opposite edges together with no
twists. The resulted torus is embedded in three-dimensional space and is shaped like a
donut. Figure 4.3 compares the possible links between nodes when toroidal distances
are assumed with the case that only Euclidian distances over the rectangular area are
allowed. In the former case there exist simply no border nodes. Our simulation results
showed consistently that regardless of the network size, the network density and the
value of ξ, the degree distribution is binomial when toroidal distances are used.
Another way of canceling the border effects is to focus on degree distribution for

nodes in the inner region of the service area. The inner region of a rectangular service
area of size x × y is a rectangle with size (x − 2l) × (y − 2l). The service area and
the inner region are co-centered rectangles. To exclude the border effect, l should be
chosen in such a way that only a negligible portion of the coverage area of any node
in the inner region could fall outside the service area. In our simulation for each value
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Figure 4.3: Links between nodes in an rectangular area (figure on the left), and new
links that appear when toroidal distances are considered (figure on the right).

of ξ we chose l to be the distance where the link probability drops to 5% (see (3.13)).
Our simulation results showed that regardless of the network size, the network density
and the value of ξ, the degree distribution for inner nodes is binomial.

The border effect

When we look at all nodes in the service area with some nodes in the border regions and
Euclidian distances between nodes, under certain circumstances the border effect could
be considered negligible. When the border effect is negligible, the degree distribution
is by good approximation binomial. The border effect is negligible if:

1. the service area is much larger than coverage area of a single node, and

2. the node density is low.

A relatively large service area is equivalent to a low link density. Therefore, the
combined effect of conditions 1 and 2 is reflected in the product of the link density
and the number of nodes; in other words, in the value of the mean node degree (see
(4.4)). Considering this, we can say that the border effect is negligible and the degree
distribution is binomial when the mean node degree is low. In the remainder of this
section we justify this statement and try to quantify conditions for its validity through
simulations.
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Figure 4.4: Degree distribution found through simulation for different values of N ,
compared with a binomial distribution having the same mean value. Service area in all
cases is 20× 20 and ξ = 3.

Figure 4.4 shows the degree distribution found through simulations for ξ = 3 and
different number of nodes uniformly distributed over an area of 20 × 20. Figure 4.5
shows another set of simulation results found for N = 1000 and different values of ξ. In
both figures the solid lines represent the actual degree distribution, while in each case
a dotted line shows a binomial distribution with the same mean value as the actual
degree distribution. We have used the Kolmogorov-Smirnov test with 5% significance
level [93] to verify the hypothesis that the actual degree distribution is binomial. The
Kolmogorov-Smirnov tests show that for the low values of mean node degree, E[d],
the degree distribution is binomial with high probability. As the mean node degree
increases, the probability of accepting the hypothesis reduces. However, only in cases
e, f , k and l in Figures 4.4 and 4.5, where the mean node degree is higher than 18,
the hypothesis of binomial distribution could be rejected. Other simulation results for
different sizes and shapes of the service area (not presented here) are consistent with
this result: in all cases where nodes are uniformly distributed over the service area,
the distribution of the node degree can be considered to be binomial if the mean node
degree is low (lower than 18 for square-shaped areas).
In Chapter 6 we will discuss that knowing the exact degree distribution is relevant

in the study of connectivity in ad-hoc networks. Without going into details at this stage
we mention that the transition from disconnected to connected networks takes place at
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Figure 4.5: Degree distribution found through simulation for different values of ξ, com-
pared with a binomial distribution having the same mean value. Service area in all
cases is 20× 20 and N = 1000.

low values of the mean node degree ([47], [48], [25]). Therefore, in the regions close to
the transition between connected and disconnected networks, it is save to assume that
the degree distribution is binomial. In practice too, the mean node degree is unlikely to
be high in wireless ad-hoc networks, personal area networks or sensor networks. At the
first place the transmission power of nodes forming these networks is low which limits
the geographical size of the coverage area, and consequently the number of neighboring
nodes. Secondly, because of medium sharing in these networks, a high node degree
would result into a very low throughput per node which is an undesired situation and
would be avoided.

4.3 Chapter summary

We have studied three topics in this chapter, link density, expected node degree and
degree distribution. Main results regarding these topics are summarized below.

Link density: It has been shown that link density is a function of the area size and
the parameter ξ. When area size tends to ∞, link density tends to 0, which
is a direct consequence of that fact that in ad-hoc networks links are distance
dependent. Further, it has been shown that the link density is higher for larger
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values of ξ. The minimum link density value for each area size appears for ξ = 0,
which corresponds to the pathloss model of radio propagation. We have found an
analytic expression for the link density in ad-hoc network (see (4.3)).

Expected node degree: Expected node degree in ad-hoc networks is found by mul-
tiplying the link density with the number of nodes forming the network (see (4.2)
and (4.4)). Because link density is minimum for the pathloss radio model, we
may conclude the pathloss model is the most pessimistic model for estimation of
the mean degree in ad-hoc networks.

Degree distribution: In ad-hoc networks degree distribution can be considered to be
binomial when the density of nodes is low and the area size is large in comparison
to themaximum link distance. By the maximum link distance we mean the length
of the distance over which two nodes could be connected with a non-negligible
probability (for example, p(brij) > 0.05). Both condition are required to avoid
the so-called border effect. The combined effect of these two conditions is a low
value for the mean degree. We have shown that when E[d] . 18, the degree
distribution can be considered to be binomial. We recall from Chapter 3 that
degree distribution is also binomial in random graphs. It is interesting to see
that despite the totally different forms of behavior, both the random graph and
the geometric random graph have binomial degree distribution. It should be
noticed however that binomial degree distribution in geometric random graphs is
conditional on uniform distribution of nodes over the service area. If nodes are
not uniformly distributed over the service area, degree distribution will not be
binomial. In this thesis we are always assuming uniform distribution of nodes.



Chapter 5

Hopcount in Ad-hoc Networks

In this chapter we focus on the mean hopcount and hopcount distribution in ad-hoc
networks. Hopcount is a measure for the number of relay stations that a data packet or
a routing message is expected to pass through while traveling between arbitrary source
and destination nodes. Therefore understanding the hopcount is important for estima-
tion of the relay traffic, routing overhead and delay in ad-hoc networks. As indicated in
Figure 2.2, hopcount is needed for the study of the capacity in ad-hoc networks. Details
of the influence of the hopcount on the network capacity are considered in Chapter 10.
In this chapter we will use our geometric random graph model of ad-hoc networks

to study the effects of radio propagation conditions, area size and the number of nodes
on the expected hopcount and the hopcount distribution in ad-hoc networks. It is
obvious that in a sparse network or a network consisting of a few isolated clusters, the
mean hopcount and hopcount distribution are not descriptive and meaningful values
for the entire network. In this chapter whenever hopcount is calculated or expressed in
formulas it is assumed that the underlying network is connected or almost connected1.

5.1 Global view on parameters affecting the hop-
count

In the description of our geometric random graph model for ad-hoc networks we men-
tioned already that when ξ = 0 an ad-hoc network tends to behave like a regular
2-dimensional lattice networks. When the value of ξ increases, ad-hoc network starts
to deviate from a regular lattice model. Links over larger distances may appear and
links over short distances may disappear. In other words, for higher values of ξ an
ad-hoc network tends to show stronger small world property, resembling to some degree
a random graph. Based on this observation we expect that the hopcount in ad-hoc

1Mathematical definition of "almost connected" is given in Chapter 6.

51
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networks is directly affected by the value of ξ.
The mean hopcount is the average distance between any pair of nodes, or the average

path length in the network. The mean hopcount in a random graph Gp(N) is by
approximation E[h] ' log(N)/ log(E[d]), where N is the number of nodes and E[d] is
the expected node degree in the random graph (see (3.2)).
In contrast to random graphs where links are completely uncorrelated and relative

node positions irrelevant, an extremely regulated graph in two dimensions is a rectan-
gular lattice. In a dense 2-dimensional rectangular lattice graph, apart from border
nodes, each node has a constant degree of 4 (see (3.5) for the mean degree taking all
nodes into account). Further, neighboring nodes are all at the same distance from each
other. We call the distance between neighboring nodes the granularity of the lattice.
The size of the lattice is the number of nodes in the lattice. The mean hopcount is in a
2-dimensional rectangular lattice of the size N = m×n is m+n

3
(see (3.6)). We see that

for connected graphs, the mean hopcount in a lattice is higher than the mean hopcount
in a random graph of the same size. In this chapter we show that the mean hopcount
in an ad-hoc network can vary between the expected values for a lattice network and a
random graph, depending on the value of ξ and the size of the service area.

5.2 Analysis of the hopcount in ad-hoc networks

For study of the hopcount in ad-hoc networks we have used simulations. In each sim-
ulation scenarios N nodes are uniformly distributed over a service area with a certain
length and width. Then we have formed links between nodes using the link probability
(3.13). In the resulted graph we have calculated the hopcount between any two con-
nected node pairs and have derived the hopcount distribution from it. In all simulation
cases the size of the service area and the number of nodes have been chosen in such a
way that the entire network of nodes has a high probability of connectivity. Connectiv-
ity and conditions for that are studied in details in Chapter 6. At this stage it suffice
to mention that the value of N has been chosen high enough for a giant component [25]
to appear. This condition is required when we want to relate the calculated hopcount
values to the provided value of N . If the node density is so low that the network con-
sists of scattered small clusters, the hopcount calculation is not reliable. Our findings
about the hopcount in ad-hoc networks are listed below.

• Hopcount in ad-hoc networks is strongly affected by ξ. Figure 5.1 visualizes the
effect of the variation in ξ on the topology of an ad-hoc network. When ξ = 0,
only nodes at distances less than the normalized distance 1 are connected. As ξ
increases, the probability of having a link between two nodes at farther distances
increases as well. Consequently, the mean hopcount reduces. Figure 5.2 shows
the hopcount distribution corresponding to the subplots in Figure 5.1. At low
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Figure 5.1: Nodes and links in an ad-hoc network for different values of ξ. In all subplots
N = 1000, and service area is 20× 20.

values of ξ, the mean hopcount is close to the mean hopcount in a lattice with the
same length and the same width as the service area and granularity 1. When ξ
increases, the mean hopcount tends more towards the mean hopcount in a random
graph with the same number of nodes and the same link probability. Of course
even for the highest value of ξ (about 3 as discussed in Section 3.4.3) we may
not expect a hopcount value exactly the same as in random graphs, because in
ad-hoc networks the distance dependency of links is always a fact. Only when
the length and the width of the service area are in the same order of magnitude
as the maximum link distance (the metric length of the distance over which two
nodes could be connected with a non-negligible probability), we may observe a
low mean hopcount value close to the mean hopcount in a random graph.

• Despite the strong effect of ξ on the hopcount in ad-hoc networks, it should not
be forgotten that the mean hopcount and hopcount distribution also depend on
the area size. For any value of ξ, the mean hopcount increases when the size of the
service area increase as well (see Figure 5.3). In other words, when the increase
in the network size is combined with an increase in the size of the service area,
the diameter of the networks increases. Under this condition the ad-hoc network
does not show the small-world property.
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Figure 5.2: Hopcount for different values of ξ. In all subplotsN = 1000, and service area
is 20× 20. The mean hopcount is indicated on each subplot for the ad-hoc network, a
lattice of size 21×21, and a random graph with 1000 nodes and the same link probability
as in the ad-hoc network.
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• The hopcount in ad-hoc networks for low values of ξ depends only on the size of
the service area and not on the number of nodes. In Figure 5.4 we have plotted
the hopcount distribution over the same area size with different number of nodes.
We see that the hopcount distribution and the mean hopcount is not affected by
changes in the number of nodes. Under this condition we see that an increase
in the network size does not increase the hopcount (or diameter) of the network.
This means that ad-hoc networks show the small-world property, when only the
node density increase.

We had some discussions in Chapter 3 about the small-world property in ad-hoc
networks. We said that wireless ad-hoc networks are expected to show small-world
property, like random graphs, when the node density increases but the service area
size does not change. On the other hand, wireless ad-hoc networks are similar to
lattice graphs and do not show small-world property when an increase in the network
size (number of nodes) is the result of increasing the service area size (see also Table
3.1).We see here how our lognormal geometric random graph model with parameter ξ
captures this dual behavior

5.3 Chapter summary

In this chapter we have shown that the hopcount behavior in ad-hoc networks for low
values of ξ is similar to the hopcount in rectangular lattice networks with the same
length and the width as the service area of the ad-hoc network. When ξ increases, the
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mean hopcount and the network diameter are reduced due to the presence of occasional
"long links" between nodes. The hopcount in ad-hoc networks increases when the
service area increases in size. Further, hopcount is independent of the number of nodes
in the network (small-world property) when we increase node density over a given service
area.
We have observed that the hopcount in ad-hoc networks is a function of the para-

meters ξ, N , and the service area size. We have clear picture of how the hopcount is
affected by a change in each of these parameters. This is sufficient for the rest of our
research concerning interference and capacity determination of ad-hoc networks. Find-
ing an exact analytic formula showing the dependency of the hopcount on ξ, N and the
service area size is certainly useful, although we expect this to prove to be a challenging
task. However, for a simplified model of ad-hoc networks where position of nodes are
fixed to the vertices of a hexagonal lattice, we have found an algorithm to produce the
exact hopcount distribution. This model is described in Chapter 9. The algorithm to
produce the exact hopcount distribution is given in Section 10.4.1 of Chapter 10.



Chapter 6

Connectivity in Ad-hoc Networks

This chapter is about mathematical modeling and better understanding of one the most
important fundamental properties in ad-hoc networks, the connectivity. From a practi-
cal point of view, connectivity is a prerequisite to providing reliable applications to the
users of a wireless ad-hoc network. To achieve a fully connected ad-hoc network there
must be a path from any node to any other node. The path between the source and the
destination may consist of one hop (when the source and the destination are neighbors)
or several hops. When there is no path between at least one source-destination pair
the network is said to be disconnected. A disconnected network may consist of several
disconnected islands or clusters. The largest cluster in the network is called the giant
component [16]. It should be mentioned that there are two ways of looking at connec-
tivity in a graph or a network: vertex connectivity and edge connectivity. To give a
simple example, consider a telephone network. the vertex connectivity is related to the
smallest number of switching stations that must be damaged in order to separate the
network. The edge connectivity is related to the smallest number of wires that need to
be cut to accomplish the same thing.
Connectivity in ad-hoc networks has been studied previously in various papers (see

e.g. [85]). However, in this thesis we have used for the first time the lognormal radio
propagation model and our geometric random graph model (see Section 3.4.3) to study
connectivity. Our radio model takes statistically into account the dynamics of radio
signal power variations. These variations are unavoidably caused by obstructions and
irregularities in the surroundings of the transmitting and the receiving antennas. There-
fore, this radio model is more realistic than the static and solely on distance dependent
models that are commonly used to model wireless ad-hoc networks. We show here that
these variations strongly affect the connectivity behavior of the network.
We regard connectivity to be independent of traffic load in the network, although

some authors (see e.g. [28]) have preferred to see connectivity as a condition related
to the total traffic load in the network. In our approach, on the physical layer connec-
tivity between nodes is predicted by the radio model. Whether two connected nodes

57
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can communicate with each other at any given moment in time depends of course on
interference conditions which are directly linked to the traffic load and simultaneous
communications between other nodes in the network. Due to interference, communica-
tion between two connected nodes may drop to lower speeds or even become impossible
at certain times. However, in these cases we say that the link capacity is reduced,
instead of saying that the probability of connectivity between these two nodes is de-
creased. In other words, we consider interference as a capacity-affecting factor and not
as a connectivity issue.
In this chapter we will first provide an overview of theoretical published results for

the connectivity in random graphs, and in pathloss geometric random graphs. Subse-
quently, we will show that our lognormal geometric random graph model allows us to
refine these connectivity theorems for wireless ad-hoc networks.

6.1 Connectivity inGp(N) andGp(rij)(N)with pathloss
model

For the study of connectivity we consider a wireless ad-hoc network at any instant in
time as a graph with fixed topology. Two paths in a graph are said to be independent
if any node common to both paths is an end-node of both paths. A graph is said to be
k-vertex-connected if for each pair of nodes there exist at least k mutually independent
paths connecting them [85]. Another equivalent definition [17] is that a graph is k-
vertex-connected if and only if there is no set of k − 1 vertices whose removal would
disconnect the graph. The vertex-connectivity κ(G) of a graph is the maximum k such
that the graph is k-vertex-connected. Similarly, a graph is k-edge-connected if and only
if there is no set of k−1 edges whose removal would disconnect the graph [17]. The edge-
connectivity κ(G) of a graph is the maximum k such that the graph is k-edge-connected.
There is a close relationship between the vertex-connectivity, edge-connectivity and the
minimum degree dmin in a graph [17]:

κ(G) ≤ κ(G) ≤ dmin.

In the literature, as well as in this thesis, by the term connectivity always vertex-
connectivity is meant
Connectivity has been studied in many publications for random graphs as well as

pathloss geometric random graphs. Here we give an overview of two main theorems
with relation to the connectivity.

