

Delft University of Technology

Delft Students on Software Architecture
DESOSA 2017
van Deursen, Arie; Zaidman, Andy; Aniche, Maurício; Mairet, Valentine; Oever, Sander van den

Publication date
2017
Document Version
Final published version
Citation (APA)
van Deursen, A., Zaidman, A., Aniche, M., Mairet, V., & Oever, S. V. D. (2017). Delft Students on Software
Architecture: DESOSA 2017. (Delft Students on Software Architecture: DESOSA; Vol. 3). Delft University of
Technology. https://www.gitbook.com/book/delftswa/desosa-2017/details

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://www.gitbook.com/book/delftswa/desosa-2017/details

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

1.19

1.20

1.21

1.22

1.23

Table	of	Contents
Introduction

Arduino

Gradle

JabRef

JUnit5

Jupyter	Notebook

Kafka

Kibana

Magento

Mapbox	GL	JS

Matplotlib

Mockito

Neovim

Netty

Node

Processing

Scikit-learn

Scrapy

Syncthing

Telegram	Web

VSCode

Yarn

Contributions	for	DESOSA	2017

1

Delft	Students	on	Software	Architecture:
DESOSA	2017
Arie	van	Deursen,	Andy	Zaidman,	Maurício	Aniche,	Valentine	Mairet	and	Sander	van
den	Oever.
Delft	University	of	Technology,	The	Netherlands,	April	17,	2017,	Version	1.0

We	are	proud	to	present	Delft	Students	on	Software	Architecture,	a	collection	of	21
architectural	descriptions	of	open	source	software	systems	written	by	students	from	Delft
University	of	Technology	during	a	master-level	course	taking	place	in	the	spring	of	2017.

In	this	course,	teams	of	approximately	4	students	could	adopt	a	project	of	choice	on	GitHub.
The	projects	selected	had	to	be	sufficiently	complex	and	actively	maintained	(one	or	more
pull	requests	merged	per	day).	The	systems	are	from	a	wide	range	of	domains,	including
testing	frameworks	(Mockito,	JUnit5),	editors	(Neovim,	VSCode)	and	visualisation	(Kibana).

During	an	8-week	period,	the	students	spent	one	third	of	their	time	on	this	course,	and
engaged	with	these	systems	in	order	to	understand	and	describe	their	software	architecture.

Inspired	by	Brown	and	Wilsons'	Architecture	of	Open	Source	Applications,	we	decided	to
organize	each	description	as	a	chapter,	resulting	in	the	present	online	book.

This	book	is	the	third	in	volume	the	DESOSA	series:	The	first	DESOSA	book	resulted	from
the	2015	edition	of	the	course,	and	contained	architectural	descriptions	of	ten	(different)
open	source	systems.	The	second	DESOSA	book	followed	a	year	later,	including	21
architectural	descriptions.

Recurring	Themes
The	chapters	share	several	common	themes,	which	are	based	on	smaller	assignments	the
students	conducted	as	part	of	the	course.	These	themes	cover	different	architectural
'theories'	as	available	on	the	web	or	in	textbooks.	The	course	used	Rozanski	and	Woods'
Software	Systems	Architecture,	and	therefore	several	of	their	architectural	viewpoints	and
perspectives	recur.

The	first	theme	is	outward	looking,	focusing	on	the	use	of	the	system.	Thus,	many	of	the
chapters	contain	an	explicit	stakeholder	analysis,	as	well	as	a	description	of	the	context	in
which	the	systems	operate.	These	were	based	on	available	online	documentation,	as	well	as
on	an	analysis	of	open	and	recently	closed	issues	for	these	systems.

Introduction

2

https://avandeursen.com
http://www.st.ewi.tudelft.nl/~zaidman/
http://www.mauricioaniche.com
https://github.com/valmai
https://github.com/sandervdo
http://www.studiegids.tudelft.nl/a101_displayCourse.do?course_id=38330
http://site.mockito.org/
http://junit.org/junit5/
https://neovim.io/
https://code.visualstudio.com/
https://www.elastic.co/products/kibana
http://aosabook.org/
https://delftswa.github.io/
https://delftswa.gitbooks.io/desosa2016/
http://www.viewpoints-and-perspectives.info/
http://www.viewpoints-and-perspectives.info/home/viewpoints/
http://www.viewpoints-and-perspectives.info/home/perspectives/
http://www.mindtools.com/pages/article/newPPM_07.htm
http://www.viewpoints-and-perspectives.info/home/viewpoints/context/

A	second	theme	involves	the	development	viewpoint,	covering	modules,	layers,
components,	and	their	inter-dependencies.	Furthermore,	it	addresses	integration	and	testing
processes	used	for	the	system	under	analysis.

A	third	recurring	theme	is	technical	debt.	Large	and	long	existing	projects	are	commonly
vulnerable	to	debt.	The	students	assessed	the	current	debt	in	the	systems	and	provided
proposals	on	resolving	this	debt	where	possible.

First-Hand	Experience
Last	but	not	least,	the	students	tried	to	make	themselves	useful	by	contributing	to	the	actual
projects.	Many	pull	requests	have	been	opened,	including	documentation	improvements
(Scrapy	#2636),	bug	fixes	(Jupyter	#2220),	style	/	tooling	fixes	(yarn	#2725)	or	even	feature
implementations	(JabRef	#2610,	JUnit5	#723).	With	these	contributions	the	students	had	the
ability	to	interact	with	the	community;	they	often	discussed	with	other	developers	and
architects	of	the	systems.	This	provided	them	insights	in	the	architectural	trade-offs	made	in
these	systems.

The	students	have	written	a	collaborative	chapter	on	some	of	the	contributions	made	during
the	course.	It	can	be	found	in	the	dedicated	contributions	chapter.

Feedback
While	we	worked	hard	on	the	chapters	to	the	best	of	our	abilities,	there	might	always	be
omissions	and	inaccuracies.	We	value	your	feedback	on	any	of	the	material	in	the	book.	For
your	feedback,	you	can:

Open	an	issue	on	our	GitHub	repository	for	this	book.
Offer	an	improvement	to	a	chapter	by	posting	a	pull	request	on	our	GitHub	repository.
Contact	@delftswa	on	Twitter.
Send	an	email	to	Arie.vanDeursen	at	tudelft.nl.

Acknowledgments
We	would	like	to	thank:

Our	guest	speakers:	Nicolas	Dintzner,	Maikel	Lobbezoo,	Ali	Niknam,	Alex	Nederlof,
Felienne	Hermans,	Marcel	Bakker	and	Marc	Philipp.
Valentine	Mairet	who	created	the	front	cover	of	this	book.
Michael	de	Jong	and	Alex	Nederlof	who	were	instrumental	in	the	earlier	editions	of	this

Introduction

3

http://www.viewpoints-and-perspectives.info/home/viewpoints/
https://github.com/scrapy/scrapy/pull/2636
https://github.com/jupyter/notebook/pull/2220
https://github.com/yarnpkg/yarn/pull/2725
https://github.com/JabRef/jabref/pull/2610
https://github.com/junit-team/junit5/pull/723
https://github.com/delftswa2017/desosa2017
https://github.com/delftswa2017/desosa2017
https://twitter.com/delftswa
http://swerl.tudelft.nl/bin/view/NicolasDintzner/WebHome
https://www.linkedin.com/in/maikellobbezoo/
https://www.linkedin.com/in/ali-niknam-50253913/
http://alex.nederlof.com/
https://github.com/felienne
http://www.marcphilipp.de/
https://github.com/valmai

course.
All	open	source	developers	who	helpfully	responded	to	the	students'	questions	and
contributions.
The	excellent	gitbook	toolset	and	gitbook	hosting	service	making	it	easy	to	publish	a
collaborative	book	like	this.

Further	Reading
1.	 Arie	van	Deursen,	Maurício	Aniche,	Joop	Aué,	Rogier	Slag,	Michael	de	Jong,	Alex

Nederlof,	Eric	Bouwers.	A	Collaborative	Approach	to	Teach	Software	Architecture.	48th
ACM	Technical	Symposium	on	Computer	Science	Education	(SIGCSE),	2017.

2.	 Arie	van	Deursen,	Alex	Nederlof,	and	Eric	Bouwers.	Teaching	Software	Architecture:
with	GitHub!	avandeursen.com,	December	2013.

3.	 Arie	van	Deursen,	Maurício	Aniche,	Joop	Aué	(editors).	Delft	Students	on	Software
Architecture:	DESOSA	2016,	2016.

4.	 Arie	van	Deursen	and	Rogier	Slag	(editors).	Delft	Students	on	Software	Architecture:
DESOSA	2015.	delftswa.github.io,	2015.

5.	 Amy	Brown	and	Greg	Wilson	(editors).	The	Architecture	of	Open	Source	Applications.
Volumes	1-2,	2012.

6.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with
Stakeholders	Using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012,	2nd	edition.

Copyright	and	License
The	copyright	of	the	chapters	is	with	the	authors	of	the	chapters.	All	chapters	are	licensed
under	the	Creative	Commons	Attribution	4.0	International	License.	Reuse	of	the	material	is
permitted,	provided	adequate	attribution	(such	as	a	link	to	the	corresponding	chapter	on	the
DESOSA	book	site)	is	included.

Cover	image	credits:	TU	Delft	library,	TheSpeedX	at	Wikimedia;	Owl	on	Emojipedia	Sample
Image	Collection	at	Emojipedia;	Feathers	by	Franco	Averta	at	Flaticon.

Introduction

4

https://github.com/GitbookIO/gitbook-cli
https://www.gitbook.com/
https://pure.tudelft.nl/portal/en/publications/a-collaborative-approach-to-teaching-software-architecture(0c7f2aeb-f2d6-4c56-9ab7-5f47f73d133f).html
http://avandeursen.com/2013/12/30/teaching-software-architecture-with-github/
https://www.gitbook.com/book/delftswa/desosa2016/details
https://delftswa.github.io/
http://aosabook.org/
http://www.viewpoints-and-perspectives.info/
http://creativecommons.org/licenses/by/4.0/
https://www.gitbook.com/book/delftswa/desosa2016/details
https://commons.wikimedia.org/wiki/File:Library_TUDelft.jpg
http://emojipedia.org/emojipedia/sample-images
http://emojipedia.org/emojipedia/sample-images/owl
http://www.flaticon.com/authors/franco-averta
http://flaticon.com
http://creativecommons.org/licenses/by/4.0/

Arduino	-	The	Open-Source	IDE
By	Jeroen	Overman,	Lourens	Pool,	Laura	Kreuk	and	Thijmen	Ketel

Delft	University	of	Technology

Abstract
Arduino	is	a	fast	and	easy	prototyping	platform	based	around	a	small	microcontroller	and
designed	for	students,	artists,	hobbyists	and	developers.	The	system	was	created	by	four
engineers	to	make	programming	and	prototyping	easier	and	cheaper.	While	the
development	is	open-source,	the	amount	of	documentation	about	contributing	is	limited.	This
results	in	a	project	where	programming	is	not	done	through	conventions	or	guidelines	but
with	a	strong	focus	on	getting	things	to	work.	In	this	chapter	Arduino	is	analysed	through	the
people	that	are	involved,	the	development	process	and	the	architectural	design	of	the
project.	Furthermore,	issues	that	slow	down	or	stop	the	development	process	are	discussed.

Introduction
When	we	look	at	the	current	state	of	technology	it	is	clear	that	it	is	an	amazing	time	to	be
alive.	The	speed	of	technological	advancements	has	never	been	so	high	and	electronics	and
gadgets	can	be	found	everywhere.	What	starts	out	as	an	idea	can	be	made	real	in	no	time
through	the	help	of	crowdfunding	and	fast	prototyping.	A	big	role	in	that	last	part	is	played	by
the	subject	of	this	chapter:	Arduino.

Arduino

5

https://github.com/jeroenoverman
https://github.com/LourensPool
https://github.com/lkreuk
https://github.com/thijmenketel

Arduino	is	an	Italian	company	specialized	in	making	prototyping	and	tinkering	with
electronics	accessible	for	the	masses.	Started	by	four	engineers	with	the	goal	to	make
programming	and	prototyping	easy	and,	most	important,	affordable.	The	system	is	originally
based	around	Atmels	8-bit	microcontroller	platform	but	quickly	evolved	to	be	a	staple	in	the
projects	of	students,	hobbyist,	artists	and	even	professionals.	Arduino	now	has	over	700	000
official	boards	in	the	hands	of	its	users	and	almost	the	same	amount	of	clones	(copies	of
official	boards)	[1].

While	the	hardware	is	created	by	Arduino	itself,	the	IDE	(Integrated	Development
Environment)	written	in	Java	is	an	open-source	effort.	This	easy	to	use	app	is	created,
added	to	and	improved	by	a	community	of	enthusiastic	developers	and	users.	This	makes
the	Arduino	project	accessible	and	fuels	innovation	through	a	large	pool	of	ideas	from	which
the	IDE	can	be	improved.	Prototypes,	which	are	programmed	in	a	C/C++	dialect,	can	realise
innovating	ideas	like	Moistly	by	easy	integration	through	Arduino.

In	this	chapter	the	open-source	project	of	the	Arduino	IDE	is	reviewed	by	four	TU	Delft
students	from	the	DESOSA	(Delft	Students	on	Software	Architecture).	The	analysis	is	done
through	different	aspects	of	the	Arduino	system,	mostly	based	on	the	code,	documentation
and	activity	on	the	open-source	Arduino	repository	on	GitHub.	Stakeholders,	Architecture
overview,	the	existence	of	Technical	Debt,	a	development-view,	and	of	course	an
explanation	of	the	Arduino	system	and	its	evolution	are	some	of	the	subjects	analysed	in	this
chapter.

Stakeholders
Many	stakeholders	are	involved	with	Arduino,	these	are	explained	according	to	the	most
important	stakeholders	identified	by	Rozanski	and	Woods	[2].	Arduino	is	a	company	that
specializes	in	hardware	boards	which	are	plug	and	play	programmable	with	their	own	IDE
(Integrated	Development	Environment).	This	is	reflected	by	structure	of	the	company,	which
is	divided	into	five	different	departments:

Hardware
Software
Interaction	Design
Community	Managers
General	Management

Table	1:	Summary	most	important	stakeholders.

Arduino

6

https://hwstartup.wordpress.com/2013/09/27/moistly-the-journey-from-arduino-idea-to-product/

Stakeholders Description

Acquirers
The	founders	of	Arduino	are	the	ones	that	authorize	funding	for	the
products	and	system	developement.	The	funding	is	generated	by
crowdfunding	[11].

Assessors Rules	and	regulations	that	apply	to	the	Arduino	product	portfolio	are
handled	by	the	General	Management	team.

Communicators The	Community	Management	team	explains	the	system	via
documentation	and	training	materials.

Users The	Arduino	Suite	is	used	by	a	lot	of	students,	artists,	hobbyist	as
well	as	by	professionals	who	want	a	prototype	working	in	no	time.

Testers

All	bugs	in	the	software	can	be	posted	on	the	Arduino	forum,
emailed	or	issued	on	Github.	Bugs	and	problems	are	picked	up	by
the	software	and	hardware	staff	employees	of	Arduino	or	the
contributors	on	Github.

Developers The	people	working	on	the	code	for	the	end	product	are	both	the
hard-	and	software	team.

Support	staff
The	website	forum.arduino.cc	plays	a	central	role	in	staying	in	tough
with	users	that	report	bugs	as	well	as	happily	explaining	nice
projects	that	can	be	built	with	the	products.

Suppliers
Intel	and	Atmel	are	the	main	suppliers	for	the	hardware.
Furthermore,	multiple	tools	and	packages	are	used	for	both	the
software	and	the	hardware.

Maintainers
Software	solutions	are	assessed	by	the	Software	development	team
in	order	to	maintain	the	programming	standards	and	architectural
choices.

The	four	founders	of	Arduino	are	actively	pushing	and	developing	the	long	term	strategy	of
the	company	[4].

Table	2:	Founders	of	Arduino	and	their	role	within	the	company.

Founders Role

Massimo
Banzi

Is	the	CEO	and	has	the	most	broad	role.	He	gets	advice	from	the	three
other	founders.

David
Cuartielles

Co-CEO	and	researcher	on	education	projects,	also	maintains
relationships	with	education	policy	makers	in	the	European	Union	[11].
Educational	use	is	a	large	share	of	the	sales.

Tom	Igoe Responsible	for	user	experience	design	in	both	software	and	hardware.

David
Cuartielles Focusses	on	the	development	of	the	Arduino	software,	mainly	the	IDE.

Arduino

7

In	most	of	the	departments	there	is	one	person	responsible	for	the	communication	to	the
stakeholders.	One	of	the	founders,	Tom	Igoe,	advises	on	issues	about	the	documentation,
whereas	Mikeal	does	this	in	the	design	team.	Finally,	the	most	important	communicator	is
the	Community	Management	team.	The	Community	Management	teaches	Arduino	and
writes	documentation	and	tutorials.	They	also	speak	at	conferences	and	exhibitions.

Arduino	has	a	team	of	engineers	dedicated	to	both	hard-	and	software.	This	chapter	focuses
on	the	software	side	of	the	development.	The	team	is	responsible	for	the	end	product	and	it
works	closely	with	the	open	source	community	on	GitHub	to	constantly	improve	the	product.

Anyone	can	join	in	designing	the	software	and	is	encouraged	to	use	the	mailing	list	to	get	in
touch	with	the	software	development	team.	In	table	3	a	small	ranking	of	the	most	active
contributors	is	shown	in	terms	of	number	of	commits.	It	does	not	reflect	the	most	recently
active	contributors.	It	can	be	seen	that	most	non-employees	stay	active	for	three	years	or	so
[5].

Table	3:	Most	active	contributors	in	trems	of	number	of	commits.

Contributor Roles Commits LOC++ LOC-- Active
during

Christian
Maglie

Software
Engineer	Arduino 1.220 1.449.973 1.334.641 2011	-

present

David	A.
Mellis Founder 1.034 1.100.356 1.557.719 2005	-

2015

tigoe Contributor 330 1.024.956 25.437 2009	-
2013

Martino
Facchin

Firmware
Engineer	Arduino 226 10.570 3.829.094 2015	-

present

Matthijs
Kooijman Contributor 225 6.575 5.791 2013	-

2016

zeveland Contributor 187 37.586 32.097 2011	-
2013

Thibaut
Viard Contributor 115 4.413.074 1.328.159 2011	-

2013

On	the	software	side	Arduino	has	the	following	suppliers.	It	uses	the	following	packages:
GNU	avr-gcc	toolchain,	GCC	ARM	Embedded	toolchain,	avr-libc,	avrdude,	bossac,
openOCD	and	code	from	Processing	and	Wiring.	Arduino	targets	embedded	applications,	so
the	development	of	the	Arduino	IDE	is	also	aided	by	the	hardware	design	tools.

The	management	division	takes	responsibility	for	the	strategy	of	the	company.	It	works
closely	with	all	cores	of	the	company:	Hardware,	Software,	Interaction	designers	and
Community	Managers	to	create	a	clear	and	complete	overview	of	the	brand	Arduino.

Arduino

8

Figure	1:	Power	Interest	Graph	of	the	Arduino	IDE.

Context	view
The	context	view	shows	the	different	relations,	dependencies	and	interactions	Arduino	has
with	its	environment.	Important	for	the	context	view	are	the	people,	systems	and	external
entities	with	which	the	system	interacts	[2].	The	context	view	can	be	seen	in	figure	2	and	the
relations	will	be	explained	shortly.

Arduino

9

Figure	2:	Arduino	context	model.

Arduino

10

In	order	to	understand	the	context	model	of	Arduino,	the	role	of	the	external	entities	with
respect	to	Arduino	is	explained.

IDE

The	core	of	Arduino	is	written	in	Java.	The	users	that	work	with	the	Arduino	software	can
write	programs,	called	sketches,	to	upload	to	their	Arduino	board	in	a	form	of	C	or	C++.	The
software	of	Arduino	can	be	installed	on	multiple	platforms:	Linux,	Mac	OS	and	Windows.
The	users	of	Arduino	are	mostly	artists,	designers	or	hobbyists.

Communication	Tools

Arduino	uses	Github	and	Git	for	version	control	to	help	developers	collaborate	and	track
issues	related	to	the	software.	Contributions	in	the	repository	come	from	the	Arduino
software	development	team,	as	well	as	from	the	open-source	community.	In	order	to	stay	in
contact	with	developers	and	users	the	following	communication	tools	are	used:	the	Arduino
website,	the	Arduino	forum	and	Github.

Arduino's	community	managers	also	need	to	maintain	a	good	relationship	with	magazines
like	Make	who	write	about	Arduinos	products	and	competitors.

Development	Tools

When	you	are	developing	software	for	Arduino	you	can	make	your	life	easier	by	using	at
least	the	following	tools:	Cygwin,	Java	JDK	and	Homebrew	[7].

Third	party	software	The	IDE	can	be	connected	to	third	party	software:	Flash,	VVVV,
Processing	or	Max/MSP.	Finally,	Arduino	has	some	dependencies	during	run-time	[8].	These
can	be	found	in	the	top	right	corner	of	figure	2.

Hardware	Boards

When	using	the	Arduino	IDE	you	also	need	some	hardware	to	start	a	project,	for	this	an
Arduino	controller,	breadboard,	wiring	and	sensors	are	needed.	Arduino	has	two	main
suppliers	of	the	hardware:	Intel	and	Atmel.

Some	of	the	competitors	of	Arduino	are	Beaglebone	and	the	Raspberry	Pi.	The	Pi	and
Beaglebone	are	equipped	with	a	faster	processor	and	can	be	connected	to	the	internet	and
HDMI	displays	out	of	the	box.	While	the	Arduino	boards	are	using	a	simple	processor	and
need	another	shield	(hardware	board)	in	order	to	be	connected	to	the	internet	or	a	monitor.

Although	Arduino	lacks	computational	power	compared	to	the	Pi	and	the	Beaglebone,	it
compensates	this	with	its	focus	on	simplicity	and	ease	of	use.	The	Arduino	boards	are	also
more	suitable	for	hardware	related	projects.	The	smooth	learning	curve,	extensive	tutorials
and	lively	community	allows	anyone	to	start	programming.

Arduino

11

https://www.arduino.cc/
https://forum.arduino.cc
http://makezine.com/

Development	view
This	section	gives	an	overview	of	the	structure	of	the	Arduino	project	from	the	perspective	of
the	developers.	Concerns	like	module	organisation,	standardization	of	design	and	codeline
organisation	are	addressed.	Due	to	the	lack	of	technical	documentation	for	the	structure	of
the	project,	some	parts	cannot	be	described	into	depth.

Module	organization

Modules	are	used	to	create	an	overview	in	the	thousands	of	lines	of	code	that	the	Arduino
IDE	has.	These	modules	allow	for	a	clear	overview	of	a	complex	piece	of	software.

The	Arduino	repository	does	not	have	a	specific	naming	convention	that	gives	a	clear
overview	of	the	underlying	structure.	Certain	folder	names	(e.g.	edazdarevic)	make	it	unclear
what	it	contains.	In	addition,	not	every	folder	contains	an	explanation	file	describing	the	role
or	function	of	the	module.

The	core	modules	are	the	GUI,	IDE	and	hardware.	In	addition	to	these	main	components	of
the	system	there	is	also	a	module	for	building	the	software	and	a	module	that	stores	the
libraries.

Table	4:	Core	modules	and	their	role.

Module Role

	app	 This	folder	contains	the	Graphical	User-Interface	(GUI)
	arduino-

core	
This	folder	contains	the	main	parts	for	the	IDE

	build	 This	directory	is	meant	for	building	the	Arduino	IDE	to	test	added	code

	hardware	
This	folder	contains	everything	for	the	hardware	that	is	supported	by
Arduino

	libraries	 The	standard	libraries	that	are	used	by	Arduino	are	stored	here

Module	structure	model

The	module	structure	model	gives	an	overview	of	the	systems	source	files.	It	uses	modules
into	which	source	files	are	collected	and	lists	the	dependencies	between	the	modules.

Arduino

12

Figure	3:	Module	Structure	Model.

As	can	be	seen	in	the	module	structure	model	(figure	3)	the	Arduino	system	consists	of
three	layers:	the	presentation	layer,	the	application	layer	and	the	data	access	layer.	The
presentation	layer	consists	of	the	classes	that	are	used	to	output	information	to	the	user	via
the	GUI.	The	user	interacts	with	the	application	layer.	Finally,	the	data	access	layer	is
responsible	for	accessing	the	data	that	is	used	in	the	system.

Standardization	of	design

Because	Arduino	is	developed	by	a	team	of	software	developers,	it	is	necessary	to
standardize	some	key	aspects	of	the	design.	Furthermore,	it	is	important	for	the
development	team	to	provide	a	well-designed,	maintainable,	and	stable	platform	for	the
future.	To	achieve	these	goals,	the	following	design	standards	are	used:

Emphasizing	API	design.
Offering	a	small	but	easily-extendable	core.
Sacrificing	(when	necessary)	elegance	of	implementation,	in	favour	of	ease-of-use.
Emphasizing	real	use	cases	over	theoretical	possibilities.
Focusing	on	the	official	Arduino	hardware	(Make	sure	official	Arduino	hardware	works
neatless	instead	of	making	a	feature	of	a	clone	board	work).
Recognizing	that	documentation	is	as	important	as	code.
Trying	to	get	things	right	the	first	time	(even	if	this	takes	longer).

Arduino

13

Main	design	decisions	concerning	Arduino:

Uses	Apache	Ant	as	a	building	tool.
Code	is	written	in	Java.
Uses	Github	as	main	code	repository	and	for	version	control.
Uses	a	lot	of	code	from	Processing.	This	is	an	IDE	for	so	called	sketchbooks.	This	IDE
enables	users	to	learn	programming	in	a	visual	context.	.
Based	on	same	set	of	abstractions	as	Wiring,	to	make	programming	easier.	Uses	Wiring
as	an	example	for	attaching	microcontroller	boards	to	software.
Uses	JUnit	as	a	testing	framework.

As	mentioned	before	Arduino	chooses	ease-of-use	over	elegance	of	implementation.	When
inspecting	the	code	of	the	Arduino	IDE	very	few	design	patterns	can	be	found.

Standardization	of	testing

The	standardization	of	testing	helps	to	speed	up	the	testing	process	and	ensures	a
consistent	result	for	each	newly	released	product.	Arduino	uses	the	following	standardization
of	testing:

When	a	developer	wants	to	contribute	to	Arduino,	a	pull-request	should	be	made	on	GitHub.
The	Arduino	bot	makes	an	automated	build	of	the	IDE	based	on	these	pull-requests.	The
Arduino	bot	replies	in	the	pull-request	if	the	build	is	successful	and	links	to	files	that	should
be	tested.	After	this,	the	developers	of	Arduino	will	comment	on	the	pull-request	and	discuss
if	there	should	be	more	changes.

The	tests	in	the	Arduino	software	are	created	using	the	Arduino	test-suite	library,	they	are
developed	as	standard	sketches.	There	are	two	kind	of	tests	that	are	constructed	for	the
software.	Firstly,	tests	that	are	targeting	specific	issues,	these	should	be	made	when	a
contributor	fixes	a	specific	Github	issue	in	order	to	test	the	solution's	correctness.	Once	the
issue	is	integrated	in	the	project,	the	test	targeting	the	issue	will	be	added	to	the	automated
test	runs.

The	other	kind	of	tests	that	are	constructed	are	the	test-suite	coverage	tests.	These	tests	are
designed	to	test	the	functions	in	the	code	and	its	libraries,	they	run	automatically	and	are
version	controlled.	Furthermore	there	is	a	list	of	tests,	made	by	identifying	the	features	and
issues	of	a	new	release.	This	list	of	tests	should	be	passed	before	a	new	release	can	be
made.

Despite	the	tests	that	are	written,	bugs	exists	in	the	Arduino	project.	A	lot	of	bugs	are	found
by	users	of	the	IDE	and	either	communicated	through	the	Arduino	Forum	or	by	means	of	a
GitHub	issue.

Arduino

14

https://github.com/processing/processing
https://github.com/WiringProject/Wiring
http://junit.org/junit4/
https://github.com/ArduinoBot
https://forum.arduino.cc

Arduino	does	not	seem	to	advocate	the	use	of	tools	that	test	the	code.	For	example,	to	look
for	duplicate	code,	naming	conventions,	unused	code,	etc.	Good	analysis	of	the	code	can
benefit	in	finding	problems	and	bugs	early	on	and	should	be	advocated	as	much	as	possible.

Instrumentation

Inserting	special	code	in	order	to	log	information,	record	system	states	or	resource	use
about	step	executing	is	called	instrumentation.	This	instrumentation	is	used	to	debug
problems	in	the	IDE	[2].	Arduino	uses	the	Java	logger	class	to	log	this	information.

In	the	GUI	module,	a	class	for	a	console	logger	and	a	class	for	a	log	formatter	is	found.
Thus,	the	logging	is	done	in	two	ways,	directly	to	the	console	and	saved	in	a	file	which	can
be	checked	when	necessary.

Codeline	organization

The	codeline	organization	is	the	way	that	the	source	code	is	stored	in	a	directory	structure,
managed	via	configuration	management	and	how	it	is	built	and	tested	regularly	[2].	In	an
open	source	project,	it	is	important	to	organize	the	source	code	in	a	way	that	everyone	can
understand	it	and	can	add	to	it.	An	organized	repository	attracts	enthusiastic	programmers
to	start	working	on	the	code.

The	source	code	of	the	Arduino	IDE	is	spread	over	different	directories	also	different	Eclipse
projects	are	present	in	the	repository.	This	makes	it	hard	for	new	developers	to	get	familiar
with	the	project.	It	is	however	easy	to	make	your	own	build	of	the	Arduino	project.	The
Apache	ANT	automated	software	build	tool	is	used	to	build	the	project.	This	works	on	all
platforms	where	Arduino	is	supported.

Apache	Ant	is	also	configured	to	run	the	JUnit	tests,	which	makes	that	easy	to	do	because
there	is	no	needs	to	resolve	all	the	external	dependencies.	The	downside	of	using	Apache
Ant	to	build	and	test	the	project	is	that	it	is	hard	to	debug	the	project	using	your	own	IDE.	It	is
only	possible	to	run	the	program	en	read	the	debug	information.	Step-by-step	debugging	is
not	easily	achieved.

In	figure	4	below,	a	simple	overview	of	the	repository	is	shown.	The	directories	at	the
repository	are	in	grey	and	the	contents	of	the	root	folders	are	listed	in	green	to	the	left:

Arduino

15

Figure	4:	One	level	unfolding	of	Arduino	repository

Technical	debt
Suppose	there	is	a	piece	of	functionality	that	needs	to	be	added	to	the	system.	There	are
two	ways	of	doing	this,	the	quick	"hacky"	way	and	the	slow	and	tedious	but	more	clear	and
secure	way.	A	lot	of	the	time	when	a	feature,	fix	or	improvement	is	added	to	a	project,	this	is
done	in	the	first	way.	The	problem	with	this	way	of	coding	is	that	code	might	be	unclear	or
too	complex	and	can	leave	a	project	hard	to	contribute	to.	So	in	the	future	when	a	new
feature	or	improvement	needs	to	be	added	or	a	bug	needs	fixing,	the	code	might	require	a
lot	of	adjustments	to	become	functional.	This	problem,	regarding	nasty	code,	is	called
technical	debt.	This	technical	debt	needs	to	be	managed	and	kept	at	a	reasonable	level	to
make	sure	that	the	developers	can	keep	on	contributing	to	the	project.	Furthermore,

Arduino

16

avoiding	technical	debt	can	keep	the	cost	for	maintenance	lower,	increase	productivity	and
prevent	unwanted	surprises.	In	this	section	the	technical	debt	that	exists	in	the	Arduino
project	is	analysed.

SonarQube	analysis

One	of	the	ways	to	find	technical	debt	in	a	system	is	to	use	specialised	software.	The
software	that	is	used	to	analyse	the	debt	in	Arduino	is	called	SonarQube.	This	tool	is
designed	to	analyse	code	for	bugs,	vulnerabilities	and	report	on	technical	debt	based	on
code	smells	(ugly	code).

Overview	&	Assessment

When	the	tool	is	executed	on	the	Arduino	project,	it	produces	an	overview	of	the	issues	it
found.	This	overview	also	contains	a	metric	that	judges	the	project	on	its	possibility	for
successfull	release:	quality-gate.	The	overview	can	be	seen	in	figure	5.

Figure	5:	Overview	produced	by	SonarQube	of	the	Arduino	project.

SonarQube	reported	a	large	amount	of	bugs,	vulnerabilities	and	code	smells	during	its
analysis.	The	issues	ranged	from	severe	(Blocker)	to	harmless	(Info)	and	affected	almost
every	part	of	the	system.

Table	5:	Issues	reported	by	SonarQube	and	their	assessment.

Arduino

17

Issue Assessment

Bugs

The	684	bugs	that	were	found	by	SonarQube	were	mostly	harmless,
they	might	block	the	productivity	of	the	developer	but	not	the	behavior
of	the	system.	About	50	were	actually	more	severe	and	could	cause
problems	like	deadlocks	or	resource	leaks.

Vulnerabilities

Similar	to	the	bugs,	most	of	the	158	vulnerabilities	flagged	by
SonarQube	were	harmless	and	could	only	impair	the	productivity	of
the	developer.	Four	were	wrongly	labelled	as	hardcoded	password
which	were	not	accurate.

Code	smells

The	number	of	code	smells	that	were	found	was	pretty	high	(2228).
This	meant	that	the	code	was	confusing,	complicated	and	generally
ugly.	No	coding	guidelines	or	conventions	were	followed	and	large
parts	of	the	code	is	not	documented.

The	total	calculated	time	to	resolve	all	the	issues	found	by	SonarQube	would	be	65	days
(this	includes	42	days	for	the	technical	debt	and	another	23	days	for	the	bugs	and
vulnerabilities).	It	is,	however,	not	necessary	to	resolve	all	bugs,	vulnerabilities	and	code
smells	to	reduce	the	technical	debt	to	a	lower	level.

The	analysis	already	gives	a	very	big	hint	about	the	state	of	the	project	and	the	way	Arduino
is	developed.	No	guidelines	or	conventions	are	followed	and	large	parts	of	the	code	is	not
documented.

Manual	analysis

The	next	step	is	to	look	at	the	technical	debt	of	the	project	manually.	Multiple	sources	can
indicate	technical	debt.

Table	6:	Summary	of	issues	found	by	manual	identification	of	technical	debt.

Indicator Assessment

Documentation

Documentation	that	is	provided	with	the	Arduino	software	on	the
repository	is	very	limited.	Most	documentation	on	the	repositories	wiki
are	about	the	end	product	(programming	the	hardware).	No
contribution-guide	or	coding	guidelines	are	available.

Defects

When	looking	at	the	issues	that	are	labeled		bug		on	the	repository
and	the	age	of	the	issue,	it	indicates	that	technical	debt	exists.	Some
of	the	bugs	are	dated	back	to	2012	which	is	very	old	and	gives	an
indication	of	technical	debt.

Refactoring

Multiple	commits	can	be	found	that	refactor	the	code	and	even	some
issues	can	be	found	that	request	refactoring	of	the	code.	Most	of	the
issues	are	fixed	or	closed,	but	it	is	hard	draw	a	conclusion	from	this
fact	as	the	number	of	commits	containing	a	refactor	are	49	of	the
more	than	6000.

Arduino

18

When	looking	at	the	indicators	it	does	hint	at	technical	debt.	Especially	documentation	is	an
issue	with	Arduino.	No	clear	guidelines	and	rules	exist	for	contributing.

Testing	debt

Testing	debt	is	concered	with	the	testing	of	altered	and	existing	code.	To	ensure	that
functions	will	keep	on	working	with	new	changes,	the	code	needs	to	be	tested	well	enough.

Test	coverage

The	test	coverage	of	the	Arduino	project	was	measured	by	using	the	EclEmma	plugin	for
Eclipse.	The	results	of	this	coverage	report	can	be	seen	in	figure	6.	The	processing-head	is
the	project	that	contains	the	graphical	user	interface	which	is	based	upon	the	Processing-
project.	Arduino-core	is	the	core	of	the	Arduino	IDE.

Figure	6:	Test	coverage	report	of	the	Arduino	project.

As	can	be	seen	the	test	coverage	of	both	Eclipse	projects	are	not	that	high.	The	total
covered	instructions	are	10%	for	the	processing-head	and	24%	for	the	arduino-core.	The
total	coverage	of	the	branches	is	2%	for	the	processing-head	and	19%	for	the	arduino-core.
These	results	are	very	low	as	most	project	consider	70%-80%	more	reasonable.	Most	of	the
errors	can	be	attributed	to	the	documentation	debt.	Trying	to	build	the	Arduino	project
requires	a	lot	of	googling	due	to	the	lack	of	a	clear	guide.

A	total	of	57	test	are	run	on	the	Arduino	project,	which	is	not	a	high	number.	This	indicates
that	the	Arduino	project	probably	has	testing	debt.	However,	this	also	relates	to	the	problem
of	documentation	debt.

TODO's	and	FIXME's

To	get	an	indication	of	the	policy	about	technical	debt	at	Arduino,	multiple	sources	are
investigated.	If	developers	discuss	technical	debt	on	the	Github	repository	(in	issues	or	pull-
requests)	this	is	more	general,	other	stakeholders	than	the	developers	can	contribute	in	the
discussion.	Whereas	if	there	are	TODO's	(marker	for	later	work)	and	FIXME's	(marker	for
broken	code)	in	the	source	code	this	is	a	discussion	between	the	developers	of	the	software.

Arduino

19

https://github.com/processing/processing

The	amount	of	"TODO"	markers	that	pop	up	in	the	code	for	Arduino	is	94,	while	the	amount
of	"FIXME"	markers	is	a	lot	lower	with	18\.	A	third	marker	(XXX)	indicates	that	some	part	of
the	code	needs	attention	but	does	work,	which	there	are	22	of.	The	number	of	FIXME's
compared	to	the	amount	of	TODO's	does	give	a	positive	indication	of	how	broken	code	is
handled	at	Arduino.	Most	of	the	FIXME's	are,	however,	about	adding	documentation,	which
further	indicates	documentation	debt.

Debt	evolution

To	get	a	better	perspective	about	the	evolution	of	the	technical	debt	in	the	project	over	time,
we	looked	at	the	different	releases	of	Arduino.	The	project	has	a	total	of	73	releases	since
2005	(version	0002),	with	a	release	every	few	months.	The	releases	do	not	contain	any
changelogs	until	the	release	of	version	1.0.5	in	2013\.	Arduino	does	release	versions	for
beta	testing	by	the	community	to	fix	bugs	early	on.	Checking	the	issue	list	of	Arduino	there
are	4252	issues	closed	and	719	still	open.	43	open	issues	are	tagged	with	the	label	bug	and
the	largest	part	of	those	are	open	more	than	a	year	already.	These	issues	definitely
contribute	to	technical	debt	in	the	future.

To	visualise	the	debt	evolution	over	time	SonarQube	is	executed	over	six	Arduino	verions:
1.0	(first	release),	1.5	(first	large	BETA),	1.6	(large	overhaul),	1.8.0,	1.8.1	(latest	release)	and
1.8.2	(current	development)	[3].	Two	parts	are	visualised:	Bugs	&	Vulnerabilities	(figure	7)
and	Technical	debt	in	days	(figure	8).	Furthermore,	the	amount	of	code	and	duplicated	code
is	visualised	to	give	an	indication	of	the	size	of	the	project	(figure	9).

Arduino

20

Figure	7:	Amount	of	Bugs	and	Vulnerabilities	over	the	different	releases	found	by
SonarQube.

Figure	8:	Amount	of	Technical	debt	in	days	over	the	different	releases	found	by	SonarQube.

Figure	9:	Lines	of	code	and	duplicate	code	over	the	different	verions	of	Arduino.

Arduino

21

The	increase	of	debt	after	the	first	release	can	be	seen,	after	which	it	drops	off	sharply	with
release	1.6\.	The	same	can	be	said	about	the	bugs	and	vulnerabilities,	this	is	also	attributed
to	the	number	of	lines	of	code.	The	sharp	decrease	might	be	a	refactoring	of	the	code	and
project	in	a	whole.	The	bugs,	vulnerabilities	and	technical-debt	is	generally	stable	(but	still
quite	substantial)	over	the	last	few	releases.	The	size	of	the	project	is	increasing	again	in	the
latest	(unreleased)	version.

It	can	be	concluded	that	technical	debt	in	Arduino	has	been	present	from	the	start	and	has
evolved	over	time	along	with	the	project.	The	biggest	issues	concerning	technical	debt	are
the	missing	of	documentation,	the	tests	that	are	not	working	because	the	building	of	the
project	is	not	documented	and	multiple	bugs	that	are	old.	There	is	no	indication	the
developers	actively	think	about	technical	debt,	except	for	commenting	on	pull-requests.	As
long	as	there	is	almost	no	documentation	the	technical	debt	can	only	grow.

Deployment	view
The	deployment	view	defines	the	aspects	of	the	system	that	are	important	after	the	system
has	been	built.	At	this	moment	it	needs	to	pass	validation	tests	in	order	to	transition	it	to	live
operation	[2].	For	the	Arduino	software	this	contains	the	runtime	dependencies	the	system
has	and	the	hardware	that	is	needed	for	the	system	to	run.

Third-party	dependencies:	During	runtime	Arduino	has	several	third-party	software
dependencies.	However,	the	user	does	not	see	these	dependencies	and	does	not	have	to
download	anything	else	then	the	Arduino	software.	The	dependencies	are	all	built	into	the
Arduino	software.

Table	7:	Third	party	dependencies	during	runtime

Arduino

22

Third	party
dependencies Role

C	and	C++ Language	used	for	the	programs	that	can	be	written.

GNU	toolchain Compiling	and	linking	with	a	program	stub	the	main()	to	an
executable	cyclic	executive	program.

avrdude Converts	the	executable	code	into	a	text	file	in	hexadecimal
encoding.

Bossa Flash	programming	utility	for	Atmel's	SAM	family	of	flash-based	ARM
microcontrollers.

AVR	Libs C	library	for	use	with	GCC	on	Atmel	AVR	microcontrollers.

OpenOCD Open	on-chip	debugger.

Java
Some	standard	Java	JDK	libraries	are	imported.	For	example	a	bug
concerning	the	save-as	window	shows	Arduino	is	dependent	on	Java
updates	[6].

Hardware	needed:	In	order	to	work	with	Arduino	several	hardware	tools	are	needed.
Without	this	hardware	the	user	would	have	no	use	of	the	Arduino	software,	only	the
combination	of	the	software	and	the	hardware	is	valuable.	For	the	most	basic	project	only	an
Arduino	or	Genuino	board	is	needed.	However,	when	the	user	wants	to	create	a	useful
project	the	following	components	might	be	needed:

Arduino	boards
Breadboard
Set	of	resistors
Jumper	wires
Diodes
LEDs
Buttons

This	list	is	only	an	example	of	what	can	be	needed.	Based	on	the	project	an	user	wants	to
carry	out,	the	user	would	need	different	supplies.	Also,	there	are	a	lot	of	different	versions	of
the	de	Arduino	board	which	can	be	chosen	from	[9].	Arduino	offers	serveral	basic	kits
containing	useful	components,	see	figure	10.	An	example	of	an	Arduino	project	is	making	a
simple	Arduino	alarm	system,	the	hardware	components	you	need	for	this	are	an	Arduino
boards,	a	ping	sensor,	a	pieze	buzzer	and	a	LED	strip	light	[10].

Arduino

23

Figure	10:	Example	of	hardware	needed	for	Arduino,	Arduino	basic	kit

Evolution	perspective
The	evolution	perspective	deals	with	concerns	related	to	evolution	during	the	lifetime	of	a
system.	This	is	relevant	to	Arduino	because	it	is	a	system	where	a	large	amount	of	change
needs	to	be	handled	[2].

Throughout	the	years,	Arduino	has	evolved	a	lot.	At	this	moment	Arduino	has	73	releases,
which	started	with	release	0002	in	October	2005	and	the	latest	release	1.8.1	in	January
2017\.	However	the	real	first	release	is	0001,	but	this	can't	be	found	on	the	Github	repository
anymore.	This	is	probably	because	it	was	an	alpha	version	and	"it's	a	terrible	hack"	as	is
described	in	version	0002\.	In	order	to	understand	the	changes	in	the	various	releases,	the
changelogs	and	release	notes	have	been	analysed.	These	were	found	on	the	Arduino
release	page	on	Github	[3].

The	changes	to	a	new	Arduino	release	are	divided	into	four	categories	by	the	developers:

Core:	Most	changes	in	the	core	are	related	to	the	architecture	of	the	project.	The
architecture	is	divided	into	three	groups	AVR,	SAM	and	SAMD.	The	improvements	are	listed
to	be	in	one	of	these	groups.	The	three	architecture	groups	refer	to	the	different

Arduino

24

microcontroller	boards	that	can	be	used.	Another	important	change	in	the	core	is	the
updating	of	libraries	used	by	Arduino.	Finally,	there	are	also	some	changes	in	the	core
related	to	refactoring.

To	sum	up,	the	following	labels	are	used	in	Core:

AVR
SAM
SAMD
Libraries
Refactoring

IDE:	The	IDE	is	what	the	users	work	with	and	a	lot	of	changes	are	made	here	regarding	the
GUI.	These	changes	have	a	direct	benefit	for	the	users.	The	power	of	the	users	is
substantial	as	stated	in	our	power	interest	matrix.

Changes	to	the	IDE	are	for	example:	improving	the	layout,	updating	the	sketch	build
process,	fixing	command-line	dependency	issues	and	fixing	cross-platform	dependency
problems.	These	problems	are	quite	often	posted	by	users	on	the	Arduino	Forum	or	on	the
Issue	Tracker	on	GitHub.

Libraries:	Arduino	uses	a	lot	of	libraries	to	provide	extra	functionality	in	the	sketches.
(Recall	that:	Arduino	uses	sketch	files	in	which	the	users	write	their	code)	The	changes	in
the	library	category	are	thus	updating	to	a	new	version,	adding	new	libraries,	bug	fixes	and
adding	support	for	libraries.

Firmware:	This	is	the	category	that	changes	the	least.	Firmware	needs	to	be	maintained	in
order	to	upload	code	to	the	Arduino	boards	correctly.	The	changes	to	the	firmware	are	often
small	and	not	noticed	by	the	users	of	the	IDE.

Figure	11:	Releases	of	Arduino.

Arduino

25

http://forum.arduino.cc/
https://github.com/arduino/Arduino/issues

The	releases	of	Arduino	started	in	2005	with	a	"hack	just	getting	everything	to	work".	It	took
them	until	2011	to	construct	the	first	official	release.	After	that	a	lot	of	releases	followed.	With
a	peak	of	big	releases	in	2015.

The	next	release	is	1.8.3	which	will	probably	contain	the	CONTRIBUTING.md	file	but	surely
will	have	the	solution	to	the	Save-as	Bug	since	it	is	merged	and	assigned	as	a	Milestone	for
Release	1.8.3.

Conclusion
This	chapter	summarised	and	analysed	the	ins	and	outs	of	the	Arduino	system	and	what
keeps	it	running.	Stakeholders	in	the	project,	company-wise	as	well	as	users	and	external
developers	are	identified.	The	strategy	is	created	with	functionality,	ease	of	use	and	cheap
hardware	in	mind.	This	is	found	in	the	way	the	code	is	written:	no	guidelines	or	code
conventions	are	used	and	focus	on	functionality.

During	the	analysis	of	the	system	it	is	found	that,	although	the	technical	debt	has	decreased
compared	to	the	first	few	releases,	there	is	still	a	lot	of	debt	left.	The	single	biggest	problem
that	is	encountered	during	the	analysis	is	documentation.	The	repository	only	has	minimal
information	on	how	to	build	Arduino	and	no	information	on	how	to	contribute.	There	are	no
real	code	guidelines	and	the	code	only	gets	tested	on	functionality.

Some	suggestions	that	could	be	made	to	help	developers	in	the	future	include:

Improve	the	documentation	on	coding,	pull-requests,	building	and	testing;
Improve	the	test	coverage	of	the	project	to	reduce	the	chance	of	faulty	functions	or	code
breaking;
Reduce	the	technical	debt	by	fixing	code	smells	and	coding	guidelines,	this	will	improve
readability	of	the	code	which	in	turn	can	improve	productivity.

Despite	the	bad	documentation	and	ugly	code,	the	Arduino	system	is	very	popular.	The
simplicity	and	ease	of	use	together	with	the	low	price	make	this	platform	very	appealing.
This	is	very	visible	on	the	forum	as	well	as	on	the	repository,	both	places	get	lots	of	traffic
every	day.

References
1.	 http://medea.mah.se/2013/04/arduino-faq.	FAQ	by	Arduino	founder	David.	(2017).
2.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with

Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.
3.	 https://github.com/arduino/Arduino/releases.	Arduino	release	page.	(2017).

Arduino

26

https://github.com/arduino/Arduino/pull/6070
https://github.com/arduino/Arduino/pull/6041
http://medea.mah.se/2013/04/arduino-faq
https://github.com/arduino/Arduino/releases

4.	 https://www.arduino.cc/en/Main/AboutUs.	Arduino	about	page.	(2017).
5.	 https://github.com/arduino/Arduino/graphs/contributors.	GitHub	contributors	graph.

(2017)
6.	 https://github.com/arduino/Arduino/issues/5191.	Example	dependency	on	Java.	(2017).
7.	 https://github.com/arduino/Arduino/wiki/Building-Arduino.	Description	on	how	to	install

development	tools.	(2017).
8.	 https://github.com/arduino/Arduino/blob/master/README.md.	README	of	Aruino,	lists

the	third-party	software	dependencies.	(2017).
9.	 https://www.arduino.cc/en/main/boards.	Different	Arduino	board	versions.	(2017).
10.	 http://www.makeuseof.com/tag/how-to-make-a-simple-arduino-alarm-system/.	Exampe

of	an	Arduino	project,	how	to	make	an	Arduino	alarm	system.	(2017).
11.	 https://pitchbook.com/profiles/arduino-profile-investors-funding-valuation-and-analysis.

Company	profile	Arduino	on	Pitchbook.	(2017).

Arduino

27

https://www.arduino.cc/en/Main/AboutUs
https://github.com/arduino/Arduino/graphs/contributors
https://github.com/arduino/Arduino/issues/5191
https://github.com/arduino/Arduino/wiki/Building-Arduino
https://github.com/arduino/Arduino/blob/master/README.md
https://www.arduino.cc/en/main/boards
http://www.makeuseof.com/tag/how-to-make-a-simple-arduino-alarm-system/
https://pitchbook.com/profiles/arduino-profile-investors-funding-valuation-and-analysis

Gradle:	adaptable,	fast	automation	for	all

Lars	van	de	Kamp,	Ingmar	Wever,	Julian	Hols	&	Hugo	Bijmans

Abstract
Gradle	is	a	build	automation	tool	that	builds	upon	the	concepts	of	Apache	Maven	and	Ant.
The	tool,	written	in	Java	and	Groovy,	allows	packaging	of	software	to	be	deployed	on	any
platform.	The	open	source	project	that	started	in	2007	now	contains	over	400.000	lines	of
code,	almost	1400	plugins	made	by	266	different	contributors.	Gradle	flourished	and
instantiated	the	company	Gradle	Inc.	consisting	of	most	of	the	core	developers	of	the	open
source	project.	In	this	chapter,	the	overarching	architecture	of	Gradle	is	analysed	using
different	views	and	perspectives	as	defined	by	Rozanski	and	Woods	[1].	It	concludes	that
Gradle	has	a	very	up-to-date	architecture	and	values	proper	design	and	testing	to	preserve
long-term	maintainability	of	the	project.	The	chapter	as	a	whole	can	serve	as	a	helpful
introduction	to	prospective	developers	looking	to	better	understand	the	architecture	to	which
they	might	contribute.

Table	of	contents
Introduction
Stakeholders	view
Context	view
Evolution	view
Deployment	view
Development	view
Technical	debt
Conclusion
References

Gradle

28

https://github.com/larsvandekamp
https://github.com/IWever
https://github.com/jthols
https://github.com/HugooB

Introduction
Every	year,	the	size	of	software	projects	increases	rapidly.	This	increase	demands	a	more
flexible	build	strategy.	In	2007,	the	founders	of	Gradle	came	up	with	an	innovative	way	of
performing	software	builds	that	suits	the	needs	of	these	larger	projects.	They	use	a	Groovy-
based	domain-specific-language	(DSL)	instead	of	XML	in	combination	with	directed	acyclic
graphs	as	the	fundamentals	of	their	system	[2].	The	Gradle	build	tool	is	able	to	determine
which	tasks	to	run	in	what	order,	and	identify	which	sections	remained	stable	and	do	not
need	to	be	rebuilt.	By	doing	so,	build	time	can	be	drastically	reduced	for	small	changes.

Figure	1:	The	history	of	Gradle

As	shown	in	Figure	1	Gradle	started	as	a	two-man	project	in	2007,	and	has	grown	to
become	a	tool	used	by	industry	renowned	players	like	Google	and	Netflix	[3].	Gradle	Inc.,
the	company	that	evolved	from	the	project,	is	now	the	employer	of	a	dozen	developers	all
dedicated	to	improving	the	platform	[4].	In	2015,	the	company	received	an	investment	of
$4.2	million	[5]	to	expand	the	company	and	improve	its	product.	Nowadays,	the	Gradle	build
tool	is	used	by	a	wide	group	of	users,	ranging	from	individual	developers	to	major	software
development	companies	such	as	LinkedIn,	PayPal	and	Adobe.	In	addition,	an	extensive
user	manual,	video	tutorials	and	integration	with	IDEs	like	IntelliJ	IDEA	and	Eclipse	make	it
easy	for	developers	to	integrate	the	tool	into	their	workflow.

This	chapter	gives	an	overview	of	the	overarching	architecture	of	the	Gradle	project.	It	sets
the	scene	by	introducing	the	project	and	discussing	its	stakeholders.	It	then	takes	on
different	viewpoints	and	perspectives	to	analyse	Gradle's	performance,	in	addition	to

Gradle

29

https://gradle.com/

discussing	the	technical	debt	hidden	in	the	depths	of	the	codebase.

Stakeholders	view
In	a	large	open	source	project	like	Gradle,	multiple	types	of	stakeholders	can	be	identified.
Table	1	introduces	the	stakeholders	involved	in	the	Gradle	project.

Stakeholder
class Description

Acquirers

Gradle	Inc.	sells	cloud	services,	based	on	the	Gradle	project.
Trueventures	and	DCVC	are	both	investment	companies	with	mostly
financial	influence	and	interest.	Heavybit	Industries	provides	a
program	to	bring	development	products	to	market	and	scale	the
company,	in	return	for	a	small	percentage	of	equity.

Communicators
The	developers	in	the	core	development	team	of	Gradle	are	also	the
major	communicators.	Hans	Dockter	and	Adam	Murdoch	are
responsible	for	most	of	the	user	guide.	[6]

Development	&
Testing

Most	of	the	developers	and	testers	are	employees	of	Gradle	Inc.
However,	individual	GitHub	contributions	and	extensions	made	by
others	in	the	industry	are	present	as	well.	For	example,	Google	[7]
and	Netflix	[8]	made	plugins	for	Gradle.

Suppliers
Gradle	is	built	upon	Java	and	Groovy,	heavily	supported	by	its	Spock
testing	framework	and	several	code	quality	tools	(e.g.	Checkstyle,
PMD,	FindBugs	and	Codenarc).

Support
An	active	community	of	both	users	and	moderators	are	part	of	the
support	staff.	This	support	is	mostly	provided	through	the	Gradle
discuss	page.

Users

Gradle	has	a	very	broad	user	base	which	can	be	separated	into
three	categories:	individual	programmers,	small	projects	needing
insights	into	their	builds,	and	companies	which	need	insight	into	their
software	development.	Since	users	are	predominately	developers,
they	can	also	be	considered	as	system	administrators	of	their	own
particular	build.

Competitors Other	parties	delivering	similar	services	are	for	example	Maven	and
Ant.

Maintainers

The	in-house	developers	together	with	the	Gradle	community	of
users,	contribute	to	the	maintenance	of	the	system.	Overall,
Benjamin	Muschko	and	Cédric	Champeau	seem	to	invest	the	most
effort	in	maintaining	the	project.

Table	1:	Stakeholders	of	the	Gradle	project

The	stakeholders	are	visualized	in	Figure	2,	their	respective	power	and	interest	in	the	Gradle
project	are	shown	in	Figure	3.

Gradle

30

https://gradle.com/
https://trueventures.com/
http://www.dcvc.com/
https://www.heavybit.com/program/
https://github.com/hansd
https://github.com/adammurdoch
https://discuss.gradle.org/groups/moderators
https://discuss.gradle.org/
https://maven.apache.org/
http://ant.apache.org/
https://github.com/bmuschko
https://github.com/melix

Figure	2:	An	overview	of	all	the	stakeholders	involved	in	the	Gradle	project

Power-Interest	grid

In	the	stakeholder	analysis,	many	different	actors	with	different	roles,	power	and	interest
have	been	analysed	and	visualised	in	Figure	3.	The	main	stakeholder	of	Gradle	is	Gradle
Inc.,	which	has	the	most	power	and	interest	in	the	platform.	The	company's	key	executives,
Adam	Murdoch	and	Hans	Dockter,	have	the	most	influence	and	are	considered	to	be	the
main	architects	of	the	platform.	The	venture	capital	companies	that	invested	in	Gradle	have
been	assigned	as	having	high	power,	but	moderate	interest.	The	diversified	portfolios	owned
by	these	firms	limits	the	interest	in	the	company	to	only	a	moderate	status.

Since	Gradle	is	built	upon	Java	and	Groovy,	these	programming	languages	can	be	seen	as
more	powerful	actors	than	other	suppliers,	having	very	little	interest.	Heavybit	industries	can
also	be	seen	as	a	supplier,	and	since	they	possess	a	warrant	and	house	the	company,	they
are	presumed	to	have	more	power	and	interest	than	most	suppliers.	The	developers,	testers
and	maintainers	can	be	placed	in	the	middle	of	the	spectrum,	all	with	some	power	and
interest.

The	two	least	powerful	stakeholders	are	the	individual	users	and	the	competitors.	Whereas
the	last	one	has	the	highest	interest,	since	every	mistake	made	by	Gradle	could	be	in	favour
of	them.	Companies	who	use	Gradle	are	considered	to	have	more	power	than	individual
users,	since	they	have	the	knowledge	and	manpower	to	put	pressure	on	the	development	of
Gradle,	contributing	themselves	or	by	demanding	extra	features	by	the	development	team
inside	Gradle	Inc.

Gradle

31

https://github.com/adammurdoch
https://github.com/hansd

Figure	3:	Power-Interest	grid	for	the	stakeholders	of	Gradle

Context	view
The	context	view	describes	the	relationships,	dependencies,	and	interactions	between	the
system	and	its	environment	(the	people,	systems,	and	external	entities	with	which	it
interacts)	[1].	This	section	examines	Gradle's	scope,	its	dependencies	on	others	and	the
interaction	with	other	parties.

System	scope	&	responsibilities

Gradle	aims	to	build	anything,	automate	everything	and	deliver	faster	[3].	The	goal	of	the
system	is	to	create	an	environment	which	allows	developers	to	code	as	flexible	as	they
want,	and	to	let	them	build	their	software	as	fast	as	possible.	Since	more	players
(competitors)	are	in	the	field,	Gradle	strives	to	deliver	the	best	performance.	Therefore,
Gradle	introduced	incremental	build	strategies,	allowing	smart	algorithms	to	speed	up	the
building	process.	Thus,	the	scope	of	Gradle	is	to	provide	developers	with	a	flexible	and	easy
to	use	building	tool	to	deliver	their	software	faster.

Gradle

32

External	entities	and	interfaces

Gradle	is	a	widely-used	build	tool	out	of	which	a	company,	Gradle	Inc.,	emerged.	As	one	can
imagine,	a	software	project	like	this	cannot	be	developed	without	external	libraries,	tools	and
frameworks.	On	the	other	hand,	many	companies	cannot	develop	their	software	without
Gradle.	These	external	relations	are	examined	in	this	section.	Below,	these	are	elaborated
upon	and	afterwards	visualised	in	Figure	4.

Written	in	Java	and	Groovy
Windows,	Linux	and	macOS	are	all	supported
Built	by	itself,	using	the	Gradle	Build	Tool
Supports	many	programming	languages,	enabled	by	their	respective	plugins	[10]
Plugins	also	allow	editing	in	an	IDE	of	choice
Active	development	team	of	30-40	core	developers	and	more	than	200	contributors
from	the	open	source	community
A	diverse	spectrum	of	users,	from	individual	developers	to	major	enterprises	such	as
Google	and	Netflix
Continuous	integration	using	TeamCity	CI
A	GitHub	repository	filled	with	code,	plugins	and	many	issues	is	used	to	host	the	code
base	[9]
Communication	and	support	is	provided	via	Github,	Gradle	discuss	and	Twitter
For	testing	purposes,	the	Spock	Framework	is	used,	which	provides	enterprise	testing,
behaviour	driven	testing	and	mocking	and	stubbing
The	project	is	licensed	under	the	Apache	License,	Version	2.0,	a	free	software	license
written	by	the	Apache	Software	Foundation	(ASF)

Gradle

33

https://builds.gradle.org/
https://github.com/gradle
https://discuss.gradle.org/
https://twitter.com/gradle
http://spockframework.org/
https://www.apache.org/licenses/LICENSE-2.0

Figure	4:	The	Context	View	of	Gradle

Evolution	perspective
This	section	analyses	the	evolution	of	the	Gradle	Build	Tool.	The	evolution	perspective
focuses	on	identifying	the	ability	to	be	flexible	in	the	face	of	inevitable	change.	As	discussed
by	Rozanski	and	Woods,	a	flexible	system	should	be	able	to	deal	with	all	possible	types	of
changes	that	it	may	experience	during	its	lifetime	[1].	Therefore,	the	changes	throughout	the
lifetime	of	the	project	are	analysed,	and	the	mechanisms	in	place	to	provide	flexibility	are
discussed.

Gradle	updates	their	current	version	number	according	to	the	semantic	versioning
convention	[19].	Most	Gradle	releases	can	be	categorised	into	two	main	categories:	major
updates	that	symbolize	a	new	backwards	compatibility	baseline,	and	new	versions
containing	novel	features	and	bug	fixes.	The	first	one	corresponds	to	the	major	indicator	in
the	semantic	version	convention,	the	latter	corresponds	to	the	minor	type.	There	might	also
be	a	third	version	number	that	represents	a	patch,	which	is	incremented	by	small	bug	fixes
that	are	merged	into	the	Master	branch.

The	first	type	has	only	occurred	three	times	in	the	history	of	Gradle.	The	latter	on	the	other
hand,	has	an	average	frequency	between	6-8	weeks	[20]	despite	efforts	to	decrease	this	to
4-6	weeks	as	stated	in	the	release	notes	of	Gradle	2.7	[21].	Figure	5	gives	an	overview	of

Gradle

34

the	different	releases	and	mentions	the	changes	with	the	largest	magnitude	of	change.

Figure	5:	The	Evolution	Perspective	of	Gradle	[24]

The	main	reason	for	Gradle	to	innovate	and	change	the	project	structure	is	to	improve	the
product.	In	every	iteration,	it	attempts	to	add	new	features	and	improve	performance	and
user	experience	significantly.	They	aim	to	stay	flexible	by	using	their	plugin	orientated
architecture.	Gradle	has	explicitly	chosen	to	limit	the	features	provided	by	the	core	module.
As	stated	in	the	online	user	guide:

All	of	the	useful	features,	like	the	ability	to	compile	Java	code,	are	added	by	plugins.
Plugins	add	new	tasks	(e.g.	JavaCompile),	domain	objects	(e.g.	SourceSet),
conventions	(e.g.	Java	source	is	located	at	src/main/java)	as	well	as	extending	core
objects	and	objects	from	other	plugins	[22].

The	described	plugins	can	be	implemented	in	any	language,	as	long	as	the	implementation
ends	up	compiled	as	byte	code[22].	The	choice	for	a	plugin	based	model	improves	several
critical	aspects	of	the	software	project.	First	of	all,	the	overhead	of	maintaining	similar	logic
across	multiple	projects	is	reduced.	Furthermore,	it	enhances	comprehensibility	and
organisation	of	the	project	due	to	a	higher	degree	of	modularization.	Finally,	it	encapsulates
imperative	logic,	allowing	the	build	scripts	to	be	as	declarative	as	they	can	be	[22].

Gradle

35

Most	importantly,	it	seems	that	this	strategy	has	allowed	Gradle	to	be	a	front	runner	in	the
industry.	The	fast	development	of	a	strong	and	innovative	core,	combined	with	a	very	flexible
plugin	architecture	will	allow	Gradle	to	keep	moving	in	the	future	when	facing	inevitable
change.

Deployment	view
In	the	book	Software	Systems	Architecture,	Rozanski	and	Woods	[1]	define	the	deployment
view	as	"Describes	the	environment	into	which	the	system	will	be	deployed,	including	the
dependencies	the	system	has	on	its	runtime	environment".	Gradle	will	be	deployed	on	the
computer	system	of	the	users	(developers),	or	on	a	continuous	integration	server	on	which	a
project	will	be	built.

The	Java	Runtime	Environment	(JRE)	is	a	third-party	software	requirement	for	Gradle,	and
needs	to	be	installed	on	the	system	where	the	project	will	be	utilised.	The	use	of	Java	makes
Gradle	deployable	on	a	huge	variety	of	operating	systems	such	as	Windows,	macOS	and
Linux	as	well	as	different	hardware	architectures	such	as	x86,	x64	and	ARM.	Java
decouples	Gradle	from	the	operating	systems'	environment	and	hardware	components	and
thus	makes	Gradle	independent	of	the	system	and	type	of	hardware	on	which	it	is	deployed.

A	particular	issue	may	arise	in	the	deployment	due	to	the	possibility	that	Gradle	projects	can
be	created	using	a	different	version	of	Gradle	than	the	user	might	have	installed.	To	aid	the
user	in	building	a	Gradle	project	independent	of	the	original	system	environment	on	which
the	project	was	deployed,	Gradle	provides	the	option	to	make	use	of	the	Gradle	Wrapper.
The	wrapper	will	take	care	of	the	installation	of	additional	tools	required,	and	will	make	sure
to	install	the	right	version.	A	project	that	includes	the	Gradle	Wrapper	can	be	built	on	any
system	that	has	Java	installed.	The	wrapper	is	invoked	using	the		./gradlew	<task>	
command	and	works	by	downloading	and	installing	the	version	of	Gradle	the	project	requires
and	will	thus	take	care	of	the	deployment	for	the	user.	The	wrapper	is	able	to	verify	the
downloaded	files	by	calculating	and	comparing	the	expected	file	checksum	against	the
actual	one.	This	feature	increases	security	and	protects	the	software	from	tampering	with	the
downloaded	Gradle	distribution.	The	Gradle	Wrapper	is	the	preferred	way	of	starting	a
Gradle	build	[17]	and	is	visualised	in	Figure	6,	this	also	shows	the	parallelization	of	Gradle
processes.

Gradle

36

Figure	6:	The	Gradle	wrapper	in	action

The	Java	Virtual	Machine	(JVM)	requires	a	non-trivial	initialization	time.	As	a	result,	it	can
take	a	while	to	launch	a	Gradle	build	process.	As	a	solution,	Gradle	provides	the	Gradle
Daemon.	The	Gradle	Daemon	is	a	long-lived	background	process	that	will	execute	builds
much	quicker	than	invoking	the	Gradle	process	the	normal	way	[18].	This	is	possible	by
avoiding	the	JVM	start-up	costs,	as	well	as	by	maintaining	a	build	cache	that	stores	data
about	the	project	in	memory.	This	build	cache	enables	Gradle	to	make	use	of	incremental
builds	to	improve	its	performance.	By	using	these	incremental	builds	Gradle	identifies	input
or	output	sections	of	the	build	process	that	have	not	changed.	If	these	are	present,	Gradle
can	skip	the	build	of	that	task	and	reuse	the	existing	output	from	the	previous	build.	The
daemon	is	now	enabled	by	default,	but	is	recommended	to	be	disabled	for	Continuous
Integration	(CI)	and	build	servers.

Development	view
This	particular	view	highlights	the	concerns	and	interests	of	the	developers	and	testers	of
the	project.	The	different	modules	in	the	project	have	been	identified,	the	file	structure	has
been	researched	and	important	standardisations	of	processes	are	discussed.

Modules	structure

Gradle

37

The	top	layer	division	can	be	seen	in	Figure	7.	It	shows	that	the	Gradle	core	and	the	plugins
rely	on	different	external	dependencies.	The	plugins	are	dependent	on	the	API	provided	by
Gradle	to	connect	to	the	core	modules.	All	three	of	these	different	components	are	controlled
by	the	Gradle	build	tool	that	manages	the	interaction	between	these	subsections.	Finally,	the
Gradle	core	also	has	internal	dependencies	which	will	be	discussed	next.

Figure	7:	The	module	structure	view	of	Gradle

A	more	detailed	view	of	modules	in	the	source	code	can	be	found	in	Figure	8.	Due	to	the
flexibility	of	the	Gradle	build	tool,	the	core	part	of	the	source	code	is	also	very	flexible,	thus
fragmented.	The	main	building	blocks	are	the		exhaustion	,		process	,		internal		and
	initialization		blocks,	which	all	use	elements	of	the		cache		and		caching		modules	to
perform	their	tasks.	Common	processing	parts,	like		reporting	,		util		and	the	Gradle		API	,
are	also	used	by	the	main	blocks	of	source	code.	The	actual	behaviour	of	those	core
building	blocks	is	influenced	by	settings	located	in	the		configuration		folder.	Finally,	all
plugins	are	accessed	through	the		API		in	order	to	work	with	the	core	source	code.

Gradle

38

Figure	8:	A	more	detailed	view	at	the	core	source	code	of	Gradle

Common	processing

Just	like	any	other	large	system,	Gradle	has	separate	code	modules	for	tasks	which	are
common	to	other	modules.	A	few	of	Gradle's	common	used	modules	have	been	identified	in
the		subprojects/core		folder:

A	central,	common	logger	is	used.	The	Simple	Logging	Facade	for	Java	(SLF4J)	is	used
to	keep	track	of	all	the	logs	made	by	Gradle.	This	is	also	used	by	the		-debug		option	to
allow	the	user	to	easily	debug	their	code.
Moreover,	multiple	utilities	are	made	by	the	team	to	be	used	throughout	the	project.	In
the		src/util		folder,	many	utilities	are	listed,	such	as	a		nameMatcher	,	a		clock		and	a
	swapper	,	which	can	be	easily	used	by	other	modules.
Because	of	Gradle's	high	dependency	on	external	plugins,	its	API	can	also	be
considered	as	common	process.	The		tooling-api		provides	the	user	with	the	needed
dependencies	on	those	plugins.

Standardization	of	design

Since	Gradle	is	an	open	source	platform,	everyone	is	free	to	contribute	to	the	repository	on
GitHub.	Seeing	as	multiple	contributors	are	influencing	Gradle,	the	core	developers	have
standardised	aspects	of	the	design	of	the	system	to	make	it	as	maintainable,	reliable	and
technically	cohesive	as	possible.	There	is	not	a	lot	of	information	available	about	the	general
design	of	the	platform,	but	the	core	developers	have	made	some	guidelines	for	new
contributors	to	keep	the	overall	code	quality	high	and	the	licences	applicable.	The	most
important	aspects	of	contributing	to	Gradle	are	discussed	in	the		CONTRIBUTIONS.MD		file:

Gradle

39

https://www.slf4j.org/
https://github.com/gradle/gradle/blob/master/.github/CONTRIBUTING.md

Contributors	have	to	use	git	and	have	a	GitHub	account	to	be	able	to	fork	the	GitHub
repository		gradle/gradle	
Use	a	text	editor	or	IDE	(IntelliJ	IDEA	CE	is	recommended)	to	make	changes
Document	changes	in	the	User	Guide	and	DSL	Reference	(under
	subprojects/docs/src/docs)
Users	are	not	allowed	to	put	in	their	names	in		@author		Javadoc	field
Write	a	solid	commit	message,	explaining	what	has	been	done	in	the	proposed	change
Sign	the	CLA,	which	defines	the	terms	under	which	the	intellectual	property	has	been
contributed	to	Gradle
Make	a	pull	request	using	the		PULL_REQUEST_TEMPLATE.md		and	wait	for	their	code	to	be
reviewed	by	a	Gradle	core	developer

There	are	no	concrete	guidelines	of	using	design	patterns	in	the	development	of	Gradle.
However,	when	examining	the	code,	the	factory,	builder,	Singleton	or	a	combination	of	these
design	patterns	have	been	identified	many	times.	For	example,	the
	GroovyCompilerFactory.java		and		DefaultDirectoryFileTreeFactory.java		are	two	classes
built	according	to	the	factory	design	pattern.

The	implementation	workflow	is	flexible.	Core	Gradle	developers	are	allowed	to	commit
directly	into	the	master,	other	contributors	have	to	use	pull	requests.	These	pull	requests	are
labelled	by	developers,	assigned	to	issues	(if	applicable)	and	categorised	before	merging.

Standardisation	of	Testing

By	standardising	the	test	approaches,	technologies	and	conventions,	the	overall	testing
process	remains	consistent	and	has	a	higher	pace.	In	this	section,	Gradle’s	efforts	to
achieve	this	are	reviewed.

The	Gradle	project	uses	its	own	Gradle	build	tool	as	its	build	tool	of	choice,	which	initiates	all
tests.	All	new	contributions	need	to	include	two	things	in	terms	of	testing.	First	of	all,	it	needs
to	provide	new	Unit	Tests,	using	the	Spock	framework	for	any	novel	logic	introduced.	In
addition,	integration	test	coverage	of	the	new	bug/feature	should	also	be	provided.
Afterwards,	TeamCity	automatically	checks	the	compatibility	of	the	introduced	code,
preventing	any	unexpected	failures.	To	give	some	indication	of	the	number	of	tests	that	are
run	by	TeamCity,	for	Windows	with	Java	1.8,	23.709	tests	have	been	passed	successfully
[11].

In	order	to	verify	existing	tests	manually,	the	untested	code	can	be	introduced	in	the
	/subproject		folder	after	which	the		./gradlew	:<subproject>:check		command	can	be	run.
During	the	build	Gradle	also	executes	Checkstyle	and	Codenarc	tests	that	perform	static
code	analysis.	The	use	of	PMD	throughout	the	development	process	is	also	encouraged.

Gradle

40

https://gradle.org/cla
https://github.com/gradle/gradle/blob/master/.github/PULL_REQUEST_TEMPLATE.md

Finally,	simple	contributions	are	only	merged	into	the	project	when	the	build	succeeds,	the
tests	are	all	passed	and	new	test	material	is	provided	and	reviewed	to	be	in	good	order.
Complex	changes	must	face	the	promotion	pipeline,	in	which	they	will	be	tested	more
thoroughly	in	different	environments	and	levels	to	assure	quality	[23].

The	Spock	Framework

Gradle	uses	the	Spock	Framework	as	their	testing	framework	of	choice.	The	framework	was
initiated	by	Peter	Niederwieser	who	joined	the	Gradle	team	in	2011	and	remained	an	active
employee	until	late	2014.	Peter	received	help	from	Luke	Daley	who	is	still	part	of	the	core
development	team	of	Gradle	Inc.	Therefore,	the	Spock	Framework	is	made	by	a	(former)
Gradle	employee,	but	can	be	considered	as	an	independent	piece	of	software	used	by
Gradle	in	their	development	process.

The	open	source	project	Spock	integrates	enterprise	testing,	mocking,	stubbing	and	does
this	in	a	behaviour	driven	way	[12].	It	covers	a	diverse	spectrum	of	test	types,	ranging	from
unit	testing	to	integration	testing	and	even	functional	testing.	Figure	9	shows	the	different
tools	that	can	be	replaced	by	integrating	the	Spock	framework.

Figure	9:	The	Spock	framework

The	framework	uses	the	JUnit	runner	which	allows	for	easy	integration	into	the	system	and
even	facilitates	parallel	usage	of	Spock	and	JUnit	tests.	Simplicity	and	readability	are	key
aspects	of	the	framework.	The	tests	can	be	read	like	plain	text	English	and	the	results	of	a
test	come	in	a	very	clear	reporting	format,	as	shown	in	Figure	10.

Gradle

41

https://github.com/pniederw
https://github.com/alkemist

Figure	10:	Spock	output	report	summary

Another	very	important	advantage	is	the	ability	of	Spock	to	understand	the	context	in	failed
tests	while	using	data	driven	testing.	As	can	be	seen	in	Figure	11,	the	values	of	the	different
variables	of	the	failed	assert	are	shown	to	give	a	clear	overview	of	the	reasoning	why	the
test	failed.	According	to	the	creators	of	Spock,	only	their	framework	knows	the	context	of	the
failed	test,	whereas	others	do	not	[13].	The	fact	that	Gradle	uses	this	framework,	which
promotes	company	wide	testing	and	understandability,	enforces	the	idea	that	testing	and
code	quality	is	the	foundation	of	their	development	process.

Figure	11:	Simple	test	visualization	by	Spock

Technical	debt

Gradle

42

This	section	focuses	on	the	technical	and	testing	debt	present	inside	the	Gradle	project.	The
definition	of	technical	debt	according	to	Techopedia	is:

Technical	debt	is	a	concept	in	programming	that	reflects	the	extra	development	work
that	arises	when	code	that	is	easy	to	implement	in	the	short	run	is	used	instead	of
applying	the	best	overall	solution.	[14]

To	identify	technical	debt	within	Gradle,	a	wide	range	of	options	have	been	used.	First,
(static)	code	analysis	tools	are	used	to	assess	code	quality.	Afterwards	manual	inspection
took	place	to	examine	the	evolution	of	technical	debt.

Code	quality	tools

During	the	development	of	Gradle,	many	tools	are	used	to	keep	the	quality	high.	Static
analysis	tools	are	used	to	detect	errors	in	the	source	code	without	running	it,	and
Continuous	Integration	tools	are	used	to	prevent	integration	problems	and	allow	external
build	tests.	Checkstyle,	PMD,	Codenarc,	Findbugs,	and	JaCoCo	are	all	incorporated	in	the
process.	Gradle	takes	quality	and	testing	very	serious.	As	discussed	before,	contributors
have	to	write	additional	tests	and	are	subjected	to	code	review	by	core	developers	in	order
to	get	their	pull	request	merged.	The	Gradle	Core	developers	have	even	developed	their
own	Gradle	Quality	Plugin	to	standardise	the	output	of	code	quality	tools.	This	tool	combines
results	from	CheckStyle,	FindBugs,	PMD	and	CodeNarc	and	categorises	them	into	one
summary.

SonarQube	analysis

SonarQube	is	a	platform	for	continuous	software	quality	monitoring.	This	platform	is	able	to
analyse	a	large	software	project	like	Gradle	in	a	matter	of	minutes.	It	provides	the	user	with
crucial	insights	about	bugs,	security	and	technical	debt	within	the	project.	Running	the
SonarQube	analysis	tool	on	the	latest	version	of	Gradle	(v3.4.1)	has	given	the	following
insights	about	technical	debt.	SonarQube	reports	a	vast	amount	of	bugs	(1500),
vulnerabilities	(87)	and	code	smells	(7900),	ranging	from	refactor	recommendations	to
limiting	the	large	number	of	lines	in	a	class	to	the	amount	of	duplicated	code	(which
represents	only	0.6%	of	the	entire	code	base).	Many	of	the	indicated	bugs	are	only	minor
faults,	style	issues	or	false	positives.

The	technical	debt	analysis	however,	provides	a	rather	good	insight	into	this	phenomenon.
SonarQube	uses	the	SQALE	methodology,	which	is	a	method	to	support	the	evaluation	of
source	code	independent	of	language	or	code	analysis	tools.	The	resulting	findings	include
113	days	worth	of	technical	debt.	Moreover,	when	combining	this	with	the	age	of	the	project
(8	years	as	of	now)	and	the	fact	that	it	contains	over	400.000	lines	of	code,	a	maintainability

Gradle

43

https://github.com/xvik/gradle-quality-plugin
https://www.sonarqube.org/
http://www.sqale.org/
https://docs.sonarqube.org/display/SONAR/Metric+Definitions

ratio	of	0.7%	is	derived.	This	results	in	the	highest	possible	grade,	namely	an	A.	An	overview
visualisation,	showing	the	time	needed	to	fix	the	discovered	code	smells	can	be	seen	in
Figure	12.

Figure	12:	Technical	debt	in	the	source	code,	categorised	by	lines	of	code	and	time	to	fix

Furthermore,	the	cyclomatic	complexity	measure	is	often	used	as	a	metric	to	assess	the
complexity	of	a	code	base.	This	measure	is	calculated	by	accruing	the	different	possible
paths	through	the	source	code.	In	Figure	13	the	complexity	breakdown	of	different	functions
and	files	is	given.	The	total	complexity	of	the	entire	code	base	is	47.408	and	the	average	per
class	is	6.9.	Overall,	the	complexity	is	relatively	low	when	comparing	the	values	to	those
suggested	by	codecentric	[15].	According	to	SonarQube	there	is	not	a	single	method	that
exceeds	the	unmaintainable	threshold,	with	the	highest	having	a	complexity	of	18.

These	insights	give	additional	indications	that	developers	working	for	Gradle	are	highly
focused	on	generating	long-term,	maintainable	software.

Gradle

44

Figure	13:	The	Cyclomatic	complexity	per	function	and	per	file

Evolution	of	Technical	Debt

Despite	the	extensive	code	review	and	testing	at	Gradle,	technical	debt	in	the	project	has
grown	over	the	years.	This	section	elaborates	about	this	debt	and	tries	to	quantify	it.	First,	an
analysis	of	the	code	base	is	presented,	followed	by	the	number	of	TODOs	in	code	and	how
this	has	changed	through	time.

Code	base	analysis

The	Gradle	Build	Tool	started	in	2009	with	the	release	of	Gradle	0.7.	With	only	597	files	and
40.528	lines	of	code,	the	tool	was	not	as	big	as	it	is	today.	The	size	of	the	Gradle	source
code	has	grown	steadily	to	almost	400.000	lines	of	code	in	the	most	recent	version.	A
visualisation	of	this	growth	can	be	seen	in	Figure	14.	While	the	number	of	lines	increased
over	the	years,	the	percentage	of	comments	in	code	has	decreased	slowly.	From	over	20%
in	2009	to	less	than	15%	in	2017,	as	is	shown	in	Figure	15.	This	probably	means	that
comments	about	possible	changes	needed	or	suggestions	about	new	features	in	the	code
have	been	resolved	faster	than	they	have	been	introduced.	The	growth	of	Gradle	can	also
be	seen	in	the	amount	of	statements	per	method.	Method	size	has	grown	over	the	years
from	containing	2,4	statements	per	method	to	2,8	statements	per	method.

Figure	14:	The	number	of	lines	for	each	Gradle	release

Gradle

45

https://services.gradle.org/distributions/gradle-0.7-all.zip

Figure	15:	The	percentage	of	comments	in	the	source	code	for	each	Gradle	release

Todos	in	code

The	frequently	used	TODO	annotation	could	hint	at	technical	debt,	indicating	postponed
tasks.	Therefore,	in	order	to	perform	further	analysis	on	the	growth	of	technical	debt,	the
occurrence	of	the	word	TODO	in	the	source	code	has	been	analysed.	The	results	of	this
analysis	are	shown	in	Figure	16,	showing	that	the	development	team	attempts	to	solve	as
many	TODO's	as	possible	before	the	next	major	release,	while	on	the	other	hand	introducing
additional	TODOs	when	adding	new	features.	Despite	the	major	spike	in	TODOs	due	to	the
high	occurrence	rate	in	the	user	guide	in	the	versions	2.0-2.12,	the	total	number	of	TODOs
is	steadily	rising	through	time	at	a	slow	pace.	However,	when	comparing	this	growth	rate	to
the	increase	in	lines	of	code,	this	always	remains	a	limited	portion	of	the	total	code	base.

Gradle

46

Figure	16:	The	amount	of	TODOs	per	Gradle	release

An	example	of	a	TODO	left	in	the	source	code	can	be	found	in	the	snippet	below.	The	file
	BuildableJavaComponent.java		is	part	of	the	Gradle	API	and	contains	some	legacy	code,	as
commented	by	Adam	Murdoch	himself	two	years	ago.	This	resembles	a	perfect	example	of
a	postponed	task	that	will	improve	the	efficiency	of	the	project	when	fulfilled.

/**

	*	Meta-info	about	a	Java	component.

	*

	*	TODO	-	this	is	some	legacy	stuff,	to	be	merged	into	other	component	interfaces

	*/

public	interface	BuildableJavaComponent	{

				Collection<String>	getRebuildTasks();

				Collection<String>	getBuildTasks();

				FileCollection	getRuntimeClasspath();

				Configuration	getCompileDependencies();

}

Main	findings

Overall,	Gradle	has	proven	to	take	code	quality	and	technical	debt	very	seriously	and	invests
a	lot	of	time	and	effort	in	building	a	truly	long-term	viable	project.	This	is	also	highlighted	by
Hans	Dockter	[16]	in	a	blogpost	on	the	old	Gradle	forum	regarding	the	release	of	version	1.0
stating:

Gradle

47

https://github.com/hansd

The	main	reason	why	milestone-5	took	so	long	to	be	released	is	that	we	found	out	that
a	lot	of	stuff	we	have	been	using	Ivy	for	needed	to	be	fully	rewritten	to	give	it	the
capabilities	we	want.	This	was	a	huge	investment	and	we	were	basically	paying	back	a
huge	technical	debt.	We	paid	back	most	of	it.	This	will	also	enable	us	to	provide	many
innovations	in	the	area	of	dependency	management	in	the	future.

Even	though,	Gradle	version	3.4.1	was	recently	released,	this	philosophy	is	still	at	the	core
of	the	project.	The	different	integrated	code	quality	tools	ensure	constant	code	quality	and
reduces	the	number	of	new	bugs	introduced.	There	are	some	improvements	to	be	made
such	as	publishing	their	Github	to	Coverity,	to	use	more	generic	tools	that	might	indicate
improvements	based	on	a	different	vision	of	technical	debt	that	these	tools	might	maintain.
Fuzz	testing	could	also	be	a	good	addition	to	the	test	suite,	allowing	unexpected	input	values
to	uncover	unexpected	bugs.

The	evolution	of	technical	debt	shows	an	upward	trend	and	Gradle	should	not	allow	their
growth	to	change	their	current	process	and	leave	the	technical	debt	increase	uninhibited.
Gradle	should	maintain	the	awareness	throughout	the	company	in	order	to	be	successful	in
the	long-term,	technical	debt	should	always	be	a	priority.

Conclusion
This	chapter	summarised	the	Gradle	Build	Tool	in	many	architectural	views	and
perspectives,	helping	the	reader	to	be	able	to	understand	and	contribute	to	the	project.	The
analysis	of	the	Gradle	project	has	led	to	the	conclusion	that	Gradle	has	an	interesting,	yet
complex	architecture.

In	the	first	section,	the	stakeholder	analysis	discussed	the	various	classes	of	stakeholders
involved	in	the	project.	Gradle	is	used	by	a	very	broad	spectrum	of	users,	but	made	by	a
relatively	small	group	of	developers	at	Gradle	Inc.,	supported	by	contributions	from	the
community.	In	general,	the	Gradle	team	aims	to	build	anything	and	automate	everything
faster	than	is	currently	possible.	This	requires	a	highly	flexible	piece	of	software,	which	can
be	modified	and	expanded	using	a	variety	of	plugins.	The	context	view	showed	the
dependencies	on	external	libraries,	tools	and	frameworks	Gradle	uses	to	deliver	its	product.
After	which,	the	development	of	the	project	is	further	analysed	showing	a	very	fragmented
source	code,	providing	the	developers	of	Gradle	with	a	flexible	architecture.	A	relatively
small	core	interacts	with	a	vast	number	of	plugins,	which	all	have	their	respective	test	suites
included.	Testing	is	given	the	highest	priority	by	the	Gradle	developers,	as	discussed	in	the
section	dedicated	to	the	Spock	framework.	Literally	thousands	of	tests	are	written	to	assess
the	project	using	TeamCity	CI.	In	addition,	every	contribution	needs	to	pass	an	assorted	test
suite	named	quick	test,	while	also	adding	their	own	tests	for	novel	code.

Gradle

48

The	Gradle	Build	Tool	is	now	eight	years	old	and	the	project	has	evolved	significantly	over
time.	Constant	innovation,	could	lead	to	a	growing	amount	of	technical	debt	in	the	project.
However,	Gradle	has	proven	to	take	code	quality	and	technical	debt	very	seriously	by
investing	a	large	amount	of	time	and	effort	in	building	a	truly	long-term	viable	project.	The
overall	analysis	of	Gradle	shows	that	projects	like	this	truly	benefit	greatly	from	the	open-
source	environment.	The	flexible	architecture,	a	group	of	passionate	developers	and
contributors	and	a	focus	on	testing	have	gotten	Gradle	where	it	is	today,	while	making	it
ready	to	evolve	even	further	throughout	the	years	to	come.

References
1.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with

Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.
2.	 Wikipedia.	Gradle.	https://en.wikipedia.org/wiki/Gradle,	2017.
3.	 Gradle.org.	Gradle	Build	Tool.	https://gradle.org/,	2017.
4.	 Gradle.com.	About.	https://gradle.com/about,	2017.
5.	 Business	Wire.	"Gradle	Inc.	Raises	$4.2M	With	True	Ventures	And	Data	Collective".

Businesswire.com,
http://www.businesswire.com/news/home/20151210005335/en/Gradle-Raises-4.2M-
True-Ventures-Data-Collective,	2017.

6.	 Gradle.org.	Gradle	User	Guide.	https://docs.gradle.org/3.4.1/userguide/userguide.html,
2017.

7.	 GitHub.com.	google/osdetector-gradle-plugin.	https://github.com/google/osdetector-
gradle-plugin,	2017.

8.	 GitHub.com	nebula-plugins/gradle-netflixoss-project-plugin.	https://github.com/nebula-
plugins/gradle-netflixoss-project-plugin,	2017.

9.	 GitHub.com	gradle/gradle.	https://github.com/gradle/gradle,	2017.
10.	 Gradle.org.	Plugins.	https://plugins.gradle.org/,	2017.
11.	 Gradle.org.	Builds.	https://builds.gradle.org/,	2017.
12.	 Spock.	Spock	Framework.	http://spockframework.org/,	2017.
13.	 Spock.	Data	driven	testing.	http://spockframework.org/spock/docs/1.1-rc-

3/data_driven_testing.html,	2017.
14.	 Technopedia.	Technical	debt.	https://www.techopedia.com/definition/27913/technical-

debt,	2017.
15.	 Codecentric.	Why	good	metrics	values	do	not	equal	good	quality.

https://blog.codecentric.de/en/2011/10/why-good-metrics-values-do-not-equal-good-
quality/,	2011.

16.	 Gradle	Discuss.	Status	of	the	1.0	release.	https://discuss.gradle.org/t/status-of-the-1-0-
release/7735,	2011.

Gradle

49

https://en.wikipedia.org/wiki/Gradle
https://gradle.org/
https://gradle.com/about
http://www.businesswire.com/news/home/20151210005335/en/Gradle-Raises-4.2M-True-Ventures-Data-Collective
https://docs.gradle.org/3.4.1/userguide/userguide.html
https://github.com/google/osdetector-gradle-plugin
https://github.com/nebula-plugins/gradle-netflixoss-project-plugin
https://github.com/gradle/gradle
https://plugins.gradle.org/
https://builds.gradle.org/
http://spockframework.org/
http://spockframework.org/spock/docs/1.1-rc-3/data_driven_testing.html
https://www.techopedia.com/definition/27913/technical-debt
https://blog.codecentric.de/en/2011/10/why-good-metrics-values-do-not-equal-good-quality/
https://discuss.gradle.org/t/status-of-the-1-0-release/7735

17.	 Gradle.org.	Gradle	User	Guide:	The	Gradle	Wrapper.
https://docs.gradle.org/current/userguide/gradle_wrapper.html,	2017.

18.	 Gradle.org.	Gradle	User	Guide:	The	Gradle	Daemon.
https://docs.gradle.org/current/userguide/gradle_daemon.html,	2017.

19.	 Semver.org.	Semantic	Versioning	2.0.0.	http://semver.org/,	2017.
20.	 Gradle	Discuss.	Gradle	release	distribution	Link.	https://discuss.gradle.org/t/gradle-

release-distribution-link/21033,	2017.
21.	 Gradle.org.	Gradle	Release	Notes.	https://docs.gradle.org/2.7/release-notes.html,	2015.
22.	 Gradle.org.	Gradle	User	Guide:	Gradle	Plugins.

https://docs.gradle.org/current/userguide/plugins.html,	2017.
23.	 GitHub.com.	Gradle	Design	Docs:	QA	and	release	automation.

https://github.com/gradle/gradle/blob/master/design-docs/done/qa-and-release-
automation.md,	2012.

24.	 Gradle.org.	Gradle	Release	page.	https://gradle.org/releases,	2017.

Gradle

50

https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.gradle.org/current/userguide/gradle_daemon.html
http://semver.org/
https://discuss.gradle.org/t/gradle-release-distribution-link/21033
https://docs.gradle.org/2.7/release-notes.html
https://docs.gradle.org/current/userguide/plugins.html
https://github.com/gradle/gradle/blob/master/design-docs/done/qa-and-release-automation.md
https://gradle.org/releases

JabRef	-	A	Graphical	Application	for
Managing	BibTeX	Databases

Alborz	Salimian	Rizi,	Owen	Huang,	Rolf	Starre,	and	Tim	van	Rossum.	

Delft	University	of	Technology,	2017	

Abstract
JabRef	is	an	open	source	BibTeX	reference	manager,	written	in	Java.	It	can	be	used	to
structure	and	manage	large	BibTeX/BibLaTeX	reference	databases	used	for	writing	scientific
papers.	The	system	has	been	in	development	since	November	2003	and	is	still	actively
maintained.	The	fact	that	the	project	is	under	active	development	can	be	deduced	from	the
speed	at	which	pull	requests	are	merged:	usually	within	a	day.	As	of	20-03-2017,	the	project
has	over	135.000	lines	of	code,	95	contributors,	and	31	releases.	This	chapter	studies
JabRef	by	looking	at	its	architecture,	and	by	looking	at	the	system	through	different
viewpoints	and	perspectives.

Table	of	Contents
1.	 Introduction
2.	 Stakeholders
3.	 Context	view
4.	 Development	view
5.	 Technical	debt
6.	 Deployment	view
7.	 Evolution	of	JabRef
8.	 Conclusion
9.	 References

JabRef

51

https://github.com/Asalimianrizi
https://github.com/ohuang12
https://github.com/RolfStarre
https://github.com/TRvanRossum

Introduction
JabRef	is	a	graphical	BibTeX	reference	manager,	used	for	structuring	large	BibTeX
databases	in	a	orderly	fashion.	This	chapter	gives	a	structured	overview	of	JabRef	by
providing	descriptions	of	the	various	parts	that	compose	its	architecture,	in	order	to	explain
the	system	and	how	it	works.	After	introducing	the	system,	the	most	prominent	stakeholders
and	their	workflow	are	identified.	Next,	the	interaction	of	JabRef	with	its	environment	is
illustrated	through	analysis	of	the	context	view.	Furthermore,	the	development	view	is
described	to	find	code	structure	and	dependencies.	Following	that,	an	overview	of	the
technical	debt	of	JabRef	is	given	by	characterizing	some	of	its	issues.	After	that,	this	chapter
continues	with	an	evolution	perspective	of	JabRef,	which	shows	the	history	of	JabRef.
Finally,	the	chapter	concludes	by	listing	the	most	important	findings.

Stakeholders
In	this	section	we	will	describe	the	different	stakeholder	classes	as	proposed	by	Rozanski
and	Woods	[1]	and	relate	our	views	of	the	classes	in	relation	to	the	JabRef	project.	In
addition	we	have	also	identified	a	stakeholder	group	that	was	not	a	part	of	the	eleven	types
proposed	by	the	book,	the	sponsors.

The	sponsors	of	JabRef	are	Baola	and	Neuronade.	While	they	support	the	development	of
JabRef,	they	do	not	play	an	active	role	in	steering	of	the	project.	Currently	the	project	relies
on	volunteers	for	the	development	of	the	project,	although	they	are	trying	to	attract	a	funded
developer.

Since	the	core	developers	of	JabRef	determine	the	direction	of	the	product	we	consider
these	the	acquirers	of	the	project.	They	share	their	vision	and	roadmap	via	GitHub	and	the
JabRef	website.	The	following	persons	make	up	the	core	development	team	of	JabRef:
Stefan	Kolb,	Oliver	Kopp,	Tobias	Diez,	Matthias	Geiger,	Jörg	Lenhard,	Simon	Harrer,	Oscar
Gustafsson,	and	Christoph	Schwentker.

We	also	consider	these	core	developers	a	part	of	the	developers,	maintainers,	and
production	engineers	stakeholder	groups.	They	actively	contribute	to	the	development	of
the	project	and	are	the	ones	who	are	responsible	for	reviewing	and	merging	pull	requests.
This	means	they	determine	which	contributions	get	merged	and	which	get	rejected.	They	are
also	the	ones	who	manage	and	deploy	the	different	aspects	of	building,	testing,	and	running
the	system.

Since	JabRef	is	an	open	source	project	and	contributions	from	outside	are	actively
encouraged,	there	are	also	a	lot	of	people	outside	of	the	core	development	team	who	have
made	contributions	to	the	JabRef	code	base.	These	contributors	are	part	of	the	developers

JabRef

52

http://baobab.org/BAOLA-sparkling-drink
https://neuronade.com/
http://help.jabref.org/en/FAQcontributing
https://github.com/stefan-kolb
https://github.com/koppor
https://github.com/tobiasdiez
https://github.com/matthiasgeiger
https://github.com/lenhard
https://github.com/simonharrer
https://github.com/oscargus
https://github.com/Siedlerchr
https://github.com/JabRef/jabref/blob/master/AUTHORS

class,	since	they	make	contributions	to	the	development	of	JabRef	through	pull	requests.
Contributors	are	also	considered	to	be	part	of	the	maintainers,	since	they	provide
assistance	in	maintaining	the	system	by	making	pull	requests.

Both	the	core	developers	and	contributors	make	up	the	assessors	and	testers	groups.
When	someone	offers	to	contribute	to	the	project,	they	are	asked	to	run	a	set	of	unit	tests	to
make	sure	any	additions	do	not	cause	problems	in	the	system.	Furthermore,	the	assessors
and	testers	also	request	that	the	contributor	creates	additional	unit	tests	when	implementing
new	features.	All	the	developers	are	a	part	of	the	assessors	because	they	are	responsible
for	conforming	to	certain	standards	and	legal	regulations,	since	the	contributions	are
considered	to	be	made	under	the	MIT	license.

There	is	a	diverse	group	of	communicators	and	support	staff.	First	off	we	have	the
creators	of	the	JabRef	help	website,	mainly	the	core	developers	but	also	other	contributors
have	worked	on	this.	The	help	page	contains	most	of	the	information	needed	for	setting	up
and	using	JabRef.	There	is	also	a	forum	on	the	JabRef	website	where	users	and	other
people	can	ask	questions.	The	communicators	on	this	forum	with	the	most	replies	are	Tobias
Diez,	Matthias	Geiger,	and	Christoph	Schwentker,	who	are	all	part	of	the	core	developers.
The	user	mlep	also	deserves	a	mention	since	he	is	also	actively	involved	on	the	forum	and
is	one	of	the	moderators.	Contributors	and	the	core	developers	communicate	through
GitHub	by	addressing	issues	and	discussing	code.	Since	2016	JabRef	started	organizing	a
yearly	conference,	[JabCon]http://jabcon.jabref.org/,	for	users	of	JabRef	to	facilitate
discussion	between	users	and	developers.	This	year	the	JabCon	was	organized	by	Stefan
Kolb,	Oliver	Kopp,	and	Jörg	Lenhard.

Suppliers	that	JabRef	depends	on	are	GitHub,	the	different	databases	it	requests	data	from
(e.g.	Google	Scholar,	Springer,	ACM	Digital	Library),	BibTeX,	and	BibLaTeX.	Github	is
important	because	it	is	where	the	code	is	maintained	and	developed.	The	various	databases
are	used	to	extract	information	from	to	create	a	bibliography,	which	can	then	be	exported
using	BibTeX	or	BibLaTeX.

Since	JabRef	is	released	under	the	MIT	license	the	users	of	the	system	are	hard	to	pin
down,	since	anyone	could	download	JabRef	and	make	use	of	it.	Since	JabRef	is	a	system
for	managing	references	we	expect	the	main	part	of	the	users	to	consist	of	students	and
universities.	Since	the	users	download	the	system	and	then	run	the	system	locally	we
consider	the	users	to	also	be	the	system	adminstrators.

Context	view

JabRef

53

https://github.com/JabRef/jabref/blob/master/LICENSE.md
https://help.jabref.org/en/
http://discourse.jabref.org/
http://discourse.jabref.org/users/tobiasdiez/summary
http://discourse.jabref.org/users/matthiasgeiger/summary
http://discourse.jabref.org/users/Siedlerchr/summary
http://discourse.jabref.org/users/mlep/summary
http://discourse.jabref.org/groups/moderators
http://jabcon.jabref.org/
https://github.com/stefan-kolb
https://github.com/koppor
https://github.com/lenhard
https://scholar.google.nl/
http://www.springer.com
http://dl.acm.org/
http://www.bibtex.org/
https://www.ctan.org/pkg/biblatex
https://github.com/JabRef/jabref/blob/master/LICENSE.md

In	this	section	we	define	the	context	in	which	JabRef	operates	and	the	interactions	of	JabRef
with	its	environment.	First	we	give	a	brief	overview	of	the	system	scope	and	responsibilities.
Afterwards	we	briefly	introduce	the	different	entities	with	which	JabRef	interacts.

System	scope

The	main	function	of	JabRef	is	to	allow	users	to	create,	maintain,	and	export	bibliographies.
In	short,	the	most	important	responsibilities	and	capabilities	of	the	system	are:

Empowering	the	users	to	construct	bibliographies	by	giving	users	the	possibility	to
retrieve	(information	about)	articles	and	papers	from	large	databases.
Enabling	users	to	add,	edit,	and	delete	entries	in	their	bibliographies.
Allowing	the	users	to	export	the	bibliographies	to	BibTeX	and	BibLaTeX	files.
Supporting	multiple	languages	in	order	to	aid	non-English	speaking	users.
Supporting	multiple	platforms	(e.g.	Linux,	Windows,	and	Mac).

Context	view	diagram

The	diagram	below	in	Figure	1	shows	the	context	view	of	JabRef.	The	context	view	diagram
shows	the	external	entities,	as	well	as	the	most	important	stakeholders.	In	this	section	we
will	provide	some	short	descriptions	for	some	of	the	entities	that	have	not	been	mentioned
before	or	that	require	some	additional	explanation.

Figure	1:	Context	view	of	JabRef.

JabRef

54

To	help	developing	and	maintaining	the	code	JabRef	uses	a	number	of	tools,	these	fall
under	the	code	quality.	Codacy	is	used	for	automatic	checking	of	code	quality,	by	providing
insight	into	code	style,	duplication,	and	code	complexity.	Codecov	helps	the	developers	to
automatically	check	the	code	coverage	after	implementing	changes	and	to	expose	bugs	and
vulnerabilities.	VersionEye	is	used	to	prevent	having	outdated	dependencies	and	license
violations.	For	checking	if	new	contributions	do	not	cause	any	problems	JabRef	uses	Travis
CI	for	continuous	integration.	Furthermore,	since	JabRef	is	programmed	in	Java	it	uses
JUnit	as	a	testing	framework.

To	create	bibliographies	JabRef	allows	users	to	retrieve	data	from	databases,	such	as
Google	Scholar,	ACM	Digital	Library,	etc.,	to	create	references.	These	bibliographies	can
then	be	exported	to	BibTeX	or	BibLaTeX	files.

JabRef	also	has	some	competitors	that	provide	similar	services.	Some	popular	alternative
bibliography	managers	are	Mendeley,	Zotero,	and	BibDesk.

Development	view
In	this	section,	we	will	look	into	the	architectural	principles,	patterns,	and	code	guidelines
that	govern	the	development	of	JabRef.	Following	the	definition	of	Rozanski	and	Woods	[1],
we	show	how	JabRef	is	structured	and	what	standards	the	development	process	upholds.

Module	Organization

Prior	to	6	September	2016,	JabRef	had	reportedly	a	lack	of	clear	general	architecture	[2].
Currently,	the	overall	system	follows	a	modular	structure	splitting	the	system	into	three	major
components.	The	architecture	shows	signs	of	a	Model	View	Controller	(MVC)	inspired
design,	with	additional	smaller	components	hooked	into	an	event	bus.	Minor	components,
that	are	not	directly	at	the	core	of	the	application,	are	subscribed	to	this	event	bus.	This
allows	them	to	still	act	upon	changes	of	the	major	components	without	having	to	resort	to
changing	the	core	architecture.	Furthermore,	these	minor	components	can	in	turn	influence
the	core	components.	Generally,	in	a	MVC	design	the	system	is	split	into	three	major
components:	the	model,	view,	and	controller.	The	model	contains	all	the	data	structures	and
is	commanded	by	the	controller.	Similarly,	the	view	is	also	updated	by	the	model	through
notifications	on	changes	in	the	model	and	also	exerts	influence	on	the	controller	[3].
However,	there	are	several	dependencies	allowed	between	some	components	in	JabRef
indicating	clear	distinctions	from	a	pure	MVC	design.	We	note	this	difference	in	the	following
discussion	of	the	major	components.	The	overall	modular	structure	of	JabRef	is	depicted	in
Figure	2,	which	shows	the	major	interactions	of	the	system	and	dependencies	of	the	entire
architecture.

JabRef

55

https://www.codacy.com/
https://codecov.io/
https://www.versioneye.com/
https://travis-ci.org/
http://junit.org/
https://scholar.google.nl/
http://dl.acm.org/
https://www.mendeley.com/
https://www.zotero.org/
http://bibdesk.sourceforge.net/

Core	components:

UI:	The	user	interface	(UI)	is	split	into	two	major	parts:	the	command	line	interface
(CLI)	and	the	graphical	user	interface	(GUI).	The		UI		is	initialized	by	the		Launcher	,
which	launches	the	entire	application.	The		GUI		can	communicate	directly	with	all	the
other	core	components,	which	include	the		Logic		and	the		Model		components.	As	a
result,	this	differs	from	an	MVC	pattern,	because	the		GUI		is	able	to	directly	manipulate
the		Model		bypassing	the		Logic		component.	Moreover,	the		UI		component	can
interact	with	the		Preferences		containing	all	the	application	preferences	of	the	user.

Logic:	The		Logic		unit	is	responsible	for	updating	the	model,	which	includes	reading,
writing,	importing,	exporting,	and	general	manipulation	of	the	model.	The		Logic		is	also
responsible	for	logging	errors	and	warnings	that	occur	during	run-time.	Inside	the
	Logic		component	the	most	important	sub-components	include:

Logging	to	register	and	report	all	warnings	and	errors.
Handling	importing	of	files	(such	as	parsing	and	creating	the	respective	data
structures	for	storing	in	the		Model).
Fetching	entries	from	varying	identifiers	(DOI,	ISBN),	via	web	search,	etc.
Formatting	of	the	data	obtained	from	various	sources	to	be	displayed	in	the	UI.

Model:	The		Model		contains	the	most	important	data	structures	of	the	system.	Among
these	components,	the		EventBus		is	one	of	the	most	important	ones,	as	it	allows
modules	outside	the	core	of	the	system	to	interact	upon	changes	happening	inside	the
core.	Moreover,	the		Model		holds	the	data	structure	that	stores	the	bibliography
databases	(containing	entries,	categorization	of	entries,	user	comments,	etc.)	the	user
in	the	end	creates.	The		Model		component	only	interacts	with	the		Logic		component
and	does	not	depend	on	any	other	module.	Upon	any	change	occurring	in	the	sub-
modules,	the		Model		(and	also	the		UI)	will	be	updated	accordingly.	However,	the	logic
behind	several	sub-components	of	the		Model		(BibDatabases	,		BibEntries	,		Events	,
and	related	aspects)	is	not	always	'absolute'.	This	means	that	small	parts	related	to	the
logic	of	these	sub-components	are	found	inside	the		Model	,	rather	than	in	the		Logic	
component.	As	a	result,	this	clearly	differs	from	the	general	MVC	design.

JabRef

56

Figure	2:	Modular	structure	of	JabRef	with	allowed	dependencies	between	components.

Standardization	of	Design

The	standard	of	design	can	be	split	into	two	parts:	the	code	style	and	the	dependency
maintenance.

The	entirety	of	the	code	style	is	documented	in	the	following	JabRef	wiki	guide.	Developers
wishing	to	make	contributions	to	JabRef	should	adhere	to	the	code	style	described.	That
way	a	consistent	style	of	code	is	guaranteed,	which	prevents	the	code	from	turning	into
spaghetti	code.	A	short	summary	of	the	code	style	guidelines	is	as	follows:

Code	should	be	written	upholding	general	coding	standards	found	in	this	manual.
Exceptions	should	be	wrapped	and	re-thrown	with	a	localized	message,	so	that	users
can	read	what	the	error	was.
Users	should	also	never	see	the	technical	details,	as	most	would	not	be	able	to	make
out	what	it	is	about	anyway.
Logging	happens	by	using	Apache	Commons	Logging.
All	labels,	descriptions,	and	messages	visible	for	the	users	should	be	localized.
	GUI		confirmation	dialogs	should	avoid	asking	questions,	be	concise,	identify	the	item
at	risk,	and	have	named	buttons	for	the	actions.

JabRef

57

https://github.com/JabRef/jabref/wiki/Code-Howtos
https://github.com/cxxr/better-java

Furthermore,	to	improve	the	process	of	integrating	changes,	an	automated	checklist	for	each
PR	is	used	to	verify	that	sufficient	testing	and	appropriate	changes	have	been	performed.	In
this	checklist	(e.g.	in	PR	#2614),	the	contributor	can	mark	for	each	checklist	item	(e.g.
including	screenshots	when	making	some	'large'	UI	change)	whether	it	has	been	performed
or	leave	it	unchecked	if	it	does	not	directly	apply	to	the	contribution.

JabRef,	like	most	big	projects,	uses	a	lot	of	external	libraries	for	its	functionality.	In	order	for
developers	to	get	these	dependencies,	without	having	to	look	for	each	and	every	single	one
of	them	on	the	Internet,	JabRef	uses	the	Gradle	build	tool	to	automate	getting	the
dependencies	from	the	Internet.	When	developers	add	a	library,	because	it's	needed	in
order	to	develop	a	feature	or	to	fix	a	bug,	they	should	preferably	use	a	version	available	at
jCenter	and	add	that	version	to	the	build	script,		build.gradle	.

Standardization	of	testing

Standardization	of	testing	involves	two	components:	the	testing	itself	and	the	continuous
integration.	Testing	happens	exclusively	through	usage	of	JUnit	4,	a	unit	testing	framework
for	Java	unit	tests.	Code	coverage	by	the	tests	is	measured	using	Codacy,	a	tool	that	does
not	only	measure	code	coverage,	but	also	gives	useful	code	review	feedback	such	as
security	concerns	for	certain	lines	of	code,	code	style	violations,	best	practices,	etc.

Continuous	integration	(CI)	is	a	software	engineering	practice	where	developers	integrate
their	code	frequently,	which	results	in	the	benefit	that	errors	are	detected	quickly.	CI	happens
through	the	use	of	both	Travis	CI	and	CircleCI.	Travis	CI	is	used	to	execute	all	the	tests	in
the	system,	while	CircleCI	creates	binaries,	using	Gradle	and	Install4j,	and	uploads	them	as
builds	[4].

Technical	debt
Technical	debt	is	defined	as	"a	concept	in	programming	that	reflects	the	extra	development
work	that	arises	when	code	that	is	easy	to	implement	in	the	short	run	is	used	instead	of
applying	the	best	overall	solution"	[4].	If	technical	debt	is	left	unaddressed,	then	it	could
cause	problems	in	the	future,	possibly	resulting	in	software	refactoring	being	necessary.

Begin	2016,	JabRef	faced	a	few	big	issues	[5]	classified	under	one	of	these	categories:

Huge	segments	of	the	code	are	untested,	undocumented,	and	have	significant	bugs
and	problems.
In	JabRef's	lifespan,	lots	of	features,	UI	elements,	and	preferences	have	been	added,
but	are	wired	loosely	in	the	UI.	Moreover,	the	UI	lacks	consistency	and	structure.

JabRef

58

https://github.com/JabRef/jabref/pull/2614
https://gradle.org/
https://bintray.com/bintray/jcenter
https://www.codacy.com/
https://www.codacy.com/product
https://travis-ci.org/
https://circleci.com/
https://gradle.org/
https://www.ej-technologies.com/products/install4j/overview.html

Identification	of	technical	debt

Identifying	technical	debt	was	done	by	applying	the	code	analysis	tool	SonarQube	and	by
manual	inspection.	The	entire	project	of	JabRef	was	analysed	in	the	process	by	SonarQube.

Shockingly,	it	becomes	apparent	that	JabRef	has	147	days	of	technical	debt.	This	amount	of
days	is	a	metric	that	roughly	indicates	how	much	time	it	would	cost	to	fix	all	the	code	that
does	not	comply	with	standards	that	SonarQube	defines	[6].	These	standards	are	roughly
defined	as	a	weighted	sum	of	technical	debt	days,	based	on	the	severity	level	and
complexity	of	the	issue.	However,	it	should	also	be	noted	that	JabRef	still	has	the	highest
possible	maintainability	rating	(i.e.	an	A	rating,	indicating	less	than	5%	technical	debt	ratio,
with	JabRef	only	having	1.7%).	This	technical	debt	ratio	is	the	ratio	between	the	current
amount	of	technical	debt	and	the	amount	of	time	it	would	cost	to	rewrite	the	code	from
scratch,	which	is	estimated	based	on	either	the	amount	of	lines	of	code	or	the	complexity	of
the	project.

Tools	like	SonarQube	are	almost	never	perfect	in	classifying	whether	or	not	a	case	of
technical	debt	is	preventable	or	simply	because	there	was	no	better	option	found.	As	a
result,	manual	analysis	has	to	be	performed	in	order	to	distinguish	these	cases	a	lot	better.

To	find	the	cases	in	which	no	better	option	was	found,	the	rules	for	classifying	code
containing	technical	debt	should	be	carefully	considered.	These	rules	are	the	default	rules
defined	by	SonarQube,	which	can	be	found	inside	the	dashboard.	Some	of	these	rules	that
could	be	problematic	are	as	follows:

Classes	should	have	no	more	than	five	parents	in	the	class	hierarchy
Deep	class	hierarchies	may	lead	to	unstable	code,	therefore	SonarQube	raises	alarm	when
the	inheritance	depth	is	more	than	five.	However,	this	is	problematic	when	one	considers
extending	classes	that	are	part	of	the	Swing	API.	All	classes	that	are	nested	deeper	than	five
levels	are	extending	the	Swing	API	for	added	functionality	and	these	API	classes	are	nested
deep	themselves.	If/when	JabRef	is	ported	to	JavaFX,	this	technical	debt	could	be	paid
simply	by	virtue	of	JavaFX	possibly	having	its	GUI-related	classes	less	deep	in	the	class
hierarchy.

Control	statements	should	be	nested	no	more	than	three	times
Because	of	the	size	of	the	project,	there	are	many	use	cases	where	things	can	go	wrong,
resulting	in	exceptions	that	have	to	be	caught	causing	more	control	statement	nesting.	An
example	is	found	in		org.jabref.collab.FileUpdateMonitor	.	This	class	is	a	thread	that	needs
to	run	forever,	thus	it	introduces	a		while(true)		control	statement	in	the		run	-method,	which
continuously	checks	all	entries	using	a		for	-loop,	which	checks	if	an	entry	has	been
updated	using		if	,	but	checking	this	can	throw	an	exception,	which	is	caught	using	a		try	-
statement.	As	can	be	seen,	there	are	four	layers	of	control	statements,	which	are	all
essential	and	cannot	be	removed.

JabRef

59

https://www.sonarqube.org/

The	cyclomatic	complexity	of	a	single	method	should	not	exceed	10
Complex	code	is	hard	to	maintain	and	understand,	thus	SonarQube	sets	a	limit	of	10	on	the
cyclomatic	complexity	of	any	function.	A	shortcoming	of	this	rule	is	that	excessive	cyclomatic
complexity	cannot	always	be	avoided.	For	example:	the		transformSpecialCharacter		method
found	in		org.jabref.logic.layout.format.RTFChars.java		has	a	cyclomatic	complexity	of	148,
but	upon	closer	inspection,	this	is	necessary	due	to	the	overwhelming	amount	of	cases
possible.	It	is	most	likely	possible	to	introduce	a	new	method	for	every	ten	cases	to
eventually	get	code	that	is	compliant	with	the	"max.	complexity	of	ten"	rule,	but	this	also
leads	to	spaghetti-esque	code,	which	is	also	bad	code	practice.

Testing	debt

Part	of	the	technical	debt	of	a	system	is	the	debt	that	manifests	itself	when	code	is	not	tested
after	it	is	written.	In	order	to	find	this	testing	debt,	one	can	either	use	tools	or	perform	manual
inspection	on	the	code.

As	part	of	the	quality	control	tools,	JabRef	uses	CodeCov	to	generate	reports	about	the
amount	of	code	covered	by	Java	unit	tests.	The	report	generated	by	CodeCov	for	JabRef
shows	a	visualization	in	the	form	of	a	'sunburst',	of	which	several	are	shown	in	Figure	3.
These	sunburst	diagrams	show	all	the	different	packages	found	in	the	project	with	respect	to
their	package	structure.	In	the	center	ring,	the	top	level	package	is	shown,	and	each
consecutive	ring	around	the	previous	ring	shows	an	additional	deeper	package	level.	The
report	shows	that	the	overall	code	coverage	in	the	project	is	around	30%.	This	low
percentage	of	code	coverage	is	also	apparent	in	the	sunburst,	by	the	dominating	amount	of
red	circles.	However,	there	are	also	some	green	parts	visible	indicating	components	that	are
tested	sufficiently	with	unit	tests.

To	understand	why	the	code	is	tested	so	badly,	the	sunburst	can	show	what	the	code
coverage	is	in	specific	packages.	Using	the	previous	analysis	from	the	development	view	on
the	major	components	of	the	system,	we	investigate	the	major	components	of	the	system	in
more	detail:	the		GUI	,		Logic	,	and		Model	.	In	Figure	3,	we	zoom	into	the	GUI	package	and
see	that	the	whole	sunburst	is	almost	red.	Similarly,	we	zoom	into	the	Logic	and	Model
package	as	well.	We	observe	that	these	classes	contain	a	lot	more	green	areas,	indicating
that	a	lot	more	unit	testing	is	done	in	these	other	two	major	components.	

JabRef

60

https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://codecov.io/
https://codecov.io/gh/JabRef/jabref
https://codecov.io/gh/JabRef/jabref

Figure	3:	Sunbursts	of	the	GUI,	Logic,	and	Model	package.	Red	indicates	code	covered	for
less	than	70%,	whereas	code	covered	between	70%	and	100%	is	a	gradient	from	orange	to
green.

To	see	how	much	the	GUI	would	affect	the	code	coverage,	we	investigate	how	large	the	GUI
component	is	compared	to	other	parts	of	the	system.	In	Figure	4,	we	observe	that	the	GUI
consists	of	29,233	lines	out	of	the	total	of	53,630	that	are	considered	for	the	code	coverage.
This	is	already	more	than	half	of	the	entire	codebase.	Moreover,	we	observe	that	only	3.43%
of	the	GUI	was	tested,	explaining	why	the	code	coverage	is	reported	only	around	30%.

While	the	GUI	is	tested	very	badly,	the	other	two	major	components	have	reasonable	test
coverage.	The	logic	component,	achieves	a	code	coverage	of	67.20%.	The	model
component	has	a	much	higher	test	coverage	of	79.17%.

JabRef

61

Figure	4:	Distribution	of	the	size	of	all	system's	components	with	code	coverage	listed.	The
second	column	shows	the	total	amount	of	code	lines,	the	third	shows	the	amount	of	lines
covered,	the	fourth	the	amount	of	partial	lines	covered,	and	the	fifth	the	amount	of	lines
missed.

Naturally,	Figures	3	and	4	lead	to	the	question	why	it	is	the	case	that	the	GUI	component	is
hardly	tested.	By	investigating	previous	discussion	in	the	issues	and	PRs	on	GitHub,
@koppor	stated	in	PR	#1700	dating	back	to	09-08-2016	that	testing	the	GUI	is	difficult	and
would	be	left	alone,	partly	as	a	result	of	using	Java	Swing.	He	also	mentions	in	the	same
comment	that	in	order	to	test	the	GUI,	JabRef	would	have	to	switch	to	JavaFX.

We	have	previously	mentioned	that	the	logic	component	achieved	a	code	coverage	of
67.20%.	The	entire	logic	component	consists	of	16,383	lines	of	code.	While	this	percentage
of	code	coverage	seems	acceptable,	it	calls	for	the	need	to	investigate	why	this	is	not	more.
Looking	into	an	overview	of	the	logic	component	in	Figure	5,	we	see	that	tests	are	generally
covering	most	large	packages	around	a	similar	code	coverage	percentage.	To	see	why	the
largest	package,		importer	,	only	achieves	a	66.36%	code	coverage,	we	can	continue	going
into	the	deeper	layers	of	packages.

JabRef

62

https://github.com/koppor
https://github.com/JabRef/jabref/pull/1700#issuecomment-238637192

Figure	5:	Top	five	largest	packages	of	the	code	lines'	distribution	in	the	logic	package.

Inside		importer		it	becomes	clear	that	the	largest	package,		fileformat	,	is	thoroughly
tested.	However,	the	second	largest	package,		fetcher		is	almost	completely	untested.	If	we
look	into	the	amount	of	issues	and	PRs	tagged	with	a		testing		and		fetcher		label,	only	two
issues	regarding	this	are	found.	Furthermore,	no	PRs	are	labelled	with	these	two	labels.
However,	through	manual	inspection	of	the	source	code	there	are	tests	for	the	fetcher	to	be
found	inside	their	respective	package	for		importer.fetcher		tests.	However,	running	the
code	coverage	with	EclEmma	(recommended	by	the	development	guide)	reports	that
classes	inside	the	fetcher,	such	as		GoogleScholar.java		has	a	coverage	of	over	70%	while
this	CodeCov	reports	this	as	0%.	This	means	that	CodeCov	may	skew	the	image	of	having	a
lot	of	untested	code,	even	though	this	is	not	the	case.	We	can	see	this	very	clearly	by
comparing	the	EclEmma	code	coverages	reported	on	the		importer.fetcher		package	by
CodeCov	and	EclEmma	in	Table	1.	In	EclEmma	the	code	coverage	of	the	entire	package	is
86.2%,	while	in	CodeCov	only	a	small	5%.

Table	1:	Reported	line	coverage	of	the	top	5	largest	files	in	the		fetcher		package	by	both
CodeCov	and	EclEmma.	

Files CodeCov	coverage EclEmma	coverage

ArXiv.java 3.64% 89.5%

MedlineFetcher.java 3.84% 85.4%

GoogleScholar.java 0.00% 83.8%

AstrophysicsDataSystem.java 12.69% 87.3%

MrDLibFetcher.java 0.00% 73.5%

Total	package	coverage 5.39% 86.9%

Having	discovered	the	inconsistency	in	reporting	of	code	coverage	depending	on	tools,	it
calls	for	the	need	to	compare	the	total	code	coverage	reported	by	EclEmma	and	CodeCov
together.	We	run	EclEmma	over	the	entire	project	and	see	that	EclEmma	reports	a	much
higher	code	coverage	than	CodeCov!	The	reported	code	coverage	is	42.9%	on	the	main
part	of	the	program.	This	is	already	12%	higher	than	what	CodeCov	reported.

JabRef

63

https://github.com/JabRef/jabref/issues?q=is%3Aissue+is%3Aclosed+label%3Afetcher+label%3Atesting
https://github.com/JabRef/jabref/pulls?q=is%3Apr+is%3Aclosed+label%3Afetcher+label%3Atesting
https://github.com/JabRef/jabref/wiki/Guidelines-for-setting-up-a-local-workspace#eclipse

Deployment	view
The	deployment	view	looks	at	parts	of	the	system	that	are	relevant	once	it	has	been	built	[1].
It	defines	physical,	computational,	and	software-based	requirements	for	running	the	system.
A	diagram	of	the	deployment	view	is	given	in	Figure	6.

	
Figure	6:	A	graphical	overview	of	the	deployment	view.	All	individual	parts	will	be	explained
in	the	deployment	view.

First	of	all,	JabRef	is	a	Java	program,	and	thus	requires	Java	to	be	installed	in	order	to	be
able	to	run.	More	specifically,	because	of	its	JavaFX	dependencies,	running	JabRef	requires
Java	8	(version	60	or	newer).	The	Windows	installer	will	actually	install	Java	for	you	if	no
compatible	Java	installation	is	found	[7].	Because	JabRef	uses	Java	8,	it	can	only	be	run	on
technology	that	can	support	Java	8.	Moreover,	Java	8	can	be	run	on	a	variety	of	operating
systems	[8].	Also,	in	order	to	find	papers	on	the	Internet	through	JabRef,	JabRef	needs	a
working	internet	connection.

JabRef	requires	Gradle	to	be	built	and	Install4j	to	be	installed.	Gradle	also	handles	collecting
all	the	external	Java	dependencies	when	building	JabRef	from	source.	Getting	the
dependencies	by	looking	for	them	on	Google	is	not	only	tedious,	but	some	up-to-date
versions	of	the	dependencies	cannot	be	found	while	looking	on	the	internet.	Install4j	uses	a
executable		.jar		file	and	creates	a	platform-dependent	installer	for	the	executable.

Aside	from	the	memory	required	to	install	JabRef	in	the	first	place,	no	other	hardware
requirements	for	using	JabRef	are	mentioned	anywhere.	JabRef	requires	around	43	Mb	of
storage	space	to	be	installed.

Evolution	of	JabRef

JabRef

64

JabRef	has	changed	significantly	since	its	initial	release.	The	project	started	as	"just"	a
BibTeX/BibLaTeX	reader	and	nowadays	it	is	able	to	do	much	more.	All	notable	changes	to
the	project	are	documented	in	the	changelog.

JabRef	1.0	was	developed	to	replace	Bibkeeper	and	JBibtexManager,	and	to	fuse	their
functionalities	into	one	project.	In	between	JabRef	1.0	and	JabRef	2.0,	several	releases
have	been	made,	which	were	either	to	fix	bugs	or	to	add	new	features.	One	noteworthy
release	is	the	1.3	release,	made	on	9-5-2004.	This	release	contained	a	bug	which	rendered
some	features	unavailable,	so	the	download	link	for	the	release	was	removed	the	next	day.
Two	days	later,	JabRef	1.3.1	was	released	which	fixed	the	bug.

Two	years	and	two	months	after	the	release	of	JabRef	1.0,	JabRef	2.0	was	released	on	30-
01-2006.	This	release	added	many	features,	such	as	new	import/export	filters	and	handling
of	journal	name	abbreviation	and	unabbreviation.	Just	like	JabRef	1.3,	JabRef	2.0	contained
a	serious	bug	that	could	corrupt	data.	This	prompted	the	JabRef	team	to	release	JabRef
2.0.1	only	a	few	days	later	which	fixed	the	bug.	It	is	rather	hard	to	find	out	whether	or	not	the
added	features	for	every	new	version	were	added	per	request	of	the	community	or	added
because	the	developers	thought	they	were	necessary,	as	the	issues	on	GitHub	only	date
back	to	January	2016,	and	JabRef	3.0	was	released	on	29-11-2015.

For	almost	ten	years,	people	used	versions	of	JabRef	2.x	until	JabRef	3.0	was	released.
JabRef	3.0	contains	a	lot	of	extra	functionality,	such	as:	support	for	OpenOffice	4,	search
from	Springer,	and	more.	The	main	change	between	JabRef	2.11.1	(the	last	version	of
JabRef	2.x	to	be	released)	and	JabRef	3.0	is	the	usage	of	Java	8	features,	moving	the
project	towards	making	use	of	Java	8.	Because	the	current	changelog	contains	a	lot	of
entries	which	are	fixes	for	certain	issues	and	feature	requests,	it	is	likely	that	most	of	the
added	features	were	implemented	on	request	of	the	community.	Another	big	change,
beginning	just	before	the	release	of	JabRef	3.0,	is	the	migration	of	JabRef	from	Sourceforge
to	GitHub.	Issue	#111	indicates	that	the	first	steps	towards	migrating	the	project	were	made
around	three	months	before	the	JabRef	3.0	release,	and	it	was	officially	considered	done	on
16-02-2017,	the	date	that	the	issue	was	closed.

Nowadays,	the	most	recent	stable	release	version	of	JabRef	(as	of	2-4-2017)	is	version
3.8.2,	and	the	lead	developers	are	making	plans	for	releasing	JabRef	4.0,	which	would	move
JabRef	from	Swing	to	JavaFX.	This	is	necessary,	considering	the	fact	that	JavaFX	is
intended	to	replace	Swing	as	a	GUI	library.	It	would	also	remove	a	lot	of	testing	debt,	as
GUI-related	classes	can	be	tested	a	lot	easier	when	written	using	JavaFX.	The	evolution	of
JabRef	is	visualized	in	a	short	video.

Conclusion

JabRef

65

https://github.com/JabRef/jabref/blob/master/CHANGELOG.md
https://sourceforge.net/p/jabref/news/?page=1
https://de.wikipedia.org/wiki/JabRef
https://sourceforge.net/p/jabref/news/?source=navbar
https://github.com/JabRef/jabref/releases?after=v3.1
https://www.openoffice.org/download/
http://www.springer.com/gp/
https://github.com/JabRef/jabref/issues/111
https://en.wikipedia.org/wiki/JavaFX
https://www.youtube.com/watch?v=WFXNmAKG6vA

JabRef	is	a	tool	that	started	out	as	a	manager	of	BibTeX	and	BibLaTeX	reference	files,	and
nowadays	it	can	do	a	lot	more	than	that,	e.g.	looking	up	papers	on	the	Internet.	In	this
chapter,	we	analyzed	the	project	from	different	views	and	perspectives.	Each	of	these	gave
more	insight	into	the	architecture	of	JabRef.

First	off,	in	the	stakeholder	analysis,	we	discovered	that	JabRef	is	actively	maintained	and
developed	by	a	small	team	of	developers	(the	JabRef	team)	and	external	contributors.	Aside
from	that,	the	other	stakeholders	were	clearly	defined	according	to	the	stakeholder	classes
in	Rozanski	and	Woods	[1].

After	that,	in	the	context	view,	the	system	scope	of	JabRef	is	given.	We	explained	what	tools
JabRef	uses	to	help	maintaining	and	developing	code,	as	well	as	give	an	overview	of	all	the
interactions	between	JabRef	and	its	environment.

Next,	in	the	development	view,	the	principles	that	guide	the	development	of	JabRef	are
given.	This	part	explained	the	core	components	of	JabRef,	and	we	discovered	that	the
architecture	of	JabRef	drew	inspiration	from	an	MVC	design	pattern.	The	development	view
also	explained	some	of	the	testing	and	design	standards.

Afterwards,	in	the	technical	debt	part,	we	discussed	the	technical	debt	that	JabRef	is	facing.
JabRef	faces	a	lot	of	technical	debt,	but	that	is	mainly	because	it	is	such	a	big	project.	Also,
some	parts	of	JabRef	are	barely	tested,	but	this	is	because	these	parts	are	GUI-related.	It	is
very	hard	to	test	these	right	now	as	JabRef	still	uses	the	Swing	API	and	not	JavaFX.	We
also	discovered	that	CodeCov	gave	a	skewed	image	of	the	amount	of	tested	code	compared
to	EclEmma.

Furthermore,	in	the	deployment	view,	the	main	components	necessary	for	launching	JabRef
were	given.	There	was	not	a	lot	to	discuss	here,	as	JabRef	is	a	lightweight	Java	program
without	specific	hardware	requirements	beyond	43	MB	of	memory	available	on	an	HDD	or
SSD.

Finally,	in	the	evolution	perspective,	we	discussed	the	evolution	of	JabRef	from	its	first
launch	in	late	2003	to	the	version	we	use	nowadays.	We	also	noted	the	migration	from
hosting	the	project	on	Sourceforge	to	GitHub.	This	started	right	before	the	JabRef	3.0
release	and	ended	mid-February	this	year,	just	before	we	started	to	analyze	JabRef.

JabRef	is	a	powerful	tool	nowadays,	and	definitely	has	potential	to	be	used	widely	in	the
future.

References

JabRef

66

1.	Rozanski,	N.	Woods,	E.	Software	Systems	Architecture:	Working	with	Stakeholders	Using
Viewpoints	and	Perspectives.	Addison-Wesley,	2012.	
2.	Harrer,	S.	Kolb,	S.	Kopp,	O.	Lenhard,	J.	High	Level	Documentation
https://github.com/JabRef/jabref/wiki/High-Level-Documentation,	Wiki	page,	submitted	06-
07-16,	consulted	on	06-03-17.	
3.	Harrer,	S.	Kolb,	S.	Kopp,	O.	CI	https://github.com/JabRef/jabref/wiki/CI,	Wiki	page,
submitted	14-02-17,	consulted	on	06-03-17.	
4.	Unknown	author,	Technical	Debt,	date	of	publication	unknown,	consulted	on	12-3-2017,
https://www.techopedia.com/definition/27913/technical-debt
5.	Oliver	Kopp,	Development	strategy,	published	on	22-12-2016,	consulted	on	12-3-2017,
https://github.com/JabRef/jabref/wiki/Development-Strategy
6.	Ann	Campbell,	Technical	Debt,	published	11-1-2016,	consulted	on	10-3-2017,
https://docs.sonarqube.org/display/SONARQUBE52/Technical+Debt	
7.	The	JabRef	team,	Installation,	date	of	publication	unknown,	consulted	on	1-4-2017,
http://help.jabref.org/en/Installation	
8.	Oracle,	Oracle	JDK	8	and	JRE	8	Certified	System	Configurations	Contents,	date	of
publication	unknown,	consulted	on	1-4-2017,
http://www.oracle.com/technetwork/java/javase/certconfig-2095354.html	

JabRef

67

https://github.com/JabRef/jabref/wiki/High-Level-Documentation
https://github.com/JabRef/jabref/wiki/CI
https://www.techopedia.com/definition/27913/technical-debt
https://github.com/JabRef/jabref/wiki/Development-Strategy
https://docs.sonarqube.org/display/SONARQUBE52/Technical+Debt
http://help.jabref.org/en/Installation
http://www.oracle.com/technetwork/java/javase/certconfig-2095354.html

JUnit	5:	the	next	generation	of	testing	for
the	JVM

By	Liam	Clark,	Thomas	Overklift	and	Jean	de	Leeuw.

Abstract
JUnit	5	is	the	successor	of	JUnit	4,	which	is	the	largest	Java	testing	framework	and	third
most	imported	Java	package	currently	in	existence.	The	vision	of	JUnit	5	is	to	provide	a
versatile	testing	framework	which	is	not	tightly	coupled	towards	several	stakeholders	like
JUnit	4	is.

This	chapter	provides	different	views	into	the	project,	creating	an	overview	of	the	project.
These	different	perspectives	range	from	an	architectural	perspective	to	a	developers
perspective	and	more.	Furthermore,	the	chapter	also	describes	the	internal	workings	of	the
system	and	highlights	the	differences	between	JUnit	5	and	its	predecessor,	JUnit	4.	We
conclude	the	chapter	by	discussing	the	success	of	the	vision	of	JUnit	5.

Table	of	contents
Introduction
Stakeholders
Context	View

JUnit5

68

https://github.com/LiamClark
https://github.com/Tarovk
https://github.com/JAdeLeeuw

Functional	View
Development	View
Evolution	Perspective
Conclusion

Introduction
Unit	testing	Java	code	is	traditionally	done	with	JUnit.	The	fourth	iteration	of	JUnit,	JUnit	4,	is
at	the	time	of	writing	the	largest	and	most	commonly	used	Java	testing	framework.
Unfortunately,	JUnit	4	suffers	from	architectural	problems,	hampering	the	development	of
JUnit	4.

The	JUnit	team	wants	to	create	a	solid	foundation	for	the	future	iterations	of	JUnit,	extending
past	JUnit	5,	called		junit-platform	.	The	foundation	should	solve	some	of	the	architectural
problems	of	JUnit	4	and	ease	development	of	future	JUnit	versions	that	can	be	built	on	top
of	the	foundation.	
The	first	new	version	JUnit	team	wants	to	create	is	JUnit	5,	a.k.a.		junit-jupiter	,	containing
new	features	while	maintaining	most	of	the	core	features	of	JUnit	4.
JUnit	4	as	a	whole	will	still	be	supported	through		junit-vintage	,	a	version	that	is	put	on	top
of	the	foundation	just	like	JUnit	5.	This	structure	with	multiple	versions	eases	the	transition
from	one	version	of	JUnit	to	another.	The	foundation	combined	with	different	(new)	iterations
of	JUnit	forms	the	vision	of	the	JUnit	team:	a	framework	that	is	versatile,	able	to	evolve	over
time,	and	loosely	coupled	towards	external	stakeholders.	This	is	what	the	architects	of	JUnit
ultimately	strive	to	accomplish.

At	the	time	of	writing,	JUnit	5	is	still	in	development,	with	the	first	official	release	planned	on
the	24th	of	August	[32].	Even	though	it	is	still	in	development,	JUnit	5	is	usable	and	already
covers	a	lot	of	use	cases.

This	chapter	provides	insight	into	the	JUnit	5	project,	giving	the	readers	an	understanding	of
the	project	as	a	whole.	The	chapter	starts	by	covering	the	different	stakeholders	and
explaining	their	perspectives.	Then,	it	will	put	JUnit	5	into	context,	describing	the	different
relationships	JUnit	5	has	with	other	projects.	After	that,	the	chapter	will	explain	the	structure
of	the	system.	At	the	end	of	the	chapter	the	differences	between	JUnit	4	and	JUnit	5	will	be
explained,	and	the	reasons	for	the	creation	of	JUnit	5.	The	chapter	concludes	with	our
personal	opinion	on	the	JUnit	5	project	as	a	whole,	and	if,	according	to	us,	they	succeeded
in	their	mission.

Stakeholders

JUnit5

69

Using	the	stakeholder	analysis	categories	in	the	book	Software	Systems	Architecture:
Working	with	Stakeholders	Using	Viewpoints	and	Perspectives	we	have	identified	several
groups	of	stakeholders	in	the	JUnit	5	system	[1].	In	the	sections	below	we	will	identify	the
stakeholders	by	category.

Acquirers

Acquirers	can	be	seen	as	business	sponsors	and	are	in	of	JUnit	5's	case	mainly	external
investors.	The	development	of	JUnit	5	has	started	with	the	launch	of	a	crowd	funding
campaign	on	Indiegogo	[2].	Therefore	all	of	the	companies	or	individuals	that	funded	the
campaign	can	(to	a	certain	extent)	be	marked	as	acquirers.	We	would	like	to	name	American
Express	as	the	main	sponsor	and	Pivotal	as	the	main	contributor	of	the	Indiegogo	campaign.

Assessors

Assessors	are	stakeholders	that	oversee	whether	legal	constraints	are	complied	with.	We
did	identify	Indiegogo	as	an	assessor	because	of	the	crowdfunding	campaign.	In	the
campaign	JUnit	states	a	certain	vision	and	several	features	they	want	to	include	in	the	new
version	of	JUnit.	By	using	Indiegogo	in	this	manner	they	are	required	to	actually	implement
what	they	promised.	
Another	legal	constraint	that	one	could	think	of	are	the	licences	that	the	dependencies	of
JUnit	have.	The	four	dependencies	of	JUnit	(in	production),	Java	[3],	Surefire	[4],	OTA4J	[33]
and	Gradle	[5],	luckily	have	licences	that	allow	free	use	and	distribution	of	software.	Finally,
there	are	the	licenses	[6]	that	JUnit	itself	uses.	These	licenses	have	an	effect	on	the	users	of
JUnit	and	potentially	limit	certain	usages	of	the	framework.

Contributors	/	Developers

In	the	case	of	JUnit	5	contributors	are	more	than	just	developers.	Contributors	are	also
testers	and	maintainers.	When	contributing	to	JUnit	a	developer	has	to	test	his	or	her	own
contribution	before	it	is	merged	into	the	code	base.	A	contribution	can	be	the	implementation
of	a	new	feature,	but	it	can	also	be	a	bug	fix,	an	update	to	the	documentation	or	a	refactor.
Therefore	it	differs	per	contribution	what	role	a	contributor	has.	
JUnit	has	many	minor	and	major	contributors	but	we'd	like	to	identify	the	five	people	who
have	taken	on	the	lion's	share	of	the	development	of	JUnit	5:

@sbrannen
@marcphillipp
@jlink
@mmerdes
@bechte

JUnit5

70

https://github.com/sbrannen
https://github.com/marcphilipp
https://github.com/jlink
https://github.com/mmerdes
https://github.com/bechte

Suppliers

We	have	chosen	to	divide	the	suppliers	of	JUnit	5	into	two	different	subcategories:	the	first
category	consists	of	the	suppliers	that	are	used	for	the	development	of	JUnit	5;	the	second
category	consists	of	suppliers	that	support	the	end	use	of	JUnit	5	in	some	way.

Development	suppliers
Java	1.8
Clover
Gradle
Jenkins	/	Travis	CI	/	AppVeyor

End	use	suppliers
IDEs	(e.g.	IntelliJ)
Maven	/	Gradle

Support	staff

JUnit	5	has	no	dedicated	support	staff.	Whenever	a	user	runs	into	problems	they	have
several	options:

1.	 Consult	the	JUnit	5	user	guide	[7].	JUnit	5	has	an	extensive	user	guide	that	is	actively
maintained	by	contributors	and	the	main	five	developers	identified	above.

2.	 Post	a	question	on	Stack	Overflow	[8].	Stack	Overflow	has	a	very	active	community
of	developers	in	general	and	JUnit	5	contributors.	Posting	questions	here	often	yields
good	results.

3.	 Open	an	issue	on	Github	[9].	For	more	complicated	problems	or	suggestions	for
additional	functionality	a	user	can	open	an	issue	on	GitHub,	requesting	changes	or
features.

Communicators

Communicators	are	the	experts	of	the	system	that	explain	the	system	(and	its	architecture)
to	others	and	additionally	train	the	support	staff	of	the	system.	Due	to	the	lack	of	a	dedicated
support	staff,	the	training	thereof	is	not	an	applicable	task	in	JUnit	5.	Therefore	the	first	place
to	go	to	if	you	want	to	obtain	information	about	the	system	would	be	the	user	guide	[7].
Additionally,	if	we	look	at	the	support	options	that	are	provided	to	end	users,	we	can	see	that
the	five	main	contributors	that	we	identified	play	an	important	role	in	the	provision	of	support.
They	work	on	the	support	guide	and	comment	on	issues	on	GitHub.	When	looking	at	these
five	contributors,	we	can	identify	two	contributors	that	are	the	most	pro-active	in	their
communication:

@sbrannen

JUnit5

71

https://github.com/sbrannen

@marcphillipp

Additionally	we	know	that	these	two	contributors	spread	their	knowledge	by	giving	lectures
at	conferences	and	institutions.	Marc	Phillip	gave	a	guest	lecture	at	the	TU	Delft,	and	Sam
Brannen	has	held	talks	about	JUnit	[10]	during	conferences	in	the	past.

Another	type	of	communicator	that	is	not	necessarily	directly	connected	to	JUnit	is	teachers.
Teachers	can	introduce	students	to	the	JUnit	testing	framework	and	familiarise	them	with
testing	principles.	An	example	in	this	category	would	be	Arie	van	Deursen.

Users

Users	are	the	end	users	of	JUnit	5	who	use	JUnit	to	test	their	software.	According	to
statistics	mined	from	Github	[11],	JUnit	4	has	a	lot	of	users,	since	it	is	the	third	most	used
package	in	Java	applications	right	after	Java.util	and	Java.io.

Ecosystem	enhancers

We	define	ecosystem	enhancers	as	stakeholders	that	provide	additional	functionality	on	top
of	the	features	that	JUnit	provides.	There	are	quite	a	few	of	these	ecosystem	enhancers.
Some	examples	are:

Mockito
AssertJ
Jukito
Cucumber
Spring

Especially	Spring	is	an	interesting	stakeholder	here	because	one	of	the	main	developers	of
JUnit,	@sbrannen,	is	also	a	main	contributor	of	the	Spring	Framework.

Competitors

While	JUnit	is	the	largest	testing	framework	for	the	JVM,	it	is	not	the	only	one.	There	are
several	other	testing	frameworks	available	for	the	JVM.	Some	examples	are:

Scalatest
TestNG
Spock

Power	to	interest

JUnit5

72

https://github.com/marcphilipp
https://github.com/sbrannen

We	have	created	a	power	vs.	interest	grid	to	show	the	importance	of	stakeholders	in
comparison	to	their	interest	in	the	development	of	the	JUnit	5	framework.	The	most
important	stakeholders	we	have	identified	are	'the	big	5'.	These	are	the	five	main
contributors	we	identified	above.	You	can	see	the	corresponding	stakeholder	grid	we	have
created	in	Fig.	1.

Fig.	1:	The	power	to	interest	grid	for	JUnit	5	stakeholders

Context	view
In	the	book	Software	Systems	Architecture	a	context	view	is	defined	as	follows:	"Describes
the	relationships,	dependencies,	and	interactions	between	the	system	and	its	environment"
[1].	The	environment	that	is	mentioned	is	even	further	specified:	"the	people,	systems,	and
external	entities	with	which	it	interacts".	To	place	JUnit	5	into	proper	context,	we	combine
information	from	multiple	sources:	stakeholders	that	we	have	identified,	together	with	their
representation	in	both	JUnit	4	and	JUnit	5.

JUnit5

73

OTA4J

An	interesting	new	development	is	the	creation	of	the	'Open	Test	Alliance	for	the	JVM'.	This
alliance	aims	to	create	a	standardised	way	of	test	assertion	failures	and	errors.	This	allows
IDEs	to	improve	the	way	different	testing	frameworks	are	integrated.	The	alliance	was
initiated	by	the	architects	of	JUnit.	Several	parties,	including	IDEs	and	several	(competing)
testing	frameworks	have	been	contacted	about	the	initiative.	In	Fig.	2	we	have	visualised	the
different	parties	that	have	been	contacted.	It	should	be	noted	that	these	parties	are	not

JUnit5

74

initiated	by	the	architects	of	JUnit.	Several	parties,	including	IDEs	and	several	(competing)
testing	frameworks	have	been	contacted	about	the	initiative.	In	Fig.	2	we	have	visualised	the
different	parties	that	have	been	contacted.	It	should	be	noted	that	these	parties	are	not
necessarily	involved	with	the	initiative	(yet).	

Fig.	2:	All	parties	that	have	been	contacted	about	the	OTA4J.

Context	View	Visualisation

JUnit5

75

Fig.	3:	The	context	view	for	JUnit	5.

You	can	see	the	main	contributors	of	JUnit	5	(and	to	a	certain	extent	JUnit	4)	as	the	most
important	stakeholders,	because	they	decide	which	features	are	included	and	are	not.
Furthermore	we	have	decided	to	include	American	Express	as	an	acquirer	because	they
were	one	of	the	main	sponsors	of	the	Indiegogo	campaign	that	initiated	the	development	of
JUnit	5	as	mentioned	before.	We	have	also	included	Pivotal	as	acquirer	because	they	were
one	of	the	main	contributors	to	the	Indiegogo	campaign;	they	contributed	cash	as	well	as	6
weeks	of	developer	time	for	the	development	of	lambda	[35].

Noteworthy	is	the	relation	between	JUnit	4	and	JUnit	5	as	respectively	predecessor	and
successor,	we	talk	about	this	in	more	detail	in	the	evolution	perspective.	We	have	tried	to
visualise	the	relation	between	the	two	versions	of	the	framework	and	the	IDEs	in	light	of	the
API	that	JUnit	provides	for	them.	You	can	also	see	there	are	a	great	many	'Ecosystem
enhancers'.	These	are	frameworks	or	plug-ins	that	use	JUnit	and	provide	additional
functionality,	support	or	integration	options.	The	relationships	between	ecosystem	enhancers
themselves	shift	greatly	with	the	introduction	of	JUnit	5,	allowing	them	to	work	together	in	a
better	way.	More	information	on	groups	of	stakeholders	can	be	found	in	our	stakeholder
analysis.

Functional	View

Capabilities

JUnit5

76

Functional	View

Capabilities

From	the	JUnit	5	user	guide	three	key	capabilities	can	be	found	[16].

1.	 The	JUnit	Platform	serves	as	a	foundation	for	launching	testing	frameworks	on	the	JVM.
It	also	defines	the	TestEngine	API	for	developing	a	testing	framework	that	runs	on	the
platform.

2.	 JUnit	Jupiter	is	the	combination	of	the	new	programming	model	and	extension	model	for
writing	tests	and	extensions	in	JUnit	5.

3.	 JUnit	Vintage	provides	a	TestEngine	for	running	JUnit	3	and	JUnit	4	based	tests	on	the
platform.

JUnit	5	should	be	able	to	run	all	sorts	of	tests	on	the	JVM,	including	those	from	other
frameworks.	It	also	provides	its	own	new	test	engine	with	new	features	and	extension
possibilities.	JUnit	5's	approach	must	be	able	to	support	the	older	versions	of	JUnit	as	well.
We	will	now	introduce	architectural	principles	that	we	think	may	have	driven	the	design.

1.	 Backwards	compatibility	and	migration	are	required	for	JUnit	5's	adoption.
2.	 Any	entity	integrating	with	JUnit	5	should	do	so	in	a	loosely	coupled	manner.
3.	 Key	stakeholders	should	be	provided	with	a	dedicated	interface	for	their	tasks.
4.	 Minimal	dependencies	to	further	drive	loose	coupling.

External	Interfaces

In	Fig.	4	one	can	identify	three	external	interfaces:

1.	 jupiter-api
2.	 junit-4
3.	 build-tool-plugins

JUnit5

77

Fig.	4	External	interfaces	of	JUnit	5.

We	will	now	discuss	the	responsibilities	and	the	philosophy	underlying	the	design	of	each	of
these	interfaces	by	applying	the	architectural	principles	we	identified.

Firstly	we	consider	the	jupiter-api.	jupiter-api	strictly	follows	the	minimal	dependency
principle.	This	interface	therefore	only	contains	a	declarative	API	without	implementation.

Secondly,	the	JUnit	4	interface	violates	the	minimal	dependency	principle.	JUnit	4	is	a	rather
fat	dependency,	but	it	is	still	provided	as	an	external	interface	due	to	the	backwards
compatibility	principle.	This	indicates	that	the	JUnit	architects	consider	backwards
compatibility	to	be	more	important	than	minimal	dependencies.

Lastly,	the	dedicated	interface	principle	applies	when	we	consider	the	build-tools.	In	JUnit	4
build-tool	integration	was	not	taken	into	consideration.	Because	the	dedicated	interface
principle	was	judiciously	applied	this	relationship	has	now	rigorously	changed.	We	highlight
here	that	it	is	an	architectural	principle	of	importance	and	discuss	the	effects	in	the	evolution
perspective.	
The	build-tools	also	adhere	to	the	minimal	dependency	principle;	they	consist	of	a	different
and	minimal	dependency	for	every	build-tool	JUnit	wishes	to	integrate	with.

There	is	another	external	interface	that	is	a	bit	harder	to	identify.	It	currently	is	not	an
external	interface,	but	will	become	one	in	the	future.	When	the	build-tool-plugins	migrate	to
their	owners,	they	will	depend	on	the	launcher	module.	The	launcher	module	will	then

JUnit5

78

become	an	external	interface.	
In	this	case	the	loose	coupling	principle	becomes	key,	this	principle	has	been	mainly	instated
to	avoid	the	situation	in	JUnit	4	(see	evolutionary	perspective).

Development	View
This	section	consists	of	the	development	view	of	the	JUnit	5	project.	We	have	divided	this
section	into	several	subsections:	module	structures,	development	guidelines,	and	testing
approach.

Module	Structures

Due	to	the	size	of	JUnit	5,	the	code	has	been	split	into	four	sub-projects	[16]	and	each	of
these	consists	of	multiple	modules.	Modules	are	parts	of	the	code	base	that	are	related	to
each	other	and	are	therefore	grouped	together.	A	sub-project	is	a	group	of	these	modules
that	are	related	and	are	therefore	grouped	together.

These	sub-projects	and	modules	were	made	to	create	a	(for	humans)	logical	structure	of	the
code	base,	granting	three	benefits:

1.	 It	allows	for	a	better	understanding	of	the	code	base.
2.	 It	gives	better	insight	into	the	possible	effects	changes	in	one	area	of	the	code	may

have	on	other	areas	of	the	code.
3.	 It	makes	the	code	base	easier	to	maintain.

This	section	consists	out	of	two	subsections,	where	we	identify	and	classify	the	sub-projects
and	identify	and	discuss	the	module	dependencies.

Sub-projects

Open	Test	for	Java	(OT4J)

We	discuss	it	as	a	sub-project,	but	will	not	dive	deeper	into	a	module	analysis.

OT4J	is	an	initiative	from	the	JUnit	team	to	provide	a	minimal	common	foundation	for	all
testing	frameworks	[17].	OT4J	aims	to	provide	the	core	abstractions	of	the	testing	domain.
For	this	reason	it	is	a	completely	separate	project	from	JUnit,	but	JUnit	does	depend	on	it.
The	only	core	abstraction	included	so	far	is	a	common	set	of	exceptions.	Introducing	this
common	point	should	reduce	the	workload	for	integrators	with	all	testing	frameworks.

If	all	test	frameworks	adopt	these	exceptions,	it	should	reduce	the	workload	for	build	tools
that	integrate	with	these	test	frameworks.

JUnit5

79

junit-platform

JUnit	platform	is	the	dedicated	API	for	running	and	reporting	JUnit	tests.	It	provides	a	single
interface	for	running	both	JUnit	jupiter	and	JUnit	vintage	tests.	It	aims	to	be	a	more	flexible
and	refined	way	for	test-runners	to	integrate	with	JUnit	5	compared	to	JUnit	4.

junit-jupiter

JUnit	jupiter	is	the	new	end-user	facing	functionality.	This	functionality	consists	of	new
features	for	testers	and	a	more	composition-friendly	extension	model	for	the	eco-system-
enhancers.

junit-vintage

JUnit	vintage	is	a	reincarnation	of	JUnit	4,	however	its	tests	are	run	through	a	JUnit	platform
compatible	engine	allowing	it	to	be	executed	through	the	junit-platform.

Module	dependencies

In	this	section	we	will	view	the	dependencies	between	the	JUnit	model	through	a	more
conceptual	model	that	we	created,	which	allows	us	to	focus	more	on	the	key	dependencies
between	the	modules,	allowing	for	a	more	thorough	understanding	of	the	system.	The	JUnit
5	code	base	has	been	split	into	twelve	different	modules.	Detailed	information	about	all
different	modules	in	the	JUnit	5	framework	can	be	found	in	the	user	guide	[18].

Note	that	there	is	no	layering	of	different	abstraction	levels	found	on	the	module	level	in
JUnit	5.	Rather,	each	module	contains	their	own	abstraction	levels	from	high	to	low	and	as
such	there	is	no	real	layer	system	in	JUnit	5.	This	is	why	there	will	be	no	subsection
dedicated	to	the	layering.

In	Fig.	5	you	can	see	our	conceptual	module	dependency	model	(the	official	dependency
diagram	can	be	found	in	the	JUnit	5	user	guide	[19]).

JUnit5

80

Fig.	5:	The	module	dependency	model	for	JUnit	5.

This	model	illustrates	the	key	dependencies	between	the	modules	and	organises	the
modules	by	the	concerns	they	address.

1.	 Testrunner:	Integration	of	test	runners	with	the	JUnit	platform.
2.	 Engine:	Implementation	of	these	testing	features	and	its	integration	with	the	JUnit

platform.
3.	 User	facing:	Provides	the	API	for	end	users	for	testing	with	a	particular	engine.

Development	Guidelines,	Rules	and	Releases

In	this	section	we'll	zoom	in	on	the	policy	revolving	around	the	development	of	JUnit	5.
When	a	contributor	wants	to	contribute	new	code	to	the	JUnit	5	project	they	have	to	adhere
to	certain	rules.

Source	code	structure

When	looking	at	the	source	code	structure	of	the	JUnit	5	project	you	can	clearly	recognise
the	same	structure	that	has	been	discussed	in	the	section	on	module	structures.	Every
module	has	its	own	corresponding	Gradle	[20]	module	in	the	project.

JUnit5

81

Fig.	6:	Project	view	of	JUnit	5	in	IntelliJ	IDEA.

In	the	project	view	of	for	instance	IntelliJ	(see	Fig.	6)	you	can	see	the	module	structure	of	the
entire	project.	In	each	module	there	is	a	separate		module-name.gradle		file	that	contains	a	list
of	all	other	modules	that	your	module	depends	on.	This	gives	contributors	a	quick	overview
of	what	code	the	module	they	want	to	modify	depends	on.

Coding	conventions

The	first,	most	elemental	thing	you	should	take	into	consideration	when	contributing	to	JUnit
5,	is	the	way	the	code	you	write	is	structured.	You	should	make	sure	that	your	code	is	written
in	the	same	style	as	existing	code,	otherwise	you	will	introduce	style	discrepancies	in	the
project.	All	the	exact	style	rules	are	written	down	in	the		contributions.md		file	on	the	JUnit	5
repository	[21].	JUnit	5	offers	a	file	with	'formatter	settings'	that	can	be	used	in	several	IDEs.
If	the	formatter	settings	are	imported	from	the	file	and	used	for	contribution	they	will
automatically	be	formatted	appropriately.	Apart	from	this	formatter,	you	can	locally	use
	./gradlew	check		as	well.	This	check	runs	the	so-called	'spotless'	plug-in	as	well	as
checkstyle.	The	spotless	plug-in	can	also	automatically	add	the	correct	licences	to	files	with
the		./gradlew	spotlessApply		command,	this	is	a	separate	action	though	and	does	not
happen	during		./gradlew	check	.	This	takes	away	some	tedious	work	from	the	developer	as
licences	can	differ	per	file.

The	release	process

JUnit5

82

JUnit	5	has	no	fully	automated	releases	but	does	feature	an	automated	release	process.
When	looking	at	the		gradle.build		file	in	the	root	of	the	JUnit	5	repository,	we	see	that	there
is	a	section	dedicated	to	the	deployment	of	JUnit	5	to	the	Maven	Central	Repository	[22].
The	deployment	sequence	has	to	be	initiated	manually	though.	
In	the	roadmap	document	on	the	repository	the	JUnit	5	architects	describe	several	phases	in
the	development	of	JUnit	5	[23].	They	intend	to	release	a	new	version	of	JUnit	5	after	each
of	these	phases	has	been	completed.	The	project	is	currently	in	phase	5,	which	means	that
an	initial	Alpha	version	of	JUnit	5	has	been	released	and	more	work	is	being	done	on
additional	milestones	[24].	When	searching	on	Maven	Central	[25]	there	are	already	three
milestone	releases	to	be	found.	The	next	milestone	release	(Milestone	4)	is	planned	to	be
completed	by	March	18th	2017	[26].	After	this	milestone	there	will	at	least	be	one	more
milestone	to	be	completed.	After	that	the	project	will	be	almost	ready	for	a	production
release	and	the	architects	will	prepare	for	this	by	releasing	one	or	more	so-called	'release
candidates'	before	making	a	'GA'	release.	In	Fig.	7	the	development	and	release	stages	are
illustrated.

JUnit5

83

JUnit5

84

Fig.	7:	The	roadmap	for	the	development	of	JUnit	5.

The	JUnit	5	Test	Approach

The	testing	approach	used	in	JUnit	5	is	peculiar,	and	therefore	has	its	own	section.	This
section	combines	information	from	the	development	guidelines	and	the	module	structure.
The	development	guidelines	specify	that	every	change	needs	to	be	covered	by	tests.
However,	as	a	developer,	finding	the	correct	place	in	the	project	to	implement	these	tests	is
difficult,	and	requires	technical	information	about	the	dependencies	between	the	JUnit	5
modules.

In	this	section	we	will	first	say	something	about	the	process	that	the	developers	of	JUnit	5
used	to	improve	their	testing	framework	without	having	to	release	it	first.	The	next	section
clarifies	the	dependencies	between	several	different	modules	and	explicates	why	tests	are
not	always	in	intuitive	places	in	JUnit	5.

Development	feedback	cycle

In	order	to	create	useful	features,	the	JUnit	5	team,	like	every	other	development	team,
needs	end-user	feedback.	Testing	JUnit	5	with	JUnit	5	allowed	the	developers	to	turn
themselves	into	end-users	and	receive	this	feedback	early	on.	Using	their	own	features
gives	the	developers	first-hand	experience	and	allows	them	to	immediately	determine
whether	their	creations	are	useful	and	easy	to	work	with,	essentially	creating	a	feedback
loop.	Of	course	the	early	milestone	releases	also	play	a	key	role	by	providing	extra
feedback.	Another	benefit	of	this	testing	approach	is	that	every	test	case	written	by	the	team,
doubles	as	an	end-to-end	test	for	the	system,	providing	extra	coverage	and	confidence	in
the	system.

Module	dependencies

The	testing	approach	also	comes	with	a	downside.	It	complicates	certain	dependencies
between	modules,	resulting	in	the	tests	for	certain	modules	ending	up	in	odd	locations.

It	is	the	intention	of	the	JUnit	5	team	to	design	the	JUnit	platform	in	such	a	way	that	it	will	be
used	by	many	future	versions	of	JUnit.	Testing	JUnit	platform	and	JUnit	jupiter	with	JUnit
jupiter	minimises	the	dependency	on	JUnit	4,	and	would	facilitate	dropping	JUnit	4	in	the
future	(if	desired).

JUnit5

85

First	we	will	take	a	look	at	the	actual	dependency	diagram	given	by	JUnit,	visible	in	Fig.	8.	

Fig.	8:	The	dependency	graph	of	JUnit	5	[19]

Testing	with	JUnit	jupiter	requires	three	dependencies:

1.	 The		junit-jupiter-api	.
2.	 The		junit-jupiter-engine	.
3.	 The		junit-gradle-plugin		and	its	transitive	dependencies.

With	these	dependencies	in	mind,	we	will	take	a	look	at	writing	tests	for	JUnit.

JUnit	jupiter

Test	for	the		junit-jupiter-api		module	do	exist,	but	they	are	not	present	in	the	module
itself.	The	tests	for	the		junit-jupiter-api		module	reside	in	the		junit-jupiter-engine	
module.	The	reasons	why	these	tests	are	located	here	rather	than	in	the		junit-jupiter-api	
module	is	that	the		junit-jupiter-engine		depends	on	the		junit-jupiter-api	.	This	means
that	if	the	tests	for	the		junit-jupiter-api		were	placed	in	the		junit-jupiter-api		module
itself,	a	dependency	on	the		junit-jupiter-engine		would	need	to	be	added	in	the		junit-
jupiter-api		module	to	be	able	to	run	these	tests.	This	would	result	in	a	circular	dependency,
which	can	also	be	seen	in	the	dependency	diagram	if	an	arrow	would	be	added	originating
from		junit-jupiter-engine		travelling	to		junit-jupiter-api	.

The		junit-jupiter-engine		module	already	depends	on	the		junit-jupiter-api		module;	the
same	goes	for		junit-jupiter-params	.	Tests	can	depend	on	the	production	code	of	their	own
module	satisfying	the	dependency	on	the		junit-jupiter-engine	.	The	dependency	graph
shows	that	nothing	in	the		junit-platform		sub-project	depends	on		junit-jupiter	sub-
project	,	allowing	us	to	depend	on		junit-platform		without	introducing	any	cycles.

JUnit	platform

Since	JUnit	is	built	using	Gradle	[20],	all	tests	are	run	through	the		junit-gradle-plugin	
(listed	as	the	third	dependency	required	for	writing	tests).	The	dependency	diagram	shows
that	every	module,	with	the	exception	of	the		junit-platform-surefire-provider		and		junit-

JUnit5

86

platform-runner	,	are	either	direct	or	transitive	dependencies	of	the		junit-platform-gradle-
plugin	.	If	any	of	these	modules	were	to	contain	any	tests	it	would	introduce	a	dependency
cycle.

To	combat	this	phenomenon,	JUnit	has	extracted	one	more	module	(not	present	in	this
diagram);		junit-platform-tests	.	This	module	has	no	production	code	and	only	contains
test	code.	It	contains	the	tests	for	the	following	junit-platform	modules:	commons,	console,
engine,	launcher	and	runner.	Of	the	two	modules	that	are	not	dependent	on	the		junit-
gradle-plugin		(runner	and	surefire-provider),	the		maven-surefire-provider		module	is	the
only	one	that	hosts	its	own	tests.	The		junit-suite-api		only	contains	annotations	and	has
no	tests.	This	leaves	us	with	two	modules	in	the	diagram	that	still	need	to	be	covered:

1.	 	junit-vintage-engine	

2.	 	junit-migration-support	

The		junit-vintage-engine		and	the		jupiter-migration-support		can	both	safely	depend	on
the	gradle	plugin	(just	like	the		junit-jupiter-engine)	and	can	host	their	own	tests.	Finally,
several	modules	depend	on	JUnit	4,	but	all	of	JUnit	4's	tests	are	contained	in	JUnit	4's	own
project.

Evolution	Perspective
JUnit	5	is	the	next	generation	of	JUnit.	The	goal	is	to	create	an	up-to-date	foundation	for
developer-side	testing	on	the	JVM	[28].	Its	development	can	be	nicely	argued	for	from	an
architectural	standpoint,	it	resolves	limitations	present	in	JUnit	4.	The	architects	of	JUnit
have	identified	several	shortcomings	of	JUnit	4	over	the	years	and	have	tried	to	address
them	as	best	as	possible	in	the	new	version	of	JUnit.

Problems	in	JUnit	4

Normally	in	projects	the	size	of	JUnit,	technical	debt	is	a	key	factor	inclines	developers	to
rewrite	their	software	product,	but	in	the	case	of	JUnit	there	is	fairly	little	internal	technical
debt.	The	technical	debt	in	the	production	code,	considering	the	size	of	the	project,	is	very
limited	in	both	JUnit	4	and	JUnit	5.	We	were	unable	to	discover	any	major	issues	on
technical	debt	in	the	production	code.	Both	versions	of	the	framework	are	also	very	well
tested,	JUnit	4	has	89%	line	coverage,	and	JUnit	5	has	an	even	higher	coverage	of	95.5%
making	the	project	extremely	well	tested	[29].

With	technical	debt	out	of	the	picture	the	two	the	key	issues	in	JUnit	4	that	are	addressed
with	the	development	of	JUnit	5	are:

1.	 IDE	integration

JUnit5

87

2.	 Extension	Model

IDE	integration

IDE	integration	is	vital	for	a	testing	frameworks	survival,	however	the	way	in	which	this
integration	is	achieved	in	JUnit	4	leaves	a	lot	to	be	desired.	Many	tools	reach	deeply	into
JUnit	for	their	functionality,	using	clever	hacks	to	get	past	what	little	boundaries	are	present,
resulting	in	an	ad	hoc,	undocumented	and	brittle	API.	Keeping	this	brittle	API	intact	severely
limits	any	kind	of	development	on	JUnit.	This	situation	came	to	pass	because	JUnit	4
neglected	IDEs	as	an	important	stakeholder	for	their	framework	and	did	not	provide	proper
integration	options	for	the	IDEs.	Because	of	the	significant	market	share	JUnit	4	has,	this
resulted	in	the	IDEs	getting	the	information	they	desired	on	their	own.	To	emphasise	this
problem	we	can	look	at	JUnit	4	issue	444	[31].	This	issue	calls	for	an	exhaustive	listener
framework	in	JUnit	that	could	be	utilised	by	IDEs.	This	issue	has	been	created	in	2012	(while
JUnit	4	has	been	around	since	2005)	and	is	still	opened.	Therefore	we	can	conclude	that
this	issue	has	not	been	solved	for	JUnit	4	as	of	now	(and	may	never	be).	
In	JUnit	5	this	problem	has	been	resolved	by	loose	coupling	and	dedicated	interfaces	as	is
described	in	the	functional	view.

Extension	model

The	most	powerful	extension	possibility	present	in	JUnit	4	is	a	TestRunner.	It	gives	a	lot	of
control	how	tests	are	run	and	has	been	a	key	to	the	success	for	integrating	other	tools.	As
can	be	seen	in	our	stakeholder	analysis	there	is	a	vast	amount	of	libraries	and,	as	we	call
them,	'ecosystem	enhancers',	providing	their	functionality	by	extending	JUnit.	These	tools
are	successful	in	enriching	JUnit	by	providing	additional	functionality,	indicating	their
individual	needs	as	stakeholders	have	been	met.	Many	of	these	tools	use	the	test	runner	to
achieve	their	goals.	However	JUnit	4	comes	with	a	limitation:	each	test	suite	can	only	utilise
a	single	test	runner.	This	makes	different	tools	that	solve	different	problems	compete	for	the
runner	for	no	reason.	This	results	in	tools	with	completely	different	goals	being	unable	to
function	in	combination	with	each	other.	JUnit	5	introduces	a	new	extension	model	that
allows	tools	to	work	together	and	even	provide	new	functionality.	Details	on	how	the
extension	model	of	JUnit	5	solves	the	problem	can	be	found	in	the	user	guide	[34].

The	road	from	JUnit	4	to	JUnit	5

To	address	the	architectural	issues	in	JUnit	4,	the	JUnit	team	readjusted	their	stakeholder
priorities.	This	can	be	seen	in	the	JUnit	Lambda	kickoff	[12]	which	had	IDE	and	build	tool
owners	present	to	discuss	the	first	start	of	the	work	on	JUnit	5.	Further	evidence	can	be
found	in	the	communication	between	the	JUnit	team	and	Mockito	[13],	where	the	JUnit	team

JUnit5

88

discusses	the	concerns	of	Mockito	in	their	new	extension	models	and	tries	to	incorporate
Mockito's	needs.	While	this	issue	is	currently	a	hot	topic,	there	are	issues	that	date	back
further	where	extension	points	in	JUnit	4	and	5	are	discussed	[14]	[15].

To	further	elaborate	on	the	relationship	between	JUnit	4	and	JUnit	5	and	the	effect	this
migration	will	have	on	the	ecosystem	we	want	to	highlight	a	few	important	decisions	made
by	the	architects.	To	limit	the	impact	of	the	transition	from	JUnit	4	and	JUnit	5	for	end	user
and	ecosystem	enhancers,	the	architects	of	JUnit	have	created	a	dedicated	migration
support	platform.	Users	are	able	to	use	a	combination	of	JUnit	4	and	JUnit	5	tests	during	a
transition	period	using	this	system.	This	way	they	won't	have	to	adjust	all	of	their	tests
overnight.	JUnit	4	lives	on	in	the	JUnit	platform	as	JUnit	Vintage.

You	can	see	a	flow	chart	that	visualises	the	transition	from	JUnit	4	to	JUnit	5	in	Fig.	9.

Fig.	9:	A	flowchart	of	the	transition	from	JUnit	4	to	JUnit	5	for	a	typical	system.

JUnit	secures	its	future	by	upgrading	their	build	dependency	from	Java	1.5	to	Java	1.8	[30].
While	it	is	perfectly	possible	to	use	JUnit	4	in	combination	with	Java	1.8,	this	upgrade	allows
the	JUnit	team	to	use	Java	1.8	while	developing	JUnit	5,	thus	allowing	them	the	use	of
lambdas,	optionals	and	new	types	in	the	standard	library	among	other	things.	
These	new	features	and	solutions	ensure	that	JUnit	5	will	become	just	as	versatile	and
loosely	coupled	as	envisioned	by	the	JUnit	architects.

Conclusion
Even	though	JUnit	5	is	still	in	development	at	the	time	of	writing	and	has	yet	to	see	the	first
official	release,	it	has	already	accomplished	a	lot.	In	according	with	their	vision,	the	JUnit
team	was	able	to	create	a	solid	foundation	which	solves	the	architectural	problems	JUnit	4
was	facing.	JUnit	5	already	supports	most	of	the	features	of	JUnit	4	and	has	improved	and
added	features	on	top	of	that.	The	support	for	JUnit	4	eases	the	transition	from	JUnit	4	to
JUnit	5	and	as	a	result,	we	can	expect	more	and	more	projects	to	do	so.

JUnit5

89

The	JUnit	5	team	also	managed	to	keep	the	code	base	of	the	project	extremely	clean,
accumulating	negligible	amounts	of	technical	debt	and	maintaining	an	extremely	high	testing
coverage	(average	of	95.5%).	These	high	standards	reflect	their	desire	to	create	a	lasting
foundation,	and	shows	their	perseverance	in	accomplishing	it.

In	our	opinion,	the	JUnit	5	team	is	on	the	right	track	towards	realising	their	vision.	We	have
no	doubts	that	the	JUnit	5	team	will	be	successful	due	to	how	far	they	have	managed	to
come	and	the	quality	of	work	they	have	been	able	to	maintain	during	this	period.

We	look	forward	towards	the	official	release	and	public	adoption	of	the	JUnit	5	project.

References
1.	 Nick	Rozanski	and	Eoin	Woods.	2012.	Software	Systems	Architecture:	Working	with

Stakeholders	Using	Viewpoints	and	Perspectives.	Addison-Wesley	Professional.	
2.	 JUnit	lambda	campaign,	http://junit.org/junit4/junit-lambda-campaign.html,	access	date:

30-03-2017	
3.	 The	Java	programming	language	licence,

http://www.oracle.com/technetwork/java/javase/terms/license/index.html,	access	date:
30-03-2017	

4.	 The	Apache	surefire	licence,	https://maven.apache.org/surefire/,	access	date:	30-03-
2017	

5.	 The	Gradle	licence,	https://github.com/gradle/gradle/blob/master/LICENSE,	access
date:	30-03-2017	

6.	 The	JUnit	5	licences	on	Github,	https://github.com/junit-
team/junit5/blob/master/LICENSE.md,	access	date:	30-03-2017	

7.	 The	JUnit	5	user	guide,	http://junit.org/junit5/docs/current/user-guide/,	access	date:	30-
03-2017	

8.	 Stack	Overflow,	http://stackoverflow.com/,	access	date:	30-03-2017	
9.	 Issues	for	JUnit	5	on	Github,	https://github.com/junit-team/junit5/issues,	access	date:

30-03-2017	
10.	 Sam	Brannen	pitch	about	JUnit,	https://www.youtube.com/watch?v=UHN_HcjZa7o,

access	date:	30-03-2017	
11.	 Statistics	about	package	use	in	Java	projects	on	Github,	Google,

https://cloud.google.com/bigquery/public-data/github,	access	date:	30-03-2017	
12.	 JUnit	lambda	campaign	on	Indiegogo,	https://www.indiegogo.com/projects/junit-

lambda#/,	access	date:	30-03-2017	
13.	 Issue	on	Mockitos	Github	with	communication	with	JUnit	5	stakeholders,

https://github.com/mockito/mockito/issues/445,	access	date:	30-03-2017	
14.	 Pull	Request	1158	on	the	JUnit	4	Github,	https://github.com/junit-team/junit4/pull/1158,

JUnit5

90

http://junit.org/junit4/junit-lambda-campaign.html
http://www.oracle.com/technetwork/java/javase/terms/license/index.html
https://maven.apache.org/surefire/
https://github.com/gradle/gradle/blob/master/LICENSE
https://github.com/junit-team/junit5/blob/master/LICENSE.md
http://junit.org/junit5/docs/current/user-guide/
http://stackoverflow.com/
https://github.com/junit-team/junit5/issues
https://www.youtube.com/watch?v=UHN_HcjZa7o
https://cloud.google.com/bigquery/public-data/github
https://www.indiegogo.com/projects/junit-lambda#/
https://github.com/mockito/mockito/issues/445
https://github.com/junit-team/junit4/pull/1158

access	date:	30-03-2017	
15.	 Issues	1161	on	the	JUnit	4	Github	repository,	https://github.com/junit-

team/junit4/issues/1161,	access	date:	30-03-2017
16.	 JUnit	5	user	guide,	JUnit	5	overview,	http://junit.org/junit5/docs/current/user-

guide/#overview-what-is-junit-5,	access	date:	02-04-2017
17.	 Open	Testing	Alliance	for	the	JVM,	https://github.com/ota4j-team/opentest4j,	access

date:	02-04-2017
18.	 JUnit	5	user	guide,	dependency	metadata,	http://junit.org/junit5/docs/current/user-

guide/#dependency-metadata,	access	date:	02-04-2017
19.	 JUnit	5	user	guide,	dependency	diagram,	http://junit.org/junit5/docs/current/user-

guide/#dependency-diagram,	access	date:	02-04-2017
20.	 Gradle,	https://gradle.org/,	access	date:	02-04-2017
21.	 JUnit	5	repository	on	Github,	contributions.md,	https://github.com/junit-

team/junit5/blob/master/CONTRIBUTING.md,	access	date:	02-04-2017
22.	 Maven	Central	Repository,	http://central.sonatype.org/,	access	date:	02-04-2017
23.	 JUnit	5	road	map,	https://github.com/junit-team/junit5/wiki/Roadmap,	access	date:	02-

04-2017
24.	 JUnit	5	milestones,	https://github.com/junit-team/junit5/milestones,	access	date:	02-04-

2017
25.	 JUnit	5	milestones	released	on	Maven,

https://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.junit.jupiter%22%20
AND%20a%3A%22junit-jupiter-engine%22,	access	date:	02-04-2017

26.	 JUnit	5	Milestone	4	on	Github,	https://github.com/junit-team/junit5/milestone/7,	access
date:	16-03-2017

27.	 Git,	https://git-scm.com/,	access	date:	02-04-2017
28.	 JUnit	5	homepage,	http://junit.org/junit5/,	access	date:	02-04-2017
29.	 JUnit	5	test	coverage	by	Clover,

https://junit.ci.cloudbees.com/job/JUnit5/clover/dashboard.html,	access	date:	02-04-
2017

30.	 JUnit	4	dependencies,	http://junit.org/junit4/dependencies.html,	access	date:	02-04-
2017

31.	 JUnit	4	issue	444	on	Github,	https://github.com/junit-team/junit4/issues/444,	access
date:	02-04-2017

32.	 JUnit	5	release	date,	https://github.com/junit-team/junit5/milestone/10,	access	date:	02-
04-2017

33.	 OTA4J	usage	licence,	https://github.com/ota4j-team/opentest4j/blob/master/LICENSE,
access	date:	03-04-2017

34.	 The	JUnit	5	user	guide,	extensions,	http://junit.org/junit5/docs/current/user-
guide/#extensions,	access	date:	03-04-2017

35.	 Tweet	on	Indiegogo	sponsoring	by	Sam	Brannen,

JUnit5

91

https://github.com/junit-team/junit4/issues/1161
http://junit.org/junit5/docs/current/user-guide/#overview-what-is-junit-5
https://github.com/ota4j-team/opentest4j
http://junit.org/junit5/docs/current/user-guide/#dependency-metadata
http://junit.org/junit5/docs/current/user-guide/#dependency-diagram
https://gradle.org/
https://github.com/junit-team/junit5/blob/master/CONTRIBUTING.md
http://central.sonatype.org/
https://github.com/junit-team/junit5/wiki/Roadmap
https://github.com/junit-team/junit5/milestones
https://search.maven.org/#search%7Cgav%7C1%7Cg%3A%22org.junit.jupiter%22%20AND%20a%3A%22junit-jupiter-engine%22
https://github.com/junit-team/junit5/milestone/7
https://git-scm.com/
http://junit.org/junit5/
https://junit.ci.cloudbees.com/job/JUnit5/clover/dashboard.html
http://junit.org/junit4/dependencies.html
https://github.com/junit-team/junit4/issues/444
https://github.com/junit-team/junit5/milestone/10
https://github.com/ota4j-team/opentest4j/blob/master/LICENSE
http://junit.org/junit5/docs/current/user-guide/#extensions

https://twitter.com/sam_brannen/status/861202719293530113,	access	date:	07-05-2017

JUnit5

92

https://twitter.com/sam_brannen/status/861202719293530113

Jupyter	Notebook
By	Lorenzo	Gasparini,	Ajay	Adhikari,	Giannis	Papadopoulos	and	Anelia	Dimitrova

Delft	University	of	Technology

Abstract

Jupyter	notebook,	the	next	generation	of	IPython,	is	an	open-source	web-application	that
allows	the	user	to	create	and	share	documents	containing	live	code,	comments,	formulas,
images	and	more,	all	in	one	place.	The	current	chapter	analyses	this	project	in	depth.	Our
team	was	able	to	make	six	pull	requests	regarding	technical	debt	and	bug	fixes,	which	were
accepted.	A	good	overview	of	the	whole	project	is	given	by	analysing	stakeholders	and	the
context	view.	Next,	various	viewpoints	and	perspectives	on	the	architecture	of	the	project	are
investigated.	This	chapter	aims	to	help	people	who	would	like	to	join	the	Jupyter	community
and	make	contributions,	by	providing	extensive	analysis	of	the	project.