Theorem 1 If we start with a graph on N vertices and an empty edge set and add
edges randomly and independently one by one until having m edges, the graph almost
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surely1 becomes 1-connected when m ≥ N log(N)
2

+O(N). Considering that in Gp(N) two
nodes are connected with probability p , m/

¡
N
2

¢
, we can say that for a random graph to

be 1-connected there must hold:

p ≥ log(N)
N

a.s. (6.1)

Theorem 1 dates from the pioneering work of Erdös and Rényi [31] on random
graphs where they considered the Gp(N) model to study the threshold for connectivity
in graphs. While (6.1) holds for random graphs, in [25] and [85] it is shown that this
result is also valid for pathloss geometric random graphs, in any dimension higher than
one (but not for one-dimensional graphs).
Intuitively one may see that the connectivity in wireless ad-hoc networks depends

on the number of nodes per unit area and on the transmission range of wireless devices.
Increasing the density of nodes or increasing the transmission power of a radio node
will increase the node degree. Based on this deduction, it is not surprising to see that
the second theorem of connectivity relates connectivity to the node degree.

Theorem 2 In a random graph of N nodes if edges are added one by one to the empty
graph in an order chosen uniformly at random from the

¡
N
2

¢
! possibilities, then almost

surly the resulting graph becomes k-connected when it achieves a minimum degree of k.
In other words, for large N ,

Pr [G is k-connected] = Pr [dmin ≥ k] a.s. (6.2)

where dmin is the minimum degree per node.

Theorem 2 is proved for random graphs in [16]. In [12] and [85] it is proved that
this theorem is also valid for the pathloss geometric random graphs, in any dimension
higher than one when Pr [dmin ≥ k] is almost 1.

These two theorems of connectivity are not conflicting theorems for random graphs.
Here we prove for random graphs, that for large N , Pr [Gp(N) is 1-connected] ' 1 if
p > log(N)/N , and Pr [Gp(N) is 1-connected] ' 0 if p < log(N)/N .
Denote by f(p) = Pr [Gp(N) is 1-connected]. Because of binomial degree distribu-

tion in random graphs and independence of the links, this probability is computed as
(see (3.1)):

1We say that a graph has some property Q almost surely (a.s.) or with high probability (whp) if the
probability it has Q tends to one as N tends to infinity.
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f(p) = Pr [dmin ≥ 1 in Gp(N)]

=

"
N−1X
k=1

µ
N − 1
k

¶
pk (1− p)N−1−k

#N
= [1− Pr[dmin = 0]]N

=
h
1− (1− p)N−1

iN
. (6.3)

According to (6.3), f (p) is always one for fixed 0 < p < 1 and large N . Therefore, the
asymptotic behavior of Pr [Gp(N) is 1-connected] requires to investigate the influence
of p as function of N . The order of f (pN) for large N is:

f(pN) = exp
³
N log

³
1− (1− pN)

N−1
´´

= exp

Ã
−N

∞X
j=1

(1− pN)
jN−j

j
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= exp
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= e−N(1−pN )
N−1

Ã
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Ã
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j

!!
.

If we define cN , N · (1− pN)
N−1, then the order term O

³
N
P∞

j=2
(1−pN )(N−1)j

j

´
=

O
³
N
P∞

j=2
cjN
jNj

´
vanishes for large N provided we choose cN = O

¡
Nβ
¢
with β < 1

2
.

For large N , we thus have that f(pN) = e−cN ∼ e−AN
β
which tends to 0 for 0 < β < 1

2

and to 1 for β < 0. Hence, the critical exponent where a sharp transition occurs is
β = 0. In that case, cN = c (a real positive constant) and

pN = 1− exp
µ
log c

N − 1 −
logN

N − 1
¶
=
logN

N
+O

µ
log c

N

¶
.

In summary,

f(p) −→ 0
1
if p < log(N)/N
if p > log(N)/N

,

with a transition region around logN
N

of width of O( 1
N
).

In the next section we will investigate connectivity in wireless ad-hoc networks by
using our geometric random graph model explained in Section 3.4.3. As mentioned



6.2. CONNECTIVITY IN GP (RIJ )(N) WITH LOGNORMAL MODEL 61

before, this model is more realistic than the pathloss geometric random graph model.
We present results obtained through simulations. We believe that our simulation results
provide new insights into the theory of connectivity in wireless ad-hoc networks.

6.2 Connectivity in Gp(rij)(N) with lognormal model

Our focus will be on 1-connectivity. Higher orders of connectivity are not considered at
this moment. For the study of connectivity in ad-hoc networks based on our geometric
random graph model we have used simulations. The simulation program distributes
N nodes uniformly over a square area and establishes links between node-pairs using
the probability function (3.13). The service area of the ad-hoc network is the whole
area where nodes are uniformly distributed. In the resulting graph for each simulation
run we check the 1-connectivity and store information regarding the number of clusters
(components) in the graph, the mean component size, the total number of components
and the degree distribution. We have performed simulations with N = 250, 500 and
1000. For each value of N , results are gathered for ξ = 0, 1, 2, 3 and different values
of the area size. Changing the area size changes the expected values for the node
degree and allows us to study connectivity as function of the mean degree. For each
unique combination of the area size, ξ and N we have repeated simulations with 500
independent network configurations.
Two different procedures can be used for checking 1-connectivity [35]:

1. The first procedure chooses a node at random and uses a simple flooding algorithm
to tag all nodes belonging to the same cluster. This procedure is repeated for all
untagged nodes until no untagged nodes remain in the graph. If the largest cluster
found in this way contains all nodes, the network is 1-connected. In the process
of checking for 1-connectivity, this procedure provides us the exact size of all
clusters in the graph. By definition the largest cluster in the graph is called the
giant component. The size of each cluster is defined as the ratio of the number of
nodes in that cluster to the total number of nodes in the network. Similarly, the
giant component size is the ratio of the number of nodes in the giant component
to the total number of nodes forming the network.

2. The second procedure for checking 1-connectivity uses the N × N Laplacian of
G. The Laplacian [17] is the difference between the diagonal node degree matrix,
in which element (i, i) is degree of the node i; and the adjacency matrix, in
which element (i, j) is one or zero depending on whether a link does or does
not exist between nodes i and j (diagonal elements of the adjacency matrix are
zeros). Eigenvalues of the Laplacian are real positive numbers. The number of
zero eigenvalues of the Laplacian is equal to the number of cluster in G [17].
This is a fast and powerful method for checking connectivity of a graph. For a
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connected graph we have only one zero eigenvalue. The second smallest eigenvalue
of the Laplacian, although not considered further in this thesis, is a beautiful
representative of the strength of the connectivity and robustness in G. The larger
this number, the more difficult it is to disconnect the graph by taking out edges
or vertices [17, section VIII.2].

We have used the first procedure to gather simulation results, while the second
procedure is applied consistently to verify reliability of the first procedure. Results of
both procedure matched always perfectly with each other.
Figure 6.1 shows a part of the simulated results for 500 nodes. Each subplot corre-

sponds to a different value of ξ. In each subplot in this figure we have shown as function
of the node’s mean degree the following data obtained through simulations:

1. The probability of 1-connectivity.

2. The probability of p exceeding the log(N)/N threshold, which allows us to check
the accuracy of the first theorem of connectivity by comparing this data with the
first set of data mentioned above.

3. The probability of the minimum node degree being more than or equal to 1,
which allows us to check the accuracy of the second theorem of connectivity by
comparing this data with the first set of data mentioned above.

4. The giant component size.

The dotted line without markers in each subplot is added for comparison reasons
and shows, as function of the mean node degree, the probability of 1-connectivity (or
the probability of the minimum degree being more than or equal to 1) in a random
graph with N nodes, according to (6.3).
The first conclusion we can draw after analyzing simulation data is that our results

indeed comply with both theorems of connectivity for the pathloss geometric random
graph model (in other words, when ξ = 0). However we can add more important
additional details to refine the connectivity theorems :

• In all simulated cases, the first theorem of connectivity based on log(N)/N thresh-
old predicts an almost surely connected network at those values of the mean degree
where the actual probability of 1-connectivity is rather low (about 0.2 or less in
subplots of Figure 6.1). Is this theorem too optimistic? We can examine this
question by looking at the size of the giant component. For example, in Figure
6.1 for ξ = 0 the giant component size at the threshold where p exceeds log(N)/N
is 0.987. In another set of simulation with 1000 nodes (not shown in this chapter),
the giant component size at this threshold point for ξ = 0 was 0.998. This means
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Figure 6.1: Simulated results for different values of ξ showing: the probability of 1-
connectivity, the probability of p exceeding the log(N)/N threshold, the probability of
the minimum node degree being more than or equal to one, and the giant component
size as fraction of the total number of nodes. For comparison reasons, we have drawn
on each graph the probability of minimum degree being more than or equal to one for
a binomial degree distribution.
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that from the 1000 nodes, only 2 nodes did not belong to the giant component.
The giant component size at the threshold point where this theorem predicts
"almost surely" connectivity increase as N → ∞, and this is exactly what the
theorem stands for.

• In simulated cases with the low values of ξ the actual probability of connectivity
coincides with the probability of dmin ≥ 1 only when Pr [dmin ≥ 1] is almost 1.
This complies with the second theorem of connectivity for the pathloss geometric
random graphs. However, when the ξ increases, these two lines merge at lower
values of Pr [dmin ≥ 1]. For example, for ξ = 3 these two lines are overlapping
each other virtually for the entire range of the mean degrees. This behavior was
expected from the second theorem of connectivity only for random graphs. We
can conclude that when ξ increases, the increase in the long-distance connec-
tivity probability together with the reduction of the short-distance connectivity
probability reduces the correlation between links. As a result, the geometric
random graph approaches the random graph behavior, and the probability of
1-connectivity equals the probability dmin ≥ 1 for all values of Pr [dmin ≥ 1].

• Comparing the Pr [dmin ≥ 1] in ad-hoc networks with the Pr [dmin ≥ 1] in random
graphs (the dotted line in subplots of Figure 6.1) suggests that ad-hoc networks
need a higher value of the mean degree to achieve the same probability of not hav-
ing any isolated nodes. This is due to the existence of nodes around the borders
of the service area. If we eliminate the border effect by considering toroidal dis-
tances rather than Euclidian distances (as described in Chapter 4) this difference
diminishes. Figure 6.2 shows one set of simulated data gathered with toroidal dis-
tances. In this figure, the line indicating Pr [dmin ≥ 1] in random graphs overlaps
with the line for Pr [dmin ≥ 1] in ad-hoc networks.

• As mentioned in Chapter 5, the increase in long-distance connectivity probability
affects the hopcount in the network. In that chapter we already stated that the
mean hopcount in an ad-hoc network can vary between the expected values of the
hopcount in a lattice network and in a random graph, depending on the value of
ξ. As ξ increases, the probability of having a link between two nodes at farther
distances increases as well. Consequently, the mean hopcount reduces and gets
closers to the expected hopcount in random graphs. This behavior is investigated
as function of the mean node degree in Figure 6.3. This Figure shows the mean
hopcount found for ξ = 0 and ξ = 3. When the mean degree is high enough for
a giant component to appear, at low values of ξ the mean hopcount is close to
the mean hopcount in a lattice network with the same length and width as the
service area of the ad-hoc network. When ξ increases, the mean hopcount tends
more towards the mean hopcount in a random graph with the same number of
nodes and the same link probability.
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Figure 6.2: One set of simulated results similar to Figure 6.1 but with toroidal distances.

• For the same area size and for the same number of nodes the average node degree
increases with increasing value of ξ (see Figure 6.4). From the radio propagation
point of view, a higher value of ξ means a higher probability of having links with
nodes at farther distances. This translates itself into a higher value of the mean
node degree over the service area. This phenomenon was addressed previously in
[45] and in Chapter 4. The increase in the mean node degree directly enhances
the probability of connectivity.

• In all simulated cases we see that the giant component size is growing steeply to-
wards 1 for those values of the mean degree that the probability of 1-connectivity
is very low. For a relatively large span of the mean degree values the giant com-
ponent is already covering most of the network but 1-connectivity is not achieved
yet. This is due to only a few isolated nodes or small node clusters outside the gi-
ant component. This fact is demonstrated in Figure 6.5 that shows the mean size
of components other than the giant component for different values of ξ. Starting
from small values of the mean degree, as the mean degree increases, the mean size
of the giant component as well as the mean size of other components increase.
However, soon the giant component will "swallow" smaller clusters and causes
their mean size to drop rapidly. In [65] it is proved that the size of the compo-
nents other than the giant component is O(logN), to which our simulated results
comply. We believe for practical use of ad-hoc networks 1-connectivity is a too
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Figure 6.3: Simulated results showing the mean hopcount as function of the mean
degree for different values of ξ in ad-hoc networks in comparison to the mean hopcount
in lattice networks and random graphs. Error bars on the line for actual hopcount
indicate the standard deviation of the simulated hopcount.
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Figure 6.4: Mean node degree for 500 nodes uniformly distributed over areas of different
sizes for different values of ξ.

stringent condition to satisfy. Therefore, we suggest to use the giant component
size as a measure for connectivity in wireless ad-hoc networks. The giant compo-
nent size not only provides information about the network being fully connect or
not, but also it provides additional information about the fraction of the network
which is fully connected. For practical use of ad-hoc networks it may suffice to
provide conditions that, for example, only 99% of the network is connected.

This last point regarding the use of the giant component as a more suitable measure
of connectivity is discussed in more details in the following section.

6.3 Giant component size

In Chapter 3 we already mentioned that in random graphs for large N the giant com-
ponent size S is the non-zero solution to (3.4). In the subplots of Figure 6.1 we already
showed the giant component size found through simulations for ξ = 0, 1, 2 and 3. In
Figure 6.6 we have plotted them next to each other (with an additional line2 for ξ = 6)

2We have chosen to include a line for ξ = 6, although from the radio propagation point of view this
value is not very likely (see Section 3.4.3). This high value for ξ is chosen only to show that in the
theoretical case where radio signal power fluctuations are very severe they can dominate significantly
the distance dependency of radio links, and could cause the network to behave like a random graph.
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Figure 6.5: Mean size of components other than the giant component for different values
of ξ.

and compared them3 with the giant component size in a random graph, found using
(3.4). From Figure 6.6 we see that the lines representing the giant component size for
high values of ξ get close to the values predicted by (3.4) for random graphs. However,
for low values of ξ the giant component size appears to be shifted along the mean degree
axis. The amount of this shift is higher for lower values of ξ. We have tried several
function forms to estimate this shift. A good approximation found for this shift is:
2.64 exp(−0.44ξ). Taking this into account, the size of the giant component in wireless
ad-hoc networks based on our lognormal geometric random graph model, Slg, is by
approximation the non-zero solution to the following equation:

Slg = 1− exp (−ezSlg) , ez , z − 2.64 exp(−0.44ξ) (6.4)

where, z = E [d] is the mean degree in the ad-hoc network. Figure 6.7 shows the in this
way calculated giant component size in wireless ad-hoc networks for different values of
ξ. For comparison, the giant component size in random graphs is drawn on each subplot
of this figure. As visible in this figure, there is a good match between the simulated
and the calculated values of the giant component size.

3The giant component sizes found through simulations in Figure 6.6 are found for N = 500. Other
simulation results for N = 250 and N = 1000 indicated no noticeable difference with these values.
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Figure 6.6: Comparison of the giant component size in a random graph with the values
found for wireless ad-hoc networks.
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6.4 Chapter summary

In this chapter we have studied connectivity in wireless ad-hoc networks by modeling
the network as an undirected geometric random graph. The novel aspect in our study is
that for finding the link probability between nodes we used the lognormal propagation
radio model, that takes into account statistical fluctuations of the radio signal power
around its mean value. Using this model we have been able to modify the theorems for
connectivity in ad-hoc networks. Our study shows:

1. The first theorem of connectivity that states for the connectivity of a network the
link probability, p, needs to exceed log(N)/N is only a good test of connectivity
when N →∞. In ad-hoc networks where the number of nodes is limited to tens
or hundreds of nodes, the log(N)/N value is only an accurate indicator for the
threshold where a giant component starts to appear.

2. Power fluctuations of radio signals reduce the amount of correlation between links,
causing the network to behave like a random graph with uncorrelated links. The
second theorem of connectivity states that probability of a network to be 1-
connected is equal to the probability of the minimum degree to be more than
or equal to 1. This theorem has been proved to be true for the pathloss geo-
metric random graph model only when Pr [dmin ≥ 1] is almost 1. However in
our lognormal geometric random graph model when ξ increases, the geometric
random graph approaches the random graph behavior, and the probability of
1-connectivity equals the probability dmin ≥ 1 for all values of Pr [dmin ≥ 1].

3. Radio signal power variations increase the probability of long links, which en-
hances the probability of connectivity for the entire network.