Table	of	Contents

Introduction
Organization

Stakeholders
Context	View

Jupyter	Notebook

93

https://github.com/joined
https://github.com/ajayaadhikari
https://github.com/John-Pap
https://github.com/adimitrova

Architecture
Development	Viewpoint
Functional	Viewpoint

Technical	Debt
Evolution	Perspective
Conclusion
References

Introduction
Jupyter	Notebook	is	a	cross-platform	open	source	web	application	which	allows	running
code,	visualising	its	output	(such	as	plots,	images,	tables	etc.)	and	writing	explanations	in
natural	language,	accompanied	by	equations	and	all	this	in	one	so-called	Notebook	file.	It
provides	the	opportunity	to	process	large	amount	of	data	and	supports	Julia,	Python,	R
(origin	of	the	name	Jupyter)	and	many	other	programming	languages.	It	is	intuitive,	easy	to
install	and	use,	which	makes	it	suitable	for	scientists,	programmers	and	learners.

It	is	adopted	by	teachers	in	universities	such	as	UC	Berkeley	where	they	use	JupyterHub
(server,	hosting	Notebooks	where	users	log	in	and	immediately	start	coding)	in	which
students	do	their	assignments.	Furthermore,	Github	supports	the	rendering	of	Notebook
	.ipynb		files.	Entire	books	have	been	written	with	Notebook	and	published	on	Github.
Multiple	online	courses	on	Machine	Learning,	Computer	Science,	Python	programming,
Data	Analysis	and	others	can	be	found	in	this	Github	repository.

This	chapter	aims	to	give	users	a	quick	understanding	of	how	Jupyter	Notebook	is
organised,	developed	and	maintained.	First,	the	Stakeholders	and	Context	view	are
analysed	to	provide	insights	into	the	organisation	of	the	project.	Furthermore,	detailed
analysis	of	the	architecture	is	presented	in	order	to	understand	its	structure.	In	addition,
technical	debt	in	terms	of	code,	testing	and	documentation	was	also	found	throughout	the
analysis	of	the	system	and	is	presented	in	the	chapter.	This	is	followed	by	the	evolution	of
the	project	explaining	how	Notebook	emerged	from	IPython	and	discussing	the	JupyterLab
project	which	is	considered	as	the	future	of	Notebook.	Finally,	the	chapter	concludes	with
our	findings	of	the	project.

Organization
This	section	discusses	the	parties	that	are	involved	in	the	development,	maintenance,
testing	and	building	of	the	system.	These	stakeholders	are	then	visualised	using	a	context-
view	diagram.

Jupyter	Notebook

94

https://developer.rackspace.com/blog/deploying-jupyterhub-for-education/
https://github.com/jupyter/jupyter/wiki/A-gallery-of-interesting-Jupyter-Notebooks

Stakeholders

A	number	of	different	types	of	stakeholders	exist	as	defined	by	Rozanski	&	Woods	[1]	and
this	section	goes	through	them	w.r.t.	Jupyter	Notebook.

Assessors

As	Jupyter	Notebook's	team	consists	of	fifteen	core	developers	who	oversee	the
conformance	of	the	(programming	&	other)	standards.	They	are	responsible	for	handling	pull
requests	and	communicate	them	between	each	other	to	decide	whether	or	not	to	merge.
Furthermore,	they	do	the	planning	of	future	releases	and/or	sub-systems	of	the	Notebook.

Communicators

Communicators	are	people	who	explain	the	system	and	the	architecture	to	other
stakeholders	via	documentation	or	training	materials.	A	number	of	presentations	are
available	online,	prepared	and	presented	by	Fernando	Perez	and	Matthias	Bussonier.
Jupyter	Notebook	communicators	are	also	all	the	developers	who	have	written	the
documentation.	They	are	a	small	team	and	all	of	them	update	the	documentation	when
necessary.	The	documentation	is	useful	as	well	for	developers	and	contributors	to	the
system.

Developers

Two	major	types	of	Developer	stakeholders	were	identified	in	Jupyter	Notebook:	core	and
contributors.

Core:	Core	developers	work	actively	to	write,	fix,	test	and	improve	the	system.	Their
main	job	is	to	also	go	through	the	open	pull	requests	on	Github	and	ensure	that	the
contribution	proposals	are	well	tested	and	do	not	interfere	with	the	current	system	in	any
way	other	than	to	improve	it.	Core	developers	are	@carreau,	@takluyver,	@jasongrout,
@rgbkrk,	@minrk	and	@blink1073.
Contributors	are	important	for	open	source	projects	as	they	often	solve	issues	the	core
team	has	no	time	for	or	implement	new	features	making	the	product	even	better.	They
contribute	also	by	improving	documentation,	bug	fixes	and	even	by	writing	their	own
kernel	supporting	a	new	programming	language.	Examples	of	these	contributors	are
@vidartf	and	@yuvipanda.

Maintainers

Jupyter	Notebook

95

https://www.slideshare.net/mbussonn/jupyter-a-platform-for-data-science-at-scale
https://www.slideshare.net/BigDataColombia/ipython-jupyter
https://www.slideshare.net/Plotly/plotcon-nyc-the-architecture-of-jupyter-protocols-for-interactive-data-exploration-and-visualization-across-languages
https://github.com/carreau
https://github.com/takluyver
https://github.com/jasongrout
https://github.com/rgbkrk
https://github.com/minrk
https://github.com/blink1073
https://github.com/vidartf
https://github.com/yuvipanda

The	Steering	Council	consists	of	Project	Contributors	writing	substantial	code	of	high
quality	and	quantity	for	over	one	year.	Working	with	the	BDFL	(Benevolent	Dictator	for	Life)
Fernando	Perez	the	council	ensures	the	long-term	progress	and	existence	of	the	project.
The	NumFOCUS	Foundation	serves	as	the	projects'	fiscal	sponsor	and	acts	as	a	parent
legal	entity.	The	NumFOCUS	Subcommittee	consists	of	four	Council	and	one	external
member.

Support	Staff

As	per	the	book	[1],	support	staff	are	the	people	who	provide	support	to	the	users.	Therefore
Jupyter	Notebook	members	taking	care	of	issues	in	their	Github	repository	could	be
considered	support	staff.	These	users	are	usually	@minrk	and	@takluyver.	In	case	they	are
not	sure	about	something,	they	know	who	to	get	involved.

Testers

Testers	are	people	who	test	the	system	to	ensure	it	is	suitable	to	use.	Since	the	Notebook
team	consists	of	only	fifteen	core	developers,	each	of	them	has	to	write	tests	whenever	they
implement	a	new	feature	or	improve	the	current	code.	All	of	them	can	thus	be	considered
testers	as	well.	However,	while	going	through	the	project	a	few	members	were	identified	who
wrote	new	or	updated	the	old	tests	frequently:	@jdfreder	(no	longer	active),	@minrk	(core
dev),	@ssanderson	(contributor)	and	others.

Users

The	two	biggest	categories	of	users	are	the	following:

Scientists:	Jupyter	is	mainly	used	by	data	scientists	working	with	R	and	Python	on
daily	basis,	however,	it	is	not	only	aimed	at	them	but	is	generally	used	by	other	types	of
users	as	well.
Learners	are	stakeholders	who,	for	example,	use	Notebook	for	study	&	teaching
purposes.

Sponsors

Sponsors	are	an	additional	stakeholder	class	to	the	main	ones,	related	to	the	project.	It
consists	of	companies	and	universities	that	support	the	project	financially.	Some	of	them	are
Google,	Microsoft,	Rackspace,	Leona	M.	and	Harry	B	Helmsley	Charitable	Trust,	Gordon
and	Betty	Moore	Foundation	etc.	They	do	not	take	decisions	about	the	projects'	progress,
however,	they	may	influence	these	decisions.

Jupyter	Notebook

96

http://numfocus.org
https://github.com/minrk
https://github.com/takluyver
https://github.com/jdfreder
https://github.com/minrk
https://github.com/ssanderson
https://jupyter.org/assets/google-color.svg
https://jupyter.org/assets/microsoft-color.svg
https://jupyter.org/assets/rackspace-color.svg
https://jupyter.org/assets/helmsley.svg
https://www.moore.org/

Context	View

In	this	section,	the	context	viewpoint	of	Jupyter	Notebook	is	described.	The	context	view
describes	and	visualises	the	relationships	and	interactions	between	Jupyter	Notebook	with
the	environment.

System	Scope

According	to	the	Jupyter	foundation	website,	the	Jupyter	Notebook	is

an	open-source	web	application	that	allows	you	to	create	and	share	documents	that
contain	live	code,	equations,	visualisations	and	explanatory	text.

The	Notebooks	are	typically	used	for	data	cleaning	and	transformation,	numerical	simulation
and	machine	learning	tasks;	the	target	audience	is	the	broad	tech	audience,	spanning	from
high	school	students	to	the	most	advanced	researchers	of	the	world.

Jupyter	Notebook	is	the	main	application	of	the	broader	Jupyter	project,	which	focuses	on
interactive	and	exploratory	computing	that	is	reproducible	and	multi-language.

Context	Model

Figure	1	-	Context	Model	of	Jupyter	Notebook.

Jupyter	Notebook

97

http://jupyter.org/

In	Figure	1,	the	context	model	of	Jupyter	Notebook	is	displayed.	A	short	description	of	the
most	important	entities	in	the	diagram	follows.

The	project,	which	is	a	complex	web	application	mainly	used	by	researchers	and	students,
can	be	conceptually	separated	in	front-end	and	back-end.	For	what	concerns	the
programming	languages,	Python	is	used	for	the	back-end	while	the	LESS	stylesheet
language	is	used	in	combination	with	HTML	and	Javascript	for	the	front-end.

Thanks	to	the	interoperability	of	Python,	the	project	can	run	on	most	platforms,	including
Windows,	Mac	OS	X	and	other	Unix-like	systems.	There	are	no	clear	indications	of	officially
supported	browsers,	but	the	documentation	recommends	the	usage	of	Chrome,	Firefox	or
Safari.

In	terms	of	testing	frameworks,	Nose	is	used	for	the	Python	back-end	while	CasperJS	is
used	for	the	front-end.	Tests	are	executed	automatically	at	each	pull	request,	thanks	to
continuous	integration.	To	this	regard,	Travis	CI	is	used	for	testing	on	Linux	and	AppVeyor
for	Windows.	Code	coverage	is	analysed	by	Codecov.	ESLint	is	used	to	enforce	the	code
quality	on	the	Javascript	sources.

The	system	has	multiple	external	dependencies,	both	in	the	front-end	and	in	the	back-end.
In	the	former	case,	the	key	ones	are	Bootstrap,	Backbone.js,	CodeMirror,	Marked	and
MathJax.	In	the	latter,	they	are	Jinja2	and	Tornado.	The	dependencies	are	managed	using
package	managers,	in	particular,	Bower	is	used	for	the	front-end	and	NPM	is	used	for	the
building	tools.

Sponsoring	occurs	in	two	ways:	directly	from	companies	like	Google,	Microsoft	and
Rackspace	or	by	employing	members	of	the	Steering	Council.	The	latter	is	the	case	for
companies	like	Bloomberg,	Netflix	and	for	the	Berkeley	University	of	California.	The
development	is	carried	on	by	the	members	of	the	Steering	Council,	including	the	BFDL
Fernando	Pérez,	and	by	the	Github	community.

As	far	as	the	documentation	goes,	it	is	maintained	using	the	Sphinx	documentation
generator	and	published	on	the	Read	The	Docs	hosting	platform.

The	main	competitors	are	the	Beaker	Notebook	and	Apache	Zeppelin,	both	of	which	have
shorter	history	and	have	not	yet	reached	the	maturity	level	of	Jupyter.

Jupyter	Notebook	is	licensed	using	the	3-clause	BSD	license,	while	the	copyright	of	the
code	belongs	to	the	respective	authors

Architecture

Development	Viewpoint

Jupyter	Notebook

98

The	development	view	describes	the	architecture	of	a	project	from	the	viewpoint	of	the
developers.	According	to	Rozanski	and	Woods	[1],	the	development	view	is	responsible	for
addressing	different	aspects	of	the	system	development	process	such	as	code	structure	and
dependencies,	build	and	configuration	management	of	deliverables,	system-wide	design
constraints,	and	system-wide	standards	to	ensure	technical	integrity.	In	the	following
sections,	the	development	view	of	Jupyter	Notebook	is	presented	based	on	the	three	models
that	Rozanski	and	Woods	[1]	define	in	their	book:	Module	Structure	Model,	Common	Design
Model	and	Codeline	Model.	In	addition	to	this,	a	high-level	view	of	Jupyter	Notebook	is
included	in	order	to	ensure	a	thorough	understanding	of	the	project	in	different	granularity.

High-level	view

Figure	2	-	High-level	view	of	Jupyter	Notebook.	[2]

The	high-level	view	is	visualized	in	Figure	2.	First,	the	user	interacts	with	the	browser,
consequently,	a	request	is	sent	to	the	Notebook	server.	This	can	be	either	HTTP	or
WebSocket	request.	If	user	code	has	to	be	executed,	the	notebook	server	sends	it	to	the
kernel	in	ZeroMQ	messages.	The	kernel	returns	the	results	of	the	execution.	At	last,	the
notebook	server	returns	an	HTML	page	to	the	user.	When	the	user	saves	the	document,	it	is
sent	from	the	browser	to	the	notebook	server.	The	server	saves	it	on	disk	as	a	JSON	file
with	a		.ipynb		extension.	This	notebook	file	contains	the	code,	output	and	markdown	notes.
[2]

Module	Structure	Model

The	module	structure	model	defines	the	organisation	of	the	system's	code	clustering	related
source	code	files	into	modules	and	determining	the	dependencies	between	them	[1].	In	this
section	first	the	modules	of	the	project	are	briefly	described	and	then	the	dependencies
between	them	are	visualised	in	a	diagram.	It	should	be	also	noted	that	this	section	focuses
only	on	the	internal	modules	of	the	project	and	not	the	external	dependencies.

Here	follows	a	short	description	of	the	modules	that	make	up	the	project:

Jupyter	Notebook

99

http://zeromq.org/

notebookapp:	it	is	the	entry	point	of	the	web	application,	including	the	Tornado-based
server;	it	is	responsible	for	the	configuration	of	the	server,	including	the	mapping	of
requests	to	the	handlers	classes.
auth:	it	manages	the	authentication	to	the	notebook	and	other	security-related	features.
base:	it	contains	the	base	Tornado	handlers	that	are	extended	by	the	other	ones
throughout	the	structure	of	the	directory	hierarchy;	moreover,	the	handlers	for	the
ZeroMQ	sockets,	which	are	responsible	for	the	communication	with	the	kernel,	are
included.
bundler:	it	is	used	in	order	to	bundle	the	notebook	documents,	packaging	them	in
tarballs	or	zip	archives.
edit,	kernelspecs,	nbconvert,	view,	files,	terminal,	tree,	notebook:	they	contain	the
handlers	for	rendering	the	text	editor	interface,	handling	the	views	that	are	displayed	to
the	user,	converting	notebook	files	to	other	formats,	serving	files	via	the	content
manager,	rendering	the	terminal	interface,	displaying	the	tree	view	and	controlling	the
live	notebook	view	respectively.
frontend:	this	module	contains	the	code	related	to	the	user	interface;	in	particular,
	static		contains	the	Javascript	&	CSS	sources	while		templates		consists	of	the	Jinja2
HTML	templates	rendered	by	Tornado.
services:	it	contains	the	handlers	for	the	backend	services,	including	kernels,	kernel
specifications	and	contents	web	services;	all	the	handlers	registered	here	start	with	the
	/api/		prefix	and	communicate	with	the	frontend	using	JSON	whereas	the	other
handlers	render	the	HTML	views.

The	module	structure	and	dependencies	are	shown	in	Figure	3.

Figure	3	-	Module	dependencies	diagram.

Jupyter	Notebook

100

Furthermore,	it	should	be	noted	that	the	figure	above	shows	high-level	dependencies
between	the	most	significant	modules	of	the	system.	In	this	graph	modules	that	share	a
similar	role	in	the	system	are	grouped	together	for	the	convenience	of	the	reader.	The	same
purpose	serve	the	colours	of	each	of	the	modules.	The	diagram	starts	from	the	top	with	the
	notebookapp		module	which	constitutes	the	entry	point	of	the	web	application.	It	is	worth
mentioning	that	there	are	no	circular	dependencies	which	makes	the	system	easier	to
understand	and	maintain.

Source	code	structure

The	overall	structure	of	the	directory	hierarchy	of	the	Jupyter	Notebook	is	organised	as
follows.	The	root	folder	consists	of	several	files	that	are	used	to	configure	the	system.	More
specifically,	the	root	folder	contains	YAML	files	that	are	responsible	for	configuring	the
continuous	integration	of	the	project	such	as		.travis.yml		and		appveyor.yml	.	Other
important	configuration	files	that	are	included	in	the	root	folder	are		bower.json	,		setup.py	
and		setupbase.py	.	The		bower.json		manifest	file	keeps	track	of	the	right	versions	of	the
front-end	packages	that	are	needed	for	the	system.	The		setup.py		and		setupbase.py		files
are	essential	for	configuring	the	installation	of	packages	and	their	dependencies.

Furthermore,	the	root	folder	is	divided	into	five	separate	folders:	the		docs/		folder	where	all
the	documentation	files	that	are	built	using	Sphinx	are	located,	the		git-hooks/		which
consists	of	custom	git	hooks	that	are	available	for	Jupyter	Notebook.	For	example,	there	is	a
git	hook	that	can	be	enabled	to	automatically	compile	the	LESS	stylesheets	and	the
Javascript	code	after	a	git	checkout.	The		scripts/		which	contains	scripts	that	are	used	as
an	interface	to	the	components	of	the	notebook	for	the	command	line,	the		tools/		folder
containing	tools	used	in	the	build	process	and	the		notebook/		which	contains	all	of	the
source	code.

The		notebook/		folder	is	divided	into	sub-folders	by	grouping	together	source	files	with
similar	purpose	and	functionality.	First	off,	it	is	divided	into	sub-folders	that	contain	back-end
functionality	which	are	structured	in	a	similar	way.	The	related	initializers	can	be	found	in
	__init__.py		for	the	given	sub-folder	and	next	to	that	every	sub-folder	contains	a	module
called		handlers.py		in	which	the	Tornado	handlers	are	included	and	registered.	In	addition,	a
	tests/		folder	is	included	which	consists	of	files	that	test	the	Tornado	handlers	functionality.

The	front-end	code	is	located	in	separate	folders.	In	particular,	the	Javascript	and	CSS	files
are	located	in	the		static		folder	using	as	the	name	for	the	sub-folders	the	one	of	the	back-
end	components	they	interact	with.	The	Jinja2	HTML	templates	are	included	in	the
	templates/		folder.	Concerning	the	tests	that	are	responsible	for	testing	the	front-end
functionality,	they	are	contained	in	the		notebook/tests/		folder.	Finally,	the		notebook/		folder

Jupyter	Notebook

101

https://en.wikipedia.org/wiki/Circular_dependency
http://jinja.pocoo.org/docs/2.9/

contains	the	entry	point	of	the	web	application	which	is	the		notebookapp.py		module	and
some	common	utilities	that	are	used	throughout	the	whole	source	code.	A	graphical
overview	can	be	found	in	Figure	4.

Figure	4	-	Source	code	structure	of	Jupyter	Notebook.

Continuous	Integration	and	Testing	Approach

Continuous	Integration	(CI)	refers	to	the	development	practice	in	which	developers	integrate
the	code	to	a	shared	repository	frequently.	Each	integration	is	verified	by	an	automated	build
and	test	system.

Testing	Frameworks

The	Jupyter	Notebook	project	has	a	Python	backend	and	an	HTML	+	Javascript	frontend.
There	are	two	separate	testing	suites:	one	for	the	backend	and	one	for	the	frontend.

The	Python	backend	is	tested	using	the		nose		testing	framework,	a	package	built	on	top	of
	unittest		to	simplify	test-driven	development.	This	testing	framework	has	been	in
maintenance	mode	for	several	years	now	and	its	maintainers	are	suggesting	to	move	to	the
newer	framework		nose2	,	but	the	Jupyter	Notebook	maintainers	don't	seem	to	have	any
plan	to	move	forward.

Jupyter	Notebook

102

https://nose.readthedocs.io/en/latest/

For	the	frontend	code	testing,	CasperJS	is	used.	It	is	a	Javascript	testing	framework	built
with	JS	itself	and	leveraging	PhantomJS.	In	the	recent	issue	#2243,	the	developers	discuss
the	problems	related	to	the	Javascript	tests.	Apparently,	race	conditions	and	the
asynchronous	nature	of	Javascript	make	the	tests	fail	at	times.	Developers	are	investigating
a	fix	for	this.

Continuous	Integration	Services

The	project	uses	the	integration	offered	by	Github	to	automate	building	and	testing	of	the
pull	requests	as	they	are	opened	or	updated.	In	particular,	three	CI	services	are	used:	Travis
CI,	AppVeyor	and	Codecov.

Travis	CI	is	used	by	the	project	to	automate	build	and	testing	on	Linux.	The	configuration,
specified	using	the		.travis.yml		file,	is	such	that:

Testing	is	done	using	both	Python	2.7	and	3.5.1
Both	the	frontend	and	the	backend	are	tested
When	testing	is	done,	the	Python	coverage	reports	generated	by	Nosetests	are
uploaded	to	Codecov.

Since	Travis	CI	does	not	yet	support	the	Windows	OS,	AppVeyor	is	used	for	the	testing	on
this	platform.	The	configuration	is	such	that	only	the	backend	is	tested,	using	both	Python
2.7	and	3.5,	and	code	coverage	is	not	checked.

Codecov	is	a	hosted	CI	service	that	computes	a	coverage	score	of	the	unit	tests.	The
Jupyter	Notebook	project	uses	Codecov	to	analyse	the	coverage	of	the	Python	backend
tests	at	each	pull	request.	The	coverage	is	not	checked	for	the	frontend	because	the	testing
framework	does	not	support	the	generation	of	coverage	reports.	The	service	is	configured	by
means	of	the		codecov.yml		file	[6]	so	that	the	automatic	checking	of	the	pull	requests	fails	if
a	decrease	in	the	coverage	score	greater	than	10%	is	observed.

Functional	Viewpoint

Rozanski	and	Woods	[1]	explain	that	the	functional	view	"defines	the	architectural	elements
that	deliver	the	function	of	the	system	being	described"	(p.	294).	This	view	documents	the
key	runtime	functional	elements,	their	responsibilities,	interfaces	and	primary	interactions.	In
the	notebook	project,	different	key	functional	elements	are	present	that	interact	with	internal
and	external	elements	during	run-time.	Interfaces	like	in		Java		are	not	present	in		Python	.
But	these	functional	elements	do	behave	like	interfaces,	as	they	have	well-defined	functions
that	can	be	called	by	other	elements,	to	perform	different	actions.	The	functional	view	of	our
project	is	visualised	on	figure	5.	The	key	elements	and	the	interaction	between	them	is
described	next.

Jupyter	Notebook

103

https://github.com/jupyter/notebook/issues/2243
https://github.com/integrations/feature/continuous-integratio

Figure	5:	UML	diagram	of	the	Functional	View.

The	main	entry	point	of	the	web	application	is	an	instance	of	the	class		NotebookApp	.	It	sets
up	a	Tornado	based	Notobook	server	that	serves	an	HTML/Javascript	client.	It	also	launches
an	instance	of	the		NotebookWebApplication		class.	The	server	delegates	all	the	incoming
requests	to	the		NotebookWebApplication		object.	This	class	is	a	sub-class	of
	Tornado.Web.Application	,	which	is	used	to	map	the	different	types	of	incoming	requests	to
the	correct	handlers.

The	handlers	use	external	elements	to	leverage	existing	functionalities	from	the	other
Jupyter	projects.
	Jupyter_core		is	used	for	basic	functionalities	like	handling	configuration	files	and	filesystem
locations.		Jupyter_client		provides	APIs	for	working	with	kernels.	Kernels	are	used	to
execute	user	code.	Furthermore,		nbformat		provides	APIs	for	working	with	notebook	files,
such	as	loading,	reading	and	saving.	Notebook	uses		nbconvert		to	export	notebook	files	into
various	static	formats	such	as	PDF,	HTML	and	LaTeX.

The		NotebookApp		can	only	be	used	by	a	single	user	with	no	login.	On	top	of	the	notebook,
there	are	other	external	elements	which	provide	additional	functionalities.	First,		tmpnb		can
launch	a	temporary	Jupyter	notebook	server	for	multi-user	use,	without	login.	Second,
	jupyterhub		can	create	a	multi-user	hub	with	login	which	manages	multiple	instances	of	the
single-user		NotebookApp	.	At	last,		nbgrader		provides	a	toolbar	extension	which	allows	a
teacher	to	make	and	grade	assignments	on	the	notebook.

Jupyter	Notebook

104

Technical	Debt
The	technical	debt	concept	is	related	to	the	extra	development	work	that	is	introduced	when
solutions	that	are	easy	to	implement	in	the	short	run	are	used	instead	of	applying	the	optimal
ones	that	will	keep	the	project	maintainable	in	the	long	run;	it	is	not	only	related	to	the	code,
it	can	also	be	associated	with	the	(lack	of)	documentation,	or	with	the	low	testing	coverage.

This	section	focuses	on	the	following	three	types	of	technical	debt:	code	debt,	testing	debt
and	documentation	debt.

Code	Debt

Coping	with	code	debt	as	soon	as	possible	is	important	because	the	size	of	the	code,	as	it
grows,	will	make	the	maintenance	difficulty	ever	increasing.	The	identification	of	code	debt
has	been	done	using	both	automated	analysis	tools	and	via	manual	inspection.

In	relation	to	the	code	readability,	the	Jupyter	project	documentation	states	in	the	coding
style	section	that	the	code	should	follow	the	PEP8	guidelines.	To	investigate	the	adherence
of	the	code	to	the	guidelines	the		flake8		tool	was	used	to	lint	the	codebase,	discovering
numerous	inconsistencies,	including	mis-indentation,	usage	of	tabs,	unused	imports,
multiple	imports	on	the	same	line	and	lambda	expressions	assigned	to	variables,	for	a	total
of	2075	errors/warnings.

Deprecation	warnings	are	another	symptom	of	code	debt,	as	they	mean	that	the	developers
are	not	keeping	the	code	up	to	date	with	the	evolution	of	the	ecosystem.	An	example	of	this
kind	of	debt	was	discovered	while	running	the	automated	backend	test	suite.	In	particular,
the		decodestring()	is	a	deprecated	alias,	use	decodebytes()		deprecation	warning	was
shown.	As	the	Python	documentation	states,	there	is	a	new	API	to	work	with	base	64
encoding	(base64.b64decode)	which	is	supposed	to	be	used.	A	pull	request	(#2280)	was
submitted	to	the	project	repository	to	fix	this	issue.

Another	way	of	identifying	code	debt	is	by	manually	searching	for	"TODO"	and	"FIXME"
comments	in	the	codebase.	As	of	13/03/2017	Jupyter	Notebook	had	21	"TODO"	and	10
"FIXME"	comments	in	the	code.	A	TODO	comment	was	found	in	the	page.js	file,	referring	to
the	removal	of	hard-coded	selectors	from	the	code.	Hard-coded	strings	are	generally
considered	a	bad	coding	practice	that	seriously	hinders	the	flexibility	of	the	code.	A	pull
request	(#2279)	that	tackles	this	code	debt	refactoring	the	parameters	to	be	dynamic	was
submitted.	A	FIXME	comment	was	also	found	in	the	file	handlers.py,	mentioning	that	a
certain	functionality	should	have	been	implemented	in	the	frontend	rather	than	in	the
backend.	An	examination	of	the	frontend	code	revealed	that	the	functionality	was	already
present	there	and	thus	pull	request	#2281	was	submitted	to	remove	the	redundancy.

Jupyter	Notebook

105

http://jupyter.readthedocs.io/en/latest/development_guide/coding_style.html
https://docs.python.org/3/library/base64.html#base64.b64decode
https://github.com/jupyter/notebook/pull/2280
https://github.com/jupyter/notebook/search?utf8=%E2%9C%93&q=TODO
https://github.com/jupyter/notebook/search?utf8=%E2%9C%93&q=FIXME
https://github.com/jupyter/notebook/blob/666ecbf35c3310335a3c8c182e8f53441c991c14/notebook/static/base/js/page.js
https://github.com/jupyter/notebook/pull/2279
https://github.com/jupyter/notebook/blob/master/notebook/services/contents/handlers.py#L126-L129
https://github.com/jupyter/notebook/pull/2281

Testing	Debt

For	what	concerns	the	backend	testing,	the	coverage	is	reported	by		nose		and	analysed	by
CodeCov.	The	actual	coverage	on	the	master	branch	is	77.24%.	Test	coverage	usefulness
as	a	metric	has	been	debated,	and	the	general	consensus	is	that	it	is	mainly	a	tool	to
discover	untested	parts	of	the	codebase,	rather	than	being	an	assurance	that	the	codebase
is	well	tested.	The	source	files	with	the	lowest	reported	coverage	were	analysed,	and	in	the
process,	it	was	discovered	that	the	tests	for	a	certain	file	were	not	run	because	of	a	missing
requirement	in	Travis	CI;	pull	request	#2283	was	opened	to	fix	the	issue	resulting	in	a	1.09%
increase	of	the	overall	coverage.

On	the	frontend	side,	test	coverage	is	not	analysed	because	the	testing	framework	chosen
cannot	output	coverage	reports.	It	seems	anyway	that	there	is	significant	technical	debt.	For
instance,	a	number	of	pull	requests	were	lately	accepted	without	requiring	the	unit	tests,
since	the	Javascript	testing	suite	seems	to	have	significant	problems;	issue	#2243	was
opened	by	the	maintainers	to	track	the	status	of	the	testing	suite	and	possibly	fix	the
problems.	It	also	seems	like	not	all	the	developers	are	up	to	date	with	the	frontend	testing.	In
addition	to	this,	Travis	CI	was	configured	to	use	the		travis_retry		for	the	frontend	tests,	in
order	to	repeat	them	3	times	in	the	case	that	they	fail.	This	function	is	supposed	to	be	used
to	deal	with	network	timeouts	during	the	requirements	installation	and	is	therefore	misused
in	this	context.

Documentation	Debt

Developers	need	to	write	documentation	of	their	source	code,	which	may	be	of	help	for	other
developers	to	understand	their	code.	More	importantly,	when	they	would	not	work	anymore
for	a	project,	people	coming	after	and	new	contributors	should	also	be	able	to	understand
the	system	and	its	setup.	In	addition,	documentation	for	the	end	user	of	the	product	is
needed	in	order	to	understand	how	to	download,	install	and	use	the	product.

Jupyter	Notebook	documentation	is	lacking	in	many	parts	of	the	project.	Specific	examples
are	listed	below:

An	example	of	bad	documentation	is	observed	in	issue	#603	where	a	new	user	tries	to
use	the	shortcuts	within	Notebook	but	runs	into	trouble	because	the	functionality	is	not
clearly	explained.	This	is	supposed	to	be	fixed	in	release	5.0	as	@pkgw	and	@ellisonbg
advised.
Another	documentation	debt	is	identified	in	the	issue	#1754	where	user	@dsblank
wanted	to	contribute	to	the	project	and	tried	to	install	the	development	environment	on
Ubuntu	but	got	a	lot	of	errors.	Eventually,	he	managed	to	fix	the	issue	by	looking	at	the
setup	of	the		.travis.yml		file.	The	user	notes	that	this	is	not	explained	in	the
documentation.

Jupyter	Notebook

106

https://codecov.io/gh/jupyter/notebook
https://martinfowler.com/bliki/TestCoverage.html
https://github.com/jupyter/notebook/pull/2283
https://github.com/jupyter/notebook/pull/2220#issuecomment-283406164
https://github.com/jupyter/notebook/issues/2243
https://github.com/jupyter/notebook/pull/2220#issuecomment-283530644
https://docs.travis-ci.com/user/common-build-problems/
https://github.com/jupyter/notebook/issues/603
https://github.com/jupyter/notebook/milestone/18
https://github.com/pkgw
https://github.com/ellisonbg
https://github.com/jupyter/notebook/issues/1754
https://github.com/dsblank
https://github.com/jupyter/notebook/blob/master/.travis.yml

Finally,	the	biggest	part	of	documentation	debt	was	found	from	the	first	sight,	by	just	looking
at	the	title,	which	says	(source:	old	IPython	wiki)	(IPython	Development	Guide)	and	the
whole	documentation	is	outdated.	There	is,	in	fact,	a	note	that	states:

This	is	copied	verbatim	from	the	old	IPython	wiki	and	is	currently	under	development.
Much	of	the	information	in	this	part	of	the	development	guide	is	out	of	date.

This	is	a	clear	indication	of	debt	that	needs	to	be	paid	and	may	cause	confusion	about
where	the	correct	documentation	is	if	such	exists	and	where	is	it	located.	Improvements	of
documentation	are	always	welcome	by	the	core	developers	and	they	try	to	encourage
contributors	to	help	them	with	this.

Evolution	Perspective
In	this	section,	the	evolution	of	the	project	is	presented,	along	with	the	most	important	facts
and	changes	part	of	its	history.

The	Past:	IPython

The	predecessor	of	Jupyter	Notebook	is	IPython.	It	was	born	in	2001	as	an	afternoon	hack
by	the	hands	of	Fernando	Perez	[3],	in	the	attempt	to	improve	the	Python	REPL.	It	was	a
250	lines	Python	script	trying	to	mimic	the	Wolfram	Mathematica	prompt	system	to	enable
scientific	computing	with	Python.

Over	the	years	the	need	for	a	notebook-like	front-end	grew,	and	after	multiple	unsuccessful
attempts,	in	2011	the	IPython	Notebook	was	born.	The	key	in	building	this	fully	working	web-
based	notebook	system	was	the	coupling	of	the	Tornado	webserver	for	asynchronous
WebSocket-based	communication	and	ZeroMQ	for	the	communication	with	the	kernels.

Many	features	were	added	in	the	following	years	following	the	users'	needs,	and	the
codebase	developed	organically	incorporating	different	components	that	were	increasingly
becoming	distinct	projects.	Moreover,	at	this	point	many	different	languages	were	supported
by	the	project,	so	the	name	Interactive	Python	was	starting	to	feel	odd.

The	Present:	Jupyter

For	these	reasons,	in	2014	at	the	SciPy	conference,	the	Jupyter	project	was	announced,
incorporating	all	the	language-agnostic	features	of	IPython,	such	as	the	notebook.

Jupyter	Notebook

107

https://jupyter.readthedocs.io/en/latest/development_guide/index.html

Figure	6	-	Evolution	of	LOC	of	the	IPython	project.	[4]

In	2015	the	first	phase	of	The	Big	Split™	was	completed,	splitting	all	the	components	into
subprojects.	As	can	be	seen	from	Figure	6,	a	vast	amount	of	code	was	removed	from	the
IPython	project	and	moved	to	separate	repositories	corresponding	to	the	different
subprojects,	such	as	traitlets,	nbformat	and	the	notebook	itself.	IPython	continues	to	live	to
this	day	as	a	kernel	for	Jupyter	and	as	the	interactive	shell	environment.

The	Jupyter	project	gained	more	popularity,	not	only	among	data	scientist	but	also	among
software	engineers.	At	this	point,	Jupyter	Notebook	was	not	only	about	the	notebook
experience	because	it	also	shipped	with	a	web-based	terminal,	text	editor,	and	file	browser.
All	these	components	were	not	blended	together	and	the	user	community	started	expressing
the	need	for	a	more	integrated	experience.

The	Future:	JupyterLab

At	the	SciPy	2016	conference,	the	JupyterLab	project	was	announced.	It	was	described	as
the	natural	evolution	of	the	Jupyter	Notebook	interface.

The	codebase	of	the	Notebook	was	showing	its	age	and	it	was	becoming	more	and	more
difficult	to	extend.	The	cost	of	maintaining	the	old	codebase	and	implementing	new	features
on	top	of	it	was	ever	increasing.

The	developers	incorporated	in	this	new	project	all	the	lessons	that	they	learned	from	the
usage	patterns	of	the	Notebook,	to	build	a	robust	and	clean	foundation	for	a	flexible
interactive	computing	experience	and	an	improved	user	interface.

Jupyter	Notebook

108

http://blog.jupyter.org/2015/04/15/the-big-split/
https://www.youtube.com/watch?v=Ejh0ftSjk6g

Figure	7	-	JupyterLab	User	Interface.

In	figure	7	the	user	interface	of	the	JupyterLab	project,	based	on	the	PhosporJS	framework,
is	shown.	The	division	in	tabs	and	panes	allows	using	different	components	(file	browser,
terminal,	notebook),	that	can	be	used	only	separately	in	the	classic	Notebook,	at	the	same
time.

As	of	April	2017,	the	project	is	still	in	the	early	preview	phase,	and	it	is	not	suitable	for
general	usage	yet.	A	series	of	phases	are	planned	to	enable	a	smooth	transition	from	the
classic	Notebook	to	the	new	environment,	as	eventually	JupyterLab	will	become	the	default
UI	and	the	classic	notebook	will	only	be	available	as	a	separate	download.

Conclusion
Jupyter	notebook	is	currently	the	most	popular	and	widely	used	tool	for	students	and	data
scientists	to	create	and	share	documents	containing	live	code,	explanations	and
visualisations.	Its	popularity	can	be	validated	by	the	fact	that	Github	natively	supports	the
rendering	of	notebook	files.

While	going	through	the	code,	our	team	found	five	issues	that	could	give	problems	in	the
long-run	i.e.	non-compliance	to	code	style,	hard-coded	variables,	duplicate	code,	deprecated
methods	and	low	test	coverage.	Pull	requests	were	made	to	pay	off	these	technical-debt-
related	issues	and	four	of	them	got	accepted.	Two	additional	pull	requests,	related	to	bug
fixes,	were	made	and	both	were	merged	to	master.	The	developers	provided	extensive
feedback	and	suggestions	to	our	pull-requests	which	was	very	helpful.

Jupyter	Notebook

109

Even	though	the	documentation	of	the	project	was	lacking	for	the	most	part	and	the	analysis
of	the	project's	architecture	proved	to	be	more	challenging	than	we	thought,	our	team
managed	to	understand	the	inner	workings	of	the	system.	We	learned	that	real-world
software	does	not	always	correspond	to	the	ideal	architectures	that	we	discuss	in	theory,	but
it	can	nonetheless	be	successful.	We	also	learned	that	The	code	is	the	truth,	but	it	is	not	the
whole	truth	(Grady	Booch),	and	that	the	Jupyter	ecosystem,	including	its	community,	plays	a
major	part	in	the	success	of	the	project.	We	are	excited	to	see	what	the	future	has	in	store
for	the	Jupyter	project.

If	you	are	considering	joining	the	Jupyter	notebook	community	and	make	contributions,	do
not	hesitate.	The	Jupyter	community	will	welcome	you	with	open	arms.	This	chapter	together
with	the	contribution	guidelines	and	documentation	will	guide	you	towards	your	contributions.

References
1.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with

Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.
2.	 Jupyter	documentation

(http://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html)
3.	 The	IPython	notebook:	a	historical	retrospective	(http://blog.fperez.org/2012/01/ipython-

notebook-historical.html)
4.	 IPython	LOC	Analysis

(https://www.openhub.net/p/ipython/analyses/latest/languages_summary)

Jupyter	Notebook

110

https://github.com/jupyter/notebook/blob/master/CONTRIBUTING.rst
https://jupyter.readthedocs.io/en/latest/
http://jupyter.readthedocs.io/en/latest/architecture/how_jupyter_ipython_work.html
http://blog.fperez.org/2012/01/ipython-notebook-historical.html
https://www.openhub.net/p/ipython/analyses/latest/languages_summary

Apache	Kafka

Marc	Juchli,	Daan	Rennings,	Ron	Wierzchowski	and	Mateusz	Garbacz

Delft	University	of	Technology

Abstract
Apache	Kafka	is	an	open	source	streaming	platform,	which	allows	to	publish,	store	and
process	streams	of	information.	The	software	is	widely	used	by	companies	such	as	LinkedIn
and	Spotify	and	has	a	large	and	active	development	community.	This	chapter	aims	at
analyzing	the	software	and	its	development	from	three	viewpoints,	i.e.	the	context	view,	the
development	view	and	the	information	view	as	defined	by	Rozanski	and	Woods	[10].	We
thereby	try	to	create	a	knowledge	base,	for	the	current	state	of	the	project	as	well	as	its
evolution.

We	found	that	the	Apache	Kafka	project	has	a	rich	environment	of	stakeholders	with	regard
to	its	use	and	development,	which	even	includes	researchers.	Furthermore	we	elaborate
upon	the	module	structure	of	Kafka	and	discuss	the	strong	standardization	of	development,
testing	and	release	management	practices	of	Kafka,	that	overall	has	a	reasonable	and
consciously	maintained	amount	of	technical	debt.	Finally,	we	have	concluded	that	Kafka	is
overall	an	example	of	a	neat	software	project	of	large	scale.	However,	a	few	improvements
could	still	be	implemented,	especially	with	regard	to	architectural	documentation.

Contents
1.	 Introduction

Kafka

111

https://github.com/backender
https://github.com/drennings
https://github.com/krymnos
https://github.com/matgar0
https://kafka.apache.org/
https://www.linkedin.com/
https://www.spotify.com/
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+papers+and+presentations

2.	 Stakeholders
i.	 Kafka,	an	Apache	Software	Project
ii.	 Classifying	Stakeholders
iii.	 Power	versus	Interest

3.	 Context	View
i.	 System	Scope	and	Responsibilities
ii.	 External	Entities

4.	 Development	View
i.	 Module	Overview
ii.	 Standards	in	Kafka
iii.	 Technical	Debt

5.	 Information	View
i.	 Information	Structure	and	Flow
ii.	 Information	Ownership

6.	 Evolution	and	Outlook
i.	 History	of	Kafka
ii.	 Evolution	of	Development	Practices
iii.	 Evolution	of	Testing

7.	 Conclusions

1.	Introduction
Streaming	has	become	an	essential	way	of	sharing	the	data	over	the	internet,	which	allows
to	view	and	process	the	content	before	it	has	been	fully	transmitted	[8].	The	application	of
streaming	in	most	of	the	companies	is	done	separately	for	each	two	platforms	or	modules,
which	causes	a	high	number	of	dependencies	and	processes	to	maintain	and	supervise.
Moreover,	most	of	the	programs	focus	on	a	stream	delivery,	which	does	not	suffice	the
needs	of	large	companies.	A	solution	for	these	problems	that	includes	additional	functionality
can	be	found	in	Apache	Kafka.

Apache	Kafka	is	an	open	source	streaming	platform,	which	allows	to	publish,	store	and
process	streams	of	information	across	multiple	entities	[8].
Moreover,	these	actions	are	executed	in	a	distributed	manner,	which	allows	it	to	adhere	to
parallelism,	fault	tolerance	and	high	scalability	of	the	processes.	Finally,	Kafka	is	designed	to
bring	together	multiple	sources	of	data	as	well	as	many	destinations,	making	it	simple	to
adapt	as	a	broker	for	the	data	streaming.

This	chapter	aims	at	analyzing	Kafka	as	a	software	project	based	on	viewpoints	and
perspectives	defined	by	Rozanski	and	Woods	[10].	To	this	end	we	discuss	the	stakeholders
surrounding	Kafka	and	their	power	and	interest	in	section	2.	A	more	elaborate	view	of	it's

Kafka

112

environment	in	terms	of	a	context	view	is	discussed	in	section	3.	Afterwards,	in	section	4,	we
have	a	closer	look	at	the	architecture	of,	development	practices	adopted	in	and	technical
debt	accumulated	by	Kafka.	We	elaborate	upon	the	information	viewpoint	in	section	5,
discussing	the	structure,	flow,	ownership	and	guarantees	with	regard	to	information	in	Kafka.
We	furthermore	discuss	various	views	in	a	timely	perspective	in	section	6.	Finally,	we
conclude	our	findings	in	section	7.

2.	Stakeholders
In	this	section	we	discuss	the	stakeholders	involved	in	Apache	Kafka,	the	official	structure	as
an	Apache	software	project	and	identify	its	two	official	stakeholders.

2.1	Kafka,	an	Apache	Software	Project

Since	Kafka	is	a	project	of	the	Apache	Software	Foundation	(ASF),	the	foundation	holds	the
copyright	on	all	Apache	code	including	the	code	in	the	Kafka	codebase	[9].	In	their	own
bylaws	[1]	and	in	accordance	with	'the	Apache	Way'	[4],	Kafka	distinguishes	two	project
roles:	the	Committers	and	the	Project	Management	Committee	(PMC).	The	Committers	are
responsible	for	the	project’s	technical	management	and	have	access	to	and	responsibility	for
all	of	Kafka’s	source	code	repository.	The	PMC	is	responsible	for	the	technical	direction	and
oversight	of	the	project	and	reports	quarterly	to	the	Board	of	Directors	of	ASF.	All	of	the	PMC
members	are	also	Committers.

2.2	Classifying	Stakeholders

Rozanski	and	Woods	have	classified	stakeholders	into	a	framework	of	stakeholder	classes
[10].	Based	on	this,	we	present	an	overview	of	how	the	various	stakeholders	in	Apache
Kafka	could	be	classified	into	these	stakeholder	groups	below.

Class	of
stakeholders Role(s)	and	concern(s) Kafka	stakeholder

Acquirers Oversee	the	procurement	of
the	system	or	product PMC

Assessors
Oversee	the	system’s
conformance	to	standards	and
legal	regulation

PMC

Communicators

Explain	the	system	to	other
stakeholders	via	its
documentation	and	training
materials

PMC	and	Committers,	but	also
developers	and	system
administrators	that	use	Kafka	that
communicate	through	the	Apache
Kafka	website	and	documentation

Kafka

113

http://www.apache.org/foundation/

Developers
Construct	and	deploy	the
system	from	specifications	(or
lead	the	teams	that	do	this)

PMC	(in	the	form	of	development
managers),	Committers	and	other
GitHub	contributors	as	core
developers

Maintainers Manage	the	evolution	of	the
system	once	it	is	operational PMC	and	Committers

Production
Engineers

Design,	deploy,	and	manage
the	hardware	and	software
environments

Third	party	software
organizations	such	as	JIRA,
Jenkins,	Gradle,	CheckStyle,	ect.

Suppliers

Build	and/or	supply	the
hardware,	software,	or
infrastructure	on	which	the
system	will	run

JVM,	Scala,	Apache	Zookeeper,
Clients

Support	Staff
Provide	support	to	users	for
the	product	or	system	when	it
is	running

PMC	and	Committers,	but	also
individual	developers	active	in	the
Kafka's	users	mailing	lists

System
Administrators

Run	the	system	once	it	has
been	deployed

System	administrators	at
companies	that	use	Kafka

Testers Test	the	system	to	ensure	that
it	is	suitable	for	use

PMC	and	Committers	vote	for
approval,	Users	also	contribute	to
(context	specific)	testing	and	the
creation	of	issues,	as	well	as
Developers	in	general

Users
Define	the	system’s
functionality	and	ultimately
make	use	of	it

Confluent	and	LinkedIn	seem	to
play	a	major	role	in	defining
functionality,	a	multitude	of	(large)
companies	are	regular	users

Researchers

Work	with	or	on	the	system
from	a	research	perspective,
Apache	Kafka	is	thereby	a
separate	object	of	study	or
used	in	a	larger	system	under
study

An	active	community	of
researchers	(Kafka	is	stated	in
over	800	papers	that	may	also	be
PMC	members,	Committers	or
other	developers

Competitors Offer	(a	subset	of)	similar
functionalities	as	Kafka

Traditional	messaging	platforms
such	as	ZeroMQ	and	RabbitMQ,
related	modern	messaging
platforms	such	as	Amazon
Kinesis	and	Apache	Flink

Table	1:	Classes	of	stakeholders	in	Apache	Kafka

2.3	Power	versus	Interest

Kafka

114

https://cwiki.apache.org/confluence/display/KAFKA/Powered+By
https://scholar.google.nl/scholar?hl=nl&q=%22Apache+Kafka%22&btnG=&lr=

We	extend	upon	the	previous	classification	of	stakeholders	to	include	the	power	and	interest
of	the	various	stakeholders	[10].	We	do	so	by	means	of	a	power	interest	grid,	of	which	the
result	is	shown	below.	For	an	explanation	of	images	that	were	not	introduced	yet	but	are
depicted	in	this	grid,	we	direct	the	reader	to	section	3.

The	third	party	software	used	by	Kafka	can	be	divided	in	three	groups,	all	in	the	lower	left
quadrant	of	the	power	interest	grid.	The	group	having	the	least	power	and	interest	consists
of	GitHub,	JIRA,	CheckStyle,	FindBugs	and	Jenkins.	Less	easy	to	replace	are	Gradle,
Ducktape	and	Zookeeper,	as	they	have	less	alternatives	that	could	be	used	with	regard	to
Kafka's	usage.	The	third	group	is	formed	by	the	programming	languages,	again	this	group
has	no	interest	in	Kafka,	but	does	have	more	power	as	the	whole	codebase	consists	of
them,	i.e.	they	are	hardly	replaceable.

More	interest	-	but	hardly	any	power	-	resides	with	companies	such	as	Netflix	that	use
Kafka,	but	do	not	officially	contribute.	Developers	on	products	such	as	HortonWorks	and
Cloudera	-	which	include	Kafka	in	their	core	-	and	researchers	that	study	Apache	Kafka	itself
or	use	it	in	their	research	generally	contribute	more	and	therefore	have	a	larger	amount	of
power.	We	define	competitors	of	Kafka	to	have	a	similar	amount	of	interest,	but	somewhat
more	power	as	they	can	steer	the	development	process	of	Kafka	(e.g.	by	adopting	new
features).

In	the	quadrant	containing	the	most	interest	and	power,	we	can	furthermore	see	a	growth	of
both	from	simple	developers	to	Committers	to	PMC	members	to	Kafka's	Vice	President	Jun
Rao.	As	early	explained,	the	ASF	holds	a	significant	amount	of	power,	although	it's	interest
may	be	less	compared	to	e.g.	LinkedIn	and	Confluent	from	which	Kafka	originated	and	still
gains	much	steering	and	development	contributions.

Kafka

115

Figure	1:	A	Power	Interest	Grid	of	stakeholders	in	Apache	Kafka

3.	Context	View
This	section	describes	the	system's	scope	and	responsibilities	as	well	as	relations	with	its
environment	consisting	of	users	and	external	entities.

3.1	System	Scope	and	Responsibilities

The	system	scope	and	responsibilities	define	what	the	system	should	do	in	order	to	fulfil	its
objective	[10].	These	include	the	following	[20]:

Enabling	users	to	publish	and	subscribe	to	streams	of	records.	In	this	respect	it	is
similar	to	a	message	queue	or	enterprise	messaging	system.
Enabling	users	to	store	streams	of	records	in	a	fault-tolerant	way.
Enabling	users	to	process	streams	of	records	as	they	occur.
Enabling	users	to	build	real-time	streaming	data	pipelines	that	reliably	get	data	between

Kafka

116

systems	or	applications
Enabling	users	to	build	real-time	streaming	applications	that	transform	or	react	to	the
streams	of	data

3.2	External	Entities

There	are	several	external	entities	surrounding	Kafka's	environment.	Here,	we	first	elaborate
upon	them	and	display	them	in	an	overview	afterwards.

The	organisation	that	has	started	the	project:	LinkedIn.	[21]
Owner	of	the	project:	Apache	Software	Foundation.
The	license	of	the	project:	Apache	Licence	2.0.
Programming	languages	used	in	the	project:	Java	(63.7%),	Scala	(31.3%),	Python
(4.2%),	Other	(0.8%)
The	services	used	for	development	and	issue	tracking:	GitHub	and	JIRA.
The	test	entities:	EasyMock	and	JUnit	software	used	to	develop	test	cases.	The	other
test	entities	through	which	automated	testing	is	applied	are	Ducktape	and	Jenkins.
The	code	quality	assurance	tools:	Checkstyle	and	FindBugs	for	codestyle	and	bugs
respectively.
The	integration	software:	ASFBot,	which	integrates	GitHub	with	JIRA.
Users:	companies	that	use	the	Kafka	platform	in	their	own	processes	e.g.	Spotify,	Uber
and	Netflix,	which	may	also	actively	contribute	to	the	project,	e.g.	LinkedIn	and
Cloudera.
The	development	community:	consisting	of	PMC	members,	Committers,	Users,
Researchers	and	other	GitHub	contributors
The	entities	upon	which	the	software	is	dependent:	e.g.	Zookeeper	and	Log4J.	The
complete	list	of	dependencies	can	be	found	at	the	build.gradle	file.

Kafka

117

https://kafka.apache.org/powered-by
https://github.com/apache/kafka/blob/trunk/gradle/dependencies.gradle

Figure	2:	Context	view	of	Apache	Kafka

4.	Development	View
"The	development	viewpoint	describes	the	architecture	that	supports	the	software
development	process"	[10].	It	can	be	applied	to	all	systems	that	have	significant	software
development	involved	in	their	creation.	We	will	present	an	overview	of	the	modules	that	are
part	of	Kafka,	elaborate	upon	the	adopted	standardization	of	design	through	the	as-designed
and	as-implemented	development	views	and	discuss	the	key	architectural	styles	we
identified.	We	will	furthermore	discuss	the	standardization	of	testing	and	the	release
management	and	how	the	various	actors	are	involved	in	these	processes.

4.1	Module	Overview

Over	the	past	years	Apache	Kafka	has	seen	a	rapid	growth	in	terms	of	the	components	and
functionalities	it	offers.	As	further	described	in	the	Evolution	section	the	codebase	of	the
project	has	grown	equally	big.	The	following	section	therefore	aims	to	display	how	the
source	code	is	organized	currently	(v0.10.2.0)	from	a	high	level	perspective.

Kafka

118

Figure	3:	Code	Module	overview.	The	arrows	towards	the	Core	module	show	which
functionalities	each	module	provides.	Furthermore	dependencies	between	these	modules
are	displayed.

As	mentioned	before,	the	project	is	implemented	in	Java	as	well	as	Scala.	However,	most
functionalities	of	the	message	broker	core	is	written	in	Scala,	whereas	packages	built	on	top
of	that,	such	as	clients	or	streaming,	are	written	in	Java.	Through	this	separation	the	Core
component	can	be	trusted	with	the	characteristics	that	the	Kafka	project	values	most,	i.e.
handling	data	feeds	with	high-throughput	and	low-latency	while	ensuring	persistency	and
fault	tolerance	across	clusters.	The	Scala	code	is	grouped	under	kafka/core	and	displayed	in
the	center	of	Figure	3.	As	shown	in	that	figure,	all	other	major	components	extend	the	Kafka
core	with	further	functionalities	and	interfaces.

	org.apache.kafka.streams	:	is	a	library	for	building	scalable	stream	processing
applications	on	top	of	Apache	Kafka.
	org.apache.kafka.connect	:	is	a	framework	for	reliably	streaming	data	between	Apache
Kafka	and	other	data	systems	and	allows	to	use	already	existing	connector
implementations	for	common	data	sources.	Through	these	interfaces	it	possible	to
deliver	data	from	Kafka	topics	into	secondary	indexes	like	Elasticsearch	or	into	batch
systems	such	as	Hadoop	for	offline	analysis.
	org.apache.kafka.clients		This	module	provides	the	two	main	interfaces	through	which
applications	access	data	in	the	cluster,	the	Producer	API	and	the	[Consumer	API].
	org.apache.kafka.common		The	Common	module	provides	essential	tools	that	are	used
by	the	other	modules	as	well	as	user	apps,	e.g.	for	De-Serialization,	performance

Kafka

119

https://github.com/delftswa2017/kafka/tree/trunk/core/src/main/scala/kafka
http://docs.confluent.io/3.2.0/streams/index.html
http://docs.confluent.io/3.2.0/connect/intro.html
http://docs.confluent.io/3.2.0/clients/index.html
https://kafka.apache.org/documentation/#producerapi

metrics,	error	handling,	communication	protocols	and	server	configuration.

4.2	Standards	in	Kafka

In	such	a	complex	system	it	is	important	to	standardize	the	design	of	key	aspects	in	order	to
ensure	the	maintainability	and	reliability	of	the	resulting	product.

4.2.1	Standardization	of	Design

In	this	section	we	analyze	how	Kafka	has	standardized	the	way	design	decisions	are	made.

Kafka	has	standardized	the	design	process	by	requiring	a	Kafka	Improvement	Proposal
(KIP)	for	changing	any	public	API	or	major	feature,	as	defined	in	their	Wiki	[17].	A	KIP	is
created	as	a	Wiki	entry	by	the	person	proposing	the	changes	and	then	discussed	in	the
mailing	list.	A	KIP	should	motivate	the	proposed	changes	and	discuss	alternative	solutions.
The	goal	is	that	the	integrators	as	well	as	the	community	can	ensure	that	changes	have	the
correct	impact	on	the	project.	General	coding	guidelines	are	also	given	on	their	webpage
[19].	Lastly,	it	should	be	mentioned	that	many	software	projects	define	the	use	of	common
design	patterns	in	development.	Also	in	Kafka	these	patterns	are	employed	though	their	use
not	fully	standardized,	rather	this	is	guided	by	the	use	of	KIPs	and	coding	guidelines.

4.2.2	Standardization	of	Testing

Testing	in	Kafka	is	highly	standardized	and	automated.	There	are	two	main	tools	used	by	the
developers.	The	first	is	Ducktape	tool,	a	distributed	testing	framework,	which	provides	the
runner,	result	reporter	and	additional	utilities.	Furthermore,	the	Jenkins	system	has	been
incorporated	to	enable	automated	tests	(see	example)	in	the	cloud	for	different	builds	of	the
system.	The	main	difference	in	use	of	these	two	systems	is	that	Jenkins	is	mainly	used	for
the	integration	of	pull	requests,	while	Ducktape	tests	may	be	triggered	by	a	developer	at	any
time,	locally.	However,	it	requires	bringing	up	a	cluster	of	virtual	machines	using	10G	RAM.

Considering	test	writing,	with	every	feature	introduced	to	the	system,	there	are	test	cases
added	as	well,	to	make	sure	that	only	parts	of	code	that	well	covered	by	tests	are	merged
into	the	system,	see	example	pull	request.	The	official	guidelines	for	making	contributions
that	match	the	test	standards	can	be	found	in	the	documentation.	Moreover,	the	newly
introduced	test	cases	are	merged	to	the	test	cases	with	most	pull	requests	merged	to	the
system.

The	most	significant	test	cases	are	run	over	night	on	a	regular	basis	to	ensure	that	the	vital
parts	of	the	systems	are	not	corrupted.	Next	to	that,	all	the	test	cases	are	run	with	every	pull
request	on	GitHub.	This	is	executed	automatically	using	Jenkins.

Kafka

120

https://github.com/jhclark/ducttape
https://builds.apache.org/job/kafka-pr-jdk8-scala2.12/2006/
https://github.com/apache/kafka/pull/2540
https://cwiki.apache.org/confluence/display/KAFKA/Contributing+Code+Changes

Finally,	performance	tests	are	executed	as	well,	to	analyze	common	statistics,	logs	and
server	side	metrics,	as	described	on	the	website.	These	tests	are	automated	and
incorporated	into	frequently	updated	metrics	that	are	monitored	to	make	sure	that	the
system	is	stable	and	efficient.

4.2.3	Release	Management

Management	of	Apache	Kafka	releases	is	standardized	even	more	than	it's	design	and
testing	processes,	as	will	be	discussed	in	this	section.	On	the	Release	Process	page	for
Committers,	which	follows	the	ASF	Release	Creation	Process,	it	is	specified	that	a	new
release	requires	careful	preparation	regarding	implementation	and	documentation,	but	also
approval	to	become	reality.	The	person	that	actually	manages	the	release	process	is	called
the	Release	Manager	(RM).	The	release	process	consists	of	five	major	steps	in	which	the
RM,	but	also	the	Kafka	development	community	and	of	course	the	PMC	play	a	part.	Below
you	can	find	an	overview	of	these	steps	that	are	discussed	more	elaborately	on	Kafka's
release	process	webpage,	as	well	as	an	overview	of	past	and	future	release	plans.

Figure	4:	The	Release	Process	in	Apache	Kafka

As	an	extension	of	the	above,	it	was	decided	to	move	to	a	time-based	release	plan,	as
described	on	the	dedicated	Wiki	page	starting	with	Apache	Kafka	0.10.1.0	(October	2016).
The	motivation	to	do	so	was	to	create	a	quicker	and	more	predictable	development	cycle,
with	higher	transparency.	However,	time	pressure	and	specified	time	holes	between
releases	form	the	downside	of	this	approach.	Nonetheless,	it	was	decided	that	the	benefits
outweigh	the	cons	of	this	process.

4.3	Technical	Debt

Kafka

121

https://cwiki.apache.org/confluence/display/KAFKA/Performance+testing
https://cwiki.apache.org/confluence/display/KAFKA/Release+Process
http://www.apache.org/dev/release-publishing.html
http://www.apache.org/dev/release-publishing.html#release_manager
https://cwiki.apache.org/confluence/display/KAFKA/Time+Based+Release+Plan

In	this	section,	we	discuss	the	technical	debt	(a	term	first	identified	by	Cunningham	[6])	with
regard	to	Apache	Kafka.	The	subsections	respectively	describe	the	debt	identified	in	the
system	with	regard	to	defects,	code-style,	testing	and	documentation.

4.3.1	Defect	Debt

In	the	Apache	Kafka	project,	FindBugs	is	used	to	automatically	detect	defects	in	the	form	of
bugs.	However,	for	a	truly	critic	technical	debt	collector,	it	may	be	good	to	know	that	Kafka
does	not	let	FindBugs	check	for	all	types	of	bugs,	as	can	be	seen	in	the	exclude	XML	file.
Though,	we	found	these	omissions	not	to	have	a	significant	impact	on	the	judgement	of
FindBugs,	although	the	reason	for	exclusion	is	not	stated	explicitly.	In	our	FindBugs	runs,	we
have	found	a	considerable	small	relative	amount	of	bugs	in	the	FindBugs	reports	(less	than
100	High	Priority	and	less	than	3000	Medium	Priority	Warnings	in	over	100000	analyzed
lines	of	source	code).	The	parts	of	code	with	highest	defect	debt	are	related	to	the	core
functionality	of	Kafka,	while,	minority	of	them	to	the	external	entities.	However,	since	these
warnings	are	well-visible	and	well-maintained	by	the	Kafka	development	community	(mainly
through	fixes	labelled	as	"MINOR"),	we	conclude	that	the	technical	debt	with	regard	to
defects	is	pretty	low.

4.3.2	Codestyle	Debt

Similar	to	the	adoption	of	FindBugs	for	defects,	Kafka	has	adopted	CheckStyle	to	control	the
style	of	code	throughout	its	codebase.	Although	we	found	some	severe	violations	around
(e.g.	a	cyclomatic	complexity	of	35),	we	have	concluded	that	Apache	Kafka	does	not	have
much	debt	with	regard	to	the	code-style.	However,	we	have	to	state	that	Kafka	both	has
relaxed	some	of	the	default	values	of	CheckStyles'	parameters	(as	specified	in	the
checkstyle	XML	file)	and	instruments	CheckStyle	to	suppress	some	files	(see	the
suppressions	XML	file).	On	the	other	hand,	the	relaxed	parameters	are	within	an	appropriate
range	with	regard	to	the	default	values.	The	amount	of	debt	is	again	mainly	accumulated	for
the	core	of	the	system,	while	for	the	external	packages	it	is	much	less	visible.

4.3.3	Testing	Debt

Testing	debt	of	Apache	Kafka	was	mainly	investigated	in	terms	of	test	coverage	based	on
the	JaCoCo	Java	code	coverage	library.	Firstly,	we	have	analyzed	the	test	coverage	for
different	modules	and	concluded	that	some	of	them	accumulated	testing	debt.	One	of	the
main	issues	when	it	comes	to	the	test	coverage	is	connected	to	the	streams	module,	which
is	a	major	part	of	the	system.	This	was	mainly	caused	by	its	continuous	development	in	the
previous	releases	0.10.1.0	and	0.10.2.0.	This	debt	is	being	paid	by	extending	the	tests	for
the	related	classes.	Another	module	with	a	low	test	coverage,	yet,	much	lower	importance

Kafka

122

http://findbugs.sourceforge.net
https://github.com/apache/kafka/blob/trunk/gradle/findbugs-exclude.xml
http://checkstyle.sourceforge.net/
https://github.com/apache/kafka/blob/trunk/checkstyle/checkstyle.xml
https://github.com/apache/kafka/blob/trunk/checkstyle/suppressions.xml
http://www.eclemma.org/jacoco/
https://issues.apache.org/jira/browse/KAFKA-4640
https://cwiki.apache.org/confluence/display/KAFKA/Release+Plan+0.10.1
https://cwiki.apache.org/confluence/display/KAFKA/Release+Plan+0.10.2.0

for	the	project	is	log4j-appender.	Therefore,	we	conclude	that	the	developers	put	much
higher	focus	in	having	low	testing	debt	in	terms	of	the	Kafka	core	functionalities,	while	the
external	libraries	are	much	less	tested	and	have	accumulated	quite	a	significant	amount	of
debt.

4.3.4	Documentation	Debt

Even	though	there	are	various,	spreaded	knowledge	sources	of	the	project,	there	is	no	clear
document	describing	the	architectural	design	of	the	system,	which	constantly	changes.
Despite	the	fact	that	it	would	be	extremely	hard	to	maintain	such	documentation	when
keeping	in	mind	how	often	new	features	are	introduced,	the	project	currently	highly
discourages	an	understanding	of	the	design,	which	is	in	our	view	accumulated
documentation	debt.

5.	Information	View
The	Information	view	can	be	used	to	answer,	at	an	architectural	level,	questions	about	how
the	system	will	store,	manipulate,	manage,	and	distribute	information.	This	section	therefore
aims	to	provide	an	overview	over	the	key	architectural	concepts	that	govern	the	information
structure,	flow	and	ownership	of	Kafka.

Information	Structure	and	Flow

As	explained	in	Rozanski	and	Woods	[10],	an	architect's	challenge	is	to	focus	on	the	right
aspects	of	information	structure	and	to	leave	the	details	to	the	data	modelers	and	data
designers.	For	this	purpose,	as	described	in	their	documentation	[11],	Kafka	has	introduced
a	core	abstraction	for	a	collection	of	records	—	the	topic.

Topics

Kafka	categorizes	data	feeds	by	topics.	It	is	the	conceptual	unit,	which	all	reads	and	writes
go	through.	A	log	is	a	simple,	append-only	data	structure	which	contains	a	sequence	of
ordered	records,	whereas	each	entry	is	assigned	to	a	unique	number	called	offset.	Thanks
to	the	strict	ordering	inside	a	log,	the	record	offset	can	be	used	as	a	timestamp	where	a	log
gets	decoupled	from	any	time	system.	Since	records	are	immutable,	Kafka	is	able	to	serve
multiple	users	to	read	at	any	offset	simultaneously.	Similarly,	it	allows	multiple	producers	to
write	to	a	topic	at	the	same	time,	by	simply	appending	the	records	to	the	logs.	[11]

Kafka

123

Figure	5:	The	log	structure,	showing	simultaneous	reads.	[11]

Partitioning

In	order	to	improve	scalability	and	fault	tolerance,	Kafka	divides	topics	into	multiple
partitions.	This	not	only	allows	to	move	replicas	across	machines	to	guarantee	fault
tolerance,	but	it	is	also	a	way	to	parallelize	the	consumption	of	messages.	Each	client	–	be	it
on	consumer	or	producer	side	–	will	split	the	burden	of	processing	the	topic	between
themselves,	such	that	one	member	will	only	be	concerned	with	messages	in	the	partition	it	is
assigned	to.	Thus,	the	throughput	of	the	system	will	scale	linearly	with	the	Kafka	cluster	size.
[11]

Figure	6:	Partitioned	log	structure	[11]

Information	Ownership

As	argued	by	Rozanski	and	Woods	[10],	it	especially	important	to	be	able	to	reason	about
the	synchronicity	and	recency	of	records	when	data	is	physically	distributed	across	multiple
data	stores	and	accessed	in	different	ways.	We	therefore	analyze	the	theoretical	guarantees
given	by	Apache	Kafka.

Distribution

Kafka

124

The	partitions	of	the	log	are	distributed	over	the	servers	in	the	Kafka	cluster	with	each	server
handling	data	and	requests	for	a	share	of	the	partitions.	Each	partition	is	replicated	across	a
configurable	number	of	servers	for	fault	tolerance.

Guarantees

As	a	resume	from	the	descriptions	above	we	list	guarantees	of	Kafka	regarding	message
delivery,	fault	tolerance	and	ordering.

Delivery	Model:	Kafka	guarantees	at-least-once	delivery	by	default	and	allows	the	user	to
implement	at-most-once	delivery	by	disabling	retries	on	the	producer	and	committing	its
offset	prior	to	processing	a	batch	of	messages.

Exactly-once	delivery	requires	co-operation	with	the	destination	storage	system,	but	Kafka
provides	the	offset	which	makes	implementing	this	straight-forward	[2].

Fault	Tolerance:	It	is	guaranteed	that	any	successfully	published	message	will	not	be	lost
and	can	be	consumed.	Furthermore,	a	topic	with	replication	factor	N	will	tolerate	N-1	server
failures	without	losing	any	messages.

However	there	is	no	guarantee	for	the	producer	that	a	message	is	fully	published	in	case	of
a	network	error	[2].

Message	Ordering:	The	use	of	a	log	with	sequential	numbers	for	each	entry	(offset)
guarantees	that	messages	from	a	producer	to	a	topic	partition	will	be	appended	in	the	order
they	are	sent.	Subsequently,	consumers	see	messages	in	the	order	they	are	stored	in	the
log	[2].

Replication

To	satisfy	the	guarantees	(see	above),	Apache	Kafka	supports	replication	on	log	partitions
level.	Replication	of	topics	is	executed	across	a	configurable	number	of	other	Kafka	servers
(a.k.a.	nodes),	whereas	each	topic	has	an	associated	leader	node.	Producers	send	data
directly	to	the	leader	node.	A	leader	node	can	have	zero	or	more	follower	nodes	which	are
responsible	for	replicating	the	entries	of	the	active	log.	An	incoming	message	needs	to	be
replicated	by	every	in-sync	follower	before	any	other	consumer	can	consume	this	message.
A	fully	replicated	message	is	therefore	considered	as	committed	[11][3].

6.	Evolution	and	Outlook

Kafka

125

Apache	Kafka	was	initially	developed	at	LinkedIn	and	subsequently	released	as	an	open
source	project	under	the	umbrella	of	the	Apache	Software	Foundation.	The	following
sections	will	put	Kafka	in	an	evolutional	perspective	[10]	more	elaborately.

6.1	History	of	Kafka

At	some	point	in	the	history	of	LinkedIn,	the	system	landscape	was	overwhelmed	by	point-
to-point	pipelines,	each	delivering	data	to	a	single	destination	where	data	was	required.
Messages	were	written	to	aggregated	files	and	then	copied	to	ETL	servers	and	further
loaded	into	data	warehousing	and	batch	processing	clusters.	As	a	result,	the	company	faced
inevitable	delays	in	adding	new	types	of	activity	data.	But	integrating	new	features	into	the
existing	system	landscape	was	not	the	only	hassle.	The	detection	time	of	operational
problems	noticeably	increased	over	time	as	a	result	of	ever-increasing	pressure	on	the
latency	of	the	data	warehouse	processes.	At	this	point,	stream	processing	seemed	to	be	the
answer	to	those	problems.	However,	providing	continuous	data	with	the	current	system
architecture	was	not	feasible	at	that	point	anymore	–	due	to	complexity	–	and	thus,	the	need
for	a	central	platform	that	can	provide	continuous-	and	batch	data	was	born.	[11]

First	attempts	towards	a	piece	of	infrastructure	that	can	serve	stream	and	batch	processing
systems	were	made	by	consulting	classical	message	broker	applications	such	as	ActiveMQ.
During	tests	under	full	production	load	they	ran	into	several	significant	problems	as	the
queue	backed	up	beyond	what	could	be	kept	in	memory.	Further	difficulties	were	faced	with
ActiveMQ’s	built	in	persistence	mechanism	that	lead	to	very	long	restart	times.	According	to
LinkedIn,	it	would	have	been	possible	to	provide	enough	buffer	to	keep	the	ActiveMQ
brokers	above	water	but	would	have	required	hundreds	of	servers	to	process	a	subset	of
activity	data.	Eventually,	the	engineers	decided	to	a	custom	tailored	messaging
infrastructure,	targeting	high-volume,	scale-out	deployment	that	can	serve	batch-	and	stream
processing	systems.	[13]

In	early	2011	LinkedIn	open	sourced	Apache	Kafka,	and	soon	after,	on	23	October	2012,	the
graduation	from	the	Apache	Incubator	followed.	The	released	state	of	the	application
allowed	LinkedIn	to	migrate	their	entire	set	of	point-to-point	queues,	reaching	above	the
entire	space	of	their	system	landscape,	into	a	well	structured	central	message	hub	which
would	allow	to	scale	easily	while	attaching	new	systems	that	provide	or	demand	data.	[14]

In	November	2014,	the	engineers	who	worked	on	Kafka	at	LinkedIn,	Jun	Rao,	Jay	Kreps
and	Neha	Narkhede,	co-founded	a	new	company,	Confluent	Inc.,	with	a	focus	on	Kafka.	The
company	focusses	on	building	a	streaming	platform	around	Apache	Kafka.	Besides,
Confluent	is	actively	contributing	to	the	open	source	project.	[15]	[16]

6.2	Evolution	of	Development	Practices

Kafka

126

When	Kafka	was	open	sourced,	the	project	consisted	of	163.181	lines	of	code.	Prior	the
Apache	graduation,	a	refactoring	was	applied	which	lead	to	a	total	of	140.864	lines	of	code.
Since	then,	with	the	help	of	the	open	source	community,	the	project	increased	by	more	than
a	factor	of	two,	up	to	298.375	lines	of	code,	as	of	today	(03.04.2017).

The	project	was	initially	written	entirely	in	Scala.	Over	the	course	of	the	past	few	year,
however,	a	great	part	of	the	components	were	re-implemented	in	Java	8.	Likewise,	newly
introduced	components	such	as	"streaming"	were	implement	in	Java	from	the	very
beginning.	Furthermore,	Apache	Kafka	tries	to	avoid	as	much	third	party	dependencies	as
possible.	For	example,	the	extensive	use	of	Zookeeper	early	in	the	project,	acting	not	only
as	a	intermediary	for	the	broker	core	but	also	for	the	clients,	was	abolished	to	a	great	extent.

6.3	Evolution	of	Testing

At	the	beginning	of	the	Apache	Kafka	development,	multiple	separate	stand-alone	programs
were	created	for	testing	of	features.	The	more	new	features	were	introduced,	the	harder
testing	appeared	to	be,	because	some	of	these	programs	became	obsolete	over	time:	see
this	issue.

In	2015,	there	has	been	a	turning	point	of	the	project.	At	that	time	a	proposal	for	the	Test
practice	improvement	has	been	issued,	which	lead	to	unification	and	automation	of	testing.
The	Confluent’s	Ducktape	system	has	been	selected	as	a	system	that	best	matches	the
needs	of	the	project.	Further,	continuous	integration	with	Jenkins	system	has	been
established	for	an	effective	testing,	for	instance	for	each	Pull	Request	on	GitHub.

7.	Conclusions
In	its	early	days,	Kafka	came	as	a	solution	for	struggles	with	moving	data	at	LinkedIn.	Later
on,	it	became	an	Apache	project	and	currently	it	is	widely	adopted	by	a	multitude	of	big
companies.	From	a	contextual	point	of	view,	it	can	be	concluded	that	Kafka	has	a	rich
environment	of	stakeholders	that	use	and/or	contribute	to	Kafka.	In	this	environment,	we
also	identified	the	entities	through	which	Kafka	is	developed,	ranging	from	programming
languages	and	testing	tools,	to	automated	feedback	and	integration	bots.	With	regard	to
development,	we	have	identified	that	documentation	debt	surrounding	the	architecture	of
Kafka	from	a	medium	level	perspective	has	been	accumulated.	Apart	from	this	technical
debt,	Kafka's	codebase	was	found	to	have	hardly	any	debt	and	a	good	quality.	But	Kafka	is
not	just	a	good	software	project,	it	is	actually	one	of	the	big	players	in	the	domain	of
message	brokers.

References

Kafka

127

https://issues.apache.org/jira/browse/KAFKA-875?jql=project%20%3D%20KAFKA%20AND%20text%20~%20%22System%20Test%22
https://cwiki.apache.org/confluence/display/KAFKA/System+Test+Improvements

1.	 Apache	Kafka.	Bylaws.	https://cwiki.apache.org/confluence/display/KAFKA/Bylaws,
2015.

2.	 Apache	Kafka	Website:	https://kafka.apache.org/documentation/#intro_guarantees,
2016.

3.	 Apache	Kafka	Wiki	-	Replication.
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Replication,	2016.

4.	 Apache	Software	Foundation.	Apache	Corporate	Governance	Overview.
http://www.apache.org/foundation/governance/,	2016.

5.	 Arie	van	Deursen	and	Rogier	Slag	(eds).	Delft	Students	on	Software	Architecture.
http://delftswa.github.io,	2015.

6.	 Cunningham,	Ward.	The	WyCash	portfolio	management	system,	Addendum	to	the
proceedings	on	Object-oriented	programming	systems,	languages,	and	applications
(Addendum),	1992.

7.	 Graham,	Dorothy;	VAN	VEENENDAAL,	Erik;	EVANS,	Isabel.	Foundations	of	software
testing:	ISTQB	certification.	Cengage	Learning	EMEA,	2008.

8.	 Jay	Kreps	and	Neha	Narkhede	and	Jun	Rao.	Kafka:	A	Distributed	Messaging	System
for	Log	Processing,	at	NetDB	workshop,	2011.

9.	 Maximilian	Michels.	An	Introduction	to	Apache	Software.
https://maximilianmichels.com/2017/an-introduction-to-apache-software/,	2017.

10.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with
Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.

11.	 Apache	Kafka	Documentation:	https://kafka.apache.org/documentation/#intro_topics,
2016.

12.	 Agile	Mike:	https://agilemichaeldougherty.wordpress.com/2015/07/24/types-of-technical-
debt/,	2015.

13.	 Ken	Goodhope,	Joel	Koshy,	Jay	Kreps,	Neha	Narkhede,	Richard	Park,	Jun	Rao,	and
Victor	Yang	Ye.	Building	linkedin’s	real-time	activity	data	pipeline.	IEEE	Data	Eng.	Bull.,
35(2):33–45,	2012.

14.	 The	Log:	What	every	software	engineer	should	know	about	real-time	data's	unifying
abstraction,	LinkedIn	Engineering	Blog.	https://engineering.linkedin.com/distributed-
systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying,
2013.

15.	 LinkedIn	engineers	spin	out	to	launch	‘Kafka’	startup	Confluent.
http://fortune.com/2014/11/06/linkedin-kafka-confluent/,	2014.

16.	 Confluent	Inc.	-	About.	https://www.confluent.io/about/,	2016.
17.	 Apache	Kafka	Wiki	-	Kafka	Improvement	Proposal.

https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Improvement+Proposals,
2016.

18.	 Apache	Kafka	Wiki	-	Contributing	Code	Changes.
https://cwiki.apache.org/confluence/display/KAFKA/Contributing+Code+Changes,	2016.

Kafka

128

https://cwiki.apache.org/confluence/display/KAFKA/Bylaws
https://kafka.apache.org/documentation/#intro_guarantees
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Replication
http://www.apache.org/foundation/governance/
http://delftswa.github.io
https://maximilianmichels.com/2017/an-introduction-to-apache-software/
https://kafka.apache.org/documentation/#intro_topics
https://agilemichaeldougherty.wordpress.com/2015/07/24/types-of-technical-debt/
https://engineering.linkedin.com/distributed-systems/log-what-every-software-engineer-should-know-about-real-time-datas-unifying
http://fortune.com/2014/11/06/linkedin-kafka-confluent/
https://www.confluent.io/about/
https://cwiki.apache.org/confluence/display/KAFKA/Kafka+Improvement+Proposals
https://cwiki.apache.org/confluence/display/KAFKA/Contributing+Code+Changes

19.	 Apache	Kafka	Website	-	Code	Guidelines:	https://kafka.apache.org/coding-guide,	2016.
20.	 Kafka	Documentation	-	Design	(Motivation):

https://kafka.apache.org/documentation/#majordesignelements,	2016.
21.	 How	Kafka	got	started	at	LinkedIn:	http://insidebigdata.com/2016/04/28/a-brief-history-

of-kafka-linkedins-messaging-platform/,	2016.

Kafka

129

https://kafka.apache.org/coding-guide
https://kafka.apache.org/documentation/#majordesignelements
http://insidebigdata.com/2016/04/28/a-brief-history-of-kafka-linkedins-messaging-platform/

Kibana

Abstract
Kibana	is	your	window	into	the	Elastic	Stack.	It	is	a	dashboard	for	real-time	visualization	and
analysis	of	your	Elasticsearch	data.	You	can	also	use	it	to	configure	and	manage	clusters,
and	other	products	that	are	part	of	the	Elastic	Stack.	In	this	chapter,	we	give	an	overview	of
Kibana	in	terms	of	its	software	architecture.	We	provide	different	views	on	the	system,
including	a	stakeholder	analysis,	context	view,	development	view,	and	deployment	view.
Furthermore,	we	have	a	look	at	the	internationalization	status,	as	well	as	at	issues	and
integration.	Hereafter,	we	discuss	the	current	status	of	technical	debt	and	its	evolution	over
time.	We	conclude	with	an	overview	of	our	findings.

Introduction
With	the	amount	of	data	on	the	web	growing	exponentially	every	year,	organizations	are
pushing	the	boundaries	of	using	this	data	to	improve	their	products.	In	2012,	the	people
behind	Elasticsearch	and	Apache	Lucene	founded	a	company	called	Elastic,	setting	forth	a
vision	that	search	can	solve	a	plethora	of	data	problems.

Today,	Elastic	offers	a	wide	range	of	products,	better	known	by	the	community	as	the
Elastic/ELK	Stack.	The	heart	of	this	stack	has	always	been	Elasticsearch,	a	distributed,
RESTful	search	and	analytics	engine,	which	centrally	stores	data	to	be	accessed	by	the	rest
of	the	Stack.	Apart	from	Elasticsearch,	the	largest	component	of	the	Stack	is	Elastic's
Kibana.	Kibana	(Figure	1	displays	a	snapshot)	is	considered	the	window	into	the	Elastic

Kibana

130

https://www.elastic.co/products/kibana
https://www.elastic.co/products/elasticsearch
https://lucene.apache.org/core/

Stack.	It	lets	you	visualize	your	Elasticsearch	data,	as	well	as	configure	and	manage
clusters	and	other	products	that	are	part	of	the	Stack.	All	this	funtionality	is	offered	to	the
user	through	an	intuitive,	easy	to	use,	yet	powerful	web	interface.

We,	four	TU	Delft	students	from	the	Delft	Students	on	Software	Architecture	group,	have
made	an	in-depth	analysis	of	the	Kibana	system.	By	providing	insight	into	different	views,	we
hope	to	make	meaningful	contributions	to	the	system	and	make	the	system	more	accessible
to	future	contributors.	We	do	so	by	first	providing	insight	into	Kibana's	stakeholders,	context
view,	development	view,	and	deployment	view.	After	that,	we	will	elaborate	on	issues	and
integration	handling,	and	on	current	technical	debt	in	the	Kibana	system.	Finally,	we	will
conclude	with	an	overview	of	our	findings.

Figure	1	-	A	snapshot	of	a	Kibana	dashboard	showing	metrics.

Stakeholders
Stakeholders	are	the	people	that	have	an	interest	or	concern	in	the	product	and
organization.	Stakeholders	can	have	their	effect	on	the	product's	objectives	and	policies.
Rozanski	and	Woods	[1]	discuss	different	types	of	stakeholders	in	their	book.	In	this	section,
we	will	first	give	an	overview	of	the	different	stakeholders	identified	for	Kibana.	Hereafter,	we
will	discuss	how	issues	and	integrations	are	handled.	We	will	conclude	this	section	with	an
overview	of	how	power	and	interest	in	the	system	are	divided	amongst	different
stakeholders.

Overview

Kibana

131

http://www.tudelft.nl/

Acquirers:	Elastic's	founding	and	management	team,	as	well	as	the	investors	and	board,
which	partially	overlap.	Their	interest	lies	in	managing	and	growing	the	company	and	its
assets.

Assessors:	Baird	Garrett,	SVP	of	Legal	and	Robin	Sharpe,	VP	of	Operations.	They	make
sure	the	company	conforms	to	standards	and	legal	regulation.

Communicators:	Main	responsibility	for	Jeff	Yoshimura,	VP	of	Worldwide	Marketing.	Elastic
also	has	their	own	Education	and	Consulting	Services	department.	Furthermore,	elastic	has
a	large	community.	Their	responsibility	lies	in	letting	the	world	know	Kibana	exists.

Developers:	Main	responsibility	of	Kevin	Kluge,	VP	of	Engineering.	Kibana	is	supported	by
an	open	source	community	and	by	Elastic's	engineers.	The	top	three	recent	Git	contributors
are:

1.	 @Spalger
2.	 @W33ble
3.	 @rashidkpc

Developers	deploy	the	Kibana	software	and	try	to	make	it	work	as	smooth	as	possible.

Maintainers	Gaurav	Gupta,	VP	of	Products,	and	developers	from	both	the	open	source
community,	as	well	as	those	who	work	at	elastic.	These	propose	new	features	and	make
sure	that	the	system	evolves	for	the	better.

Suppliers:	In	order	to	make	use	of	Kibana,	one	must	have	an	Elasticsearch	instance
running.	Elasticsearch	and	Kibana	coexist,	so	it	is	in	their	best	interest	to	work	together	as
closely	as	possible.

Support	Staff:	Support	is	mainly	provided	by	the	community.	Elastic	Cloud	users	are
provided	with	a	service-level	agreement	based	support,	for	which	a	team	exists	within	the
Elastic	company.	They	try	to	solve	all	ad-hoc	user	problems.

System	Administrators:	Users	either	administrate	their	own	systems	when	they	host	the
Elastic	stack	themselves,	or	make	use	of	the	Elastic	Cloud	Service	which	has	a	dedicated
system	administration	team.	The	administrators	try	to	guarantee	optimal	uptime.

Testers:	Developers	write	tests	when	implementing	new	functionality.	After	creating	a	Pull
Request,	Jenkins	will	execute	the	test	suite	and	return	the	results	which	are	then	used	by
the	integrators.	Testers	try	to	make	sure	software	is	bug-free	before	implementation

Users:	Any	user	who	runs	an	instance	of	the	open	source	version.	This	group	includes	both
the	average	user	who	is	trying	out	new	things,	as	well	as	large	companies	listed	here.	Users
want	to	get	the	most	out	of	Kibana's	features.

Kibana

132

https://www.elastic.co/about/leadership
https://www.elastic.co/about/board
https://www.elastic.co/about/leadership
https://www.elastic.co/about/leadership
https://www.elastic.co/community
https://github.com/spalger
https://github.com/w33ble
https://github.com/rashidkpc
https://www.elastic.co/cloud
https://jenkins.io/
https://www.elastic.co/use-cases

Power/Interest	Grid

The	power/interest	grid	(see	Figure	2)	contains	the	main	stakeholder	categories.	Investors
and	Founders	evidently	are	the	most	important	to	manage,	maintainers	come	second	as
they	have	a	hand	in	the	evolution	of	the	product.	Suppliers	are	relatively	powerful	because
the	system	is	dependent	on	their	choices,	but	their	interest	is	relatively	low.	We	have	to	keep
Developers,	Communicators,	and	Testers	very	well	informed	to	be	able	to	perform	their
tasks.	Users	also	have	to	be	kept	informed	but	have	very	limited	power.	Finally,	Support	staff
and	System	Administrators	can	be	monitored	but	do	not	require	a	lot	of	attention,	as	they
have	both	low	interest	and	power	[2].

Figure	2	-	Power/Interest	Grid	containing	Stakeholder	Prioritization

Context	view
The	context	view	[1]	of	a	system	defines	the	relationship	and	shows	the	interactions
between	the	system	and	its	environment.	It	is	thus	used	to	show	the	system's
responsibilities	and	external	entities.	An	overview	of	Kibana's	context	view	is	given	in	Figure
3.

Kibana

133

Kibana's	communities	primarily	interact	on	Github,	which	is	used	both	as	version	control	and
issue	tracker.	Jenkins	can	be	called	from	Pull	Requests	for	continuous	integration.	The
community	also	communicates	via	a	dedicated	IRC	channel	on	Freenode.

Kibana	itself	is	developed	primarily	in	HTML,	CSS,	and	JavaScript,	and	is	tested	using
Karma	and	Mocha.	Its	dependencies	are	managed	by	package	manager	NPM	and	bundled
using	Webpack.

Figure	3	-	Context	view	depicting	interactions	between	Kibana	and	its	environment

Development	view
The	development	view	of	a	system	describes	the	architecture	that	supports	the	project's
software	development	process.	This	section	addresses	the	concerns	of	a	developer	such	as
module	organization,	standardization	of	design,	common	processes,	and	codeline
organization.	As	Kibana	has	almost	no	technical	documentation,	it	proved	to	be	difficult	to
give	a	clear	overview	of	the	difference	between	as-designed	and	as	implemented.	Kibana
does	have	a	set	of	style	guides	for	different	types	of	individual	components,	and	these	will
form	the	foundation	for	the	analysis	of	the	as-designed	development	view.

Kibana

134

https://github.com
https://freenode.net
https://karma-runner.github.io
https://mochajs.org
https://npmjs.com
https://webpack.github.io

Furthermore,	having	no	technical	documentation	can	be	an	entry	barrier	for	newcomers	to
join	open	source	projects	[2].	That	is	why	issue	#10710	proposes	to	address	this.	The	issue
description	included	the	findings	that	are	also	discussed	in	this	section.

Module	organization

Kibana	can	be	divided	into	three	core	modules.	First,	the	UI	module	that	defines	the
graphical	user	interface	that	users	usually	interact	with.	Second,	the	CLI	module	that
contains	the	command	line	interface.	Third,	the	Server	module	that	serves	data	from	the
Elasticsearch	clusters	to	the	first	two	modules	through	an	internal	API.

Functionality	in	Kibana	is	implemented	through	plugins,	these	plugins	contain	the	business
logic	and	communicate	with	the	CLI	and	UI	module.	This	modular	approach	creates	a	more
loosely	coupled	codebase.	It	also	makes	it	easier	for	third-party	plugin	developers	to	add
functionality	to	Kibana.	A	simplified	high-level	overview	of	the	architecture	is	depicted	in
Figure	4.

Figure	4	-	High-level	module	dependency	diagram
The	Server	module	is	connected	with	Elasticsearch	and	provides	an	internal	API	to	be
consumed	by	the	UI	and	CLI	module	so	that	they	can	perform	their	task.

When	the	user	accesses	Kibana	via	the	graphical	user	interface,	the	UI	module	loads	all
core	plugins,	which	comprise	the	core	functionalities	of	Kibana,	and	therefore	should	always
be	included.	It	also	loads	the	Utils	module,	this	is	a	collection	of	helper	functions	and	objects
that	are	grouped	to	prevent	code	duplication.

All	Kibana	modules	depend	on	one	or	more	external	dependencies,	which	together	form	the
final	module	in	the	diagram.	These	third-party	packages	are	installed,	updated,	and	deleted
by	package	manager	NPM.

Kibana

135

https://github.com/elastic/kibana/issues/10710

Standardization	of	design

Open	source	projects	such	as	Kibana	are	developed	by	a	community.	To	keep	Kibana's
codebase	consistent,	the	core	developers	(primarily	employees	of	Elastic)	composed	a
contribution	guidelines	document		CONTRIBUTIONS.md	.	Main	topics	of	the	document	are:

How	issues	should	be	reported.
How	the	community	uses	Git	and	GitHub.
What	to	consider	when	contributing	code.
Information	on	the	contributor	license	agreement	(CLA).
How	to	submit	Pull	Requests.
Information	about	code	reviewing.

They	also	created	a	set	of	style	guides	for	different	types	of	system	components.	These
include	both	small	styling	conventions	such	as	whether	to	use	spaces	or	tabs,	as	well	as
larger	conventions	such	as	what	the	directory	structure	of	a	third-party	plugin	should	look
like.	Essentially,	the	guides	explain	the	standard	design	approaches	for	designing	Kibana's
core	system	elements.	These	guides	are	found	under	the		style-guides		directory.

Common	processing

According	to	Rozanski	and	Woods	[1],	any	large	system	would	benefit	from	identifying
common	processes.	Apart	from	the	standardization	described	in	the	style	guides	mentioned
in	the	previous	section,	other	common	design	elements	can	be	identified.	This	section	will
elaborate	on	how	different	common	design	elements	are	implemented	in	Kibana.

Termination	and	restart	of	operation	This	refers	to	conventions	to	be	followed	in	case	of
program	termination.	Kibana	itself	does	not	store	data	but	communicates	with	Elasticsearch
through	a	RESTful	API.	Therefore,	there	is	no	need	for	Kibana	to	have	complex	termination
procedures	as	termination	of	data	related	operations	are	handled	by	Elasticsearch.

Message	logging	and	instrumentation:	Logging	is	handled	both	in	the	command	line
interface,	as	well	as	in	the	browser.	Many	different	approaches	have	been	implemented	for
almost	all	of	the	different	components	in	the		src		directory.

Use	of	third	party	libraries:	Third	party	libraries	are	installed	through	NPM	and	contained
in	the		node_modules		directory.	NPM	keeps	track	of	the	different	versions	used	for	each	of
the	libraries,	and	installs	them	accordingly.

Processing	configuration	parameters:	The	processing	of	configuration	parameters	is
done	by	injecting	the	different	configurations,	managed	in		kibana.yml	,	into	the	different	core
plugins	and	UI	components.

Kibana

136

Security	and	cluster	interaction:	Kibana	supports	SSL	encryption	for	both	client	requests
and	for	requests	the	Kibana	server	sends	to	Elasticsearch.	Furthermore,	one	can	use	X-
Pack	Security,	a	plugin	used	to	control	what	Elasticsearch	data	users	can	access	through
Kibana.	As	long	as	developers	use	the	internal	APIs	to	connect	UI	components	to	the	server,
and	make	use	of	the	earlier	mentioned	techniques,	Kibana	users	can	safely	communicate
with	their	Elasticsearch	cluster	in	a	production	environment.

Testing:	For	main	components	of	Kibana	that	are	not	part	of	the	core	plugins,	tests	are
included	in	the		test		directory.	This	directory	includes	tests	on	fixtures,	scripts,	internal
APIs,	and	more.	These	tests	must	pass	in	order	for	Kibana	to	run	any	of	its	base	features.	At
the	level	of	individual	plugins,	each	plugin	has	its	own		__test__		directory,	containing	plugin-
specific	tests.

Internal	and	external	interfacing:	Both	the	UI	and	CLI	communicate	directly	and
exclusively	with	the	server	to	obtain	their	data	through	internal	interfacing.	The	server	is	the
only	part	of	the	system	that	interacts	with	the	Elasticsearch	cluster	through	external
interfacing.

Codeline	organization

According	to	Rozanski	and	Woods	[1],	the	codeline	organization	of	a	system	specifies	how
source	code	is	stored	in	a	directory	structure,	how	the	configuration	is	managed,	how	it	is
built	and	tested	regularly,	and	how	it	is	released	as	tested	binaries	for	further	testing	and
use.

Organization	of	the	source	code

Under	the	root	directory,	both	files	and	folders	can	be	found.	The	files	are	either
configuration	files	of	third-party	services	and	tools,	or	text	files.

Kibana

137

https://www.elastic.co/products/x-pack/security

File Purpose

	CONTRIBUTING.md	,		FAQ.md	,
	README.md	,		STYLEGUIDE.md	,
	LICENSE.md	

Several	text	files	describing	the	repository,
organizational	conventions	and	the	license

	.editorconfig	 Configuration	file	for	editors	and	IDE's

	.eslintignore	,		eslintrc	 Configuration	files	for	ESLint

	.node-version	,		.npmrc	,
	package.json	

Configuration	files	for	Node.js	and	NPM

	.travis.yml	
Configuration	file	for	Jenkins	(can	also	be	used
for	Travis)

	Gruntfile.js	 Configuration	file	for	Grunt

	.gitignore	
Configuration	file	for	git	describing	which	files
should	not	be	sent	to	the	remote	repository

Among	the	directories,	there	are	some	that	are	empty	and	will	be	filled	during	usage.	Others
contain	auxiliary	items	such	as	styling	guides,	documentation,	and	Grunt	task	descriptions.

Directory Purpose

	src	 The	actual	product

	test	 The	tests

	utilities	 Code	for	visual	regression

	config	 Kibana's	configuration

	ui_framework	 UI	components	to	build	user	interfaces

	docs	 The	documentation	of	Kibana

	style_guides	 Style	guides	for	the	different	languages	and	frameworks

	tasks	 The	Grunt	tasks

	data	,		optimize	,
	plugins	

Files	generated	during	use.	These	directories	are	initially
empty.

The		src		directory	contains	a	more	in-depth	analysis.	As	mentioned	above,	it	contains	the
actual	product.	This	directory	is	further	divided	into	several	subdirectories.	Among	these	is
the		core_plugins		directory	that	contains	Kibana's	core	modules,	each	of	which
encapsulates	a	core	functionality	of	Kibana.	These	components	are	designed	and	structured
in	the	same	way	as	third-party	plugins	to	ensure	that	they	are	loosely	coupled.	They	also
contain	their	own		package.json		file.

Kibana

138

http://eslint.org/
https://nodejs.org/en/
https://travis-ci.org/
https://gruntjs.com/

Figure	5	-	Plugin	directory	structure
Figure	5	shows	the	directory	of	a	plugin	inside	Kibana.	The	roles	of	these	elements	are
discussed	briefly	below.

File/directory Purpose

	common/	
This	folder	is	where	code	that	is	useful	on	both	the	client	and	the
server	belongs.

	public/	 This	folder	is	where	client-side	code	for	your	application	is	stored.

	server/	
This	folder	is	where	server	code	belongs,	think	of	custom	routes,
data	models	or	other	code	that	should	be	executed	on	the	server.

	translations/	
This	is	a	plugin	specific	directory	and	is	not	included	in	the	average
plugin.

	index.js	

The	entry	point	each	plugin.	This	file	is	always	loaded	when	a	plugin
is	being	accessed.	This	is	where	you	define	things	like	dependencies
on	other	plugins	and	applications	and	configuration.

	package.json	 Contains	information	of	the	plugin,	it's	name	and	version.

Kibana

139

Figure	6	-	Directory	structure	of	Kibana
Figure	6	shows	an	overview	of	the	directory	structure	of	Kibana.	As	mentioned	above,	the
	core_plugins		directory	contains	all	components	that	Kibana	consists	of.

Approach	to	building,	integrating,	testing	and	releasing

The	build	process	of	Kibana	contains	various	subcomponents.	These	consist	of	downloading
and	including	external	dependencies	such	as	Node.js	and	ReactJS,	converting	ES6	into
regular	JavaScript	code	with	Babel,	setting	environment	parameters	to	production	settings,
and	readying	the		README.md		to	exclude	the	section	on	snapshot	builds.

Kibana	has	a	many-sided	test	process	involving	browser	and	UI	testing,	server	testing,	and
visual	regression	testing.	Plugins	are	also	tested	during	this	process.	To	achieve	this,	many
tools	are	utilized	such	as	Karma,	Mocha	and	ChromeDriver.	Furthermore,	a	tool	developed
by	Elastic	called	ESVM	is	used	to	test	with	different	versions	of	Elasticsearch.

Kibana

140

https://facebook.github.io/react/
https://babeljs.io/
https://sites.google.com/a/chromium.org/chromedriver/
https://github.com/elastic/esvm

The	processes	for	building,	integrating,	testing	and	releasing	are	all	automated	so	that	they
can	be	activated	using	a	single	action.	For	the	build,	test	and	release	processes	this	is	done
using	a	task	runner	tool	called	Grunt.

Releasing	into	the	test	environment	for	integration	is	handled	by	Jenkins	following	the
practice	of	Continuous	Integration.	For	the	production	environment,	the	releases	are	created
and	listed	using	GitHub's	Releases.

Configuration	management

The	configuration	of	Kibana	is	managed	from		config/kibana.yml	.	Examples	of	what	can	be
configured	are	the	port	for	Kibana's	back-end	server,	credentials	for	Elasticsearch,	and	the
SSL	settings.	Besides	that,	configuration	files	for	third-party	tools	and	services	such	as
NPM,	Jenkins	and	ESLint	are	found	under	the	root	directory.

Deployment	view
According	to	Rozanski	and	Woods	[1],	the	deployment	view	describes	the	environment	into
which	the	system	will	be	deployed,	including	the	dependencies	the	system	has	on	its
runtime	environment.

At	this	point	in	time,	Kibana	supports	Linux,	Darwin,	and	Windows.	Since	Kibana	runs	on
Node.js,	the	necessary	Node.js	binaries	for	these	platforms	are	included	as	part	of	the
product.

Other	third-party	software	requirements	are	a	result	of	Kibana's	JavaScript	nature:

NPM	manages	Kibana's	dependencies.	It	is	written	in	JavaScript.	Kibana	6.0.0	requires
v3.10.10.
Node.js	is	an	open-source,	cross-platform	runtime	environment	for	developing	server-
side	web	applications	in	JavaScript.	Kibana	6.0.0	requires	v6.9.5.

Finally,	a	modern	browser	is	required.	Kibana	6.0.0	supports	Chrome,	Firefox,	Safari,	and
IE11+.

Internationalization
Internationalization	means	designing	and	developing	Kibana	in	such	a	way,	that	it	enables
easy	localization	for	target	audiences	that	vary	in	language	or	culture.	It	is	currently	being
implemented	in	Kibana.	Issue	#6515	discusses	Kibana's	internationalization	roadmap.	It	was

Kibana

141

https://github.com/elastic/kibana/issues/6515

opened	in	March	2016,	so	implementation	started	recently.	The	internationalization	of
Kibana	is	being	developed	in	four	phases:

Phase	1:	Implementing	the	internationalization	engine	in	the	form	of	a	class	called	i18n
(abbreviation	for	internationalization).	The	i18n	engine	should	manage	all	locale	translations;
registering	all	translations	and	loading	the	correct	locale	when	required.

Phase	2:	Integrating	the	angular	translate	module	with	the	i18n	class.	Furthermore,
generating	a	translation	plugin	that	localization	engineers	can	easily	use	to	create
translations.

Phase	3:	Adding	translation	identifiers	and	English	translation	strings	for	Kibana's
AngularJS/ReactJS	views.

Phase	4:	Creating	core	language	packs	that	are	supported	by	Kibana,	and	allowing
language	packs	to	be	contributed	by	outsiders.

Currently,	phase	1	is	finished	and	both	phase	2	and	phase	3	are	work	in	progress.	This	is	a
nice	video	showcasing	how	to	translate	Kibana	with	the	IBM	globalization	pipeline.

Issues	and	integration
This	section	discusses	the	workflow	for	issues	and	pull	requests	for	the	Kibana	project.	We
conclude	by	mentioning	the	integrators	and	their	challenges.

Issues

At	the	time	of	analysis,	Kibana	had	1397	open	and	4637	closed	issues.	The	issues	are
categorized	with	colored	labels	to	indicate	the	type	of	issue	the	domains	affected	by	the
issue.	The	most	important	labels	are:

Black	labels	are	used	to	indicate	priority.		P1		for	high	priority	issues	and		P5		for
issues	that	for	example	are	highly	niche	or	in	opposition	to	the	core	goals	of	the	Kibana
team.
Blue	labels	are	used	to	indicate	difficulty	to	implement.		low	fruit		is	used	for	easy
issues,		high	fruit		for	more	complex	issues.
Grey	labels	are	used	to	indicate	what	version	of	Kibana	the	issue	belongs	to
Yellow	labels,	starting	with	a	colon,	are	used	to	indicate	what	component	the	issue
belongs	to.	Examples	of	labels	are		:Data	Table	,		:Filters		and		:Heatmap	.

Pull	Requests

Kibana

142

https://angular-translate.github.io
https://srl295.github.io/2017/03/17/translating-kibana/

While	anyone	can	submit	a	pull	request,	most	are	created	by	Elastic	employees	who	work
on	Kibana.	Administrators	that	open	pull	requests	can	also	merge	them,	as	long	as	they	are
reviewed	by	at	least	one	peer.	While	most	are	discussed	on	Github,	sometimes	it	seems	as
if	some	of	the	pull	requests	are	closed	suddenly	without	discussion.	This	leads	us	to	believe
that	these	pull	requests	are	discussed	elsewhere,	for	instance	in	slack	discussions.	Some
pull	requests	also	refer	to	discussions	on	Slack.	Contributors	also	make	great	use	of	'Work
In	Progress'	pull	requests,	which	are	pull	requests	that	are	not	yet	ready	for	merge,	but	are
meant	to	be	submitted	unfinished,	so	that	people	can	start	to	discuss	the	topic	and
collaborate	on	the	code.

Integrators

Based	on	the	analyzed	issues	and	pull	requests,	we	are	able	to	determine	the	main
integrators.	The	top	three	integrators	are:

1.	 @Ppisljar
2.	 @Thomasneirynck
3.	 @Kobelb

Several	factors	affect	their	decisions.	First	of	all,	to	trigger	a	review,	the	@Elasticmachine
bot	asks	an	admin	to	verify	the	patch.	Then	they	use	a	test	to	find	out	if	the	commit	author
has	signed	the	contributor	license	agreement	(CLA).	When	the	author	has	not	yet	signed,
this	is	requested	before	merging.	To	test	if	the	build	succeeds,	they	ask	Jenkins	to	test.	For
more	difficult	merges,	they	ask	developer	specialists	to	look	over	the	pull	request	and	ask	for
permission	to	merge.	This	process	gives	the	integrators	a	robust	framework	to	base	their
merging	decisions	on.

The	main	challenge	for	integrators	is	to	keep	the	codebase	bug-free	and	style	compliant.
Kibana	is	a	popular	project,	so	the	integrators	have	to	make	sure	that	developers	from	all
over	the	world	create	code	that	matches	their	desires.	Matching	random	pull	request	with	the
company	vision	requires	strict	attention.

Technical	debt
According	to	Techopedia,	technical	debt	is	"a	concept	in	programming	that	reflects	the	extra
development	work	that	arises	when	code	that	is	easy	to	implement	in	the	short	run	is	used
instead	of	applying	the	best	overall	solution".	The	goal	of	identifying	technical	debt	in	a
system	is	to	improve	code	maintainability	and	to	reduce	the	amount	of	effort	it	takes	to
develop	new	functionality.	In	this	section,	we	will	discuss	the	state	of	technical	debt	in	the
Kibana	project.

Kibana

143

https://slack.com/
https://github.com/ppisljar
https://github.com/thomasneirynck
https://github.com/kobelb
https://github.com/elasticmachine
https://www.techopedia.com/definition/27913/technical-debt

Analysis	tools

To	get	an	idea	of	the	current	state	of	technical	debt	in	Kibana,	we	ran	two	code	analysis
tools	to	get	some	insights.	We	used	Codebeat	and	CodeFactor.	These	tools	analyze	all
project	files	separately	and	apply	a	rating	(from	A	to	F).	Code	complexity,	code	issues,	and
code	duplication	are	examples	of	metrics	that	are	taken	into	consideration.	We	chose	these
two	tools	because	they	provided	free	access	for	open	source	projects,	and	were	hosted	in
the	cloud	to	so	that	the	analysis	could	be	easily	executed.

These	tools	gave	us	the	following	insights:

The	Kibana	project	has	quite	some	duplicate	code	-	The	Codebeat	documentation
explains	that	they	consider	this	one	of	the	most	serious	issues,	because	it	harms
maintainability.	Warnings	are	already	triggered	after	five	duplicate	lines	of	code.	Out	of
the	1315	warnings	found	by	CodeFactor,	952	were	about	duplicate	code.

Multiple	functions	have	too	many	arguments	-	Codebeat	triggers	an	information
message	if	functions	need	four	arguments,	a	warning	if	functions	need	five	arguments,
an	error	for	six,	and	a	critical	issue	for	anything	over	six.	For	the	kibana	project,	multiple
warnings	were	generated.

Multiple	functions	have	a	too	large	body	-	The	Codebeat	documentation	[6]	gives	a
warning	if	methods	have	a	length	40-60	lines,	an	error	if	the	length	is	60-80	lines,	and	a
critical	issue	for	anything	over	80.	300	of	the	1315	warnings	found	by	CodeFactor	were
maintainability	warnings.

Roughly	half	of	the	debt	that	was	found	by	these	tools	is	located	in	our	test	files.	You	could
argue	that	certain	aspects	of	technical	debt	are	less	urgent	when	located	in	test	files.	Your
testing	code	is	completely	separated	from	your	production	code,	functions	that	are	too	long
could	for	example	also	improve	the	readability	of	test	files,	and	possible	performance
degradations	could	be	taken	for	granted.	Nevertheless,	we	think	that	coding	best	practices
should	also	be	applied	in	testing	code.

The	largest	shortcoming	of	analysis	tools	like	Codebeat	and	CodeFactor	is	that	they	do	not
look	how	files	relate	to	each	other.	They	do,	however,	help	to	discover	trends	and	find	errors.

Code	coverage

Code	coverage	describes	the	degree	to	which	the	source	code	of	a	program	is	executed	by
a	particular	test	suite.	Not	having	your	software	tested	thoroughly	is	considered	technical
debt.	According	to	the	coverage	report	generated	by	Istanbul,	the	Kibana	project	has	good
test	coverage.	The	overall	coverage	is	70	percent.	In	this	analysis,	we	will	review	two
sections	that	have	bad	coverage	and	thus	are	examples	of	technical	debt.

Kibana

144

https://codebeat.co
https://www.codefactor.io/
https://hub.codebeat.co/docs/software-quality-metrics#lines-of-code
https://github.com/gotwarlost/istanbul

UI	components	based	on	AngularJS

As	discussed	in	issue	#7591,	the	Kibana	community	is	trying	to	remove	the	dependency	on
Angular-bootstrap,	which	in	turn	depends	on	AngularJS,	by	integrating	its	source	code	into
Kibana.	The	UI	components	that	are	based	on	Angular-bootstrap	have	seen	custom	tweaks
by	the	Kibana	community.	Nevertheless,	the	code	coverage	(see	Figure	7)	of	these	files	is
below	40%,	which	is	way	below	that	of	other	files	found	in	the		src/ui		directory.	Over	time,
functionalities	have	been	added	and	the	code	has	been	refactored	to	better	adhere	to	the
styling	conventions.	This	means	that	Kibana	can	no	longer	simply	depend	on	tests	written	by
the	angular-bootstrap	community.	The	decision	to	remove	the	dependency	on	Angular-
bootstrap,	and	instead	create	a	copy	of	the	code	to	serve	as	a	foundation	for	Kibana's	own
UI	components,	created	testing	debt.

Figure	7	-	Code	coverage	of	Angular-bootstrap	components

UI	components	based	on	ReactJS

The	Kibana	community	recently	decided	to	slowly	transition	away	from	AngularJS	as	a
whole.	As	can	be	seen	in	Figure	8,	testing	debt	that	came	with	this	process	is	present.	The
Kibana	community	still	has	a	long	way	to	go	in	redeeming	this	debt.

Figure	8	-	Code	coverage	of	ReactJS	components

Comments

An	interesting	indicator	that	can	help	in	analyzing	technical	debt	is	analyzing	comments	from
a	project.	We	analyzed		TODO		comments	in	the	Kibana	project	to	gain	a	better
understanding	of	the	technical	debt	that	exists	in	the	project:

1.	 'Extract	this	into	an	external	service'	-	found	several	times,	producing	these	services

Kibana

145

https://github.com/elastic/kibana/pull/7591
https://angular-ui.github.io/bootstrap/
https://angularjs.org/

would	solve	a	lot	of	technical	debt.
2.	 'We	should	probably	display	a	message	of	some	kind'	-	This	one	is	found	at	various

places	in	the	code,	which	signals	that	developers	do	not	want	to	spend	time	on	this	kind
of	chore.

3.	 'Override	bootstrap	styles.	Remove	!important	once	we're	rid	of	bootstrap.'	-		TODO's	
including	Bootstrap	are	found	often,	so	bootstrap	is	definitely	a	major	cause	of	technical
debt.

4.	 'May	need	to	verify	this	or	refactor'	is	a		TODO		that	is	found	sometimes,	referring	to	a
part	of	the	code	that	needs	attention.

We	also	searched	the	project	for		FIXME		comments.	A		FIXME		comment	is	a	comment	that
elicits	a	part	of	the	code	that	needs	fixing.	This	term	is	used	less	frequently	than	the		TODO	
comment,	which	makes	sense,	as		FIXME's		are	more	severe.	In	total,	we	found	20
occurrences	in	the	codebase	listing	a	wide	range	of	subjects,	mostly	referring	to	a	small	bug
that	is	not	too	urgent.	This	causes	the	developer	encountering	the	problem	to	defer	it	to	a
later	point	in	time,	creating	a		FIXME		(and	some	Technical	Debt).	An	example	is	'	FIXME:
inline	moveTo	is	buggy	with	excanvas	'.

Evolution	of	technical	debt	and	current	challenges

In	this	section,	we	will	discuss	how	technical	debt	has	evolved	in	the	Kibana	project.	We	will
also	look	at	issues	that	are	symbolic	for	challenges	that	exist	in	the	current	system.	These
include	the	removal	of	external	library	usage,	the	transition	from	AngularJS	to	ReactJS,	and
the	transition	from	Kibana	v4	to	Kibana	v5.

AngularJS	to	ReactJS	migration:	Kibana	was	originally	written	in	AngularJS.	However,
since	February	2017,	ReactJS	has	also	been	in	the		packages.json		file.	As	described	in
#10271,	it	is	not	the	goal	of	the	Kibana	team	to	do	an	immediate	complete	rewrite	to
ReactJS.	However,	the	goal	is	to	provide	a	slow	migration	to	ReactJS,	focusing	on	new	apps
being	built	from	scratch	and	features	isolated	in	leaf	components.

This	will	cause	major	changes	to	the	codebase	in	the	near	future.	As	the	transition	occurs,
developers	are	required	to	work	with	two	different	frameworks	that	solve	very	similar
problems.	The	usage	of	AngularJS	has	become	a	form	of	technical	debt,	but	no	immediate
action	will	be	taken	to	get	rid	of	it.

Removal	of	external	libraries:	The	Kibana	team	is	trying	to	get	rid	of	noncrucial	external
libraries	like	Lodash	or	Bootstrap,	because	it	makes	the	project	dependent	on	external
dependencies	which	might	get	outdated	or	unsupported.	Bootstrap,	for	example,	"provides	a
lot	of	styles	which	we	don't	use/need,	and	of	course,	doesn't	provide	many	styles	which	we
do	need"	as	stated	in	#7364.	This	transition	is	still	work	in	progress	but	it	will	be	a	great
cleanup	of	the	code	once	the	team	gets	rid	of	it.

Kibana

146

http://getbootstrap.com/
https://github.com/elastic/kibana/issues/10271
https://lodash.com/
https://github.com/elastic/kibana/issues/7364

Kibana	v4	to	v5:	The	transition	from	Kibana	version	4	to	version	5.0.0	was	a	major
makeover	that	added	features	and	also	improved	the	architecture.	It	made	the	codebase
more	robust	and	more	open	to	additional	improvements.	This	was	caused	mainly	due	to	the
new	architecture,	which	splits	up	the	code	into	different	plugins.	As	since	version	5.0.0	each
option	in	the	main	menu	is	a	plugin	in	the	code,	every	component	can	be	maintained,
extended,	and	updated	separately	from	the	rest	of	the	codebase.	As	a	result,	it	has	also
become	easier	to	add	code	to	Kibana.	One	can	simply	create	a	new	plugin	that	can	be	self-
contained	in	a	single	directory.	This	can	be	considered	a	major	payoff	of	the	technical	debt
that	had	been	around	for	quite	some	time	in	earlier	versions.

Conclusion
In	this	chapter,	we	gave	an	overview	of	different	aspects	of	Kibana	from	a	software
architectural	point	of	view.	We	identified	different	stakeholders,	which	gave	us	a	great
overview	of	who	is	involved	with	the	development	of	Kibana,	and	how	they	rank	in	terms	of
interest	and	power.	We	discussed	several	architectural	views	defined	by	Rozanski	and
Woods	[1]	to	fully	understand	Kibana's	inner	workings.	Hereafter,	we	discussed	issues	and
integration,	stating	the	workflow	of	how	issues	translate	into	pull	requests,	and	finally	into
integration.	Finally,	we	analyzed	the	Kibana	project	from	a	higher	level	and	tried	to	map	out
its	status.	We	did	this	by	identifying	technical	debt	and	looking	at	how	this	debt	has	evolved
over	time.

Looking	back,	a	couple	of	interesting	conclusions	can	be	made.	First	of	all,	we	think	that	the
project	architecture,	that	has	its	business	logic	defined	in	plugins,	is	a	good	architecture.	It
makes	the	code	modular	and	allows	programmers	to	easily	extend	Kibana's	functionality.
This	architecture,	that	was	introduced	with	the	release	of	Kibana	version	5,	has	helped	to
make	the	code	more	maintainable.

A	more	troubling	observation	is	the	migration	process	of	the	front-end	framework	AngularJS
to	React.	This	migration	process	is	slowly	being	rolled	out,	and	currently	results	in	different
front-end	frameworks	used	simultaneously.	Our	code	analysis	learned	us	that	these
components	are	also	badly	tested,	and	hence	contain	technical	debt.	The	current	combined
use	also	introduces	confusion	for	future	developers	that	want	to	contribute	to	the	project.	We
think	it	is	better	to	bite	the	bullet	and	try	to	migrate	as	quickly	as	possible.

To	conclude,	the	Kibana	project	is	a	well-managed	open	source	project	that	has	evolved
over	time.	It	is	able	to	leverage	its	technically	informed	user-base	to	solve	issues	and
technical	debt.	With	the	exponentially	growing	volumes	of	data	that	are	being	generated
worldwide,	we	are	confident	that	Kibana	will	play	an	even	more	important	role	in	the	future.

Kibana

147

References
1.	 Nick	Rozanski	and	Eoin	Woods	-	Software	Systems	Architecture:	Working	with

Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.
2.	 Igor	Steinmacher	et	al	-	Overcoming	open	source	project	entry	barriers	with	a	portal	for

newcomers.	ACM,	New	York,	2016.

Kibana

148

Magento:	an	e-commerce	platform	for
growing	your	business	online

By	Hans	Schouten,	Elvan	Kula,	Kin	Lok	Chow	and	Jan-Gerrit	Harms

Delft	University	of	Technology,	2017

Abstract

Magento	is	the	fastest	growing	and	most	widely	used	e-commerce	platform	in	Europe.	It	was
first	released	in	2007	with	an	open	source	license.	Magento	differentiates	itself	from
competitors	by	its	remarkable	amount	of	flexibility	and	large	scope	on	customer	targeting.
This	chapter	analyzes	Magento’s	software	architecture	and	the	way	the	developers	tackle
challenges	related	to	security,	maintainability	and	technical	debt.	We	will	look	more	closely
into	Magento’s	layered	design,	extensive	use	of	design	patterns,	information	flow	and
security	measures.

Table	of	Contents

1.	 Introduction
2.	 Stakeholder	analysis
3.	 Context	view
4.	 Development	view
5.	 Information	view
6.	 Security
7.	 Technical	debt
8.	 Conclusion
9.	 References

Introduction

Magento

149

https://github.com/hansschouten
https://github.com/ekula
https://github.com/jipjop
https://github.com/jangerritharms

The	problem	with	e-commerce	software	platforms	has	always	been	that	these	solutions
never	exactly	provide	what	businesses	are	looking	for.	The	business	calls	for	a	tailored
solution.	One	that	delivers	on	power,	flexibility	and	scalability	to	meet	the	requirements	of
any	business.	Magento	is	the	exception.

Magento	is	the	fastest	growing	and	most	widely	used	e-commerce	platform	in	Europe	[1].	It
is	an	open	source	platform	that	can	be	used	by	web	shop	developers	to	grow	their	online
businesses.	The	e-commerce	solution	currently	has	over	200,000	online	retailers	and	is
chosen	by	one	of	every	four	online	businesses,	which	is	more	than	any	other	provider	[2].
Magento	offers	powerful	features	such	as	advanced	marketing,	search	engine	optimisation
and	catalogue-management	tools	to	control	the	appearance,	content	and	functionality	of	an
e-commmerce	website.

In	2007	the	first	release	of	Magento	was	developed	by	the	company	Varien	with	support	of
volunteers	[3].	In	2015	Magento	Commerce	launched	as	an	independent	company	and
released	Magento	2.0,	with	an	aim	to	provide	new	ways	to	improve	the	user	experience	[4].
The	important	milestones	in	Magento's	history	are	depicted	in	Figure	1.

Magento’s	powerful	features	require	an	architecture	that	is	modular,	extensible,	flexible	and
simple	to	maintain.	Offering	such	qualities,	dealing	with	a	diverse	user	base	and	managing
technical	debt	are	the	biggest	challenges	for	Magento.	This	chapter	will	give	insights	into	the
way	the	developers	of	Magento	deal	with	these	challenges.	First,	the	chapter	will	look	into
the	stakeholders	and	context	view	of	the	project.	Next,	the	layered	design,	information	view
and	security	measures	of	the	system	are	described.	This	will	be	followed	by	an	analysis	of
the	technical	debt	in	Magento.

Magento

150

Fig.	1:	Roadmap	of	milestones	in	Magento's	history

Stakeholder	analysis
This	section	identifies	the	key	stakeholders	of	Magento	and	describes	how	they	apply	to	the
project.	This	will	be	followed	by	an	analysis	of	their	influence	and	associated	levels	of	power
and	interest.

Key	stakeholders

The	main	stakeholder	is	Magento	Commerce.	The	organization	and	its	employees
exclusively	fulfil	the	role	of	three	of	the	eleven	classes	of	stakeholders	defined	by	Rozanski
and	Woods	[5]:	acquirers,	assessors	and	communicators.	The	other	stakeholders	applicable
to	Magento	are	listed	in	the	following	table.

Magento

151

https://magento.com

Stakeholder Description

Developers

Magento	is	developed	by	a	highly	active	community	of	nearly	400
contributors.	Most	of	the	developers	are	employees	of	Magento
Commerce	and	focus	on	contributing	to	specific	features.	The	external
developers	can	be	classified	in	two	groups,	namely	the	frequent
community	contributors	and	third-party	contributors	based	on	their
commit	frequency.

Testers

Magento's	chief	architect,	Alan	Kent,	is	responsible	for	internally
running	the	automated	tests	of	Magento’s	testing	framework.	The
individual	contributors	take	responsibility	for	raising	concerns	and	fixing
minor	bugs.

Integrators

All	integrators	of	Magento	are	employees	of	Magento	Commerce.
Oleksii	Korshenko,	Igor	Miniailo	and	Max	Yekaterynenko,	were
identified	as	general	integrators	who	are	responsible	for	evaluating	all
pull-requests	in	general.	Ievgen	Shakhsuvarov,	Eugene	Tulika	and
Vitalii	Korotun	were	identified	as	specific	integrators	who	are	assigned
to	specific	types	of	pull	requests.

Competitors

Magento’s	competitors	can	be	divided	into	two	types:	hosting	and	self-
hosted	solutions.	Magento	belongs	to	the	self-hosted	set	of	platforms.
Competitors	in	the	same	area	include	WooCommerce,	Zen	Cart,
osCommerce,	OpenCart,	X-Cart,	SpreeCommerce	and
DrupalCommerce.	Competitors	that	provide	hosting	are	Shopify,
BigCommerce,	Yahoo	Commerce	and	Volusion.

Maintainers Alan	Kent,	is	an	important	maintainer	as	his	role	is	to	keep	an	overview
of	the	maintainability	of	the	architecture.

Suppliers

As	Magento	is	run	on	a	local	webserver,	the	user	himself	is	responsible
for	the	arrangement	of	the	hardware	and	infrastructure	on	which	the
platform	will	run.	However,	there	are	numerous	web	hosting	companies
that	offer	Virtual	Private	Servers	and	Dedicated	Servers	that	are
specially	designed	for	hosting	Magento	webshops	[6].	The	largest
Magento	hosting	provider	is	RackSpace.

Support

Customers	with	a	Magento	Enterprise	Edition	can	request	direct
assistance	from	Magento's	customer	support.	Non-enterprise
customers	can	request	assistance	from	the	Magento	community	via
their	forum	[7]	or	from	their	network	of	300+	solution	and	technology
partners	[8].

Users

The	users	are	developers	who	want	to	implement	a	webshop	or	a
similar	application	based	on	Magento.	They	need	to	easily	understand
the	sample	code	and	quickly	identify	those	lines	of	code	with	shop
logic.	Code	quality	and	correct	use	of	technologies	are	important	for
them.	Companies	that	hire	developers	to	build	these	tailored
applications	are	a	more	indirect	type	of	users,	the	so-called	clients.
Some	of	Magento's	largest	clients	are	Burger	King,	Nestle,	Murad	and
Coca-Cola	[9].

End	users
The	end	users	are	people	who	would	visit	the	webshop	in	case	it	went
live.	They	need	an	intuitive	layout	that	allows	them	to	shop	with	ease	in

Magento

152

https://github.com/alankent
https://github.com/okorshenko
https://github.com/maghamed
https://github.com/maksek
https://github.com/ishakhsuvarov
https://github.com/vrann
https://github.com/vkorotun
https://github.com/alankent

a	few	clicks.

Table	1:	Key	Stakeholders	of	Magento

Stakeholders	influence

Fig.	2:	A	power-influence	grid	showing	the	positions	of	key	stakeholders

The	power-interest	matrix	shown	in	Figure	2	visualizes	a	measurement	of	the	power	of	the
stakeholders	compared	to	their	interest.	The	grid	consists	of	four	quadrants	with	the	most
powerful	entities	in	the	upper-right	quadrant	and	the	least	powerful	ones	in	the	opposite
lower-left	quadrant.	Below,	we	elaborate	on	responsibilities	of	some	stakeholders	and	based
on	their	power-interest	ratio	explain	how	Magento	Commerce	should	engage	with	them:

High	power,	interested	people	-	Manage	closely:	The	main	contributors	of	Magento
can	be	viewed	as	the	most	important	stakeholders	since	they	are	the	ones	who	make
the	project	possible.	They	are	responsible	for	fulfilling	the	user	requirements	and	solving

Magento

153

issues	while	maintaining	a	good	quality	of	code.	Their	interest	in	a	good	functioning
system	is	very	high.

Low	power,	interested	people	-	Keep	informed:	In	the	lower-right	quadrant	we	see	the
external	plugin	developers.	These	are	the	companies	or	individuals	who	create	the
free/paid	modules	and	themes	for	the	Magento	site	owners.	Those	with	almost	no
power,	but	pretty	high	interest	are	the	competitors	of	Magento.	They	have	to	keep	a
close	eye	on	each	other	to	stay	in	the	market.

High	power,	less	interested	people	-	Keep	satisfied:	Those	with	high	power,	but	less
interest	are	Permira	and	the	largest	clients	of	Magento	(Burger	King,	Nestle	and	Seat).
As	the	company’s	largest	investor,	Permira	Funds	holds	a	big	stake	in	Magento
Commerce.	The	largest	clients	also	have	a	say	in	the	future	direction	of	Magento	as
they	are	responsible	for	a	major	part	of	the	company’s	value	creation.	They	have	great
influence	over	the	way	the	system	is	designed	and	develops.	As	the	system	is
developed	it	is	normal	for	these	large	clients	to	be	questioned	about	the	type	of
enhancement	or	design	that	they	prefer.

Low	power,	less	interested	people	-	Monitor:	In	the	least	important	category	we	find
supporting	services	such	as	GitHub,	Travis	CI	and	the	hosting	providers.	They	are
responsible	for	providing	services	regarding	building,	maintaining	and	hosting
Magento’s	software.	The	single	users	are	also	located	in	this	quadrant	as	they	have
less	power	compared	to	the	larger	clients.

Context	view
A	context	view	describes	the	relationships,	dependencies,	and	the	interactions	between	the
system	and	its	environment.	This	view	is	relevant	for	the	system's	architecture	and	defines
the	boundaries	of	the	system	and	how	it	interacts	with	external	entities	across	these
boundaries.	Figure	3	shows	the	context	view	of	the	Magento	project.

Magento

154

Fig.	3:	An	overview	of	the	relationships	between	the	Magento	platform	and	its	external
entities

Development	entities

Magento	is	written	in	PHP	and	its	front-end	is	based	on	the	JavaScript	library	Knockout.js,
enabling	developers	to	provide	their	webshops	with	dynamic	UIs.	KnockoutJS,	other
frameworks	and	scripts	are	imported	via	RequireJS	to	manage	JavaScript	dependencies
easier	and	to	improve	page	load	time.	For	continuous	integration	Travis	CI	and	Codacy	are
used.	These	services	are	not	only	used	for	continuous	integration,	but	also	function	as
separate	integration	tests	to	check	compatibility.

Hosting	entities

In	order	to	host	a	Magento	webshop,	you	need	a	MySQL	database	or	any	variant	which	is
forked	from	the	MySQL	database,	like	MariaDB	or	Percona.	The	database	should	be	hosted
on	a	webserver,	either	on	NGINX	or	Apache.	The	operating	systems	on	these	servers
support	most	Linux	distributions.

System	scope

Magento	differentiates	itself	from	competitors	by	having	a	large	scope	of	options	when	it
comes	to	customer	targeting	[10].	The	platform	is	a	complete	e-commerce	solution	that
offers	a	lot	of	extra	functionality	in	marketing,	search	engine	optimisation	and	advanced

Magento

155

http://knockoutjs.com/
http://requirejs.org/
https://travis-ci.org/
https://www.codacy.com/
https://www.mysql.com/
https://mariadb.org/
https://www.percona.com/
https://www.nginx.com/
https://www.apache.org/

search	engine	optimization	features.	On	top	of	that,	Magento	offers	a	remarkable	amount	of
flexibility	to	users.	There	are	many	possibilities	of	customizing	the	store	with	additional
features	and	functionality	with	more	than	7000	extensions	in	the	Magento	Marketplace.

Therefore,	the	scope	of	Magento	is	to	provide	a	rich	set	of	features	for	customer	targeting
and	customization	options,	as	well	as	the	functionality	that	is	already	present	in	existing	e-
commerce	platforms.

Development	view
This	section	presents	an	overview	of	Magento’s	architecture	by	first	describing	the	principles
and	guidelines	that	govern	the	development	of	the	system.	This	will	be	followed	by	an
overview	of	the	as-designed	development	view	and	as-implemented	view	of	Magento.

Architectural	principles

Magento’s	architecture	is	mainly	built	on	concepts	that	allow	for	maximum	flexibility	and
extensibility	of	its	software:

OOP	Principles

As	a	PHP	framework,	Magento	takes	advantage	of	Object-Oriented	Programming	(OOP)
principles	that	provide	simplicity	and	extensibility.	The	concepts	of	data	encapsulation	and
inheritance	are	especially	useful	for	Magento’s	front-end	components	[11].

Modularity

The	concept	of	modularity	lies	at	the	heart	of	Magento.	At	the	highest	level,	Magento’s
architecture	is	composed	of	core	components	and	optional	independent	modules.	These
modules	are	organized	by	feature	and	can	be	used	to	modify	the	appearance	and	behaviour
of	a	webshop	without	altering	other	parts	of	the	code.

Extensibility

Product	extensibility	has	always	been	taken	into	account	from	Magento’s	earliest	design
stages	[12].	Magento	2	uses	automatic	dependency	injection	and	service	contracts	to
facilitate	new	implementations	of	existing	functionality	[13].

Stack	of	open-source	technologies

The	Magento	stack	contains	many	open-source	technologies	for	deployment	and
customization	of	storefronts.

Development	guidelines

Magento

156

http://devdocs.magento.com/guides/v2.0/architecture/tech-stack.html

Test	strategy

The	Magento	team	has	an	extensive	testing	framework	which	is	divided	into	six	different
levels	of	testing,	namely:

Static	tests	Static	testing	checks	if	the	code	adheres	to	coding	standards	that	are	set
by	the	Magento	team.

Unit	tests	The	Magento	team	proposes	to	use	Test-Driven	Development	(TDD)	for	unit
testing.	The	team	only	uses	unit	tests	for	testing	PHP	code	and	defines	a	separate
category	for	other	programming	languages.

JavaScript	tests	JavaScript	tests	are	defined	as	unit	tests	for	all	Magento	components
that	are	written	in	JavaScript,	which	are	mainly	part	of	the	front-end.	The	JsTestDriver
library	is	used	for	running	these	tests	in	the	browser.

Integration	tests	The	integration	tests	are	run	in	different	levels	of	isolation.	Magento
does	not	use	the	browser	for	the	integration	tests	which	makes	the	tests	more	granular
than	functional	tests	and	a	lot	quicker.

Functional	tests	The	functional	tests	are	run	using	the	separately	provided	Functional
Testing	Framework	(FTF)	for	smoke	testing,	acceptance	testing	and	regression	testing.
The	Magento	framework	uses	a	web	browser	and	the	selenium	server	to	remote	control
user	interaction.

API	functional	tests	API	functional	tests	take	the	application	as	a	black	box	and	only
test	from	the	client’s	perspective	(the	Web	API	endpoints).	The	API	calls	are	managed
by	a	common	class	which	is	inherited	by	all	test	cases	and	uses	one	function	to	access
the	API	using	either	REST	or	SOAP.

All	the	tests	described	above	are	located	in	the		<magento2	root	dir>/dev/tests		folder.	The
team	provides	an	easy	integration	with	the	PHPStorm	IDE	to	ease	the	setup	and	running	of
tests	[14].

Contribution	process

All	contributions	are	done	via	the	fork	and	pull	model	with	the	integrators	reviewing	pull-
requests	on	a	first-in-first-out	basis.	One’s	code	only	has	the	chance	of	being	merged	if	it
adheres	to	the	rules	in	the	developers	guide:

Each	code	extension	needs	to	adhere	to	the	coding	standards.
The	Magento	project	has	its	own	Definition	of	Done	(DoD)	defining	a	set	of	acceptance
criteria	that	is	applied	to	any	changes	in	the	code	base.	These	criteria	revolve	around
readability,	sufficient	code	coverage	and	solid	documentation.

Magento

157

http://devdocs.magento.com/guides/v2.0/coding-standards/bk-coding-standards.html
http://devdocs.magento.com/guides/v2.0/coding-standards/bk-coding-standards.html

Each	commit	needs	to	pass	the	automated	tests	that	are	in	place.
Everyone	who	wants	to	contribute	to	Magento’s	source	code	is	required	to	accept	the
terms	of	the	contributor	agreement.	This	is	automatically	checked	as	illustrated	in	Figure
4.

Fig.	4:	To	make	a	contribution	to	Magento’s	source	code	you	need	to	sign	their	Contributor
License	Agreement

Original	design

Architectural	layers

Magento’s	core	product	code	has	a	layered	design.	For	Magento’s	customers	specifically,	a
layered	architecture	provides	the	benefit	of	separating	presentation	logic	from	business
logic.	This	simplifies	the	divided	customization	of	store	appearance	on	the	one	hand	and
store	behaviour	on	the	other.	Architectural	layers	also	provide	developers	a	simplified	model
for	the	ideal	placement	of	features	and	code	in	the	system.

The	design	of	Magento	can	be	decomposed	into	clusters	of	components	with	a	similar
functionality.	These	clusters,	or	layers,	enable	the	logic	separation	of	different
responsibilities.	Figure	5	illustrates	the	layered	architecture	of	Magento	and	shows	the
components	of	each	layer.	The	diagram	also	demonstrates	the	connections	between	the
four	layers	and	the	Magento	framework,	third	party	libraries,	the	supported	database,	and
other	technologies.	[15]

Magento

158

Fig.	5:	Magento's	architecture	layered	diagram	[15]

1.	 Presentation	layer	-	This	layer	is	responsible	for	the	interaction	between	users	and	the
Magento	Framework.	Components	in	this	layer	are	in	charge	of	handling	incoming	user
requests	by	executing	code	of	the	controller	classes	which	in	turn	load	UI	components
[16].

2.	 Service	layer	-	This	layer	provides	a	bridge	between	the	presentation	layer	and	the
domain	layer	[17].	It	uses	PHP	interfaces	to	form	service	contracts	for	Magento
components.	These	contracts	define	through	data	interfaces	how	the	components	of	the
higher	presentation	layer	and	the	lower	domain	layer	should	interact.	This	layer	also
prescribes	service	interfaces	to	provide	an	easy	way	to	access	Magento's	API
Framework	for	external	REST	and	SOAP	API	applications.

3.	 Domain	layer	-	This	layer	holds	all	business	logic	that	Magento	modules	perform	on
data	that	is	received	in	requests.	A	special	use	case	of	the	models	is	when	access	to
resources	(for	instance	a	database)	is	required.	Higher	layers	do	not	have	direct	access
to	these	resources,	but	use	the	resource	model	abstractions	of	the	domain	layer
instead.

4.	 Persistence	layer	-	This	layer	is	responsible	for	all	access	to	storage	resources.	Since
Magento	supports	different	databases,	it	offers	different	database	adapters	to
accommodate	them	all	[18].

Magento

159

Architectural	patterns

A	design	pattern	is	a	reusable	solution	to	a	commonly	occurring	problem.	Since	Magento
contains	functionality	that	matches	these	problem	descriptions,	using	design	patterns	is	an
elegant	way	to	implement	the	Magento	functionality.	Therefore,	Magento	2	contains	various
design	patterns.	The	Object	Manager	alone	already	contains	more	than	11	design	patterns.
In	this	section,	however,	we	will	only	cover	the	most	important	design	patterns	of	Magento.

Model-View-ViewModel/Controller	(MVVM/MVC)	model

To	have	a	well-defined	standardization	for	modules,	the	core	developers	decided	to
implement	the	Model-View-Controller	(MVC)	design	pattern	in	Magento	1.	In	Magento	2	this
model	transformed	into	a	more	complex	variant	that	is	"closer	to	a	Model,	View,	ViewModel
(MVVM)	system".	[19]	The	benefit	of	MVVM	over	MVC	is	its	simplification	of	data	binding
and	the	manipulation	of	UI	elements	[20].

In	Magento	2	a	module	corresponds	to	a	URL.	The	URL	is	routed	to	the	action	method	of	a
controller	like	in	a	classical	MVC	system,	however	in	Magento's	design	the	Controller	has
less	responsibilities.	As	the	Controller	does	not	directly	set	variables	of	the	View,	the
variables	handle	their	own	fetching	from	the	Model	instead.	The	HTML	page	that	the
controller	returns	to	render	has	many	sections	called	Containers	which	are	constructed	from
a	set	of	Blocks.	A	block	corresponds	to	the	ViewModel	part	of	the	MVVM	pattern	while	the
contained		pthml		file,	a	layout	template	for	the	Block,	is	the	View.	The	implementation	of	this
pattern	is	shown	in	Figure	6	and	the	way	modules	employ	MVVM	can	be	found	in	the	part	of
the	Logical	view.

Magento

160

Fig.	6:	Magento	implementation	of	the	MVC-MVVM	pattern

Factory	pattern

The	factory	pattern	is	responsible	for	the	instantiation	and	automatic	loading	of	classes.	It	is
used	in	multiple	locations	in	the	Magento	code.	A	class	in	Magento	can	be	instantiated	by	a
factory	by	calling	a	method	with	an	abstract	name	that	defines	its	class	group	and	name.

The	factory	pattern	can	for	example	be	found	in	the	instantiation	of	objects	by	the	Object
Manager	class	[21]	as	visualized	in	Figure	7	[22].	The	Magento	development	team	tries	to
limit	the	dependence	on	and	direct	use	of	the	ObjectManager	in	code.	Factories	are	an
exception	since	they	need	the	ObjectManager	to	create	specific	types	of	objects.

Magento

161

Fig.	7:	Example	of	the	Factory	Pattern	in	Magento	2	[23]

Observer	pattern

The	event-driven	architecture	of	Magento	has	been	made	possible	by	the	observer	pattern.
The	pattern	is	based	on	a	one-to-many	dependency	between	objects	so	that	when	one
object’s	state	changes,	all	its	dependents	are	informed	and	updated	accordingly	[22].
Magento	uses	its	XML	data	to	define	observers.	If	an	event	is	fired	with
	Mage::dispatchEvent($eventName,	$data)	,	the	data	storage	will	be	consulted	and	the
appropriate	observers	for		$event		will	be	fired.	In	Magento	2,	the	observer	pattern	is	for
example	implemented	in	the	payment	process	as	shown	in	Figure	8.

Fig.	8:	Example	of	the	Observer	Pattern	in	Magento	2	[23]

Magento

162

Strategy	pattern

The	strategy	pattern	enables	the	application	to	vary	an	algorithm’s	behaviour	independently
from	users	at	runtime.	In	Magento	2,	this	pattern	is	used	in	the	algorithms	behind	building
payment	requests	[22].	Figure	9	shows	an	example	in	which	the	pattern	recognizes	two
types	of	functions,	namely	the	CaptureBuilder	and	PartialBuilder.	The	CaptureBuilder	is	used
in	the	default	case,	however	under	certain	conditions	the	function	will	be	interchanged	to
adapt	PartialBuilder.

Fig.	9:	Example	of	the	Strategy	Pattern	in	Magento	2	[22]

Decorator	pattern

The	decorator	pattern	allows	responsibilities	to	be	added	dynamically	to	an	individual	object.
In	Magento	2,	this	pattern	is	implemented	to	add	new	behaviour	to	the	factory	used	by	the
ObjectManager.	In	Magento	2,	this	pattern	is	implemented	to	add	new	behaviour	to	the
factory	used	by	the	Object	Manager	[22].	This	can	be	seen	in	Figure	10.

Magento

163

Fig.	10:	Example	of	the	Decorator	Pattern	in	Magento	2	[22]

Actual	implementation

The	Magento	Framework

The	Magento	Framework	manages	the	interactions	and	information	flow	between	application
components.	This	includes	processes	regarding	routing,	indexing,	caching	and	exception
handling.	The	framework	is	positioned	under	the	domain	layer	and	surrounds	the
presentation,	service	and	domain	layers.	More	details	about	the	framework’s	folder	structure
and	its	libraries	can	be	found	in	the	section	in	the	Magento	developer	documentation.

Logical	components

Magento	makes	use	of	what	they	call	‘Magento	components’	to	enable	users	to	customize
the	server-side	visual	representation	of	their	webshop.	The	‘Magento	components’	are
divided	into	modules,	themes	and	language	packages.	Below	we	will	look	more	closely	into
modules	and	the	way	they	employ	the	MVVM	pattern.

Modules

As	explained	before,	modules	employ	the	MVVM	pattern.	These	are	the	most	important
implementation	details	that	this	pattern	entails:

module	root:	All	modules	are	located	in	the		<magento2	root	folder>/app/code		folder.
These	modules	can	be	basic	features	developed	by	the	core	development	team,	or
extensions	built	by	external	developers.	The	naming	convention	is
	VENDOR_FUNCTIONALITY	.	The	developers	each	have	their	own	folder,	so	a	vendor	specific

Magento

164

http://devdocs.magento.com/guides/v2.1/architecture/archi_perspectives/arch_layers.html
http://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/components/modules/mod_intro.html
http://devdocs.magento.com/guides/v2.0/architecture/arch_themes.html
http://devdocs.magento.com/guides/v2.0/architecture/arch_translations.html

module	can	be	found	in		<magento2	root	folder>/app/code/<vendor_name>	.
main	config:	Configuration	files	are	written	in		.xml		format	with	the		<module
root>/etc/module.xml		being	the	main	configuration	file.	It	specifies	the	name	and
version	of	the	module.	The	same	name	also	needs	to	be	added	to	the		<magento2	root
folder>/app/etc/config.php		file	in	which	the	module	we	would	like	to	use	should	be
specified.
controller:	In	order	to	respond	to	a	URL,	the	module	requires	a	controller.	This	consists
of	two	parts.	The		<module	root>/etc/frontend/routes.xml		specifies	which	routes	the
module	should	be	able	to	respond	to.	Magento	then	transforms	the	URL	to	a	controller
class	name	and	tries	to	find	it	at		<module
root>/Controller/SECOND_URL_COMPONENT/THIRD_URL_COMPONENT.php	.	If	the	controller	exists,
its	execute	function	is	called	which	determines	how	to	respond	(e.g.	sending	a	HTML
document	or	a	redirect).
view:	Finally,	the	view	is	described	by	the	full	action	name	layout	handle	XML	file	which
defines	hooks	for	the	page	layout	system	to	include	the	Block	of	this	component.	Inside
this	file	we	refer	to	a	block	class	which	should	be	created	at		<module
root>/Block/BLOCKNAME.php	.	Usually,	the	Block	class	populates	a	template	which	will	be
rendered.	This	template	is	a		phtml		file	located	at		<module
root>/view/frontend/templates/TEMPLATENAME.phtml	.	The	Block	would	usually	get	data
from	the	model	using	requests	or	from	other	data	sources	and	inject	them	into	the	view
template.

In	Figure	11	we	can	see	an	example	of	a	module	structure.

	Fig.	11:	Example
structure	of	a	module	[24]

Information	view

Magento

165

Magento	webshops	need	to	process	many	requests,	orders	and	purchasing	data.	In	order	to
work	with	these	data,	the	Magento	development	team	provides	a	proper	interface	for	data
management.	This	section	describes	the	way	that	Magento’s	architecture	stores,	manages
and	migrates	information.

Data	storage

The	persistence	layer	is	responsible	for	all	access	to	storage	resources	in	Magento.	In	order
to	provide	a	safer	query	execution	and	to	simplify	access	to	the	database,	it	employs	the
PHP	Data	Objects	(PDO)	interface.	The	data-access	abstraction	that	PDO	offers	is	currently
the	recommended	method	for	interacting	with	databases	in	PHP	[25].	For	communication
with	the	higher	Domain	layer,	the	Persistence	layer	adopts	the	Object-Relational	Mapping
(ORM)	technique	[26].	In	this	technique	the	communication	with	the	database	is	performed
via	resource	models.	A	resource	model	is	an	extension	of	a	Domain	Layer	model	that	allows
database	access	in	an	intuitive	way.	It	creates	an	abstract	representation	of	a	particular
database	table.	Each	instance	of	the	resource	model	represents	a	single	record	in	the	table
the	model	corresponds	to.	A	resource	model	is	responsible	for	performing	functions	such	as
[27]:

Executing	all	CRUD	(create,	read,	update,	delete)	requests.	The	model	contains	the
SQL	code	for	completing	these	requests.
Executing	additional	business	logic.	For	example,	a	resource	model	could	perform
data	validation,	start	processes	before	or	after	data	is	stored	or	perform	other	database
operations.	The	Magento	ORM	also	allows	the	request	of	multiple	records	at	once,	by
providing	resource	models	of	the	type	collection.	Figure	12	shows	an	overview	of
resource	models	and	collection	models	in	Magento.

Fig.	12:	Resource	models	represent	records	in	the	database

Magento

166

A	simple	resource	model	defines	and	interacts	with	a	single	table.	However,	some	objects
have	many	attributes	or	a	set	related	objects	with	a	variable	number	of	attributes.	In	these
cases,	the	objects	are	composed	using	Entity-Attribute-Value	(EAV)	models.	In	result,	any
model	using	an	EAV	resource	has	its	attributes	spread	out	over	a	number	of	MySQL	tables.
The	Customer,	Product	and	Catalog	resource	models	of	Magento	use	EAV	attributes.

Data	management

Magento	makes	use	of	a	relational	database	management	system	with	support	for	MySQL,
MariaDB	and	Percona	databases	[28].	For	purposes	of	flexibility,	the	Magento	database
employs	EAV	models	[29].	In	EAV,	each	modelled	"entity"	(e.g.	a	product)	has	a	different	set
of	attributes.	Once	a	new	product	attribute	is	necessary,	an	EAV	is	added	instead	of	adding
an	extra	column	to	an	ever-growing	product	table.	EAV	is	very	useful	for	a	generic	e-
commerce	solution	since	various	stores	may	have	different	characteristics.	EAV	enables	the
developers	to	extend	attribute	sets	without	the	need	to	redesign	the	database	[30].	Although
it	offers	a	lot	of	flexibility,	not	many	open	source	or	commercial	databases	make	use	of	EAV.
Hence,	the	Magento	developers	have	constructed	an	EAV	system	out	of	PHP	objects	that
adopts	MySQL	as	a	data-store.	In	other	words,	they	have	built	an	EAV	database	system	on
top	of	a	traditional	relational	database.

Fig.	13:	Overview	of	Magento’s	database	tables	[30]

Magento

167

Figure	13	is	an	overview	of	the	database	tables	Magento	interacts	with	to	gain	access	to	an
EAV	record	for	a	catalog_product	entity.	Each	individual	product	contains	a	row	in
catalog_product_entity.	All	the	available	attributes	in	the	whole	system	are	stored	in
eav_attribute,	and	the	actual	attribute	values	are	stored	in	tables	with	names	like
catalog_product_entity_varchar,	catalog_product_entity_decimal,
catalog_product_entity_etc.

Security
E-commerce	websites	have	always	been	a	lucrative	target	for	hackers,	because	of	the
sensitive	data	they	contain,	including	credit	card	information.	Especially	with	open	source
projects,	security	concerns	present	themselves	as	hackers	know	the	internals	of	the
application.	That	is	why	security	should	be	the	number	one	focus	of	all	Magento	developers
and	users.	This	section	describes	the	vulnerabilities	of	the	Magento	system	and	the	security
measures	that	have	been	taken	from	the	developers’	side	and	that	should	be	taken	from	the
users’	side.

Magento	vulnerabilities

Based	on	the	published	patches	and	compared	to	competitors,	Magento	is	quite	secure	[31].
According	to	CVE	Details,	an	online	security	vulnerability	data	source,	there	was	only	one
vulnerability	reported	in	2016,	five	in	2015	and	two	so	far	in	2017	[32].	According	to	the
Magento	security	center,	they	published	six	security	patches	in	2016	and	one	so	far	in	2017.
Figure	14	shows	the	percentages	of	the	causes	of	these	vulnerabilities.

Magento

168

https://magento.com/security/patches

Fig.	14:	Vulnerabilities	by	type

On	the	other	hand,	according	to	TrustWave’s	Global	Security	Report	2016,	"Magento	was
the	ecommerce	target	of	choice	for	hackers,	with	Magento	installations	accounting	for	85%
of	compromised	ecommerce	systems"	[33].	This	was	mostly	caused	by	weaknesses	in	the
server	environment.	As	illustrated	in	Figure	15,	a	Magento	infrastructure	contains	several
potential	gateways	for	hackers	[34].

Magento

169

Fig.	15:	A	standard	Magento	infrastructure	at	Rackspace

TrustWave's	report	also	notes	that	most	software	on	Magento	users’	servers	were	outdated
and	not	fully	patched.	Therefore,	securing	the	server	infrastructure	is	the	most	critical	aspect
of	securing	a	Magento	website.	In	order	to	do	this	properly	the	Magento	team	published	a
security	guide	which	describes	the	best	practices	for	server	administrators	to	setup	the	third-
party	software	correctly	and	securely.

Intrusion	detection	and	containment

Magento	provides	multiple	security	measures	for	intrusion,	detection	and	containment	to
prevent	attacks.	Table	2	shows	the	security	measures	for	each	phase.

Magento

170

https://magento.com/security/best-practices/security-best-practices

Milestone Measures	for	developers Measures	for	users

Intrusion
Security	fixes	and	patches
are	used	to	protect
Magento.

Users	should	apply	Magento's	best
practices	for	protecting	their	website	and
server	environment.

Detection

Security	tests,	BugCrowd
and	the	Magento
community	forum	are	used
to	keep	track	of	detected
breaches.

Monitor	for	signs	of	attacks	using
external	tools	that	check	the	security
status	of	your	website.	The	most
popular,	Magereport,	is	developed	by	the
Magento	community.

Containment

Security	updates	are
released	in	security
patches	with	additional
notes	on	their	risk	and
applicable	versions	of
Magento.

Users	can	sign	up	for	security	alerts	and
fixes	to	recover	from	attacks.	To	prevent
future	similar	attacks	follow	Magento’s
Disaster	Recovery	Plan,	also	part	of	the
security	guide.

Table	2:	Intrusion,	detection	and	containment	in	Magento

According	to	TrustWave,	it	takes	Magento	80.5	days	on	average	from	initial	intrusion	to	a
security	breach	being	detected	[33].	The	median	total	duration	between	intrusion	and
containment	decreased	from	111	days	in	2015,	to	63	days	in	2016.	But	this	still	leaves
hackers	nine	weeks	on	average	to	attack	Magento	without	the	developers	being	aware	of	it.

Recovery	from	failures

Magento	applies	the	following	measures	to	secure	their	products	[35]:

Enhanced	password	management:	Magento	has	improved	the	hashing	algorithms
(SHA-256)	used	in	password	management.
Prevention	of	cross-site	scripting	(XSS)	attacks:	The	Magento	Framework	follows
protocols	that	manage	the	escape	of	data	in	output.	These	protocols	allow	clients	to
escape	output	for	HTML	pages	(HTML,	JSON,	and	JavaScript)	and	email.	More
information	on	measures	against	XSS	attacks	can	be	found	in	the	Magento
documentation.
Flexible	file	system	ownership	and	permissions:	Since	Magento	2.0.6.,	file	system
permissions	are	held	in	certain	files	that	are	writable	in	a	development	environment	and
read-only	in	a	production	environment.	These	permissions	(particularly	for	production)
can	be	further	restricted	using	a	umask,	as	explained	in	the	Magento	documentation.
Prevention	of	clickjacking	exploits:	Magento	protects	your	webshop	from	clickjacking
attacks	by	using	an	X-Frame-Options	HTTP	request	header.	For	more	information,	see
X-Frame-Options	header.
Use	of	non-default	Magento	Admin	URL:	To	prevent	large-scale	attacks	that	use
automated	password	guessing	and	target	default	admin	URL's	like	admin	or	backend,

Magento

171

https://bugcrowd.com/magento
https://www.magereport.com/
http://devdocs.magento.com/guides/v2.0/frontend-dev-guide/templates/template-security.html
http://devdocs.magento.com/guides/v2.0/install-gde/prereq/file-sys-perms-over.html
http://devdocs.magento.com/guides/v2.0/config-guide/secy/secy-xframe.html

Magento	creates	a	random	Admin	URI	when	you	install	the	product.	This	URI	can	be
changed	through	the	provided	CLI.	More	information	can	be	found	in	the	Magento
documentation.

Technical	debt
Technical	debt	reflects	on	the	long-term	impacts	of	trade-offs	that	are	taken	during	software
development	between	productivity	and	maintainability.	Since	Magento	is	a	very	large	system
with	nearly	200	external	dependencies,	technical	debt	is	a	serious	threat	that	should	be
given	a	lot	of	attention.

Monitoring	technical	debt

In	order	to	keep	an	overview	of	the	system's	technical	debt,	the	Magento	development	team
employs	two	automated	testing	tools.

Codacy	static	analysis

Codacy	is	a	static	analysis	tool	that	performs	automated	code	reviews	and	marks	all
violations.	Based	on	the	analysis	results,	the	code	is	assigned	a	quality	rating	based	on
code	style,	security,	duplication,	code	complexity	and	test	coverage.	Figure	16	depicts	the
current	quality	rating	of	the	Magento	development	branch.	The	vast	majority	of	warnings	are
low	level	issues	on	variable	name	lengths	and	naming	conventions.	The	Codacy	report
indicates	that	Magento	is	quite	healthy	software	project.

Fig.	16:	Codacy	Technical	Debt	overview

Magento

172

http://devdocs.magento.com/guides/v2.0/install-gde/install/cli/install-cli-adminurl.html

Travis	Continuous	Integration

Travis	CI	is	used	for	performing	automated	builds	of	the	latest	version	of	the	platform.	Since
PHP	is	an	interpreted	language,	the	Travis	build	does	not	actually	compile	the	code,	instead
it	runs	an	extensive	test	suite	with	different	configurations.	Since	most	webservers	use
different	PHP	versions,	the	entire	test	suite	is	repeated	for	the	current	stable	PHP	5	and
PHP	7	versions.

Currently,	this	is	the	outcome	of	an	integration	test	for	a	typical	commit:

OK,	but	incomplete,	skipped,	or	risky	tests!
Tests:	4783,	Assertions:	12392,	Incomplete:	69,	Skipped:	77.

It	indicates	that	there	are	a	number	of	incomplete	assertions	and	skipped	test	cases.	This	is
generally	not	a	good	sign	and	indicates	a	source	of	technical	debt.

Technical	Debt	Aggregation	Tool

One	developer	from	the	Magento	community	developed	the	Module	Technical	Debt
Aggregation	tool	that	analyses	the	technical	debt	of	each	module	in	Magento	2	[36].	Figure
17	shows	the	output	of	the	tool	for	28	modules	ordered	by	decreasing	technical	debt.

Magento

173

Fig.	17:	Magento	Module	Technical	Debt

The	API	coverage	is	particularly	interesting,	since	it	indicates	the	complexity	and	coupling	of
the	various	modules.	The	Payment	module	turns	out	to	be	the	worst	performing	module.	A
further	investigation	confirms	its	complexity	by	the	fact	that	this	module	consists	of	a
staggering	272	files.	Besides	the	Payment	module,	also	the	Sales	and	Catalog	modules	are
high	on	the	list.	This	shows	that	many	parts	of	the	website	need	access	to	the	sales	and
catalog	data.	The	Module	Technical	Debt	Aggregation	tool	clearly	indicates	which	modules
need	the	most	attention	when	reducing	technical	debt.

Testing	debt

Testing	debt	is	caused	by	the	lack	of	testing	or	by	poor	testing	quality.	Testing	is
unfortunately	still	considered	a	luxury	for	many	development	teams.	Luckily,	at	Magento,
they	realized	this	and	significantly	invested	in	automated	testing.

Current	code	coverage

Magento

174

In	order	to	measure	how	well	the	system	is	tested,	we	have	used	PHPUnit	to	generate	a
code	coverage	report	in	HTML	format	for	Magento	2.	The	report	can	be	found	on	our	team
website.	The	overall	coverage	of	the	modules	in		app/code		is	37%.	This	is	pretty	low
because	these	modules	contain	a	lot	of	untested	UI	elements	and	auto-generated	code,	as
illustrated	in	Figure	18.

Fig.	18:	Coverage	distribution	in	Magento	2

Magento's	Testing	standard	states	that	new	code	must	always	be	covered	unless	it	is	auto-
generated	code	or	does	not	contain	new	business	logic.	Therefore,	each	module's	View
folder	is	untested	which	drastically	lowers	the	overall	coverage.	However,	the	majority	of	the
modules	has	a	well-tested	Block,	Helper	and	Model	folder	(with	a	coverage	higher	than
70%).	If	we	leave	out	all	View	folders	and	auto-generated	code,	the	code	coverage	ends	up
higher	than	88%.

Magento

175

https://elvan.teammagento.nl/report/index.html

Fig.	19:	The	top	5	Magento	modules	with	the	highest	code	coverage

The	modules	that	are	best	tested	all	have	a	coverage	higher	than	80%.	Since	modules
shown	in	Figure	19	are	responsible	for	Magento’s	core	functionality,	it	is	a	good	sign	that
they	have	been	thoroughly	tested.

Fig.	20:	The	top	5	largest	Magento	modules	and	the	top	5	Magento	modules	with	the	lowest
code	coverage

Figure	20	shows	that	the	five	least	tested	modules	have	0%	coverage.	Further	investigation
confirmed	that	these	modules	only	contain	auto-generated	code.	The	largest	modules	have
a	coverage	around	30%	and	are	mainly	base	modules	(Customer,	Sales,	Catalog)	which
contain	many	view	files.

Testing	procedure

As	explained	in	Magento’s	Testing	Guide,	the	Magento	2	project	distinguishes	six	different
types	of	testing	[37].	Each	test	type	has	different	quality	criteria	that	must	be	adopted	by
Magento	developers	in	order	to	get	their	pull-requests	merged.	They	can	be	found	in	the
Magento2	git	repository.	Each	PR	will	be	measured	by	Codacy,	Travis	CI	and	integrators
against	the	test	level	of	the	quality	criteria.	For	each	PR	that	includes	new	logic	or	new
features	another	check	by	the	core	team	is	done	to	ensure	adequate	unit/	integration	test
coverage.

An	improvement	potential	in	Magento’s	testing	procedure	is	the	visibility	of	the	code
coverage	in	the	continuous	integration	process.	Currently,	the	contributors	and	integrators
are	expected	to	measure	this	on	their	local	machine.

Evolution	of	technical	debt

Magento

176

http://devdocs.magento.com/guides/v2.0/test/testing.html
https://github.com/magento/magento2/wiki/Magento-Automated-Testing-Standard

With	the	transition	from	Magento	1	to	Magento	2,	the	platform	inherited	a	part	of	Magento
1’s	technical	debt.	Therefore,	the	development	team	started	to	work	in	a	series	of	milestones
to	pay	the	technical	debt	and	to	build	an	architecture	that	better	complies	to	the	SOLID
principles	[38].	This	whole	refactoring	process	took	a	year.	Here	are	the	most	significant
improvements:

The	ObjectManager:	This	God	class	is	probably	Magento	2’s	largest	violation	of	the
SOLID	principles.	The	usage	of	ObjectManager	is	a	bad	practice	since	it	increases	the
coupling	between	different	modules	or	models.	The	development	team	is	dedicated	to
decreasing	its	usage	in	the	source	code,	however	because	of	its	deep	roots	in	the
architecture	this	process	goes	slowly	[39].
Dependency	injection:	Instead	of	the	ObjectManager	("Mage"	class	in	Magento	1)
Magento	2	uses	dependency	injection	to	make	modules	independent	of	their
dependencies	[38].
Framework	dependency:	Magento	1	was	tightly	wrapped	around	Zend	1	and	highly
dependent	on	it.	To	make	Magento	2	[40]	more	independent,	it	uses	its	own	adapter	and
interfaces	for	various	frameworks.
Rewrite	conflicts:	Magento	1	allowed	modules	to	overwrite	core	functionality.	Magento
2	changed	this	by	introducing	plugins	[41].	Plugins	do	not	overwrite	the	class,	but	make
it	able	to	make	a	call	before	or	after	a	method.
Test	automation:	With	Magento	1	unit	testing	was	not	historically	a	requirement	for
developers.	This	was	caused	by	the	fact	that	Magento	1	was	hard	to	test	due	to	the
static	factory	methods	of	the	Mage	class	[42].	However,	with	Magento	2	the	community
was	introduced	to	test	automation	and	the	Magento	Automated	Testing	Standard.	This
standard	was	defined	to	unify	different	testing	approaches	developed	by	the	community.
Soon	enough	the	code	coverage	improved	and	since	2015	the	coverage	of	Magento
has	been	stable	above	75%.

To	compare	the	technical	debt	in	Magento	1	and	Magento	2,	we	used	the	tool	SensioLabs.
In	total	Magento	1	had	655946	lines,	which	had	24347	violations	compared	to	a	total	of
997592	lines	but	only	8421	violations	for	Magento	2.	The	report	for	Magento	1	and	2	can	be
found	on	the	SensioLabs	website,	here	and	here,	respectively.

Conclusion
We	have	analysed	how	Magento’s	architecture	offers	flexibility	and	extensibility	to	its	users.
Magento’s	design	is	based	on	a	layered	architecture	with	a	clear	separation	in	business	and
presentation	logic.	Many	design	patterns	can	be	found	in	the	core	components.	For

Magento

177

https://github.com/magento/magento2/wiki/Magento-Automated-Testing-Standard
https://insight.sensiolabs.com/projects/a45659aa-fc73-428c-8b39-427b318e31cd/analyses/1
https://insight.sensiolabs.com/projects/753f9720-49fb-4b68-8d6f-fd81f1e7fece/analyses/1

purposes	of	flexibility,	Magento	employs	a	database	layout	based	on	Entity-Attribute-Value
(EAV)	models.	In	order	to	simplify	access	to	the	database,	the	platform	offers	the	PHP	Data
Objects	interface.

Our	analysis	of	Magento's	security	showed	that	the	platform's	vulnerabilities	are	primarily
caused	by	remotely	executed	code	and	weaknesses	in	the	server	environment.	The	team
provides	different	security	measures,	such	as	security	patches,	monitoring	tools	and	best
practices.

Magento	benefits	from	the	improvements	in	technical	debt	that	were	introduced	with	the
release	of	Magento	2.	The	development	team	is	aware	of	the	current	technical	debt	and	is
dedicated	to	reducing	it.	The	developers	are	actively	decreasing	the	usage	of	the
ObjectManager	and	often	open	pull-requests	concerning	code	refactoring	and
documentation	improvements.

In	our	analysis	we	have	identified	the	visibility	of	code	coverage	and	other	software	metrics
as	an	improvement	potential	in	Magento’s	testing	procedure.	By	making	the	measurement	of
these	metrics	part	of	Magento’s	continuous	integration	process,	feedback	could	be	offered	to
developers	more	quickly,	leading	to	a	higher	quality	of	code.

References
1.	 Ecommerce	News.	Magento	the	most	used	ecommerce	platform	in	Europe.

https://ecommercenews.eu/magento-used-ecommerce-platform-europe/.
2.	 Jodie	Pride.	WooCommerce	or	Magento	for	Your	E-Commerce	Store?

https://www.ostraining.com/blog/wordpress/magento/.
3.	 Larry	Morroni.	The	History	of	Magento	and	Its	Rise	to	Ubiquity.

https://morroni.com/blog/history-of-magento/.
4.	 Magestore.	What	is	Magento	2?	First	step	to	build	a	Magento	2	site.

http://www.magestore.com/magento-2-tutorial/what-is-magento-2/
5.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with

Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.
6.	 Magento-hosting.	https://www.yourhosting.nl/zakelijk/managed/magento-hosting/.
7.	 Magento	Community.	https://community.magento.com/.
8.	 Magento	partners.	https://magento.com/partners/portal/directory/?partner_type=1.
9.	 Magento.	https://magento.com/.
10.	 Samy	Felice.	The	numerous	benefits	of	the	Magento	Ecommerce	Platform.

https://www.neotericuk.co.uk/benefits-magento-ecommerce-platform.
11.	 University	of	Southampton.	Object	Oriented	Basic	Concepts	and	Advantages.

http://eprints.soton.ac.uk/250857/3/html/node3.html.
12.	 Magento.	Global	features	that	support	extensibility.

Magento

178

https://ecommercenews.eu/magento-used-ecommerce-platform-europe/
https://www.ostraining.com/blog/wordpress/magento/
https://morroni.com/blog/history-of-magento/
http://www.magestore.com/magento-2-tutorial/what-is-magento-2/
https://www.yourhosting.nl/zakelijk/managed/magento-hosting/
https://community.magento.com/
https://magento.com/partners/portal/directory/?partner_type=1
https://magento.com/
https://www.neotericuk.co.uk/benefits-magento-ecommerce-platform
http://eprints.soton.ac.uk/250857/3/html/node3.html

http://devdocs.magento.com/guides/v2.0/architecture/global_extensibility_features.html.
13.	 Magento.	Service	contracts.	http://devdocs.magento.com/guides/v2.1/extension-dev-

guide/service-contracts/service-contracts.html.
14.	 Magento	Testing	Guide.	http://devdocs.magento.com/guides/v2.0/test/testing.html.
15.	 Magento	Layered	Architecture	diagram.

http://devdocs.magento.com/guides/v2.1/architecture/archi_perspectives/arch_diagrams
.html.

16.	 Magento	Presentation	Layer.
http://devdocs.magento.com/guides/v2.1/architecture/archi_perspectives/present_layer.
html.

17.	 Magento	Service	Layer.
http://devdocs.magento.com/guides/v2.1/architecture/archi_perspectives/service_layer.
html.

18.	 Magento	Persistence	Layer.
http://devdocs.magento.com/guides/v2.1/architecture/archi_perspectives/persist_layer.h
tml.

19.	 Introduction	to	Magento	2	—	No	More	MVC
http://alanstorm.com/magento_2_mvvm_mvc/.

20.	 R.	Jaison.	Six	Benefits	of	Using	MVC	Model	for	Effective	Web	Application	Development.
https://www.brainvire.com/six-benefits-of-using-mvc-model-for-effective-web-
application-development/.

21.	 Magento.	PHP	developer	guide:	Factory.
http://devdocs.magento.com/guides/v2.0/extension-dev-guide/factories.html.

22.	 Max	Pronko.	Development	Design	Patterns	in	Magento	2.
https://www.maxpronko.com/blog/magento-2-development-design-patterns.

23.	 Magenticians.	Twelve	design	patterns	in	Magento.	https://magenticians.com/12-design-
patterns-magento/.

24.	 Magento	2.0.	Prepare	yourself	for	a	new	way	of	module	development.
https://www.slideshare.net/ivanchepurnyi/magento-20-prepare-yourself-for-a-new-way-
of-module-development.

25.	 PHP	The	Right	Way.	http://www.phptherightway.com/.
26.	 Object-Relational	Mapping.	http://www.killerphp.com/articles/what-are-orm-frameworks/.
27.	 Magento.	DevDocs:	Persistence	layer.

http://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/persist_layer.h
tml.

28.	 Magento.	DevDocs:	Technology	stack.
http://devdocs.magento.com/guides/v2.0/architecture/tech-stack.html.

29.	 Manish	Prakash.	Magento	EAV	database	structure.
http://excellencemagentoblog.com/blog/2011/09/07/magento-eav-database-structure/.

30.	 Alan	Storm.	Magento	for	Developers:	Part	7—Advanced	ORM:	Entity	Attribute	Value.

Magento

179

http://devdocs.magento.com/guides/v2.0/architecture/global_extensibility_features.html
http://devdocs.magento.com/guides/v2.1/extension-dev-guide/service-contracts/service-contracts.html
http://devdocs.magento.com/guides/v2.0/test/testing.html
http://devdocs.magento.com/guides/v2.1/architecture/archi_perspectives/arch_diagrams.html
http://devdocs.magento.com/guides/v2.1/architecture/archi_perspectives/present_layer.html
http://devdocs.magento.com/guides/v2.1/architecture/archi_perspectives/service_layer.html
http://devdocs.magento.com/guides/v2.1/architecture/archi_perspectives/persist_layer.html
http://alanstorm.com/magento_2_mvvm_mvc/
https://www.brainvire.com/six-benefits-of-using-mvc-model-for-effective-web-application-development/
http://devdocs.magento.com/guides/v2.0/extension-dev-guide/factories.html
https://www.maxpronko.com/blog/magento-2-development-design-patterns
https://magenticians.com/12-design-patterns-magento/
https://www.slideshare.net/ivanchepurnyi/magento-20-prepare-yourself-for-a-new-way-of-module-development
http://www.phptherightway.com/
http://www.killerphp.com/articles/what-are-orm-frameworks/
http://devdocs.magento.com/guides/v2.0/architecture/archi_perspectives/persist_layer.html
http://devdocs.magento.com/guides/v2.0/architecture/tech-stack.html
http://excellencemagentoblog.com/blog/2011/09/07/magento-eav-database-structure/

http://devdocs.magento.com/guides/m1x/magefordev/mage-for-dev-7.html.
31.	 Brian	Jackson.	Complete	Guide	on	Magento	Security.

https://www.keycdn.com/blog/magento-security/.
32.	 CVE	Details.	Magento:	Vulnerability	statistics.

https://www.cvedetails.com/product/31613/Magento-Magento.html?vendor_id=15393.
33.	 ExtensionsMall.	How	secure	is	Magento?	Not	much,	says	Trustwave.

https://www.extensionsmall.com/blog/how-secure-is-magento/.
34.	 John	Engates.	Building	Secure,	Scalable	and	Highly	Available	Magento	Stores,

Powered	by	Rackspace	Solutions.	https://support.rackspace.com/white-paper/building-
secure-scalable-and-highly-available-magento-stores-powered-by-rackspace/.

35.	 Magento.	DevDocs:	Security	overview.
http://devdocs.magento.com/guides/v2.0/architecture/security_intro.html.

36.	 Vinai	Kopp.	Magento	2	Module	Technical	Debt	Aggregation.
https://github.com/Vinai/m2-tech-debt.

37.	 Alan	Kent.	Magento	2:	Testing,	testing	and	more	testing.
https://alankent.me/2014/06/28/magento-2-test-automation/.

38.	 Brideo.	Being	a	SOLID	developer	in	Magento	2.	http://brideo.co.uk/magento2/SOLID-in-
Magento-2/.

39.	 Alan	Storm.	Magento	2	Object	Manager.
http://alanstorm.com/magento_2_object_manager/.

40.	 Framework	dependency	in	Magento	2.	-
http://www.coolryan.com/magento/2016/01/29/the-difference-between-magento-1-and-
magento-2/

41.	 Magento.	Developer	Documentation:	Plugins.
http://devdocs.magento.com/guides/v2.0/extension-dev-guide/plugins.html.

42.	 Dan	Homorodean.	Beginning	unit	testing	in	Magento	1.x.
https://magento.evozon.com/beginning-unit-testing-in-magento-1-x.html.

Magento

180

http://devdocs.magento.com/guides/m1x/magefordev/mage-for-dev-7.html
https://www.keycdn.com/blog/magento-security/
https://www.cvedetails.com/product/31613/Magento-Magento.html?vendor_id=15393
https://www.extensionsmall.com/blog/how-secure-is-magento/
https://support.rackspace.com/white-paper/building-secure-scalable-and-highly-available-magento-stores-powered-by-rackspace/
http://devdocs.magento.com/guides/v2.0/architecture/security_intro.html
https://github.com/Vinai/m2-tech-debt
https://alankent.me/2014/06/28/magento-2-test-automation/
http://brideo.co.uk/magento2/SOLID-in-Magento-2/
http://alanstorm.com/magento_2_object_manager/
http://www.coolryan.com/magento/2016/01/29/the-difference-between-magento-1-and-magento-2/
http://devdocs.magento.com/guides/v2.0/extension-dev-guide/plugins.html
https://magento.evozon.com/beginning-unit-testing-in-magento-1-x.html

Mapbox	GL	JS

By	Yoeri	Appel,	Lars	Krombeen,	Remco	de	Vos	and	Jos	Winter.

Abstract
Mapbox	GL	JS	is	a	JavaScript	rendering	library	used	to	create	interactive	maps	using
WebGL.	It	is	part	of	a	large	collection	of	open	source	tools	created	by	Mapbox	to	design,
develop	and	show	(interactive)	maps	that	are	completely	customised	to	suit	the	needs	of	the
user.	This	chapter	analyses	the	architecture	of	Mapbox	GL	JS	using	the	context,
stakeholders,	development	and	information	viewpoints,	and	could	be	used	by	future
developers	as	reference	to	get	started.	Furthermore	it	provides	an	analysis	of	the	technical
debt	present	in	the	project.

Introduction
Human	kind	has	been	making	maps	for	a	extensive	amount	of	time,	with	the	first	map	dating
back	over	16500	years	[2].	The	way	maps	are	made	and	viewed	has	changed	a	lot	since
then	and	is	still	changing	today.	Nowadays	almost	everyone	has	the	possibility	of	accessing
maps	of	anything	anywhere	over	the	Internet	using	computers	or	smart	devices.	As	a
consequence	several	companies	and	organisations	have	been	formed	around	the	services
of	providing	maps	and	map	data.

Mapbox	GL	JS

181

https://github.com/yappel
https://github.com/lkrombeen
https://github.com/RemcodeVos
https://github.com/joswinter

One	of	these	companies	is	Mapbox	which	provides	both	geographic	data,	rendering	clients,
and	other	services	related	to	maps.	Mapbox	GL	JS	is	one	of	their	open	source	client	libraries
for	rendering	and	interacting	with	maps	for	websites.	As	part	of	the	Mapbox	ecosystem	it	of
course	integrates	with	the	other	services	Mapbox	provides.

As	the	Mapbox	GL	JS	client	is	part	of	a	much	larger	ecosystem	this	chapter	first	looks	at	the
Mapbox	and	the	relation	between	Mapbox	and	Mapbox	GL	JS.	This	is	done	by	describing
the	context	of	Mapbox	GL	JS	and	its	primary	stakeholders.	Furthermore	Mapbox	GL	JS’s
architecture	is	discussed	by	describing	its	module	structure,	standardisation	of	design	and
testing,	and	build	approach.	Additionally,	as	maps	are	data	heavy	the	flow	of	this	data	will	be
discussed	in	the	information	view	as	well	as	the	usability	for	both	developers	and	users.
Lastly,	the	technical	debt	for	the	Mapbox	GL	JS	library	will	be	discussed	to	see	what	the
quality	of	the	project	is.

About	Mapbox	and	Mapbox	GL	JS

The	Founding	of	Mapbox

Mapbox	was	founded	in	2010	with	the	goal	to	provide	an	alternative	to	the	popular	Google
Maps.	In	Google	Maps	little	to	no	customisation	was	possible	and	there	were	barely	any
tools	for	cartographers	to	create	maps	how	they	envisioned	it.	Mapbox	was	founded	with	the
goal	to	change	that	and	provide	(open	source)	tools	for	cartographers	and	developers	to
create	the	maps	they	desired.

All	tools	Mapbox	develops	are	open	source	and	free	to	use.	Their	core	business	is	hosting
services	(such	as	storing	and	providing	the	user's	custom	geo-data)	on	their	servers.	Their
goal	is	to	ensure	that	software	exists	which	supports	the	digital	cartographers	in	the	best
way	possible,	but	they	do	understand	that	not	everybody	needs	and	likes	the	same	and	that
alternatives	to	their	tools	do	exists.	Since	it	is	not	their	goal	to	make	the	best	or	most	popular
tools	themselves,	they	learn	from	and	work	together	with	these	alternatives	to	improve	their
own	tools	and	let	the	users	use,	for	example	another	data	renderer,	while	still	using	the	other
Mapbox	tools	and	services.	This	is	the	reason	that	there	is	not	one	Mapbox	repository	or
project	but	every	tool/library/specification	is	developed	separately	to	keep	everything
modular.	Mapbox	GL	JS	is	one	of	these	modules	and	is	one	of	the	renderers	developed	by
Mapbox	that	visualise	your	geo-data.

Mapbox	GL	JS	and	the	Mapbox	Architecture

An	important	part	of	Mapbox	GL	JS'	context	is	its	position	and	role	in	all	the	other	Mapbox
components.	This	section	will	give	a	general	explanation	of	all	relevant	Mapbox	components
in	order	to	better	understand	the	role	of	the	Mapbox-gl-js	repository.

Mapbox	GL	JS

182

Mapbox's	system	revolves	around	Styles,	tilesets	and	data	sources.	The	relation	between
these	components	can	be	viewed	in	figure	1.