Another new result in this chapter is an equation found for the calculation of the
giant component size in wireless ad-hoc networks, that takes into account the level
of radio signal power fluctuations. Our formula can be used to provide directives for
the average required number of neighbors per node (mean degree per node) to obtain
connectivity over any desired percentage of the network. Mean degree can be changed
by adjusting the transmission power of nodes or by changing the density of nodes.
Results presented in this chapter also demonstrate that full connectivity is achieved at
relatively high values of the mean degree, while at far lower values of the mean degree
a very large portion of the network could already be connected. Therefore we argue
that for practical planning and design of wireless ad-hoc networks or sensor networks
1-connectivity (full connectivity) is a too stringent condition, and suggest to use the
giant component size as a measure for "connectivity".



Chapter 7

MAC Protocols for Packet Radio
Networks

Study of the Medium Access Control (MAC) protocols does not belong to the primary
research topics of this thesis (see Figure 2.1). However, MAC protocol characteristics
affect directly interference levels, as well as capacity in ad-hoc networks. In this chapter
we specify these characteristics and introduce a method of classification for the MAC
protocols. This classification method facilitates our study of the interference and the
capacity of ad-hoc networks in Chapters 8 and 10.

7.1 The purpose of MAC protocols

MAC protocols are needed to regulate communication between nodes through a shared
medium. It corresponds to the data link layer (layer 2) of the ISO Open System
Interconnect (OSI) reference model [104]. Many MAC protocols have been developed
for communication in wired networks as well as wireless networks. For example IEEE
802.3 based on CSMA/CD for wired Ethernet and IEEE 802.11 for WLANs [114].
Sharing a medium by many users unavoidably restricts system performance for users in
average [21]. A well-designed MAC protocol is essential to maximize the performance
and the efficiency of the network.
In wireless ad-hoc networks, MAC protocols are needed as well to ensure successful

operation of the network. With the increased international attention to ad-hoc and
sensor networks many MAC protocols have been suggested for these networks in the
past few years. Each of these MAC protocols may have different priorities for problems
to solve, depending on the applications to be supported on higher OSI layers. For ex-
ample, in sensor networks MAC protocols may primarily attempt to minimize energy
consumption [121], whereas in an ad-hoc networks intended for mobile multimedia, the
emphasis is put on packet delay minimization and throughput maximization. As men-
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HR
S

E

Figure 7.1: Schematic view of Sending, Receiving, Hidden and Exposed nodes (termi-
nals) in packet radio communication networks.

tioned in Chapter 2, in this thesis we are not considering power consumption and energy
efficiency, although this topic by itself has been the center of much attention ([107], [67],
[91], [66]). In our study, effects of the MAC protocols on the interference, delay and
throughput are relevant. These parameters are affected directly by the way that the
MAC protocol deals with the hidden terminal and the exposed terminal problems.
In the Section 7.2 we describe the hidden and the exposed terminal problems and

analyze the way that they affect the performance of packet radio networks in general.
In Section 7.3 we will see how MAC protocols for ad-hoc networks can be categorized
based on the way that they handle the hidden and the exposed terminal problems. We
will use this classification in our study of the interference and the capacity of ah-hoc
networks in Chapters 8 and 10.

7.2 Hidden terminal and exposed terminal prob-
lems

The hidden terminal and the exposed terminal problems are well-known problems in
packet radio transmission and are commonly described in telecommunications text
books and various articles ([96], [89], [99] and [119]). For the understanding of our
classification of the MAC protocols we need to explain the hidden and the exposed
terminal problem briefly.
The hidden terminal problem was first mentioned by Kleinrock and Tobagi in [69].

In radio communications, the radio signal strength decreases with distance, limiting the
range of radio transmission. In Figure 7.1, there are four nodes, S (sender), R (receiver),
H (hidden terminal), and E (exposed terminal). For simplicity in visualization of the
problem, these four nodes are assumed to have the same radio transmitting range
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and circular coverage areas. The left and the right circles represent, respectively, the
coverage area of nodes S and R. Terminals E and R are within the coverage area of
node S and terminals H and S are within the coverage area of node R. This means
that S can transmit and receive signals from E and R, and similarly, R can transmit
and receive signals from S and H.
To avoid collision of packets over the wireless channel, there is a basic rule in MAC

protocols: a node does not attempt a transmission when it senses the medium to be
busy. This principle is called carrier sensing and is achieved through listening to the
radio channel. Suppose that S is sending a packet to R. The medium (i.e. radio
channel) between S and R is determined to be busy by all nodes within the coverage
area of S, therefore no other node within this region would ideally cause a collision with
the packet being transmitted form S to R. However, if at roughly the same time or in
an overlapping time interval, H would have a packet to send to either R or to another
node in its own range, it will sense the medium as idle, because S and H cannot hear
each other (H is hidden to S). If H would proceed with sending its packet, at node R
the two transmitted packets will collide. As a result, one or both of the packets may
be lost. As we see, the hidden terminal problem causes collision of packets and packet
losses. This directly affects the throughput of the system, rendering the system less
effective.
The second major issue is the exposed terminal problem. The problem is quite

the opposite of the hidden terminal problem. In the exposed terminal case, when S is
transmitting to R, E is also aware of the transmission. If E has a packet to send to
another node outside the radio range R, it will unnecessarily postpone its transmission.
It means that there is a lost transmission opportunity due to the exposure of E (hence,
the name exposed terminal) to S, while there is no need for waiting. The consequence
of the exposed terminal problem is that the radio channel is utilized less effectively,
which in turn also reduces the throughput of the system. It is also affecting the average
packet delay, which will be increased because of the unnecessary waiting time.
It is obvious that hidden and exposed terminal problems that occur in MAC proto-

cols based on carrier sensing alone are less desirable if radio channel needs to be used
more efficiently. There have been various MAC protocol suggestions to solve these prob-
lems. These solutions come at the expense of additional complexity in protocol design
and signaling overhead. Although these solutions offer more efficient use of the shared
medium, any MAC protocol still has to restrict the number of simultaneous signal
transmissions per unit of area and consequently affect the aggregate interference power
and the network capacity. It is beyond the scope of this thesis to describe all concepts
used in MAC protocol design to improve the radio channel utilization. Preferably, we
classify MAC protocols based on their ability to solve the hidden terminal and/or the
exposed terminal problems. Our method of classification enables us to predict inference
in ad-hoc networks for all MAC protocols, without getting into details of each protocol
individually. For any MAC protocol it is sufficient to know to which class of protocols
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Figure 7.2: Schematic view showing the working of the three MAC protocol classes. For
simplicity, we have assumed a circular coverage area for each node (ξ = 0). The gray
areas show the regions where each MAC protocol class attempts to restrict simultaneous
transmissions.

it belongs.

7.3 Classification of MAC protocols

In Figure 7.2 we have depicted how MAC protocols can be classified into three distinct
classes based on the method that they handle the hidden and the exposed terminal
problems:

Class 1: MAC protocol prohibits simultaneous transmissions within the sender’s radio
range. This class leaves the hidden node as well as the exposed node problem un-
solved. CSMA/CA without reservation [56] is a typical example of MAC protocols
that fall into this category.

Class 2: MAC protocol prohibits simultaneous transmissions within the sender’s as
well as receiver’s radio range. This class solves the hidden node problem but
leaves the exposed node problem unsolved. CSMA/CA with reservation [56] is
an example of this category. Other examples are MARCH [108], S-MAC [120],
EMAC [43] and CATS [105].
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Table 7.1: Prohibited and allowed transmission/reception possibilities for different
classes of the MAC protocols.

nodes inside S but outside
R coverage (denoted as E)

nodes inside R but outside
S coverage (denoted as H)

nodes in overlapping S and
R coverage

may send may receive may send may receive may send may receive
MAC class 1 no (1) yes (2) yes (3) yes (4) no yes (2)
MAC class 2 no (1) no (5) no no no no
MAC class 3 yes (6) no no yes (7) no no

1: This could have been allowed as long as destination node is outside the coverage area of R.
2: From nodes outside the coverage area of node S.
3: To any node.
4: From nodes outside the coverage area of node S.
5: If E was allowed to receive, the packet intended for it would have collided with data coming from S.
6: To nodes outside the coverage area of node R.
7: From nodes outside the coverage area of R.

Class 3: MAC protocol prohibits simultaneous transmissions within the receiver’s
radio range and simultaneous transmissions towards nodes within the sender’s
radio range. This class solves both the hidden node as well as the exposed node
problems, but requires e.g. the deployment of an additional signaling channel.
Two MAC protocols that fall into this category are multichannel RBCS [64] and
DBTMA [40].

This method of classification is based on the way that a MAC protocol allows or
prohibits nodes in the coverage area of nodes S and R to send or receive data while a
packed is being transmitted from node S to node R. Figure 7.2 gives a schematic view
but does not show the details regarding nodes being able either send data to or receive
data from other nodes. A more detailed description of the operation of the three MAC
protocol classes is given in Table 7.1.

7.4 Chapter summary

In this chapter we have highlighted the importance of the MAC protocols in our study
of fundamental properties of wireless ad-hoc networks. Specifically interference and
capacity of wireless ad-hoc networks are directly affected by the working of the MAC
protocols. We have studied many MAC protocols and have come to the conclusion that
for the purpose of our study MAC protocols can best be classified in three different
groups [49]. This classification is based on the way that MAC protocols solve the
hidden and the exposed terminal problems. Our method of classification enables us to
take the impact of MAC protocols into account in our studies (see Chapters 8 and 10)
without getting into details of each protocol individually. For any MAC protocol it is
sufficient to know to which class of protocols it belongs.
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We have not described working of the MAC protocols in general, because we have
assumed familiarity of the reader with this topic. Neither have we provided detailed
description of the working of any of the MAC protocols mentioned in this chapter. It
has not been our intention to provide a survey of the MAC protocols here.



Chapter 8

Interference in Ad-hoc Networks

For the performance evaluation and determination of the capacity in any wireless net-
work, it is important to have good calculation models to estimate interference power
statistics. To our best knowledge, till now there has been no accurate calculation model
to estimate the expected interference power and its distribution function in ad-hoc and
sensor networks with realistic assumptions regarding radio propagation. We believe
that we have provided such a model in this chapter.
It needs to be mentioned that already since a few decades we have good math-

ematical works, like [102], [98] and [68] that have investigated interference power in
distributed packet radio networks with multi-hop character. For ad-hoc networks, the
"order of magnitude" of the interference and the network capacity have also received
attention, for example in [39] and [122]. However, these works are based on the pathloss
propagation low that does not take the statistical variation of radio signal powers into
account (see Section 3.4.1).
For fixed topology networks like cellular networks there exist interference calcula-

tion methods that indeed take the statistics of radio propagation into account (see
e.g. [36]). However, these models assume that the interfering sources are all at fixed
positions with known distances to the point where the aggregate interference power
statistics is supposed to be calculated. It is obvious that combining radio signal power
variations with random movement of nodes make mathematical modeling of interfer-
ence a challenging task. In this chapter we use the method for the estimation of the
interference statistics in fixed topology networks and add required features to enable
us to calculate, with good accuracy, the interference power statistics in wireless ad-hoc
networks with random position of interference sources. Our interference calculation
model takes into account radio propagation conditions, the density of nodes, the size of
the network, MAC protocol characteristics and the traffic load per node. The accuracy
of our approach has been verified by simulations.
Section 8.1 of this chapter illustrates how the MAC protocol restricts the interfering

node density, and consequently the interference power sum. In Section 8.2 we explain
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our calculation method. There we describe also two important aspects, specific to ad-
hoc and sensor networks, that should be taken into account for the correct estimation
of the interference power sum.

8.1 Effect of MAC protocols on interfering node
density

MAC protocols restrict the number of simultaneous signal transmissions per unit of
area and consequently curb the aggregate interference power in ad-hoc networks. The
density of interfering nodes depends (among other factors) on the MAC protocol classes
described in Chapter 7. Figure 8.1 shows an example. In this example the lognormal
radio propagation parameter ξ = 0, which results in a circular coverage area per node.
On this figure we see that the interfering node density for each of the MAC classes is a
different value.
The procedure for finding the interfering node density is as follows. A receiving node

is placed in the center of the service area of arbitrary size and shape. Other nodes with
the given density ρ are uniformly distributed around the center node. One of the nodes
inside the coverage area of the center node is chosen at random to function as a sending
node. These two nodes form a sending-receiving node pair. The coverage area for each
node includes all nodes that according to (3.13) can be connected to it. Using the
restrictions dictated by each class of the MAC protocols, new sending-receiving node
pairs are formed one by one till no other combination is possible. Here we assume that
the nodes always have data to send (activity ratio 100%). Selection of a new sending-
receiving node pair occurs at random. This means that each time from the nodes that
are not prohibited from transmission a node at random is chosen to be a sending node.
From the neighbors of this new sending node, one node that is not prohibited from
reception is chosen at random to be the receiving node. At the end of this procedure
some nodes will be left that can neither be a sender nor a receiver. All sending nodes,
expect for the first sending node that is transmitting a wanted signal to the center node,
are experienced as interference sources at the center node. The number of interfering
sources found for each MAC class determines the interfering node density.
For the calculation of the interference power in ad-hoc and sensor networks, the

density and the distribution of the interfering nodes must be known. When the density
of nodes increases, more nodes will fall within the prohibited transmission areas. As
a result, the density of interfering nodes is not expected to increase linearly with the
increase in the density of nodes. We argue here that the interfering nodes density,
ν, depends not only on the density of nodes forming the network, ρ, but also on the
MAC protocol class and the radio propagation factor ξ. Factor ξ determines the link
probability between nodes and consequently the shape and the extent of the coverage
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Figure 8.1: The working of MAC classes 1, 2 and 3 on randomly distributed nodes
with the density of 3 nodes per normalized area of 1 × 1 in a circular service area of
normalized radius 5 with ξ = 0.
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area around each node.
For a wide range of ξ and ρ values we have performed simulations to find the

interfering nodes density. In each simulation we have placed one receiving node in the
center of a sufficiently large circular area and have followed the procedure described
above to find the interfering node density. The normalized radius of the circular service
area has been set to 3 times the distance where the link probability (3.13) drops to 5%.
Therefore, the normalized radius of the area depends on the factor ξ. As an example,
the normalized radius of the service area is 9.6 in case of ξ = 3, in other words 9.6 times
the distance R defined in Section 3.4.2.
Results regarding the obtained interfering node density for different MAC classes

are shown in Figure 8.2. For each combination of ξ and ρ we have performed 100
simulations1. The values shown in this figure are the mean values. For better inspection
of results a part of the simulation data is redrawn in Figure 8.3. It can be seen from
these figures that, as expected, the interfering node density is highest in MAC class 1
and lowest in MAC class 2, with MAC class 3 in-between2. We see also that when the
node density ρ increases, the interfering node density ν increases as well but tends to
level off for large values of ρ. In fact, in our simulations, the interfering node density
always remains under 0.8. Further, because the mean node degree (neighbors per node)
depends on ξ, the interfering node density depends on ξ as well. By increasing ξ the
mean node degree increases (see Chapter 4), thus for each sending-receiving pair formed,
the number of nodes falling within the prohibited transmission areas increases as well.
Therefore, as observed in Figure 8.3, the number of potential interfering nodes tends to
decrease for the highest values of ξ in comparison to the case ξ = 0.
To be precise, our simulations have shown situations where by changing ξ from 0 to

3, the interfering node density increases slightly at first before starting to decease. This
only happens for MAC classes 1 and 3 at high values of ρ (notice the slight bending
of the interfering node density for MAC class 1 and 3 at ρ = 10 in Figure 8.2). The
explanation for this effect is that in MAC classes 1 and 3, in contrast to MAC class
2, a node inside the prohibited areas still may receive data from nodes outside these
areas. When ξ increases the number of nodes that fall inside the prohibited areas
increases as well. On the one hand, this increases the number of potential receivers and
makes new sending-receiving node pair combinations possible. On the other hand, for
each sending-receiving pair formed, the number of nodes not allowed to send increases.

1We have observed little variations in the obtained values of interfering node densities between
simulation runs. Therefore repeating simulations for each combination of ξ and ρ for only 100 times
provides already an accurate estimate for the mean value.

2We base this expectation on the fact that the area of prohibited transmission or reception in MAC
class 2 includes the entire coverage area of the sending and the receiving nodes. Therefore, MAC class
2 is the most stringent protocol class and allows the least number of simultaneous transmissions. MAC
class 1 is the least stringent class and MAC class 3 is between these two classes. This point can be
verified by counting the number of "yes" and "no"-s in table 7.1.
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Figure 8.2: Density of interfering nodes found by simulations for MAC classes 1, 2 and
3 (0 ≤ ξ ≤ 3 and 0.5 ≤ ρ ≤ 10).

Simulations seem to indicate that the combined outcome of these two effects is the
decrease of interfering node density for the highest values of ξ.
Using simulation results, we have found 2-dimensional fitting formulas3 for the in-

terfering node density:

ν '
 0.3466 + 0.1658 log(ρ)− 0.0283ξ MAC class 1
0.2403 + 0.0910 log(ρ)− 0.0453ξ MAC class 2
0.2634 + 0.1741 log(ρ)− 0.0130ξ MAC class 3

. (8.1)

The root-mean-square error in the fit is 0.04, 0.02 and 0.03 for, respectively, MAC
classes 1, 2 and 3. Based on (8.1) we may conclude that ν is by approximation a
linear function of log(ρ), at least for the range of ρ values included in our simulations
(0.5 ≤ ρ ≤ 10). Figure 8.4 shows the interfering nodes densities calculated using (8.1).
As mentioned before our simulations are based on the assumption that all nodes in

the ad-hoc or the sensor network always have data to send to any of their neighbors.
In reality this is not the case. At any moment in time only a portion of nodes forming
the network are active. If the activity ratio is indicated by τ ∈ [0, 1], we can use (8.1)
to estimate the interfering node density by replacing ρ with τρ.