Figure	1.	Diagram	showing	relation	between	Data	sources,	tilesets	and	styles	in	the	Mapbox
architecture

A	tileset	is	an	optimised	way	to	save	and	transport	data	by	splitting	it	in	tiles.	A	Mapbox	style
defines	where	to	find	the	data	sources	(in	raw	form	or	the	optimised	tilesets)	and	how	to
display	this	data.	This	allows	the	user	to	visualise	every	bit	of	data	exactly	the	way	they	want
(or	not	visualise	it:	hiding	certain	parts).	Mapbox	created	tools	to	both	create	these	styles
and	to	render	them	with	different	methods.	The	most	basic	rendering	tool	is	the	static	API
which	converts	the	style	into	a	static	image	by	running	an	algorithm	on	their	server.	Another
way	is	to	use	the	Mapbox	plugin	for	Leaflet,	which	uses	the	basic	browser	techniques	like
svg	and	canvas	to	render	the	data.	Furthermore,	there	is	the	Mapbox-gl-native	repository
which	uses	OpenGL	to	render	the	map	and	contains	SDKs	for	Android,	iOS,	macOS,
NodeJS	and	Qt.	The	last	method	is	using	WebGL	inside	a	web	browser	and	is	developed	in
Mapbox	GL	JS	repository.

Mapbox	GL	JS	itself	is	a	map	interaction	and	rendering	client	for	websites	and	web
applications	and	thus	does	not	provide	the	map	data	for	rendering	[3].	Within	the	Mapbox
ecosystem	the	Maps	API	and	Styles	API	provide	respectively	the	raster	and	vector	tilesets,
and	the	Mapbox	GL	styles	needed	for	the	web	rendering	client	[4].	When	the	Mapbox	GL	JS
client	is	used	completely	within	the	Mapbox	ecosystem	it	has	a	dependency	on	the	Maps
and	Styles	APIs.	However,	this	is	not	necessary,	as	long	as	the	data	sources	follow	the
specifications	it	is	also	possible	to	use	other	external	or	private	sources	[5].	However,	since
they	earn	their	money	with	their	servers,	Mapbox	promotes	the	use	of	the	data	they	are
providing	on	their	services,	which	can	be	complemented	with	data	the	users	uploads	to	the
server	on	their	accounts,	and	can	be	accessed	simultaneously	with	the	Mapbox	data	via	the
APIs	mentioned	before.	The	data	Mapbox	provides	is	gathered	from	both	the	leading	open
source	and	largest	commercial	providers,	like	OpenStreetMap,	NASA	and	DigitalGlobe,	as
can	been	seen	on	their	website.	Figure	2	gives	a	graphical	overview	of	the	these	relations.

Mapbox	GL	JS

183

https://www.mapbox.com/help/define-style/
https://www.mapbox.com/help/define-tileset/
https://en.wikipedia.org/wiki/List_of_GIS_data_sources
https://www.mapbox.com/api-documentation/#static
https://www.mapbox.com/mapbox.js/api/v3.0.1/
http://leafletjs.com/
https://github.com/mapbox/mapbox-gl-native
https://www.mapbox.com/data-platform/

Figure	2.	Simplified	overview	of	the	major	parts	of	the	Mapbox	architecture	related	to
Mapbox	GL	JS

Context	View

Mapbox	GL	JS

184

Figure	3.	Diagram	of	the	context	view

As	mentioned	before,	Mapbox	develops	as	much	as	possible	in	open	source	projects	and
therefore	the	mapbox-gl-js	repository	is	one	of	500+	repositories	in	the	Mapbox	organisation.
Consequently	Mapbox	GL	JS	is	developed	by	both	developers	from	Mapbox	and	people
from	the	Github	community	who	want	to	contribute.	More	information	about	which	Mapbox
employees	are	working	on	Mapbox	GL	JS	can	be	found	in	the	Stakeholders	section.	Github
as	the	host	for	the	code,	forms	a	medium	for	people	to	contribute	to	the	code	and	is	used	to
track	issues	as	well.

Just	as	all	other	Mapbox	projects,	Mapbox	GL	JS	is	developed	by	and	developed	for	other
developers.	Mapbox	GL	JS	is	structured	in	such	a	way	that	plugins	can	be	created	to	extend
the	default	functionalities.	Both	Mapbox	themselves	and	people	from	the	Github	community
have	created	these	plugins	and	they	are	promoted	on	their	website.

The	programming	language	used	to	build	Mapbox	GL	JS	is	JavaScript	and	WebGL	(the	web
version	of	OpenGL)	is	used	to	render	the	map	inside	the	client's	browser.	Mapbox's	Styles
API	and	Maps	API	are	used	to	determine	what	should	be	rendered,	how	it	should	be
rendered	and	retrieve	the	data	that	needs	to	be	rendered,	as	described	in	the	previous

Mapbox	GL	JS

185

https://github.com/mapbox?utf8=%E2%9C%93&q=&type=source&language=
https://www.mapbox.com/mapbox-gl-js/plugins/

section.	This	impacts	the	architecture	heavily,	because	the	architecture	of	a	large	JavaScript
system	is	different	than	a	strongly	typed	language	like	Java	and	the	architecture	is	designed
around	the	APIs	and	WebGL.

Mapbox'	documentation	is	hosted	on	their	site	and	Coveralls	and	CircleCI	are	used	for
continuous	integration,	the	use	of	these	specific	tools	does	not	impact	the	architecture,	but
using	continuous	integration	in	general	helps	to	make	sure	that	the	quality	of	the	code	is	at	a
certain	level.

Due	to	Mapbox	philosophy	of	creating	open	source	tools	that	can	be	used	by	anyone,	the
Mapbox	GL	JS	project	does	not	have	many	competitors.	When	there	is	a	tool	that	is	an
alternative	to	one	of	the	Mapbox	tools,	this	is	not	seen	as	a	threat.	This	is	shown	by	the	fact
that	Mapbox	collaborates	with	multiple	companies	that	provide	these	tools	in	order	to
improve	their	own	tools	and/or	create	plugins	for	these	tools	so	people	can	still	use	other
parts	of	Mapbox	with	the	alternative	tools.	In	some	extreme	cases	they	even	drop	their	own
project	and	hire	the	developer	of	the	alternative	tool,	like	they	did	with	Leaflet	[9,	10].	Google
is	the	only	company	that	was	found	that	has	tools	alternative	to	the	Mapbox	tools,	but	does
not	support	anything	of	Mapbox,	since	Google	Maps	is	not	modular	and	Google	wants
people	to	only	use	their	product.	This	is	why	we	consider	Google	Maps	as	the	only	real
competitor	of	Mapbox	GL	JS.

Mapbox	GL	JS	is	making	use	of	a	package	manager	(Yarn	right	now,	npm	in	the	past)	to
track	dependencies	and	allow	developers	to	easily	install	and	test	the	code.	Yarn	and	some
other	development	dependencies	(which	are	small	and	not	really	impactful	to	the
architecture	and	therefore	left	out	of	this	section)	depend	on	NodeJS	and	Mapbox	GL	JS
also	uses	some	features	of	NodeJS	during	the	development.	This	is	why	Mapbox	GL	JS
also	has	a	strong	dependency	on	NodeJS.

Stakeholders	of	Mapbox	and	Mapbox	GL	JS

This	section	describes	the	relevant	stakeholders	of	Mapbox	GL	JS.	According	to	Rozanski
and	Woods	[1]	there	are	10	different	types	of	stakeholders.	The	most	important	types
indentified	for	Mapbox	GL	JS	are	the	developers	and	users.	However,	since	Mapbox	GL	JS
is	part	of	the	larger	organisation	Mapbox	the	stakeholders	of	Mapbox	will	be	briefly
mentioned,	but	the	main	focus	will	be	on	the	Mapbox	GL	JS	project.	An	overview	of	all	the
stakeholders	can	be	seen	in	figure	4.	Most	stakeholders	are	within	the	organisation:	e.g.
Mapbox	employs	a	team	for	the	support	of	users.	The	teams	as	mentioned	in	figure	4	can	be
found	on	the	Mapbox	team	page.	Other	relevant	stakeholders	of	Mapbox	which	are
important	for	Mapbox	GL	JS	are	the	investors,	grouped	under	the	acquirers	type	together
with	the	CEO	of	Mapbox.

Mapbox	GL	JS

186

https://www.mapbox.com/mapbox-gl-js/api/
https://www.mapbox.com/about/team/

Figure	4.	Stakeholders	of	Mapbox

The	rest	of	the	section	focusses	on	Mapbox	GL	JS.	The	users	of	Mapbox	GL	JS	are
JavaScript	developers	that	want	to	use	the	Mapbox	plugin	on	their	website.	The	gallery
shows	some	usage	examples.	Their	showcase	includes	some	Mapbox	customers	and	which
industries	Mapbox	is	powering.

Within	the	Mapbox	GL	JS	project	there	is	a	hierarchy	between	the	developers.	Firstly,	there
is	the	open-source	community	that	can	create	issues,	making	Mapbox	aware	of	problems,
and	can	propose	pull	request	to	fix	issues.	The	open-source	community	has	made
significant	contributions	to	the	project.	Secondly,	there	are	the	developers	that	pick	up	issues
or	work	on	existing	projects	and	create	pull	requests	when	they	finished	their	task.	Lastly,
there	are	the	integrators:	the	developers	that	review	and	merge	pull	requests.	These
integrators	are	responsible	that	the	code	works	and	that	the	changes	in	the	pull	request	are
in	compliance	with	the	project	standards.	The	integrators	are	the	assessors	of	the	team.

A	summary	of	the	identified	stakeholders	for	Mapbox	GL	JS	in	addition	to	the	stakeholders
of	Mapbox	can	be	found	in	table	1.

Type Stakeholders

Developers
Github	open-source	community,	@jfirebaugh,	@lucaswoj,
@mourner,	@anandthakker,	@mollymerp,	@tmcw,
@ChrisLoer

Assessors/Integrators @jfirebaugh,	@lucaswoj,	@mourner,	@anandthakker,
@mollymerp

Users
Thousands	of	users	world-wide	(showcase)	e.g.	IBM,	Twitter,
MasterCard,	The	World	Bank,	Runkeeper,	The	Guardian,
Airbnb

Mapbox	GL	JS

187

https://www.mapbox.com/gallery/
https://www.mapbox.com/showcase/
https://github.com/jfirebaugh
https://github.com/lucaswoj/
https://github.com/mourner
https://github.com/anandthakker
https://github.com/mollymerp
https://github.com/tmcw
https://github.com/ChrisLoer
https://github.com/jfirebaugh
https://github.com/lucaswoj/
https://github.com/mourner
https://github.com/anandthakker
https://github.com/mollymerp
https://www.mapbox.com/gallery/

Table	1.	The	main	stakeholders	of	Mapbox	GL	JS

The	Architecture	of	Mapbox	GL	JS

Development	View

An	important	part	of	a	software	system	is	the	software	development	environment	as	this	has
influence	on	the	design,	build	and	testing.	Especially,	for	complex	systems	it	is	important	that
this	has	been	set	up	correctly	to	maintain	and	guarantee	productivity	and	quality.	The
development	view	studies	code	structure	and	dependencies,	test	and	build	and	deployment
management,	design	constraints,	and	code	conventions.	This	section	will	take	a	look	at
these	aspects	for	Mapbox	GL	JS.

Module	structure	model	and	organisation

In	this	section	the	different	modules	and	their	dependencies	of	the	mapbox-gl-js	repository
will	be	discussed.

Madge,	a	developer	tool	for	generating	a	visual	graph	of	your	module	dependencies,	was
used	to	help	determine	the	dependencies	between	the	different	modules.	Since	Mapbox	GL
JS	is	build	on	NodeJS,	technically	every	file	is	a	module,	but	the	resulting	graph	was	too	big
be	displayed	on	one	screen.	Modules	in	different	layers	with	similar	abstraction	layers	were
grouped	together	to	generate	a	more	comprehensible	graph.	The	layers	are	largely	based
on	the	folders	in	which	the	source	files	are	grouped.

User	Interface	This	layer	is	on	top	and	contains	all	classes	that	interact	with	the	user	of
the	map,	e.g.	the	code	to	zoom	in	or	rotate	the	map.
Style	The	style	layer	contains	all	classes	that	represent	and	process	the	Mapbox
stylesheets.
Render	The	render	layer	contains	all	classes	that	are	responsible	for	rendering	the	geo-
data	on	the	screen	using	WebGL.
Mapdata	The	mapdata	layer	contains	all	classes	for	representing	the	data	that	needs	to
be	rendered.
Data	types	The	datatypes	layer	contains	classes	that	are	specialised	datatypes	that	are
used	in	the	other	parts	of	the	system.
Style-spec	The	style-spec	layer	was	originally	a	separate	repository	but	was	merged
into	mapbox-gl-js.	It	defines	the	specifications	that	the	Mapbox	style	created	by	the	user
has	to	satisfy	to	be	considered	valid.
Utility	The	Utility	layer	contains	all	classes	that	provide	general	utility	to	the	other	parts
of	the	system.

Mapbox	GL	JS

188

https://github.com/pahen/madge

An	overview	of	the	layers	and	its	dependencies	can	be	found	in	figure	5.

Figure	5.	The	module	structure	of	Mapbox	GL	JS

Standardisation	of	Design

Because	multiple	software	developers	are	influencing	the	Mapbox	GL	JS	system	it	is
important	to	standardise	the	key	aspects	of	the	design	of	the	software	to	make	it	as
maintainable,	reliable	and	technical	cohesive	as	possible.	In	the	long	run	this	decreases	the
technical	debt	and	therefore	the	development	time	of	future	features	and	bug	fixes	in	the
system.	Design	standardisation	can	be	achieved	by	using	design	patterns	in	the	software
and	by	standardising	the	process	and	communication	around	the	software	development.

Code	Contribution	Conventions

Not	all	Mapbox	design	standards	are	directly	described.	There	are	some	design
standardisation	rules	concerning	the	software	mentioned	in	the	contributions	guide	[6].
These	design	standards	provided	in	the	contributions	guide	mostly	define	functional

Mapbox	GL	JS

189

standards	which	influence	the	functionality	of	the	system	for	its	users	and	these	rules	can	be
found	in	table	2.	Furthermore	there	are	conventions	documenting	the	contributed	code	[7]
and	these	rules	are	also	displayed	in	table	2.

Specified	in rule

CONTRIBUTION.md
	error		events	are	used	to	report	user	errors	instead	of	the
standard		Error		class.	However,	the		Error		class	is	used	to
indicate	non-user	errors.

CONTRIBUTION.md
	assert		statements	are	used	to	check	for	invariants	that	are
not	likely	to	be	caused	by	a	user	error.	These		assert	
statements	are	automatically	stripped	out	of	production	builds.

CONTRIBUTION.md

A	certain	set	of	ES6	features	are	used	so	the	system	is
functional	on	all	the	predefined	platforms/browsers.	The	most
notable	used	features	which	are	important	to	the	design
standard	are	usage	of	classes	and	usage	of	computed	and
shorthand	object	properties	(A	detailed	list	of	these	features	is
described	in	the	contributions	guide).

CONTRIBUTION.md

Another	set	of	ES6	features	are	not	to	be	used,	in	order	to
maintain	support	for	the	predefined	platforms/browser	which
also	consists	of	older	browsers.	This	may	change	in	the	future.
Some	notable	features	that	may	not	be	used	are	default
parameters,	REST	parameters	and	iterators	(A	detailed	list	of
these	features	is	described	in	the	contributions	guide).

CONTRIBUTION.md The	Mapbox	GL	JS	developer	should	use	rebase	merging	as
opposed	to	basic	merging	to	merge	branches

CONTRIBUTION.md Use	the	Github	label	labeling	system	as	specified	in
CONTRIBUTION.md

docs/README.md
PRs	only	only	containing	documentation	improvement	should
be	made	towards	the	special	mb-pages	branch	instead	of
master

docs/README.md The	documentation	should	follow	the	JSDoc	rules	[11]

Table	2.	Overview	of	the	rules	regarding	code	contribution	conventions

Architectural-	and	Design	Patterns

Due	to	the	dynamic	typed	nature	of	JavaScript	and	the	absence	of	a	standard	way	to
implement	interfaces	and	abstract	classes	a	lot	of	design	patterns	cannot	be	used.	The	most
central	architectural	pattern	used	in	the	system	is	the	model-view-controller	pattern	which
divides	the	application	into	three	interconnected	parts.	The	system	is	divided	in	the	following
parts:

1.	 The		Map		instance	which	contains	information	about	the	camera	position	and	the	data

Mapbox	GL	JS

190

https://github.com/mapbox/mapbox-gl-js/blob/master/CONTRIBUTING.md
https://github.com/mapbox/mapbox-gl-js/blob/master/CONTRIBUTING.md
https://github.com/mapbox/mapbox-gl-js/blob/master/CONTRIBUTING.md
https://github.com/mapbox/mapbox-gl-js/blob/master/CONTRIBUTING.md
https://github.com/mapbox/mapbox-gl-js/blob/master/CONTRIBUTING.md
https://github.com/mapbox/mapbox-gl-js/blob/master/CONTRIBUTING.md
https://github.com/mapbox/mapbox-gl-js/blob/master/CONTRIBUTING.md
https://github.com/mapbox/mapbox-gl-js/blob/master/docs/README.md
https://github.com/mapbox/mapbox-gl-js/blob/master/docs/README.md

that	has	been	loaded	into	the	map.	(Model)
2.	 The	UI	handlers	which	update	the	map	based	on	its	functionality	and	the	actions	of	the

user.	(Controller)
3.	 The	active	html	canvas	and	css	code	active	in	the	browser	of	the	user.	(View)

The	observer	design	pattern	is	being	used	in	the		Dispatcher		class,	an	instance	of	this	class
can	broadcast	to	all	subscribed		WorkerSource		instances	in	its	pool.	There	also	has	been
some	discussion	in	the	Mapbox	repo	about	using	the	factory	design	pattern	to	create	new
objects	which	makes	it	easier	for	beginners,	less	prone	to	errors,	and	less	verbose.	To
decrease	the	amount	of	duplicated	code	a	lot	of	standard	functionality	is	being	reused	and
has	been	implemented	in	several	utility	classes	which	can	be	found	in	the	util	folder	but	also
in	the	symbols	folder.

Most	of	the	SOLID	principles	cannot	be	used	due	to	the	absence	of	interfaces	and	abstract
classes.	The	one	principle	that	can	be	used	is	the	single	responsibility	principle.	The	single
responsibility	principle	is	being	used	in	the		Map		class	which	extends	the		Camera		class
which	extends	the		Transform		class.	These	classes	inherit	from	each	other	to	divide	the
functionality	and	the	responsibilities	between	the	classes.	The		Map		class	is	responsible	for
the	functionality	which	makes	it	possible	to	programmatically	change	the	map	and	firing
event	when	users	interact	with	it.	The		Camera		class	is	responsible	for	managing	the
animations	and	movement	which	are	called	by	the	user	and	the	system.	The		Transform	
class	is	responsible	for	managing	the	position	and	the	other	camera	options	such	as	the
pitch,	the	zoom	and	the	bearing	of	the	map.

Standardisation	of	Testing

The	Mapbox	GL	JS	repository	contains	several	different	and	important	test	suites	to	ensure
consistency	and	quality.	This	section	will	discuss	the	different	tests,	data	and	tools	used	by
the	team.	The	tests	can	be	found	in	the	folder	tests	which	contains	subfolders	for	different
groups	and	types	of	tests.	Furthermore	there	are	several	conventions	tests	must	cohere
with,	which	can	be	found	in	the	test	readme.

Test	Suites

There	are	two	different	test	suites	associated	with	the	project	which	are	both	run	with	yarn.
The	first	one	is		yarn	test		which	runs	the	quick	unit	tests,	the	second	is		yarn	run	test-
suite		which	runs	the	integration	tests.	These	two	test	suites	consist	of	running	several	other
more	specific	test	suites.	Tables	3	and	4	illustrate	the	different	test	suites	in	the	mapbox-gl-js
repository,	their	purpose	and	their	dependencies	on	other	test	suites.

Mapbox	GL	JS

191

https://github.com/mapbox/mapbox-gl-js/issues/2506
https://github.com/mapbox/mapbox-gl-js/tree/master/test

Test
Suite Purpose Dependencies

test Quick	unit	tests	as	well	as	syntax	checking	using	lint	and
type	checking	using	Flow.

test-unit,	test-
plugin,	test-
flow

test-
suite

Integration	tests	for	testing	and	validating	the	output	of
combined	functionality:	e.g.	validate	that	a	specified	style
generates	a	correct	static	image	map.

test-render,
test-query

Table	3.	Mapbox	GL	JS	test	suites

All	the	test	suite	scripts	are	defined	in	the	scripts	section	of	the		package.json		and	can	be
run	with	yarn.

Test
Suite Purpose Tested	Source

test-
plugin

Runs	the	test	in	the	test/plugins	folder
using	the	Tap	framework.

The	test	verifies	that	the
	docs/_data/plugins.json		is
valid	JSON.

test-
unit

Runs	all	the	tests	in	the	test/unit	folder
using	the	Tap	framework.	The	tests	are
unit	tests	which	test	functionality	of	the
tested	classes.

Individual	classes	in	the
src/data/,	src/geo/,	src/source/,
src/style/,	src/style-spec/,
src/symbol/,	src/ui/	and	src/util/
folders.

test-
render

Runs	the		test/render.test.js		which
runs		test/integration/lib/render.js	.
Renders	PNG's	from	the	input	and
compares	these	to	an	expected	PNG.

Different	combinations	of	source
files	for	combined	behaviour.

test-
query

Runs	the		test/query.test.js		which	runs
	test/integration/lib/query.js	.
Generates	JSON	based	on	the	input	and
compares	these	to	an	expected	JSON.

Different	combinations	of	source
files	for	combined	behaviour.

test-
flow

Runs	the	Flow	to	check	for	type
mismatches.

All	the	files	which	are	marked
as	needed	to	be	type	checked.

test-
cov

Uses	the	nyc	framework(#test-nyc)	to
create	a	test	coverage	report	of	the	test-
unit,	test-render	and	test-query	test
suites.

See	the	individual	test	suites.

Table	4.	Mapbox	GL	JS	test	scripts

Test	Data

Mapbox	GL	JS

192

The	test/integration/	folder	contains	all	the	data	and	information	for	the	render	and	query
integration	tests.	In	integration/lib/	the	files		render.js		and		query.js		can	be	found.	These
classes	take	all	the	subfolders	in	the	integration/render-test/	and	integration/query-test/
folders	respectively	and	use	these	to	create	the	tests	and	input	data	for	testing,	and	obtain
the	expected	result	for	comparison.	Each	subfolder	is	a	specific	group	of	tests	which	relate
to	each	other	or	a	function.	Each	of	these	groups	again	has	subfolders	for	the	specific	test
input	data	and	expected	results.

The	other	folders	in	the	test/integration/	folder	form	the	data	input	for	some	of	tests	as	well
as	return	data	for	created	mocks.

Testing	Tools	and	Infrastructure

Mapbox	GL	JS	makes	use	of	several	testing	tools	for	performing	their	tests.	These	include
libraries	for	checking	the	code,	providing	functionality	for	mocking,	testing	framework	and
external	infrastructure	as	part	of	continuous	integration.

Testing	Tools

The	team	uses	several	different	testing	tools	to	ensure	code	quality	and	correct	functionality.
In	table	5	below	the	different	testing	tools	and	their	purpose	are	further	described.	A
distinction	between	two	categories	can	be	made	for	the	used	testing	tools:	testing	libraries
and	code	quality	libraries.	The	libraries	Tap,	nyc,	and	Sinon.js	are	included	and	used	for
testing	purposes	and	expanding	the	functionality	of	testing.	Additionally,	the	static	code
analysis	tools	Flow	and	node-lint	are	included	for	checking	and	enforcing	code	quality.

Mapbox	GL	JS

193

Testing
Tool Testing	Purpose Tool	Information

Tap
Tap	is	the	Test-Anything-Protocol	library
for	Node.js	and	provides	a	framework	for
writing	and	running	tests.

www.node-tap.org

Sinon.js

Sinon.js	is	a	library	used	to	augment	the
standard	testing	object	with	the	use	of
spies,	stubs	and	mocks.	At	the	end	of
each	tests	the	spies,	stubs	and	mocks	on
global	objects	are	restored	in	the	way	the
testing	framework	is	setup	[5].

www.sinonjs.org

Flow
Flow	is	a	static	type	checker	for
JavaScript	which	uses	type	interference
and	type	annotations.

www.flowtype.org

node-
lint

Node-lint	is	a	Node.js	package	which
makes	it	possible	to	run	JSLint	from	the
command-line	and	is	used	for	syntax
validation.

www.github.com/jpolo/node-
lint

nyc
nyc	is	Istanbul's	command-line	interface
and	is	used	for	generating	test	coverage
reports.

www.github.com/istanbuljs/nyc

Table	5.	The	testing	tools	used	by	the	Mapbox	GL	JS	team

Continuous	Integration

CircleCI	is	the	platform	used	for	continuous	integration.	Each	pull	request	triggers	a	minified
and	development	build,	and	the		test-flow		and		test-cov		test	suites	are	run.	These	tests
also	generate	a	test	coverage	report.	As	part	of	the	checks	of	a	pull	request,	passing	all
tests	on	CircleCI	is	a	requirement	for	the	pull	request	to	be	merged.	The	coverage	report	is
send	to	Coveralls,	a	platform	used	for	keeping	track	of	test	coverage	statistics	relating	to	the
repository,	files,	lines	of	code,	and	coverage	statistics	over	time.	Each	pull	request	thus
results	in	a	code	coverage	report,	however,	this	is	not	required	for	a	pull	request	to	be
approved.	Because	the	developers	are	actively	following	their	testing	standards	we	can
observe	in	Coveralls	that	the	already	high	testing	coverage	has	been	slowly	increasing	from
85%	to	89%	in	2015	and	2016.

Build	Approach

There	are	two	build	approaches	provided	for	Mapbox	GL	JS:	running	the	local	build	scripts
with	yarn	or	npm,	and	automated	builds	based	on	tagged	releases.

Build	Scripts

Mapbox	GL	JS

194

http://www.node-tap.org/
http://sinonjs.org/
https://flowtype.org/
http://www.jslint.com/
https://github.com/jpolo/node-lint
https://istanbul.js.org/
https://github.com/istanbuljs/nyc
https://circleci.com/gh/mapbox/mapbox-gl-js
https://coveralls.io/github/mapbox/mapbox-gl-js
https://coveralls.io/github/mapbox/mapbox-gl-js

There	are	several	different	build	scripts	defined	in	the	mapbox-gl-js	repository.	The	build-dev
and	build-min	build	the	application	from	the	source	files.	Table	6	illustrates	the	different	build
scripts,	their	purpose	and	their	output.

Build
Script Purpose Output

build-dev Builds	a	development	version	of	the	repository
from	src/index.js dist/mapbox-gl-dev.js

build-min Builds	a	minified	version	of	the	repository	from
src/index.js dist/mapbox-gl.js

build-
benchmarks

Builds	the	benchmarks	in	the	repository
bench/benchmarks.js bench/benchmarks.js

build-docs Generates	the	documentation	of	the
repository.

Outputs	to	the	docs/
directory.

build Runs	the	build-docs	build	script.

Table	6.	Mapbox	GL	JS	build	scripts

The	builds	for	the	code	use	browserify	to	bundle	all	the	single	Node.js	files	working	with
require	into	one	single	file	which	can	be	used	by	webbrowsers.	Additionally,	the	build-dev
and	build-min	scripts	run	a	test	script	with	Tap	to	validate	that	the	files	have	actually	been
build.

Automated	Build	and	Deployment

The	CircleCI	configuration	file	is	setup	to	trigger	a	deployment	script,		ci-scripts/deploy.sh	,
when	there	is	a	tagged	release	in	the	GitHub	repository.	The	script	is	triggered	when	there	is
a	passing	build	on	CircleCI,	which	in	turn	requires	the	build	and	all	tests	to	pass.

The	deployment	script	in	turn	runs	the	build-dev	and	build-min	scripts	which	create
respectively	the	development	and	minified	build	of	the	repository.	In	turn	these	are	uploaded
to	Amazon	Web	Services	in	a	folder	for	that	release	and	are	available	on	the	Mapbox
website.	In	total	four	different	files	are	uploaded:	the	minified	mapbox-gl.js,	mapbox-
gl.js.map,	the	development	build	mapbox-gl-dev.js	and	mapbox-gl.css.

Information	View

Rozanski	and	Woods	define	the	information	view	as	a	description	of	the	way	that	an
architecture	stores,	manipulates,	manages	and	distributes	the	data	of	the	system.	This
section	will	target	how	data	is	stored,	accessed	and	eventually	how	the	data	flows	through

Mapbox	GL	JS

195

http://browserify.org/

the	Mapbox	GL	JS	plugin.	The	focus	will	mainly	be	on	the	flow	of	the	geo-data	and
stylesheet	in	the	system	and	until	they	are	rendered	as	the	entire	system	revolves	around
this	data.

Mapbox	GL	JS	is	executed	on	the	clients	website.	The	JavaScript	developer	can	add	data
like	vector	tiles	to	the	map	or	change	the	style	of	the	map	by	changing	the	stylesheet.	If	the
JavaScript	developer	does	not	want	to	use	a	custom	style	they	can	use	a	default	one.	This
data	and	other	data	is	defined	and	stored	on	the	client's	website.	The	data	that	is	eventually
used	depends	on	two	API	calls	from	the	Mapbox	servers.	The	APIs	provide	the	data	of	the
map	that	is	to	be	rendered	and	it	contains	stylesheet	templates	that	the	JavaScript
developer	can	use	if	he	defined	the	use	a	default	style.	Figure	6	shows	an	overview	of	the
main	flow	of	data.	The	flow	starts	when	the	JavaScript	developer	makes	the	call	to	Mapbox
GL	JS	and	ends	when	the	map	has	been	created	and	is	returned.	It	shows	where	the	data	is
stored,	retrieved,	manipulated	and	managed.

Figure	6.	Overview	of	the	flow	of	data	in	the	Mapbox	GL	JS	code.	Yellow	cylinders	indicate
local	data	storage,	blue	boxes	indicate	classes	that	are	used	and	green	clouds	indicate
external	data	which	is	fetched	using	an	API	call.

The	flow	makes	clear	that	the	data	is	stored	at	two	local	places	and	on	the	Mapbox	server,
and	is	manipulated	using	a	simple	flow.	The	progam	configuration	handles	that	the	tiles	and
style	layers	are	applied	to	the	map.	This	way	the	data	that	the	JavaScript	developer	defined
is	added	to	the	map	using	a	custom	defined	style	if	the	JavaScript	developer	defined	it.

The	initial	call	is	made	from	the	page	which	instantiates	a	Mapbox	object	after	which	two
flows	are	created	which	are	combined	at	the	rendering	steps	and	are	as	follows.	The	first
flow	is	responsible	for	fetching	the	geo-data.	This	is	done	by	making	a	call	to	the	Mapbox
Map	API.	The	API	call	is	different	based	on	the	defined	style.	Once	the	tiles	are	loaded	the
tiles	and	the	style	which	the	developer	defined	are	added	to	the	vector	tiles.	The	vector	tile
data	is	modified	in	different	classes	as	can	be	seen	in	figure	6.	The	classes	are	part	of	the
Mapbox	GL	JS	plugin	and	should	not	be	modified	by	the	JavaScript	developer.	The	results

Mapbox	GL	JS

196

that	are	passed	to	the	layer	responsible	for	rendering	consists	of	vector	tiles	which	are
grouped	by	their	program	configuration.	The	second	flow	fetches	a	stylesheet	from	the
Mapbox	Style	API	and	communicates	it	with	the	first	flow	to	make	the	proper	API	calls	for
the	map	data.	If	the	user	indicated	that	he	wants	to	use	a	stylesheet	the	flow	fetches	the
style	and	passes	it	to	the	renderer.	Once	the	flows	are	combined	the	rendering	layer	renders
the	vector	tiles	group	by	group	and	applies	the	fetched	and	defined	styles	to	the	map.
Additionally,	the	renderer	uses	shaders	which	are	locally	stored	but	the	shaders	should	not
be	modified	by	the	JavaScript	developer.	The	map	is	now	rendered	and	is	returned	to	the
client	web	page	which	displays	the	map.

Usability	Perspective

Applying	the	usability	perspective	on	the	information	view	ensures	that	the	system	allows	the
users	that	interact	with	it	do	so	effectively	[1].	The	usability	perspective	focuses	on	the	end
users	of	the	system	and	thus	addresses	the	concerns	of	JavaScript	developers	that	have	to
work	with	the	Mapbox	GL	JS	plugin.	The	usability	perspective	can	be	applied	on	the
information	view	by	looking	at	the	quality	of	the	information	e.g.	the	provision	of	accurate,
relevant,	consistent	and	timely	data	[1].

The	developers	are	only	concerned	with	the	stylesheet	for	their	website.	The	website	can
use	a	default	style	sheet	which	is	given	by	Mapbox	or	add	their	own	data	sources	which	can
be	called	using		style:	'mapbox://styles/mapbox/light-v9'	.	Adding	own	data	or	changing
the	style	can	easily	be	done	by	following	the	API	or	examples	provided	on	the	Mapbox
website.	Once	instantiated	the	map	will	be	fetched	automatically	for	the	website	using	an
API	call.

The	developers	that	make	use	of	Mapbox	GL	JS	are	also	concerned	with	the	concerns	of
their	website	users.	The	website	users	are	the	people	that	can	interact	with	the	rendered
map.	The	website	user	requires	that	the	map	is	rendered	quickly	when	he	interacts	with	the
map.	Additionally,	the	map	should	be	a	correct	representation	of	the	real	world.	The	website
users	are	not	concerned	with	the	style	since	the	website	provides	this.	They	are,	however,
concerned	with	the	geo-data	which	is	retrieved	from	OSM.	The	data	from	OSM	can	be
modified	by	anyone	and	therefore	erroneous	data	can	slip	in.	This	is	a	similar	feature	that
Wikipedia	has	and	has	minimal	wrong	data	since	people	correct	each	other	and	prevent
people	from	changing	data	to	something	that	is	incorrect.

Figure	6	has	shown	that	the	data	is	going	through	a	channel	where	it	is	transformed	or	used
and	passed	to	the	next	class.	This	makes	it	easy	for	a	Mapbox	GL	JS	developer	to	see	what
happens	where	and	what	he	has	to	change	if	he	wants	to	add	new	functionality	or	debug	the
program.	However,	the	JavaScript	developer	is	not	concerned	with	which	classes	are	called
since	he	only	calls	the	constructor	of	the	map.

Mapbox	GL	JS

197

The	way	the	information	is	sent	through	the	code	makes	it	usable	for	the	JavaScript
developers	and	the	website	users.	The	only	downside	for	the	website	user	is	that	the	data
can	be	incorrect.	The	performance	is	determined	by	the	website	which	can	add	as	much
data	as	required.	When	the	JavaScript	developer	adds	too	much	custom	data	the	rendering
can	become	slow	which	lowers	the	usability.

Technical	Debt
In	this	section	the	technical	debt	of	the	mapbox-gl-js	repository	is	discussed.	The	technical
debt	was	determined	using	both	software	tools	and	inspecting	files	manually.	Additionally,
the	documentation	and	testing	debt	will	be	covered.	Lastly,	the	pull	requests	and	issues	on
Github	will	be	analysed	to	see	if	the	developers	are	recognising,	discussing	and	managing
the	technical	debt	in	the	repository.

SonarQube	Results

The	SonarQube	tool	estimated	the	technical	debt	to	be	7	days.	The	technical	debt	is	defined
as	the	amount	of	development	hours	it	will	take	to	fix	all	the	found	issues	related	to	security,
reliability	and	maintenance.	However,	the	measure	of	time	is	not	the	best	way	to	define	the
technical	debt	since	7	days	is	relatively	low	if	the	project	contains	500k	lines	of	code.	An
other	metric	called	technical	debt	ratio	is	defined	as	the	ratio	between	the	actual	technical
debt	and	the	effort	it	would	take	to	rewrite	the	whole	source	code	from	scratch	[8].	The
technical	debt	ratio	for	Mapbox	GL	JS	is	0.8%	which	indicates	that	the	technical	debt	is
relatively	low	and	managed	properly.

Documentation	Debt

The	API	documentation	consists	of	all	the	documentation,	specifications	and	examples
necessary	for	developers	to	start	using	Mapbox	GL	JS	and	can	be	found	on	the	website.	In
contrast	to	the	API	documentation,	the	documentation	for	the	rest	of	the	source	code	seems
to	be	rather	lacking.	Although	most	of	the	classes	have	documentation	for	the	class
definition	(although	for	some	this	is	also	missing),	a	lot	of	methods	have	little	to	no
documentation.	For	new	developers	trying	to	contribute	to	the	project	itself	this	is	an	issue	as
it	takes	a	lot	of	time	to	figure	out	how	the	code	works,	what	it	does,	and	what	it	is	supposed
to	do.	However,	the	developers	of	Mapbox	GL	JS	are	planning	on	writing	about	their
architecture.

Testing	Debt

Mapbox	GL	JS

198

https://www.mapbox.com/mapbox-gl-js/api/
https://github.com/mapbox/mapbox-gl-js/blob/master/ARCHITECTURE.md

Using	the	already	active	code	coverage	tools	in	the	repository	the	code	coverage	for	the
Mapbox	GL	JS	code	was	evaluated.	The	testing	efforts	are	prioritised	and	focused	on	testing
the	most	important	and	core	classes.	Examples	of	these	important	classes	are	the		Camera	
and		Map		class	which	are	vital	to	the	functionality	of	the	system	and	which	are	frequently
changed.	Some	less	important	parts	of	the	code	aren't	well	tested	which	increases	the
testing	debt	of	the	system.	Some	code	is	less	important	because	hardly	any	issues	and	bugs
are	detected	and	fixed	in	it	and	therefore	the	code	doesn't	change	frequently.	However,	the
testing	debt	on	this	less	important	code	is	mitigated	because	of	the	unimportance	of	those
classes	and	methods.	The	developers	and	testers	of	Mapbox	GL	JS	prioritise	their	testing
efforts	on	the	most	important	classes	and	methods	of	the	system	and	regression	testing
when	fixing	bugs.	The	testing	debt	in	the	Mapbox	GL	JS	project	can	be	decreased	by
creating	more	tests	for	uncovered	parts	of	the	code.	In	the	Mapbox	GL	JS	project	there	is
already	an	existing	restriction	that	when	new	functionality	is	added	the	developer	should	also
create	accompanying	tests.

Evolution	of	Technical	Debt

Using	the	same	tools	used	in	the	SonarQube	Tool	Analysis	section,	technical	debt	can	also
be	measured	by	analysing	the	separate	releases	of	Mapbox	GL	JS.

There	have	been	33	major	releases	of	Mapbox	GL	JS	before	March	2017.	The	technical
debt	grew	gradually	over	time,	but	this	is	expected	since	the	repository	grew	as	well.	The
maintainability	rating	was	always	rated	with	an	A,	therefore	it	can	be	concluded	that	the
technical	debt	grew	proportionally	with	the	code.

Discussion	about	Technical	Debt

Technical	debt	is	not	necessarily	a	bad	thing	as	long	as	the	developers	are	aware	and	it	is
managed.	After	looking	at	the	discussions	in	some	of	the	Github	issues/pull	requests	and
searching	the	source	code	for	certain	keywords	that	would	indicate	unfinished	or	bad	code,	it
can	be	concluded	that	the	developers	of	Mapbox	GL	JS	are	discussing	technical	debt	and
leave	little	to	none	unfinished/bad	code	behind.	However,	not	all	the	technical	debt	that	was
found	is	discussed	and	the	debt	that	is	discussed	was	discovered	using	SonarQube.	Of
course,	technical	debt	is	not	an	exact	measure	and	there	might	be	more	discussion	on
technical	debt	outside	GitHub,	which	cannot	be	seen.	However,	from	the	things	which	could
be	seen,	it	can	be	concluded	that	the	technical	debt	is	managed	well	and	they	especially
focus	on	keeping	the	code/variable	names	consistent	and	clear.

Conclusion	and	Recommendations

Mapbox	GL	JS

199

In	this	chapter	the	mapbox-gl-js	repository	and	its	architecture	were	analysed.	Firstly,	the
philosophy	of	Mapbox,	the	purpose	of	Mapbox	GL	JS,	its	context	view	and	the	stakeholders
are	discussed.	After	that	architecture	of	mapbox-gl-js	is	discussed	with	analyses	of	the
modules,	testing	methods,	build	approach	and	the	information	flow	through	the	system.
Lastly,	the	amount	of	technical	depth	was	analysed.	Based	on	all	the	analyses	we	have	the
following	recommendations	for	the	Mapbox	GL	JS	developers	concerning	their	project:

Better	documentation	of	the	architecture	and	code	should	be	added	to	the	repository	to
ensure	that	new	developers	easily	understand	the	architecture	and	how	they	could	best
contribute.	The	developers	recently	started	on	an	architecture	document	which	they
should	keep	refining.
Continue	with	prioritising	the	testing	efforts	to	manage	the	testing	debt.	Any	time	that	is
left	could	be	used	to	test	the	less	important	untested	or	badly	tested	code.	If	the	testing
standards	are	being	following	the	coverage	will	improve	over	time	similar	to	the	past	few
years.

References
1.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with

Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.
2.	 Ice	Age	star	map	discovered:	http://news.bbc.co.uk/2/hi/science/nature/871930.stm

(Visited:	Februari	2017)
3.	 Mapbox	GL	JS	fundamentals:	https://www.mapbox.com/help/mapbox-gl-js-

fundamentals/	(Visited:	March	2017)
4.	 Glossary:	tileset:	https://www.mapbox.com/help/define-tileset/	(Visited:	March	2017)
5.	 Mapbox	awesome-vector-tiles:	https://github.com/mapbox/awesome-vector-tiles

(Visited:	March	2017)
6.	 mapbox-gl-js	contributing:	https://github.com/mapbox/mapbox-gl-

js/blob/master/CONTRIBUTING.md	(Visited:	March	2017)
7.	 mapbox-gl-js	readme:	https://github.com/mapbox/mapbox-gl-

js/blob/master/docs/README.md	(Visited:	March	2017)
8.	 SonarQube	Documentation:	https://docs.sonarqube.org/display/SONAR/Documentation

(Visited:	March	2017)
9.	 Leaflet	Creator	Vladimir	Agafonkin	Joins	MapBox

https://www.mapbox.com/blog/vladimir-agafonkin-joins-mapbox/	(Visited:	April	2017)
10.	 Announcing	MapBox.js	1.0	with	Leaflet	https://www.mapbox.com/blog/mapbox-js-with-

leaflet/	(Visited:	April	2017)

Mapbox	GL	JS

200

https://github.com/mapbox/mapbox-gl-js/blob/master/ARCHITECTURE.md
http://news.bbc.co.uk/2/hi/science/nature/871930.stm
https://www.mapbox.com/help/mapbox-gl-js-fundamentals/
https://www.mapbox.com/help/define-tileset/
https://github.com/mapbox/awesome-vector-tiles
https://github.com/mapbox/mapbox-gl-js/blob/master/CONTRIBUTING.md
https://github.com/mapbox/mapbox-gl-js/blob/master/docs/README.md
https://docs.sonarqube.org/display/SONAR/Documentation
https://www.mapbox.com/blog/vladimir-agafonkin-joins-mapbox/
https://www.mapbox.com/blog/mapbox-js-with-leaflet/

Mapbox	GL	JS

201

Matplotlib	-	The	Python	2D	Plotting	Library
By	Andreas	Maruli	C	Pangaribuan,	Helmiriawan,	Rizky	Dharmawan,	and	Sindunuraga
Rikarno	Putra.
Delft	University	of	Technology

The	Matplotlib	logo	taken	from	their	website

Abstract
Matplotlib	is	a	data	plotting	library	that	is	often	considered	as	the	grandfather	of	visualization
libraries	in	Python.	The	project	is	pioneered	by	scientist	John	Hunter	back	in	2003	and	has
since	been	developed	by	the	open	source	community.	This	chapter	aims	to	offer	an	outside
point	of	view	of	the	Matplotlib	software	architecture.	At	first,	an	analysis	of	the	external
entities	of	the	system	is	given.	Next,	a	closer	look	at	the	underlying	architecture	of	Matplotlib
is	presented.	Lastly,	a	deeper	analysis	into	the	system	is	done	to	identify	technical	debts	that
exist	in	Matplotlib	and	some	possible	solutions.

Table	of	Contents
1.	Introduction
2.	Stakeholders
3.	Context	View

3.1.	System	Scope
3.2.	External	Entities

4.	Functional	View
5.	Development	View

5.1.	Codeline	Organization
5.2.	Module	Organization
5.3.	Common	Design	Models

Matplotlib

202

https://github.com/andreasmcp
https://github.com/helmiriawan
https://github.com/rizkydharmawan
https://github.com/sindunuragarp
http://matplotlib.org/1.5.1/examples/api/logo2.html

6.	Evolution	Perspective
7.	Technical	Debt	Analysis
8.	Conclusion
References

1.	Introduction
Matplotlib	provides	a	convenient	tool	for	creating	2D	plots	of	data	using	Python.	It	is	an
open-source	project	that	is	fully	supported	by	the	Python	scientific	computing	community.
Matplotlib	is	now	used	by	a	variety	of	people	for	analysis	and	research	purposes	and	was
even	used	by	NASA	for	data	visualization	of	the	Phoenix	spacecraft	exploration	on	Mars.

Matplotlib	was	initially	developed	by	a	group	of	self-taught	programmers	with	a	scientific
background.	The	founder	of	Matplotlib,	John	Hunter,	started	developing	it	to	visualize
biomedical	data	during	his	post-doctoral	research	in	Neurobiology	[1]	to	visualize
electrocorticography	(ECG)	data.	At	that	time,	the	available	proprietary	data	visualization
tool	was	a	limited	resource,	and	John	Hunter	wanted	to	find	an	alternative	tool	that	was
available	for	all	his	team.	MATLAB	was	the	most	popular	alternative	at	that	time,	but	he
found	that	as	a	software	program,	it	has	limited	capabilities	in	managing	large	biomedical
data	from	various	sources.	Therefore,	he	opted	to	create	a	new	tool	that	is	similar	to
MATLAB	using	Python,	which	as	a	programming	language	has	an	advantage	in	handling
data.

Matplotlib	eventually	evolved	from	a	small	project	by	a	group	of	researchers	into	a	widely
used	open-source	tool.	It	is	now	one	of	the	core	component	for	the	scientific	Python	stack.
Matplotlib	being	a	project	that	was	initially	developed	by	people	without	vast	experience	in
software	engineering	makes	its	architecture	and	evolution	interesting.	The	goal	of	this
chapter	is	to	analyze	the	architecture	of	this	interesting	project	and	present	an	outside
overview	of	the	system.	To	analyze	the	architecture	of	Matplotlib,	we	will	refer	to	the
guidelines	made	by	Nick	Rozanski	and	Eoin	Woods	[2].

2.	Stakeholders
To	start	off	our	analysis,	we	will	look	at	the	stakeholders	involved	with	Matplotlib.	A
stakeholder	is	an	entity	of	a	system	architecture	that	consists	of	an	individual	or	an
organization	that	has	importance	and	interest	to	realize	a	system.	Figure	1	shows	a

Matplotlib

203

http://depsy.org/package/python/matplotlib
http://matplotlib.org/users/screenshots.html#ellipses

summary	of	identified	stakeholders	of	Matplotlib	based	on	the	classification	proposed	by
Nick	Rozanski	and	Eoin	Woods	[2].

Overview

Figure	1.	The	Stakeholders	of	Matplotlib

There	are	no	corporate	sponsors	for	Matplotlib,	but	the	main	funding	is	provided	through
donations	via	the	NumFOCUS	organization,	which	can	be	classified	as	an	Acquirer.	The
Python	Software	Foundation	(PSF)	can	be	categorized	as	an	Assessor	of	Matplotlib
because	they	oversee	the	system's	conformance	to	standards	and	legal	regulation.
Meanwhile,	the	development	of	Matplotlib	is	coordinated	via	GitHub,	which	can	be	classified
as	a	Supplier.

The	Developers	of	Matplotlib	are	divided	into	core	developers	and	community	developers.
John	D.	Hunter	is	the	founder	and	initial	lead	developer	of	Matplotlib,	but	he	passed	away	in
2012.	Now	both	Michael	Droettboom	and	Thomas	A.	Caswell	act	as	lead	developers.	They
are	accompanied	with	15	other	core	developers	in	developing	Matplotlib.	Many	of	the	core
developers	also	act	as	Maintainers,	since	they	review	all	contributions	to	make	sure	it
doesn't	break	the	system.	Matplotlib's	Support	Staff	consists	of	a	few	core	developers	such
as	Thomas	A.	Caswell,	Paul	Hobson,	and	Eric	Firing,	and	also	some	community	developers,
such	as	Nelle	Varoquaux.

The	Users	of	Matplotlib	are	varied	as	it	is	a	generic	data	plotting	tool,	but	based	on	depsy,
quite	a	lot	of	them	are	from	the	research	and	academic	background.	Some	large	projects
also	use	Matplotlib,	such	as	NASA	and	Spyder.	Some	Python	libraries	such	as		scikit-
learn		and		seaborn		are	also	users	since	they	use	parts	of	Matplotlib	inside	their	library.

Matplotlib

204

http://www.numfocus.org/
https://docs.python.org/3/license.html
https://github.com/jdh2358
https://github.com/mdboom
https://github.com/tacaswell
https://github.com/tacaswell
https://github.com/phobson
https://github.com/efiring
https://github.com/NelleV
http://depsy.org/package/python/matplotlib
http://matplotlib.org/users/screenshots.html#ellipses
https://pythonhosted.org/spyder/
https://github.com/scikit-learn/scikit-learn
https://github.com/mwaskom/seaborn

Users	can	read	the	documentation	to	find	out	how	to	use	Matplotlib,	which	is	written	by	the
Communicators,	mainly	John	D.	Hunter,	Jae-Joon	Lee,	Michael	Sarahan,	Tony	Yu,	and
Nelle	Varoquaux.

Apart	from	the	proposed	definition	above,	there	are	also	Event	Organisers	who	organize
annual	events.	An	example	is	the	SciPy	conference,	which	gathers	people	who	develop
open	source	scientific	projects	using	Python.	In	such	events,	the	participants	not	only
showcase	their	latest	projects,	but	also	learn	and	collaborate	with	other	developers.

Power	Interest	Grid

Figure	2.	Power-Interest	Grid

The	power	versus	interest	relation	of	the	stakeholders	are	shown	in	Figure	2	and	are
classified	into	4	categories	:

Low	power	and	low	interest	:	GitHub	is	a	stakeholder	who	does	not	has	any	control
over	Matplotlib,	and	does	not	has	a	significant	role	in	the	development	of	Matplotlib.

Low	power	and	high	interest	:	Users,	competitors,	and	community	developers	of
Matplotlib	are	stakeholders	who	follow	the	latest	development	of	Matplotlib	and	are
active	in	the	discussion	of	Matplotlib,	but	they	do	not	have	significant	power	to	directly
change	the	Matplotlib	system.

High	power	and	low	interest	:	NumFOCUS	and	the	Python	Software	Foundation
(PSF)	are	stakeholders	who	directly	affect	the	development	of	Matplotlib.	NumFOCUS
though	only	provides	funding	without	restricting	the	development	of	Matplotlib,	while	the

Matplotlib

205

http://matplotlib.org/contents.html
https://github.com/jdh2358
https://github.com/leejjoon
https://github.com/msarahan
https://github.com/tonysyu
https://github.com/NelleV
https://conference.scipy.org/

PSF	develops	Python	which	in	turn	directly	affects	Matplotlib	itself.	For	both
stakeholders,	Matplotlib	is	only	one	of	the	few	projects	they	affect	and	are	not	their	main
interest.

High	power	and	high	interest	:	Michael	Droettboom	and	Thomas	A.	Caswell	are	the
lead	developers	of	Matplotlib.	Along	with	other	core	developers,	they	have	significant
interest	and	power	in	developing	Matplotlib.

3.	Context	View
Next	we	will	look	into	the	boundary	that	separates	between	Matplotlib	and	its	environment,
a.k.a	the	system's	runtime	context.	This	describes	what	the	system	does	and	doesn't	do,
and	how	the	system	interacts	with	external	entities	[2].

3.1.	System	Scope

According	to	the	introduction	of	Matplotlib	at	its	website	[3],	Matplotlib	is	defined	as	"a
library	for	making	2D	plots	of	arrays	in	Python".	The	scope	of	the	software	is	clearly
defined	here.	It	is	constrained	to	focus	on	one	task,	which	is	2D	plotting,	and	on	a	specific
platform,	which	is	on	the	Python	programming	language.	From	the	history	of	its
development,	we	can	also	conclude	that	Matplotlib	was	designed	to	be	a	free	plotting	library
that	is	easy	to	use	out	of	the	box	and	is	mainly	targeted	at	the	academic	community.

The	Matplotlib	website	[3]	also	states	the	design	philosophy	which	John	Hunter	held	to	when
developing	Matplotlib.

Matplotlib	is	designed	with	the	philosophy	that	you	should	be	able	to	create	simple	plots
with	just	a	few	commands,	or	just	one!	If	you	want	to	see	a	histogram	of	your	data,	you
shouldn’t	need	to	instantiate	objects,	call	methods,	set	properties,	and	so	on;	it	should
just	work.

This	is	further	elaborated	by	a	list	of	requirements	that	John	Hunter	had	in	mind	when
looking	for	a	visualization	tool.

Matplotlib

206

https://github.com/mdboom
https://github.com/tacaswell
http://matplotlib.org/users/intro.html

When	I	went	searching	for	a	Python	plotting	package,	I	had	several	requirements:

Plots	should	look	great	-	publication	quality.	One	important	requirement	for	me	is
that	the	text	looks	good	(antialiased,	etc.)
Postscript	output	for	inclusion	with	TeX	documents
Embeddable	in	a	graphical	user	interface	for	application	development
Code	should	be	easy	enough	that	I	can	understand	it	and	extend	it
Making	plots	should	be	easy

3.2.	External	Entities

The	connections	between	Matplotlib	and	its	environment	is	summarized	in	Figure	3.

Matplotlib

207

Figure	3.	Context	View	Diagram

The	external	entities	can	be	split	into	three	groups:

A.	Competitors

Matplotlib

208

When	Matplotlib	was	initially	created,	there	was	no	other	reliable	Python	visualization	library
available.	But	now	Matplotlib	faces	quite	a	few	competition	for	visualizing	data	in	Python.
The	competitors	are	mainly	split	into	two	types:

Data	plotting	tools	are	the	same	as	Matplotlib	and	want	to	make	plotting	data	easier	for
people.	Most	of	these	tools	extend	Matplotlib	such	as		seaborn		that	builds	on	top	of	Python
by	adding	more	beautiful	default	plot	designs,	and		ggpy		that	adopts	new	features	from	the
	ggplot2		R	package.

Modern	visualization	tools	on	the	other	hand	try	to	tackle	newer	visualization	problems	out
of	the	scope	of	Matplotlib.	An	example	is		bokeh		and		plot.ly		that	both	focuses	on
generating	interactive	visualization	that	can	be	embedded	on	the	web.

B.	Software	Platform	&	Dependencies

Matplotlib	is	developed	as	a	Python	package	and	is	hosted	on	the	Python	package
repository	(PyPI).	A	small	part	of	the	Matplotlib	code	is	also	written	in	other	languages	such
as	C++	and	objective	C	for	low	level	optimization.

Platforms	:	Matplotlib	is	well	tested	for	compatibility	on	all	three	major	operating	systems
(Windows,	Linux,	and	OSX).	Matplotlib	enables	image	generation	across	platforms	by
supporting	most	UI	rendering	platforms	(such	as	linux's		gtk		and	OSX's		macosx)	and
image	formats	(jpg	,		svg	,	etc).

Dependencies	:	Most	dependencies	are	standard	libraries	such	as		pyparsing		and
	dateutil	,	and	also	image	format	libraries	such	as		libpng	.	Two	libraries	which	Matplotlib
has	strong	dependencies	on	are		numpy		which	is	used	for	numerical	operations	and		six		for
backward	compatibility	with	Python	2.	A	complete	list	can	be	found	on	the	Matplotlib	website
[3].

C.	Development	&	Community

A	platform	that	plays	an	important	role	during	development	is		GitHub	,	which	is	used	for
code	versioning,	issue	tracking	and	project	management.	All	code	gets	tested	and	integrated
via	continuous	integration	tools.	Testing	of	the	code	uses	the		pytest		and		Tox		package,
and	code	coverage	is	tested	using		Codecov	.

The	main	communication	channel	used	in	the	development	of	Matplotlib	is	through	their
GitHub	repository	and	their	mailing	list.	More	open	discussion	is	done	via		Google	Hangouts	
and	the	Matplotlib		Gitter		channel.	The	Matplotlib	developers	also	provide	support	to	users
through		Stackoverflow	.

Matplotlib

209

https://wiki.python.org/moin/NumericAndScientific/Plotting
https://github.com/mwaskom/seaborn
https://github.com/yhat/ggpy
http://ggplot2.org/
https://github.com/bokeh/bokeh
https://github.com/plotly/plotly.py
https://pypi.Python.org/pypi
http://matplotlib.org/users/installing.html
https://github.com/matplotlib/matplotlib
https://sourceforge.net/p/matplotlib/mailman/
https://gitter.im/matplotlib/matplotlib
http://stackoverflow.com/questions/tagged/matplotlib

4.	Functional	View
In	order	for	Matplotlib	to	handle	2D	plotting,	it	is	conceptually	split	into	three	layers,	which
can	be	viewed	as	a	stack	[1].	The	higher	layers	depend	on	the	lower	layers,	while	the	lower
layers	are	independent	of	higher	layers.	The	three	layers	can	be	seen	in	Figure	4.

Figure	4.	Functional	Abstraction	of	Matplotlib

Backend	Layer

Matplotlib	encapsulates	functionalities	that	interact	directly	with	the	environment	it	is	run	on
into	the	backend	layer.	There	are	three	main	components	in	this	layer:

	FigureCanvas		:	This	component	handles	the	concept	of	a	surface	that	is	drawn	into	to
make	the	plots,	a.k.a	"the	canvas".
	Renderer		:	This	component	does	the	drawing	of	the	plots	on	the	surface,	a.k.a	"the
paintbrush".
	Event		:	This	component	handles	user	inputs	such	as	mouse	or	keyboard	events,	a.k.a
"the	viewer".

Through	this	abstraction,	Matplotlib	can	be	extended	to	work	on	different	platforms	including
various	UI	rendering	platforms	and	image	formats.	Additionally,	the	backend	achieves	image
consistency	between	platforms	through	usage	of	a	C++	2D	graphics	library	called	Anti	Grain
Geometry.

Artist	Layer

Matplotlib

210

http://www.antigrain.com/

From	the	previous	analogy,	the	artist	layer	is	the	object	that	knows	how	to	use	the
paintbrush	(Renderer)	to	draw	on	the	canvas	(FigureCanvas).	Every	image	component
inside	a	plot	made	by	Matplotlib	(axes,	legends,	etc)	is	an	instance	of	the		Artist		class	and
communicates	with	the	backend	through	the		draw		function.	In	fact,	most	of	the	heavy-lifting
is	done	in	this	layer	and	it	comprises	most	of	the	code	inside	Matplotlib.

There	are	two	types	of		Artist		objects,		Primitive	Artists		which	draws	basic	objects	such
as		Line2D		and		Circle	,	and		Composite	Artists		which	consists	of	multiple		Artists	.	The
most	important		Artist		object	in	Matplotlib	is		Axes		which	is	responsible	for	composing	the
2D	data	plots	by	combining	multiple	other		Artist		objects.

Scripting	Layer

With	the	artist	layer,	programmers	are	actually	already	able	to	create	2D	plots.	The	scripting
layer	however	encapsulates	the	lower	level	image	component	renditions	with	a	layer	that	is
designed	to	be	easy	to	use	by	the	average	user.	This	is	done	to	comply	with	the	initial
design	goal	of	Matplotlib	which	is	to	create	a	2D	plotting	tool	that	can	be	used	interactively
like	in	Matlab.

The	scripting	layer	is	accessed	through	the		pyplot		module	and	contains	methods	to	create
commonly	used	plotting	graphics	such	as	the	histogram	or	the	scatterplot.	This	layer	also
handles	additional	plot	arguments	such	as	setting	the	color	of	the	plot	or	the	plot	labels,
through	the	use	of	Python's		**kwargs		which	captures	all	keyword	arguments	that	are
passed	together	with	a	method	call.		pyplot		then	forwards	it	to	the	correct		Artist	
component	to	be	configured.

5.	Development	View
We	will	now	take	a	closer	look	at	the	code	structure	and	development	process	of	Matplotlib
to	derive	the	architecture	used	to	implement	the	designed	functionality	of	Matplotlib	as	well
as	the	strategies	employed	to	standardize	its	design	and	development.

5.1.	Codeline	Organization

Code	functionality	inside	the	project	can	be	split	into	four	large	sections	by	their	roles	as	can
be	seen	in	Figure	5.

Matplotlib

211

Figure	5.	Codeline	Organization	of	Matplotlib

The	Functionality	section	contains	code	responsible	for	the	functionalities	of	Matplotlib	and
the	dependencies	required.	The	main	part	of	the	Matplotlib	library	is	contained	in	the		lib	
directory	which	depends	on	both	code	in		extern		(external	libraries	packaged	with
Matplotlib)	and		src		(c++	code	made	by	the	developers)	for	performance	improvement.	The
	lib		directory	is	split	into	three	main	modules:		matplotlib		contains	the	core	module	for
implementing	2D	plotting,		mpl_toolkits		contains	the	toolkits	module	for	extending
functionalities	outside	of	Matplotlib's	scope,	and		mpl_examples		contains	a	symbolic	link	to
the		examples		directory	for	ease	of	access	in	regression	testing.

The	Development	and	Deployment	section	contains	code	used	in	the	development	and
deployment	process	of	Matplotlib.	These	are	mostly	used	for	developing	Matplotlib	and	do
not	directly	affect	the	functionality	of	Matplotlib.	There	are	two	directories:		ci		contains	files
needed	by	the	continuous	integration	platforms	and		release		contains	compatibility	code	for
deployment	of	Matplotlib	across	platforms.	The	main	part	of	this	category	is	actually	in	the
scripts	at	the	root	directory	that	are	used	in	the	development	process	such	as		setup.py		and
	tests.py	.

The	Documentation	section	contains	code	used	to	generate	the	documentation	of
Matplotlib.	There	are	two	directories:		doc		contains	code	to	generate	the	documentation
which	is	hosted	at	their	website	and		examples		contains	example	uses	of	Matplotlib.

The	Miscellaneous	section	contains	the	rest	of	the	code	not	contained	in	the	previous	three
sections.	The		LICENSE		directory	is	for	legal	purposes,	while	the		tools		and		unit		directory
contains	incidental	scripts	used	for	specific	purposes	only.

Matplotlib

212

http://matplotlib.org/contents.html

5.2.	Module	Organization

The	Matplotlib	source	code	is	organized	into	several	modules	that	encapsulates	a	coherent
piece	of	functionality.	Matplotlib	modules	are	partitioned	into	three	main	categories	as	can	be
seen	in	Figure	6.	These	modules	are	organized	in	different	abstraction	layers	where	the	top
layer	depends	on	the	layers	below	it.

Figure	6.	Module	Structure	Model	of	Matplotlib

The	core	module	comprises	the	core	Matplotlib	functionality	for	implementing	2D	plotting.
The	main	functional	components	as	described	in	the	Functional	View	is	implemented	here.
Most	of	the	backend	layer	is	encapsulated	inside	the		backends		module,	while	the	scripting
layer	is	accessed	from	the		pyplot		submodule	which	is	autogenerated	using
	boilerplate.py	.	Most	of	the	code	here	is	from	the	artist	layer	and	is	spread	in	various
submodules.

Most	of	the	submodules	are	in	the	root	directory,	but	a	few	submodules	have	been	grouped
together	inside	their	own	directory	which	creates	a	larger	module.	The	most	important	of
these	modules	are		axes		which	is	responsible	for	drawing	the	plotlines,		backends		which
contains	handlers	for	different	platforms,	and	both		tri		and		projection		which	handle	low
level	image	transformations.

The	toolkit	module	enriches	the	basic	functionalities	of	Matplotlib	and	depends	on	the	core
module.	There	are	currently	two	major	projects	in	this	module:		axes_grid		which	adds
functionalities	to		axes		such	as	combining	multiple		axes		or	adding	angles	to		axes	,	and
	mplot3d		which	adds	pseudo-3D	plotting	to	Matplotlib.

Matplotlib

213

The	platform	module	consists	of	supporting	modules	from	external	parties	such	as	the
basic	Python	language	libraries	(Python	root	library,	Python	extended	library,	script	package
library)	and	site	package	libraries	such	as		scikit-learn		and		numpy	.

The	diagram	above	can	be	considered	as	an	oversimplification	as	the	connections	between
modules	are	much	more	complex.	A	closer	look	at	the	interdependencies	of	the	submodules
is	done	at	the	technical	debt	section.

5.3.	Common	Design	Models

In	this	section,	common	designs	that	are	used	and	standardized	in	the	development	of
Matplotlib	are	described.

Common	Process	Standardization

Since	Matplotlib	is	not	a	continuously	running	system,	the	use	of	logging	is	mostly	for
debugging	purposes.	Generally,	there	are	two	types	of	logging	in	Matplotlib,	debugging
traces	which	are	handled	by	a	class	called		Verbose	,	and	warnings	which	are	handled	by	the
	warning		Python	package.

Matplotlib	requires	intensive	numeric	calculations	to	efficiently	plot	2D	data.	Instead	of
developing	from	scratch,	Matplotlib	uses	third	party	libraries.	For	matrix	operations	and	data
handling,	Matplotlib	uses		numpy	,	while	for	geometric	calculations,	it	uses		antigrain
geometry		and		qhull	.	Commonly	used	functions	that	are	shared	among	many	classes	such
as	datetime	handling,	are	stored	inside	a	utility	module	called		cbook	.

Design	Standardization

Matplotlib	is	a	community	effort	which	is	developed	through	GitHub.	Development	standards
are	communicated	through	their	developers's	guide.

Matplotlib	uses	PEP8	as	a	standard	style	for	Python	code.	It	is	a	set	of	coding	standards
created	by	the	Python	software	foundation.	To	support	Python	2	and	3	from	a	single	code
base,	Matplotlib	uses	the	six	Python	library.	Meanwhile,	design	quality	is	maintained	through
Pull	Request	reviews	and	discussions	in	GitHub,	and	larger	design	goals	are	compiled	into
the	Matplotlib	Enhancement	Proposal	(MEP).

Testing	Standardization

Matplotlib	uses	standard	Python	testing	libraries	for	their	testing	process.	The	tests	mainly
consists	of	unit	tests	which	tests	small	components	of	the	code,	and	also	a	Matplotlib
specific	"image	comparison	test".	This	test	generates	specific	images	using	the	Matplotlib

Matplotlib

214

http://www.numpy.org/
http://www.antigrain.com/
http://www.qhull.org/
https://github.com/matplotlib/matplotlib
http://matplotlib.org/devel/index.html
https://www.python.org/dev/peps/pep-0008/
http://pythonhosted.org/six/
http://matplotlib.org/devel/MEP/index.html

code	and	then	compares	the	results	with	baseline	images	generated	previously.

To	be	able	to	do	the	testing	internally,	developers	are	required	to	install		pytest		and		mock	.
Ghostscript	and	Inkscape	are	also	required	for	the	image	comparison	test.	To	guarantee
changes	to	the	code	do	not	introduce	unexpected	failures	or	conflicts,	Matplotlib	implements
continuous	integration	using	Travis	CI	for	unix	environments	and	Appveyor	for	windows.
Both	CI	platforms	are	integrated	to	GitHub	and	run	on	every	new	Pull	Request.	Matplotlib
also	uses	CodeCov	to	check	the	code	coverage	when	there	is	a	change	in	the	test	code.	To
accommodate	testing	on	different	versions	of	Python,	Matplotlib	uses		tox	.

6.	Evolution	Perspective
To	understand	more	about	the	architecture	of	Matplotlib,	we	will	take	a	look	at	its	evolution
over	time.	Matplotlib	was	originally	developed	as	a	visualization	tool	for	medical	research,
but	as	time	goes	on,	Matplotlib	became	a	popular	Python	plotting	library	used	by	generic
users.	This	interesting	evolution	of	Matplotlib	will	be	analyzed	by	comparing	the	state	of
Matplotlib	in	each	minor	and	major	releases.

Feature	Evolution

Matplotlib	uses	semantic	versioning	for	numbering	their	releases,	which	clearly	separates
major	releases,	minor	releases,	and	bugfix	patches.	Figure	7	shows	the	timeline	of
Matplotlib	version	releases	based	on	Matplotlib's	version	release	documentation	[3].

Figure	7.	Matplotlib	version	history

Matplotlib

215

http://doc.pytest.org/en/latest/
https://docs.python.org/dev/library/unittest.mock.html
https://www.ghostscript.com/
https://inkscape.org/en/
https://travis-ci.org/
https://www.appveyor.com/
https://codecov.io/
https://tox.readthedocs.io/en/latest/
http://semver.org/
http://matplotlib.org/users/whats_new.html#id1

	v0.99	:	Added	new	features	(mplot3d,	axes	grid	toolkit	and	axis	spine	placement).
	v1.0		:	New	backends	(HTML5/Canvas),	performance	enhancements,	and	new
features	(complex	subplots,	triplots,	multiple	'show'	calls).
	v1.1		:	Introduced	animations,	new	backends	(qt4,	IPython),	new	features	(sankey
diagrams),	and	improvements	to	legends	and	mplot3d.
	v1.2		:	Support	for	Python	3.x,	new	backends	(pgf/tikz),	new	features	(tri-surface	plots,
streamplots)	and	updated	shipped	dependencies	(pytz	and	dateutil).
	v1.3		:	New	backends	(webagg),	new	features	(sketch	style)	and	a	new	setup	script.
	v1.4		:	New	backends	(nbagg),	added	style	package	and	new	plotting	features.
	v1.5		:	Interactive	OO	usage,	support	for	pandas,	new	colormap	and	plotting	features,
and	new	tool	manager.
	v2.0		:	Overhaul	of	the	default	styles	(font	size,	colours,	mplo3d),	fast	text	rendering,
and	support	for	retina	displays.

Matplotlib	has	changed	over	time	to	support	the	latest	versions	of	Python	while	also
dropping	support	for	older	versions.	For	example	in		v1.1		Matplotlib	supports	only	Python
2.4	to	2.7,	and	then	with	release		v1.2		Matplotlib	supports	Python	2.6,	2.7	and	3.1.	On	the
current	release		v2.0	,	Matplotlib	only	supports	Python	2.7	and	3.4+	which	are	the	two	major
Python	versions	currently	used.	Each	update	also	usually	brings	support	for	new	backends
and	plotting	features.	The	more	recent	updates	has	focused	mainly	on	supporting	web
backends	which	shows	that	Matplotlib	is	adapting	to	the	trend	of	web	based	interfaces.

Another	interesting	part	is	how	Matplotlib	evolves	to	comply	with	user's	needs.	Matplotlib	is
mainly	built	for	2D	plotting,	but	along	with	newer	user's	needs,	some	releases	(v0.99	,
	v1.0	,		v1.1	,	and		v1.3)	make	adjustments	to	Matplotlib	to	support	pseudo-3D	plotting.
Matplotlib	also	just	recently	changed	the	default	plot	styles	since	it	was	considered	not	very
pretty	by	the	community.

Source	Code	Evolution

We	used	cloc	to	count	the	lines	of	code	in	Matplotlib	over	time.	The	graph	can	be	seen	in
Figure	8.

Matplotlib

216

https://github.com/AlDanial/cloc

Figure	8.	Matplotlib	Lines	of	Code	per	Version

In	general,	the	lines	of	code	increases	gradually	over	time,	but	there	is	a	slight	decrease	of
code	from		v1.2		to		v1.3	.	According	to	the	Matplotlib	Enhancement	Proposal	11	(MEP11),
this	was	because	of	a	refactor.	Matplotlib	changed		dateutil	,		pytz	,	and		pyparsing		into
optional	dependencies	to	decouple	these	third-party	libraries	from	the	application	code.

It	can	also	be	seen	that	Matplotlib	did	not	have	any	test	code	at		v0.99		but	then	started	to
add	code	testing	in		v1.0	.	Since	then,	in	average	the	test	code	increases	around	40%	per
release,	while	the	application	code	only	increased	around	5%	per	release.	This	trend	shows
that	over	time,	testing	has	become	one	area	of	focus	in	the	development	of	Matplotlib.

7.	Technical	Debt	Analysis
After	understanding	the	overall	architecture	of	Matplotlib,	we	now	take	a	deeper	look	at	the
current	Matplotlib	source	code	along	with	recent	changes	to	the	code	to	identify	technical
debts	that	exist	in	the	system.	To	do	this,	we	did	both	static	code	analysis	and	manual	code
inspection.	We	also	tried	analyzing	discussions	happening	in	the	community,	but	not	much
discussions	were	found	that	directly	addressed	technical	debts.

From	the	analysis,	there	were	some	findings.	One	nice	finding	is	that	nearly	all	code	in
Matplotlib	was	classified	as	rank	A	by	Radon	with	an	average	of	2.63,	which	is	below	the
maximum	threshold	of	10	proposed	by	McCabe	[5].	There	were	only	7	files	that	were

Matplotlib

217

http://matplotlib.org/devdocs/devel/MEP/MEP11.html
https://pypi.python.org/pypi/radon

marked	as	having	a	large	cyclomatic	complexity.	We	also	found	that	there	were	no	major
outdated	dependencies	and	most	of	the	code	were	already	written	in	idiomatic	python.
However,	there	are	still	a	few	technical	debt	that	was	identified	and	needs	more	attention.

Ambiguous	Project	Structure

When	compared	to	other	similar	Python	libraries	such	as		scikit-learn		or		bokeh	,
Matplotlib's	project	structure	can	be	considered	messy.	This	is	mainly	because	some	files
and	directories	are	not	self	explanatory.	For	example,	the		unit		directory	in	Matplotlib
implies	that	it	contains	unit	tests,	but	it	actually	contains	problem	specific	testing	scripts.	The
separation	of	the	Matplotlib	source	code	is	also	not	clear	between	the		src	,		lib	,	and
	extern		directory.

These	ambiguous	code	affect	the	developers	of	the	system,	potentially	making	development
more	tedious.	There	are	currently	also	too	much	scripts	in	the	root	directory	which	would
make	it	confusing	for	new	contributors,	but	this	is	currently	already	being	handled	by	the
developers	(#8276).

A	simple	step	in	improving	this	would	be	to	put	the	contents	of	the		unit		directory	as	well	as
most	scripts	in	the	root	directory	into	the		tools		directory.	All	functional	code	(lib	,		src	,
and		extern)	and	build	tools	(ci	,		release	,	and	some	scripts	in	the	root	directory)	can	also
be	encapsulated	into	their	own	directory	and	renamed	accordingly	to	better	reflect	their
contents.

Messy	Module	Dependencies

Figure	9.	Dependency	Graph	of	Matplotlib

The	dependencies	between	internal	modules	of	Matplotlib	generated	by	pydeps	is	shown	in
Figure	9.	Modules	from	core	is	shown	in	green,	modules	from	toolkit	in	yellow,	and	the	other
colors	indicate	external	dependencies.	It	can	be	seen	that	the	dependencies	inside
Matplotlib	are	not	so	structured	and	that	modules	are	not	well	separated.	The	separation
between	toolkits	and	core	is	also	not	so	clean.

Matplotlib

218

https://gist.github.com/JeffPaine/6213790
https://github.com/scikit-learn/scikit-learn
https://github.com/bokeh/bokeh
https://github.com/matplotlib/matplotlib/pull/8276
http://pydeps.readthedocs.io/en/latest/

Figure	10.	Trimmed	Dependency	Graph	of	Matplotlib	Core

A	trimmed	dependency	graph	of	the	core	module	without		backends		and		sphinxext		is
shown	in	Figure	10.	A	closer	look	at	the	bottom	right	side	shows	that	there	is	a	well
separated	module	group	which	is		tri	.	To	the	left	of	that,	there	are	also	two	smaller	groups
which	are		projections		and		axes	.	This	shows	that	there	are	some	attempts	at
encapsulating	large	concerns.	However,	overall	the	module	organization	in	Matplotlib	needs
more	separation	of	concerns.	Fixing	this	issue	would	need	a	large	refactoring	of	the	whole
Matplotlib	project.

Code	Inconsistencies

Matplotlib	has	just	recently	migrated	from	using	the		nose		testing	framework	into		pytest	.
Despite	this,	some	traces	of	the	previous	framework	still	exist	in	the	system.	The	main	trace
we	found	is	that	the		testing		directory	in	each	Matplotlib	module	which	was	previously
created	to	extend	the	functionalities	of		nose	,	still	exists	until	now.	The	Matplotlib	website
also	still	lists		nose		as	their	testing	framework,	but	this	is	apparently	already	corrected	in	the
code	of	the	documentation	and	the	website	is	not	updated	yet.

For	logging	purposes,	Matplotlib	has	implemented	their	own	utility	class	called		Verbose	,	but
many	classes	in	Matplotlib	still	use	a	local	debugging	flag	to	control	their	debug	loggings,
and	some	even	has	local	functions	to	handle	this	functionality.	An	example	of	this	is	in	the
	backend_qt5agg.py		file	which	uses	a	boolean	flag	named		DEBUG	.

Matplotlib

219

http://matplotlib.org/2.0.0/devel/testing.html

There	were	also	still	54		TODO		and	13		FIXME		that	exist	in	the	source	code	of	Matplotlib	at
the	time	of	our	analysis,	which	shows	there	were	some	issues	that	are	still	not	addressed
yet.

This	shows	that	the	code	inside	Matplotlib	is	not	very	strongly	standardized	and	maintained,
which	in	the	long	run	would	make	it	harder	for	developers	to	extend	the	code	since	different
classes	have	different	code	smell	and	conventions.

Low	Code	Coverage

Code	coverage	is	a	measure	used	to	indicate	how	much	code	has	been	covered	by	a	test.
Low	coverage	implies	that	the	program	has	a	high	chance	of	containing	undetected	bugs.
High	coverage	does	not	necessarily	signify	all	actions	will	be	correctly	processed	by	the
code,	but	at	least	it	indicates	that	the	likelihood	of	correct	processing	is	good	[4].

Figure	11.	Code	Coverage	of	Matplotlib

Matplotlib	uses		Codecov		to	measure	code	coverage	automatically.	At	the	time	of	analysis,
Matplotlib	obtains	65.19%	code	coverage	(Figure	11).	This	is	still	considered	as	a	low	code
coverage	as	it	is	below	the	high	threshold	of	80%	[4].	The	full	results	of	our	investigation	for
each	module	can	be	seen	in	Figure	12	for	the	Core	modules	and	Figure	13	for	the	Toolkit
modules.

Figure	12.	Code	Coverage	of	Core	Modules

Matplotlib

220

Figure	13.	Code	Coverage	of	Toolkit	Modules

A	potential	part	of	the	code	for	improvement	is	the		backends		directory	which	currently	only
has	32%	coverage	albeit	being	a	core	part	of	Matplotlib.	The		backends		is	responsible	for
low	level	adjustments	of	Matplotlib	to	various	graphic	renderers,	therefore	improving	code
coverage	in	this	part	of	Matplotlib	would	make	future	changes	to	Matplotlib	more	resistant	to
platform	errors.

Long	Testing	Time

Another	source	of	technical	debt	is	how	long	it	takes	to	run	tests.	The	runtime	of	integration
tests	are	not	strictly	limited,	but	for	unit	tests	which	are	supposed	to	be	run	repeatedly,
according	to	Martin	Fowler,	most	experts	agree	that	it	should	be	fast	and	typically	run	less
than	a	minute.	A	long	unit	test	runtime	means	that	the	rate	at	which	people	can	develop	will
be	slowed	down.	The	tests	in	Matplotlib	when	run	in	our	own	laptop	achieved	a	runtime	of
around	7	minutes,	while	the	average	runtime	of	tests	for	continuous	integration	(in	Jenkins)
is	around	20	minutes.	This	makes	it	hard	to	do	rapid	development	of	the	Matplotlib	code
since	it	takes	too	long	and	the	test	script	that	is	provided	doesn't	separate	between	unit	and
integration	tests.

A	possible	solution	is	to	separate	out	the	integration	tests,	such	as	the	Matplotlib	image
comparison	test,	into	their	own	test	script.	This	will	reduce	the	number	of	tests	that	needs	to
be	run	frequently.	If	this	is	not	enough,	Martin	Fowler	also	suggested	that	unit	tests	should
be	separated	into	a	"compile	suite"	that	is	run	on	every	compilation	and	a	"commit	suite"
which	is	run	before	a	commit	(or	usually	on	a	pull	request).

8.	Conclusion
Matplotlib	is	one	of	the	oldest	yet	reliable	and	well-known	visualization	library	in	Python.
During	our	investigation	of	Matplotlib,	we	identified	some	interesting	findings	that	we	believe
will	be	useful	to	understand	the	current	state	of	Matplotlib.

Matplotlib

221

https://martinfowler.com/bliki/UnitTest.html
https://martinfowler.com/bliki/UnitTest.html

John	Hunter	initially	designed	Matplotlib	as	a	Python	tool	strictly	for	2D	plotting	and	targeted
it	towards	people	of	an	academic	background.	Now	Matplotlib	has	evolved	into	a	thriving
community	project	while	still	staying	true	with	the	initial	design	goals.	As	an	open	source
project,	most	of	the	stakeholders	are	developers,	with	the	NumFOCUS	organization
providing	financial	support	through	donations.	From	our	short	experience	contributing	to	the
project,	we	have	identified	Thomas	A.	Caswell	who	is	also	one	of	the	lead	developer,	as	the
person	to	contact	regarding	the	development	of	Matplotlib.

From	the	analysis,	we	learned	that	the	functionality	of	Matplotlib	is	conceptually	split	into
three	layers,	which	at	a	glance	is	simple.	However,	digging	deeper	into	its	code,	the
architecture	of	Matplotlib	is	actually	quite	complex,	and	at	its	current	state	there	are	still	quite
a	few	technical	debts.	For	instance,	the	interdependencies	of	the	modules	are	too
unstructured	which	makes	the	separation	of	concerns	unclear.	This	makes	it	hard	for	most
developers	to	contribute	or	change	specific	components	of	the	system.	There	are	also	quite
a	few	inconsistencies	and	lack	of	standardization	in	the	code	of	Matplotlib,	and	some
ambiguity	in	the	project	structure.

We	have	found	that	along	its	development,	Matplotlib	has	improved	a	lot	in	terms	of	code
tests,	but	currently	the	code	coverage	of	Matplotlib	is	still	too	low.	More	tests	need	to	be
added	especially	to	the		backends		module.	The	test	script	of	Matplotlib	is	also	not	separated
well	between	different	types	of	tests,	resulting	in	a	very	long	test	runtime	which	inhibits	the
speed	of	development.

To	conclude,	Matplotlib	has	evolved	a	lot	from	the	research	tool	created	by	John	Hunter,	to
the	vastly	used	data	plotting	library	it	is	today.	Albeit	the	technical	debts	that	still	exist	until
now,	Matplotlib	has	shown	promising	growth	over	the	years.	We	strongly	suggest	people	to
contribute	to	Matplotlib	as	it	has	an	open	community	that	warmly	welcomes	new	contributors
as	we	have	experienced	in	proposing	some	contributions.

References
1.	 Amy	Brown	and	Greg	Wilson	(editors).	The	Architecture	of	Open	Source

Applications.Volume	2.	2012

2.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with
Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012,	2nd	edition

3.	 Matplotlib	Project.	(n.d.).	Retrieved	February	26,	2017,	from	http://matplotlib.org/

Matplotlib

222

https://github.com/tacaswell
http://matplotlib.org/

4.	 Brader,	Larry;	Hilliker,	Howie;	Wills,	Alan	(March	2,	2013).	"Chapter	2	Unit	Testing:
Testing	the	Inside".	Testing	for	Continuous	Delivery	with	Visual	Studio	2012.	Microsoft.
p.	30

5.	 McCabe,	Thomas	J.	"A	complexity	measure."	IEEE	Transactions	on	software
Engineering	4	(1976):	308-320.

Matplotlib

223

Mockito	-	the	most	popular	mocking
framework
By	@Xin	Liu,	@Lu	Liu,	@Saiyi	Wang,	and	@Xiang	Teng
Delft	University	of	Technology

Abstract
Mockito	is	the	most	popular	mocking	framework	for	unit	test	in	Java	[2].	It	is	famous	for	its
compact	and	effective	APIs	and	widely	used	by	Java	developers	all	over	the	world.	Mockito
is	an	open	source	project	living	in	GitHub	and	it	is	being	maintained	and	developed	by	the
core	developers	as	well	as	quite	a	few	external	contributors.	In	this	chapter,	we	study	the
software	architecture	of	Mockito	in	the	following	aspects:	stakeholder	analysis,	context	view,
development	view,	functional	view,	evolution	perspective,	future	release	perspective	and
technical	debts.	The	study	goes	from	a	high-level	analysis	to	more	technical	views	and
perspectives.	In	this	process,	we	find	Mockito	is	a	very	well	organized	project	with	high
maintainability,	readability	and	extensibility.

Table	of	Contents
1.	 Introduction
2.	 Stakeholder	Analysis

2.1	Identification
2.2	Power	interest	matrix
2.3	Integrators

3.	 Context	View
3.1.	External	entities
3.2.	Context	view	diagram

Mockito

224

https://github.com/L-KID
https://github.com/Nirvanall
https://github.com/SaiyiW
https://github.com/Andyteng
https://github.com/mockito/mockito

4.	 Development	View
4.1	Module	Organization
4.2	Common	processing
4.3	Codeline	Organization
4.4	Release	Process

5.	 Functional	View
5.1	Functionalities
5.2	Functional	Structure	Model

6.	 Evolution	Perspective
7.	 Future	Release	Perspective
8.	 Technical	Debts

8.1	Automated	inspecting	code	debts	with	tool
8.2	Testing	Debts
8.3	Evolution	of	Technical	debt

9.	 Conclusion
10.	 References

Introduction
In	software	development,	unit	tests	are	necessary	to	indicate	whether	small	sections	fit	for
work.	In	Java,	these	sections	are	usually	a	class	or	just	a	method.	Mocking	is	a	primary
approach	in	unit	test.	In	a	unit	test,	developers	only	want	to	verify	the	correctness	of	a
specific	object.	However,	it	usually	has	dependencies	on	other	objects,	which	may	be
impractical	to	be	called	in	a	unit	test.	Mocking	the	dependencies	and	simulating	their
behaviors	solve	the	problem.
The	first	release	of	Mockito	(version	0.9)	was	in	2008.	Mockito	has	released	many	versions
since	its	continuous	release	model	implemented.	Till	March	2017,	the	version	of	Mockito	is
2.x,	and	the	Mockito	team	is	planning	for	releasing	Mockito	3.	Mockito	is	voted	as	the	best
mocking	framework	for	java	by	massive	StackOverflow	community,	which	is	due	to	its
feature	of	letting	users	write	beautiful	tests	with	a	clean	and	simple	API	[2].

Four	TU	Delft	students	from	DESOSA	(Delft	Students	on	Software	Architecture)	[3]	group
have	made	a	deep	analysis	on	architecture	of	Mockito	based	on	the	theory	of	software
architecture	referring	to	the	book	Software	Architecture	of	Ronzanski	&	Woods	[1].	There	are
several	viewpoints	and	perspectives	mentioned	in	this	book.	The	chapter	starts	with	the
analysis	of	stakeholders	who	are	involved	in	the	development	of	this	project,	followed	by
context	view	about	the	relationship	and	interactions	between	Mockito	and	its	environment.
After	that	development	view	shows	the	modular	structure	of	the	system,	while	functional
view	shows	the	functionalities	of	Mockito	and	how	modules	implement	all	the	required
features.	The	evolution	perspective	talks	about	the	ability	of	the	system	to	be	flexible	in	the

Mockito

225

https://github.com/mockito/mockito/wiki/What%27s-new-in-Mockito-2

face	of	the	inevitable	change	that	all	systems	experience	after	deployment.	And	future
release	perspective	shows	the	improvement	of	method	and	model	in	the	future	versions.	At
last,	technical	debt	analyzes	how	well	Mockito	is	implemented.

Stakeholder	Analysis
In	traditional	software	development	process,	the	parties	related	to	this	are	specified	at	the
beginning.	Different	users	are	interested	in	different	aspects	of	the	software	architecture.
These	users	are	defined	as	stakeholders.	Some	important	stakeholders	of	Mockito	are
tabulated	in	Table	1.	These	stakeholders	are	categorized	in	8	groups	according	to	chapter	9
of	the	book	Software	architecture	of	Rozanki	&	Woods(2012)	[1].	In	addition,	an	analysis	of
their	associated	levels	of	power	and	interest	is	shown	in	Figure	1.

Identification

Mockito	is	an	open-source	testing	framework	started	by	@Szczepan	Faber	in	early	2008.	He
is	the	main	developer	in	the	early	stage.	Currently	Mockito	is	maintained	by	@Szczepan
Faber,	@Brice	Dutheil,	@Rafael	Winterhalter,	@Tim	van	der	Lippe	and	other	developers.
Travis	CI	and	Bintrary	are	used	to	facilitate	continuous	delivery.

Table	1.	Stakeholders	of	Mockito

Mockito

226

https://github.com/szczepiq
https://github.com/szczepiq
https://github.com/bric3
https://github.com/raphw
https://github.com/TimvdLippe
https://en.wikipedia.org/wiki/Travis_CI
https://bintray.com/szczepiq/maven/mockito/view

Stakeholder Description

Developers	&
Testers

In	the	early	stage,	the	main	developers	are	@Szczepan	Faber	and
his	friends.	Currently	Mockito	is	maintained	by	the	core	development
team	consisting	of	@Szczepan	Faber,	@Brice	Dutheil,	@Rafael
Winterhalter,	@Tim	van	der	Lippe	and	other	89	external	contributors
(as	of	21th	of	February	2017)	on	Mockito.

Maintainers

As	this	is	an	open	source	and	non-commercial	software,	therefore,
most	of	the	maintainers	are	the	contributors	of	the	GitHub	and	the
core	development	team.	For	instance,	@Christian	Schwarz	and
@Pascal	Schumacher	are	two	main	external	contributors.

Assessors

According	to	the	closed	issue	in	Mockito,	it	could	be	asserted	that
the	main	assesors	come	from	the	core	development	team	which
consist	@Szczepan	Faber,	@Tim	van	der	Lippe,	@Brice	Dutheil	and
a	few	others.

Communicators

There	are	several	ways	that	have	been	used	to	explain	the	system	to
the	other	stakeholders	such	as	Dzone	Reference	Card,
Javadoc(Mockito	2.7.10	API),	Twitter	and	the	Blog.	For	the	blog,	it	is
governed	directly	by	@Szczepan	Faber.	Before	2017,	the	most
information	is	written	on	LinkedIn.	The	documentation	on	DZone	is
written	by	@Marcin	Zajączkowski.

Suppliers

Dexmaker	is	used	by	Mockito	to	support	Android	users.	PowerMock
is	used	to	test	code	that	is	normally	regarded	as	untestable	by
Mockito.	Another	tool	that	is	used	to	manage	project	is	called	Maven.
However,	the	actual	building	tool	is	Gradle.	Moreover,	IntelliJ	IDEA	is
used	by	developers.

Users

Two	main	utilize	places	of	Mockito	are	in	creating	a	unit	test	and	to
simplify	and	enhance	the	integration	tests	respectively.	Here	are
some	projects	that	use	Mockito	in	late	2010.	Such	as	Sonar,
EHcache,	Dozer	and	so	on.	Some	companies	or	commercial
products	also	use	it	such	as	Atlassian	or	Grid	Dynamics.	The	recent
versions	also	support	Android	via	Dexmaker.

Additional	types	of	stakeholders

Competitor:	EasyMock,	in	fact,	Mockito	is	a	framework	which	is	grown	out	from	it.
Cooperator:	JUnit	is	an	important	collaborating	framework	of	Mockito.	It	is	a	simple
framework	to	write	repeatable	tests.	TestNG	is	a	testing	framework	inspired	from	JUnit
and	NUnit	but	introduced	some	new	functionalities	that	make	it	more	powerful	and
easier	to	use.
Dependency:	Spring,	ByteBuddy,	CGLib	and	AssertJ.

Power	interest	matrix

Mockito

227

https://github.com/szczepiq
https://github.com/szczepiq
https://github.com/bric3
https://github.com/raphw
https://github.com/TimvdLippe
https://github.com/mockito/mockito
https://github.com/cschwarz
https://github.com/PascalSchumacher
https://github.com/mockito/mockito
https://github.com/szczepiq
https://github.com/TimvdLippe
https://github.com/bric3
https://dzone.com/refcardz/mockito
http://static.javadoc.io/org.mockito/mockito-core/2.7.10/org/mockito/Mockito.html
http://blog.mockito.org/
https://github.com/szczepiq
https://www.linkedin.com/in/szczepiq/recent-activity/posts
https://github.com/szpak
http://stackoverflow.com/questions/tagged/dexmaker
https://github.com/powermock/powermock
https://maven.apache.org/
https://gradle.org/
https://github.com/mockito/mockito/wiki/Mockito-In-Use
http://blogs.atlassian.com/developer/2009/01/how_to_make_writing_unit_tests.html
http://blog.griddynamics.com/2010/03/mocking-with-mockito-and-powermock.htm
http://stackoverflow.com/questions/tagged/dexmaker
http://easymock.org/
http://junit.org/junit4/
http://testng.org/doc/index.html
https://spring.io/
http://webcache.googleusercontent.com/search?q=cache:http://bytebuddy.net/&gws_rd=cr&ei=l4niWMHFDsizacP-usAE#/
https://github.com/cglib/cglib/wiki
http://joel-costigliola.github.io/assertj/

The	power	and	interest	on	Mockito	of	each	group	is	obvious	by	viewing	the	position	in	the
Figure	1.	The	most	important	party	of	the	stakeholders	is	the	core	developer	team.	It	has
high	power	as	it	makes	the	majority	decisions	in	Mockito.	The	reason	why	they	also	have
high	interest	is	that	they	are	the	main	contributors.	The	second	group	needing	mention	is	the
third-party	dependencies.	Mockito	is	an	open	source	project	which	has	a	high-level
dependency	on	third-party	libraries.	The	details	could	be	found	in	Table	1.	So,	they	have
high	power	in	Mockito,	however,	they	are	not	so	interested	in	Mockito.	The	last	group
needed	to	be	shown	is	users.	It	is	the	group	having	low	power	(only	a	few	of	them	are
contributors)	and	high	interest	(their	products	directly	rely	on	the	functionalities	of	Mockito).

Figure	1.	Power	interest	matrix

Integrators

In	this	section,	the	integrators	who	deal	with	the	contributions	and	decide	whether	to	merge
them	or	not	are	identified.	Also,	how	a	decision	is	made	about	pull	requests	is	discussed	in
details.

Mockito

228

Identification

According	to	the	activities	regarding	reviewing	and	merging	recent	pull	requests,	we	identify
@TimvdLippe	as	the	main	integrator,	while	@bric3	and	@szczepiq	also	review	the	pull
requests	frequently.
@TimvdLippe	takes	part	in	reviewing	most	of	the	pull	requests	in	recent	time	due	to	some
reasons.	He	makes	decision	himself	on	small	changes	like	minor	optimizations	and
refactoring.	When	the	pull	requests	have	obvious	influence	on	the	code	he	would	invite	other
core	members	to	review	together.	He	also	friendly	helps	the	external	contributors	to	rebase
their	PRs	to	meet	their	format	and	style	requirements.	On	the	other	hand,	@bric3	and
@szczepiq	also	show	up	frequently	to	help	to	review	the	pull	requests	and	give	suggestions.

Challenges

The	integrators	often	hold	different	opinions	towards	a	single	pull	request.	For	instance,	in
#932,	@TimvdLippe	and	@szczepiq	were	in	favor	of	the	change	while	@bric3	thought	the
issue	was	more	like	a	GitHub	bug	and	he	preferred	not	to	fix	it	themselves.	Another	example
is	#942	where	@TimvdLippe	hoped	to	see	more	tests	specifically	for	Java8	before	merging
it,	while	@szczepiq	thought	it	was	more	desirable	to	forward	the	pull	request	even	without
the	tests.	We	can	then	tell	that	integrators	indeed	have	an	issue	with	reaching	consensus.

Merge	Decision	Strategy

When	the	integrators	want	to	merge	a	pull	request,	they	mainly	care	about	the	source	code
quality	and	code	style	of	the	incoming	pull	request.	For	example,	pull	request	#955	is	about
modifying	the	code	related	to	the	release	warning	displaying,	which	has	a	satisfied	code
quality	and	therefore	has	been	merged.	Moreover,	the	integrators	also	consider	the	commit
set	and	whether	it	adheres	to	the	project	conventions	for	submitting	pull	requests.	Besides,
the	integrators	will	judge	whether	the	pull	request	fits	the	project	roadmap	and	the	technical
design	of	the	project.	Interestingly,	we	also	found	that	there	is	no	difference	in	treatment	of
pull	requests	from	the	core	team	or	from	the	project's	community.

Context	View
With	the	service	supplied	by	Mockito,	users	can	write	unit	tests	for	Java	projects.	Users	can
search	for	how	to	use	Mockito	through	Javadoc,	release	notes	or	Dzone.	There	are	some
related	projects	that	are	for	the	unit	tests	for	other	programming	languages	such	as	Python	,
Flex,	Javascript,	Scala,	Objective	C,	Perl,	PHP,	MATLAB,	TypeScript,	and	Dart.	Also	there
are	some	extensions	for	Mockito	such	as	Junit	5	mockito	extension	and	Spock	subjects-
collaborators	extension.

Mockito

229

https://github.com/TimvdLippe
https://github.com/bric3
https://github.com/szczepiq
https://github.com/TimvdLippe
https://github.com/mockito/mockito/issues/950#issuecomment-280363810
https://github.com/bric3
https://github.com/szczepiq
https://github.com/mockito/mockito/pull/932
https://github.com/TimvdLippe
https://github.com/szczepiq
https://github.com/bric3
https://github.com/mockito/mockito/pull/942
https://github.com/TimvdLippe
https://github.com/szczepiq
https://github.com/mockito/mockito/pull/954
https://github.com/junit-team/junit5-samples/tree/master/junit5-mockito-extension
https://github.com/marcingrzejszczak/spock-subjects-collaborators-extension

Figure	2	presents	the	context	of	Mockito	including	relationships,	dependencies,	and
interactions	between	the	framework	and	its	environment.	This	environment	includes	the
people,	systems	and	external	entities.

External	entities

There	are	several	entities	in	Mockito,	and	together	they	set	up	the	environment	of	it.	The
external	entities	are	listed	below:

Developing	language:	Java
IDE	for	programming:	IntelliJ	IDEA
Communication	tools:	Stack	overflow,	Mailing-List,	GitHub,	twitter
Continuous	delivery	tools:	Travis	CI,	Bintray
Supported	by:	Maven(lastly),	Gradle(primarily),	PowerMock
License	support:	MIT	license	integration	tests	that	use	Mockito	as	end-user
Documentation:	Javadoc.io,	DZone
Users:	Sonar,	Ehcache,	Dozer,	Apache	Wicket,	Spring	Integration,	Apache	Felix,
HBase,	etc.
Competitors:	EasyMock
Collaborating	testing	framework:	JUnit
Dependency:	Bytebuddy,	Spring,	CGLib,	AssertJ

Context	view	diagram

The	diagram	below	shows	the	context	view	of	Mockito.	It	contains	the	external	entities	and
the	most	important	stakeholders	mentioned	in	Stakeholder	Analysis	section.

Mockito

230

https://github.com/powermock/powermock
http://www.sonarsource.org/
http://ehcache.org/
http://dozer.sourceforge.net/
http://wicket.apache.org/
http://www.springsource.org/spring-integration
http://felix.apache.org/
http://hbase.apache.org/
http://easymock.org
http://bytebuddy.net/#/
https://spring.io
https://github.com/cglib
http://joel-costigliola.github.io/assertj/

Figure	2.	Context	view	diagram

From	the	context	view	diagram,	both	entities	and	important	stakeholders	are	revealed.	The
core	developers	in	the	diagram	consist	the	development	team.	They	created	Mockito,
contribute	to	and	maintain	the	whole	project	mostly.	In	the	development	process,	the
communication	tools	are	used	as	communication	platform	of	developers	and	platform	to
convey	the	information	of	the	system	to	other	stakeholders.	The	programming	language	is
mainly	Java	and	the	IDE	used	is	IntelliJ	IDEA.	When	developing,	the	dependencies
mentioned	above	are	the	base	of	the	project,	and	used	as	library	or	framework	of	the
system.	Travis	and	Bintray	serve	for	continuous	delivery.

Apart	from	development,	the	access	of	Mockito	is	another	crucial	part	in	context	view.	To
know	detailed	information	of	Mockito	such	as	the	examples	of	testing	code,	users	are
supposed	to	read	Javadoc	and	DZone.	To	get	the	Mockito	package,	users	can	check	the
Maven	Central	Repository	or	Bintray.	To	use	Mockito,	Gradle	is	primarily	required,	but
projects	built	with	Maven	are	also	supported.

The	source	code	of	Mockito	and	the	associated	documentation	files	are	licensed	under	the
MIT	license.

Development	View

Mockito

231

As	mentioned	in	the	book	written	by	Rozanki	&	Woods(2012)[1],

The	development	view	of	a	system	describes	the	architecture	that	supports	the
software	development	process.

This	section	is	about	development	of	Mockito.	Development	view	supports	the	design	and
build	of	software	for	complex	systems.	It	includes	module	organization,	common	processing,
and	codeline	organization.

Module	Organization

Mockito	consists	of	a	large	number	of	source	files,	which	are	organized	into	different
modules	logically.	All	the	modules	are	described	in	the	table	below.

Table	2.	Module	organization

Mockito

232

Module Description

Documentation Documentation	of	Mockito	project	including	JavaScript	and	CSS	code
for	the	Javadoc	website

Test All	the	test-related	files

Configuration Mockito	configuration	utilities	and	configuration

Exceptions Classes	for	exceptions	and	errors,	stack	trace	filtering/removing
logic,	cleaning	public	APIs

Hamcrest Mockito	Hamcrest	matcher	integration

Invocation Public	API	related	to	mock	method	invocations,	invocation	machinery
and	related	classes,	and	implementations	of	real	method	calls

Junit Mockito	JUnit	integration,	rule	and	runners,	and	JUnit	integration
support	classes

Listeners Public	classes	related	to	the	listener	APIs

Runners JUnit	runners,	internal	classes	and	utils	for	runners	implementations

Session Mockito	session	builder	and	implementation

Stubbing Answers	for	stubbed	calls,	implementations	of	default	answers,
stubbing	logic	and	implementations

Verification Verification	checkers,	implementations	for	dealing	with	matching
arguments,	verification	logic	and	implementations

Creation Classes	for	mock	object	creation	including	its	setting,	instance,
ByteBuddy	related	stuff,	and	other

Debugging Everything	that	helps	debugging	failed	tests

Framework Default	Mockito	framework	and	session

Handler Classes	calling	all	listeners	wanted	for	the	mock,	before	delegating	it
to	the	parameterized	handler

Matcher Argument	matchers	for	verification	and	stubbing

Progress Mocking	progress	stateful	classes

Reporting Classes	for	dealing	with	nicely	printing	verification	errors

Util All	the	static	utils	including	reflection	utilities,	IO	utils,	etc.

All	modules	interact	together	to	implement	the	function	of	Mockito.	To	show	the	organization
of	Mockito's	source	code,	the	module	structure	model	is	figured	out.	In	Figure	3,	we	can	see
the	modules	into	which	the	individual	source	files	are	collected	and	the	dependency	among
these	modules.	Only	the	main	part	of	the	system	is	shown.	Besides,	there	are	a	test	part,
some	subprojects	and	other	files	related	to	the	project.

Mockito

233

Figure	3.	Module	structure	model

Access	layer	-	Provides	external	support	of	Mockito.	Through	Gradle	or	Maven,	users
can	access	Mockito	as	a	library	for	unit	tests.
Interface	layer	-	Interfaces	for	the	internal	layer,	including	configuration	interface,
exceptions	interface,	invocation	interface,	listeners,	session	interface,	etc.
Internal	layer	-	All	the	core	classes	in	Mockito	are	functioned,	including	configuration,
exceptions,	matchers,	invocation,	stubbing,	session,	etc.
Platform	-	All	the	external	and	basic	libraries	for	internal	layer,	including	Java	standard
library,	Hamcrest,	JUnit,	and	ByteBuddy.

Common	processing

Identifying	and	isolating	the	common	processing	into	separate	code	units	could	help	to
reduce	the	level	of	duplication	of	the	code	and	make	the	code	easier	to	be	understood	by
the	users.
In	this	section,	some	of	these	common	processes	are	discussed.

Logging	message

Mockito

234

A	class	named		SimpleMockitoLogger		is	used	to	create	logging	messages.	It	is	written	by	the
team	of	Mockito.	The	first	type	of	logging	message	is	created	while	stubbing	arguments	are
mismatched.	The	second	type	is	generated	while	a	stubbing	is	unused.	And	the	third	type	is
used	to	log	method	invocation.

Use	of	third-party	libraries

The	development	of	project	Mockito	is	based	on	the	third-party	libraries.	Here,	three	main
libraries	are	discussed.	The	first	one	is	Junit,	by	which	many	functions	are	achieved.	For
instance,	Junit	is	used	to	detect	unused	stubs.	ByteBuddy	is	to	enable	the	developers	to
modify	Java	classes	during	the	runtime	without	a	compiler.	As	for	Hamcrest,	its	existing
matcher	class	is	used	to	achieve	the	functions	of	Mockito.	There	are	some	other
dependencies	such	as	Spring,	CGlib	or	AssertJ	used.	Although	third-party	dependencies	are
inevitable,	the	core	developers	want	to	reduce	dependencies	to	lower	the	risk	of	version
conflicts.

Codeline	organization

The	overall	structure	of	codeline	is	defined	as	how	the	code	is	controlled,	where	different
types	of	source	code	live	in	that	structure,	and	how	it	should	be	maintained	and	extended
over	time.

There	are	five	important	folders	at	the	root	of	the	Mockito	repository,	which	are
config/checkstyle,	doc,	gradle,	src,	and	subprojects.

Table	4.	Codeline	organization

File Inside	folders	or
files Description

config/checkstyle checkstyle.xml,
checkstyle.xsl

doc design-docs,	licenses,
release-notes All	the	documents	of	Mockito

gradle mockito-core,	root,
wrapper Everything	related	to	Gradle

src
conf,	javadoc,
main/java/org/mockito,
test/java/org

The	core	source	code	for	the	system,
testing	code	for	the	system,	code	to
implement	Javadoc,	and	configuration

subprojects android,	extTest,
inline,	testing Some	subprojects	based	on	main	part

Mockito

235

To	show	more	details	in	the	codeline	organization,	the	codeline	organization	model	is
visualized	in	Figure	4.

Mockito

236

Figure	4.	Codeline	organization	model

Mockito

237

Release	process

Since	its	first	release	in	2008,	Mockito	has	released	more	than	266	versions	till	April	3rd,
2017,	which	is	much	more	than	many	peer	projects.	It	is	due	to	the	continuous	delivery
model	on	release	management	[4].

Releasing	as	soon	as	a	change	is	made	reduces	management	overhead	and	it	shortens	the
maintaining	duration.	It	also	forces	the	team	to	work	more	efficiently	and	regularly.	What's
more,	this	mechanism	motivates	the	external	contributors	as	their	contribution	can	be
published	once	adopted.	Lastly,	it	is	a	great	opportunity	for	the	contributors	to	develop
techniques,	tools	and	accumulate	knowledge.

Mockito	welcomes	discussion	on	continuous	delivery	model	and	there	is	an	open	issue
intending	on	it.

Functional	View
According	to	Rozanski	and	Woods`s	book	[1],

The	functional	view	of	a	system	defines	the	architectural	elements	that	deliver	the
system`s	functionality.

The	view	documents	the	system's	functional	structure-including	the	key	functional
elements,	their	responsibilities,	the	interfaces	they	expose,	and	the	interactions
between	them.

In	this	part,	the	functional	capabilities,	external	interfaces,	internal	structure	and	design
philosophy	are	concerned.

Functionalities

Functional	capabilities

Functional	capabilities	are	what	the	system	is	required	to	do.	The	core	functional	capability
of	Mockito	is	to	let	users	write	a	good	unit	test	with	a	clean	and	simple	API.	Comparing	to
expect-run-verify	library,	EasyMock,	it	offers	simpler	and	more	intuitive	approach.	Users	can
ask	questions	about	interactions	after	execution.	There	are	several	functionalities	of	Mockito,
which	are	tabulated	in	Table	5.

Table	5.	Functionalities	of	Mockito

Mockito

238

https://github.com/mockito/mockito/issues/618

Functionality Description

Main:	Provide
library	for	unit
test

Letting	users	declare	Mockito	dependency	with	Gradle	and	then	users
can	use	all	the	subpackage	inside	org.mockito	to	write	unit	test

No	expect-
run-verify

Mocks	are	often	ready	without	expensive	setup	upfront,	so	users	do
not	have	to	look	after	irrelevant	interactions

Sub:	Mock
creation

The	API	is	very	slim,	and	there	is	only	one	kind	of	mock	and	only	one
way	to	create	mocks.	It	can	be	serialized/	deserialized	across
classloaders

Sub:	Mock
Stubbing

Stubbing	mock	objects,	void	methods	with	exceptions,	consecutive
calls,	etc.

Sub:	Mock
verification

BBD	style	verifications	of	exact	number	of	invocations,	ingnoring
stubs,	etc.	in	order	with	timeout

Sub:	Spying
testing
process

Spying	on	real	objects	and	abstract	classes

Apart	from	these	functionalities,	Mockito	have	more	details	features	which	can	be	found	in
	Features	and	Motivatoins	in	Wiki	and	there	are	updating	features	referring	to	different
versions	of	Mockito	mentioned	in	Java.doc.

External	interfaces

The	main	package	of	Mockito	is	org.mockito,	which	is	the	external	interface	providing	for
users.	The	core	subpackages	of	org.mockito	are	listed	below	[5].

Table	6.	Core	subpackage	of	org.mockito

Mockito

239

https://github.com/mockito/mockito/wiki/Features-And-Motivations
https://www.javadoc.io/doc/org.mockito/mockito-core/2.7.17

Package Description

org.mockito.configuration Mockito	configuration	utilities.

org.mockito.exceptions.base Base	classes	for	exceptions	and	errors,
stack	trace	filtering/removing	logic.

org.mockito.exceptions.misusing Exceptions	throen	when	Mockito	is	misused.

org.mockito.exceptions.stacktrace Stack	trace	filtering/cleaning	public	APIs.

org.mockito.exceptions.verification Verification	errors

org.mockito.exceptions.verification.junit JUnit	integration	to	provide	better	support	for
JUnit	runners	in	IDEs.

org.mockito.hamcrest Mockito	Hamcrest	matcher	integration

org.mockito.invocation Public	API	related	to	mock	method
invocations

org.mockito.junit Mockito	JUnit	integration;	rule	and	runners

org.mockito.listeners Public	classes	relative	to	the	listener	APIs

org.mockito.mock Mock	setting	related	classes

org.mockito.plugins Mockito	plugins	allow	customized	of	behavior

org.mockito.quality Mocking	quality	related	classes

org.mockito.runners JUnit	runners

org.mockito.session

org.mockito.stubbing Stubbing	related	classes

org.mockito.verification Verification	related	classes

Functional	structure	model

The	functional	structure	model	shows	how	the	interfaces	connected	together	to	provide	all
the	functionalities	to	users.	The	solid	pink	links	show	the	steps	for	users	to	implement	a	unit
test.	Users	mock	an	object	through	org.mockito.Mockito,	and	then	stub	it	or	apply	other
actions	to	the	object,	at	last	verify	behaviors.

The	bidirectional	green	dash	line	and	monodirectional	blue	dash	line	show	the	interaction
between	interfaces	inside	org.mockito.	It	means	the	interfaces	at	the	origin	can	call	the
methods	from	the	interfaces	at	the	direction	of	the	arrow.

Mockito

240

Figure	5.	Functional	structure	model

Following	clarifies	how	the	three	main	functionalities	interact	with	other	modules	shown	in
Figure	5.	The	module		mock		calls	from		listeners		to	register	a	listener	for	method
invocations	on	this	mock.	In	reverse,	the	listener	is	notified	every	time	a	method	on	this
mock	is	called.		mock		also	calls		Answer		from		stubbing		to	create	a	mock	with	default
answer.	The	module		plugins		utilizes		mock		to	provide	Android	developers	with	mock
creation	options	thus	they	can	avoid	the	default	byte-buddy/asm/objenesis	implementation
[5].

The	module		stubbing		calls	from		invocation		to	get	the	stubbed	method	returned.	Module
	configuration		depends	on		stubbing		to	offer	users	options	to	custom	the	default	answer.
Module		verification		is	depended	by		listeners		for	a	listener	to	be	notified	by	verification
invocations	on	a	mock.

Evolution	Perspective	[1]
Mockito	has	already	been	developed	for	years	and	open-sourced	from	the	very	beginning.
At	this	moment,	Mockito	has	many	versions	since	it	bases	on	a	continuous	release	model.
Since	Mockito	moved	to	Github	circa	2012,	the	team	wanted	to	automate	the	release

Mockito

241

process.	At	that	time,	the	build	script	was	based	on	Ant,	after	the	repository	migration	the
build	script	was	progressively	migrated	to	Gradle.	At	2014	one	core	developer	started	to
experiment	continuous	delivery	of	Mockito.

From	the	first	version	0.9	released	in	2008	to	the	latest	version	2.7.18	released	on	2017-03-
18,	Mockito	has	many	releases	and	has	been	added	lots	of	features.	In	Figure	6,	we	just
highlight	some	important	versions	as	example	of	the	evolution	of	Mockito.	The	versions
chosen	are	either	some	versions	(or	release	candidates)	with	significant	new	features	or	the
turning	point	bewtween	two	main	versions,	for	instance,	version	2.1.0	is	a	turning	point	from
Mockito	1	to	Mockito	2.	Version	1.0	is	the	very	beginning	of	Mockito	1,	and	after	the
improvements	of	every	latter	version	till	version	1.9.5	rc-1,	Mockito	1	growed	with	a	large
number	of	features	and	functions.	At	this	point,	a	brand	new	version	of	Mockito	was	needed,
and	indeed	version	2.1.0	(Mockito	2)	was	released	after	that.	During	the	period	of	Mockito
2.x,	Mockito	is	using	a	continuous	delivery	model.	That's	why	sometimes	only	small	fixes	are
found	at	every	version	in	Mockito	2.x	period.	The	evolution	also	indicates	that	the	framework
is	well	developed	and	has	a	lot	of	features.	However,	bug	fixes	and	new	features	are	still
added,	and	the	Mockito	team	is	preparing	for	Mockito	3.

Figure	6.	Some	versions	with	added	features	as	example	of	the	evolution	of	Mockito.

Future	Release	Perspective
The	current	release	model	of	Mockito	is	that	every	code	change	results	in	a	new	version	in
Central	repository.	Given	high	rate	of	new	versions,	the	community	is	not	comfortable	with
taking	new	Mockito	versions	at	a	fast	pace.	So,	the	Mockito	team	proposed	some	changes
which	may	be	implemented	for	the	release	model	of	Mockito	3	in	early	2017.

The	first-step	new	release	plan	is	that	release	every	change	but	not	all	releases	go	to
Central	library.	And	only	substantial	releases	are	pushed	to	standard	repository
(JCenter/Maven	Center)	at	monthly	cadence.	They	plan	to	push	remaining	versions	to	less
prominent	but	still	public	repository	for	early	adopters.	Some	proposals	are	listed	below:

Mockito

242

1.	 Every	version	lands	in	Bintray	repository	called	"all-versions".	That	repository	is	not
automatically	linked	to	JCenter/Maven	Central.

2.	 Every	minor	or	major	version	change	lands	in	both	"all-versions"	and	"notable-versions".
3.	 For	critical	bugfixes,	patch	version	change	can	be	published	to	"all-versions"	when

commit	message	contains	"[all-versions	release]".
4.	 Every	month,	last	patch	version	is	automatically	promoted	from	"all-versions"	to

"notable-versions".

Technical	Debts
In	this	section,	several	tools	are	used	to	analyze	the	technical	debts	of	Mockito.	All	the
measurements	are	finished	on	29/03/2017.

Automated	inspecting	code	debts	with	tool

With	assistance	of	SonarQube,	we	have	an	overview	on	technical	debts	of	Mockito.	Analysis
is	done	with	SonarQube	v6.3	on	the	main	source	code		\src\main\java\org\mockito		of
Mockito	v2.7.21.	In	this	section,	we	discuss	bugs	and	vulnerabilities,	code	smells,
duplications	and	cyclomatic	complexity.	Figure	7	is	a	screenshot	of	SonarQube	analysis
illustrating	a	general	statistics	of	the	technical	debts.

Figure	7.	An	general	technical	debts	statistics	by	SonarQube

Mockito

243

Bugs	&	vulnerabilities

139	bugs	have	been	found	in	the	source	code,	as	well	as	only	1	vulnerability.	The	total	time
needed	to	fix	all	the	bugs	and	vulnerabilities	is	about	four	days	and	two	hours,	which	is
acceptable.	Meanwhile,	most	of	the	bugs	are	repeated	in	different	places	of	source	code.
Here	we	list	the	three	types	of	bugs	that	are	repeated	most	times.

	

Figure	8.	Three	main	bugs

All	these	bugs	shown	in	Figure	8	are	related	to	the		Exception		in	the	source	code.	Thus	the
catch	of		Exception		may	lead	to	some	problems.	Besides,	there	are	several	bugs	related	to
serialization	and	introduction	of	variables.	However,	the	estimated	effort	should	be	taken	to
fix	these	bugs	is	much	lower	than	the	bugs	mentioned	above.	The	only	one	vulnerability	is:

Figure	9.	One	vulerability

It	is	a	very	small	one	that	can	be	fixed	using	private	attributes	and	accessor	methods	instead
of	public	ones	to	prevent	unauthorized	modifications.

Code	smells

SonarQube	provides	analysis	on	code	smells,	which	are	mainly	related	to	maintainability
issues	in	the	code	[6].	In	Figure	10,	it	is	shown	that	the	main	project	of	Mockito	is	highly
maintainable.	There	are	592	code	smells	and	the	technical	debts	can	be	fixed	in	8	days	and
3	hours	[7].	The	maintainability	is	rated	as	"A".

Mockito

244

Figure	10.	An	overview	of	maintainability-related	code	smells

The	distribution	of	code	smells	can	be	viewed	in	Figure	11.	The	circles	represent	classes
with	code	smells,	while	the	size	of	the	circle	is	proportional	to	the	amount	of	code	smells	in
the	corresponding	class.	The	vertical	axis	shows	the	time	needed	to	fix	the	issues	and	the
horizonal	axis	is	the	number	of	lines	of	the	classes.	It	can	be	observed	that	all	the	issues	can
be	fixed	within	a	few	hours.

Figure	11.	Distribution	of	the	code	smells

After	a	closer	look	at		/src/main/java/org/mockito/AdditionalMatchers.java	,	to	which	the
biggest	circle	is	corresponding,	it	can	be	inferred	that	the	situation	is	even	better	than	it	is
reported.	There	are	37	code	smells	reported	in		AdditionalMatchers	,	27	of	which	are	of	the
same	type	and	are	suggested,	"Remove	this	unused	method	parameter".	Code	section	of
one	of	those	methods	is	given	below.	SonarQube	argues	that	the	parameters	are	not	used,
but	actually	they	are	got	by	utilizing	the	java	method		pop()		in	the	argument	stack	in
	reportAnd()	.

				public	static	boolean	and(boolean	first,	boolean	second)	{

								mockingProgress().getArgumentMatcherStorage().reportAnd();

								return	false;

				}

Duplications

Mockito

245

Duplication	in	the	code	happens	when	developers	reuse	existing	code	fragment	by	copying
and	adapting	them.	It	saves	time	for	a	short	term	but	brings	difficulty	in	maintaining	in	a	long
run	[8].
According	to	SonarQube,	there	are	merely	3	files	with	a	total	of	214	duplicated	lines,	which
means	the	duplication	ratio	of	the	source	code	of	the	main	project	is	merely	0.7%.

Cyclomatic	complexity

SonarQube	measures	the	metric	complexity.	Its	documentation	says	that	in	Java,	keywords
incrementing	the	complexity	are		if,	for,	while,	case,	catch,	throw,	return		(that	is	not	the
last	statement	of	a	method),		&&,	||,	?		[9].	It	can	be	inferred	that	this	metric	is	about
cyclomatic	complexity,	which	indicates	if	there	are	too	many	branches	or	loops	in	the	code.
In	the	14408	lines	of	code,	the	total	complexity	is	2793.	Complexity	per	function	is	1.4	and
the	distribution	can	be	viewed	in	Figure	12.	McCabe	suggests	that	the	limit	of	complexity	in
one	module	is	10	[10].	In	Figure	12	there	are	six	methods	with	complexity	exceeding	10	and
the	maximum	complexity	is	around	12,	which	is	acceptable	compared	with	the	total	amount
of	methods.

Figure	12.	A	screenshot	of	SonarQube	on	complexity/function	distribution

Testing	debts

In	this	section,	we	will	look	at	the	other	type	of	technical	debt	called	testing	debt.	This	is
caused	by	the	lack	of	testing	or	by	poor	testing	quality.	In	order	to	find	the	testing	debt,	we
can	either	use	tools	or	perform	manual	analysis	on	the	testing.	Mockito	uses	CodeCov	[11]
to	generate	reports	about	the	amount	of	code	covered	by	Java	unit	tests.

The	report	generated	by	CodeCov	for	Mockito	shows	a	visualization	figure	in	the	form	of	a
'sunburst'	shown	in	Figure	14.	The	coverage	sunburst	is	an	interactive	graph	that	enables
one	to	navigate	into	project	folders	in	order	to	discover	files	that	lack	code	coverage.	The
size	of	each	slice	is	the	total	number	of	tracked	coverage	lines,	and	the	color	indicates	the
coverage	(from	red	to	green,	the	coverage	percentage	is	from	70%	to	100%).	The	center
ring	of	the	sunburst	diagram	shows	the	top	level	package,	and	each	consecutive	ring	shows

Mockito

246

a	deeper	level	of	the	package.	The	report	(Figure	13)	shows	that	the	code	coverage	of
Mockito	is	around	86.56%.	This	high	percentage	of	code	coverage	is	apparent	in	the
sunburst	with	the	dominating	amount	of	the	green	circles.

Figure	13.	Coverage	report	of	Mockito

Even	though	the	overall	coverage	of	Mockito	is	relatively	high,	there	are	still	some	packages
that	are	marked	in	red	in	the	sunburst.	In	Figure	14,	we	can	see	that	in	the	creation	package
of	bytebuddy,	there	exist	several	parts	of	inner	files	that	are	not	fully	covered.	Figure	14	also

Mockito

247

indicates	that	in	the	debugging	package,	the	not	fully	covered	files	exist.	These	problems	are
mentioned	in	issue	(#904).	From	code	coverage	report	(Figure	15),	we	can	see	that	some
classes	in	Mockito	are	completely	untested.	The		debugging/WarningCollector.java	,
	debugging/WarningsPrinterlmpl.java		and		bytebuddy/MockMethodDispatcher.java		files	are	in
the	list	of	totally	not	covered	files,	which	explains	the	red-marked	parts	in	Figure	14.	This	is
caused	by	some	unused	classes	in	these	files.	The	improvement	of	this	may	be	removing
those	unused	classes	or	testing	them	to	ensure	that	they	are	working	properly.

Figure	14.	Coverage	sunbursts	of	Mockito,	bytebuddy	and	debugging	files

Mockito

248

https://github.com/mockito/mockito/issues/904

Figure	15.	Coverage	report	of	some	uncovered	files

Overall,	the	high	coverage	rate	of	Mockito	benefits	from	the	use	of	Travis	CI	and	Codecov
as	part	of	their	continuous	integration	process.	This	allows	contributors	and	core	developers
to	receive	extended	feedback	on	their	testing	performance	and	to	keep	track	of	their
progress.	In	this	way,	they	can	find	and	improve	the	low	coverage	files	in	time.

Evolution	of	technical	debts

Despite	the	extensive	testing	of	Mockito,	the	technical	debts	have	grown	in	the	past	few
years	because	the	scale	of	Mockito	is	getting	bigger.	These	include	the	increment	on	the
number	of	new	features,	the	number	of	users,	and	the	involved	developers.	Besides,	the
increased	reliability	on	third-party	dependencies	is	also	one	of	the	important	reasons.	In	this
section,	how	these	factors	evolved	from	the	beginning	(2008)	till	now	(2017)	is	shown.	The
first	part	of	this	section	is	about	the	code	related	analysis,	and	the	second	part	notes	the
changes	on	the	number	of	TODOs	in	the	code	over	this	period.	Most	of	the	evidences	or
examples	used	in	this	section	come	from	the	release	note	of	Mockito.

Code	base	analysis

The	code	base	is	the	whole	project	of	Mockito,	this	is	much	larger	than	what	we	discussed	in
automated	inspection	part.	Figure	16	shows	the	total	number	of	code	lines	and	files	in	each
version	of	Mockito.	Both	code	lines	and	files	have	increased	dramatically	from	23660	lines
and	334	files	in	its	first	release	in	2008	to	81920	lines	and	947	files	in	its	latest	version.	From
the	figure,	it	could	be	noticed	the	number	for	both	code	lines	and	files	were	not	increased
stably	until	version	2.2.	There	are	some	fluctuations	with	two	big	modification	happened	in
version	1.3	and	1.8.	This	also	includes	the	version	1.7	that	has	a	significant	decrease	on
both	numbers.	After	v2.1,	numbers	of	both	code	of	lines	and	files	remain	stable.	It	may

Mockito

249

https://github.com/mockito/mockito/blob/release/2.x/doc/release-notes/official.md
https://github.com/mockito/mockito/archive/v1.0.zip
https://github.com/mockito/mockito/archive/v2.7.19.zip

benefit	from	the	fixed	bugs	and	improvements	before	the	release	of	Mockito	2,	and	since
then	the	technical	debt	decreased,	which	leads	to	relatively	mature	state	of	Mockito	with
minor	bugs.	For	example,	the	switch	of	mock	maker	engine	from	CGLIB	to	ByteBuddy
allows	Mockito	to	fix	some	long-standing	bugs	that	they	had	with	CGLIB.	More	details	could
be	found	in	the	next	part	of	this	section	TODOs	in	code.

Figure	16.	The	scale	analysis	on	the	number	of	code	lines	and	files	in	different	versions

TODOs	in	code

Another	important	factor	that	can	reflect	the	level	of	technical	debt	is	the	number	of	TODOs
in	code.	The	more	TODOs	in	the	current	stage	means	the	higher	possibility	of	paying
technical	debt	of	the	past.	Figure	17	shows	the	tendency	of	the	change	of	TODOs	in	each
version	over	last	9	years.	The	most	obvious	feature	in	this	figure	is	the	big	jump	while
Mockito	was	moving	from	version	1	to	version	2.	In	that	period,	the	works	that	need	to	be
done	increased	dramatically.	This	may	not	directly	mean	the	increasing	of	technical	debts.
However,	the	big	changes	of	the	framework	layout	or	structure	will	certainly	increase	the
frequence	of	occurence	of	technical	debt.	In	order	to	find	out	what	exactly	happended	in	that
period,	The	release	notes	is	studied.	Indeed,	the	biggest	change	happened	in	the	release	of
v2.1.	There	were	in	total	239	improvements,	726	commits	by	49	different	authors	and	160
remaining	changes	which	still	need	to	be	done	in	the	following	releases	(releases	after	v2.1).

Mockito

250

https://github.com/mockito/mockito/blob/release/2.x/doc/release-notes/official.md

Figure	17.	An	overview	about	the	changes	of	the	TODOs	number	in	each	Mockito	version

Conclusion
This	chapter	provides	the	readers	with	an	overview	of	Mockito	from	multiple	software
architectural	views	and	perspectives	as	defined	in	Rozanski	&	Woods's	book.	Conclusion
can	be	drawn	that	Mockito	is	of	a	highly	maintainable	architecture	as	well	as	low	load	of
technical	debts.

In	module	structure	model,	Mockito	is	divided	into	four	layers.	Such	a	hierarchy	is	not	only
easy	for	users	to	utilize	the	functionality	without	knowing	internal	implementations,	but	also
beneficial	from	a	maintainability	perspective.	The	functionalities	of	Mockito	are	around	the
main	process	of	mocking,	that	is,	mocking,	stubbing	and	verification.	Based	upon	this,	many
more	user-friendly	APIs	are	derived.

Mockito	keeps	a	low	load	of	technical	debts	although	it	has	been	existing	for	nine	years	(till
April,	2017).	The	size	of	its	code	base	has	been	kept	stable	around	80	thousand	lines	ever
since	Mockito	2.	Another	notable	observation	is	that	its	test	coverage	is	high	as	86.56%
when	analyzed.

Mockito

251

To	conclude,	Mockito	is	a	well-organized	open	source	project	that	is	under	high	quality	of
maintaining	and	development.	Given	the	healthy	status	with	issues	fixed	and	new	features
introduced	at	a	proper	pace,	we	believe	that	Mockito	will	become	an	even	more	popular
mocking	framework	in	the	future.

References
[1]	Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with
Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.	Available:
http://www.viewpoints-and-perspectives.info/home/book/.	Accessed	on:	3rd	April	2017.
[2]	Mockito,	version	2.	[Online].	Available:	http://site.mockito.org/.	Accessed	on:	3rd	April
2017.
[3]	DESOSA,	Delft	Students	on	Software	Architecture.	[Online].	Available:
https://www.gitbook.com/book/delftswa/desosa2016/details.	Accessed	on:	3rd	April	2017.
[4]	Mockito	WIKI,	Continuous	Delivery	Overview.	[Online].	Available:
https://github.com/mockito/mockito/wiki/Continuous-Delivery-Overview.	Accessed	on:	03
April	2017.
[5]	Javadoc,	Mockito	2.7.17	API	package	information.	[Online].	Available:
https://www.javadoc.io/doc/org.mockito/mockito-core/2.7.17.	Accessed	on:	3	April	2017.
[6]	SonarQube	Documentation,	Concepts.	[Online].	Available:
https://docs.sonarqube.org/display/SONAR/Concepts.	Accessed	on:	03	April	2017.
[7]	SonarQube	Documentation,	Computation	of	technical	debt.	[Online].	Available:
https://docs.sonarqube.org/display/SONARQUBE52/Technical+Debt.	Accessed	on:	03	April
2017.
[8]	SolidSourceIT,	"Does	source	code	duplication	matter?",	03	August	2012.	[Online].
Available:	https://solidsourceit.wordpress.com/2012/08/03/does-source-code-duplication-
matter/.	Accessed	on:	03	April	2017.
[9]	SonarQube	Documentation,	Metrics.	[Online].	Available:
https://docs.sonarqube.org/display/SONAR/Metrics+-+Complexity.	Accessed	on:	03	April
2017.
[10]	WIKI,	Cyclomatic	complexity.	[Online].	Available:
https://en.wikipedia.org/wiki/Cyclomatic_complexity.	Accessed	on:	03	April	2017.
[11]	CodeCov,	Mockito	coverage.	[Online].	Available:
https://codecov.io/github/mockito/mockito.	Accessed	on:	30	March	2017.

Mockito

252

http://www.viewpoints-and-perspectives.info/home/book/
http://site.mockito.org/
https://www.gitbook.com/book/delftswa/desosa2016/details
https://github.com/mockito/mockito/wiki/Continuous-Delivery-Overview
https://www.javadoc.io/doc/org.mockito/mockito-core/2.7.17
https://docs.sonarqube.org/display/SONAR/Concepts
https://docs.sonarqube.org/display/SONARQUBE52/Technical+Debt
https://solidsourceit.wordpress.com/2012/08/03/does-source-code-duplication-matter/
https://docs.sonarqube.org/display/SONAR/Metrics+-+Complexity
https://en.wikipedia.org/wiki/Cyclomatic_complexity
https://codecov.io/github/mockito/mockito

Neovim

In	order	of	appearance:	Ioannis	Petros	Samiotis,	Thomas	Millross,	Sander	Bosma	and	Jente
Hidskes.

Abstract
This	chapter	describes	the	software	architecture	of	Neovim:	an	open	source	code	editor
based	on	Vim.	This	analytical	essay	will	provide	interested	readers	with	objective	and
relevant	insights	into	the	challenges	and	architectural	decisions	of	the	Neovim	development
effort.	Neovim’s	software	architecture	is	assessed	within	the	Rozanski	and	Woods	[1]
framework.	The	system	stakeholders	are	detailed	and	categorised.	Then	the	context	and
development	viewpoints	are	described,	followed	by	an	analysis	from	the	perspectives	of
variability	and	evolution.	Finally	the	technical	debt	of	the	system	is	assessed	and	quantified.

Table	of	Contents
1.	 Introduction
2.	 Stakeholder	Analysis

i.	 Users
ii.	 Developers
iii.	 Other	Stakeholders
iv.	 Stakeholder	Management

3.	 Context	Viewpoint
i.	 System	Scope	and	Responsibilities

Neovim

253

ii.	 Context	Model
4.	 Development	Viewpoint

i.	 Codeline	Models
ii.	 Module	Structure	Model

5.	 Variability	Perspective
6.	 Evolutionary	Perspective

i.	 Evaluation	of	the	Initial	Project	Goals
7.	 Technical	Debt

i.	 Coverity	Scan	Static	Analysis
ii.	 Cyclomatic	Complexity
iii.	 "ToDo"	Style	Placeholders
iv.	 Coverage	and	Testing	Debt

8.	 Conclusion
9.	 References

Introduction
Neovim	is	an	extensible	code	editor,	written	mainly	in	C.	The	project	is	a	fork	of	the	famous
code	editor	Vim.	It	is	a	modal	editor,	which	means	the	keypresses	are	interpreted	differently
depending	on	the	current	mode.	The	main	modes	are	normal,	insert	and	visual	mode.	The
keyboard	shortcuts	and	commands	allow	users	to	edit	and	navigate	through	files	faster	than
is	possible	with	regular	editors.

Early	on	the	project	established	its	goals	of	making	Vim	development	more	open	to	the
community,	refactoring	the	Vim	codebase	and	removing	misfeatures.	The	vision	page
mentions	that	Neovim	is	intended	"for	users	who	want	the	good	parts	of	Vim,	and	more".
The	community	is	active	and	welcoming	to	new	users	and	contributors	alike.

This	chapter	presents	an	analysis	of	Neovim's	software	architecture	based	on	the	book
Software	Systems	Architecture	by	Rozanski	and	Woods	[1].	We	begin	by	considering	the
groups	and	individuals	influencing	the	project	through	a	stakeholder	analysis.	We	then
present	a	context	viewpoint,	which	defines	the	relationships	between	Neovim	and	its
environment.	An	in-depth	study	of	Neovim's	codebase	is	presented	in	the	development
viewpoint	section.	Next,	two	perspectives	are	explored:	the	variability	and	evolutionary
perspectives.	Finally,	we	discuss	the	technical	debt	in	Neovim's	codebase,	before
concluding.

Stakeholder	Analysis

Neovim

254

https://en.wikibooks.org/wiki/Learning_the_vi_Editor/Vim/Modes
https://neovim.io/charter/

We	present	here	a	stakeholder	analysis	of	the	Neovim	project.	To	compile	information,	we
began	by	documenting	our	existing	knowledge	of	the	stakeholders	involved	and
supplemented	this	knowledge	with	data	sources	including:	GitHub	issues	and	pull	requests,
Gitter	conversations	and	the	online	documentation.	For	categorisation,	we	took	the	Rozanski
and	Woods	stakeholder	list	[1]	as	a	basis,	then	removed	the	categories	irrelevant	to	Neovim.
Finally	we	estimated	the	power	and	interest	of	each	group	through	structured	discussion
within	our	team.

Users

Neovim	users	are	ultimately	the	reason	the	project	exists.	Professional	data	scientists,
sysadmins	and	devops	experts	are	known	to	favour	Vim.	Users	could	be	divided	based	on
their	skill-level	into	beginners	and	advanced	users.	Beginners	may	struggle	initially	with
Neovim's	minimalist	interface,	and	frequently	consult	the	help	and	documentation,	striving	to
improve.	The	advanced	group	have	traversed	the	steep	learning	curve,	developed	muscle-
memory	in	their	fingers,	and	memorised	countless	keyboard	shortcuts.	Design	decisions	for
Neovim	primarily	emphasise	the	maximisation	of	editing	efficiency	for	the	advanced	group.
Beginners	are	encouraged	to	improve	their	skills,	for	instance	using	vim-tutor-mode.

Developers

Many	people	have	contributed	to	the	Neovim	codebase	as	developers.	The	~14	core
developers	include	@justinmk	the	Benevolent	Dictator	For	a	Limited	time,	the	lead
developer	@ZyX-I	and	@jamessan,	with	@tarruda	recently	becoming	much	less	active.
These	core	developers	also	fulfil	additional	roles,	such	as	maintainers	and	assessors,
keeping	the	project	running	whilst	ensuring	contributions	adhere	to	coding	standards	and
follow	the	style	guide.	There	is	not	a	dedicated	team	of	testers;	new	tests	are	added	by
developers	whenever	significant	changes	are	submitted.

Developers	can	further	be	divided	into	subcategories,	in	recognition	of	their	differing
concerns	and	motivations.	Related	project	&	plugin	developers	are	essential	for	the
growth	of	a	healthy	software	ecosystem	in	the	Neovim	environment.	Communication	and
overlap	between	these	development	teams	helps	to	ensure	that	requirements	are	met	and
clean	interfaces	are	maintained	without	regression.	Vim	developers	may	have	submitted
code	still	in	use	by	Neovim,	or	recent	bug-fixes	that	have	been	ported.	Neovim	developers
also	actively	assist	Vim	developers	by	porting	relevant	patches	to	their	codebase.

Other	Stakeholders

Neovim

255

https://gitter.im/neovim/neovim
https://github.com/neovim/neovim/wiki
https://en.wikipedia.org/wiki/System_administrator
https://en.wikipedia.org/wiki/DevOps
https://stackoverflow.com/insights/survey/2017#technology-most-popular-developer-environments-by-occupation
http://stackoverflow.com/insights/survey/2015#tech-editor
https://github.com/fmoralesc/vim-tutor-mode
https://neovim.io/news/2016/11/
https://github.com/justinmk
https://neovim.io/news/2016/11/
https://github.com/ZyX
https://github.com/jamessan
https://github.com/tarruda
https://neovim.io/develop/style-guide.xml

There	are	no	official	support	staff	or	dedicated	communicators.	Volunteers	provide
support	through	a	wiki	which	contains	the	documentation,	and	a	user	manual	which	can	be
accessed	through	the	Neovim		:help		command.	Individual	support	is	also	offered	through
StackExchange,	GitHub	Issues,	Twitter,	Gitter,	IRC,	Google	Groups	and	Reddit.	Everyone
who	replies	on	these	channels	could	be	considered	as	support	staff.

Suppliers	are	the	stakeholders	that	develop	distributions	and	packages.	They	take
decisions	on	whether	to	distribute	Neovim	for	their	platforms	and	hence	can	potentially
influence	the	future	popularity	of	the	software.	Neovim	accepts	donations	through
Bountysource,	so	the	donators	could	be	regarded	as	acquirers.	However,	they	have	no
formal	decision	making	power.	Finally,	the	competitors	are	an	important	stakeholder,
described	in	the	context	viewpoint	section.

Stakeholder	Management

To	visualise	the	relative	power	and	interest	of	the	stakeholders,	a	power-interest	grid	is
provided	in	Figure	1.	The	power	axis	indicates	influence	in	the	decision	making	process	and
project	direction.	The	interest	axis	represents	the	ongoing	attention	paid	by	a	stakeholder	to
the	project	development.	Stakeholders	in	the	upper	right	corner	should	be	closely	managed,
while	those	in	the	lower	left	require	minimal	engagement.	The	stakeholders	in	the	upper	left
corner	should	be	kept	satisfied	and	those	in	the	lower	right	should	be	kept	informed	about
developments,	to	maintain	their	interest.

Neovim

256

https://github.com/neovim/neovim/wiki/
https://neovim.io/doc/
https://vi.stackexchange.com/
https://github.com/neovim/neovim/issues
https://twitter.com/neovim
https://gitter.im/neovim/neovim
https://groups.google.com/forum/#!forum/neovim
https://www.reddit.com/r/neovim/
https://salt.bountysource.com/teams/neovim

Figure	1:	the	power-interest	grid

Context	Viewpoint
The	context	viewpoint	describes	"the	relationships,	dependencies,	and	interactions	between
the	system	and	its	environment"	[1].	We	highlight	Neovim's	project	scope,	then	use	a	context
model	to	elaborate	on	the	relationships	with	external	entities.

System	Scope	and	Responsibilities

Neovim	is	a	code	editor	for	those	users	who	prefer	to	have	a	simple	but	powerful
environment.	Its	responsibilities	include	opening	text	files	and	allowing	the	user	to	edit	these
files.	Neovim	assists	the	user	in	navigating	these	files	and	understanding	the	code	contained
within	them	by	offering	syntax	highlighting	and	other	features.	An	embedded	scripting
language	called	Vimscript	is	included,	to	enable	extension	and	configuration	by	the	user	(as
described	in	the	variability	perspective).

Note	that	Neovim	is	not	striving	to	be	an	integrated	development	environment	(IDE).	While	it
offers	the	user	a	vast	array	of	extensibility	that	could	provide	IDE-like	features,	the	intention
is	to	remain	a	simple	but	powerful	code	editor.

Neovim

257

http://learnvimscriptthehardway.stevelosh.com/
https://neovim.io/charter/

Context	Model

Neovim's	context	model	is	illustrated	in	Figure	2.	This	model	depicts	Neovim	in	the	centre,
surrounded	by	the	external	entities	it	interacts	with.	These	entities	are	described	below,
beginning	at	the	competitors	and	rotating	clockwise.

Figure	2:	the	context	model	of	Neovim

Competitors

Neovim	has	competition	from	mainstream	code	editors	such	as	Atom,	Sublime	Text	and
Notepad++.	Vim	and	GNU	Emacs	are	the	main	competitors	from	the	same	niche	and
require	a	small	elaboration:

Vim	and	Neovim	are	of	course	quite	similar.	Neovim	introduced	new	features,	some	of
which	are	now	also	found	in	Vim.	Many	differences	are	also	found	under	the	hood	and
in	the	way	the	communities	operate.
GNU	Emacs	is	an	extensible,	customisable	text	editor	--	and	much	more.	At	its	core,
Emacs	is	a	Lisp	interpreter	that	just	so	happens	to	support	text	editing.	Plugins	can

Neovim

258

change	almost	everything;	there	is	an	entire	ecosystem	providing	functionality	such	as
calendars,	project	planners,	PDF	readers	and	even	internet	browsers.

Community

Neovim	has	an	extensive	community,	known	for	being	open	and	friendly	to	newcomers.	See
the	stakeholder	analysis	for	an	overview.

Operating	Systems

Neovim	runs	on	a	variety	of	operating	systems:	macOS,	Linux,	FreeBSD,	OpenBSD	and
even	Android.	Neovim	chose	not	to	inherit	Vim's	support	for	obsolete	operating	systems.
Windows	support	is	the	focus	of	the	current	release	target.

Plugins

Plugins	can	extend	the	functionality	of	the	editor	or	overwrite	its	default	behaviour;	detail	is
available	in	the	variability	perspective.

Software	Dependencies

Neovim	is	built	on	top	of	existing	C	libraries	that	handle	low	level	operations.	These
dependencies	are	enumerated	in	Table	1.

Library Description

jemalloc an	efficient	replacement	for	the	system	provided		malloc	,	used	to
allocate	memory

gettext used	to	localise	the	interface	to	the	user's	locale

unibilium
Neovim's	built-in	UI	is	a	terminal	user	interface.	Unibilium	provides
information	about	the	supported	features	of	the	terminal	emulator
within	which	it	runs

libtermkey to	decode	keypresses,	enabling	the	functionality	described	above

libvterm provides	the	built-in	terminal	emulator

libuv abstracts	the	operating	system	layer

MessagePack exposes	Neovim's	API,	allowing	clients	to	be	written	in	any
programming	language

LuaJIT provides	support	for	Lua	scripting

Table	1:	dependencies	of	Neovim

Neovim

259

https://github.com/neovim/neovim/milestone/10
https://jemalloc.github.io
https://www.gnu.org/software/gettext/
https://github.com/mauke/unibilium
http://www.leonerd.org.uk/code/libtermkey/
http://www.leonerd.org.uk/code/libvterm/
https://github.com/libuv/libuv
http://msgpack.org
http://luajit.org/

Static	Analysis

Static	analysis	tools	help	developers	to	identify	bugs,	style	deviations	and	technical	debt.
Three	different	static	analysis	tools	are	run	on	the	Neovim	codebase.	Coverity	is	the	most
advanced	static	analysis	tool	used	by	Neovim	and	integrates	with	both	GitHub	and	Travis.
Clang	Static	Analyzer	is	the	static	analysis	tool	offered	by	the	Clang	compiler.	Finally,	clint	is
used	to	check	for	coding	style	violations	and	suspicious	patterns.

Related	Projects

Neovim's	architecture	(as	described	in	the	development	viewpoint)	enables	the	creation	of
graphical	UIs	and	other	clients	that	cannot	be	implemented	in	Vim.	For	instance,	VimR
replaces	Neovim's	built-in	terminal	UI	with	a	graphical	UI	native	to	macOS.	NyaoVim	also
provides	a	modern	graphical	UI	for	Neovim	using	Electron,	but	registers	itself	as	a	client
over	MessagePack	instead	of	replacing	the	built-in	terminal	UI.	SolidOak	is	an	aspiring	IDE
for	Rust	that	embeds	Neovim	as	its	editor	component.	Finally,	Neovim-Qt	is	a	client
graphical	UI	like	Nyaovim,	using	Qt5	instead	of	Electron.	Neovim-Qt	will	be	the	default
graphical	UI	on	Windows.

Source	Code	Control	and	Issue	Management

Neovim's	entire	development	infrastructure	is	hosted	on	GitHub.	Coveralls	is	used	to	keep
track	of	code	coverage.	SourceGraph	is	offered	as	an	alternative	way	of	browsing	the	code
online	and	Waffle	is	offered	as	an	alternative	project	management	tool.

Build	and	Continuous	Integration

Neovim	replaces	the	autotools	build	system	with	one	implemented	in	CMake,	which	is
arguably	easier	to	work	with,	particularly	on	Windows.	Neovim	uses	AppVeyor	for
Continuous	Integration	builds	on	Windows	and	TravisCI	for	macOS	and	Linux	builds.

History

Neovim	comes	from	a	long	line	of	editors.	ed	was	the	line	editor	provided	by	the	Unix
operating	system.	It	inspired	the	creation	of	ex,	a	line	editor	for	Unix	systems	that	took
advantage	of	video	terminals.	vi	was	born	as	the	visual	mode	for	ex.	Over	the	years,	vi
became	the	standard	Unix	text	editor.	Vim	(Vi	IMproved)	is	a	clone	of	vi	providing	more
features,	such	as	syntax	highlighting	and	an	extended	range	of	ex	commands.	Finally,
Neovim	is	a	fork	of	Vim.

Neovim

260

https://en.wikipedia.org/wiki/Static_program_analysis
https://scan.coverity.com/projects/2227
https://neovim.io/doc/reports/clang/
https://github.com/neovim/neovim/blob/88bc9f8e92903700494486fe383c6b94eef80f3f/src/clint.py
http://vimr.org/
https://github.com/rhysd/NyaoVim
https://sekao.net/solidoak/
https://github.com/equalsraf/neovim-qt
https://github.com/neovim
https://coveralls.io/github/neovim/neovim
https://sourcegraph.com/github.com/neovim/neovim
https://waffle.io/neovim/neovim
https://en.wikipedia.org/wiki/GNU_Build_System
https://cmake.org/
https://ci.appveyor.com/project/neovim/neovim/branch/master
https://travis-ci.org/neovim/neovim

Development	Viewpoint
A	development	viewpoint	describes	"the	architecture	that	supports	the	software	development
process"	[1].	We	describe	a	number	of	codeline	models,	then	present	the	module	structure
model.

Codeline	Models

This	section	is	mainly	structured	after	the	four	activities	from	the	"Codeline	Models"	chapter
in	Rozanski	&	Woods	[1].	Additionally,	it	contains	a	section	relating	to	the	standardisation	of
testing.

Folder	Structure

A	description	of	the	top-level	folders	of	the	Neovim	repository	is	shown	in	Table	2	below.

Folder Description

build generated	folder	containing	all	object	files	and	binaries

cmake CMake	recipes	to	generate	the	Makefiles	required	during	the	building
process

config CMake	and	versioning	configuration

contrib useful	files	for	contributors:	autocompletion	configurations,	Doxygen
settings,	etc.

man source	for	displaying	manual	pages	(through	the		man	nvim		command)

runtime all	run-time	data:	syntax	highlighting,	indentation	scripts,	icons,	in-program
documentation,	plugins,	etc.

scripts scripts	for	building,	releasing,	etc.

src/nvim
C	source	code	including	some	related	files	organised	into	subdirectories
and	some	unorganised	loose	files.	See	the	module	structure	model	for	more
information

test testing	related	files;	functional	tests	are	placed	in	test/functional,	unit	tests
are	placed	in	test/unit.	The	structure	of	test/unit	is	identical	to	src/nvim

third-
party CMake	recipes	to	build	third	party	dependencies

unicode files	containing	Unicode	definitions

Table	2:	description	of	the	top-level	folders

Build	Approach

Neovim

261

Neovim	uses	a	combination	of	GNU	Make	and	CMake	to	automate	the	building	process.
Make	ensures	that	source	code	is	compiled	in	the	correct	order;	it	uses	a	Makefile	which
lists	dependencies	between	targets	and	specifies	the	steps	required	to	build	a	target.	Since
it	is	difficult	to	write	Makefiles	that	are	independent	of	the	system	configuration	(e.g.	installed
compiler	and	libraries),	CMake	is	used	to	dynamically	create	Makefiles	specific	to	the
system	on	which	it	runs.	Once	a	user	has	cloned	the	Neovim	repository	from	GitHub,	they
simply	execute	the		make		command.	This	will	automatically	call	both	CMake	and	Make	as
required.

Release	Process

Each	time	a	commit	is	made	to	the	master	branch,	Travis-CI	automatically	builds	the
Doxygen	and	user	documentation.	It	also	generates	the	Clang	Static	Analyzer,	translation,
clint,	vim-patch	and	Coverity	reports.	Finally,	a	nightly	release	is	made	which	contains	the
Linux	and	MacOS	binaries.	Windows	binaries	are	generated	by	AppVeyor.	The	nightly
releases	are	mostly	for	testing.	At	major	milestones,	an	official	release	is	tagged	which
contains	only	the	source	code.	Users	can	either	compile	Neovim	themselves	or	wait	until
distribution	maintainers	update	their	packages	to	provide	the	new	version.

Configuration	Management

Neovim	uses	the	standard	GitHub	pull-based	development	model	for	collaboration.	The
project	is	split	into	multiple	repositories.	All	files	mentioned	in	the	subsections	above	are
located	inside	the	Neovim	repository.	Related	projects,	such	as	plugin	clients,	continuous
integration	support	and	forks	of	dependencies	are	in	GitHub	repositories	under	the	same
organisation.

Standardisation	of	Testing

Neovim	categorises	test	into	unit	and	functional	tests.	Unit	tests	are	compiled	into	a	shared
library	and	executed	through	the	LuaJIT	FFI	library,	which	enables	Lua	code	to	use	the	C
functions	and	data	structures	of	the	Neovim	code.	Functional	tests,	on	the	other	hand,	do
not	interface	with	the	C	code	directly,	but	instead	use	the	API	via	remote	procedure	calls
(RPCs).	While	the	unit	tests	usually	only	check	the	return	values	of	functions,	the	functional
tests	can	also	check	for	example	whether	the	resulting	screen	displays	the	correct	state.
These	tests	can	be	run	locally.	They	are	also	automatically	executed	when	changes	are
pushed	to	GitHub,	together	with	clint	to	detect	coding	style	violations	and	Coveralls	for	test
coverage	(as	in	coverage	and	testing	debt).

Module	Structure	Model

Neovim

262

https://neovim.io/doc/dev
https://neovim.io/doc/user
https://neovim.io/doc/reports/clang
https://neovim.io/doc/reports/translations
https://github.com/neovim/doc/blob/gh-pages/reports/clint/index.html
https://neovim.io/doc/reports/vimpatch
https://scan.coverity.com/projects/2227
https://github.com/neovim/neovim/releases/nightly
https://github.com/neovim/neovim/wiki/Installing-Neovim#windows
https://www.appveyor.com/
https://github.com/neovim/neovim
https://github.com/neovim
http://luajit.org/ext_ffi.html
https://github.com/neovim/neovim/wiki/Building-Neovim#running-tests
https://github.com/neovim/neovim/blob/88bc9f8e92903700494486fe383c6b94eef80f3f/src/clint.py
https://coveralls.io/github/neovim/neovim

A	module	structure	model	shows	the	organisation	of	the	source	files	into	modules	that
contain	related	code	[1].	Such	a	structure	provides	an	overview	of	the	source	code	which
guides	developers	to	understand	and	navigate	the	codebase.

The	module	structure	model	for	Neovim	in	Figure	3	displays	a	simplified	conceptual
overview	for	two	reasons:

1.	 the	codebase	is	complex	and	exhibits	a	structure	which	is	difficult	to	discern	due	to
inheriting	25	years	worth	of	updates	and	changes	without	a	significant	refactoring	(see
technical	debt).	Neovim	was	created	to	address	this	issue,	and	this	work	is	ongoing.

2.	 C	is	a	low-level	language,	but	low-level	analysis	does	not	provide	the	ideal	overview	for
documenting	the	module	organisation.

Within	the	model,	each	box	represents	a	module	containing	the	names	of	some	of	the
relevant	source	files	of	that	module.	The	arrows	show	inter-module	relationships,	and	the
relative	height	differences	graphically	represent	the	layering.

Figure	3:	the	module	structure	model

We	begin	with	the	Modes	module,	which	has	a	thick	border.	Neovim	models	a	pushdown
automaton	that	changes	state	on	receipt	of	input	from	the	operating	system.	A	state	in	this
case	refers	to	a	mode	(such	as	insert	mode)	or	normal	mode)	that	implements	an	interface.
The	modes	guide	the	pushdown	automaton's	state	changes	and	Neovim's	behaviour,	and
hence	the	modes	drive	all	other	modules.

A	mode	operates	on	a	buffer	(Vim	jargon	for	a	loaded	file)	to	edit	its	contents.	The	Files	and
Buffers	module	contains	the	code	required	to	load	files	into	memory,	for	which	it	needs	to
handle	I/O,	character	encoding	and	multi-byte	characters.	Because	I/O	is	inherently

Neovim

263

https://en.wikipedia.org/wiki/Pushdown_automaton
https://github.com/neovim/neovim/blob/master/runtime/doc/insert.txt
https://github.com/neovim/neovim/blob/master/runtime/doc/intro.txt#L514

operating	system	specific,	this	module	interacts	with	the	Operating	System	Interface	module.
This	module	provides	abstractions	over	filesystem	access,	signals,	input	handling	and	other
low-level	operations	that	vary	across	operating	systems.

When	a	buffer	is	changed	from	any	mode,	the	mode	notifies	the	Screen	module.	This
module	is	responsible	for	maintaining	an	internal	representation	of	what	should	be	visible	on
the	UI.	For	each	running	Neovim	instance,	there	is	one	such	screen	that	displays	one	or
more	windows	(a	view	into	a	buffer)	in	tab	pages	(a	layout	of	windows).	An	architectural
decision	taken	by	Neovim	is	that	all	code	related	to	GUIs	is	removed	from	the	core.	Instead,
there	is	a	User	Interface	module	that	reflects	the	Screen	module.	Synchronisation	between
the	User	Interface	and	the	Screen	module	is	handled	through	the	Events	module:	the
Screen	module	publishes	events	that	in	turn	drive	the	User	Interface	module.

The	API	module	exposes	the	User	Interface	and	other	modules	over	the	MessagePack	RPC
module.	GUIs	or	other	clients	can	subscribe	to	this	RPC	channel	to	for	example	interact	with
the	running	Neovim	instance,	or	control	it	over	a	(local)	network	connection.

Finally,	the	Local	Clients	module	contains	clients	that	bypass	the	RPC	interface	and	directly
communicate	with	the	User	Interface	module.	The	built-in	Terminal	UI	(TUI)	is	an	example	of
such	a	local	client.

Variability	Perspective
This	section	highlights	three	types	of	software	variability:	compile-time,	load-time	and	run-
time	variability	[3].	The	choice	of	which	type	of	variability	to	utilise	is	a	design	decision	which
balances	disk-space	requirements,	run-time	performance	and	usability.	Neovim	uses	all
three	types	to	some	degree.

Compile-time

Compile-time	options	influence	the	binary	created	by	the	build	process;	the	chosen	options
are	compiled	into	the	binary,	the	others	removed.	This	results	in	a	reduction	in	binary	size,
but	also	an	increase	in	performance	as	these	options	now	do	not	have	to	be	evaluated	at
run-time.	A	classic	example	of	compile-time	variability	is	enabling	or	disabling	certain	feature
sets,	an	option	heavily	used	by	Vim.	Neovim	has	removed	these	feature	sets	and	instead
compiles	most	features	unconditionally.	The	remaining	compile-time	variability	options
include	inherently	compile-time	dependent	OS-specific	code	that	cannot	be	abstracted	and
the	built-in	TUI	that	can	be	disabled.

Settings

Neovim

264

Neovim	is	highly	customisable,	with	over	300	configurable	settings	such	as	syntax
highlighting,	colour	schemes,	indentation	width,	and	default	case	sensitivity	of	searches.	Key
bindings	can	also	be	personalised	for	the	user.	These	settings	can	all	be	configured	at	run-
time	or	added	to	the	initialisation	file	for	load-time	variability.	As	this	file	is	interpreted	as
Vimscript,	it	can	also	be	used	for	implementation	of	plugins.

Plugins

Neovim	plugins	can	be	broadly	divided	into	two	categories:	remote	plugins	and	Vimscript
plugins.	VimAwesome	lists	over	15000	Vimscript	plugins,	with	the	majority	designed
originally	for	Vim.	Most	are	compatible	with	Neovim.	After	Neovim	implemented
asynchronicity,	Vim	developed	an	incompatible	alternative	implementation.	Asynchronous
plugins	are	thus	an	exception:	they	are	not	compatible	unless	support	is	manually	added.
However,	most	plugins	are	purely	synchronous	and	can	thus	be	used	by	both	systems.

Remote	plugins	can	communicate	with	the	Neovim	API	via	MessagePack.	To	simplify
remote	plugin	development,	Neovim-specific	API	clients	are	currently	available	in	17
languages,	although	in	theory	any	language	implementing	MessagePack	(of	which	there	are
over	50)	can	be	used	to	develop	new	remote	plugins.	Since	remote	plugins	are	introduced
by	Neovim,	these	plugins	do	not	work	on	Vim.

Inter-plugin	dependence	is	uncommon,	although	some	such	as	vim-airline	are	designed	to
integrate	with	others.	Plugin	conflicts	are	also	rare,	with	the	possible	exception	of
overlapping	key	bindings.

External	User	Interface

Neovim	can	also	be	embedded	into	other	programs	through	the	RPC	API.	The	external	GUI
starts	Neovim	in	headless	mode	using	a	command	line	parameter	(another	form	of	load-time
variability).	Instead	of	drawing	the	screen,	Neovim	sends	the	screen	state	over	the	RPC	API
to	the	external	UI.	Conversely,	key	strokes	are	received	by	the	external	GUI	and	sent	across
the	API	to	Neovim.	The	RPC	layer	can	also	by	bypassed	directly	by	replacing	the	built-in	TUI
with	another	UI	(see	VimR	in	related	projects).

Evolutionary	Perspective
The	evolutionary	perspective	takes	a	view	on	the	ability	of	the	system's	architecture	to	be
flexible	[1].	We	take	a	slightly	different	approach	and	consider	the	changes	required	of	Vim's
architecture	from	the	perspective	of	@tarruda	when	he	decided	to	fork	Vim.	We	use	the

Neovim

265

https://neovim.io/doc/user/quickref.html#option-list
http://vimawesome.com/
https://github.com/neovim/neovim/wiki/FAQ#are-plugin-authors-encouraged-to-port-their-plugins-from-vimscript-to-lua-do-you-plan-on-supporting-vimscript-indefinitely-1152
https://github.com/neovim/neovim/wiki/Related-projects#api-clients
http://msgpack.org/#languages
https://github.com/vim-airline/vim-airline
https://www.reddit.com/r/neovim/comments/4kd2et/overview_of_working_with_headless_nvim/
https://github.com/tarruda

following	process,	adapted	from	Rozanski	&	Woods	[1]:	characterise	the	evolution	needs,
assess	the	current	ease	of	evolution	and	rework	the	architecture.	We	conclude	by	evaluating
the	extent	to	which	@tarruda's	architectural	goals	have	been	met.

After	two	decades	of	evolution,	Vim	had	accumulated	a	complex	codebase	that	few	people
understood.	Bram	Molenaar	was	possibly	the	only	person	capable	of	maintaining	Vim's
codebase,	leaving	him	reluctant	to	merge	new	features	due	to	the	risk	of	regression.	Vim
was	thus	unable	to	keep	up	with	the	improvement	and	evolution	demands	of	its	users.

@tarruda	realised	this	and	decided	it	was	time	to	rework	Vim's	architecture	to	increase	its
flexibility	and	reduce	the	time	taken	to	implement	new	features.	He	characterised	Vim's
evolutionary	requirements	using	his	prior	experience	contributing	to	Vim,	as	in	Table	3.

Change Type Magnitude Timescale

Simplify	maintenance	to	support	new
features	and	make	it	easier	to	provide
bug	fixes

Functional
Large-
scale,	high
risk

Not
immediately
required,
rather	a	long-
term	goal

Enable	the	implementation	of	modern
user	interfaces	separate	from	the	core
of	the	editor

Functional,
environment

Large-
scale,	high
risk

Required
sooner	rather
than	later

Increase	extensibility	(see	the
variability	perspective)

Functional,
environment

Large-
scale,	high
risk

Required
almost
immediately

Table	3:	Neovim's	change	requirements	when	forked	from	Vim

For	each	change,	@tarruda	specified	a	plan	to	help	in	estimating	the	ease	of	evolution:

1.	 To	simplify	maintenance,	Neovim	would	migrate	to	a	CMake-based	build	system,
remove	legacy	support	and	compile-time	features	and	remove	platform-specific	code	in
favour	of	libuv.	This	is	a	difficult	and	high-risk	requirement	that	would	change	the
codebase	as	a	whole.	Luckily,	much	of	it	could	be	automated	using	existing	tools.

2.	 To	enable	modern	user	interfaces	and	increase	extensibility,	Neovim	would	implement	a
job	control	mechanism	over	MessagePack.	This	is	again	a	difficult	requirement	that
would	require	substantial	refactoring	of	the	codebase.	However,	there	was	already	prior
work	and	experience	from	attempting	to	bring	asynchronous	plugins	to	Vim.

Since	then,	Neovim's	developers	have	refactored	Vim's	architecture	in	a	step-wise	fashion,
limiting	changes	to	distinct	sub-systems.	They	strived	to	encapsulate	functionality	within
well-defined	modules	(see	the	module	structure	model)	with	separate	concerns.	Where

Neovim

266

https://github.com/tarruda
https://github.com/tarruda
https://www.bountysource.com/teams/neovim/fundraiser
https://github.com/tarruda

possible,	these	modules	were	abstracted	behind	interfaces.	A	focus	on	unit	and	functional
tests	within	a	continuous	integration	framework	helped	towards	ensuring	the	changes	were
reliable.

Evaluation	of	the	Initial	Project	Goals

Neovim	is	now	three	years	old;	how	have	these	initial	goals	been	met?	In	November	2016,
Neovim	developers	stated	that	at	least	20,000	new	lines	of	C	code	had	been	written,	with
2200	new	tests	in	addition	to	Vim's	own	test	suite.	By	that	time,	273	contributors	had
committed	more	changes	than	Vim	had	received	in	twelve	years.	For	a	complete	and	up-to-
date	overview	of	differences	between	Vim	and	Neovim,	see	the	vim-differences	manual
page.

The	asynchronous	plugins	and	built-in	terminal	emulator	are	prime	examples	of	new
features	that	have	been	implemented.	All	the	work	on	the	foundation	is	just	now	starting	to
bear	its	fruit	with	the	appearance	of	many	external	GUI	clients	and	several	clients	making
use	of	the	asynchronicity	to	implement	features	previously	impossible	in	Vim.	As	new
features	have	been	implemented	without	the	addition	of	a	significant	support	burden,	it	is
clear	that	the	changes	have	led	to	simplified	maintenance	requirements.	All	of	this	is	not
without	technical	debt,	however,	as	the	following	section	will	show.

Additionally,	Vim	8.0	was	announced	in	December	2016	as	the	first	release	in	ten	years,
sporting	many	of	the	features	initially	found	only	in	Neovim.	This	suggests	that	the	new
competition	was	the	inspiration	and	motivation	for	this	vital	renewal	in	development	effort.

Technical	Debt
This	section	explores	technical	debt	in	the	Neovim	codebase.	Before	entering	into	the
details,	let	us	first	consider	the	perspective	that	the	Neovim	project	exists	partly	as	an
answer	to	the	technical	debt	accumulated	by	the	Vim	project.	This	blog	describes	examples
of	technical	debt	found	in	Vim's	codebase,	before	highlighting	Neovim	as	the	solution.

It	is	clear	that	Neovim	developers	understand	Neovim	within	this	context.	The	lead
maintainer	@justinmk	demonstrates	his	familiarity	with	the	technical	debt	metaphor	on
numerous	occasions	(1,	2,	3,	4).	Furthermore,	on	the	progress	page	in	the	Wiki	a	lot	of	items
are	listed	that	are	directly	or	indirectly	related	to	paying	technical	debt.	Finally,	during	a
period	of	limited	new	features,	in	response	to	the	question	of	"is	Neovim	in	maintenance
mode?",	he	responds	"Yes.	We're	paying	down	technical	debt".

Coverity	Scan	Static	Analysis

Neovim

267

https://neovim.io/news/2016/11/
https://github.com/neovim/neovim/blob/master/runtime/doc/vim_diff.txt
https://neovim.io/news/2016/11/
https://groups.google.com/d/msg/vim_dev/CmiGxtJ7fn4/DzdTuTtIAQAJ
https://geoff.greer.fm/2015/01/15/why-neovim-is-better-than-vim/
https://github.com/justinmk
https://github.com/neovim/neovim/pull/2762
https://github.com/neovim/neovim/issues/329
https://github.com/neovim/neovim/pull/394
https://github.com/neovim/neovim/pull/5243
https://github.com/neovim/neovim/wiki/Progress
https://www.reddit.com/r/neovim/comments/44r36y/is_neovim_in_maintenance_mode/

Coverity	Scan	is	an	advanced	static	analysis	tool	that	helps	developers	find	and	fix	defects.
It	is	executed	periodically	to	scan	Neovim's	source	code.	At	the	time	of	writing,	there	are	89
outstanding	issues	out	of	a	total	of	458	found	since	the	project's	inception.	40	of	these	are
dismissed	as	false	positives	and	329	have	been	fixed.	The	last	scan	(March	5,	2017)
concluded	a	defect	density	(defined	as	the	number	of	defects	per	1,000	lines	of	code)	of
0.33.

Some	of	the	89	outstanding	issues	were	first	detected	in	2014.	All	open	Coverity	issues	can
be	categorised	as	technical	debt,	since	all	of	these	defects	are	known	but	nobody	has
managed	to	fix	them	(or	determined	if	they	are	false	positives).

In	Figure	4	we	present	the	defect	density	of	Neovim	over	a	period	of	time	as	generated	by
Coverity.	As	can	be	seen,	Neovim's	complexity	fluctuates	around	the	average	defect	density
of	open	source	software	projects	of	similar	size	(between	100,000	and	499,999	lines	of
code).	The	spike	visible	around	January	2017	is	likely	a	misconfiguration	or	something	going
wrong	on	Coverity;	a	defect	density	of	14	would	mean	there	are	total	of	3500	defects,	which
does	not	correlate	to	the	amount	of	changes	made	in	this	period.

Figure	4:	Neovim's	defect	density	over	time,	courtesy	of	Coverity	Scan

Cyclomatic	Complexity

A	popular	and	well-studied	[3]	metric	for	measuring	code	complexity	is	the	Cyclomatic
Complexity	metric	(CC).	This	quantifies	the	number	of	independent	paths	through	the	source
code	of	a	particular	function.	The	explanatory	power	of	CC	is	frequently	challenged	[4,	5].
However	this	discussion	is	beyond	the	scope	of	this	essay,	and	we	will	assume	the	metric
has	scientific	validity	and	informational	value	with	regards	to	technical	debt	for	the	remainder
of	this	section:	a	high	CC	is	an	indicator	for	technical	debt.

Coverity	marks	all	functions	with	a	CC	of	greater	than	15	as	being	too	complex.	The	Coverity
scan	of	March	5	2017	marked	728	functions	as	being	too	complex,	out	of	5128.	The	average
CC	of	all	the	functions	is	10,	while	the	average	of	the	functions	marked	too	complex	is	47.
The	highest	CC	found	in	Neovim	is	728.	While	the	threshold	of	15	is	debatable	[6],	it	is	clear
that	some	of	Neovim's	functions	are	way	too	complex.

Neovim

268

https://scan.coverity.com/
https://en.wikipedia.org/wiki/Cyclomatic_complexity

"ToDo"	Style	Placeholders

A	complementary	approach	to	measuring	technical	debt	is	counting	the	occurrences	of
"TODO",	"FIXME",	"XXX"	et	cetera	within	the	codebase.	This	approach	relies	upon	the
commenting	habits	and	conventions	of	the	developers,	and	does	not	provide	a
comprehensive	understanding	of	the	technical	debt	of	a	project.	However,	because	Neovim
has	had	mostly	the	same	group	of	maintainers	over	its	lifetime,	we	assume	that	this	metric
provides	some	insight	into	the	evolution	of	technical	debt	in	Neovim.

The	occurrences	were	counted	by	searching	for	the	strings	mentioned	above,	which	were
chosen	from	looking	through	comments	and	searching	for	common	"ToDo"	style	variants.
The	results	were	inspected	and	the	following	files	were	excluded	to	remove	many	false
positives:		build/*	,		runtime/syntax/*	,		*.txt		and	all	binary	files.	It	is	uncertain	whether	all
categories	contribute	equally	to	technical	debt,	but	quantifying	their	difference	is	not	simple.
Therefore,	Figure	5	only	displays	the	sum	of	all	these	occurrences	for	various	versions	of	the
project.

Figure	5:	Number	of	occurrences	of	"TODO",	"FIXME"	and	"XXX"	over	several	versions	of
the	project

Neovim

269

It	can	be	seen	that	the	technical	debt	gradually	seems	to	increase	as	the	project	evolves.	A
sharp	increase	can	be	observed	in	the	current	(unreleased)	version,	although	this	number
may	decrease	before	an	official	release	is	made.

Coverage	and	Testing	Debt

Neovim	uses	Coveralls	to	keep	track	of	the	total	test	coverage.	From	Coveralls	we	can
observe	that	coverage	increased	gradually	from	57%	in	2014	at	Neovim's	inception	to	76%
in	March	2017.	This	can	be	explained	by	Neovim's	policy	of	adding	tests	whenever
significant	changes	are	made.

Instead	of	identifying	testing	debt	in	the	actual	tests'	code,	we	can	identify	a	rather	large
case	of	possible	testing	debt	on	a	higher	level.	"New	style"	tests	imported	from	Vim	are
written	in	Vimscript,	whereas	tests	made	for	Neovim	are	written	in	Lua.	The	gain	from
rewriting	these	tests	is	small	in	comparison	to	the	effort	required	and	hence	they	are
imported	as-is.	The	result	is	having	tests	written	in	two	different	programming	languages,
which	can	be	considered	testing	debt.

There	are	also	"old	style"	legacy	tests	that	are	left	over	from	the	fork	of	Vim.	These	are
written	using	yet	another	framework	and	are	actively	encouraged	to	be	rewritten	using	Lua,
as	can	be	seen	from	the	many	pull	requests	named	"Migrate	legacy	test",	e.g.	#2988.	In	this
sense,	Neovim	is	working	to	pay	off	some	of	its	testing	debt.

Conclusion
The	goal	of	this	chapter	was	to	present	Neovim	and	examine	its	software	architecture.	We
did	so	by	documenting	the	stakeholders,	giving	the	context	and	development	viewpoints,
considering	the	variability	and	evolutionary	perspectives	and	discussing	Neovim's	technical
debt.	We	have	shown	that	despite	the	clean	simplicity	of	the	UI,	there	is	significant
complexity	hiding	under	the	surface.	Challenging	architectural	decisions	have	been	taken	in
order	to	satisfy	a	variety	of	stakeholders.

Through	our	research,	we	have	discovered	a	conscientious	community	of	hardworking
volunteers,	dedicated	to	improving	the	text	editor	they	love.	The	Neovim	codebase,	like	any
other,	is	not	perfect.	There	are	still	issues	and	ongoing	improvements.	However,	we	may
conclude	that	the	Neovim	team	has	improved	the	Vim	experience	and	brought	Vim	into	the
twenty-first	century.

We	would	like	to	thank:

@justinmk	and	the	community	for	actively	welcoming	new	contributors,	assisting	with
our	contributions	and	clarifying	some	technical	details	for	the	module	structure	model

Neovim

270

https://coveralls.io/github/neovim/neovim
https://github.com/neovim/neovim/wiki/Unit-tests#checklist-for-migrating-legacy-tests
https://github.com/neovim/neovim/pull/2988
https://github.com/justinmk

the	dedicated	teaching	assistants	@sandervdo	and	@valmai	for	their	invaluable
feedback	and	encouragement
our	peers	that	reviewed	the	chapter	prior	to	completion,	helpfully	highlighting	areas	of
improvement
professors	@avandeursen	and	@azaidman	for	designing	and	managing	such	an
original	and	valuable	course	and	assignment.

References
1.	 Rozanski,	N.,	&	Woods,	E.	(2011).	Software	systems	architecture:	working	with

stakeholders	using	viewpoints	and	perspectives.	Addison-Wesley.
2.	 Apel,	S.,	Batory,	D.,	Kästner,	C.,	&	Saake,	G.	(2013).	Feature-Oriented	Software

Product	Lines:	Concepts	and	Implementations.	Springer.
3.	 McCabe,	T.	J.	(1976).	A	complexity	measure.	IEEE	Transactions	on	software

Engineering,	(4),	308-320.
4.	 Shepperd,	M.	(1988).	A	critique	of	cyclomatic	complexity	as	a	software	metric.	Software

Engineering	Journal,	3(2),	30-36.
5.	 Graylin,	J.,	Hale,	J.	E.,	Smith,	R.	K.,	David,	H.,	Kraft,	N.	A.,	&	Charles,	W.	A.	R.	D.

(2009).	Cyclomatic	complexity	and	lines	of	code:	empirical	evidence	of	a	stable	linear
relationship.	Journal	of	Software	Engineering	and	Applications,	2(03),	137.

6.	 Watson,	A.	H.,	Wallace,	D.	R.,	&	McCabe,	T.	J.	(1996).	Structured	testing:	A	testing
methodology	using	the	cyclomatic	complexity	metric	(Vol.	500,	No.	235).	US
Department	of	Commerce,	Technology	Administration,	National	Institute	of	Standards
and	Technology.

Neovim

271

https://github.com/sandervdo
https://github.com/ValMai
https://github.com/avandeursen
https://github.com/azaidman

Netty:	Asynchronous	Event-Driven
Network	Application	Framework

Ade	Setyawan	Sajim,	Muhammad	Ridho	Rosa,	Priadi	Teguh	Wibowo,	Mohamat	Ulin	Nuha

Delft	University	of	Technology,	2017

Abstract

Netty	is	an	asynchronous	event-driven	network	application	framework	in	Java	which	has
been	used	by	many	large	companies,	such	as	Facebook,	Apple,	and	RedHat.	Netty	Project
has	been	actively	developed	since	2004.	It	is	developed	by	a	team	of	core	developers	and
hundreds	of	external	contributors.	This	chapter	illustrates	the	software	architecture	of	Netty
in	multiple	parts.	It	starts	with	an	explanation	about	Netty's	stakeholder	and	followed	by	the
description	of	four	viewpoints	(context	view,	development	view,	deployment	view	and
functional	view)	in	Netty.	The	chapter	is	then	continued	by	identification	of	technical	and
testing	debt	and	presentation	of	two	perspectives	(evolution	perspective	and	performance-
scalability	perspective).	Lastly,	a	conclusion	from	the	process	of	analyzing	Netty	is
presented.

1	Introduction
When	developing	networking	applications,	developers	usually	dreams	of	having	a	high
performance	and	high	throughput	in	their	software	[25].	Unfortunately,	having	control	over
networking	code	means	lots	of	hard	work	on	networking	primitives.	The	problem	gets	even

Netty

272

https://github.com/asajim
https://github.com/rosaridho
https://github.com/priaditeguh
https://github.com/mulinnuha

worse	if	security	and	scalability	issues	are	also	considered.	A	networking	framework	that
tries	to	solve	this	issue	is	Netty.	Netty	is	a	non-blocking	I/O	(NIO)	client-server	framework
which	eases	network	programming	and	enables	fast	construction	of	network	applications	[2].
Netty	has	been	designed	thoughtfully	with	the	experiences	gained	from	the	implementation
of	multiple	protocols	to	ensure	ease	of	development,	high	performance,	stability,	and
flexibility	without	a	compromise	[2].

In	the	following	section,	the	result	of	analysis	on	Netty	is	shown.	The	analysis	was	done
using	the	guidelines	from	Nick	Rozanski	and	Eoin	Woods	[1].	The	analysis	starts	by
explaining	about	stakeholders	and	context	view	(section	2	and	3).	To	have	a	deeper	insight
on	Netty's	technical	side,	the	analysis	continued	by	describing	on	Netty's	development	view,
deployment	view,	and	functional	view	(section	4,	5,	and	6).	Some	drawbacks	inside	Netty's
system	is	presented	on	technical	and	testing	debt	sections	(section	7	and	8).	To	understand
Netty	even	further,	two	extra	perspectives,	evolution	perspective,	and	performance-
scalability	perspective,	are	presented	on	section	9	and	10.	Finally,	section	11	concludes	our
analysis.

2	Stakeholders
Stakeholders	are	an	individual,	team,	organization,	or	classes	who	have	interests	and
concerns	about	a	project	[1].	List	of	Netty	stakeholders	can	be	seen	on	table	1.

Type Representation Description

Acquirers Founder

Acquirers	supervise	the	acquirement	of	the
system	or	product.	Trustin	Lee	is	considered	to
be	the	acquirer	for	Netty	Project	as	he	is	the
Netty	founder.

Assessors Core
developers

The	core	developers	in	Netty	since	one	of	their
jobs	is	to	ensure	that	all	contributors	sign
Individual	Contributor	License	Agreement	or
Corporate	Contributor	License	Agreement

Communicators Developers	and
the	community

In	Netty,	the	communicators	are	core
developers,	especially	Trustin	Lee,	Scott	Mitch
and	Norman	Maurer.	Besides	developers,	the
community	can	also	be	communicators	since
they	can	contribute	by	spreading	information
about	Netty	through	creating	articles	and	Netty
tutorial	documentations.

Core
developers	and

One	way	to	search	for	Netty's	developers	is	to
look	at	contributor	section	in	graphs	tab	on
Netty's	GitHub.	Such	section	shows	the	commits
and	the	contributions	that	could	be	used	to
detect	the	developers.	To	see	Netty's	core

Netty

273

http://netty.io
https://github.com/trustin
https://github.com/netty/netty/graphs/contributors

Developers developers	and
external
contributors

developers,	a	look	up	on	The	Netty	Project
members	page.	From	the	mentioned	page,	it
can	be	found	that	there	are	fifteen	core
developers	in	Netty.	Between	those	developers,
top	four	contributors	are	Trustin	Lee,	Norman
Maurer,	Scott	Mitchell,	and	Frederic	Bregier.