3We have used the rstool of Matlab R° for the 2-dimensional fitting [72].
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Figure 8.3: Density of interfering nodes found by simulations for MAC classes 1, 2 and
3. Left subplot: 0.5 ≤ ρ ≤ 10 and ξ = 0, right subplot: 0.5 ≤ ρ ≤ 10 and ξ = 3.

Figure 8.4: Estimated interfering nodes densities using (8.1) for MAC classes 1, 2 and
3.
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8.2 Interference power estimation

As described in Section 3.4.3 we are assuming lognormal distributed powers, which
implies that the interference consists of lognormal components. The sum of lognormal
components is a well-studied topic in cellular networks with fixed topology (see e.g.
[87]). Here we expand the summation method of lognormal components, to our best
knowledge for the first time, to ad-hoc and sensor networks. We will explain that this
expansion for the estimation of the sum of interference power in ad-hoc networks is not
trivial. Our approach is described stepwise in Sections 8.2.1, 8.2.2 and 8.2.3. In Section
8.2.4 we evaluate our approach with simulations.

8.2.1 Sum of lognormal variables

A lognormal random variable is characterized by the property that its logarithm has a
Gaussian distribution. Let Li be a lognormal random variable and let

Xi = 10 log10 Li.

The probability density function (PDF) of Xi is:

fXi(x) =
1√
2πσxi

exp

Ã
− ¡x− µxi

¢2
2σ2xi

!
,

where µxi and σxi are the mean and the standard deviation of Xi. For calculation it
is more convenient to use the natural logarithm of Li. We define Yi = log(Li) with the
PDF:

fYi(x) =
1√
2πσyi

exp

Ã
− ¡x− µyi

¢2
2σ2yi

!
and mean µyi and standard deviation σyi. The random variables Xi and Yi are related
as:

Yi = βXi,
µyi = βµxi ,
σyi = βσxi ,

β , log(10)/10.

We are interested to find the PDF of the sum of t lognormal random variables:
L = L1 + L2 + ... + Lt. Unfortunately, there is no exact mathematical solution found
for this distribution. However, there exist two widely accepted good approximation
methods. The first method is the Fenton-Wilkinson (FW) approximation [33], [2]. The
second method is the Schwartz-Yeh (SY) approximation [97]. Both methods assume
that the power sum of lognormal components has a lognormal distribution with a mean
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and a variance that can be calculated directly from the mean and the variance of each in-
dividual component (and if applicable, the correlation factor between the components).
These methods approximate the sum of t lognormal random variables as:

L =
tX

i=1

Li =
tX

i=1

eYi ' eZ , (8.2)

where Z is a Gaussian random variable with mean and standard deviation of respectively
µz and σz.
Working with lognormal signals often requires conversion between logarithm base

10, natural logarithm and non logarithmic values. The mean and the variance of vari-
ables change due to these conversions. The conversion rules, although simple, must be
followed meticulously. We have summarized these rules here. Let µx and σx be the
mean and the standard deviation of a random variable X; and µy and σy be the mean
and the standard deviation of random variable Y :

if Y = log(X) then
½

µy = 2 log(µx)− 0.5 log(σ2x + µ2x)
σ2y = log(σ

2
x + µ2x)− 2 log(µx)

if Y = exp(X) then
½

µy = exp(µx + σ2x/2)
σ2y = exp(2µx + 2σ

2
x)− exp(2µx + σ2x)

if Y = 10 log10(X) then
½

µy = β−1 [2 log(µx)− 0.5 log(σ2x + µ2x)]
σ2y = β−2 [log(σ2x + µ2x)− 2 log(µx)]

if Y = 10X/10 then
½

µy = exp(βµx + β2σ2x/2)
σ2y = exp(2βµx + 2β

2σ2x)− exp(2βµx + β2σ2x)

(8.3)

where β , 0.1 log(10).
In the following we describe the FW and SY approximation methods. It should

be mentioned that the original approximation methods published in [33] and [97] have
considered the sum of t independent lognormal random variables. The approximation
methods have been expanded later by others to include the case of correlated variables as
well [94]. In this thesis we will assume that lognormal random variables are independent.

Fenton-Wilkinson (FW) approximation

In the Fenton-Wilkinson approach µz and σz are found by matching the first two mo-
ments of L with the first two moments of eZ . The k-th moment of eZ is:

E
£
ekZ
¤
= exp

µ
kµz + k2

σ2z
2

¶
.

Matching the first moment provides:
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E[L] = E
£
eZ
¤

= E
£
eY1 + eY2 + ...+ eYt

¤
= exp (µz + σ2z/2) =

Pt
i=1 exp

¡
µyi + σ2yi/2

¢
, u1.

Matching the second moment provides:

E[L2] = E
£
e2Z
¤

= E
h¡
eY1 + eY2 + ...+ eYt

¢2i
= exp (2µz + 2σ

2
z) =

Pt
i=1E

h¡
eYi
¢2i

+ 2
Pt−1

i=1

Pt
j=i+1E

£
eYi+Yj

¤
, u2.

In the FW method of calculation, knowing the mean and the standard deviation
of Li components, the values for u1 and u2 are calculated first. Solving the above two
equations for µz and σz then provides:

µz = 2 log(u1)−
1

2
log(u2), σ2z = log(u2)− 2 log(u1). (8.4)

Using (8.3) and (8.4) we find the mean and the standard deviation of L, the sum of
the lognormal components. The distribution form is of course, as assumed lognormal.
It is known from the literature that the FW approximation is applicable with good

accuracy when the standard deviation of lognormal components are less than 4 dB ([87],
[33], [2]).

Schwartz-Yeh (SY) approximation

Schwartz and Yeh [97] also approximate the sum of lognormal variables by a lognormal
distribution. However in their method the first and the second moment of the random
variable Z are not obtained based on this assumption. They rather find exact expres-
sions for the first two moments of the sum of two lognormal random variables. By
assuming that this sum is again a lognormal random variable a recursive technique is
used to find the first two moments of the sum of t > 2 lognormal random variables.
The calculation method in the original paper of Schwartz and Yeh is complex and, as
we have seen, prone to round-off errors when programmed on a computer. For our
calculations we have used a modified method presented by Ho [50]. The expressions
for finding the exact mean and variance of the sum of two lognormal random variables
Z2 = log

¡
eY1 + eY2

¢
are summarized here ([87], [50]):

µz2 = µy1 +G1, σ2z2 = σ2y1 −G2
1 − 2σ2y1 (I0 + I2) +G2, (8.5)

where,
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G1 = A0 + I1,

G2 = I3 + 2I4 + σ2wI0 + µwA0,

µw = µy2 − µy1,

σ2w = σ2y2 + σ2y1

A0 =
σw√
2π
exp

µ
− µ2w
2σ2w

¶
+ µwI0,

Ii =

Z 1

0

hi(v)v
−1dv,

hi(v) =



1√
2π
exp

µ
−
³
log v + µw

σw

´2
/2

¶
, i = 0

[fw(log v) + fw(− log v)] log(1 + v), i = 1
[fw(log v)− fw(− log v)] (1 + v−1)−1, i = 2
[fw(log v) + fw(− log v)] log2(1 + v), i = 3
−fw(− log v) log v log(1 + v), i = 4

,

fw(w) =
1p
2πσ2w

exp

"
−(w − µw)

2

2σ2w

#
.

It is known from the literature that the SY approximation is applicable with good
accuracy when the standard deviation of lognormal components are between 4 and 12
dB ([87], [2]).

Example using FW and SY methods

Both the FW and the SY estimation methods are very fast when implemented on a
computer, as they consist of a set of closed mathematical expressions. Figure 8.5 shows
an example of interference power estimation with the FW and SY methods. Here we
have used the FW and SY methods to approximate the interference power at the center
of a circular area with normalized radius 15 and 100 nodes at random positions but
with well-known distances to the center. The signal coming from each node is assumed
to have a lognormal distribution according to (3.12). In other words, each interfering
signal is of the form Xi = 10 log10 Li with µxi = 10 log10(br−ηi ) and σxi = σ, where bri is
the normalized distance of the i-th node to the center. The pathloss exponent η and the
standard deviation σ of lognormal signals are indicated on each plot. Actual PDFs are
found by taking 10000 times independent interference samples from each interference
source. As we can see from Figure 8.5, the FW and SY are very accurate estimation
methods for, respectively, low and high σ values.
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actual lognormal sum: mean = −0.41, std = 0.56
estimated by FW: mean = −0.43, std = 0.56
estimated by SY: mean = −0.99, std = 0.62

actual lognormal sum: mean = 1.36, std = 2.35
estimated by FW: mean = 0.89, std = 3.21
estimated by SY: mean = 1.32, std = 2.13

Figure 8.5: Test of the FW and SY interference power estimation for lognormal distrib-
uted interference signals coming from known distances spread over a circular area.

Adapting FW and SY methods to ad-hoc networks

The FW and SY methods can be used to derive the PDF of the interference power when
the number of interfering nodes, the mean power and the standard deviation of each
individual interfering components is known. In ad-hoc networks we can use (8.1) to
estimate the number of interfering components. The standard deviation σ of lognormal
interference components is a characteristic feature of the propagation environment and
is given. However, the challenge in using the FW and SY approximation methods for
ad-hoc networks lies in estimating the mean power of each individual component. This
task is not trivial due to the following two reasons:

1. The mean interference power experienced at node i from node j is directly linked
to the distance between i and j. Because of the random distribution and the
movement of nodes this distance is subject to changes. In Section 8.2.2 we describe
a method to find the expected position of interfering nodes.

2. Because of lognormal power variations, for any fixed distance rij between nodes
i and j there is a probability that these two nodes are "visible" to each other
(see link probability in Figure 3.10). If node j is visible to node i, depending
on the MAC protocol, it may be prohibited4 from interfering with node i. This

4It is realistic to assume that MAC protocol is fast enough to catch up with medium scale power
variations of the lognormal radio model.
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phenomenon, which does not exist in cellular networks, implies that knowing the
distance to an interfering node (that provides us with the mean expected power
coming from that node) and the variance of the interfering signal components is
not enough to make an accurate estimation of the aggregate interference power.
In Section 8.2.3 we provide a solution for this issue.

8.2.2 Position of interfering nodes

Let us assume that interfering nodes are uniformly distributed with density ν around a
center node in a circular area. We order these nodes according to their distance, rm, to
the center node. In other words, r1 is the distance of the nearest interfering node to the
center, r2 denotes the distance of the second nearest interfering node to the center, and
etc. The probability density function of the radius rm of the m-th nearest interfering
node to the center is [73]:

frm(r) =
2πrν

(m− 1)!
¡
πr2ν

¢m−1
e−πr

2ν ,m = 1, 2, 3, · · · (8.6)

The expected distance of the m-th interfering node to the center node is then:

E[rm] =

Z ∞

0

r frm(r) dr =
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¡
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2

¢
√
πν(m− 1)! =

(2m)!

22m
√
νm!(m− 1)! '

r
m

πν
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In (8.7) we have used Gamma function duplication formula [1, 6.1.18]:

Γ(2m) = (2π)−
1
222m−

1
2Γ(m)Γ(m+

1

2
),

and Stirling’s formula [1, 6.1.38]:
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√
2πmm+ 1

2 exp(−m+
θ

12m
). 0 < θ < 1

The approximation in (8.7) is valid for large m.
In general, the moments of rm are:
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,

where frm(r) is given by (8.6). The variance of rm is then:
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Using the approximation [1, 6.1.49]:
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From the above we may conclude that the variance in the position of interfering
nodes is only negligible when ν À 1. However, the simulation results in Figure 8.2
indicate that ν < 0.8 for all MAC classes. This means that the variance in the position
of interfering nodes in ad-hoc networks is not negligible.
In our calculations of the interference power sums we have used (8.7) to estimate the

expected distance of each interfering node to the center node. In other words, we have
assumed that interfering nodes have a uniform distribution around the center node.
The validity of this assumption is verified by simulations. Figure 8.6 shows an example
for a network with node density 3.0, pathloss exponent η = 3.0, σ = 2.4, and r = 4
(normalized radius of the service area). With a MAC class 3 protocol, the interfering
node density is 0.44. In Figure 8.6, the dotted vertical lines indicate the distance of
the first to the 6th interfering node calculated by (8.7). The marked curves show the
actual distribution of the position of interfering nodes that are found by simulations.
As we can see there is a good match between the expected position (mean values)
of interfering nodes found through simulations and the second to the 6th calculated
positions. However, (8.7) predicts an interfering node at distance 0.72 to the center
node (the left most dotted vertical line in Figure 8.6) that never seems to appear in
simulations. The explanation is that a node at distance 0.72 would be connected to
the center node with high probability5. Due to the MAC class 3 restrictions, this node
is then not allowed to transmit a signal while the center node is receiving data from
another node. Therefore, assuming any interference power originated from this distance
would provide erroneous results. This matter which is related to point 2 mentioned on
page 87 is dealt with by weighting the interference powers. The weighting method is
described in the next section.

5The exact probability is calculated using (3.13): With ξ = 2.4/3.0 = 0.8 we obtain p(br) = 0.95.
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Figure 8.6: Calculated distances of interfering nodes to the center node and the simu-
lated probability density function of the distance of interfering nodes to the center node
in an ad-hoc network with r = 4, ρ = 3, η = 3, σ = 2.4 and MAC class 3.

8.2.3 Weighting of interference mean powers

As mentioned above, in ad-hoc and sensor networks for any interfering node m at
distance rm there is a probability that it is excluded from the sum of interference
powers. This probability is proportional to the link probability p(rm), given by (3.13).

In order to take this effect into account in the estimation of interference power
sum, we suggest to weight the mean power of the m-th interfering signal with a factor
proportional to 1 − p(rm). Heuristically we have found out that a weight factor w =
(1− p(rm))

σ provides good results. This weight factor takes into account not only the
probability of the node being prohibited from transmission, but also the severity of
radio signal power variations represented by σ. The weight factor w varies between 0
and 1. As rm increases p(rm) decreases, causing the weight factor to tend towards 1.
At short distances the opposite occurs.

Figure 8.7 shows an example with the weighted and non-weighted area mean powers.
At short distances the weighting procedure reduces the strength of interfering signals
(as in reality the MAC protocol would have done by not allowing strong interference
from short distances) while at long distances there is no difference between the weighted
and the non-weighted case.
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Figure 8.7: Expected distance of interfering nodes to the center node and weighted
as well as non-weighted area mean power expected from those distances in an ad-hoc
network with MAC class 2, r = 8, ρ = 3, η = 3.0, σ = 4.0. The number of interfering
nodes is 58 (ν = 0.28).

8.2.4 Interference calculation results

Using our proposed method to find the distance of interfering nodes and the weighted
mean power of individual interfering signals we now calculate the distribution function
of interference power sum. The input parameters are the area size (circular area with
normalized radius r), node density ρ, pathloss exponent η, standard deviation σ of the
radio signal power variations, and the MAC protocol class. In this section we present
our calculated values in a few representative examples and compare themwith simulated
results to verify the accuracy of our calculation method. The calculation procedure is
as follows:

1. The interfering node density is estimated using (8.1).

2. The expected positions of interfering nodes are found using (8.7).

3. The mean value of the interference power coming from each interference source is
weighted as described in Section 8.2.3.

4. The aggregate interference mean power and variance is estimated using the FW
or SY method. The FW method is used when σ ≤ 4 and the SY method is used
for 4 < σ < 12.
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Table 8.1: Calculated and simulated interference power statistics for several values of
area radius r, node density ρ, pathloss exponent η, standard deviation of shadowing σ
and MAC classes 2 and 3.

Parameters sim. mean (dB) calc. mean (dB) sim. std (dB) calc. std (dB)
r = 4.0, ρ = 8.0, η = 3.0, σ = 2.0, MAC 2 2.78 2.76 1.10 0.76
r = 6.0, ρ = 5.0, η = 2.4, σ = 1.5, MAC 3 6.84 6.45 0.68 0.35
r = 10.0, ρ = 1.0, η = 4.0, σ = 4.0, MAC 2 -2.82 -2.31 2.57 2.13
r = 8.0, ρ = 3.0, η = 4.0, σ = 9.0, MAC 3 3.40 3.04 1.62 2.59
r = 7.0, ρ = 3.0, η = 2.5, σ ≈ 0, MAC 3 5.71 5.57 0.63 0.00

5. The distribution function of the interference power is derived from the mean and
the variance values assuming a lognormal distribution for the power sum.