Maintainers

Core
developers	and
external
contributors

The	maintainers	are	the	core	developers	and
external	contributors	because	they	control	the
development	of	the	system	since	it	starts
working	which	can	be	seen	from	pull	request
and	issue	analysis.

Production
engineers

Core
developers

In	Netty,	production	engineers	are	the	core
developers.	Their	role	is	to	plan,	deploy,	and
maintain	the	software	environments	in	which
Netty	will	be	developed	and	examined.

Suppliers
Libraries	which
Netty	depends
on,	Java,	IntelliJ

An	example	of	a	supplier	is	libraries	because
they	help	how	Netty	constructed.	Java	is	also	a
supplier	since	Netty	is	developed	in	Java.	IntelliJ
is	also	an	instance	of	Netty's	supplier	because
IntelliJ	is	an	IDE	on	which	Netty	is	currently
developed	and	officially	supported.

Support	Staffs

Community,
core
developers,
external
contributors

They	communicate	and	solve	problems	via
Github,	Stack	Overflow,	Twitter,	IRC,	RSS,	or
Google	Group.	GitHub	serves	as	a	mean	to
discuss	issues,	primarily	bugs	and	performs
code	reviews.	Twitter	is	used	as	media	social
interaction.	StackOverflow	is	a	place	of
discussion	between	developers.	RSS	is	used	to
publish	updated	information	regarding	the
project	frequently.

Testers

Core
developers	and
external
contributors

By	looking	up	Netty's	pull	request	section	at	its
GitHub	repository,	testers	of	Netty	project	can
be	identified.

Users

Any
organizations
that	use	Netty
and	personal
users

Beside	personal	users,	companies	that	use
Netty	can	be	identified	by	looking	at	related
article	that	featuring	Netty.	Some	of	the
identified	companies	are	Apple,	Facebook,	and
RedHat.

Table	1.	Netty	Stakeholders

Besides	several	types	of	stakeholders	above,	there	is	a	category	that	is	not	included	in	the
table.	This	category	is	not	found	in	[1]	but	related	to	the	Netty	project.	Below	is	the	extra
stakeholder	which	is	identified:

Funders/Donators

Netty

274

https://github.com/orgs/netty/people
https://github.com/trustin
https://github.com/normanmaurer
https://github.com/Scottmitch
https://github.com/fredericBregier
http://netty.io/wiki/related-articles.html

monetary	fund	or	giving	donations.	Netty	project	gets	the	donation	from	several
companies	such	as	Clinker,	Spigot,	Twitter,	JetBrains,	and	Yourkit	[26].	

2.1	Power/Interest	Grid

After	identifying	several	types	of	stakeholders,	an	analysis	of	the	power/interest	of	each
stakeholder	can	be	performed.	The	power/interest	prioritization	can	be	split	into	four
categories:

High	power,	high	interest:	These	people	need	to	be	managed	closely	since	they	have
the	power	to	halt	or	change	the	development	of	the	project	or	add	new	functionalities
and	have	a	high	interest	in	the	development	of	the	project.	In	Netty,	the	founder	who
also	acts	as	the	acquirer	and	core	developers	are	included	in	this	category.
High	power,	low	interest:	This	category	includes	the	people	who	required	to	be	kept
satisfied	in	the	development	of	the	project.	They	have	high	power	in	the	development	of
the	project	but	low	interest	in	it.	Suppliers	are	included	in	this	group	because	any
changes	on	their	system	will	affect	Netty	development	but	any	Netty	development	has	a
minor	impact	on	their	system.
Low	power,	high	interest:	Any	persons	or	organizations	who	need	to	be	informed
about	the	development	of	the	project	are	included	in	this	category,	for	example,	any
companies	that	use	Netty,	personal	users,	and	funders/donators.	External	contributors,
who	also	act	as	communicators,	also	falls	between	this	category	and	"high	power,	high
interest"	category	since	some	of	them	contribute	a	lot	to	Netty	which	makes	their
influence	significant	in	Netty	development.
Low	power,	low	interest:	This	category	consists	of	people	or	organizations	who
required	to	be	monitored	but	with	minimum	effort.	Competitors	fall	between	this
category	and	"low	power,	high	interest"	category	because	some	of	them	care	about	how
to	be	a	better	solution	than	Netty.

The	following	is	the	power/interest	grid	figure	for	the	selected	stakeholders

Netty

275

Figure	1.	Netty's	Power/Interest	Grid

3	Context	View
Context	view	explains	the	behavior	of	the	system	and	illustrates	the	relations,	dependencies,
and	interactions	between	the	system	and	its	environment	[1].

3.1	System	Scope

Netty	as	the	asynchronous	event-driven	framework	which	supports	several	protocols	has	the
advantage	of	the	development	of	network	application	between	server	and	clients.	Netty
purpose	is	to	become	an	easy	and	quick	NIO	client	server	framework	network	application
which	support	several	protocols	such	as	FTP,	SMTP,	HTTP,	XML,	and	HTTP2.

Design	Philosophy

Trustin	Lee	mentioned	in	his	presentation	that	Netty	design	philosophy	is	to	make	a	very
simple	network	application	and	highly	performing	application	which	is	also	maintainable	[13].

Netty

276

3.2	External	Entities

External	entities	in	Netty	project	can	be	divided	into	three	parts,	competitors,	software
platform	&	dependencies,	and	development	&	community.

Competitors

Competitors	are	the	organizations	who	are	engaged	in	competitions	with	each	other.	The
competitors	of	Netty	project	are	Apache	Mina	and	Grizzly.	Both	of	them	are	focusing	on
developing	NIO	client	server	framework	network	application.

Software	Platform	&	Dependencies

In	this	section,	the	platform	and	the	dependencies	of	Netty	will	be	discussed.

Platform

Netty	is	compatible	with	any	platform	as	long	as	it	could	run	JDK	because	Netty	is	designed
on	top	of	Java	platform.

Dependencies

Netty	depends	on	many	libraries.	Between	those	projects,	some	of	them	are	used	in	testing
environment,	i.e.,	Mockito,	JUnit,	and	Java	Hamcrest.

Beside	libraries,	Netty	also	depends	on	several	entities,	for	example	IntelliJ	as	its	officially
supported	IDE.	Netty	also	rely	upon	GitHub	as	its	version	control	and	issue	tracker.	To	ease
build	activity,	Netty	also	utilizes	Maven	as	build	automation	tool	and	Travis	CI	as	continuous
integration	tool.	Another	instance	of	Netty	dependency	is	shown	by	its	license	usage	since
Netty	is	distributed	under	Apache	License	v2.0.

3.3	Context	View	Diagram

In	this	section,	the	context	model	of	Netty	is	presented	by	combining	every	information
provided	in	stakeholder	section	and	previous	subsections.	The	relationship	between	external
entities	and	its	interfaces	or	context	view	graph	of	Netty	is	visualized	by	figure	2.

Netty

277

https://mina.apache.org
https://grizzly.java.net

Figure	2.	Context	view	graph	of	Netty

4	Development	View
In	this	section,	the	architecture	that	addresses	the	aspects	of	system	development	process
in	Netty	is	explained.	This	section	consists	of	three	subsection;	module	structure	models,
common	design	models,	and	codeline	models.

4.1	Module	Structure	Models

Netty

278

Figure	3.	Netty's	Modules	Structure	Model

As	a	framework,	the	source	code	of	Netty	could	be	organized	as	model	structure,	as	shown
on	the	figure	above.	In	figure	3,	the	ecosystem	of	Netty	is	divided	into	three	major	parts:
internal	modules,	testing	system,	and	external	dependencies.

Internal	Modules

The	followings	are	the	explanation	of	each	module	inside	internal	modules	with	its
description	and	dependencies:

	netty-common	

This	module	contains	utility	classes	and	logging	facade.	There	are	several	sub-modules
in	Netty	Common,	such	as		io.netty.util		and		io.netty.util.internal.logging	.	This
module	does	not	have	any	dependencies	to	other	modules	in	Netty.	However,	it	has	a
dependency	to		java.util		package.
	netty-resolver	

This	module	deals	with	resolving	an	arbitrary	string	that	represents	the	name	of	an
endpoint	into	an	address	and	resolving	a	domain	name	asynchronously,	which	supports
the	queries	of	an	arbitrary	DNS	record	type	as	well.	This	module	has	a	dependency	to
sub-module		io.netty.util	.

Netty

279

	netty-buffer	

Module		netty-buffer		handles	fundamental	data	structure	to	represent	a	low-level
binary	and	text	message.	This	module	has	a	dependency	to		io.netty.util		and
	java.*		package.
	netty-transport	

This	module	deals	with	channel	API	and	core	transports,	native	socket	transport	for
Linux	using	JNI,	Rxtx	transport,	SCTP	transport,	and	UDT	transport.	It	has	several	sub-
modules	such	as		io.netty.channel		and		io.netty.bootstrap	.	This	package	has
dependencies	to		io.netty.util	,		io.netty.buffer	,	and		io.netty.resolver	.
	netty-handler	

Module		netty-handler		relates	to	flow	control	handler,	flush	control,	ipfilter	(filter	IP
address),	logging	(Logs	the	I/O	events	for	debugging	purpose.),	SSL	(Secure	Socket
Layer),	stream,	timeout	and	traffic.	It	has	a	dependency	to		io.netty.channel	.
	netty-codec	

Module		netty-codec		handles	codec-related	functionalities,	for	example,	dealing	with
packet	fragmentation	and	reassembly	issue	found	in	a	stream-based	transport.

Testing	System

Testing	system	also	contains	multiple	modules,	which	will	be	explained	below:

	netty-microbench	

This	module	deals	with	performing	a	series	of	micro-benchmark	tests.	It	is	built	on	top	of
OpenJDK	JMH.	This	module	has	dependencies	of	all	above	modules.
	netty-testsuite	

This	module	contains	packages	for	integration	tests	and	common	test	suite.	This
module	also	has	dependencies	of	all	above	modules.

External	Dependencies

Besides	having	dependencies	among	its	modules,	Netty	also	has	a	dependency	to	external
entities,	such	as	Guava,	JBoss,	and	Apache	Commons.

4.2	Common	Design	Model

Any	commonality	across	element	implementations	inside	Netty	is	explained	in	this
subsection.

Common	Processing

Netty

280

http://openjdk.java.net/projects/code-tools/jmh/

By	analysing	Netty	repository,	it	was	acknowledged	that	there	are	many	common	processes
that	happen	between	its	components	inside	its	system.	To	deal	with	this	issue,	Netty	has	a
module	called		netty-common	.	The	practice	of	isolating	common	processing	into	separate
code	modules	helps	the	development	of	Netty	since	the	usage	itself	is	spread	across	all
modules,	and	the	development	of	common	processes	can	be	done	independently	of	other
modules.

Below	are	some	identified	common	processing	elements	inside	this	module:

1.	 Message	logging
There	are	three	logging	classes	that	Netty	recommends	to	use,	e.g.,		Log4J2Logger	,
	Log4JLogger	,	and		Slf4JLogger	.	In	each	class,	there	are	five	levels	of	logging;		trace	,
	debug	,		info	,		warn	,	and		error	.

2.	 Resource	leak	detector
Resource	leak	detector	helps	Netty	deals	with	any	resource	leak.	There	are	four	levels
on	how	resource	leak	detector	works;		disabled	,		simple	,		advanced	,	and		paranoid	.

3.	 Net	util
This	element	holds	a	number	of	network-related	constants	which	commonly	used	on
many	Netty's	components.

4.	 Constant	pool
Constant	pool	helps	Netty's	elements	to	store	any	constant	which	will	be	used	during	its
execution.

Design	Patterns

Another	important	thing	discussed	in	this	section	is	Netty's	design	patterns	as	they	are
solutions	to	general	problems	that	software	developers	faced	during	software	development
[20].	Presenting	design	pattern	implemented	in	Netty	will	help	contributors	to	understand
how	object-oriented	structure	resides	in	Netty	source	code.	Below	are	listed	several	design
patterns	used	by	Netty:

1.	 Reactor	Pattern:	Reactor	pattern	is	implemented	by	Netty	as	the	framework	is	related	to
servers	request	handling	with	single-threaded	event	loop	[19].

2.	 Intercepting	Filter	Pattern:	Package		ChannelPipeline		implements	an	advanced	form	of
the	Intercepting	Filter	pattern	to	give	a	user	full	control	over	how	an	event	is	handled
and	how	the	handlers	in	the	pipeline	interact	with	each	other	[6].

4.3	Codeline	Models

This	section	will	explain	how	the	directory	of	Netty	project	is	managed,	with	a	goal	to	ensure
the	build,	test,	and	release	processes	could	lead	to	a	reliable	Netty	software.

Netty

281

Source	Code	Structure

The	Netty	project	directories	are	organized	based	on	their	functionalities.	Every	folder	mostly
consists	of	Java	classes	and		pom.xml		file.	Almost	all	the	source	code	folders	contain	the
main	codes	and	the	testing	codes.	There	is	a	file	called		package-info.java		which	is	used	to
explain	the	package	where	the	file		package-info.java		stored.	The	module	organization	of
Netty	ensures	every	main	code	has	a	testing	file	located	in	the	same	directory.	Figure	4
shows	the	source	code	organization	of	Netty	4.1	directory	(Artifact	ID).

Netty

282

Netty

283

Figure	4.	Netty's	Code	Structure	Organizations

The	Netty	source	code	file	always	starts	with	copyright	and	license.	After	the	declaration	of
Java	package,	usually,	there	is	a	short	comment	about	the	code.

Built	and	Testing	Management

By	looking	at	Netty	repository,	Netty's	developers	implement	several	ways	of	testing	to	verify
that	it	works	as	it	supposed	to	be.	For	example,	after	a	developer	finishes	creating	a	class	or
modifies	the	source	code,	he/she	will	need	to	do	a	unit	testing,	usually	by	using	added	tools,
such	as	JUnit	and	Mockito.

Regarding	the	build	management,	the	developers	of	Netty	also	set	up	the	build	standards.
For	example,	after	the	contributors	have	successfully	set	up	the	development	environment,
pushed	a	commit	and	submitted	a	pull	request,	a	continuous	integration	platform	called
Travis	CI	is	used.	Continuous	integration	platform	is	vital	to	Netty	for	ensuring	Netty's	source
code	quality	and	to	implement	quick	and	easier	error	detection,	since	each	introduced
change	is	typically	small.	Another	example	is	when	developing	Netty	in	a	local	repository,	a
developer	can	also	utilize	Maven	to	check	whether	his	code	is	built	successfully	or	not.

Release	Management

In	Netty	Project,	if	the	core	developers	intend	to	release	a	new	version	of	Netty,	they	need	to
follow	the	standard	Maven	release	procedure,	which	uses	maven-release-plugin	:

1.	 Stage	the	new	release	into	the	staging	repository.
2.	 Verify	the	staged	files	are	all	good.	If	not,	drop	the	staging	repository	and	try	again.
3.	 Close	the	staging	repository	so	that	no	more	modifications	are	made	into	the	staging

repository.
4.	 Release	the	staging	repository	so	that	the	new	release	is	synchronized	into	the	Maven

central	repository.

Configuration	Management

To	configure	Netty,	a	developer	should	follow	the	Developer	Guide.	First,	a	developer	should
use	64-bit	operation	system.	Then,	he/she	should	install	the	necessary	build	tools	(e.g.
Oracle	JDK	8	or	above,	Apache	Maven	3.1.1	or	above,	and	Git).	Last,	a	developer	has	to
use	Java	programming	language	and	also	utilize	IntelliJ	IDEA	since	it	is	the	officially
supported	IDE.	A	developer	can	also	use	other	development	environments	as	long	as	the
contributor	adheres	to	the	Netty's	coding	style.

Netty

284

http://netty.io/wiki/developer-guide.html

5	Deployment	View
Deployment	Viewpoint	describes	the	environment	into	which	the	system	will	be	deployed
and	the	dependencies	of	the	system	[1].	Netty	is	supported	by	any	operating	system	that
can	run	Java	5+	(Netty	3.x)	or	Java	6+	(Netty	4.x).	Furthermore,	Netty	does	not	require	any
specific	hardware	requirement	to	deploy.

As	for	the	third-party	software	dependencies,	the	base	functionality	of	each	sub-module	of
Netty	only	requires	JDK	5+	(Netty	3.x)	or	JDK	6+	(Netty	4.x)	to	run.	For	the	development	of
Netty,	it	requires	JDK	7+.	However,	some	sub-modules	require	additional	dependencies,	for
example,	doing	Transport	Security	(TLS)	with	Netty	would	require	either	OpenSSL	or	JDK
(Jetty	ALPN/NPN).

The	binary	files	of	Netty	can	be	downloaded	in	Netty's	Download	Page	as	jar	files.	The	jar
files	are	available	for	all	modules	(netty-all-x.x.x.Final.jar)	or	for	each	sub-module	(for
example		netty-transport-x.x.x.Final.jar).	Netty	does	not	differentiate	the	binary	files	for
different	operating	systems	or	different	instruction	set	architecture.

6	Functional	View
In	this	section,	the	functional	view	graph	of	Netty	will	be	presented	and	the	explanation	of
the	elements	will	be	discussed	briefly.	Figure	5	displays	the	functional	graph	of	Netty.
Explanation	on	each	component	is	available	below	the	figure.

Figure	5.	Netty's	Functional	View	Diagram

Netty

285

http://netty.io/downloads.html

6.1	Network	Application

A	network	application	is	an	application	that	is	running	on	the	different	host.	The
communication	between	host	needs	to	be	handled	by	software.	In	this	case,	Netty	plays	a
crucial	role	to	ensure	the	communication	effectiveness,	security,	and	maintainability	between
that	hosts.

6.2	Network	framework

Netty	as	a	network	framework	has	a	purpose	to	built	and	to	ensure	all	the	aspects	go	well	for
communication	between	clients	and	server.	Netty	was	proposed	as	a	unified	API	for	various
transport	types,	such	as	blocking	and	non-blocking	socket,	and	designed	based	on	flexible
and	extensible	event	model	[2].	Netty	has	interfaces	with	the	application,	the	supported
protocols,	and	the	transport	services.

6.3	Protocol	Supports

Netty	supports	many	protocols,	such	as	UDT	(User	Datagram	Protocol),	SCTP	(Stream
Control	Transmission	Protocol),	HTTP/HTTP2	(Hypertext	Transfer	Protocol).

6.4	Transport	Services

Netty's	transport	services	can	be	divided	into	three	parts,	datagram	socket,	transport	tunnel,
and	virtual	machine.

Datagram	Socket

The	datagram	socket	is	a	package	that	has	responsibilities	for	sending	and	receiving
datagram	packets	[6].

Transport	Tunnel

In	Netty,	HTTP	tunneling	is	used	as	a	component	to	connect	a	restrictive	HTTP	Proxy	[6].
HTTP	Tunnel	consists	of	two	components,	client-side	and	server-side.	The	client-side	will
act	as	a	SOCKS	proxy,	while	the	server-side	translate	and	forward	the	HTTP	request.

Virtual	Machine

Netty	offers	a	functionality	to	replace	Java	Virtual	Machine's	garbage	collector.	Instead	of
waiting	for	the	garbage	collector	to	work,	Netty	has	the	capability	to	flush	the	memory
directly	after	reading	or	writing	to	a	socket	[6].

Netty

286

7	Technical	Debt
Technical	debt	refers	to	any	extra	development	work	that	arises	when	applying	an	easy	to
implement	code	over	the	best	overall	solution	[1].	In	this	section,	an	analysis	of	technical
debt	existence	inside	Netty	repository	is	presented.

7.1	Identifying	Technical	Debt

There	are	two	methodologies	chosen	during	technical	debt	analysis;	static	code	analysis
and	manual	code	analysis.	Details	on	each	methodology	are	explained	further	in	the
following	subsections.

Static	Code	Analysis

The	chosen	static	code	analysis	tool	for	identifying	technical	debt	is	SonarQube	[8].
SonarQube	works	by	analyzing	the	folder	that	contains	the	source	code	and	shows	the
overall	technical	debt	data.	The	following	figure	displays	the	details	of	technical	debt	given
by	SonarQube.	In	figure	6,	Netty	version	4.1	has	technical	debts	amount	of	65d	(65	days).
The	parameter	that	is	used	in	SonarQube,	'day',	is	based	on	SQALE	(Software	Quality
Assesment	based	on	Lifecycle	Expectations)	Methodology	[24].

Figure	6.	Technical	debt	of	Netty	4.1	generated	using	SonarQube

The	following	figure	shows	the	technical	debt	in	size	of	circle	radius	in	term	of	number	lines
of	code	(x-axis)	and	number	of	issues	(y-axis).

Netty

287

https://garage.netty.io/sonarqube/

Figure	7.	Technical	debt	in	terms	of	lines	of	code	(x-axis)	and	issues	(y-axis)	of	Netty	4.1
generated	using	SonarQube

In	Netty	version	4.1	the	biggest	technical	debt	is	located	in		Bzip2DivSufSort.java	.	-The
other	files	that	have	the	potential	problems	are		TrafficShapingHandlerTest.java		and
	ReferenceCountedOpenSslEngine.java	.

Code	Smells

By	utilizing	static	code	analysis	tool,	Netty's	code	smells	can	also	be	detected.	According	to
[11],	there	are	twenty-one	types	of	code	smells.	From	those	twenty-one	types,	five	different
smells	were	identified	inside	Netty	repository.	A	further	explanation	of	those	identified	code
smells	is	provided	below.

Long	Method

Class		Bzip2DivSufSort.java		is	an	example	of	a	class	inside	Netty	that	has	this
characteristic.	This	class	has	a	large	method,	i.e.,		ssMultiKeyIntroSort		method.	The
cyclomatic	complexity	of	this	method	is	48	which	is	greater	than	25	(the	authorized
complexity	recommended).	Cyclomatic	complexity	itself	is	a	quantitative	measure	of	the
number	of	linearly	independent	paths	through	a	program's	source	code	[12].

Large	Class

	Bzip2DivSufSort.java		is	an	example	of	a	large	class	inside	Netty	since	it	contains	2116
lines	of	code.	A	large	class	is	not	recommended	because	it	exaggerates	its	complexity,
which	can	lead	to	a	poor	performance	and	difficult	to	understand	and	to	maintain.

Long	Parameter	List

Netty

288

https://github.com/netty/netty/blob/4.1/codec/src/main/java/io/netty/handler/codec/compression/Bzip2DivSufSort.java
https://github.com/netty/netty/blob/4.1/testsuite/src/main/java/io/netty/testsuite/transport/socket/TrafficShapingHandlerTest.java
https://github.com/netty/netty/blob/4.1/handler/src/main/java/io/netty/handler/ssl/ReferenceCountedOpenSslEngine.java

	ssMergeBackward		method	is	an	example	of	a	method	that	has	long	parameter	list.	This
method	requires	seven	parameters,	i.e.,		final	int	pa	,		int[]	buf	,		final	int	bufoffset	,
	final	int	first	,		final	int	middle	,		final	int	last	,	and		final	int	dept	.

Switch	Statements

In	object-oriented	programming,	a	situation	where	switch	statements	or	type	codes	are
needed	should	be	handled	by	creating	subclasses	[11].	Unfortunately,	inside	Netty	source
code,	there	are	678	matches	of	switch	statements.

Duplicate	Code

Based	on	the	SonarQube	analysis	result,	there	are	14,425	lines	of	duplicated	code.	The	file
that	has	the	most	duplication	code	is		HttpPostMultipartRequestDecoder.java		that	has	610
duplicated	lines.

Manual	Code	Analysis

Besides	static	code	analysis,	another	way	to	find	out	any	technical	debts	inside	a	system	is
by	doing	manual	code	analysis.	This	methodology	requires	a	lot	of	time	and	energy,	but	if
done	correctly,	it	will	present	a	better	understanding	on	how	such	a	system	deals	with	its
technical	debt	and	the	quality	of	its	code.	There	are	several	manual	code	analysis	that	can
be	done	in	the	code,	one	of	which	is	SOLID	principle	analysis	[10]	One	of	the	modules	in
Netty,		netty-common	,	was	analyzed.	In	the	analysis,	there	are	no	violations	of	SOLID
principles	that	can	be	found.	Each	class	in		netty-common		has	its	own	responsibility,	the
module	is	open	to	extension	but	closed	to	modification,	and	base	classes	can	be	substituted
using	their	derived	classes.

Evolution	of	Technical	Debt

SonarQube,	a	static	code	analysis	tool	mentioned	in	the	previous	subsection,	was	utilized
again	to	see	how	the	technical	debts	evolved	in	Netty.

Technical	Debt	Evolution	Between	Different	Major	Versions

For	this	analysis,	two	latest	Netty	major	versions	were	analyzed,	version	4.0	and	version	4.1
[19].	Figure	8	displays	the	details	of	technical	debt	given	by	SonarQube.	This	figure	shows
that	even	though	the	Netty	version	is	increased,	the	technical	debt	is	also	raised.	Therefore,
a	newer	version	doesn't	always	lead	to	a	better	technical	debts	management.

Netty

289

Figure	8.	Technical	debt	of	Netty	4.0	and	Netty	4.1	generated	using	SonarQube

Figure	9	and	10	show	the	technical	debt	in	size	of	circle	radius	in	term	of	number	lines	of
code	(x-axis)	and	number	of	issues	(y-axis).	At	this	point,	it	can	be	seen	from	the	mentioned
figures	that	the	biggest	technical	debt	is	changing.	In	Netty	version	4.0	the	most	significant
technical	debt	is	located	in	file		HttpPostMultipartRequestDecoder.java	,	but	in	Netty	version
4.1	the	biggest	technical	debt	is	located	in		Bzip2DivSufSort.java	.	The	others	files	that	have
the	potential	problem	both	in	version	4.0	and	4.1	are		TrafficShappingHandlerTest.java		and
	ReferenceCountedOpenSslEngine.java.	

Figure	9.	Technical	debt	in	terms	of	lines	of	code	and	issues	of	Netty	4.0	generated	using
SonarQube

Netty

290

Figure	10.	Technical	debt	in	terms	of	lines	of	code	and	issues	of	Netty	4.1	generated	using
SonarQube

Technical	Debt	Evolution	In	Similar	Major	Version

Another	interesting	fact	that	was	found	is	that	Netty	developers	are	always	trying	to	reduce
the	number	of	technical	debts	inside	Netty	throughout	its	development	time.	This	might
seems	untrue	if	the	comparison	is	only	done	between	different	major	versions,	but	if
compared	to	similar	major	releases,	this	argument	becomes	valid.	Figure	11	and	figure	12
support	this	claim.

Figure	11.	Technical	debt	of	Netty	4.1	recorded	at	February	19,	2016	analyzed	using
SonarQube

Netty

291

Figure	12.	Technical	debt	of	Netty	4.1	recorded	at	March	13,	2017	analyzed	using
SonarQube

From	both	figures,	it	can	be	seen	that	the	number	of	total	technical	debts	is	decreased	over
the	last	single	year.	On	February	19,	2016,	it	had	71	days	of	technical	debt,	while	on	March
13,	2016,	it	only	65	days.	This	is	a	good	understanding	of	Netty	developers'	effort	and	also
displays	a	nice	progress	since	Netty	only	start	utilizing	SonarQube	since	the	February	2016.
This	result	looks	even	better	if	total	lines	of	code	is	included	in	the	analysis	since	there	are
18453	of	newly	added	codes	during	this	period.

8	Testing	Debt
Similar	to	technical	debt,	testing	debt	is	also	a	poor	aspect	that	may	arise	when	developing
software.	In	the	following	subsection,	details	related	to	testing	debt	inside	Netty	will	be
explained.

8.1	Code	Coverage

Code	coverage	determines	how	many	lines	of	code	is	being	tested.	Using	SonarQube	[8],	it
is	found	that	Netty	4.1	has	overall	code	coverage	around	61.4	%.	Though	Netty	code
coverage	is	relatively	low,	it	is	not	necessarily	a	good	metric	to	know	whether	the	system	is
well-tested.	Even	when	it	has	a	high	number,	it	does	not	guarantee	anything.	So,	it	is
necessary	to	look	for	sections	of	code	where	coverage	is	missing	and	analyze	it	whether	the
uncovered	line	is	critical	or	does	not	matter	if	it	is	skipped.

SonarQube	show	that	several	modules	which	have	a	relative	big	percentage	of	total	line
of	code	are	standalone	testing	modules,	such	as	Microbench	and	Testsuite.	Thus,	these
modules	will	not	be	covered	by	unit	testing.
	Transport/RXTX		module	also	has	0%	coverage.	After	checking	at	Netty	source	code,	it

Netty

292

https://garage.netty.io/sonarqube/overview/coverage?id=io.netty:netty-parent:4.1

is	found	that	this	module	does	not	contain	a	testing	folder.
Deprecated	methods	found	in	Netty	source	code,	as	shown	in	figure	13,	are	not	tested
as	well,	as	usually	the	method	will	be	removed	later	in	next	version	or	has	a	purpose	to
preserves	the	"backward	compatibility".

Figure	13.	Deprecated	method	example

Simple	and	logging	methods	found	in	Netty	source	code,	as	shown	in	figure	14	and	15,
are	not	tested	as	they	do	not	have	a	significant	impact	on	Netty	system	or	damage	its
functionalities	if	it	has	a	bug.

Figure	14.	Simple	method	example

Figure	15.	Logging	method	example

If	some	part	line	of	code	explained	before	are	not	covered,	it	is	fine	if	unit	testing	does	not
include	them.	However,	because	code	coverage	of	Netty	4.1	is	still	relatively	small,	there	is
still	room	for	improvement	as	explained	later	in	Testing	improvement	subsection.

8.2	Testing	Procedures

Unit	Testing

Unit	testing	is	a	testing	technique	test	individual	modules	in	the	smallest	possible	chunks,
isolated	as	much	as	possible	from	other	code	modules	and	runtime	dependencies.	Then	it
will	be	easier	to	identify,	analyze	and	fix	the	defects.	The	concern	with	this	method	is
functional	correctness	of	the	standalone	modules.

Netty

293

Netty	4.1	is	a	Java-based	project,	so	it	utilizes	JUnit	as	its	unit	testing	framework.	In	Netty
project,	each	module	has	its	unit	testing	in	its	folder,	for	example,	module		netty-common		has
unit	testing	placed	at		Netty/Common	4.1/src/test/java/io/netty/		separated	from	its	main
source	code.

8.3	Testing	Improvement

One	obvious	improvement	that	can	be	done	in	Netty	project	is	increasing	its	code	coverage.
By	manual	checking	on,	it	was	found	that	some	line	of	codes	is	safer	or	better	to	be	tested,
which	are:

Branching:	The	example	for	this	kind	uncovered	line	of	codes	is	shown	in	figure	16.	It
can	be	seen	that	it	is	not	a	trivial	code,	so	there	should	be	a	test	case	that	covers	all
important	branching	line.	

Figure	16.	Uncovered	Branch
Override	Methods:	This	type	of	uncovered	line	of	code	experience	the	same	thing	as
uncovered	overloading	methods.	They	are	not	covered	because	the	test	case	only	tests
one	kind	Override	method.	So	it	would	be	better	if	there	is	a	test	case	that	covers	all
important	Override	methods.	The	example	of	this	type	is	shown	in	figure	17,	found	in
	MemoryAttribute.java		from	HTTP	module.

Figure	17.	Overriding	Methods

One	of	the	factors	that	impede	addition	of	tests	is	the	documentation	of	Netty	source	code.
There	is	no	clear	or	detail	explanation	regarding	the	class	or	methods.	For	example,	there
should	be	a	statement	about	input	or	output	arguments	(its	type,	its	purpose,	etc.).	This

Netty

294

would	help	developers	or	contributors	to	understand	the	code	faster,	especially	if	they	want
to	test	a	method	or	create	a	class	or	a	method	that	utilize	a	method	from	other	class.

9	Evolution	Perspective
Since	the	start	of	its	development	in	2001,	Netty	has	been	released	in	hundreds	of	version.
In	the	age	of	more	than	fifteen	years,	Netty	still	keeps	evolving	and	adding	new	capabilities
into	its	system.	Figure	18	displays	the	number	of	commits	into	Netty	repository	to	help
illustrates	how	evolution	happens	inside	Netty.

Figure	18.	Netty	number	of	commits

Figure	19.	Netty	version	history

The	progress	of	Netty	version	can	be	seen	on	figure	19,	that	shows	how	Netty	evolved	into
different	major	version	changes	while	still	maintaining	the	older	version.	For	example,	after
Netty	released	version	4.0.0.Final,	they	still	maintain	version	3.x.x	until	the	next	two	years.
Even	after	version	4.1.0.Final	was	released,	the	version	3.10	still	got	updated.	During	the
development	of	a	version,	Netty	usually	releases	several	alpha,	beta	and/or	CR	(candidate
release)	versions	first.

To	see	the	reason	why	Netty	keep	upgrading	to	a	newer	version,	one	can	look	at	the	issues
and	pull	requests	in	Netty	repository	[14].	The	core	developers	will	choose	which	issues	can
be	added	to	a	milestone	of	a	version.	When	every	item	in	the	milestone	is	completed,	the

Netty

295

version	related	to	that	milestone	will	be	released.	The	issues	included	in	the	milestone
usually	comes	from	bug	fixing	and	requests	of	a	new	feature.	Most	of	the	requested	features
are	related	to	security	improvement	and	extra	protocol	support.

10	Performance	and	Scalability	Perspectives
This	section	discusses	the	two	quality	properties	of	Netty,	which	are	performance	and
scalability.	Performance	concern	of	Netty	is	how	fast	Netty	system	performs	its	workload.
Meantime,	scalability	focuses	on	the	predictability	of	the	Netty	system's	performance	as	the
workload	increases,	for	example,	the	increased	number	of	users	[1].	As	non-blocking	IO	and
asynchronous	client-server	framework,	Netty	offers	various	of	advantages	compare	its
competitors,	which	are	synchronous	or	blocking	IO	framework	or	other	NIO	framework,	in
terms	of	performance	or	scalability	[16].	These	perspectives	will	be	elaborated	below.

Performance

One	of	performance	indicator	is	latency	which	is	the	amount	of	time	required	to	satisfy	a
request.	In	the	test	[17],	to	measure	the	latency,	the	framework	is	tested	by	responding	with
the	simplest	of	responses:	a	"Hello,	World"	message	rendered	as	plain	text.	The	test	shows
that	Netty	Project	has	lower	latency,	i.e.	233.0	ms,	compared	to	one	of	Netty	competitors	or
Project	Grizzly,	i.e.	9680.0	ms.

Figure	20.	Latency	of	Plaintext	Response	Test	by	TechEmpower	[17]

Scalability

Scalability	is	the	ability	of	a	system	to	handle	this	increased	workload	[1].	The	workload	that
effects	the	scalability	of	Netty	is	the	number	of	concurrent	connections.	The	scalability	test
[18]	shows	that	Netty	4	could	reach	1,200,000	transactions	per	second	with	more	than	1000
connection.

Netty

296

Figure	21.	Result	of	Netty	Scalability	Test	[18]

11	Conclusion
In	this	chapter,	stakeholders,	viewpoints,	and	perspectives	of	Netty	are	exploited	in	depth.
Each	section	will	lead	to	the	understanding	of	Netty's	software	architecture.	This	section	will
summarize	the	chapter	of	Netty	Project.

In	stakeholders	analysis,	it	is	found	that	Trustin	Lee	is	the	founder	of	Netty	and	it	is
developed	by	a	team	of	core	developers	and	external	contributors	through	GitHub.	Besides
personal	developers,	Netty	is	also	used	by	well-known	companies	in	their	product,	such	as
Apple,	Facebook,	and	RedHat.	Netty	also	has	competitors	as	a	client-server	framework,	e.g.
Apache	Mina	and	Grizzly.	Then	context	view	illustrates	the	relationship	between	external
entities	and	Netty	systems,	for	example,	Java	as	a	programming	language,	JUnit	as	testing
frameworks,	users,	Apache	License	v2.0	as	licenses	in	which	Netty	are	distributed,	IntelliJ
as	IDE	and	GitHub	as	version	control	and	issue	tracker.

Furthermore,	the	architecture	of	Netty	Project	is	explained	in	depth	by	Development	View,
Deployment	View,	and	Functional	View.	Development	View	section	discusses	all	modules
inside	Netty,	common	processes,	design	constraints,	design	pattern,	code	structure,	built
and	testing	management	of	Netty	Project.	In	Deployment	View,	the	environment	into	which
Netty	is	deployed	is	described,	for	example,	the	operating	systems	and	third-party	software
dependencies.	Netty's	functional	elements	and	their	responsibilities	are	explained	in
Functional	View.

After	elaborating	four	viewpoints,	technical	and	testing	debt	of	Netty	are	explained.	To
identify	technical	debt,	static	code	analysis	and	manual	code	analysis	are	performed.
SonarQube	is	a	tool	to	do	static	code	analysis	and	it	could	detect	that	Netty	has	five	types	of

Netty

297

https://github.com/trustin
https://mina.apache.org
https://grizzly.java.net

code	smells.	It	is	also	found	that	Netty	Project	has	no	SOLID	violations	during	manual	code
analysis.	Using	SonarQube,	it	is	also	discovered	that	the	code	coverage	of	Netty	is	relatively
low,	i.e.	61.4	%.	Thus,	increasing	Netty's	code	coverage	is	a	must	to	improve	the	testing
capabilities	of	Netty.

In	addition,	perspectives	are	included	to	deepen	the	analysis	of	Netty	Project.	Evolution
perspective	explains	how	Netty	evolve	since	the	development	started	in	2001.	Meanwhile,
the	performance	test	[17]	in	performance	and	scalability	perspectives	section	shows	that
Netty	has	lower	latency,	i.e.	233.0	ms,	compared	to	its	competitor,	i.e.	Project	Grizzly.
Furthermore,	the	scalability	test	[18]	shows	that	Netty	4	could	reach	1,200,000	transactions
per	second	with	more	than	1000	connection.

After	a	profound	and	extensive	analysis	of	Netty	Project,	it	can	be	concluded	that	Netty	is	a
reliable	framework	and	maintainable	project	due	to	the	involvement	of	many	parties	and
proper	methods	of	development.	After	reading	this	chapter,	the	reader	is	expected	to
understand	the	architectural	complexity	and	potential	shortage	of	Netty	Project,	then	help
them	to	contribute	in	Netty.

References
1.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with

Stakeholders	Using	Viewpoints	and	Perspectives.	New	Jersey:	Addison-Wesley,	2014.

2.	 The	Netty	Project.	Netty:	Home.	http://netty.io/index.html.

3.	 Georgios	Gousios.	How	do	project	owners	use	pull	requests	on	Github?.
http://www.gousios.gr/blog/How-do-project-owners-use-pull-requests-on-Github.html,
2014.

4.	 The	Netty	Project.	Writing	a	Commit	Message.	http://netty.io/wiki/writing-a-commit-
message.html.

5.	 The	Netty-Project.	The	Netty	Project	-	Individual	Contributor	License	Agreement	v1.0.
https://docs.google.com/forms/d/e/1FAIpQLSd7Bzje39G__THDJLRgKpQZ4gODNE26x
_hZW3ofQOkgL6RGCA/viewform?
formkey=dHBjc1YzdWhsZERUQnhlSklsbG1KT1E6MQ.

6.	 N.	Maurer	and	M.	A.	Wolfthal.	Netty	in	Action.	10th	ed.	Shelter	Island:	Manning,	2014.

7.	 Technopedia.	What	is	Technical	Debt.
https://www.techopedia.com/definition/27913/technical-debt.

8.	 SonarQube.	Features	|	SonarQube.	https://www.sonarqube.org/features/.

Netty

298

https://github.com/netty/netty
http://netty.io/index.html
http://www.gousios.gr/blog/How-do-project-owners-use-pull-requests-on-Github.html
http://netty.io/wiki/writing-a-commit-message.html
https://docs.google.com/forms/d/e/1FAIpQLSd7Bzje39G__THDJLRgKpQZ4gODNE26x_hZW3ofQOkgL6RGCA/viewform?formkey=dHBjc1YzdWhsZERUQnhlSklsbG1KT1E6MQ
https://www.techopedia.com/definition/27913/technical-debt
https://www.sonarqube.org/features/

9.	 StackOverflow.	When	using	netty	for	a	large	file	upload,	how	can	I	get	uploaded	size
while	upload	is	in	progress?.	http://stackoverflow.com/questions/29507687/when-using-
netty-for-a-large-file-upload-how-can-i-get-uploaded-size-while-uplo,	2015.

10.	 Amir	Khan.	The	Principles	of	OOD.
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod.

11.	 M.	V.	Mäntylä	and	C.	Lassenius.	"Subjective	Evaluation	of	Software	Evolvability	Using
Code	Smells:	An	Empirical	Study".	Journal	of	Empirical	Software	Engineering,	vol.	11,
no.	3,	2006,	pp.	395-431.

12.	 McCabe	(December	1976).	"A	Complexity	Measure".	IEEE	Transactions	on	Software
Engineering:	308–320.

13.	 Trustin	Lee.	Trustin	Lee	Presentation	in	Twitter	University.
https://www.youtube.com/watch?v=0aoeSsKarc8,	2014.

14.	 The	Netty	Project.	Netty	project	-	an	event-driven	asynchronous	network	application
framework.	https://github.com/netty/netty.

15.	 Norman	Maurer.	Why	Netty.	http://normanmaurer.me/presentations/2014-netflix-
netty/slides.html#1.0,	2014.

16.	 Norman	Maurer.	Network	-	Application	Development	The	Easy	Way.
http://normanmaurer.me/presentations/2013-wjax-netty/#/10.

17.	 TechEmpower.	Test	types	:	Plaintext.
http://www.techempower.com/benchmarks/#section=data-r9&hw=i7&test=plaintext

18.	 Ronen	Nachmias.	Netty	4	Throughput	test.	https://github.com/ronenhamias/netty-perf-
testing/wiki/Netty-4-Throughput-test,	2014.

19.	 Alon	Dolev.	What	is	Netty	?.	http://ayedo.github.io/netty/2013/06/19/what-is-netty.html,
2013.

20.	 TutorialsPoint.	Design	Pattern	-	Overview.
https://www.tutorialspoint.com/design_pattern/design_pattern_overview.htm

21.	 The	Netty	Project.	Netty	4.1.	https://garage.netty.io/sonarqube/overview?id=2477.

22.	 Daniel	Bimschas.	Zero-Copy	Event-Driven	Servers	with	Netty.
https://www.slideshare.net/danbim/zerocopy-eventdriven-servers-with-netty,	2011.

23.	 Wang	Wei.	Importance	of	Logs	and	Log	Management	for	IT	Security.	Retrieved	March
29,	2017,	from	http://thehackernews.com/2013/10/importance-of-logs-and-log-
management.html,	2013.

Netty

299

http://stackoverflow.com/questions/29507687/when-using-netty-for-a-large-file-upload-how-can-i-get-uploaded-size-while-uplo
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
https://www.youtube.com/watch?v=0aoeSsKarc8
https://github.com/netty/netty
http://normanmaurer.me/presentations/2014-netflix-netty/slides.html#1.0
http://normanmaurer.me/presentations/2013-wjax-netty/#/10
http://www.techempower.com/benchmarks/#section=data-r9&hw=i7&test=plaintext
https://github.com/ronenhamias/netty-perf-testing/wiki/Netty-4-Throughput-test
http://ayedo.github.io/netty/2013/06/19/what-is-netty.html
https://www.tutorialspoint.com/design_pattern/design_pattern_overview.htm
https://garage.netty.io/sonarqube/overview?id=2477
https://www.slideshare.net/danbim/zerocopy-eventdriven-servers-with-netty
http://thehackernews.com/2013/10/importance-of-logs-and-log-management.html

24.	 Jean-Louis	Letouzey.	The	SQALE	Method	for	Evaluating	Technical	Debt.	In	3rd
International	Workshop	on	Managing	Technical	Debt.	Zurich,	Switzerland.	2012.

25.	 Alon.	What	is	Netty?.	http://ayedo.github.io/netty/2013/06/19/what-is-netty.html,	2013.

26.	 The	Netty	Project.	Netty:	Thank	you	for	your	donation.
http://netty.io/sponsor/thanks.html.

Netty

300

http://ayedo.github.io/netty/2013/06/19/what-is-netty.html
http://netty.io/sponsor/thanks.html

Abstract
In	this	chapter,	we	will	analyze	and	discuss	the	architecture	of	Node.js:	an	event-driven
sever-side	JavaScript	environment.	Several	aspects	of	Node.js	are	analyzed,	starting	with
the	stakeholders.	We	give	a	context	view	to	describe	the	different	components	involved	and
a	development	view	to	outline	how	Node.js	is	developed	and	the	ways	in	which	contributions
can	be	made.	We	discuss	the	functional	view,	which	provides	the	functionalities	and
evolution	of	Node.js.	Lastly,	we	discuss	Node.js	from	a	scalability	and	performance
perspective.	We	end	with	a	short	conclusion	summarizing	our	most	interesting	findings
regarding	Node.js'	architecture.

Table	of	Contents
1.	 Introduction
2.	 Stakeholder	View
3.	 Context	View
4.	 Development	View
5.	 Functional	View
6.	 Scalability	&	Performance	Perspective
7.	 Conclusion

Introduction
Node.js	is	an	open-source	tool	for	developing	a	wide	array	of	server	applications.
Development	started	back	in	2009,	led	by	developer	Ryan	Dahl	[1].	Initially	Node.js	only
supported	Mac	OS	X	and	Linux,	but	later	in	2011	the	project	was	expanded	to	also	support
Windows	and	other	lesser	known	operating	systems.

The	reason	why	Node.js	was	originally	started	is	because	Ryan	Dahl	was	fed	up	with	the
disconnect	between	the	client	and	the	web	server.	Each	time	the	client	wanted	to	be
updated	with	new	information	it	had	to	query	the	web	server	(for	example,	to	keep	track	of
progress	of	a	file	upload).	This	had	been	a	long-standing	problem	in	the	field	of	web
development,	but	most	developers	just	decided	to	deal	with	it.	Node.js	was	the	first	real
attempt	at	solving	this	problem	at	the	root	by	enabling	real-time	communication	between	the
client	and	the	server.	It	was	immediately	well	received,	as	shown	by	the	enthusiastic	reaction
of	the	audience	during	the	original	Node.js	launch	presentation	[2].

Node

301

Since	its	inception,	Node.js	has	surpassed	many	of	its	early	expectations	[3].	The	total
amount	of	active	contributors	to	the	project	itself	increased	each	year	to	a	record	amount	of
about	480	contributors	at	the	end	of	2016.	The	number	of	downloads	also	continues	to	grow,
with	the	total	amount	of	downloads	averaging	at	over	480,000	a	day.

Because	of	the	immense	popularity	of	Node.js	we	wanted	to	study	its	architecture	and	how	it
is	used	to	achieve	some	of	the	unique	functionalities	Node.js	has	to	offer.	We	will	first
discuss	the	Stakeholders	and	the	Context	View	to	get	an	idea	of	who	and	what	is	involved	in
the	development,	usage	and	maintenance	of	Node.js.	Afterwards	we	will	analyze	Node.js
from	a	development	viewpoint	where	we	will	talk	more	about	the	technical	structure	of
Node.js	and	the	design	guidelines	and	patterns	used	by	Node.js.	Then	we	will	highlight
some	of	the	most	unique	and	distinctive	functionalities	that	Node.js	has	to	offer	in	the
Functional	View.	Through	this	we	hope	to	explain	what	made	Node.js	so	unique	and
successful.	Finally	we	will	describe	how	the	architecture	of	Node.js	manages	to	serve	such	a
wide	userbase	by	considering	the	performance	and	scalability.

Stakeholder	View
This	section	discusses	various	stakeholders	involved	in	Node.js	and	provides	a	classification
of	the	stakeholders	as	proposed	by	Rozanski	and	Woods	[4].	Node.js	is	owned	and
governed	by	the	Node.js	Foundation	which	consists	of	the	following	stakeholders:

1.	 Board:	Sets	the	business	direction	and	oversees	legal,	financial	and	marketing
domains.

2.	 Technical	Steering	Committee	(TSC):	Sets	the	technical	direction	and	is	responsible	for
technical	governance	of	all	Node.js	projects	including	Node.js	Core.

3.	 Foundation	Members:	They	can	be	businesses	or	individuals.	Both	types	of	members
have	representation	on	the	board.

4.	 Core	Technical	Committee:	The	Foundation	sponsors	the	Node.js	Core	project	and
entrusts	its	governance	to	the	Core	Technical	Committee	(CTC).

5.	 Collaborators:	The	Collaborators	along	with	the	CTC	maintain	the	nodejs/node	GitHub
repository.	The	collaborators	are	primarily	involved	in	development,	maintenance	and
testing	of	Node.js.	Collaborators	are	organized	into	various	Working	Groups	(WG)
which	have	specific	areas	of	responsibility	such	as	testing,	build,	documentation	and	so
on.

Figure	1	provides	an	overview	of	Node.js	stakeholders.

Node

302

https://nodejs.org/en/foundation/

Figure	1:	Stakeholder	View

In	order	to	provide	a	more	precise	and	fine-grained	view	of	the	roles	of	the	stakeholders,	we
provide	a	classification	of	stakeholders	according	to	Rozanski	and	Woods	[4].

Node

303

Type Stakeholders Description

Developers

Core	Technical
Committee
(CTC),
Collaborators,
Any
developers	on
GitHub

CTC	and	Collaborators	are	actively	involved	in
the	development,	maintenance	and
documentation	of	the	project.	They	are	also
responsible	for	reviewing	issues	and	merging	pull
requests	from	other	Collaborators	and	GitHub
users.

Acquirers Node.js
Foundation

The	Foundation	decides	the	business	and
technical	direction	of	Node.js	and	is	responsible
for	governance,	marketing	and	sales.

Assessors

Testing
Working	Group
(WG),
Benchmarking
WG

They	test	the	quality	and	compliance	of	Node.js.

Communicators

Website	WG,
Documentation
WG,
Evangelism
WG,
Foundation’s
Education
Committee

The	Website	WG	maintains	the	node.org	website.
Documentation	WG	is	involved	in	documentation
of	APIs	and	the	website.	Evangelism	WG
promotes	community	events	and	manages	social
media	content.	The	Education	Committee	helps
users	explore	and	learn	Node.js.

Maintainers Developers
Core	Technical	Committee	makes	decisions	on
the	evolution	of	the	project	and	the	Collaborators
are	responsible	for	all	maintenance	tasks.

Support	Staff Collaborators
Collaborators	provide	support	for	the
development	of	Node.js	by	helping	users	and
novice	contributors.

System
Administrators Collaborators Collaborators	also	assume	the	role	of	system

administrators.

Suppliers

Windows,
Mac,	Linux,
SunOS	and
Docker

These	stakeholders	supply	hardware	and
software	that	the	system	runs	on.

We	have	analyzed	some	of	the	latest	pull	requests	and	issues	to	identify	how	the
stakeholders	collaborate	to	develop	the	system	and	make	decisions.	Node.js'	governance
policy	suggests	that	collaborators	are	responsible	for	reviewing	each	other's	pull	requests
and	must	include	the	CTC	(by	labelling	it	ctc-review)	if	there	is	disagreement	among	the
collaborators	regarding	the	proposed	change.	However,	we	observed	in	the	last	25	pull
requests	that	at	least	one	member	of	the	CTC	was	included	as	a	reviewer	even	if	the	item
was	not	labelled	as	ctc-review.	This	suggests	that	the	CTC	are	the	main	integrators	of	the

Node

304

https://github.com/nodejs/node/pulls
https://github.com/nodejs/node/issues

project.	Their	focus	is	to	ensure	that	the	commits	are	of	high	quality.	Also,	we	observed	that
pull	requests	labelled	"test"	or	"build"	generally	involve	a	member	of	the	relevant	working
group.

Figure	2	provides	the	power	grid	view	of	Node.js	stakeholders.	It	is	used	to	classify	the
stakeholders	based	on	their	interest	in	the	system	and	their	power	to	influence	the
development	of	the	system.	Such	a	classification	can	help	identify	the	stakeholders	that
have	the	highest	influence	on	the	system	so	that	their	interests	may	be	prioritized.

Figure	2:	Stakeholder	power	grid	view

High	power	high	interest:	Manage	closely
These	are	stakeholders	that	are	responsible	for	building	and	maintaining	Node.js.	It	includes
the	Node.js	Foundation	and	project	team	which	are	responsible	for	deciding	the	technical
direction,	development	and	maintenance	of	Node.js

Low	power	high	interest:	Keep	informed

Node

305

These	are	stakeholders	who	do	not	have	much	power	in	influencing	the	development	of
Node.js	but	have	high	interest	in	the	system.	It	includes	third-party	developers	that	build
Node.js	packages	and	companies	that	build	IDEs	for	Node.js.	It	also	includes	competitors	of
Node.js	such	as	PHP,	Golang,	Reactor	project	and	so	on	who	have	high	interest	in	how
Node.js	evolves.

High	power	low	interest:	Keep	Satisfied
This	includes	businesses	who	build	applications	using	Node.js.	Clients	that	are	members	of
Node.js	Foundation	have	the	power	to	influence	the	evolution	and	technical	direction	of
Node.js.

Low	power	low	interest:	Monitor
This	category	includes	stakeholders	that	do	not	have	any	power	or	interest	in	Node.js	but
provide	services	that	are	used	in	the	development	of	the	system.	This	includes	services	like
GitHub	for	source	control,	Jenkins	for	Continuous	Integration.	It	also	includes	individual
developers	who	build	applications	using	Node.js.

Context	View
In	this	section	we	will	discuss	all	external	entities	that	Node.js	interacts	with	and	the	context
in	which	they	interact	with	each	other.	Through	this	analysis	we	aim	to	get	an	overview	of	the
ecosystem	in	which	Node.js	resides	through	which	we	can	identify	dependencies	and	end
users	of	interest.

System	scope	and	responsibilities
According	to	their	own	website,	Node.js	was	designed	to	build	scalable	network	applications.
Node.js	is	mainly	meant	to	provide	developers	with	the	foundations	for	common	server-side
functionalities,	for	example	[5]:

Binary	data	manipulation
File	system	I/O	operations
Database	access
Computer	networking

Node

306

https://nodejs.org/en/about/

Node.js	is	very	lightweight	and	many	higher-level	functionalities	are	intentionally	relegated	to
the	many	packages	that	are	offered	through	its	package	ecosystem	(called	npm),	which
provides	access	to	the	world's	largest	collection	of	open	source	libraries	and	frameworks.

External	entities
We	have	grouped	all	the	external	entities	that	are	related	to	Node.js	into	several	categories
which	we	discuss	sequentially	below.	An	overview	of	all	the	entities	and	their	relations	to
Node.js	can	be	found	in	Figure	3.

Figure	3:	Context	View

Development

These	are	different	entities	that	are	related	to	the	actual	development	of	Node.js,	such	as
programming	languages	and	testing.

Programming	languages

Node.js	is	almost	entirely	written	in	JavaScript.	It	uses	Google's	V8	engine	to	execute	all	the
JavaScript	code,	but	since	this	engine	is	itself	written	in	C++,	some	parts	of	Node.js's
codebase	that	interact	directly	with	this	engine	are	also	written	in	C++.	Finally,	Python	is
used	to	run	many	of	the	automated	tests	for	Node.js.

Dependencies

There	are	a	number	of	libraries	or	products	that	Node.js	explicitly	depends	upon.	Since
Node.js	was	meant	to	be	lightweight	it	offers	only	the	most	basic	necessities	for	a	product	of
its	kind	out	of	the	box	and	thus,	it	does	not	have	too	many	dependencies.	Instead,	it	relies

Node

307

on	the	wide	variety	of	additional	plugins	and	libraries	offered	through	npm,	which	can	be
used	to	extend	the	functionality	of	a	Node.js	application	with	many	standardized	solutions	to
common	problems.

libuv:	Node.js	is	asynchronous	and	libuv	provides	a	consistent	interface	for	common
asynchronous	tasks	across	all	supported	platforms.
c-ares:	a	library	for	asynchronous	DNS	requests.
openssl:	a	library	of	cryptographic	functions	for	security	purposes.
http	parser:	parses	HTTP	requests	and	responses.
v8:	the	Javascript	engine	used	by	Node.js	to	run	all	of	its	JavaScript	code.
zlib:	a	library	used	for	(de)compression.

Tools

In	addition	to	the	dependencies	mentioned	above,	Node.js	makes	use	of	a	couple	of
additional	tools.	These	are	not	dependencies	in	the	sense	that	Node.js	cannot	work	without
them,	but	can	be	thought	of	as	additional	features	that	enrich	the	Node.js	experience.

npm:	the	package	manager	of	Node.js	that	offers	access	to	a	multitude	of	open	source
libraries.
gyp:	a	build	system	to	build	those	parts	of	Node.js	and	its	dependencies	that	require
compilation.
gtest:	a	unit	testing	suite	for	C	and	C++	code.

Testing

As	we	previously	mentioned	while	discussing	the	dependencies,	gtest	is	used	for	C++
related	tests.	For	the	JavaScript	code,	the	Python	library	pytest	is	used	to	configure	and	run
the	tests.

Distribution

Node.js	is	available	on	Windows,	Mac,	Linux,	SunOS	and	Docker.	It	can	be	downloaded
directly	from	their	own	website	or	through	one	of	many	third	party	package	managers	that
offer	it.	Those	packagers	are	responsible	for	packaging	the	Node.js	code	base	themselves,
so	Node.js	stresses	that	any	issues	people	run	into	should	be	reported	to	them.	If	it	turns	out
to	be	an	issue	with	Node.js	itself,	those	packagers	will	contact	Node.js	to	notify	them
accordingly.

Competitors

Node.js	is	of	course	not	the	only	platform	that	provides	server-side	functionalities.	The
following	is	a	list	of	competitors	that	provide	in	some	way	the	same	functionalities	that
Node.js	provides:

Node

308

https://github.com/libuv/libuv
https://github.com/c-ares/c-ares
https://github.com/openssl/openssl
https://github.com/nodejs/http-parser
https://v8docs.nodesource.com/
https://github.com/madler/zlib
https://docs.npmjs.com/
https://github.com/nodejs/node-gyp
https://github.com/google/googletest
https://nodejs.org/en/download/
https://nodejs.org/en/download/package-manager/

PHP
Golang
Vert.x
Reactor	project
Celluloid-io
Reactphp
Cyclone.io

Users

The	users	of	Node.js	can	be	divided	into	two	subcategories.	The	individual	community	and
enterprise.

Individual	community

The	individual	community	are	the	types	of	users	that	uses	Node.js	as	hobby	or	for	research.
They	do	not	intend	to	make	money	by	using	Node.js.	Such	users	are	developers	and
universities.

Enterprise

Enterprise	are	the	users	who	do	use	Node.js	as	a	tool	in	their	company	to	help	improve	their
product.	Some	major	companies	that	use	Node.js	commercially	are	[6]:

Netflix
PayPal
Uber
IBM
Microsoft

Feedback	&	Developers

For	real-time	discussion	about	Node.js	development	there	is	the	#node.js	IRC	channel	on
the	irc.freenode.net	server.	For	general	communication	to	all	people	working	with	Node.js
and	not	just	on	Node.js,	they	also	have	a	number	of	communication	channels:

The	official	Node	Twitter	account	through	which	they	keep	their	followers	up	to	date.
A	weekly	mailing	list	called	Node	Weekly,	detailing	the	latest	events	within	the	Node.js
community.
NodeUp,	a	podcast	that	covers	the	latest	Node.js-related	news.

Feedback	and	help	can	be	found	on	various	platforms	such	as	StackOverflow,	GitHub	and
Google	Groups,	with	all	three	platforms	having	an	active	community	for	Node.js.

Node

309

http://php.net/
https://golang.org/
http://vertx.io/
http://projectreactor.io/
https://celluloid.io/
http://reactphp.org/
http://cyclone.io/
https://twitter.com/nodejs

Version	control	&	Issue	tracking

Node.js	is	actively	being	developed	on	GitHub	using	Git	as	its	version	control	system.	The
same	system	is	also	used	to	track	issues,	report	bugs	and	discuss	features.

License

The	Node	license	closely	follows	the	MIT	license.	

Development	View
The	Development	View	details	how	the	architecture	supports	the	software	development
process	and	which	development	guidelines	are	to	be	taken	into	account	by	all	developers.
Development	views	communicate	the	aspects	of	the	architecture	of	interest	to	those
stakeholders	involved	in	building,	testing,	maintaining,	and	enhancing	the	system.

Module	Organization
Node.js	is	both	a	product	of	its	own	as	well	as	a	service	upon	which	other	applications	can
be	built.	Because	of	this,	it	is	useful	to	consider	the	design	choices	made	for	both	in	our
analysis.	Some	of	the	choices	made	at	a	basic	level	in	the	Node.js	architecture	affect	how
applications	using	Node.js	should	be	developed.	Figure	4	shows	a	diagram	depicting	the
high-level	layered	structure	of	Node.js	as	described	in	[7].

Node

310

https://github.com/
https://github.com/nodejs/node/blob/master/LICENSE
https://opensource.org/licenses/mit-license.php

	
Figure	4:	Module	Organization

The	Module	and	Application	Ecosystem	refers	to	the	collection	of	all	software	that	was	built
using	Node.js.	It	is	connected	to	all	other	layers	in	the	diagram,	which	signifies	that	in	theory
developers	of	Node.js	applications	are	free	to	connect	to	any	of	Node.js'	layers.	In	practice
most	applications	limit	themselves	to	accessing	only	the	Node.js	Core	Library.

This	Core	Library	contains	a	variety	of	JavaScript	files	that	simplify	the	development	process
for	Node.js	users.	It	offers	a	lot	of	common	functionality	out	of	the	box,	such	as
cryptography,	network	connections,	event	handling,	etc.	A	part	of	the	code	in	this	library	is
marked	as	"internal",	which	hides	a	part	of	the	API	from	the	end	user.	The	end	user	can	still
call	these	API	functions	if	they	wanted	to,	but	since	the	format	of	these	APIs	can	change
without	notice,	they	are	marked	as	internal	to	discourage	people	from	doing	so.

The	Application	Binary	Interface	(commonly	referred	to	as	the	ABI)	is	a	relatively	new	part	of
Node.js	[8].	The	idea	behind	the	ABI	is	to	provide	the	end	user	with	a	stable	API	through
which	they	can	access	the	underlying	JavaScript	engine.	At	this	point	that	engine	is
Google's	V8,	but	the	ABI	allows	Node.js	to	potentially	switch	to	a	different	engine	in	the
future.	Also	the	ABI	ensures	that	no	new	version	of	Node.js	is	required	if	changes	are	made
to	Google's	V8	engine.	The	Binary	Abstraction	Layer	serves	a	similar	purpose,	but	it
abstracts	the	ABI	even	further.	On	top	of	that,	it	also	provides	abstracted	access	to	other
dependencies	aside	from	the	JavaScript	engine.

Design	Patterns

Node

311

This	section	discusses	some	of	the	design	patterns	used	in	Node.js.

Singleton	Pattern

The	singleton	pattern	limits	the	number	of	instances	of	a	particular	object	to	just	one.
Node.js	uses	module	caching	to	implement	the	Singleton	pattern	and	caches	a	module	after
the	first	time	it	is	loaded.	Every	subsequent	call	to	a	module	using		require(<module_name>)	
returns	the	same	instance	of	the	cached	module.	In	that	way,	these	modules	can	thus	be
thought	of	as	singletons.

Dependency	Injection	Container

Application	modules	built	on	Node.js	typically	use	a	backbone	object	that	acts	as	a
dependency	injection	container.	Services	such	as	logging	and	database	access	which	are
required	throughout	almost	any	application	built	on	Node.js	are	attached	to	the	backbone
object	and	this	object	in	turn	can	be	used	by	the	modules	that	require	these	services.	In	this
way,	modules	have	their	dependencies	injected	from	the	outside	through	the	use	of	the
backbone	object.	The	module	is	thus	isolated	from	any	changes	in	its	dependencies.

Event-Driven	Programming

In	an	event-driven	program	the	flow	of	the	application	is	the	result	of	events	that	are	fired	or
states	that	are	changed.	In	general	there	is	one	single,	global	mechanism	that	listens	for
such	events	and	whenever	one	is	fired	it	will	call	the	corresponding	callback	function.	In
Node.js	this	mechanism	is	called	the	Event	Loop,	which	we	will	discuss	in	great	detail	in	the
Functional	View	and	the	Performance	and	Scalability	Perspective.

Codeline	Organization
In	this	section	we	will	give	a	brief	overview	of	the	source	code	structure	of	Node.js,	also
called	codeline	organization.	A	well-defined	codeline	organization	allows	for	automated
builds,	tests	and	releases.	This	has	the	potential	of	greatly	simplifying	the	development
process.	The	structure	of	Node.js'	code	is	as	follows:

Node

312

Directory Description

benchmark

This	directory	contains	the	code	and	data	for	benchmarking	and
measuring	the	performance	of	different	Node.js	implementations.	The
benchmarks	are	classified	into	25	directories	depending	on	the
subsystem	they	benchmark.	It	also	includes	a	miscellaneous	directory	for
benchmarks	that	do	not	clearly	fit	in	one	of	the	predefined	categories.

deps This	directory	contains	the	source	code	of	the	third	party	components
that	Node.js	depends	on,	some	of	which	are	shown	in	Figure	4.

doc This	directory	contains	all	the	documentation	for	Node.js,	such	as	API
explanations,	changelogs,	development	guides,	etc.

lib
This	directory	contains	the	JavaScript	modules	used	in	Node.js.	The
modules	in	lib/internal	are	meant	for	use	in	Node.js	core	and	are	not
meant	to	be	accessed	from	user	modules.

src This	directory	contains	the	bindings	that	expose	the	C/C++	libraries	to
JavaScript.

test
This	directory	consists	of	the	code	used	to	test	Node.js.	The		common.js	
module	in	this	folder	contains	a	number	of	helper	functions	for	commonly
occurring	tasks	in	tests.

tools This	directory	contains	additional	tools	that	are	useful	for	development
with	Node.js,	like	build	functionality,	automated	testing	libraries,	etc.

Functional	View
In	this	section	we	will	describe	the	most	important	and	unique	functionalities	of	Node.js.	We
will	also	address	the	architectural	elements	and	choices	that	make	these	functions	possible.
Node.js	indirectly	offers	vast	amounts	of	functionality	through	the	myriad	of	applications	that
have	been	built	upon	it,	such	as	chat	bots,	application	monitoring	and	data	streaming.
However,	since	our	focus	is	on	Node.js	itself	we	are	mainly	interested	in	its	architecture	and
will	therefore	also	focus	solely	on	the	functionalities	offered	directly	to	developers	working
with	Node.js.

Threading
The	threading	mechanism	of	Node.js	is	quite	different	from	other	webservers.	For	example,
webservers	based	on	PHP	and	ASP.NET	typically	create	a	new	thread	for	each	client
request.	That	client	request	thus	causes	the	entire	program	to	be	reinstantiated	on	the
thread	for	that	specific	request.	So	while	the	webserver	is	definitely	multi-threaded,	each
program	instance	served	to	a	client	operates	only	on	a	single	thread.

Node

313

As	we	mentioned	in	the	Development	View,	Node.js	is	built	upon	libuv,	which	allows	it	to
perform	asynchronous	or	non-blocking	I/O	operations.	Because	of	this,	Node.js	is	able	to
use	only	a	single	"calling	thread"	that	serves	all	incoming	client	requests	without	causing
independent	requests	to	block	each	other.	Any	work	that	needs	to	be	done	is	passed	off	to	a
thread	pool	where	it	is	assigned	to	a	separate	thread	on	which	it	will	be	executed.	After	the
work	has	been	done,	control	is	ceded	back	to	the	calling	thread	to	provide	the	client	with	the
appropriate	response	to	their	original	request	[9].

In	a	later	section	on	the	Performance	&	Stability	Perspective	we	will	discuss	the	advantages
and	disadvantages	that	these	two	approaches	carry	with	them.	For	now	it	suffices	to
emphasize	the	differences	from	an	architectural	point	of	view.	We	will	now	elaborate	on	the
calling	thread,	commonly	referred	to	as	the	event	loop.

Event	Loop
As	we	previously	discussed	in	the	Development	View,	Node.js	is	based	on	the	event-driven
programming	paradigm	[10].	This	becomes	clear	through	the	so-called	event	loop,	a	process
that	is	constantly	accepting	incoming	requests	and	providing	responses	to	previously
accepted	requests.	In	between	accepting	a	request	and	responding	to	it,	the	event	loop	will
refer	work	that	needs	to	be	done	to	one	of	the	background	workers,	as	mentioned	in	the
previous	subsection	on	Threading.	Node.js	makes	good	use	of	JavaScript's	support	for
callbacks	by	allowing	a	callback	to	be	sent	along	with	each	such	task.	Figure	5	pictures	the
execution	model	as	we	have	discussed	it	so	far.

Figure	5:	NodeJS	Execution	Model	(from	http://www.codingeek.com/tutorials/nodejs/is-
nodejs-single-threaded/)

Node

314

https://github.com/libuv/libuv
http://www.codingeek.com/tutorials/nodejs/is-nodejs-single-threaded/

Each	of	these	callbacks	is	registered	to	an	Event	Queue,	where	it	waits	to	be	called	as	soon
as	the	corresponding	task	has	been	finished.	These	callbacks	are	all	executed	on	the	main
thread	again,	as	they	are	responsible	for	providing	the	client	with	a	response.	Therefore	it	is
advisable	to	keep	the	callback	functions	as	lightweight	as	possible,	as	they	will	cause	delay
for	other	simultaneous	requests.	As	long	as	there	are	callbacks	in	this	queue,	the	event	loop
will	remain	active	to	respond	to	all	outstanding	client	requests.	Figure	6	shows	the	interplay
between	the	mechanisms	behind	the	Event	Queue,	the	event	loop	and	the	thread	pool.

Figure	6:	Single	Threaded	event	loop	model	(from	http://www.journaldev.com/7462/node-js-
architecture-single-threaded-event-loop)

In	Node.js	every	object	that	can	fire	events	is	an	instance	of	the		EventEmitter		class.	Each
of	these	objects	has	an		on()		method	in	which	a	type	of	event	can	be	specified	along	with
the	appropriate	callback	such	that	each	time	the	named	event	is	fired,	the	corresponding
callback	is	called.	If	multiple	callbacks	have	been	assigned	to	the	same	event,	all	of	them
will	be	executed	in	a	synchronous	manner	(according	to	the	first	in,	first	out	principle).	If
necessary	developers	can	override	this	procedure	by	using	the		setImmediate()		method	for
a	callback	to	switch	to	an	asynchronous	model.

Some	of	the	core	modules	of	Node.js	that	extend	the		EventEmitter		class	are	the		Server	,
	Socket	,		http		and		fs		(short	for	File	System)	modules.	For	all	of	these	it	is	easy	to
imagine	how	the	event-based	way	of	programming	enables	the	system	as	a	whole	to
function	in	a	non-blocking	way.	Without	events,	the	program	would	have	to	postpone
executing	any	of	its	subsequent	code	until	it	has	received	a	response	from	a	remote	server
or	until	a	file	has	been	read	completely.	By	specifying	callbacks	for	such	events,	the	main
program	can	continue	being	executed,	only	returning	to	the	callback	when	new	data	has
become	available.

Node

315

http://www.journaldev.com/7462/node-js-architecture-single-threaded-event-loop

Package	Management
Node.js	uses	a	package	manager	in	order	for	developers	to	add	modules	to	their
applications.	These	modules	add	new	functionality	to	existing	applications.	This	new
functionality	can	help	developers	create	their	app	or	enhance	their	app	for	the	users.
Although	most	packages	are	modules,	there	are	some	packages	that	are	not	modules	for
they	have	no	index.js	or	main	field	in	the	package.json	file	for	use	in	Node.js	programs[11].
This	way	the	Node.js	program	cannot	use	the		require		function	to	load	the	package	and	is
thus	not	a	module.

npm

When	installing	node,	the	package	manager	called	npm	is	automatically	installed	as	well.
npm	is	written	in	JavaScript	and	was	developed	by	Isaac	Z.	Schlueter.	He	saw	that	module
packaging	was	not	done	well	in	node	compared	to	other	platforms.	This	was	the	reason	for
him	to	come	up	with	npm[12].	npm	makes	it	easy	for	developers	to	share,	reuse	and	update
shared	JavaScript	code	and	uses	nested	dependencies	as	shown	in	Figure	7

	
Figure	7:	npm	nested	dependicies	(from	https://maxogden.com/nested-dependencies.html)

npm	comes	with	a	command	line	client	that	interacts	with	a	remote	registry.	The	CommonJS
format	is	used	for	the	packages	on	the	registry	along	with	a	metadata	file,	package.json.
There	is	no	screening	for	the	packages	on	the	registry,	so	anyone	can	upload	their	package.
Because	of	this,	the	quality	of	packages	is	very	diverse.	Some	security	risks	are	present
because	of	this	rule.	Although	the	npm	server	admins	can	delete	malicious	packages,

Node

316

https://maxogden.com/nested-dependencies.html
https://en.wikipedia.org/wiki/CommonJS

deleting	packages	may	cause	failure	of	applications	using	those	packages.
npm	can	also	be	used	for	managing	applications	locally.	By	defining	a	package.json	file	for	a
node	application,	dependencies	can	be	automatically	downloaded	and	updated	by	using
npm.	Even	versions	can	be	set	for	packages,	if	an	application	only	works	with	a	certain
version,	so	that	npm	will	not	update	that	package	and	only	installs	that	version	of	the
package.

Other	package	managers

Next	to	npm	there	are	other	third-party	package	managers	that	can	be	used	with	node.	Yarn
for	example	is	package	manager	that	was	released	by	Facebook.	All	these	package
managers	use	the	npm	public	registry,	but	are	different	in	the	client-side	experience.

Performance	and	Scalability	Perspective
This	section	provides	a	detailed	view	on	how	the	architecture	of	Node.js	enables	the
development	of	highly	scalable	server-side	web	applications.	In	order	to	understand	how
Node.js	achieves	scalability,	it	is	first	necessary	to	understand	the	drawbacks	of	traditional
web	server	architectures	when	handling	a	large	number	of	concurrent	requests	that	are	I/O
or	network	intensive.	Ryan	Dahl,	the	creator	of	Node.js	provides	an	insight	into	the	design
limitations	of	traditional	web	server	frameworks.

	"Turns	out,	a	lot	of	the	frameworks	were	designed	in	a	way	that	they	made	the	assumpt

ion	a

		request	—	response	is	something	that	happens	instantaneously	and	that	your	entire	we

b

		development	experience	should	be	abstracted	as	a	function.	You	get	a	request,	you	re

turn	a

		response.	That	is	the	extent	of	your	context."—	Ryan	Dahl

As	we	pointed	out	in	the	previous	section,	this	type	of	request/response	architecture	uses
multi-threading	to	provide	concurrent	handling	of	requests.	However,	since	a	new	thread	is
created	for	each	request	and	because	of	the	use	of	blocking	I/O	calls,	such	an	architecture
cannot	scale	up	efficiently.	The	sections	below	discuss	how	the	event-driven	architecture	of
Node.js	differs	from	this	traditional	approach	with	respect	to	performance	and	scalability.

Multi-Threaded	Request/Response	Model	with
Blocking	I/O

Node

317

Figure	8	shows	the	request	processing	mechanism	in	web	servers	with	multi-threaded
synchronous	I/O	model.	Here,	a	new	thread	is	created	for	each	incoming	request	at	the
server.	The	thread	blocks	when	I/O	operations	are	being	executed.	Though	this	type	of
thread-per-request	model	provides	concurrent	handling	of	requests,	it	is	evident	from	Figure
8	that	a	large	amount	of	memory	and	CPU	is	tied-up	without	use	when	the	thread	blocks
while	waiting	for	I/O	or	network	calls	to	return.	Also,	as	the	number	of	concurrent	requests
increases,	the	overhead	of	thread	management	becomes	high.

	
Figure	8:	Synchronous	I/O	(from	http://bijoor.me/2013/06/09/java-ee-threads-vs-node-js-
which-is-better-for-concurrent-data-processing-operations/)

Single	Threaded	Asynchronous	I/O	Model
Figure	9	shows	the	request	processing	mechanism	in	web	servers	which	run	a	single	thread
and	perform	non-blocking	I/O	calls.	Node.js	uses	a	similar	concurrency	model	which	makes
it	more	scalable	than	the	multi-threaded	model.	This	model	uses	a	single	thread	which
services	all	the	incoming	requests	at	the	web	server.	The	I/O	operations	are	executed	as
events	and	do	not	block	the	calling	thread.	It	is	clear	from	Figure	9	that	this	model	utilizes
the	CPU	more	efficiently	than	the	multi-threaded	model.	Also,	since	it	uses	a	single	thread,	it
is	more	memory	efficient	compared	to	the	multi-threaded	model.

Node

318

http://bijoor.me/2013/06/09/java-ee-threads-vs-node-js-which-is-better-for-concurrent-data-processing-operations/

Figure	9:	Asynchronous	I/O	(from	http://bijoor.me/2013/06/09/java-ee-threads-vs-node-js-
which-is-better-for-concurrent-data-processing-operations/)

At	the	backend	however,	threads	are	still	required	to	execute	the	various	I/O	operations	in
parallel.	But	this	complexity	is	hidden	away	from	the	Node.js	application	which	makes
programming	on	Node.js	much	easier.	Also,	since	this	model	moves	away	from	the	thread-
per-request	architecture,	it	does	not	incur	the	overhead	of	thread	management.

Despite	its	superior	concurrency	model,	the	Node.js	architecture	is	not	suitable	to	scale
across	multiple	cores	in	a	system.	Since	Node.js	uses	a	single	thread	to	service	all	incoming
requests,	it	cannot	leverage	multiple	cores	in	the	system	by	distributing	the	load	across
cores.	Listed	below	are	two	mechanisms	to	overcome	this.

Node.js	provides	the	Cluster	API	which	applications	can	use	to	distribute	incoming
connections	across	worker	processes	which	run	on	multiple	cores.

The	libuv	library	which	manages	the	threads	in	Node.js	by	default	creates	4	threads	in
the	thread	pool	when	the	node	process	starts	running.	The		UV_THREADPOOL_SIZE	
environment	variable	can	be	configured	to	create	a	maximum	of	128	threads	which	are
distributed	across	cores	by	the	server	operating	system.

Conclusion
In	this	chapter	we	have	analyzed	the	architecture	of	Node.js	on	different	perspectives	and
views,	so	that	the	readers	could	have	a	broad	idea	of	what	Node.js	is	and	what	is	it's
structure.

Node

319

http://bijoor.me/2013/06/09/java-ee-threads-vs-node-js-which-is-better-for-concurrent-data-processing-operations/
https://nodejs.org/api/cluster.html#cluster_how_it_works

As	aspiring	software	architects,	analyzing	Node.js	structure	has	been	enlightening
experience	for	us.	It	has	provided	useful	insight	as	to	how	complex	modular	architectures
are	developed	and	managed,	and	the	reasons	for	doing	so.	We	appreciated	the	opportunity
to	analyze	the	various	architectural	aspects	of	Node.js	which	allowed	us	to	become
intimately	familiar	with	a	project	we	had	all	heard	of	but	had	never	really	figured	out
completely.	From	the	stakeholders	and	the	ecosystem	in	which	Node.js	resides	to	the	more
technical	aspects	dealing	with	the	software	development	process,	the	functionalities	and	the
scalability.

References
1.	 Dahl,	R	(2010-11-09).	"Joyent	and	Node".	Google	Groups.,

https://groups.google.com/forum/#!topic/nodejs/lWo0MbHZ6Tc,	Accessed	on	April	3rd,
2017

2.	 Video:	Ryan	Dahl:	Original	Node.js	presentation	(November	26th,	2009),
https://www.youtube.com/watch?v=ztspvPYybIY,	Accessed	on	April	3rd,	2017.

3.	 Node	By	Numbers	(January	1st,	2017),	https://nodesource.com/node-by-numbers,
Accessed	on	April	3rd,	2017.

4.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with
Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.

5.	 Li,	A.	(June	5th,	2016),	Architecture	of	Node.js’	Internal	Codebase,	Yet	Another	Node.js
Blog,	https://arenli.com/architecture-of-node-js-internal-codebase-57cd8376b71f,
Accessed	on	February	25th,	2017

6.	 Delgado,	A.	(October	5th,	2017),	Top	5	companies	using	NodeJS	in	production,
https://www.linkedin.com/pulse/top-5-companies-using-nodejs-production-anthony-
delgado,	Accessed	on	February	26th,	2017

7.	 Node.js	Foundation	(2017),	Development	|	Node.js,	https://nodejs.org/en/get-
involved/development/#stability-policy,	Accessed	on	March	6th,	2017

8.	 Krill,	P.	(November	29th,	2017),	Node.js	update	makes	JavaScript	VMs	future-proof,
http://www.infoworld.com/article/3145428/javascript/node-js-making-strides-in-
javascript-vm-independence.html,	Accessed	on	March	6th,	2017

9.	 Rahul,	G.	(October	27th,	2017),	Is	NodeJS	single	threaded	-	Let's	find	out,
http://www.codingeek.com/tutorials/nodejs/is-nodejs-single-threaded/,	Accessed	on	April
2nd,	2017

10.	 Norris,	T.	(January	5th,	2017),	The	Nodesource	Blog,
https://nodesource.com/blog/understanding-the-nodejs-event-loop/,	Accessed	on	April
2nd,	2017

11.	 Packages	and	Modules,	https://docs.npmjs.com/how-npm-works/packages,	Accessed
on	April	2nd,	2017

Node

320

https://groups.google.com/forum/#!topic/nodejs/lWo0MbHZ6Tc
https://www.youtube.com/watch?v=ztspvPYybIY
https://nodesource.com/node-by-numbers
https://arenli.com/architecture-of-node-js-internal-codebase-57cd8376b71f
https://www.linkedin.com/pulse/top-5-companies-using-nodejs-production-anthony-delgado
https://nodejs.org/en/get-involved/development/#stability-policy
http://www.infoworld.com/article/3145428/javascript/node-js-making-strides-in-javascript-vm-independence.html
http://www.codingeek.com/tutorials/nodejs/is-nodejs-single-threaded/
https://nodesource.com/blog/understanding-the-nodejs-event-loop/
https://docs.npmjs.com/how-npm-works/packages

12.	 npm	(software),	https://en.wikipedia.org/wiki/Npm_(software),	Accessed	on	April	2nd,
2017

Node

321

https://en.wikipedia.org/wiki/Npm_(software

Processing	-	Learn	How	to	Code	Within
the	Context	of	Visual	Arts
By	Omar	Hommos,	Mohammed	Al-Rahbi,	David	Bergvelt,	and	Mathew	Vermeer.

Delft	University	of	Technology.

Abstract
Processing	is	a	simple	software	sketchbook	and	a	language	designed	to	introduce
programming	to	new	learners	in	the	context	of	visual	arts.	This	chapter	includes	a	brief
overview	on	several	aspects	of	Processing,	precisely	its	stakeholders,	context,	deployment,
and	evolution.	It	further	presents	an	analysis	of	its	architecture	development	and	its	technical
debt.	The	presentation	of	these	aspects	is	inspired	by	the	methods	followed	in	the	Software
Systems	Architecture	book	by	Rozanski	and	Woods	[1].

Table	of	Contents

Processing

322

https://github.com/11maxed11
https://github.com/meer1992
https://github.com/bergvel1
https://github.com/mathewvermeer

I.	Introduction
Our	Favorite	P5	Projects

II.	Stakeholder	Analysis
Classes	of	Stakeholders
Additional	Classes	of	Stakeholders

III.	Context	View
System	Scope
Visualization

IV.	Deployment	View
Third-party	Software	Requirements
Runtime	Environment
Operating	System

V.	Architecture	Development	View
Module	Organization
Dependencies
Common	Processing
Standardization	of	Design
Instrumentation
Codeline	Organization

VI.	Technical	Debt	in	Processing
Identifying	Technical	Debt
Testing	Debt
Evolution	of	Technical	Debt

VII.	Evolution	Perspective
Processing	1.0
Processing	2.0
Processing	3.0

VIII.	Conclusion	and	Discussion
IX.	References
X.	Appendix

A1.	An	Interview	With	a	User

I.	Introduction
Processing	(nicknamed	P5)	is	an	open	source	computer	programming	language	and
integrated	development	environment	(IDE)	built	for	the	electronic	arts,	new	media	art,	and
visual	design	communities	with	the	purpose	of	teaching	the	fundamentals	of	computer

Processing

323

programming	in	a	visual	context.	Processing	is	also	widely	used	by	hardware	hackers,	as	it
is	quite	easy	to	use	and	supports	important	features	like	serial	communications,	with	many
related	libraries	and	tutorials	[2].

The	Processing	Project	was	started	in	Spring	2001	by	Ben	Fry	and	Casey	Reas,	who	still
contribute	largely	to	the	project	[3].	in	2012,	Dan	Shiffman	joined	them	to	start	the
Processing	foundation	[4].	Since	then,	the	project	continues	to	grow	a	user	community	of
thousands	of	people.

The	Processing	IDE	is	called	a	sketchbook.	Processing	language	files	are	called	sketches.
Every	sketch	is	a	subclass	of	PApplet,	a	Java	Class	that	implements	most	of	the	Processing
language	features.	Thus,	Processing	language	is	more	of	a	simpler	version	of	Java.
Processing	code	is	translated	into	Java	before	compilation.	Processing	classes	are	all
treated	as	inner-classes.	As	such,	the	use	of	static	variables	and	methods	in	classes	is
prohibited	unless	Processing	was	set	to	run	in	pure	Java	mode.	The	IDE	and	the	language
create	an	ecosystem	that	is	quite	powerful	for	new	learners	[2].

This	chapter	begins	with	a	discussion	on	the	stakeholders,	the	context,	the	deployment,	and
the	evolution	of	the	Processing	environment.	Afterwards,	it	focuses	on	the	architecture
development	view	of	the	IDE,	and	its	technical	debt.	It	later	ends	with	a	conclusion,	followed
by	an	interview	with	a	P5	user	in	the	Appendix.

Our	Favorite	P5	Projects!

Petting	Zoo	is	the	latest	work	developed	by	experimental	architecture	and	design	studio
Minimaforms.	The	project	simulates	life	using	a	robotic	environment.	The	whole	project
makes	you	question	environments,	life	forms,	and	communication.	The	creatures	can	learn
and	explore	by	interaction	with	viewer.	It's	an	example	of	cool	hardware	art	projects!

Processing

324

https://github.com/benfry
https://github.com/REAS
https://github.com/shiffman
http://processing.github.io/processing-javadocs/core/index.html?processing/core/PApplet.html
http://minimaforms.com/#item=petting-zoo-frac-2

Figure	1:	Project	Petting	Zoo

unnamed	soundsculpture	is	a	3D	motion	piece	visualizing	sound	by	the	movement	of	the
body.	A	dancer	was	used	to	visualize	a	musical	piece	(Kreukeltape	by	Machinenfabriek)	as
closely	as	possible	with	movements	of	her	body.	She	was	recorded	by	three	Kinects	using
Processing	language	the	resulting	views	were	aligned	and	merged	to	form	a	complete	3D
point	cloud	and	imported	into	3D	Studio	Max.

Figure	2:	Project	Unnamed	Soundsculpture

Partitura	Created	by	Abstract	Birds	and	Quayola,	Partitura	is	a	custom	software	for	creating
real-time	graphics	aimed	at	visualising	sound.	The	term	“Partitura”	(score)	implies	a
connection	with	music,	and	this	metaphor	is	the	main	focus	of	the	project.	The	main

Processing

325

http://www.onformative.com/work/unnamed-soundsculpture/
https://vimeo.com/23316783

characteristic	of	the	system	is	its	horizontal	linear	structure,	like	that	of	a	musical	score.	It	is
along	this	linear	environment	that	the	different	classes	of	abstract	elements	are	created	and
evolve	over	time	according	to	the	sound.

Figure	3:	Project	Partitura

II.	Stakeholder	Analysis
In	order	to	understand	a	project	like	Processing,	it	is	beneficial	to	identify	the	various
individuals	and	groups	affiliated	with	the	project,	and	understand	how	their	needs	and
motivations	influence	Processing.	These	individuals	and	groups	are	known	as	stakeholders,
and	can	be	categorized	into	classes	by	their	role	in	relation	to	Processing.	In	this	section	we
will	identify	several	stakeholder	classes	and	discuss	their	influence	on	Processing.

Figure	4	shows	a	graphical	representation	of	the	Processing	stakeholders.	Detailed
discussion	on	stakeholder	classes	will	follow.

Processing

326

Figure	4:	Processing	IDE	Stakeholder	Diagram

Classes	of	Stakeholders

First,	we	will	examine	several	classes	of	stakeholders	originally	identified	in	Software
Systems	Architecture:	Working	With	Stakeholders	Using	Viewpoints	and	Perspectives	by
Rozanski	and	Woods	[1].

Acquirers

The	major	stakeholders	of	Processing	in	the	acquirer	class	are	senior	members	of	the
Processing	Foundation.	As	members	of	the	Processing	Foundation	Board	of	Directors,
these	individuals	oversee	the	ongoing	development	of	Processing	and	related	projects	at	a
high	level.	It	is	important	to	note	that	many	of	the	acquirers	for	Processing	also	belong	to
other	stakeholder	classes,	such	as	developers	and	communicators.	To	reflect	this,	the	table
below	lists	the	major	acquirers	of	Processing	along	with	information	on	other	stakeholder
classes	they	may	belong	to.

Table	1:	Processing	Foundation	Board	of	Directors

Processing

327

Name Class More	info

Ben	Fry Acquirer,	Communicator,
Developer,	Maintainer

http://benfry.com/,
https://github.com/benfry

Casey
Reas

Acquirer,	Communicator,
Developer,	Maintainer,	User

http://reas.com/,
https://github.com/REAS

Daniel
Shiffman

Acquirer,Communicator,
Developer,	Maintainer

http://shiffman.net/,
https://github.com/shiffman

Lauren
McCarthy

Acquirer,Communicator,
Developer,	Maintainer

http://lauren-mccarthy.com/,
https://github.com/lmccart

Communicators

There	appear	to	be	two	major	online	platforms	through	which	Processing	communicators
can	interface	with	other	stakeholders.	The	first	is	GitHub,	where	developers	can
communicate	with	acquirers	and	other	developers	about	issues	and	proposed	modifications
to	the	source	code.	There	is	significant	overlap	between	the	primary	communicators	on
GitHub	and	the	main	developers,	namely	Ben	Fry,	Jakub	Valtar,	and	Gottfried	Haider.