The simulation procedure is:

1. Nodes with density ρ are uniformly distributed over a circular area with radius r.

2. Sending and receiving node pairs are formed taking the MAC protocol restrictions
into account. In our simulations we have assumed that nodes always have data
to send to any of their neighbor6.

3. Each individual interference component is found using the lognormal propagation
model (see (3.12)).

4. The aggregate interference power experienced at the center is obtained by adding
all individual interference components.

5. To obtain the distribution function of the interference power, the above steps have
been repeated 1000 times.

We need to point out here that the calculation procedure stated above is very fast.
The most computational extensive part of the calculation procedure is the FW or SY
method. However, on a personal computer it takes only a few seconds to go through
the calculation procedure. The simulation procedure however, depending on the radius
of the coverage area and node density, can last several hours even days.
Figure 8.8 shows one set of results. Other results are shown in Table 8.1. We have

not presented any simulation results for MAC class 1, because due to the hidden node
problem in this MAC class the interference power can explode. Note that the interfer-
ence power values shown here are all normalized values according to the convention

6This 100% activity assumption for nodes can be considered as a worst-case interference scenario.
If the activity ratio of nodes is less than 1, our simulation as well as calculation method still can be
used by multiplying the node density with the actual activity ratio.
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Figure 8.8: Simulated and calculated PDF and CDF of normalized interference power
in the center of a circular area with the same parameters as in Figure 8.7.

described in Section 3.4.3. Based on these results we argue that our calculation method
is accurate in estimating the mean interference signal powers especially in situations
where interference is not very weak. The standard deviation of interference power is
estimated with less accuracy, as can be seen from Table 8.1. This is due to the spreading
in the actual position of interfering nodes around their expected positions (see Figure
8.6) which is not included in our model. The variance of rm for low values of ν is not
negligible.

Using our calculation method, we have plotted in Figures 8.9 and 8.10 two examples
of the mean normalized interference power sum as function of the area size and the node
density. As we see, interference tends to level off when the node density or the area size
increases. In other words, in ad-hoc and sensor networks increasing the area size or the
node density does not necessarily imply an unacceptable increase in interference power.
We also notice by comparing Figures 8.9 and 8.10 that, as expected, the interference
power is lower for higher values of the pathloss exponent η.

The interference calculation method presented here can be used to estimate the
capacity of ad-hoc and sensor networks. We will consider capacity estimation in ad-hoc
networks in Chapter 10.
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Figure 8.9: Expected mean interference power as function of the network node density
and area size for η = 3.0 and σ = 4.0.

Figure 8.10: Expected mean interference power as function of the network node density
and area size for η = 6.0 and σ = 8.0.
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8.3 Chapter summary

The focus of this chapter was on the estimation of interference power statistics in ad-hoc
and sensor networks. First we have shown that the interfering node density depends
on the MAC protocol characteristics. Each MAC protocol class restricts in its own way
the number of interfering signal transmissions allowed per unit of area, regardless of the
number of nodes falling within that area. Therefore, the interfering node density does
not increase linearly with the density of nodes forming the network. We have found
approximating formulas for calculating the expected interfering node density. These
formulas show that interfering node density is, by approximation, proportional to the
logarithm of the node density. We observed that interfering node density is less than
0.8 for all MAC classes.
Other result presented in this chapter is the calculation method using lognormal

radio propagation model for estimation of the interference power sum statistics in ad-
hoc and sensor networks. The input parameters for the calculation method are the area
size, the density of the nodes, the radio propagation conditions (pathloss exponent and
standard deviation), the activity ratio of nodes and the MAC protocol class. Through
simulations we have verified the accuracy of our method. The value of our approach
lies not only in its accuracy but also in its low computational complexity. Access to
interference statistics enables us to provide good estimates for the capacity of ad-hoc
networks under varying circumstances.
The calculation method presented here is a first attempt to expand interference

power sum calculation from fixed topology networks to ad-hoc and sensor networks.
We realize that there is room for fine-tuning and improvements in our approach. One
improvement, for example, is to increase the accuracy in the estimation of the standard
deviation of the interference power, as discussed in Section 8.2.4.
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Chapter 9

Simplified Interference Estimation:
Honey-Grid Model

The calculation method described in Chapter 8 is an accurate estimation method for
determination of interference statistics. However, this method does not provide us with
a closed-form analytic formula for interference. In this chapter we find a mathemat-
ical formula for expected interference in ad-hoc networks. For this purpose we have
simplified the reality of ad-hoc networks in three aspects:

1. We have used the pathloss radio propagation model,

2. We have chosen for a specific arrangement of nodes on a 2-dimensional hexagonal
lattice resembling a honey-grid (which explains the name given to our model: the
honey-grid model),

3. We have simplified the rules of the MAC protocol.

We describe our model along with these three simplifications in Section 9.1, and
explain why these simplifications have been adopted. In Section 9.2 we use the honey-
grid model and obtain an analytic formula for the expected interference in ad-hoc
networks. This formula takes into account the network size, density of nodes, transmis-
sion probability per node and radio propagation pathloss exponent. We will also find
an closed-form expression for an upper bound on the expected interference in ad-hoc
and sensor networks. In Section 9.3 we compare the honey-grid model results with the
interference calculation method presented in Chapter 8.

9.1 Model description

For simplicity of mathematical derivations, our interference calculations in this chapter
will be based on the pathloss power law model for radio propagation (see 3.4.1). With

97
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Figure 9.1: Constellation of interfering nodes around node 0 when we arrange interfering
nodes in positions to obtain the maximum number of interferers.

the power low model for radio propagation, and the assumption that transmission power
and receiver sensitivity for all nodes is the same, the coverage area of any node is a
circle with radius R. A node can have direct communication will all nodes that fall
inside its coverage area.
On the data link layer, the ad-hoc network uses a multiple access scheme for regu-

lation of simultaneous transmissions (see Chapter 7). Our assumptions regarding the
MAC protocol are as follows. We assume that when a node, say node 0, is receiving
data, there will be no interference from other nodes inside the coverage area of node
0. In the worst case interference situation, the first set of interfering signals will come
from other nodes closest possible to node 0. In other words, from nodes just outside
the coverage area of node 0 (at distance R + ε to node 0, with � a sufficiently small
number). For example, in Figure 9.1 the first interfering signal could originate from
node 1. When node 0 and node 1 are active simultaneously, the next interfering signal
could only come from nodes outside the coverage areas of both these nodes. In the
worst case situation, node 2 at the crossing point of the two circles with radius R + ε
in Figure 9.1, could be the second interference source. Adding new interfering nodes in
this way produces the constellation of nodes shown in Figure 9.1, with node 0 in the
center of the constellation. As depicted in this figure, there are at most 6 interfering
nodes at distance R + ε to node 0. On the next interfering ring at distance 2(R + ε),
there are at most 12 interfering nodes.
When we assume uniform distribution of nodes, inside the service area of an ad-hoc

network any position (x- and y-coordinate) is equally probable to be occupied by a
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mobile node. However, in our approach we simplify this by introducing a regular lattice
to which the position of mobile nodes is restricted. We will see later in this chapter
that this restriction regarding the permissible positions for mobile nodes enables the
estimation of the expected value of interference without having accurate knowledge
about the movement patterns and the exact location of all nodes at all times.
Introducing a regular lattice can be seen as enforcing a certain granularity on the

2-dimensional plane for the position of mobile nodes. On this lattice each node has a
number of adjacent nodes, that we define as nodes in its direct vicinity and with the
same distance to that node. When all positions on a regular lattice are occupied, all
nodes that are not at the borders of the service area should have the same number of
adjacent nodes; and adjacent nodes should be at the same distance from each other.
Geometrically, on the 2-dimensional plane two lattice forms fulfill these requirements.
These lattices are the rectangular lattice and the hexagonal lattice shown in Figure
9.2. In mobile ad-hoc networks communication between nodes takes place over radio
channels and each node may have direct communication with all nodes inside its cov-
erage area. It should be noticed that, depending on the transmission power and radio
propagation conditions, the coverage area of a node may contain more nodes than its
adjacent nodes.
From the two lattice forms shown in Figure 9.2 we have chosen to base our model on

the hexagonal lattice. In this model, that we for obvious reasons will call the honey-grid
model, the permissible positions of nodes on the lattice can overlap perfectly with the
position of interfering nodes in the maximum interference constellation shown in Figure
9.1. Therefore, the honey-grid model allows for the maximum number of interfering
signals. We have introduced the idea of using a honey-grid structure for modeling
ad-hoc and sensor networks [44] and [46].
To complete the description of our assumptions in this chapter, we add that it is

assumed that all nodes transmit with the same power; all nodes have the same traffic
generation behavior and all data has the same priority.

When nodes are placed on a honey-grid, from the view point of a node in the center
of the configuration other nodes are positioned on co-centered hexagons (see Figure
9.3). We call each of these hexagons a ring. The first hexagonal ring has a side of size
∆, and contains 6 nodes. The ith hexagonal ring has a side of size i∆ and contains 6i
nodes. The size of the network can be expressed in terms of k co-centered hexagonal
rings around node 0, or by N the total number of node in this configuration. N and k
are linked through the formulas:

N = 1 +
kX

j=1

6j = 1 + 3k(k + 1) , (9.1)

k =
p
1/4 + (N − 1)/3− 1/2.
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(a) (b)

Figure 9.2: Regular lattice forms in the 2-dimensional plane: (a) rectangular lattice,
(b) hexagonal lattice.

In Figure 9.3 we have depicted by a circle the coverage area for node 0 in the center of
the configuration. In this example we have chosen the coverage area so that it includes
two hexagonal rings. The coverage area could be larger and include more rings. This
happens when the network density increases. However, the radius of the coverage area
cannot be less than ∆, otherwise the network is not connected. The number of nodes
inside the coverage area of each node (its degree) is indicated by d. We assume that an
entire ring is either included or excluded from the coverage area. We define a node’s
reach as the number of hexagonal rings that fall inside the coverage area of that node.
We indicate the reach of a node by symbol a (for example, a = 2 in Figure 9.3). The
degree of a node that is not at the borders of the service area is

d =
aX

j=1

6j = 3a(a+ 1). (9.2)

Each node may communicate directly with all nodes inside its coverage area. For
reaching other destinations multi-hopping must be used. There are basically two ways
for reaching each destination: If node 0 in Figure 9.3 wishes to communicate with a
node positioned on ring 3 (the third ring seen from the center), it either can hop through
a node on ring 1 and then a node on ring 2; or it can skip ring 1 and hop directly to
a node on ring 2 before reaching the destination. The first method preserves energy
while the second method keeps the number of hops minimum. We will show that our
model can work with both routing methods.
If we consider minimum hop routing, certain intermediate rings on the way from
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Figure 9.3: The honey-grid model showing all nodes.

the source to the destination can be skipped. Figure 9.4 shows in tick lines the subset
of the rings that can be used for multi-hop routing to any destination. We will call
these rings relay rings. When packets are routing throughout the network, there may
be multiple paths to the same destination. For example, the source (node 0) and the
destination (node 3) shown in Figure 9.4 may be connected by the path going through
nodes 0 − 1 − 3 or the path going through nodes 0 − 2 − 3. In our calculation of
interference it is important to know the amount of relay traffic caused by multiple hops
from source to destination, but the exact path from the source to the destination is
not relevant. Therefore, for us both these paths are the same, as they both consists
of two hops. In Figure 9.4 where a = 2, we see that the first relay ring has a side of
the size 2∆ and contains 6 relay nodes. Relay nodes are those nodes on each relay ring
that need to be used to reach any arbitrary destination (for example, when nodes 1
and 4 are relay nodes, node 2 is not chosen as a relay node because all destinations
that could be reached through node 2 are already reachable through either node 1 or
node 4). Generally, if a is the reach of node 0, the number of co-centered relay rings
seen from node 0 is bk/ac, where the sign bxc indicates rounding down to the nearest
integer. The number of relay nodes (source node included) is then:
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Figure 9.4: Relay rings and relay nodes in a honey-grid. Thick lines show relay rings.
Dark filled circles are relay nodes. Hollow circles are other nodes in the network.
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We mentioned earlier in this section that our model can handle energy efficient
routing as well as minimum hop routing. If parameter a = 1, regardless of the reach
of mobile nodes, the hopcount, traffic estimation and interference power as found in
this chapter will be for energy efficient routing. If parameter a is chosen equal to the
maximum radio reach of mobile nodes, the hopcount, traffic estimation and interference
are found for minimum hop routing.

9.2 Interference calculation with honey-grid model

According to the honey-grid model, each node has d other nodes inside its coverage area
(except for nodes at the borders of the network). As explained in Section 9.1, around
node 0 the first set of interfering signals will come from signals that are transmitted
from nodes just outside the coverage area of node 0. Recalling our assumption that
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Figure 9.5: Honey-grid with interfering rings (thick lines) for a = 1.

an entire ring is either included or excluded from the coverage area, the first ring of
interference consists of 6 nodes positioned at distance (a+1)∆ to node 0. Generally, if
a is the reach of node 0, the number of co-centered interference rings seen from node 0
is bk/(a+ 1)c, and the number of interfering nodes is:

Ni =

b k
a+1cX
j=1

6j = 3

¹
k

a+ 1

ºµ¹
k

a+ 1

º
+ 1

¶
. (9.4)

Figure 9.5 shows the interfering rings and the interfering nodes observed from the
position of the center node in a honey-grid model with a = 1.
Nodes in the center of the configuration have the highest number of potential in-

terfering nodes around them in all directions. Therefore, we choose the amount of
interference experienced at node 0 as representative for the maximum level of interfer-
ence inside this network. In the remainder of this section, a closed-form expression for
interference at node 0 is found. If the level of interference is acceptable at node 0, we
can assume that it is also acceptable for other nodes.
To calculate the amount of interference experienced at node 0, we add the inter-

ference power received at node 0 from all interfering nodes. The first interference ring
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contains 6 nodes at distance (a + 1)∆. The second interference ring consists of 12
interfering nodes from which 6 nodes in the corners of the hexagonal ring are at the
distance 2(a + 1)∆ to node 0 and 6 other nodes are at the distance

√
3(a + 1)∆ to

node 0. The distance of the nodes on each ring to node 0 can be calculated exactly.
However, in our calculations in this chapter we use a simplification: we assume that the
distance between all interfering nodes on each ring to node 0 is equal to the distance of
the corner nodes to node 0. This is not an inaccurate approximation, especially when
the service area is large. Following table shows calculation steps for finding interference
power originated from the jth interfering ring:

sequence number of interfering ring j
number of interfering nodes on this ring 6j
approximated distance of each interfering node to the center node j(a+ 1)∆

interference power coming from each interfering node on the ring c (j(a+ 1)∆/r0)
−η

interference power coming from all interfering nodes on the ring 6jqc
³
j(a+1)∆

r0

´−η
normalized interference power coming from all interfering nodes on the ring 6q

¡
1 + 1

a

¢−η
j1−η

The jth interfering ring contains 6j nodes at approximated distance j(a + 1)∆ to
node 0. Let q be the probability of transmission (transmission of own signals or relay
signals) per node in a given time-slot . Using (3.8), the mean power of interfering signals
originating from ring j is 6jqc (j(a+ 1)∆/r0)

−η. According to our convention described
in Section 3.4.3 we normalize this interference power to the power P = c (R/r0)

−η, where
R = a∆ is radius of the coverage area of a node. The normalized interference power
coming from ring j is then: 6q(1 + 1/a)−ηj1−η.
The total amount of normalized interference mean power is then:

bI = 6q(1 + a−1)−η
b k
a+1cX
j=1

j−(η−1). (9.5)

When the network size increases
¥

k
a+1

¦→∞, and the above formula can be written
as:

bI∞ = 6q(1 + a−1)−ηζ(η − 1)
where for Re(s) > 1, ζ(s) ,

P∞
j=1 j

−s is the Riemann-Zeta function [1]. If the pathloss
exponent η ≤ 2, the inference power tends to explode when the network size increases.
Fortunately, as mentioned in Section 3.4.1, that pathloss exponent in outdoor environ-
ments is always more than 2. In very specific indoor environments the pathloss exponent
is measured to be as low as 1.6, but a network in indoor environments is not expected
to grow large in size. When the pathloss exponent η > 2, ζ(η−1) is a converging series
with positive terms and is upper-bounded by [29]:
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∞X
j=1

j−(η−1) ≤ 1 +
Z ∞

1

1

xη−1
dx =

η − 1
η − 2 .

Based on the above formula we can conclude that the amount of interference power
in a mobile ad-hoc network is upper-bounded by the following expression:

bI ≤ 6q(1 + a−1)−η
η − 1
η − 2 , η > 2. (9.6)

This conclusion is an important result and may seem contra-intuitive at the first
glance. Intuitively, one may believe that adding interference power from an infinite
number of interference sources, regardless of how small the interference values, may lead
to an infinite sum. Above we have shown that this is not the case when radio signals
decay sufficiently fast over traveled distances. To make a loose analogy, we all see that
the sky at night is dark despite the virtually infinite number of stars contributing to its
brightness.
From (9.6) we see that the upper bound on interference does not depend on the

network size (number of nodes). But it depends on the density of the network (reflected
in the value of a), the pathloss exponent η, and the probability of transmission per node
q. Regardless of the total traffic per node, the probability of transmission per node,
q, can never exceed 1. Hence, we may conclude that interference in mobile ad-hoc
networks remains upper-bounded regardless of the offered traffic.

9.3 Comparing with previous results

In Chapter 8, Section 8.2.4 we described a method for the calculation of the expected
amount of interference in ad-hoc networks with the lognormal radio model and random
topology of the network. Here we compare results obtained with the calculation method
presented there with the upper-bound of interference (9.6) found with the honey-grid
model.
Let us assume that the node density is ρ. In the honey-grid model the reach of a

node is denoted by factor a, and we have 1 +
Pa

j=1 6j = 1 + 3a(a + 1) nodes in the
coverage area of a node (see (9.2)). In the honey-grid model we are assuming circular
coverage areas. With normalized distances, the radius of the coverage area of each node
is 1 and its area size is π. The relation between a and ρ is then by approximation:

ρ ' (1 + 3a(a+ 1)) /π,

a '
j
−1/2 +

p
1/4− (1− πρ)/3

k
.



106CHAPTER 9. SIMPLIFIED INTERFERENCEESTIMATION: HONEY-GRIDMODEL

Figure 9.6: Comparison of interference upper bound (9.6) with interference calculated
using the lognormal summation method. In this plot we have assumed ξ = 0.

For different node densities we have calculated the interference powers with the
method described in Chapter 8 and have compared them with the interference power
upper bound (9.6). Results for the case that ξ = 0 (pathloss model) are shown in
Figure 9.6. As we see for ξ = 0 (circular coverage area around nodes), the amount of
interference experienced in MAC classes 2 or 3 remains indeed under the expected upper
bound. This implies that a random topology configuration, as expected, produces less
interference than in the honey-grid model.
If we take the medium range radio signal power fluctuations (shadowing) into ac-

count, our calculations show that the upper bound (9.6) still applies, unless the power
fluctuations are very severe. This point is verified by the plots in Figure 9.7. In this
figure we see for example that the upper bound (9.6) is exceeded is the case of MAC
class 3 with η = 6. Recalling that σ = ξ × η, the standard deviation of radio signal
power fluctuations in this case is 12 dB.

9.4 Chapter summary

In this chapter we have proposed a new model to calculate interference levels in wireless
multi-hop ad-hoc networks. This model uses a regular hexagonal lattice for the location
of mobile nodes. This enables us to calculate the expected values of interference without
having detailed information about the movement patterns and the exact location of
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Figure 9.7: Comparison of interference upper bound (9.6) with interference calculated
using the lognormal summation method. In this plot we have taken radio signal power
fluctuations into account (ξ = 2).

all nodes at all times. Assuming a simple pathloss radio model, we have found a
formula for the expected interference in ad-hoc networks, and a closed-form expression
for the interference upper bound. The obtained upper bound depends on the density
of the network, the pathloss exponent and the probability of transmission per node.
Comparison with the method of interference calculation in Chapter 8 reveals that this
upper bound is still valid in networks with random topology, except when the radio
signal power fluctuations are very severe (close to 12 dB and more).
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Chapter 10

Capacity of Ad-hoc Networks

In this chapter we use our findings from Chapters 8 and 9 to calculate the expected
wanted carrier signal power to interference ratio in ad-hoc networks. This metric, which
is called Carrie-to-Interference ratio (C/I), determines directly the capacity of the radio
channel and, consequently, the ad-hoc network. Capacity is defined as the maximum
possible information transfer rate over a channel. The actual information transfer rate
over a channel or between two nodes is associated with the throughput of the system.
Throughput measures the number of bits per second delivered over the medium.
Throughput in ad-hoc networks is affected by the routing and the offered traffic at

each node. If a route cannot be found from a source to a destination, the throughput
between these two nodes is virtually zero. Additionally, the offered traffic at one node
determines the expected amount of relay traffic and the throughput at other nodes.
Therefore, in this chapter before discussing the capacity and the throughput in ad-hoc
networks, we clarify our assumptions regarding the routing and traffic generation in
Sections 10.1 and 10.2, respectively.

10.1 Routing assumptions

Given a network topology, the basic function of a routing algorithm is to find an opti-
mum path from a source to a destination. The optimum path is usually a path with
the shortest length (least number of hops), although other optimization criteria like
minimum delay or maximum throughput are possible as well. Well-known examples
of routing algorithms are Dijkstra and Bellman-Ford algorithms. A good overview of
routing algorithms can be found in [4]. Next to a routing algorithm, we need a routing
protocol for coping with network dynamics when nodes and links change over time. A
good overview of the routing protocols designed for ad-hoc networks can be found in
[62], [77].
For the study of the capacity in ad-hoc networks we have assumed that a route

109
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between the source and the destination always can be found if it exists. Although
routing does not belong to our primary research topics (see Figure 2.1), we have studied
effects of topology changes on data throughput and capacity in ad-hoc networks briefly.
For this purpose we have implemented the principles of ant-routing ([9], [26]) in a
software program and have run simulations. Details are to be found in Appendix B. We
have noticed that data throughput reduces when due to topology changes some nodes
or collection of nodes become isolated. If isolated parts of the network do not find a
connection to the rest of the networks during the life time of data packets intended form
them, the data is lost. However, as long as the connectivity of the network is preserved,
routing overhead has a less severe effect on the capacity, as we will see in Section 10.4.

10.2 Traffic model

The output traffic per node consists of the node’s own traffic that is generated by the
host connected to the mobile node (we will call this traffic new traffic) and the traffic
that the node relays for other nodes (the relay traffic). Because of relay traffic, the
total amount of traffic per node is strongly related to the multi-hop characteristics of
the ad-hoc network. Our basic assumption here is that the new traffic generated by the
hosts connected to mobile nodes is Poisson distributed and independent of each other.
All hosts are similar and have the same traffic generation behavior. In other words,
mean generated new traffic per node per time interval is the same for all nodes. We
denote the mean value of new traffic per time-slot per node by λ. The length of each
time-slot is denoted by tts. The average number of packet arrivals per unit time is then
λ/tts. Because we assumed a Poisson arrival process, for the probability of k arrivals
during a time interval of length t we have:

Pr k [t, λ] =
(λt/tts)

k

k!
e (−λt/tts) . (10.1)

Consider two nodes i and j. When the average hopcount is E[h], there are in average
E[h] − 1 relay nodes between any source and any destination. Node i may be a relay
station for node j with the probability (E[h]− 1)/(N − 1), and the expected value for
relay traffic arriving at node i from node j is then λ(E[h] − 1)/(N − 1). Any node in
the ad-hoc network may be a relay node for N−1 other nodes. Therefore, the expected
amount of relay traffic at any node is: λ(E[h]− 1). The average total traffic per node,
Λ, is the sum of the node’s own traffic, λ, and all relay traffic that reach that node:

Λ = λ+ λ (E[h]− 1)
= λE[h]. (10.2)

In this formula, E[h] is the expected value of the hopcount.
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On page 104 we defined q, the probability of transmission per node per time-slot.
The mean value of total traffic generated per node determines q. Using (10.1), for q we
can write:

q = 1− Pr 0 [tts,Λ]
= 1− e−Λ

= 1− e−λE[h]. (10.3)

10.3 Capacity of ad-hoc networks in general

In Chapters 8 and 9 we have provided methods for the estimation of interference sta-
tistics as well as formulas for the expected interference levels in ad-hoc networks. For
correct reception of radio signals, the Carrier to Interference ratio (C/I) needs to be
higher than a certain threshold value (for example 7 dB)1. C/I is the ratio between
the mean power of wanted signal and the mean power of the sum of interfering sig-
nals. In radio communications the capacity of the networks is directly linked to the
expected value of C/I. If we know the expected value of C/I, we can use the Shannon
channel capacity formula [118, Chapter 5] to find an upper bound on the reliable data
transmission speed between two nodes over the radio channel:

W = B log2 (1 +E[C/I]) .

Here B is the channel bandwidth2 in Hz and E[C/I] is the expected carrier to interfer-
ence ratio. W is in bits per second and indicates the upper bound on the time-averaged
error free bit transmission speed over the radio channel. In other words, W is the max-
imum capacity of the wireless channel. When the expected value of C/I decreases, the
capacity of the link between two nodes calculated with the Shannon formula decreases
as well.
In ad-hoc networks an additional restriction on the capacity is imposed by the

MAC protocol. As described in Chapter 7, whenever a transmission link is established
between two node, a portion of other nodes in the network will be prohibited from
simultaneous transmission, because all these nodes are sharing the same transmission

1In general for correct reception of radio signals, the Carrier to Interference plus Noise ratio needs
to be higher than a certain threshold value. Here we are assuming that noise power is negligible in
comparison to interference power.

2If a radio technology with spreading is used for radio communications, the channel bandwidth
B is the channel bandwidth after despreading process. E[C/I] is also the expected value of carrier
to interference ratio after despreading of signals. For example, in IEEE802.11b the radio channel
bandwidth before despreading is 22 MHz. With a processing gain of 11, B is equal to 2 MHz (for more
information see [71]).
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medium. Under fair conditions, the capacity of the radio channel is equally divided
between all nodes competing to gain access to the medium. The fraction of the nodes
that gain access to the medium at any time interval can be indicated by ν/ρ, where ρ
is the node density and ν is the interfering node density. The relation between these
two parameters is given in (8.1). In ad-hoc networks we need to multiply the Shannon
capacity by ν/ρ to obtain the maximum output bit rate, Rout,max, per node:

Rout,max =
ν

ρ
W =

ν

ρ
B log2 (1 +E[C/I]) . (10.4)

In this chapter we compare the output bit rate per node to Rout,max for different
network sizes, different network densities and different values of input data bit rate per
node. If traffic conditions are such that the output bit rate per node tends to exceed
Rout,max the network has capacity problems.

Based on (10.2) we can find the relation between the input bit rate per node, Rin, and
the output bit rate per node, Rout. However, for translation from packets per time-slot
to bits per second we need the exact duration of a time-slot and the amount of overhead
within each time slot. Duration of each time-slot is indicated by tts. Each time-slot
consists of an overhead part, to, and a useful data transmission part, td. In other words
tts = to + td. The overhead time is the time needed for transmission of preamble and
header in each data frame. Further, the overhead time includes the required inter-frame
spacing times and the required time for the reception of MAC Acknowledgments for
each data frame. A typical value for to in IEEE 802.11b is 364 µs [56]. The length
of td depends on data packet size, P , and data transmission speed, r. We can write
td = P/r. In IEEE802.11b, P may vary between 34 to 2346 bytes, while r is either 1
Mbps, 2 Mbps, 5.5 Mbps or 11 Mbps [56]. The input bit rate per node, Rin, and the
output bit rate per node, Rout, relate to λ and Λ as:

Rin =
λP

tts
,

Rout =
ΛP

td
=

E[h]λP

td
=

tts
td
E[h]Rin. (10.5)

Let Rin,max indicate the maximum input bit rate per node that can be supported
by the network. Using (10.5), the maximum output bit rate per node corresponding to
this maximum input bit rate is:

Rout,max =
tts
td
E[h]Rin,max.

Using (10.4) and the above formula we find:
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Rin,max =
ν

ρ

td
tts

W

E[h]
. (10.6)

Some authors call Rin,max the per-user network capacity ([39], [78]). From (10.6) we
see that the per-user network capacity is inversely proportional to the mean hopcount.
This general observation explains the asymptotic values found for the capacity of ad-
hoc networks in the literature. For example, in [39] it is shown that per-user network

capacity with the pathloss geometric random graph model is O
³
1/
√
N
´
, where N is

the number of nodes. We can easily explain this result noticing that the hopcount in
the pathloss geometric random graph model is of the same order as the hopcount in a
2-dimensional lattice, which according to (3.6) is O

³√
N
´
.

After these considerations regarding the capacity of ad-hoc networks in general, in
the next section we perform capacity calculations for the specific case of the honey-grid
model.

10.4 Capacity calculation based on honey-grid model

For estimation of the capacity and the output bit rate per node we need to know
the expected C/I and the mean hopcount (see (10.4) and (10.5)). Exact hopcount
distribution in the honey-grid model is found in Section 10.4.1. The expected C/I is
analytically obtained in Section 10.4.2. Using results from these two sections we analyze
the capacity and the throughput of ad-hoc networks in Section 10.4.3.

10.4.1 Hopcount in honey-grid model

We have found the exact hop distribution for the honey-grid model. The mean and
the variance are derived directly from the exact distribution of the hopcount. The
method for finding hopcount distribution in the honey-grid model is discovered by
finding the exact hopcount for several network configurations (from k = 1 to k = 8)
and extrapolating the observed systematics to higher vales of k. The algorithm found in
this way is presented here. For the definition of parameters k and a please see Section
9.1.
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begin
k = number of rings
a = a node’s reach
s = k/a [note: s should be an integer, and k>a]
form matrix A(2s, s) with all values zero
form matrix B(2s, s) with all values zero
form matrix C(2s, s) with all values zero
form array h(2s) with all values zero
for j = 1 to s

A(1, j) = 3
A(i, j) = A(i-1, j) + 2, for i=2 to j
A(i, j) = A(i-1, j), for i=j+1 to 2j
B(i, j) = 2, for i=1 to 2j-1
B(2j, j) = 2j+1
A(i, j) = B(i, j)/2 + (A(i, j) - B(i, j)), for i=1 to 2j
h = h + 6j A(:, j) [note: A(:, j) denotes column j of A]

end for loop
C(1, j) = C(1, j-1) + (j-1), for j=2 to s
C(i, j) = C(i-1, j-1)+C(1, j-i+1), for i=2 to s-1 and j=i to s
C(i, j) = -C(2j-i+1, j), for j=2 to s and i=j+1 to 2j
h = h + 6C(:, s) [note: C(:, s) denotes column s of C]
end

At the end of this procedure, array h contains the exact number of node combination
that are at distance 1, 2, ..., 2 bk/ac hops from each other. As an example, Figure 10.1
shows the distribution of the hopcount for three different values of k. In all cases it is
assumed that a = 1.
When a = 1, this calculation method produces the exact number of hops from any

source to any other destination in the entire network. We have used the above described
procedure to find the mean and variance of hopcount for different number of nodes N .
The results, in logarithmic scale, are shown in Figure 10.2.
As observed in this figure, on logarithmic scale, the mean and the variance of the

hopcount seem to be linear functions of the number of nodes. This is confirmed by first
order curve fitting results:

logE[h]a=1 ' 0.50 log(N)− 0.64
log V ar[h]a=1 ' log(N)− 2.81

These linear approximations fit almost perfectly with computed values3. Based on

3For k = 500, the root mean square error (rmse) of the linear fit for the average hopcount is of the
order 10−4, and the rmse for the linear fit of the variance is of the order 10−3.
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Figure 10.1: Hopcount distribution in the honey-grid model for k = 5 (91 nodes),
k = 10 (331 nodes), and k = 15 (721 nodes). In all cases a = 1.
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these formulas we find the following approximation for the average and variance of the
hopcount in the honey-grid model:

E [h]a=1 ' 0.53 N0.5 (10.7)

V ar [h]a=1 ' 0.06 N (10.8)

It is interesting to mention that the formulas found here for the mean and the
variance of the hopcount in the honey-grid model agree with expressions found in [111]
for rectangular d-lattice graphs. For the 2-dimensional lattice d = 2 in [111] we find;
E [h] ' 2/3 N1/2, and V ar [h] ' 1/9 N . In comparison to (10.7) and (10.8) only
the pre-factor due to a form difference between a hexagonal and rectangular lattice is
slightly different. It should be noticed that (10.7) and (10.8) are valid for small as well
as large values of N , while expressions in [111] are found for large values of N .
The mean hopcount in the entire network for the case that a = 1 is found directly

by (10.7). However, in the case that a 6= 1, (10.7) produces the average hopcount
over relay nodes. We assume a node that is not situated on a relay ring will hop its
traffic first to a relay node positioned on a relay ring. Consequently, if both the source
and the destination nodes are not on relay rings, the average hopcount from source
to destination is two hops more than the average value found over relay nodes. The
average hopcount is then approximately:

E[h]a>1 ' 0.53N 0.5
r + 2

µ
1− Nr

N

¶
. (10.9)

In this formula, N is the number of nodes in the configuration, Nr (see (9.3)) is the
number of nodes on the relay rings seen from the center node and (1−Nr/N) represents
the probability that either the source or de destination node is not a relay node.
Figure 10.3 shows the mean value of the hopcount calculated with (10.9) for different

number of nodes in a honey-grid structure.

10.4.2 Expected Carrier to Interference ratio

In the honey-grid model the lowest expected value for wanted signal power, C, is related
to the situation that the wanted signal (signal from the source) is transmitted from the
farthest neighbor of node 0 at distance a∆. The highest value of C is related to the
situation that the wanted signal is transmitted from the nearest neighbor of node 0,
which is at distance ∆ (see Section 9.1). The total number of nodes inside the coverage
area of node 0 according to (9.2) is 3a(a + 1). The jth ring (j ≤ a) contains 6j nodes
at distance ∆j to node 0 in the center4. The probability that the wanted signal is

4In the case that j > 1, assuming that all nodes on the ring are at the same distance to the center
node is a simplification. As described on page 104, we consider this simplification to be acceptable.
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Figure 10.3: Mean value of the hopcount in a honey-grid structure for different number
of node (N) and different values of a (reach of a node).

originated form distance j∆ is then 6j
3a(a+1)

. Using (3.8) and taking into account all
possible positions for the wanted signal transmitter, the expected value for C is:

E [C] =
aX

j=1

6j

3a(a+ 1)
c.(j∆/r0)

−η

=
2c (∆/r0)

−η

a(a+ 1)

aX
j=1

j−(η−1).

According to our convention described in Section 3.4.3 we can normalize the wanted
signal power to the power P = c (R/r0)

−η, where R = a∆ is radius of the coverage area
of a node. The normalized expected power of the wanted signal is then:

E
h bCi = 2

a−η+1(a+ 1)

aX
j=1

j−(η−1). (10.10)

In mobile ad-hoc networks based on WLAN technologies, mostly spread-spectrum
techniques are used. In these cases we should only consider the amount of interference
power that coincides with the wanted signal after despreading process. The reduction
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in interference power is indicated by processing gain5, g. Based on (9.5) and (10.10),
the following formula calculates the expected value of C/I for a node in the center of
an ad-hoc network.

E [C/I] =
g
Pa

j=1 j
−(η−1)

3a(a+ 1)−(η−1)q
Pb k

a+1c
j=1 j−(η−1)

.

From the above formula we see that the expected value of carrier to interference ratio,
E [C/I], depends on the network size k, density of the network a, pathloss exponent
η and the probability of transmission per node q. Substituting q in the above formula
from (10.3) provides:

E [C/I] =
g
Pa

j=1 j
−(η−1)

3a (a+ 1)−(η−1) (1− e−λE[h])
Pb k

a+1c
j=1 j−(η−1)

. (10.11)

Here, η is the pathloss exponent, g is the processing gain, a is the reach of nodes in
the center of the configuration, k is the number of rings in the network, λ is the mean
arrival rate of new packets per node per time-slot (node’s own traffic) and E[h] is the
average umber of hops. Relation between the number of nodes, N , and the number of
rings k is given in (9.1). Average hopcount, E[h], is found by (10.9).

Effect of network size and network density on C/I

Figure 10.4 shows the calculated values of E [C/I] according to (10.11) for different
values of the pathloss exponent and different number of nodes with a = 1. Figure
10.5 shows the calculated values of E [C/I] according to (10.11) for a fixed value of
the pathloss exponent and the node’s own traffic but with different values for a. From
these two figures we can conclude that for large networks the expected value of C/I
tends to an asymptotic value that depends only on the pathloss exponent and the value
of a. In other words, for large ad-hoc networks, the expected value of C/I depends
on the network density (which is directly related to a) and the pathloss exponent.
In indoor environments, with higher values of pathloss exponent, an ad-hoc network
performs better than in outdoor environments where due to lower pathloss values radio
signals travel to farther distances and cause more interference. Previously in (9.6) we
showed that interference is upper bounded in ad-hoc networks that use carrier sensing
for medium access. When interference is upper-bounded we expect E [C/I] to have a
lower bound. Results shown in Figures 10.4 and 10.5 confirm this claim.

5In 802.11 DSSS (Direct Sequence Spread Spectrum) the processing gain is realized by modulating
each data bit with an 11 bit Barker code (pseudo random sequence). Processing gain is therefore 11:1,
or 10.4 dB [56].
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Figure 10.4: Expected value of C/I for a node in the center of a honey-grid structure
for different values of a node’s own traffic, λ. In all cases the node’s reach, a, is 1 and
the processing gain is 10.4 dB.
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network with different number of nodes. In all cases a=1, η = 2.4, and processing gain
is 10.4 dB.

Effect of routing overhead on C/I

New traffic per node, λ, consists of two parts: the data traffic and routing overhead.
Data traffic is the actual communication data to be transmitted from a source to a
destination (for example the content of an e-mail). Routing overhead consists of all
traffic generated by a node for finding new routes, or for keeping routing information
up-to-date. We can use (10.11) to study the effect of traffic increase due to routing
overhead on the performance of a mobile ad-hoc network. Figure 10.6 shows calculated
results for a few examples. In this figure, degradation of E [C/I] along the y-axis is
the difference between E [C/I] with routing overhead and E [C/I] for the same value of
data traffic with zero routing overhead. From Figure 10.6 we may conclude that routing
overhead does not seem to have significant influence on E [C/I] in large networks with
high data traffic volumes.

10.4.3 Capacity and throughput

Having access to the expected values of C/I, we can use the Shannon channel capacity
formula (10.4) to find an upper bound on reliable data transmission speed between two
neighboring nodes in the honey-grid model. For this, we substitute E [C/I] in (10.4)
with (10.11). With the node degree d, at any moment in time only one of the d + 1
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Figure 10.7: Comparing the capacity and the output bit rate per node. In this figure
the node’s reach, a, is 1 (6 neighbors per node) and each node’s own traffic equals to
40 kbps. For calculations we have assumed: channel bandwidth B is 22 MHz (before
despreading), processing gain g is 11, data packets size P is 1000 bytes, transmission
speed r is 2 Mbps, t0 = 364µs and the pathloss exponent η is 2.4.

neighboring nodes may transmit. Therefore we substitute ν
ρ
in (10.4) with 1/(d + 1).

In the honey-grid model d is given by (9.2). The result is:

Rout,max,hg =
B

1 + 3a(a+ 1)
log2

1 + (a+ 1)η−1 g
Pa

j=1 j
−(η−1)

3a (1− e−λE[h])
Pb k

a+1c
j=1 j−(η−1)

 . (10.12)

Rout,max,hg in bits per second indicates the upper bound on the error free output bit
rate per node for the honey-grid model.
We have used (10.12) and (10.5) to compute the available capacity and the output

bit rate per node when the network size, the network density and the input traffic per
node change. Figures 10.7 and 10.8 show two examples. In these figures we see when
the network size increases the output bit rate generated per node increases as well.
On the other hand, by increasing the network size the amount of interference increases
and this will cause the available capacity per node to decrease. At the point where
the increasing output bit rate intersects with the deceasing capacity per node, we say
that the network saturation point is reached6. Beyond this point a node will not have

6In figures 10.7 and 10.8 the dashed lines show the trend in the increase of the output bit rate and
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Figure 10.8: Comparing the capacity and the output bit rate per node. In this figure
the node’s reach, a, is 2 (18 neighbors per node). Other assumptions are the same as
in Figure 10.7.

time for successful transmission of any additional incoming data. As a result, the useful
output bit rate per node, i.e. throughput per node, remains at a constant level even
when the network size or the input data rate increase. Beyond the saturation point,
increasing network size or input data rate will not increase the throughput, but will
cause the delay to grow.
Another effect visible from comparing figures 10.7 and 10.8 is the effect of increase

in network density. When network density increases, number of neighbors per node
increases as well. We see when the network density increases (higher node’s degree in
Figure 10.8), the network saturation point is reached for a lower number of nodes and
at lower data rates.
We mention here that our finding that the throughput in IEEE802.11b networks

flattens when traffic load increases is also observed in some experimental measurement
results [84].
We believe our model for calculation of the throughput per node presented in this

chapter has practical applications in the design and optimization of ad-hoc and sensor
networks. Figure 10.9 illustrates another set of data obtained using (10.12) and (10.5)
to compute the throughput per node for different number of nodes and different values
of the input bit rate per node. From this figure we can read the maximum supported

the decrease in the available capacity if saturation point was not reached.
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Figure 10.9: Throughput per node for different values of input data bit rate per node
and different number of nodes. Each node’s own traffic varies between 10 kbps and 80
kbps. Other values and assumptions are the same as in Figure 10.7.

input bit rate per node for different network sizes. Figure 10.10 is a different perspective
on Figure 10.9. In Figure 10.10 we have shown the portion of the output per node
that is the node’s own traffic, assuming that the own traffic and the relay traffic have
the same priority. As we can see from Figure 10.10, when network size increase, due
to the increase in multi-hop relay traffic, nodes could not get rid of their own data.
The maximum allowable input data per node depends on the size of the networks,
or better said on the expected hopcount. Figure 10.10 shows clearly that large ad-hoc
networks with high diameter (high value of the mean hopcount) are only practical when
the input data rate per node is low. For example, a multi-hop network consisting of
thousands of nodes is probably a good solution for a sensor network in which each
node has limited data to transmit. However, when data rates start to increase, like in
multimedia applications, only ad-hoc networks of small size with few hops can support
these kind of broadband applications.

10.5 Chapter summary

In this chapter we have studied the throughput and the capacity of ad-hoc networks.
We have extended the Shannon channel capacity formula for use in ad-hoc networks,
where the transmission medium is shared by all users. Further, using the honey-grid
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Figure 10.10: Portion of the throughput per node assigned to a node’s own traffic. All
values and assumptions are the same as in Figure 10.9.

model, we have derived an analytical expression for the expected value of C/I in ad-hoc
networks. We have shown that the pathloss exponent η has a significant effect on the
expected values of C/I in ad-hoc networks. In environments with lower values of η,
ad-hoc networks perform worse, as radio signals travel to farther distances and cause
more interference. For each value of η and each node density, the expected value of C/I
decreases by the increase in the number of nodes. However, it tends asymptotically to
a lower bound independent of the number of nodes forming the network.
We have shown that the throughput of ad-hoc networks can get saturated. Max-

imum throughput per node at the saturation point depends on the interference con-
ditions and the density of the network. Once the saturation ceiling is reached, the
network cannot accept any additional increase in the network size or the input bit rate
per node.
In multi-hop ad-hoc networks, the output bit rate per node is proportional to the

product of the node’s own traffic and the mean hopcount. Output bit rate per node
cannot grow beyond the maximum capacity of the system. Therefore, the per-user
network capacity (the maximum input bit rate supported per user) is inversely propor-
tional to the mean hopcount. The mean hopcount depends on the network size and
the dimensions of the service area. In the design of ad-hoc networks there is a trade-off
between the network size and the input bit rate per node. For example, high bit rate
multi-media applications can only be combined with an ad-hoc network limited in size,
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or better said, with an ad-hoc network limited in the number of hops.
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Chapter 11

Conclusions

In the diverse filed of research areas related to wireless mobile ad-hoc networks, we
have focused in our work on fundamental properties of ad-hoc networks. By funda-
mental properties we mean the connectivity, capacity, and network characteristics that
significantly and directly affect the former two. In this respect, we have shown that
degree distribution, hopcount distribution, and interference statistics are fundamental
properties as well. We have studied all these fundamental properties using a realistic
network model based on realistic assumptions for radio propagation. This thesis centers
then around the following main themes:

• realistic modeling,
• degree distribution,
• hopcount distribution,
• connectivity, and
• capacity and interference estimation, which are closely related topics.

In this final chapter of this thesis we provide for each of these themes an overview of
the obtained results. Whenever appropriate we include remarks regarding possible ex-
tensions of the work. The descriptions in this chapter are at a higher level of abstraction
than the remarks at the end of the corresponding chapters.

Realistic modeling

We have shown that graph theory can be used for modeling ad-hoc networks. How-
ever, none of the random graph, lattice graph, scale-free graph and pathloss geometric
random graph models is suitable to model wireless ad-hoc networks. In this thesis we
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introduced the lognormal geometric random graph model that matches very well all
basic characteristics of wireless ad-hoc networks (see Table 3.1).
Our model for ad-hoc networks is based on the medium scale signal power fluctuation

in radio communications and assumes that these power fluctuations have a lognormal
distribution. The ratio of the standard deviation of radio signal power fluctuations to
the pathloss exponent is denoted by symbol ξ. Throughout this thesis, this parameter
appears to be a significant factor in determining ad-hoc network properties like degree
distribution, hopcount distribution and connectivity.
Our lognormal geometric random graph model assumes that links between nodes are

two-way, undirected links. There is a link connecting two nodes if a signal transmitted
from one node is received at the other node above a minimum required power threshold.
Whether two connected nodes can communicate with each other at the desired data
communication speed at all times is a matter of interference and capacity calculation.
In our modeling we have clearly separated network topology from network capacity.
Whenever communication between two connected nodes drops to lower speeds or even
becomes impossible we say that the link capacity has diminished, instead of saying that
the network topology has changed.
Our modeling based on the lognormal assumption of medium scale radio signal

power fluctuations is a step in the right direction for better and realistic modeling of
ad-hoc networks. However, we emphasize at the same time that more measurements
are needed for better understanding of radio channel characteristics in typical ad-hoc
network environments and frequencies.

Degree distribution

Assuming uniform distribution of nodes over the service area, we have found an analytic
expression for the link density in wireless ad-hoc networks. The expected node degree
in ad-hoc networks is found by multiplying the link density with the number of nodes
forming the network. It has been shown that link density is a function of the area size
and the parameter ξ. When area size tends to ∞, link density tends to 0, which is a
direct consequence of the fact that in ad-hoc networks links are distance dependent.
Further, it has been shown that the link density, and consequently the mean degree,
are higher for larger values of ξ. The minimum link density occurs at ξ = 0, which
corresponds to the pathloss model of radio propagation. We may conclude therefore
that the pathloss model is the most pessimistic model for the estimation of the mean
degree in ad-hoc networks.
In ad-hoc networks, the degree distribution can be considered to be binomial when

the density of nodes is low and the area size large in comparison to the maximum
link distance. By maximum link distance we mean the metric length of the distance
over which two nodes can be connected with a non-negligible probability. We know
that degree distribution in random graphs is also binomial. It is interesting to see
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that despite their totally different behavior, both the random graph and the geometric
random graph have a binomial degree distribution. It should be noticed however that
binomial degree distribution in geometric random graphs is conditional on the uniform
distribution of nodes over the service area.

Hopcount distribution

The hopcount behavior in ad-hoc networks for low values of ξ is similar to the hopcount
in rectangular lattice networks with the same length and the width as the service area
of the ad-hoc network. When ξ increases, both the mean hopcount and the network
diameter reduce due to the appearance of occasional long links between nodes. For a
given node density, the mean hopcount in ad-hoc networks increases with increasing
service area size. Hopcount is not affected by an increase in the number of nodes
(small-world property) if we keep the service area size unchanged.
We have observed that the hopcount in ad-hoc networks is a function of the para-

meters ξ, the number of nodes N , and the service area size. We have shown how the
hopcount is affected by a change in each of these parameters. We have not presented an
exact analytic formula for the hopcount distribution as function of the parameters ξ, N
and the service area size. However, for a specified form of ad-hoc networks, the honey-
grid model with ξ = 0, we have found an algorithm that provides the exact hopcount
distribution. The honey-grid model, introduced by us, is a simplified way of looking at
ad-hoc networks and has proved to be of value for studying not only the hopcount but
also the capacity of ad-hoc networks.

Connectivity

Using our geometric random graph model we have studied connectivity probability
in ad-hoc networks. Our study shows that radio signal power variations increase the
probability of having long links, which in turn enhances the probability of connectivity
for the entire network. In the light of this new finding we have been able to modify the
theorems of connectivity for ad-hoc networks (for details please see page 62).
Our results also demonstrate that full connectivity in ad-hoc networks is achieved

at relatively high values of the mean node degree, while at far lower values, a very large
portion of the network could already be connected. Therefore we argue that for practical
planning and design of wireless ad-hoc networks or sensor networks full connectivity is
a very stringent condition to fulfill, and suggest to use the giant component size as
a measure for "connectivity". We have found an equation for calculating the giant
component size in wireless ad-hoc networks that takes into account the level of radio
signal power variations. Our formula can be used to provide directives for the average
required number of neighbors per node (mean degree per node) to obtain connectivity
over any desired percentage of the network. The mean degree can be changed by
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adjusting the transmission power of nodes or by changing the node density.

Interference and Capacity

Interference and capacity in wireless ad-hoc networks are directly affected by the work-
ing of MAC protocols. Each MAC protocol restricts in its own way the number of
interfering signal transmissions allowed per unit of area, regardless of the number of
nodes falling within that area. Therefore, the interfering node density depends on the
MAC protocol details. For the purpose of our study we have classified MAC protocols
into three different groups. This classification, which is based on the way in which
MAC protocols solve the hidden and the exposed terminal problems, has enabled us to
take into account the impact of MAC protocols without going into the details of each
MAC protocol individually. For each MAC protocol class, we have found approximating
formulas to calculate the expected interfering node density as a function of the node
density and the parameter ξ. These formulas show that the interfering node density is
by approximation proportional to the logarithm of the node density.
We have presented a calculation method using the lognormal radio propagation

model to estimate the interference power sum statistics in ad-hoc and sensor networks.
The input parameters for the model are the area size, density of the nodes, the radio
propagation conditions (pathloss exponent and lognormal fading standard deviation),
the activity ratio of nodes and the MAC protocol class. The method presented here
is a first attempt to expand the interference power sum calculation methods used in
fixed topology networks to ad-hoc and sensor networks. Although simulations have
confirmed that our method calculates the mean interference power with acceptable
accuracy, there is room for fine-tuning and improvements. Especially estimation of the
standard deviation of the interference power sum could be improved.
For analytic calculation of interference and capacity we have introduced the simpli-

fied honey-grid model. In this model, nodes are assumed to be placed on a hexagonal
2-dimensional lattice. Using this model with a simple pathloss radio model, we have
found closed-form analytic formulas for the interference and interference upper bound
in ad-hoc networks. The interference upper bound depends on the node density, the
pathloss exponent η, and the probability of transmission per node, but it is independent
of the number of nodes. This is an important conclusion which implies that increasing
the network size in ad-hoc networks for the same node density does increase the amount
of interference.
To study the capacity of wireless ad-hoc networks we have used the Shannon channel

capacity formula and have extended it to include medium sharing effects of the MAC
protocols on the capacity. We have shown that the pathloss exponent η has a significant
effect on the expected values of C/I in ad-hoc networks. In environments with lower
values of η, ad-hoc networks perform worse, as radio signals travel to farther distances
and cause more interference.
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The output bit rate per node in ad-hoc networks depends not only on the node’s
own traffic but also on the relay traffic passing through that node. In multi-hop ad-hoc
networks the output traffic per node is proportional to the product of the node’s own
traffic and the mean hopcount. However, the output bit rate per node cannot grow
beyond the capacity limit of the system. Therefore, in the design of ad-hoc networks
there is a trade-off between the network size (which affects the mean hopcount) and
the input bit rate per node. Large ad-hoc networks, consisting of thousands of nodes
with relativity large mean hopcount, can only support moderate bit rate applications.
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Appendix A

Measurement Details

We have performed measurements in and around the train stations in three cities in
The Netherlands: Hengelo, Drienerlo and Enschede. Figure A.1 shows the measurement
setup. The quantities to be logged with our measurement setup were the received power
from access points and the location of the receiving node (latitude and longitude of the
laptop). Having access to the exact position of all access points and the transmit power
coming from each access point, we were able to plot the received signal powers against
the distance to the access points.
In this annex we describe main features of the measurement equipment and provided

more detailed information about the 10 access points (AP’s) used in our measurement
campaign.

Access points All sites use one type of access point: Cisco Aironet 1200 Series (AIR-
AP1231G-E-K9) with a maximum power setting of 100 mW (20dBm). All antennas
transmit in 2.4 GHz ISM frequency band. All access points were set to the maximum
power output. Consequently the transmitted power would sometimes exceed the reg-
ulatory limit of 100 mW for the Netherlands (when transmitter gain is added) but
this issue was temporarily settled with the authorities. More information about access
points is provided in Table A.1.

WLAN Adapter For the reception of signals on the laptop, the Cisco Systems 350
Series PCMCIA IEEE 802.11b WLAN Adapter was used. The receiver sensitivity of
this card is at most -94 dBm for 1 Mbps data speed. The operation frequency band is
2.4 to 2.4897 GHz.

GPS Receiver For logging of position data Emtac CRUXII / BTGPS GPS receiver
with built-in antenna was used. The accuracy of the receiver was 10 meters, meaning
that with 68% probability (one sigma confidence interval), the measured position was
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Figure A.1: Measurement setup.

Table A.1: Information about access points used in our measurements.
location antenna antenna

height
antenna type antenna

gain
Cable
loss
(AP-
antenna)

AP 1 Hengelo, station clock 3.5 m Omnidirectional 2.2 dBi -
AP 2 Hengelo, indication board platform 2 3.0 m Omnidirectional 5.2 dBi -
AP 3 Hengelo, indication board platform 3 3.0 m Omnidirectional 5.2 dBi -
AP 4 Hengelo, indoor wall 3.0 m Omnidirectional 5.2 dBi 3.6 dB
AP 5 Hengelo, outdoor chimney 14.0 m Planar (30◦ beam width) 15.0 dBi 7.0 dB
AP 6 Drienerlo, in roof waiting room 7.0 m Planar (30◦ beam width) 15.0 dBi 8.0 dB
AP 7 Enschede, top of ticket office 2.5 m Omnidirectional 2.2 dBi -
AP 8 Enschede, wall between two platforms 4.0 m Planar (75◦ beam width) 8.5 dBi 1.8 dB
AP 9 Enschede, platform wall 3.0 m Planar (75◦ beam width) 8.5 dBi -
AP 10 Enschede, on the roof station 6.0 m Planar (30◦ beam width) 15 dBi 3.6 dB
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within 10 meters from the actual position. The receive produces location data in World
Geodetic System 1984 (WGS84) coordinates [32].

WLAN Analyzer software For logging of received power levels in dBm we used
AirMagnet (see www.airmagnet.com). This is a commercial software product designed
to perform 802.11a/b/g WLAN analysis on the Windows XP / 2000 platform. AirMag-
net has a set of useful tools. The tools used in our measurements were the Survey Tool
(for logging of received power levels) and the GPS device Logging Tool (for logging of
the position data provided by GPS receiver).
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Appendix B

Ant-routing

To study network performance metrics like throughput, delay and routing protocol
overhead in wireless ad-hoc networks we have developed a software simulation tool1.
This tool has a graphical user interface that allows us to monitor changes in the node’s
routing table and data output variations when the network topology and the input
traffic rates change. The input parameters for the simulator include:

• number of nodes in the network,
• size of the service area,
• speed of the nodes,
• capacity and transmission delay of radio link between nodes,
• input traffic statistics per node, and
• buffer capacity per node.

The routing protocol used in our simulator is a modified version of AntNet [24].
AntNet is an adaptive approach to routing in packet-switched communication networks
that is inspired by the stigmergy model of communication observed in ant colonies.
In ant colonies, indirect communication among individuals takes place through mod-

ifications induced in their environment. Ants lay a trail of pheromones on their way
between a source (nest) and a destination (food), as depicted in Figure B.1. Each ant
choosing a branch increases the amount of pheromones on that branch, and in this way
it increases the probability of choosing the same branch for following ants. Small but
systematic differences are amplified to reach overall shortest path selection.

1Our ad-hoc network simulator was built upon a software implementation by the team of dr. drs.
L.J.M. Rothkrantz, at the Delft University of Technology, for dynamic vehicle routing in fixed networks.
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nest foodnest food

First ants Consecutive ants

nest foodnest food

First ants Consecutive ants

Figure B.1: The principle of ant-routing.

Figure B.2: Routing table and local traffic statistics in ant-routing..

In our simulator program each node produces on regular intervals “artificial ants”
that are sent to randomly chosen destinations. When a destination is reached, the ant
travels back to the source node following the same route in opposite direction. Ants
are handled with high priority at nodes and do not experience the same delay as data
packets. However, based on the queue size at each node, ants collect information about
the delay that a data packet would experience using the same path. This information is
used to update two data structures in each node: the routing table and the local traffic
statistics (see Figure B.2).
In a network of N nodes, the routing table at each node contains the probabilities

to reach any of the possible N − 1 destination through each of the k neighbors of that
node. Local traffic statistics at each node are the sample mean and the variance of
the trip time to all other destinations in the network; plus the best trip time to each
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Figure B.3: A set of simulation results found using ant-net simulator. The walk mode,
bike mode and car mode correspond to node speeds of, respectively, 5 km/h, 15 km/h
and 75 km/h.

destination. This information, which is collected and updated by ants, is used to refresh
routing tables continuously.
On the graphical user interface of the simulator one can follow changes in the network

topology and its direct effects on the throughput, delay and utilization factor in the
entire network. Therefore, this simulator helps to get a realistic feeling about the
behavior of ad-hoc networks under varying circumstances. Figure B.3 depicts some
simulation results that show changes in the throughput and the packet delay as function
of the speed of the network nodes. These results are found for a Poisson traffic arrival
rate with an average of 40 kbit/s data input per node.
From this figure we see that the throughput of systems reduces and the delay in-

creases when the topology of the network changes more rapidly. The reduction in data
throughput is mainly due to lost packets when the destination of some packets are not
reachable.
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Appendix C

Symbols and Acronyms

α signal amplitude
β constant equal to log(10)/10
γ exponent of power-low degree in scale free graphs
∆ distance between two adjacent nodes in honey-grid model
ζ(.) zeta function
η pathloss exponent
κ(G) vertex-connectivity of graph G
λ mean value of a node’s own traffic in packets per time-slot
Λ mean value of a node’s own traffic and relay traffic in packets per

time-slot
µ mean value
ν interfering node density
ξ σ/η in the lognormal radio model
ρ node density
σ standard deviation of radio signal power fluctuations
τ activity ratio
υ constant equal to 10/(

√
2 log 10)

κ(G) edge-connectivity of graph G

a reach of a node (number of rings falling inside a node’s coverage area)
in honey-grid model

aij elemnt (i, j) in matrix A
A adjacency matrix
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B radio channel bandwidth
c constant depending on the transmitted power, antenna gains and

wavelength
ci clustering coefficient of node i
C carrier power
C/I carrier to interference ratio
CG clustering coefficient of graph G
d degree
dmin minimum degree
E edge set in graph G
E[x] expected value of x
g processing gain
G notation for a graph
Gm,n lattice graph on a square grid of size m× n
Gp(N) random graph with link probability p and N nodes
Gp(rij)(N) geometric random graph with link probability p(rij) between nodes

and N nodes
h hopcount
L number of links (edges) in a graph
L link density
Llg link density with lognormal radio model
L lognormal random variable
log natural logarithm
log10 logarithm in base 10
log2 logarithm in base 2
N number of nodes (network size)
O(.) big-O asymptotic order notation
p link probability between two nodes in a graph
Pa area mean power
P packets size
P(r) received power at distance r from a transmitterbP(br) normalized power (normalized to P) at normalized distance br (nor-

malized to R)
p instantaneous power of a Rayleigh faded signal
p average power of a Rayleigh faded signal
P receiver power threshold for correct detection of signals
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Pr[x = y] probability of x = y
q transmission probability per node in a time-slot
r distance between two nodes
r data transmission speed
r0 reference distancebr normalized distance r/R
R coverage radius of a node with the pathloss radio model
Rin input bit rate per node
Rin,max maximum input bit rate possible per node
Rout output bit rate per node
Rout,max maximum output bit rate possible per node
Rout,max,hg maximum output bit rate possible per node in honey-grid model
S the set of the lengths of the shortest paths between all pairs of nodes

in a graph
S fraction of a graph occupied by the giant component
Slg S with lognormal radio model
td length of the data part for a packets transmitted in a time-slot
to length of the overhead part for a packets transmitted in a time-slot
tts length of a time-slot
V Vertex set in Graph G
V ar[x] variance of x
w weight factor between 0 and 1
W maximum capacity of a wireless channel
x a zero-mean normal distributed random variable
z mean degree

AODV Ad hoc On-Demand Distance Vector (routing protocol)
DBTMA Dual Busy Tone Multiple Access (MAC protocol)
CATS Collision Avoidance Transmission Scheduling (MAC protocol)
CDF Cumulative Distribution function (also called Distribution Function)
CIP Cellular IP
CDMA Code Division Multiple Access
CS Coding Scheme
CSMA Carrier Sense Multiple Access
CSMA/CA Carrier Sense Multiple Access with Collision Avoidance
CSMA/CD Carrier Sense Multiple Access with Collision Detection
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dBm dB referencing 1 milliwatt (mW)
dBW dB referencing 1 Watt
DSSS Direct Sequence Spread Spectrum
EMAC Energy-efficient MAC
FDD Frequency Division Duplex
FHSS Frequency Hopping Spread Spectrum
FW Fenton-Wilkinson lognormal power sum approximation method
GPRS General Packet Radio Service
GPS Global Positioning System
GSM Global System for Mobile Communications
Hawaii Handoff-aware Wireless Access Internet Infrastructure
IETF The Internet Engineering Task Force
IP Internet Protocol
ISM Industrial, Scientific and Medical (ISM) Frequency Bands
kbps kilo bits per second
LAN Local Area Network
LOS Line of Sight
MAC Medium Access Control
MANET Mobile Ad-hoc Networks (an IETF working group)
MARCH Multiple Access with ReduCed Handshake (MAC protocol)
ns-2 Network Simulator version 2
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
OLSR Optimized Link State Routing (routing protocol)
OSI Open System Interconnection
OSPF Open Shortest Path First
RBCS Receiver-Based Channel Selection
PDF Probability Density Function (also called Density Function)
RIP Routing Information Protocol
RMS Root-Mean-Square
S-MAC Sensor-MAC
S/A Selective Availability
SY Schwartz-Yeh lognormal power sum approximation method
TBRPF Topology Dissemination Based on Reverse-Path Forwarding (routing

protocol
TDMA Time Division Multiple Access
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THSS Time Hopped Spread Spectrum
UMTS Universal Mobile Telecommunications System
UWB Ultra-WideBand
W-CDMA Wideband Code Division Multiple Access
WLAN Wireless Local Area Network
WGS84 World Geodetic System 1984
WiFi the 802.11 family is referred to as WiFi
WiMAX the 802.16 family is referred to as WiMAX
WMAN Wireless Metropolitan Area Network
WPAN Wireless Personal Area Network
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Samenvatting (Summary in Dutch)

Titel: Fundamentele Eigenschappen van Draadloze Mobiele Ad-hoc Netwerken
(Fundamental Properties of Wireless Mobile Ad-hoc Networks)

Ad-hoc netwerken worden gevormd door mobiele draadloze apparaten die hier nodes
worden genoemd. Om aan de communicatieeisen van het moment te voldoen, kun-
nen deze nodes samen een (misschien kortstondig) communicatienetwerk vormen zon-
der gebruik te maken van enige vaste infrastructuur. Ad-hoc netwerken zijn gedecen-
traliseerde, zelforganiserende netwerken. Elke node in een ad-hoc netwerk is uitgerust
met een radiozender en een radio-ontvanger om met andere nodes draadloos te kun-
nen communiceren. Alle nodes kunnen, indien nodig, als relaisstations functioneren
voor gegevenspakketten die richting hun eindbestemming geleid moeten worden. Met
andere woorden, ad-hoc netwerken ondersteunen multi-hop transmissie van gegevens
tussen nodes buiten direct radiobereik van elkaar.
Ad-hoc netwerken hebben verschillende voordelen ten opzichte van de traditionele

communicatienetwerken. Zo zijn ad-hoc netwerken veelal economischer aangezien zij de
kosten van een vaste infrastructuurkosten elimineren, en robuuster vanwege hun niet-
hiërarchisch verdeelde controle- en beheersmechanismen. Ad-hoc netwerken verhogen de
mobiliteit en de flexibiliteit, aangezien zij in zeer korte tijd uitgerold en weer ontbonden
kunnen worden.
Ad-hoc netwerken vormen een vrij nieuw en zeer divers onderzoeksgebied. In deze

thesis hebben wij onze aandacht gevestigd op de fundamentele eigenschappen van ad-
hoc netwerken. Voor het naar behoren kunnen functioneren van een ad-hoc netwerk
is het in de eerste plaats vereist dat het "verbonden" is. Dat wil zeggen dat er een
verbindingsweg moet bestaan tussen alle of nagenoeg alle nodes van het netwerk. An-
ders bestaat het netwerk uit verspreide geïsoleerde eilanden en kan het geen applicaties
ondersteunen. Ten tweede, moet het ad-hoc netwerk genoeg capaciteit hebben om de
vereiste hoeveelheid gegevens tussen de nodes te kunnen transporteren. Met funda-
mentele eigenschappen bedoelen wij die eigenschappen van het netwerk die rechtstreeks
de verbondenheid of de capaciteit van het netwerk beïnvloeden.
In deze thesis hebben we een nieuw wiskundig model voor ad-hoc netwerken geïn-

troduceerd. Dit model is gebaseerd op realistische veronderstellingen ten opzichte van
de propagatie van radiosignalen. Door dit model te gebruiken hebben wij verbind-
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ingstheorieën voor draadloze ad-hoc netwerken verscherpt, en wezenlijk bijgedragen tot
een beter begrip van de graaddistributie en hopcount in ad-hoc netwerken. Een ander
nieuw aspect in deze thesis is een methode voor het berekenen van interferentiesta-
tistieken. Verder hebben wij aangetoond dat interferentie in ad-hoc netwerken naar
boven begrensd is. We hebben een formule afgeleid voor deze bovengrens. Onze meth-
odes van interferentieberekening hebben het onderzoek naar de capaciteit van ad-hoc
netwerken gefaciliteerd. Wij hebben capaciteitgrenzen voor ad-hoc netwerken gevonden
en aangetoond dat in multi-hop ad-hoc netwerken het verhogen van data transmissies-
nelheid gepaard moet gaan met een reductie in de netwerkgrootte. Zeer grote ad-hoc
netwerken, bestaande uit duizenden nodes verspreid over een groot geografisch gebied,
kunnen geen applicaties met hoge bitsnelheden ondersteunen.

Auteur: Ramin Hekmat
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