The	second	platform	used	for	communication	is	the	official	Processing	forums,	which	is	a
more	general-purpose	platform	where	end	users	can	ask	questions	and	discuss	Processing.
The	two	forum	administrators	are	Philippe	Lhoste	and	Cedric	Kiefer	[3].

Developers	and	Maintainers

Since	Processing	is	an	open-source	project	that	is	actively	contributed	to	on	GitHub,	we	can
get	a	good	idea	of	the	stakeholders	in	the	developers	class	simply	from	examining	the
repository	commit	logs.	In	particular,	this	can	help	us	narrow	down	which	of	the	individuals
listed	on	the	Processing	site	as	developers	are	relevant	stakeholders	to	our	project	(i.e.	the
Java	variant	of	Processing).

Here	are	three	of	the	top	GitHub	contributors	in	the	last	year	(who	were	not	already	included
above	as	part	of	the	Processing	Foundation)	:

Table	2:	Top	Contributors

Processing

328

http://benfry.com/
https://github.com/benfry
http://reas.com/
https://github.com/REAS
http://shiffman.net/
https://github.com/shiffman
http://lauren-mccarthy.com/
https://github.com/lmccart
http://phi.lho.free.fr/index.fr.html
http://www.onformative.com/

Name Class More	info

Jakub	Valtar Developer,
User

http://www.jakubvaltar.com/,
https://github.com/JakubValtar

Gottfried
Haider

Developer,
User https://github.com/gohai

Andrés
Colubri

Developer,
User

http://andrescolubri.net/,
https://github.com/codeanticode

Suppliers

Processing	has	numerous	stakeholders	who	can	be	classified	as	suppliers.	These	suppliers
can	be	broken	into	two	major	categories:	software	dependencies	(existing	software
developed	by	third	parties	which	Processing	utilizes)	and	hardware	platforms	(that
Processing	may	be	run	on).

Software	Dependencies

Java	8
JavaFX
OpenGL

Hardware	Platforms

Windows
Mac
Linux
Android
Arduino
ARM-based	platforms	(e.g.	Raspberry	Pi)

Additional	Classes	of	Stakeholders

In	addition	to	the	previous	stakeholder	classes	from	Rozanski	and	Woods,	we	have
identified	three	additional	classes	present	in	Processing:	funders,	competitors,	and	advisors.

Funders

Individuals	or	groups	that	directly	contribute	to	the	project	financially.

The	support	page	of	the	Processing	Foundation	details	the	sources	of	funding	for
Processing	and	all	related	projects	[4].	First	and	foremost,	Processing	is	supported	by
individual	donations	of	5	to	100	USD.	However,	Processing	also	receives	funding	from

Processing

329

http://www.jakubvaltar.com/
https://github.com/JakubValtar
https://github.com/gohai
http://andrescolubri.net/
https://github.com/codeanticode

corporations	such	as	Arduino	and	O'Reilly	Media,	and	numerous	academic	and	design
institutions.

Competitors

Groups	involved	with	the	development	of	projects	with	similar	functionality	or	goals.

There	are	a	number	of	projects	and	products	which	share	Processing's	goal	of	uniting
programming	and	creative	arts.	Some	of	the	more	popular	ones	include	Max,	a	visual
programming	language	for	audio	manipulation	and	synthesis,	openFrameworks,	a	C++
toolkit	for	visualization	and	artistic	expression,	and	cinder,	another	C++	visualization	library.

Advisors

Individuals	or	groups	who	provide	high-level	advice	and	guidance	regarding	major	design
decisions,	but	are	not	necessarily	intimately	familiar	with	the	use	or	implementation	of	the
software	like	an	end	user	or	developer.	Can	include	individuals	who	are	experts	in	fields
related	to	the	project,	as	well	as	organizations	or	individuals	that	use	the	software.

The	Processing	Foundation	Board	of	Advisors	serves	to	guide	the	decisions	of	other	major
Processing	stakeholders.	It	does	this	in	two	ways:	by	drawing	on	the	knowledge	of	highly
experienced	individuals	in	the	field	of	design	(namely	John	Maeda)	and	by	examining	the
needs	and	suggestions	of	some	individuals	who	represent	the	typical	Processing	user
(Phoenix	Perry	and	Taeyoon	Choi).

Table	3:	Processing	Foundation	Board	of	Advisors

Name Class More	info

John	Maeda Advisor https://maedastudio.com/

Phoenix	Perry Advisor,	User http://phoenixperry.com/

Taeyoon	Choi Advisor,	User http://taeyoonchoi.com/

III.	Context	View
In	order	to	properly	analyze	a	system,	it	is	naturally	convenient	to	know	in	which
environment,	and	with	which	actors,	the	system	interacts,	both	internally	and	externally.
Such	a	high-level	overview	can	be	obtained	by	creating	a	context	view	of	said	system.	This
context	view	describes	a	system's	dependencies,	as	well	as	its	interactions	with	external
entities.	See	below	for	the	context	view	illustrating	the	mentioned	information	in	the	case	of
the	Processing	IDE.

Processing

330

https://cycling74.com/products/max/https://cycling74.com/products/max/
http://openframeworks.cc/
https://libcinder.org/about
https://maedastudio.com/
http://phoenixperry.com/
http://taeyoonchoi.com/

System	Scope

Programming	is	seen	by	many	beginner	students	as	black	magic.	The	fact	that	every	Hello
World	example	in	many	popular	languages	does	not	produce	much	visual	feedback	makes
learning	to	program	an	even	more	daunting	and	challenging	task.

Processing	aims	to	make	programming	much	more	accessible	by	adding	this	dimension	of
visual	feedback	to	the	beginners	who	used	it.	It	does	this	by	taking	Java,	simplifying	its
syntax,	and	adding	extra	functions	that	simplify	creating	visualizations	programmatically.
However,	it	does	not	lose	its	flexibility	and	power	because	of	these	simplifications.

The	scope	of	Processing	is	therefore	to	ease	non-programmers	into	the	world	of
programming	by	allowing	them	to	experiment	with	a	language	that	is	able	to	provide	instant
visual	feedback.

Visualization

Due	to	the	simplicity	of	the	Processing	language,	and	the	fact	that	it	runs	on	most	platforms,
the	language	is	mostly	used	as	an	introduction	to	the	world	of	programming.	Its	importance
as	an	introductory	language	is	further	illustrated	by	the	multiple	educational	companies	and
institutes	that	fund	the	project,	such	as	O'Reilly	and	New	York	University.	Processing	has	a
very	active	community,	as	can	be	seen	observed	from	the	thousands	upon	thousands	of
threads	on	the	official	Processing	forum	[5].	While	Processing	has	an	official	community
forum,	mainly	GitHub	is	used	for	the	interaction	between	users	and	developers.	It	is	the	site
where	all	development	takes	place,	manuals	and	tutorials	are	hosted,	and	issues	are
tracked.

The	state	of	this	diagram	is	expected	to	remain	quite	constant	throughout	further
development	of	Processing.	The	system	will	continue	to	be	implemented	in	Java,	which
means	that	its	cross-platform	capabilities	will	not	change	and	will	continue	to	run	on	the
current	multitude	of	platforms.	Its	dependencies,	JavaFX	and	OpenGL	are	actively
maintained	and	developed	software	systems,	meaning	that	they	will	not	be	replaced	any
time	soon.	Finally,	given	GitHub's	position	as	market	leader	in	version	control	repositories
and	the	sheer	amount	of	work	already	invested	in	working	with	GitHub,	it	is	extremely
unlikely	that	any	switch	will	be	made	to	another	competitor.	Figure	5	shows	a	visualization	of
the	context	view	of	the	system.

Processing

331

Figure	5:	Visualization	of	Processing's	Context	View

IV.	Deployment	View
The	Processing	IDE	is	not	a	stand-alone	piece	of	software.	That	is,	it	requires	additional
software	to	be	able	to	run	correctly	and	successfully.	Furthermore,	in	order	for	said
additional	software	to	run,	other	system	requirements	must	be	met.	This	section	will	mention
these	requirements	and	constraints.	Figure	6	illustrates	the	deployment	view	of	the	system.

Processing

332

Figure	6:	Deployment	view	Processing

Third-party	Software	Requirements

Processing	needs	a	few	third-party	software	packages	in	order	to	be	used.	Apache	Ant	is
needed	in	order	to	build	the	software	from	its	source	code.	JavaFX	is	also	a	necessity,	since
it	is	used	to	build	the	GUI	of	the	system.	Since	the	release	of	Java	7	update	6,	however,	the
JavaFX	libraries	have	been	bundled	together	with	the	standard	Java	SE,	and	as	such,	does
not	have	to	be	downloaded	and	installed	separately	[6].	Lastly,	Processing	depends	on
OpenGL	for	the	creation	of	images	and	visualizations,	which	is	one	of	the	core	selling	point
of	Processing	[7].

Runtime	Environment

Since	Processing	is	an	extension	of	the	Java	language,	the	Java	Virtual	Machine	(JVM)	is
ultimately	used	to	run	Processing	code.	This,	however,	is	just	the	default	option.	Processing
also	offers	different	Modes,	which	allows	users	to	write	their	programs	in	different	languages,

Processing

333

or	make	them	able	to	run	on	different	environments.	These	Modes	include	JavaScript,
Python,	Ruby,	and	Android	Modes.	All	of	these	previously	mentioned	languages	have	their
own	runtime	environment.

Operating	System

As	this	software	is	built	on	Java,	which	is	cross-platform,	the	software	itself	is	cross-platform
as	well.	It	is	able	to	run	on	Windows,	Linux,	and	macOS.	Being	able	to	run	on	Linux	also
gives	it	the	ability	to	run	on	Raspberry	Pi	systems,	which	support	the	Linux	operating
system.	Processing	applications	can	also	be	run	on	Android	systems,	if	Android	Mode	is
used	when	creating	the	application.

A	special	case	is	Arduino.	The	Arduino	board	does	not	run	any	operating	system,	yet
Processing	code	is	still	able	to	run	on	the	hardware	[8].	This	is	because	Processing
programs	are	first	compiled	to	binary	files	before	being	executed	[9].

V.	Architecture	Development	View
The	development	view	of	a	system	illustrates	aspects	of	the	software	development	process.
These	aspects	are	code	structure	and	dependencies,	build	and	configuration	management
of	deliverables,	system-wide	design	constraints,	and	system-wide	standards	[1].

This	section	will	describe	the	system	from	a	developer	perspective,	and	will	be	concerned
with	module	organization,	common	processes,	standardization	of	design	and	testing,	and
codeline	organization.

Module	Organization

The	module	structure	of	Processing	deals	with	the	system's	source	code	in	terms	of
modules.	Processing	has	developed	a	well	structured	model.	There	are	six	main	modules	in
Processing	namely:	Core,	Data,	Language,	App,	Third	party	and	build.	Figure	7	illustrates
the	different	modules	and	their	components.

Processing

334

Figure	7:	Processing's	Development	View

Core	Module:

This	module	handles	the	rendering	and	displaying	of	2D	and	3D	graphics	including	drawings
and	animations.	It	is	considered	the	core	module	as	it	contains	PApplet,	PGraphics,	PShape,
PSurface,	Event	and	MovieMaker.

Table	4:	Core	Module	Contents

Component Details

PApplet This	is	base	component	for	all	sketches	in	Processing.	It	includes
drawing	tools,	handling	animations,	window	sizing	with	sketches.

PGraphics It	had	all	main	graphics	and	rendering	context,	as	well	as	the	base	API
implementation	for	Processing	"core"

PShape It	is	responsible	for	drawing,	loading	and	saving	shapes.	The
component	supports	SVG	(Scalable	Vector	Graphics)	and	OBJ	shapes.

PSurface
It	handles	the	interaction	with	the	OS	(creation	of	a	window,	placement
on	screen,	getting	mouse	and	key	events)	as	well	as	the	animation
thread.

Event This	component	deals	with	user	events	such	as	key	event,	mouse	event
and	touch	event.

MovieMaker
It	concerns	on	making	a	QuickTime	movie	from	a	sequence	of	images.
Options	include	setting	the	size,	frame	rate,	and	compression,	as	well
as	an	audio	file.

Third	Party	Module:

Processing

335

It	manages	external	libraries	and	resources	such	as	OpenGL,	JavaFX,	AWT	and	Gluegen.

Table	5:	Third	Party	Module	Contents

Component Details

OpenGL An	API	used	to	render	2D	and	3D	vector	graphics.

JavaFX This	package	used	to	design,	create,	test,	debug,	and	deploy	rich	client
applications	that	operate	consistently	across	diverse	platforms.

AWT Abstract	Window	Toolkit	(AWT)	is	a	set	of	APIs	used	to	create	graphical
user	interface	(GUI)	objects.

Gluegen It	used	for	generating	the	Java	and	JNI	code	necessary	to	call	C
libraries.

App	Module:

This	module	mainly	deals	with	the	graphical	user	interface	(GUI)	of	the	application	including
Base,	Syntax,	Platform,	Contribution	Manager	and	Exec.

Table	6:	App	Module	Contents

Component Details

User
Interface

This	package	includes	all	the	GUI	components	in	the	application	such
as	Editor,	Welcome,	Find	and	Replace,	Color	Chooser	...etc.

Syntax
This	is	syntax	highlighting	package	which	used	for	syntax	and	style
checkers.	It	depends	on	the	language	module	which	deploys	the
program	in	a	different	programming	language	such	as	Java	and	Python.

Base This	is	the	base	component	which	manages	all	the	UI	components,
build	the	core	components	using	the	selected	mode	language.

Platform Platform	handlers	for	Windows,	Linux	and	Mac.

Contribution
Manager

Allows	for	installing,	uninstalling	and	updating	third	party	libraries,
modes	and	tools.

Exec This	is	an	executor	component	which	executes	a	given	task,	and
handles	input	and	output	of	the	processes.

Data	Module:

This	module	represents	data	structure	which	is	used	in	the	core	and	app	module.	It	consists
of	JSON,	XML,	Table	and	List.

Table	7:	Data	Module	Contents

Processing

336

Component Details

JSON It	handles	all	the	JSON	objects	and	arrays.

XML This	component	handles	the	XML	files.

Table Manages	tabular	data	such	as	a	CSV,	TSV,	or	other	sort	of	spreadsheet
file.

List A	list	component	for	all	the	data	type	including	int,	float	and	String

Build	Module:

This	module	builds	all	the	configuration	files	for	the	target	platform	such	as	Window,	Mac
and	Linux.	It	utilizes	Apache	Ant	to	build	the	binaries.

Table	8:	Build	Module	Contents

Component Details

Windows Configuration	related	to	Windows	platform.

Mac Configuration	related	to	Mac	platform.

Linux Configuration	related	to	Linux	platform.

Language	Module:

This	module	consists	of	different	packages	of	programming	languages	such	as	Java,
Android,	Python,	p5	JS	and	REPL	(Read	Eval	Print	Loop).	This	means	the	user	has	the
opportunity	to	choose	the	preferred	language	to	code.	Therefore,	each	component	has	its
own	compiler	which	then	the	app	module	is	communicating	with	the	core	module	to	build	the
desired	mode.

Table	9:	Language	Module	Contents

Component Details

Java A	package	for	Java	programming	language

Android A	package	for	Android

Python A	package	for	Python	programming	language

p5	JS A	package	for	JavaScript

REPL A	package	for	Read	Eval	Print	Loop	(REPL)

Dependencies

Processing

337

As	seen	in	the	module	organization	previously,	the	core	module	depends	on	the	data
module	which	provides	its	data	structure	for	the	drawings	and	rendering	in	the	PGraphics,
PSurface	and	PShape	component.	Also,	it	depends	on	third	party	module	which	provides
external	libraries	in	graphics	such	as	OpenGL	and	JavaFX.	The	PApplet	component,	which
acts	as	the	main	controller	in	core	module,	relies	on	PGraphics,	PSurface	and	PShape.	The
App	module	depends	on	the	language	module	to	compile	the	chosen	programming
language	by	the	user.	Also,	the	setup	of	Processing	depends	on	the	build	module	which
provides	the	necessary	packages	to	run	the	application	in	different	platforms.

Common	Processing

When	designing	the	system’s	software	elements,	it	is	desirable	to	define	a	set	of	design
constraints	in	order	to	maximize	commonality	across	element	implementations.	The	reason
for	this	is	because	code	duplicates	are	avoided,	and	it	can	improve	the	system’s	overall
technical	coherence	which	makes	it	easier	to	maintain	and	understand	[1].

Message	Logging

One	of	the	common	design	models	is	message	logging.	The	Processing	project	has	ensured
that	all	components	log	human	readable	messages.	Each	log	record	has	a	date,	time,
sequence,	logger,	class,	method,	thread	and	message.	A	record	also	has	different	levels
such	as	fatal,	error,	warning,	information	and	debug.	An	Error	message	gets	displayed	with
its	trace,	which	makes	it	easier	for	the	developer	to	debug	and	fix	the	issue	later.	In	general,
log	records	are	clear	and	structured.

Internationalization

The	Processing	team	made	sure	that	hard	coded	strings	are	not	used.	Instead,	strings	are
fetched	from	one	of	12	"property	files",	where	each	file	includes	the	used	text	in	a	certain
language.	On	application	start-up,	keys	and	values	are	loaded	and	then	mapped	to	their
respective	UI	elements.

Standardization	of	Design

As	the	project	grows	and	has	more	contributors,	the	Processing	team	needed	design
standardization	in	order	to	maintain	the	project.	Processing	achieves	this	by	using	some
design	patterns,	style	guidelines	and	philosophical	principles.

The	second	design	is	the	plugin	modules.	The	Contribution	Manager	component	allows	to
add	different	modes,	third	party	libraries	and	tools.	This	design	enables	third	party
developers	to	create	abilities	which	extend	an	application.	Also,	it	supports	easily	adding

Processing

338

https://github.com/processing/processing/wiki/Style-Guidelines

new	features	which	provides	flexibility	and	scalability.

Processing	team	stated	a	principle	that	"GUI	components	do	not	live	in	the	base	package"	.
The	base	package	is	the	main	package	of	processing	project,	and	all	the	GUI	components
should	be	declared	at	the	user	interface	package.	The	primary	role	of	the	base	package	is
for	platform	identification	and	general	interaction	with	the	system	(launching	URLs,	loading
files	and	images).

Another	design	principle	is	that	inner	classes	should	not	be	accessed	by	classes	that	are	not
in	the	same	file.	This	rule	will	allow	other	developers	to	maintain	the	project,	and	save
performance	time	especially	when	it	is	being	used	a	lot.

Instrumentation

Similarly	to	testing,	the	Processing	IDE	has	no	proper	instrumentation	implemented.	The
only	thing	that	comes	close	to	instrumentation	is	message	logging,	which	is	discussed	in	the
Common	Processing	section	above.	And,	as	is	also	the	case	with	testing,	verifying	that	code
runs	properly	and	does	not	consume	unnecessary	resources	is	completely	left	to	the	author
of	said	code.

In	the	case	that	neither	the	author	of	the	code	nor	the	developer	who	accepts	the	pull
request	spot	the	faulty	code,	it	will	continue	to	live	on	in	the	system	until	another	user	comes
across	it	and	is	able	to	identify	the	flaw.	An	example	of	this	is	issue	#4825.	In	this	particular
case,	faulty	code	that	was	written	several	years	ago	that	produces	an	out-of-memory	error	in
certain	cases.	This	memory	leak	could	have	been	identified	much	sooner	if	proper
instrumentation	was	implemented	to	track	system	resource	usage.

Codeline	Organization

The	Processing	source	files	are	organized	based	on	their	functionalities	as	shown	in	figure
8.	Every	folder	mostly	consists	of	Java	classes	and	a	build.xml	file.	In	order	to	speed	the
build	process,	Apache	Ant	is	used	build	the	binaries.	In	addition	to	automating	the	build
process,	Ant	makes	it	easy	to	add	JUnit	test	cases.	Test	cases	have	been	added	to	the	App
folder.

This	structure	(in	figure	8)	makes	it	possible	for	Processing	developers	to	do	continuous
integration.	For	instance,	as	there	are	a	lot	of	changes	in	the	Core	folder,	it	is	separated	into
different	components	such	as		data	,		event	,		awt	,	etc.,	depending	on	the	functionalities.
This	will	ensure	that	the	system's	code	can	be	managed,	built	and	tested	when	using	an
iterative	development	and	release	process.

Processing

339

https://github.com/processing/processing/issues/4825

Processing

340

Figure	8:	Codeline	Organization	of	Processing

VI.	Technical	Debt	in	Processing
Technical	debt	is	a	metaphor	for	incomplete	and	inadequate	artifacts	in	the	software
development	which	cause	higher	costs	and	lower	quality	in	the	long	term	[11].	Technical	debt
can	be	in	many	forms	such	as	design/code	debt,	defect	debt,	documentation	debt	and
testing	debt.	This	section	will	discuss	these	debts	in	Processing	project.

Identifying	Technical	Debt

One	of	the	ways	to	identify	technical	debt	is	the	overall	quality	of	design	and	code.	There	are
a	number	of	techniques	used	to	quantify	technical	debt	such	as	SOLID	(Single	responsibility
principle,	Open/closed	principle,	Liskov	substitution	principle,	Interface	segregation	principle,
Dependency	inversion	principle)	violations,	code	smells	and	ASA	(Automatic	Static
Analysis).	This	section	will	identify	the	design/code	debt	in	Processing	using	some	of	these
techniques.

Single	Responsibility	Design	(SRD)	-	Discovering	Violations

A	direct	violation	of	the	Single	Responsibility	Principle	is	having	a	god	class.	A	god	class	is
an	object	that	controls	way	too	many	other	objects	in	the	system	and	has	grown	beyond	all
logic	to	become	the	class	that	does	everything.	In	processing,	the	PApplet	class	acts	like	a
controller	for	the	data	module,	as	well	as	the	PGraphics,	PShape,	PSurface	and	Event
classes.	There	are	many	possible	actions	which	PApplet	performs	such	as	reading	and
writing	different	types	of	files	such	as	XML,	JSON	and	Table.	It	can	also	load	images,	and	do
mathematical	calculation	such	as	sin,	cos,	tan,	etc...	Also,	it	does	all	the	drawings	and
animations	which	depend	on	the	PGraphics	class.	God	classes	can	be	classified	as	code
smells	too.

Dependency	Inversion	Principle	(DIP)	-	Discovering
Violations

This	principle	states	that	"high	level	modules	should	not	depend	on	low	level	modules"	[12].
The	interaction	as	seen	in	figure	9	is	between	two	level	modules	(Base	and	PApplet).

Processing

341

http://processing.github.io/processing-javadocs/core/processing/core/PGraphics.html

Figure	9:	DIP	violation	in	Processing

Because	the	interaction	between	these	subsystems	is	at	different	module	levels,	the	Base
needs	to	interact	with	a	higher	module	than	the	PApplet.	The	refinement	of	the	design	would
be	having	an	abstract	interface	class	called	"Core	Service	Interface"	as	illustrated	in	figure
10.

Figure	10:	Resolving	the	DIP	violation

Now,	the	base	module	is	not	infected	by	the	changes	in	PApplet	because	of	dependencies
inversion	which	created	a	structure	that	is	more	flexible	and	durable.

Code	Smells

In	addition	to	the	god	class	that	exists,	another	code	smell,	namely	Large	Classes.

The	PApplet	class	has	more	than	13,000	lines	of	code	with	more	than	100	methods.	The
PGraphics	class	has	more	than	7,000	lines	of	code.	The	table	below	shows	the	four	biggest
classes	in	the	project.	Methods	are	mostly	small	and	tractable,	and	a	portion	of	the	lines	of
code	is	dedicated	to	documentation.	However,	further	decomposition	into	several	classes
make	the	codeline	organization	better,	and	solves	this	issue,	in	addition	to	the	God	Class
issue	mentioned	above.

It	can	be	argued	that	for	PGraphics,	PImage,	and	PShape,	a	large	amount	of	documentation
exists,	significantly	increasing	the	lines	count,	and	that	graphics-related	code	quickly
accumulates	lines	of	code	due	to	the	overhead	required	for	functionality	e.g.	settings	up
colors,	lines,	vertices,	etc,	meaning	that	the	LoC	count	isn't	very	large	relative	to	the

Processing

342

application.	However,	decomposition	is	still	a	viable	option	to	increase	code	structure	quality.
This	will	further	help	avoid	issues	similar	to	these	high	priority	issues	#4897,	#4894,	and
#4895,	later	on,	and	make	development	pace	faster.

Table	10:	Lines	of	code	in	the	largest	Processing	classes

Class Lines	Of	Code	(LOC)

PApplet 13,545

PGraphics 7,188

PImage 2,974

PShape 2,720

Static	Code	Analysis

The	QAPlugin	tool	has	been	used	to	test	the	code	quality	of	the	project.	It	helps	statically
analyze	the	code	to	identify	potential	problems.	Figure	11	shows	a	snapshot	of	the	results.

Figure	11:	QAPlugin	output	for	Processing

The	tool	found	about	90	critical	statements	in	the	project.	There	are	40	empty		if	
statements	which	only	evaluate	the	condition,	and	do	nothing	else.	Also,	there	are	about	four
empty		while		statements	which	are	not	even	timing	loops.	No	reason	can	be	thought	of	that
justifies	having	these	problems.	Some	of	them	are	intentional	for	sure.	However,
documentation	to	include	these	must	be	improved,	and	unintentional	critical	statements

Processing

343

https://github.com/processing/processing/issues/4897
https://github.com/processing/processing/issues/4894
https://github.com/processing/processing/issues/4895
http://qaplug.com/

should	be	addressed.	These	probably	have	an	indirect	effect	on	performance.	Theoretically,
these	do	not	affect	the	maintainability,	as	those	parts	of	the	code	probably	do	not	get
touched	quite	often	(or	at	all),	or	the	developers	would	have	noticed	and	fixed	them.

Testing	Debt

Testing	is	a	very	interesting	aspect	of	the	Processing	project,	namely	because	the	amount	of
testing	throughout	the	code	is	minuscule.	The	project	does	not	make	use	of	any	continuous
integration	system	that	makes	sure	the	project	builds	correctly	after	each	commit.	It	is	the
sole	responsibility	of	the	contributor	to	verify	whether	the	proposed	code	alterations	do	not
break	the	system's	build	process.

From	a	code	coverage	perspective,	Processing's	testing	situation	is	not	the	best.	The	entire
project	is	composed	of	around	174,000	(174	thousand)	lines	of	Java	code,	including
comments.	This	number	can	be	reduced	to	150,000	lines	of	code	if	20,000	lines	are
assumed	to	be	comments.	The		PdePreprocessor.java		file,	which	is	the	only	tested	class	in
the	entire	project	where	it	focuses	on	the	preprocessing	engine	and	compiler,	contains	1,295
lines	of	code,	excluding	comments.	This	means	that	total	code	coverage	is	around	0.9%.
Although	100%	code	coverage	is	generally	not	necessary	[13],	properly	testing	barely	a
single	percent	of	the	total	amount	of	the	code	is	not	appropriate,	particularly	for	a	project	of
this	size.

The	project's	wiki	page	does	not	mention	any	testing	procedures	or	methodologies	[10].	In
summary,	testing	is	left	to	the	code	contributors	themselves.	Since	there	is	no	standard
methodology,	testing	is	done	in	a	very	inadequate,	ad-hoc	manner.	This	is	mainly	due	to	the
main	developers'	time	constraints,	and	even	though	skipping	testing	saves	quite	some	time,
this	sets	a	dangerous	precedent	that	will	likely	create	significant	technical	debt.

Evolution	of	Technical	Debt

Technical	Debt	in	Processing	is	visible	when	new	features	are	added.	The	design	of	the
Processing	core	has	been	around	for	13	years,	and	there	have	been	significant	changes.
This	section	will	analyze	how	the	processing	system	evolved	in	terms	of	technical	debt.

Since	version	3	of	Processing,	developers	have	started	migrating	functionality	away	from	old
and	outdated	code.	Speeding	up	this	process,	as	well	as	properly	documenting	the	new
code	will	significantly	help	the	progress	towards	improved	testing	debt.	This	way,	old,
untested,	and	undocumented	code	could	be	replaced	by	well-written,	documented	code	that
will	be	much	easier	to	test	by	official	contributors	as	well	as	external	developers.

Core

The	first	version	(1.0)	was	almost	stable	as	there	were	only	a	few	components	and	fewer

Processing

344

people	working	on	the	project.	However,	at	version	2.0,	the	Processing	team	had	the	project
out	of	control	as	there	were	drastic	changes	made	in	the	graphic	features	such	as	OpenGL,
VolatileImage,	BufferStrategy...etc.	Not	only	did	they	need	to	cope	with	these	changes,	but
also	they	had	a	performance	issue	in	PApplet.	Applet	at	that	time	was	the	base	class	for
PApplet.

At	version	3.0,	the	Processing	team	decided	that	it	was	time	to	maintain	"clean	code".
PApplet	is	now	no	longer	the	base	class,	and	they	had	to	redo	the	entire	rendering	and
threading	model	for	Processing	sketches.	This	shows	how	hard	it	was	to	make	an
improvement	change.

OpenGL	(JOGL	vs	LWJGL)

Team	Processing	were	also	confused	about	which	OpenGL	library	they	should	be	using
(JOGL	or	LWJGL).	JOGL	had	some	major	issues	with	the	development	and	was	stopped	in
2014.	The	team	had	been	trying	out	LWJGL2	to	see	how	it	fared.	Then,	the	LWJGL	project
moved	all	their	development	effort	to	LWJGL3.	The	Processing	team	spent	almost	a	week
rewriting	OpenGL	to	use	LWJGL3.	They	decided	to	go	back	to	JOGL	and	fix	issues	since
LWJGL	was	too	unstable	to	use,	and	would	require	major	reworking	of	PApplet	to	remove	all
uses	of	AWT.

VII.	Evolution	Perspective
Many	are	familiar	with	the	following	old	adage:

The	only	constant	is	change.

It	holds	true	for	many	things,	and	certainly	for	software	development.	Software	is
continuously	changing.	This	section	will	discuss	how	Processing	has	evolved	over	time	with
each	of	its	major	releases.	Bug	fixes	and	minor	changes	will	be	left	out	in	favor	of	the
changes	that	altered	the	functionality	or	are	relevant	to	the	architecture	of	the	system.	In
other	words,	changes	that	affect	the	stakeholders	that	work	with	the	system.	Versions	1.0,
2.0,	and	3.0	will	be	discussed.

Processing	1.0

Sound	and	XML	libraries	were	added.
Jikes	compiler	switched	with	ECJ	compiler.
Updated	to	Java	6
New	global	Processing	functions		loadShape()		and		requestImage()	

Processing	2.0

Processing

345

New	global	Processing	functions		rect(x,	y,	w,	h,	radius)		and		rect(x,	y,	w,	h,	tl,
tr,	br,	bl)	.
Own	P2D	and	P3D	renderers	replaced	with	OpenGL	renderer.
Upgraded	to	OpenGL	2.
OpenGL	is	built	into	Processing	core.
Added	Modes	to	make	coding	possible	with	other	languages.
Support	for	Java	Applet	is	removed.
List	of	imports	is	now	hardcoded	and	no	longer	read	from	an	external	text	file.
Rewrite	event	handling	to	support	OpenGL	events.	Removed	support	for		java.awt.*	
events.

Processing	3.0

New	global	Processing	functions		pixelDensity()	,		fullScreen()		and
	displayDensity()	.
Video	and	Sound	libraries	removed	by	default.
Variables		displayWidth		and		displayHeight		deprecated.
UI	code	moved	from		processing.app		to		processing.app.ui	.
Several	(static)	utility	functions	from		Base		have	moved	into	separate	utility	classes.
Update	to	Java	8.
Added	"Contributions	Manager"	for	downloading	compatible	third-party	libraries	and
modules.

The	quality	of	Processing's	evolution	is	mixed.	On	the	one	hand,	one	can	see	that	some
effort	is	being	made	to	clean	up	the	codebase,	and	therefore	reduce	the	technical	debt	of	the
system.	This	can	be	observed	from	the	refactoring	of	the	UI	code	in	release	3.0.	Additionally,
developers	seem	to	value	up-to-date	software,	given	their	tendency	to	remove	support	for
outdated	classes/features	and	update	the	used	third-party	software	to	the	latest	version:
OpenGL	to	version	2	and	Java	from	version	6	to	version	8.	Some	design	decisions,
however,	are	not	in	the	best	interest	of	code	and	architecture	quality.	One	of	these	bad
decisions	is	continuously	adding	global	functions	to	the	scope.	Another	is	creating	static
utility	functions,	as	well	as	the	decision	to	split	them	up	into	separate	utility	classes,	as	this
violates	the	principles	of	object-oriented	design.

As	the	software	gains	popularity,	the	quality	of	development,	no	doubt,	increases.	From	an
architectural	point	of	view,	every	major	release	has	made	significant	improvement	upon	the
state	of	the	software,	and	it	is	expected	that	this	will	continue	down	the	line.	Undocumented,
obsolete,	out-of-date	code	will	be	replaced	by	documented	code	that	is	more	maintainable
and	testable.	Though	it	will	take	a	lot	of	time	and	effort,	the	necessary	steps	are	already
being	taken.

Processing

346

VIII.	Conclusion	and	Discussion
This	chapter	provides	a	brief	overview	of	Processing.	It	begins	with	identifying	stakeholders,
and	how	their	motives	started	and	keep	Processing	up-and-running.	It	later	clarifies	the	role
Processing	plays	from	various	aspects	-its	context,	deployment,	and	evolution.	Afterwards,
technical	discussion	begins	with	an	in-depth	analysis	of	the	architecture	of	this	software,	and
the	technical	debt	it	accumulated	throughout	its	years.

Processing	is	a	great	and	very	handy	software.	Our	love	for	it	and	its	unique	set	of	features
is	what	motivated	this	chapter,	and	is	what	motivates	others	to	keep	using	it,	as	can	be	seen
from	the	interview	available	in	the	Appendix.	However,	some	issues	in	the	development
process	need	to	be	addressed.	First	of	all,	the	amount	of	technical	debt	is	staggering.
Testing	should	be	added	to	allow	for	a	better	grasp	of	the	project	functionality,	and	make
sure	that	changes	are	not	breaking	anything.	This	will	also	allow	contributors	to	submit
higher-quality	pull	requests	that	do	not	break	undocumented	aspects,	which	only	the
experienced	developers	know	(e.g.	here).

The	mentioned	issue	is	largely	a	consequence	of	another	out-of-hand	issue,	which	is	the
lack	of	strong	community	development	support	due	to	the	demographics	of	the	project
users.	Take	a	developer-focused	open	source	project	-Node.js	for	example;	since	it's	a	tool
for	developers,	developers	will	report	well-documented	issues	and	submit	meaningful	pull
requests	to	help	advance	the	project	for	their	own	advantage	and	the	whole	community.	In
contrast	with	Processing,	where	most	users	lack	experience	in	software	engineering,
submissions	from	the	community	are	scarce,	and	often	extremely	simple.	The	developers	of
this	project	would	have	to	choose	between	feature	improvement	and	development	on	one
side,	and	adding	tests	or	extra	documentation	on	another.

In	the	end,	a	well-deserved	salute	is	addressed	by	the	chapter	authors	to	the	developers	of
Processing	for	their	continuous	work	and	stamina	that	keeps	this	project	alive	and	ever
amazing	(and	useful!).

IX.	References
[1]	Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with
Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.

[2]	Processing	Homepage.	Accessed	4/2/2017.	Retrieved	from:	https://www.processing.org/

[3]	People	\	Processing.org.	Accessed	20-3-2017.	Retrieved	from:
https://processing.org/people/

[4]	Processing	Foundation	--	Support.	Accessed	20-3-2017.	Retrieved	from:

Processing

347

https://github.com/processing/processing/pull/4935#issuecomment-283699860
https://www.processing.org/
https://processing.org/people/

https://processingfoundation.org/support

[5]	Processing	2.x	and	3.x	Forum	(Accessed	2-4-17).	Processing.
https://forum.processing.org/two/

[6]	Oracle.	JavaFX	FAQ.	Accessed	19-3-2017.	Retrieved	from
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#5

[7]	Overview	\	Processing.org	(Accessed	2-4-17).	Processing.
https://processing.org/overview/

[8]	Arduino	Playground	-	Processing	(Accessed	2-4-17).	Arduino.
http://playground.arduino.cc/Interfacing/Processing

[9]	Build	Process	-	arduino/Arduino	Wiki	(Accessed	2-4-17).	Arduino.
https://github.com/arduino/Arduino/wiki/Build-Process

[10]	Processing.	processing/processing	Wiki.	Accessed	5-3-2017.	Retrieved	from
https://github.com/processing/processing/wiki

[11]	Advances	in	Computers,	Volume	82.	(2011).

[12]	Robert	C.	Martin,	Micah	Martin.	(2006).	Agile	Principles,	Patterns,	and	Practices	in	C#.

[13]	TestCoverage.	Fowler,	M.	Accessed	12-3-17.	Retrieved	from
https://martinfowler.com/bliki/TestCoverage.html

X.	Appendix

A1:	An	Interview	with	a	user

This	interview	was	done	with	Yahya	Al-Homsi,	an	Electrical	Engineering	student	at	Qatar
University.	He	is	currently	doing	his	graduation	project	on	an	ECMO	Machine	Simulator.	The
simulator	is	a	hardware	piece	that	simulates	the	exact	functionality	of	a	real	ECMO	Machine.
Since	those	machines	are	ridiculously	expensive,	hospitals	rarely	have	money	to	dedicate
some	of	them	for	training	purposes.	Thus,	a	simulator	would	be	a	(very)	cheap	substitute	to
train	nurses	on,	while	giving	them	same	experience.	He	is	doing	his	work	with	three	more
colleagues,	and	it	is	co-supervised	by	Hamad	Medical	Corporation,	and	is	being	funded	by
Qatar	National	Research	Fund.

Why	do	you	use	Processing	and	not	other	tools?	What	is	its	advantages	with	respect	to
other	similar	software?	And	what	do	you	love	the	most	about	it?

Processing

348

https://processingfoundation.org/support
https://forum.processing.org/two/
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html#5
https://processing.org/overview/
http://playground.arduino.cc/Interfacing/Processing
https://github.com/arduino/Arduino/wiki/Build-Process
https://github.com/processing/processing/wiki
https://martinfowler.com/bliki/TestCoverage.html
http://www.qu.edu.qa/
https://www.dellchildrens.net/services-and-programs/therapy-rehabilitation/ecmo/what-is-ecmo/how-does-ecmo-work/
https://www.hamad.qa/EN/Pages/default.aspx
http://www.qnrf.org/en-us/

I	like	the	built-in	GUI	functions	that	is	has.	This	makes	it	really	easy	to	create	animations	and
shapes	(2D	or	3D).	Furthermore,	since	I	am	a	hardware	guy,	it's	really	nice	to	connect
Processing	with	micro-controllers	using	serial	communications	and	display	information	on
the	computer	screen.	In	addition,	what	is	really	nice	about	Processing	is	that	you	can
program	in	it	using	Java,	Python,	and	more.	This	reduces	the	learning	curve,	since	one	can
already	use	the	language	he	knows.	It	also	makes	it	really	easy	to	have	a	full	working
program	and	execute	codes	to	be	a	product	level	software.

How	did	you	learn	about	Processing?

I	was	searching	for	a	way	to	connect	the	Arduino	to	the	internet	without	buying	the
expensive	Ethernet	shield.	I	found	a	blog	that	was	talking	about	connecting	the	Arduino	to	a
processing	sketch	that	is	connected	to	the	internet.	So	I	stared	learning	about	Processing.
To	be	honest,	it	is	always	easy	to	do	stuff	with	Processing.	In	general,	the	open-source
hardware	community	prefers	Processing,	and	most	examples	you	find	online	are	using
Processing	+	Arduino	together.	This	made	my	life	very	easy	when	working	on	projects.

Oh,	cool.	Can	you	please	give	a	brief	on	projects	that	you're	doing/have	done	with
Processing.	Pictures	would	be	nice!

I	built	an	home	automation	system	from	scratch	using	Processing.	Using	it,	I	was	able	to
write	a	software	that	does	voice	recognition,	Text-to-speech,	communicate	with	Arduino
board	using	serial,	and	get	data	from	a	PHP	server.	You	guessed	it,	it	is	indeed	inspired	by
Jarvis	from	the	Iron	Man	movie,	though	its	replies	were	programmed	to	sound	like	those	of
Gladiators,	not	of	a	super-human	artificial	intelligence.	I	have	had	just	finished	Spartacus
when	I	started	working	on	the	project.

Another	project	I	have	worked	with	involved	making	a	small	smart	home	controller.	I	built	the
code	base	using	Processing,	used	Arduino	to	control	the	lights	and	the	air	conditioning	in	my
room	(useful	when	it's	quite	hot	in	Qatar),	and	made	a	webpage	to	control	those.	Here's	a
pic!

Processing

349

Figure	A.1:	Costume	Smart	Home	Controller

The	other	project	I	am	doing	now	is	for	my	senior	design	project.	The	goal	is	to	built	a	GUI
that	runs	on	Raspberry	Pi	3.	The	sketch	must	get	some	values	from	the	Firebase	Database
and	then	display	them	on	the	screen	that	is	connected	to	the	Raspberry	Pi.	The	sketch
should	be	also	able	to	get	inputs	from	4	push	buttons	and	a	rotary	encoder.	Here's	another
pic!	It's	of	the	ECMO	simulator	control	panel.	An	exact	replica	of	a	real	ECMO	machine
panel.

Figure	A.2:	Control	Interface	of	the	ECMO	simulator

Processing

350

Processing

351

Scikit	learn
By	N.Bakker,	R.Kharisnawan,	B.Kreynen	and	C.M.Valsamos

Delft	University	of	Technology,	2016

Abstract
Scikit-learn	started	as	a	Google	Summer	of	code	project	by	David	Cournapeau	9	years	ago.
Currently	it	is	one	of	the	most	used	libraries	in	python	regarding	machine	learning	due	to	its
efficiency	and	simplicity.	Despite	its	small	size	in	its	core	team,	external	developers
contribute	daily	to	the	project	and	the	project	keeps	growing.	Being	passionate	data
scientists	we	were	eager	to	explore	its	framework,	and	thus	conducted	a	stakeholder
analysis	to	see	who	is	involved	with	scikit-learn.	We	then	describe	scikit-learn	from	various
viewpoints	and	perspectives	to	understand	its	software	architecture.	Finally,	this	chapter
closes	with	the	analysis	of	technical	and	testing	debt.

Introduction
This	chapter	describes	scikit-learn	from	the	software	architecture	perspective.	Scikit-learn	is
an	open	source	machine	learning	library	in	the	Python	programming	language.	It	has	been
growing	and	becoming	more	popular	because	of	its	efficiency	and	simplicity	in	use.	Also,	the
fact	that	it	is	an	open	source	library	makes	scikit-learn	not	only	used	by	companies	but	also
by	individuals.

The	chapter	starts	with	a	stakeholder	analysis	of	the	scikit-learn	library.	In	this	section,
stakeholders	are	identified	and	an	analysis	is	given	on	how	they	influence	the	library.	This	is
done	through	Rozanski	and	Woods'	classification,	an	additional	stakeholders	analysis,	and	a

Scikit-learn

352

https://github.com/i-am-xhy
https://github.com/romikharisnawan
https://github.com/berndkr
https://github.com/harrisval

power-interest	grid	analysis.	In	addition,	the	project	integrators	are	also	identified.	The
section	is	followed	by	software	views,	which	consists	of	the	context,	development,	and
deployment	view.	In	this	section,	scikit-learn	is	explored	from	different	kind	of	views	to	give	a
better	understanding	on	how	the	library	works,	both	internally	and	externally.	Perspective	on
computational	performance	gives	further	explanation	on	performance	of	scikit-learn	as
machine	learning	library.	The	next	section	is	software	debts,	which	discusses	technical	debt
and	testing	debt.	Lastly,	the	chapter	is	closed	with	the	conclusion	of	the	whole	analysis.

Stakeholders	Analysis

Core	team	members	and	contributors
In	this	subsection,	stakeholder	analysis	is	explained	based	on	a	chapter	in	Rozanski	and
Woods'	book;	Software	Systems	Architecture:	Working	With	Stakeholders	Using	Viewpoints
and	Perspectives	Chapter	9	[2].	Stakeholders	are	classified	into:

Acquirers

Acquirers	oversee	the	procurement	of	the	system	or	product	and	foresee	funding	[2].	Some
companies	and	institutions	have	provided	funding	or	use	scikit-learn.	These	will	have	to
make	decisions	about	the	acquisition	of	scikit-learn	and	might	expect	a	return	on	investment
of	some	sort.	Examples	include	INRIA	(Institut	National	de	Recherche	en	Informatique	et	en
Automatique),	Paris-Saclay	Center	for	Data	Science,	NYU	Moore-Sloan	Data	Science
Environment,	Télécom	Paristech,	Columbia	University,	Google,	Tinyclues.

Assessors

Assessors	oversee	the	system's	conformance	to	standards	and	legal	regulations	[2].
Contributors	who	review	pull	requests	ensure	that	the	proposed	changes	adhere	to	the
standards	of	scikit-learn	contributions.	However,	someone	with	the	clear	role	of	assessing
legal	regulations	could	not	be	identified.

Communicators

Communicators	explain	the	system	to	other	stakeholders,	provide	training	and	create
manuals	[2].	Scikit-learn's	website	is	the	main	communication	tool	where	its	content	is	also
managed	by	contributors	and	maintainers.	There	are	several	communication	channels
besides	the	website,	such	as	Stack	Overflow	[4],	a	mailing	list,	and	an	IRC	channel.

Scikit-learn

353

Developers

Developers	construct	and	deploy	the	system	from	specifications	[2].	Contributors	on	GitHub
are	developers.	Some	of	them	are	sponsored	by	the	institutions	and	organizations
mentioned	in	the	acquirers	section.

Maintainers

Maintainers	manage	the	evolution	of	the	system	when	it	is	operational,	they	focus	on
developing	documentation,	instrumentation,	debug	environments,	preservation	of
knowledge,	[2].	This	role	is	mainly	performed	by	Andreas	Müller	who	has	the	role	of
release	manager[1]	at	the	time	of	writing.	Other	maintainers	are	contributors	in	GitHub	who
are	willing	to	maintain	the	documentation	and	code	of	the	library.

Production	engineers

Production	engineers	design,	deploy	and	manage	the	hardware	and	software	environments
in	which	the	system	will	be	built,	tested	and	run	[2].	Andreas	Müller	performs	this	role	as	a
release	manager.	Staff	in	the	companies	who	use	scikit-learn	can	also	fall	under	this
category.

Suppliers

Suppliers	build	and/or	supply	hardware,	software	or	infrastructure	to	run	the	system	[2].
They	can	also	provide	staff	for	its	development	or	operation.	Some	of	the	suppliers	of	scikit-
learn	are:

Rackspace:	Provides	cloud	services	for	automatically	building	documentation	[1].
Shining	Panda:	Provides	CPU	time	on	continuous	integration	servers	[1].
Github:	Provides	hosting	of	version	control.
Acquirers	of	project:	Some	provide	funding	to	developers,	for	example	Columbia
University	[1].

Support	staffs

Support	staff	provides	support	to	users	when	the	system	is	operational	[2].	Communicators
and	support	staff	are	the	same	group	of	stakeholders	in	scikit-learn.

System	administrators

Scikit-learn

354

System	administrators	run	the	system	once	it	is	has	been	deployed	[2].	As	scikit-learn	is	a
library	used	in	python,	it	runs	locally	on	whichever	system	the	users	wants	to	use	it	on.
Therefore,	system	administrators	are	those	people	the	users	of	scikit-learn	appoint	to	do	this
task.

Testers

Testers	systematically	test	the	system	to	see	if	it	is	suitable	for	deployment	and	use	[2].
When	an	enhancement	is	proposed	to	scikit-learn	via	a	pull	request,	high-coverage	tests	are
required	for	them	to	be	accepted	[3].	In	addition,	continuous	integration	tools	automatically
run	these	tests	to	ensure	they	pass	each	PR	as	well.

Users

Users	are	those	who	eventually	use	the	system.	Several	examples	of	users	are	Spotify,
betaworks,	evernote,	booking.com,	AWeber,	YHat,	Research	teams	at	INRIA,	Télécom
ParisTech.	Scikit-learn	is	also	suited	for	individual	users	who	want	to	do	research,	or	do	a
project	involving	data	analysis.

Additional	Stakeholders
With	the	categorization	of	stakeholders	in	the	method	proposed	by	Rozanski	&	Woods	[2],
we	can	find	relevant	stakeholders	for	most	categories.	However,	it	is	noticeable	that	many
stakeholders	appear	in	many	different	categories	in	some	way.	In	this	section,	a	new
categorization	of	the	stakeholders	is	introduced	to	make	the	categories	more	distinct	and	the
roles	less	intertwined.	This	categorization	is	less	generally	applicable,	since	it's	tailored	to
scikit-learn.	The	different	categories	are	contributors,	users,	funders	and	competitors.

Scikit-learn

355

Figure	1:	Visualization	of	the	stakeholder	categories	for	scikit-learn.

Contributors

The	first	category	is	the	contributors	category.	These	stakeholders	consist	of	everyone	who
contributes	on	Github.	In	March	2017,	there	were	798	contributors	on	the	Github	repository
of	scikit-learn.	They	are	actively	involved	in	raising	issues,	development,	documentation,
maintenance,	and	testing	of	scikit-learn.	They	also	help	with	roles	that	belong	to	the
communicators	and	support	staff	in	Rozanski	&	Woods,	since	the	contributors	also	create
tutorials	and	contribute	on	Stack	Overflow,	the	mailing	list,	and	IRC	channel.

For	this	group,	it	is	important	that	they	collectively	understand	the	architecture	and
functionality	of	scikit-learn.	Since	they	maintain	and	develop	the	system,	they	are	concerned
with	the	maintainability,	flexibility,	documentation	and	preservation	of	knowledge	of	the
library.

Users

As	opposed	to	the	categorization	by	Rozanski	&	Woods[2],	we	do	not	make	the	distinction
between	acquirers	and	users.	Due	to	the	simplicity	of	acquiring	scikit-learn,	an	acquirers
category	seems	less	relevant	to	scikit-learn.

Scikit-learn

356

The	users	of	scikit-learn	are	the	various	companies	and	organizations	who	utilise	scikit-
learn.	There	are	quite	a	few	variations	between	the	users	of	scikit-learn	but	overall	users	will
be	concerned	with	documentation	and	ease	of	use	since	they	will	want	to	know	how	to	use
the	methods	implemented	in	scikit-learn.	Reliability	and	correctness	will	also	be	a	big
concern	for	the	users	of	scikit-learn.	Finally,	they	may	also	be	concerned	about	the
maintainability	of	code	which	implements	scikit-learn	as	opposed	to	the	maintainability	of
scikit-learn	itself.

Funders

Funding	to	scikit-learn	can	be	in	the	material	or	monetary	form.	This	category	corresponds
somewhat	to	the	acquirers	category	of	Rozanski	&	Woods[2].	Generally,	they	expect	some
type	of	return	on	investment	but	this	can	come	in	many	forms.	Research	institutions,	for
example,	might	want	to	be	able	to	influence	the	developtment	of	scikit-learn	to	benefit	their
research	and	might	be	interested	in	the	knowledge	gained	from	working	on	the	development
of	scikit-learn.	An	example	of	this	would	be	INRIA.	Companies	might	also	want	to	influence
the	development	of	scikit-learn	through	funding	but	might	be	more	concerned	with
influencing	it	so	that	they	can	use	it	to	get	a	return	on	investment.	Finally,	companies	like
Rackspace	and	Shining	Panda,	who	provide	free	services,	might	be	interested	in	the
publicity	gained	from	working	with	scikit-learn.

Competitors

Competitors	to	scikit-learn	are	other	libraries	which	provide	machine	learning	methods.	Their
developers	could	be	interested	in	the	development	of	scikit-learn	to	see	which	methods	of
scikit-learn	they	can	utilize	as	well.	However,	they	have	very	little	influence	on	the
development	of	scikit-learn.	Examples	of	competitors	are	GraphLab	[25]	(machine	learning
library	in	C++)	and	ROOT	[26]	(data	analysis	framework	in	C++).

Project	Integrators
The	project	integrators	are	those	people	whose	job	(or	volunteered	work)	it	is	to	guarantee
different	qualitative	properties	and	validate	changes	to	the	project.	On	March	2017,	there
were	40	people	that	have	the	capability	of	doing	this[5].

These	integrators	face	a	specific	set	of	challenges	for	scikit-learn.	Starting	with	scikit-learn
being	a	very	theory	heavy	project,	which	is	reflected	by	the	length	of	discussions	on	issues.
The	discussion	are	often	about	whether	pull	requests	are	properly	implementing	the
expected	theory	correctly.	Examples	are	PR	8253	[6]	and	PR	8280	[7].

Scikit-learn

357

Because	of	this	complexity,	they	also	need	to	handle	their	Integrators	with	extra	scrutiny,
requiring	two	of	them	to	write	off	on	each	and	every	pull	request.	Integrators	also	use
automated	testing	and	demand	high	coverage	before	accepting	pull	requests.	The	process
is	done	to	further	guarantee	the	quality	under	pull	request	checklist	[8].

Power-interest	grid
Figure	2	shows	the	quadrants	of	power	and	interest	of	scikit-learn	stakeholders.	The	x-axis
determines	interest	of	stakeholders	to	scikit-learn	which	is	divided	into	low	and	high	interest.
The	interest	of	stakeholders	is	demonstrated	by	their	willingness	to	explore,	use,	or
contribute	to	the	library.	Contributions	could	be	in	the	form	of	funding	or	taking	part	in
development.	The	y-axis	determines	the	power	of	stakeholders	which	is	also	divided	into	low
and	high	power.	Power	is	related	to	how	influential	the	stakeholder	is	in	scikit-learn's	past,
current,	and	future	development.	Therefore,	the	most	powerful	entities	are	in	the	upper-right
quadrant	and	the	least	powerful	ones	in	the	opposite	lower-left	quadrant.	As	an	example,
Andreas	Müller	is	in	the	upper-right	quadrant	because	he	has	been	the	release	manager
since	2016,	which	indicates	his	high	interest	and	influence	in	the	development	process.	On
the	other	hand,	David	and	Matthieu	were	founders	of	scikit-learn	[1]	but	they	are	not	active	in
the	development	any	more.	Thus,	they	are	classified	in	the	high	interest	and	low	power	area.

Scikit-learn

358

Figure	2:	Power-Interest	grid.

Views
In	this	section,	we	describe	three	views	on	the	scikit-learn	architecture:	context,
development,	and	deployment	view.	A	view	can	be	seen	as	a	model	of	the	architecture,	with
each	view	capturing	different	aspects	of	the	architecture.

Context	View
This	section	contains	the	relationship	between	scikit-learn	and	other	related	entities.	It	helps
to	identify	the	purpose	of	the	system	and	to	understand	its	relationship	with	the	environment.

Design	Philosophy

Scikit-learn	was	developed	to	provide	easier	implementation	of	data	analysis	methods,	so
individuals	without	much	prior	knowledge	can	use	it.	As	a	machine	learning	library,	it
provides	several	techniques	in	both	supervised	and	unsupervised	learning.	Also,	to	make
the	library	easy-to-use,	scikit-learn	provides	examples	of	implementations	and	datasets.	It	is

Scikit-learn

359

important	to	provide	standardized	datasets,	not	only	for	showing	implementation	examples,
but	also	to	provide	training	data	to	create	classifiers.	Additionally,	a	machine	learning	library
will	not	be	a	useful	library	without	visualization.	Therefore,	there	are	visualization	examples
to	illustrate	the	performance	of	a	classifier	by	using	matplotlib	as	a	basis	of	visualization.

Diagram

Figure	3	describes	the	relationship	between	scikit-learn	and	its	environment.	It	consists	of
ten	external	entity	types	which	are	related	to	scikit-learn.	Each	entity	has	a	specific
relationship	to	the	library,	for	example	users	use	scikit-learn	or	GitHub	manages	versioning
and	issue	tracking	for	scikit-learn.	Each	specific	entity	inside	an	entity	type	may	have	a
different	weight	of	closeness	to	the	library	depending	on	their	interactions,	for	example
INRIA	may	have	a	stronger	relation	compared	to	Paris-Saclay	Center	for	Data	Science
because	they	are	still	sponsoring	scikit-learn	at	the	time	of	writing.

Scikit-learn

360

Figure	3:	Context	View.

Development	View
The	development	view	is	what	gives	developers	(and	testers)	a	birds	eye	view	of	the
architecture.	It	should	not	be	too	detailed	or	descriptive,	but	still	cover	the	most	important
bases.
The	development	viewpoint	discussed	here	is	about	scikit-learn's	module	structure	model.

Scikit-learn

361

Module	Structure	Model

The	module	structure	model	defines	the	organization	of	the	system’s	source	code	and
related	external	systems,	in	terms	of	the	modules	into	which	the	individual	source	files	are
collected	and	the	dependencies	among	these	modules	[2].	In	Figure	4	layers	are	identified
for	scikit-learn	with	each	layer	consisting	of	one	or	more	module(s).	These	layers	are:

Domain	layer:	consisting	of	all	main	functionality	modules:	data	transformations	[29],
data	loader	[30],	model	selection	[31],	supervised	learning	[32],	and	unsupervised
learning	[33].
Utility	layer:	consisting	of	modules	that	support	basic	functionality	that	can	be	used	in
domain	layer,	such	as	testing,	validation,	preprocessing,	sparse	tool,	and	external
configuration.
Platform	layer,	which	contains	modules	of	the	required	packages,	such	as	python	[34],
NumPy	[35],	and	SciPy	[36].
Build	tool	layer,	which	contains	build	modules	[37]	to	build	the	library.	Each	module
consists	of	files	to	download,	install,	testing,	or	setting	the	required	library.	Dependency
of	one	layer	to	the	other	layer(s)	is	demonstrated	by	a	dashed	arrow	which	points	to	the
destination	of	the	required	layer.	As	an	example,	the	utility	layer	uses	all	libraries
available	from	python,	NumPy,	SciPy,	and	Pandas	by	importing	them	in	the	module.	In
addition,	there	are	explicit	intermodule	dependencies	for	all	modules	in	the	domain	layer
for	python	because	all	files	under	each	module	requires	python.

Scikit-learn

362

Figure	4:	Modules	Structure	Model.

This	model	answers	the	first	concern	of	Rozanski	and	Woods	addressed	by	the
development	view	[2]	by	giving	a	better	understanding	of	the	module	organization.	Each
module	consists	of	hundred,	possibly	thousands,	of	source	files	and	even	more	lines	of
code,	which	are	used	to	implement	libraries	or	functional	elements.	As	a	software	architect	it
is	useful	to	know	the	generic	view	of	a	system	before	going	too	much	into	detail.	By
analyzing	through	this	model,	we	understand	better	in	which	way	scikit-learn	has	been
managed	and	the	depencies	between	modules	are	clearly	highlighted.	In	this	library,	a
module	is	usually	representated	by	a	folder	in	the	sklearn	directory[9].

Another	good	thing	that	can	be	inferred	by	this	model	is	how	to	arrange	code	in	a	logical
structure.	Thereby,	it	will	help	to	manage	dependencies	and	cultivate	a	better	understanding
with	developers	of	these	interdependencies	without	affecting	other	modules	in	unexpected
ways.

Deployment	view

Scikit-learn

363

The	deployment	view	is	what	looks	into	how	the	program	is	expected	to	operate	in	live
operation.	It	will	show	what	"hidden"	dependencies	scikit-learn	has,	it's	runtime	environment
and	lastly	the	required	specialist	knowledge	for	(parts	of)	scikit-learn.

Figure	3A:	the	deployment	view	for	scikit-learn

Dependencies

Running	a	scikit-learn	instance	requires	several	supporting	libraries	and	programs	[10].
These	are,	at	the	time	of	writing:

Pip,	while	not	a	hard	demand,	in	general	is	the	way	scikit-learn	gets	installed
Conda,	an	alternative	to	pip	to	install	scikit-learn
Python,	(>	=2.6	or	>	=3.3)	scikit-learn	requires	an	instance	of	python	to	run	it's	scripts.
NumPy	(>=1.6.1)
SciPy(>=0.9)

there	are	some	technology	compatibility	conflicts	between	pip/conda	and	the	required
libraries.	As	the	former	tends	to	compile	from	source	whereas	the	libraries	tested	are	the
provided	binaries.	Which	can	lead	to	differences.

Runtime	environment

As	scikit-learn	runs	entirely	within	a	single	system,	and	on	this	system	it	runs	inside	python.
Most	of	its	runtime	environment	is	either	highly	simplified	or	defined	by	its	hosting	programs.

A	computing	system	(computer/phone	etc.)	with	support	for	python	(<1GB	hdd	space
and	a	supporting	processor	architecture,	preferably	a	bit	of	ram	as	well	(say	128MB+))
the	prerequisites	mentioned	in	dependencies

These	limits	are,	however,	rather	unrealistic	when	using	scikit-learn.	As	in	most	cases,	scikit-
learn	is	used	on	rather	large	datasets,	which	would	increase	RAM/HDD	usage	accordingly.

Scikit-learn

364

Specialist	knowledge

To	use	Scikit-learn('s	full	potential)	a	lot	of	specialist	knowledge	is	required.	These	required
types	of	specialists	are	people	a	major	company	may	want	to	have	before	adopting	scikit-
learn.

Linear	algebra,	practically	a	demand	for	using	scikit-learn	as	it	is	used	almost
everywhere	that	constitutes	actual	functionality.	In	addition,	it	is	often	a	prerequisite	for
the	other	knowledge	areas.
Machine	learning,	scikit-learn	allows	use	of	neural	network	techniques,	k-means	and
other	techniques	to	provide	most	of	its	functionality.
Set/collection	theory,	operations	on	and	properties	of	sets	are	(implicitly)	used	as	the
basis	for	certain	operations	(such	as	biclustering,	mean_shift	and	kmeans)

Perspective

Computational	performance	perspective
One	of	important	perspective	of	implementing	machine	learning	library	is	computational
performance.	There	are	two	computational	performance	metrics	that	can	be	used:	latency
and	throughput	at	prediction	time.	Optimization	is	usually	done	to	minimize	latency	and
maximize	throughput	but	it	can	hurt	prediction	accuracy.

Prediction	latency

Prediction	latency	is	measured	as	the	elapsed	time	necessary	to	make	a	prediction	(e.g.	in
micro-seconds)	[38].	There	are	four	main	factors	that	influence	the	prediction	latecy:	number
of	features,	input	data	representation	and	sparsity,	model	complexity,	feature	extraction.
Number	of	features	affects	memory	consumption,	which	shows	number	of	basic	operations,
such	as	multiplications	for	vector-matrix	products.	Matrix	of	M	instances	with	N	features	will
result	O(NxM)	space	complexity.	In	sparse	input	data	representation,	optimization	using
sparse	format	is	essential	to	make	performance	better	by	not	storing	zeros	which	will	lead	to
less	memory	consumption.	As	a	rule	of	thumb	you	can	consider	that	if	the	sparsity	ratio	is
greater	than	90%	you	can	probably	benefit	from	sparse	formats	[38].	Model	complexity	will
lead	to	more	predictive	power	and	latency.	Increasing	predictive	power	is	usually	interesting,
but	for	many	applications	we	would	better	not	increase	prediction	latency	too	much	[38].	In
many	real	world	applications	the	feature	extraction	process	(i.e.	turning	raw	data	like
database	rows	or	network	packets	into	numpy	arrays)	governs	the	overall	prediction	time

Scikit-learn

365

[38].	In	many	cases	it	is	thus	recommended	to	carefully	time	and	profile	your	feature
extraction	code	as	it	may	be	a	good	place	to	start	optimizing	when	your	overall	latency	is	too
slow	for	your	application.

Prediction	throughput

Prediction	throughput	is	defined	as	the	number	of	predictions	the	software	can	deliver	in	a
given	amount	of	time	(e.g.	in	predictions	per	second)	[38].	There	are	several	ways	to
improve	prediction	throughput,	such	as	spawn	additional	instances	that	share	same	model
or	add	more	machines	to	spread	the	load.

Software	Debts
There	is	an	increasing	amount	of	danger	of	not	being	able	to	add	or	enhance	features	as	the
project	evolves.	Technical	debt	needs	to	be	looked	at	from	the	start	of	the	project	because
small	issues	can	lead	to	bigger	problems	later	in	the	development	of	the	project.

Technical	debt
Although,	there	is	extensive	maintenance	from	the	beginning	of	the	project,	technical	debt	is
still	evident	in	the	project	as	we	are	going	to	point	out	in	this	section.	Several	aspects
regarding	technical	debt	will	be	covered.

Solid	principles

For	identifying	technical	debt,	a	good	method	is	to	look	into	the	SOLID	principles	and	how
these	are	handled	for	scikit-learn.	These	principles	could	give	an	indication	of	arguably	bad
design	being	used,	preventing	or	making	it	more	difficult	to	make	changes	in	the	future.

Single	Responsibility	Principle

The	Single	Responsibility	Principle	states	that	a	class	should	only	have	a	single
responsibility	[27].

Whether	this	principle	is	broken	in	a	widespread	manner	is	difficult	to	say	for	scikit-learn	due
to	the	size	of	its	code	base.	In	general,	all	classes	such	as	neural	networks	[51],	kdtree	[53]
and	label	propagation	[20]	model	a	certain	specific	theory,	and	therefore	tend	to	model	this
in	a	rather	direct	way.

Scikit-learn

366

This	is	a	fine	way	to	separate	concerns,	given	one	important	assumption:	The	theory	either
does	not	change	or	a	change	in	theory	fundamentally	requires	a	new	class.	For	instance,	a
new	theory	is	not	an	update	of	the	old,	therefore	requires	a	new	class.

class	email:

				function	setSender(email_as_string)

Figure	5:	A	bad	implementation	of	single	responsibility	principle.

class	email_address:

			function	getAddress():

							return	this.address

class	email:

				function	setSender(email_as_email_address):

								this.address	=	email_as_email_addres.getAddress()

Figure	6:	A	proper	separation	of	concerns,	this	allows	for	example	checking	of	format	of	an
email	in	the	constructor	of	the	email_address	class.

This	is	also	mostly	true	for	places	where	modularization	breaks	down	or	other	problems
exist,	as	will	be	addressed	further	in	this	chapter,	such	as	utils.	the	mocking	file	[19]	is
responsible	for	mocking	functionality,	and	arrayfuncs	[18]	provides	functions	for	arrays.

There	are	probably	still	splits	that	are	possible,	but	the	division	of	responsibilities	makes	a	lot
of	sense	for	what	scikit-learn	is	trying	to	do.

Open/Closed	Principle

The	Open/Closed	Principle	states	that	software	entities	should	be	open	for	extension,	but
closed	for	modification.

Scikit-learn

367

class	drawer:

				drawCircle():

				drawSquare():

				drawShape(x):

								if(isinstance(x,	circle):

												drawCircle()

								else:

												drawSquare()

class	shape:

class	circle(shape):

class	square(shape):

Figure	7:	Example	of	bad	application	of	the	open/closed	principle,	drawer	needs	knowledge
about	every	extending	class.	requiring	changes	for	each	new	class	implementing	shape.

class	drawer:

				drawShape(x):

								x.draw()

class	shape:

				draw():	#	python	does	not	have	interfaces,	but	duck-typing.

class	circle(shape):

				draw():

class	square(shape):

				draw():

Figure	8:	A	good	implementation	of	the	open/closed	principle,	drawer	can	simply	take	any
new	implementation	of	shape	as	well.

For	implementations	that	have	similar	roots	(such	as	neural	networks	[15])	a	parent	class	will
be	made	defining	basic	behaviour	that	does	not	depend	on	specifics	of	the	child	to	be	useful.
This	closes	the	parent	class,	but	keeps	the	child	class	open	for	extension

Liskov	Substitution	Principle

The	Liskov	Substitution	Principle	states	that	if	S	is	a	subtype	of	T	then	objects	of	type	T	may
be	replaced	with	objects	of	type	S

Scikit-learn

368

class	rectangle:

				setHeight(self,x):

								self.height	=	x

				setWidth(self,	x):

								self.width	=	x

				getArea(self):

								return	self.width*self.height

class	square(rectangle):

				setHeight(self,x):

								self.height	=	x

								self.width	=	x

				setWidth(self,x):

								self.height	=	x

								self.width	=	x

s	=	square()

s.setWidth(10)

s.setHeight(5)

print(s.getArea)	#	no	valid	expectation	on	area	(either	25	from	square,	or	50	from	rec

tangle)

Figure	9:	Bad	implementation	of	Liskov	substitution	principle,	square	has	additional
restrictions	on	it	that	rectangle	does	not	have,	leading	to	weird	situations	when	functions	for
rectangles	get	called	on	it.

This	principle	does	not	seem	to	be	violated	in	scikit-learn.	Lower	classes	do	not	tend	to
introduce	additional	restrictions	and	can	replace	their	parent	class	where	necessary.	This	is
also	because	scikit-learn	tends	to	implement	proper	duck-typing,	which	-when	done
properly-	ensures	the	Liskov	Substitution	Principle.

Duck-typing	says	that	the	suitability	of	a	certain	class	S	to	replace	T	is	that	it	should	offer	at
least	the	same	functionality	as	T.	i.e.	"If	it	walks	like	a	duck	and	quacks	like	a	duck,	it	must
be	a	duck."	[16].

Interface	Segregation	principle

The	Interface	Segregation	Principle	states	that	no	client	should	be	forced	to	depend	on
methods	it	does	not	use.

This	is	again	true	because	scikit-learn	applies	good	duck	typing.	A	duck	does	not	talk,
therefore	its	parent	classes	will	not	demand	this	of	it.

Scikit-learn

369

This	could	also	be	explained	as	being	caused	by	using	python,	as	it	does	not	support
interfaces,	fundamentally	ignoring	this	principle.	And	therefore	any	program	written	in	python
is	incapable	of	applying	it	[28].

Dependency	Inversion	Principle

Dependency	Inversion	Principle	states	that	high	level	modules	should	not	depend	on	low
level	modules,	but	instead	both	should	depend	on	abstractions.	Furthermore,	abstractions
should	not	depend	on	details	but	details	on	abstractions.

This	does	happen	on	occasion	inside	scikit-learn	for	example	multilayer	perceptron[17]
creates	a	LabelBinarizer,	meaning	it	is	now	dependent	on	how	LabelBinarizer	works	for	its
own	behaviour.	Instead	of	passing	a	LabelBinarizer	through	the	constructor.

if	not	incremental:

												self._label_binarizer	=	LabelBinarizer()

												self._label_binarizer.fit(y)

												self.classes_	=	self._label_binarizer.classes_

Figure	10:	Example	of	breaking	Dependency	Inversion	Principle.

Reducing	these	kinds	of	instances	could	reduce	the	amount	of	technical	debt,	because	it
would	be	easier,	and	more	explicit,	when	the	class	is	passed	through	the	constructor	to
change	the	specific	class	delivering	the	functionality	in	case	a	NewBetterLabelBinarizer
class	is	required.

Debt	From	Structure

Scikit-learn	has	several	different	ways	of	formatting	its	code.	It	uses	both	the	classes	and
their	respective	imports	[17].

#	filename:	duck.py

class	duck

				def	quack():

								return	'Quack!'

Figure	11:	Example	of	new	importing.

from	duck	import	duck

whatDoesTheDuckSay	=	duck().quack()

Figure	12:	Another	example	of	new	importing.

Scikit-learn

370

and	defs	with	file	based	imports

#	filename:	duck.py

def	quack:

				return	'Quack!'

Figure	13:	Example	of	old	importing.

import	duck

duck.quack()

Figure	14:	Another	example	of	old	importing.

This	means	different	files	function	differently	for	the	same	type	of	functionality,	possibly
restricting	flexibility	and	this	could	therefore	be	seen	as	technical	debt.

Debt	From	Modularization

For	the	most	part	scikit-learn	has	a	logical	document	structure.	An	important	exception	to
this	is	the	utils	folder,	which	seems	to	contain	a	lot	of	very	different	modules	such	as	math
[21],	testing	[22]	and	array	functions	[23].	This	might	make	it	more	difficult	to	find	specific
functionality,	increasing	technical	debt.

Discussion	of	Technical	Debt	-	In	the	Source	Code

This	section	will	look	at	how	the	contributors	of	Scikit-learn	discuss	technical	debt.	In	some
projects	(maybe	even	most)	occasionally	technical	debt	is	being	discussed	in	the	source
code	itself.	This	is	often	in	the	form	of	TODO	or	FIXME	comments.	In	general,	we	find	this	a
bad	way	of	discussing	technical	debt	as	it	is	often	forgotten	about.	However,	in	Scikit-learn	it
still	happens	occasionally.

We	used	grep	to	look	for	any	TODO	or	FIXME	comments	in	the	whole	Scikit-learn	repository
(this	includes	the	documentation).	The	following	commands	were	used	in	the	root	directory
of	the	scikit-learn	repository:

grep	-r	"FIXME"	.	--ignore-case
grep	-r	"TODO"	.	--ignore-case

Figure	15:	Grep	commands.

We	found	76	occurrences	of	TODO	comments,	spread	out	over	48	files.	Four	of	these	files
are	documentation	files,	but	these	have	two	purposes.	Sometimes	a	TODO	is	added	in	the
documentation	to	indicate	that	a	feature	for	example	should	still	be	implemented	in	the	code,

Scikit-learn

371

other	times	it	actually	means	that	something	is	missing	in	the	documentation.	We	found	20
occurrences	of	FIXME	comments,	spread	out	over	16	files,	2	of	which	are	documentation
files	and	4	test	files.	The	fact	that	there	are	both	FIXME	and	TODO	comments	in	the	testing
and	documentation	code	indicates	some	form	of	testing	and	documentation	debt	present	in
the	project.

The	following	picture	sums	up	how	well	this	method	works	for	discussing	technical	debt:

Figure	16:	“FIXME”	comment	added	long	ago,	which	is	still	present	in	the	code	now.

Testing	debt

Code	Testing

The	code	coverage	for	scikit-learn	on	16	March	was	94.76%	which	is	very	good.	We	can	see
a	breakdown	of	the	code	coverage	for	different	modules	in	the	barplot	in	Figure	17.	The	full
information	can	be	found	here	[24].	Despite	having	modules	where	the	code	coverage	is
low(e.g.	datasets)	overall	the	system	is	tested	very	well.

The	major	contributors	of	scikit-learn	have	agreed	upon	approximately	90%	coverage.	Also,
the	project	is	well	tested	by	implementing	unit-testing.	Unit	testing	as	the	developers	in
scikit-learn	mention	is	"a	corner-stone	of	the	scikit-learn	development	process"	[2].

We	have	also	made	a	barplot	where	it	is	easier	to	see	the	different	coverage	scores	for	the
different	modules.	We	can	identify	the	big	difference	of	code	coverage	between	the	datasets
module	and	the	other	modules.

Scikit-learn

372

Figure	17:	Code	coverage	about	different	modules	ordered.

In	addition,	the	project	of	scikit-learn	relies	on	integration	testing	services	like	Travis	CI	[14],
circleci	[12]	and	AppVeyor	[13].	It	is	a	common	procedure	of	the	scikit-learn	testing
procedure	to	report	the	results	of	tests	on	continuous	integration	(CI)	platforms.	We	can	see
an	example	of	successful	and	unsuccessful	testing	on	a	PR	in	the	figure	below.	All	PRs
need	to	pass	all	five	check	tests	from	different	CI	platforms	before	it	gets	merged:	ci/circleci,
codecov/patch,	codecov/project,	continuous-integration/appveyor/pr,	and	continuous-
integration/travis-ci/pr.	Thus,	all	changes	in	scikit-learn	are	well-tested	and	it	reduces	the
risk.	Also,	it	helps	the	reviewers	to	make	decisions	about	which	PR	should	be	merged	and	to
give	constructive	advice	to	the	authors	in	order	to	fix	PR.

Figure	18:	Tests	on	different	CI	platforms.

Testing	results	on	CI	platforms.

As	is	mentioned	above,	unit	testing	is	also	performed	with	the	nose	package	[15].	The	tests
are	functions	with	appropriate	names,	located	in	tests	subdirectories.	The	tests	check	the
validity	of	the	algorithms	and	the	different	options	of	the	code.	The	full	scikit-learn	tests	can

Scikit-learn

373

be	run	using	'make'	in	the	root	folder.	Alternatively,	running	'nosetests'	in	a	folder	will	run	all
the	tests	of	the	corresponding	subpackages.	The	code	coverage	of	new	features	are
expected	to	be	at	least	around	90%.

Proposal	for	Removing	Debt

It	is	dangerous	to	have	this	form	of	technical	debt	in	a	place	where	contributors	might	be
less	aware	of	it.	To	remove	this	form	of	technical	debt	we	would	firstly	propose	to	keep	track
of	it	in	a	better	way,	so	that	the	advantage	of	being	an	open	source	project	can	be	utilized
better	to	get	rid	of	it.	In	issue	8581	[11]	we	proposed	the	following	work-flow	to	remove	it:

1.	 Create	an	issue	on	GitHub	for	each	file	still	containing	TODOs/FIXMEs.
2.	 File	by	file	create	issues	for	each	TODO/FIXME	comment.
3.	 Either	remove	the	comments	in	a	new	PR	linking	the	newly	created	issues	or	if	it	is

preferable	to	keep	the	comments	in	the	code	as	well,	instead	of	removing	the	comment
add	a	link	to	the	issue	in	the	comment.

This	issue	attracted	the	attention	of	a	couple	developers	in	scikit-learn.	They	highlighted	that
this	is	tedious	work	and	it	is	more	preferable	to	focus	on	existing	issues.	Also,	these
TODO/FIXME	comments	require	expertise	not	currently	available	in	the	project.

Conclusion
In	the	beginning	of	the	chapter	the	different	stakeholders	of	scikit-learn	were	introduced.
Initially,	the	categories	as	defined	by	Rozanski	&	Woods	were	used,	but	using	four	main
categories	of	stakeholders	were	more	applicable	to	scikit-learn,	which	are	contributors,
users,	funders	and	competitors.	This	section	was	followed	by	the	views	sections	where	three
different	aspects	of	the	architecture	were	discussed	through	the	use	of	the	context	view,	the
Development	View	and	Deployment	View.	The	Development	View	consisted	of	the	Module
Structure	Model.	The	Module	Structure	Model	identified	the	structure	of	the	code	in	terms	of
how	the	code	was	grouped	into	modules.	Finally,	the	Deployment	View	looked	at	the	system
in	operation.	It	identified	dependencies	required	to	run	and	install	scikit-learn,	the
environment	needed	to	run	it	in	and	it	also	identified	the	need	for	specialist	knowledge	to
utilize	scikit-learn	to	it's	fullest.	The	perspective	on	computational	performance	is	the
additional	section	to	explore	more	about	performance	of	scikit-learn	as	machine	learning
library.	The	last	section	looked	at	two	main	aspects	of	software	debt,	technical	and	testing
debt.	It	started	off	with	a	section	about	looking	at	technical	debt	through	the	SOLID
principles.	This	concluded	that	the	SOLID	principles	are	not	fully	applicable	to	this	project
due	to	using	Python.	In	this	section,	we	also	found	that	one	prominent	form	of	technical	debt
were	TODO	and	FIXME	comments.	To	mitigate	this	debt,	we	proposed	a	work-flow	for

Scikit-learn

374

adding	these	issues	to	GitHub	one	by	one	so	that	they	could	be	tracked	and	solved	more
easily.	Through	our	interactions	with	the	scikit-learn	contributors,	we	learned	that	they
struggle	with	having	enough	expert	knowledge	to	deal	with	these	issues.	When	looking	at
the	testing	debt,	it	was	evident	that	scikit-learn	has	high	test	coverage	(94.76%)	and	that	the
contributors	put	in	a	lot	of	effort	to	keep	this	coverage	high	when	reviewing	pull	requests.
High	test	coverage	really	is	a	corner-stone	of	their	development	process.	This	is	also
noticeable	when	submitting	a	pull	request	since	various	continuous	integration	tools	need	to
pass	before	a	pull	request	can	be	approved.

References
[1]	http://scikit-learn.org/stable/about.html#people

[2]	Rozanski,	_Nick,	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with
Stakeholders	Using	Viewpoints	and	Perspectives._	Upper	Saddle	River,	N.J.:	Addison-
Wesley,	©2012.

[3]	http://scikit-learn.org/stable/developers/contributing.html

[4]	http://stackoverflow.com/tags/scikit-learn/topusers

[5]	https://github.com/orgs/scikit-learn/people

[6]	https://github.com/scikit-learn/scikit-learn/pull/8253

[7]	https://github.com/scikit-learn/scikit-learn/pull/8280

[8]	https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md#user-content-
pull-request-checklist

[9]	https://github.com/scikit-learn/scikit-learn/tree/master/sklearn

[10]	http://scikit-learn.org/stable/install.html

[11]	https://github.com/scikit-learn/scikit-learn/issues/8581

[12]	https://circleci.com/

[13]	https://www.appveyor.com/

[14]	https://travis-ci.org/

[15]	http://nose.readthedocs.io/en/latest/

[16]	http://www.dictionary.com/browse/duck-typing

Scikit-learn

375

http://scikit-learn.org/stable/about.html#people
http://scikit-learn.org/stable/developers/contributing.html
http://stackoverflow.com/tags/scikit-learn/topusers
https://github.com/orgs/scikit-learn/people
https://github.com/scikit-learn/scikit-learn/pull/8253
https://github.com/scikit-learn/scikit-learn/pull/8280
https://github.com/scikit-learn/scikit-learn/blob/master/CONTRIBUTING.md#user-content-pull-request-checklist
https://github.com/scikit-learn/scikit-learn/tree/master/sklearn
http://scikit-learn.org/stable/install.html
https://github.com/scikit-learn/scikit-learn/issues/8581
https://circleci.com/
https://www.appveyor.com/
https://travis-ci.org/
http://nose.readthedocs.io/en/latest/
http://www.dictionary.com/browse/duck-typing

[17]	https://github.com/scikit-learn/scikit-
learn/blob/master/sklearn/neural_network/multilayer_perceptron.py

[18]	https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/extmath.py

[19]	https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/kd_tree.pyx

[20]	https://github.com/scikit-learn/scikit-
learn/blob/master/sklearn/semi_supervised/label_propagation.py

[21]	https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/extmath.py

[22]	https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/testing.py

[23]	https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/arrayfuncs.pyx

[24]	https://codecov.io/gh/scikit-learn/scikit-
learn/tree/603ff1a61d2d3d08624e18b32d05c177711d7299

[25]	https://turi.com

[26]	https://root.cern.ch

[27]	[http://www.oodesign.com/single-responsibility-principle.html

[28]	[https://www.python.org/dev/peps/pep-0245/

[29]	https://github.com/scikit-learn/scikit-learn/blob/master/doc/data_transforms.rst

[30]	https://github.com/scikit-learn/scikit-learn/tree/master/doc/datasets

[31]	https://github.com/scikit-learn/scikit-learn/blob/master/doc/model_selection.rst

[32]	https://github.com/scikit-learn/scikit-learn/blob/master/doc/supervised_learning.rst

[33]	https://github.com/scikit-learn/scikit-learn/blob/master/doc/unsupervised_learning.rst

[34]	https://www.python.org

[35]	http://www.numpy.org

[36]	https://www.scipy.org

[37]	https://github.com/scikit-learn/scikit-learn/tree/master/build_tools

[38]	http://scikit-learn.org/stable/modules/computational_performance.html

Scikit-learn

376

https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neural_network/multilayer_perceptron.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/extmath.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/neighbors/kd_tree.pyx
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/semi_supervised/label_propagation.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/extmath.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/testing.py
https://github.com/scikit-learn/scikit-learn/blob/master/sklearn/utils/arrayfuncs.pyx
https://codecov.io/gh/scikit-learn/scikit-learn/tree/603ff1a61d2d3d08624e18b32d05c177711d7299
https://turi.com
https://root.cern.ch
http://www.oodesign.com/single-responsibility-principle.html
https://www.python.org/dev/peps/pep-0245/
https://github.com/scikit-learn/scikit-learn/blob/master/doc/data_transforms.rst
https://github.com/scikit-learn/scikit-learn/tree/master/doc/datasets
https://github.com/scikit-learn/scikit-learn/blob/master/doc/model_selection.rst
https://github.com/scikit-learn/scikit-learn/blob/master/doc/supervised_learning.rst
https://github.com/scikit-learn/scikit-learn/blob/master/doc/unsupervised_learning.rst
https://www.python.org
http://www.numpy.org
https://www.scipy.org
https://github.com/scikit-learn/scikit-learn/tree/master/build_tools
http://scikit-learn.org/stable/modules/computational_performance.html

Scrapy

Joren	Hammudoglu	(@jorenham),	Johan	Jonasson	(@jojona),	Marnix	de	Graaf
(@Eauwzeauw)

Delft	University	of	Technology,	2017

Abstract
Scrapy	is	an	application	framework	for	crawling	websites	and	extracting	structured	data
which	can	be	used	for	a	wide	range	of	web	applications,	like	data	mining,	information
processing	or	historical	archival.	The	chapter	will	start	by	analysing	the	Scrapy	framework
from	different	perspectives.	First,	the	context	view	which	describes	the	environment	around
Scrapy	such	as	dependencies	and	responsibilities.	Then	the	development	view	with	the
architectural	concerns	related	to	Scrapy.	The	chapter	will	also	describe	the	operational
viewpoint,	performance	and	scalability.	The	chapter	will	end	with	analysing	the	technical
debt	related	to	the	code	and	the	evolution	of	the	technical	debt.

Table	of	contents
1.	 Introduction
2.	 Stakeholders

Types	and	classes	of	stakeholders
Integrators

3.	 Context	view
External	entities,	services	and	data

Scrapy

377

https://github.com/jorenham
https://github.com/jojona
https://github.com/eauwzeauw

Environmental	impact
4.	 Development	viewpoint

Codeline	model
Common	design	model

5.	 Operational	viewpoint
Installation
Live	monitoring
Support
Operation	in	third-party	environments

6.	 Performance	and	scalability	perspective
7.	 Technical	debt

Static	analysis
Discussions	about	technical	debt
SOLID	principles
Testing	debt
Evolution	of	technical	debt

8.	 Conclusion
9.	 References

1	Introduction
Scrapy	is	an	open-source	framework	for	crawling	websites	and	extracting	structured	data
from	them.	Crawling	websites	concerns	the	cycle	of	downloading	a	webpage,	following	its
links	and	downloading	those	pages.	It	can	be	used	for	a	wide	range	of	web	applications,	like
data	mining,	information	processing	or	historical	archival.	The	general	use-case	is	to	extract
data	from	a	webpage,	which	does	not	provide	a	public	API	for	its	data.	Core	functions
include,	but	are	not	limited	to,	fetching	webpages	(crawling),	processing	them	(scraping)	and
saving	the	extracted	data	(exporting).	While	Scrapy	can	do	a	lot	out	of	the	box,	it	is	also
designed	so	one	can	easily	extend	existing	functionality.

The	project	architecture	is	built	around	the	use	of	‘spiders’.	The	spiders	are	self-contained
crawlers	which	are	given	a	set	of	instructions	on	how	to	crawl	pages	and	which	data	to
extract	from	them.	Spiders	are	implemented	to	crawl	fast	and	concurrently	while	also	being
fault-tolerant	and	polite	to	crawled	servers.	A	general	overview	on	how	Scrapy	works	can	be
seen	in	Figure	1.	Scrapy	is	written	in	Python	and	can	be	run	on	Linux,	Mac	OS	and
Windows.

Scrapy

378

Figure	1:	General	overview	of	Scrapy's	workings.	Adaptation	of	image	from	documentation
13.

This	chapter	takes	the	reader	through	the	workings	and	development	of	Scrapy,	next	to	the
possible	problems	in	the	project.	It	starts	with	the	context	of	the	project	itself,	describing	the
stakeholders,	integrators,	system	responsibilities	and	dependencies.	Next,	more	attention	is
paid	to	the	code	itself	and	we	dive	deeper	into	the	structure	of	Scrapy.	The	development
viewpoint	includes	code	structure,	modules	and	dependencies,	configuration	management
and	coding	standards.	This	is	continued	by	the	operational	viewpoint	which	describes	how
Scrapy	is	operated	in	the	production	environment	by	identifying	concerns	related	to	control,
managing	and	monitoring	the	system.	After	this,	Scrapy	is	analysed	from	a	performance	and
scalability	perspective	followed	by	a	description	of	the	technical	debt	build-up	over	the	years.

2	Stakeholders
Several	stakeholders	are	present	for	widely-used	projects	like	Scrapy.	Chapter	9	of
Rozanski	and	Woods[1]	defines	a	Stakeholder	as	follows:

A	stakeholder	in	the	architecture	of	a	system	is	an	individual,	team,	organization,	or
classes	thereof,	having	an	interest	in	the	realization	of	the	system.

Scrapy

379

Every	type	of	stakeholder	has	its	own	wishes,	requirements	and	influence	for	the	project.	In
the	following	sections	the	stakeholders	of	Scrapy	will	be	described	according	to	their	type,
class	and	role.

Types	and	classes	of	stakeholders

Several	types	and	classes	of	stakeholders	are	categorised	in	Chapter	9	of	Rozanski	and
Woods.	To	better	understand	the	stakeholders,	an	analysis	follows	in	Table	1	and	Table	2	on
how	they	apply	to	Scrapy.

Type Description

End-users
without
influence

Users	who	use	Scrapy	without	contributing	to	the	development	or
decision-making	process.

End-users
with
influence

Company	employees	or	professionals	using	Scrapy	in	their	business,	who
also	contribute	to	the	code	and	(architectural)	decisions	of	Scrapy	to	help
their	own	product	work	better.	Examples	of	these	companies	are
Scrapinghub	(current	maintainer),	parse.ly	and	any	other	company	found
on	the	Scrapy	companies	page.

Specialists
knowledge

Most	active	developers	and	founders	with	a	lot	of	insight	into	the	system,
which	again	would	be	employees	of	Scrapinghub.	Other	external
contributors	with	specific	knowledge	about	some	part	of	the	system	are
also	part	of	this	type.

Table	1:	Types	of	Stakeholders

Scrapy

380

https://scrapinghub.com/
https://www.parsely.com/
https://scrapy.org/companies/

Class Description

Maintainers

Most	active	(and	arguably	the	most	important)	class,	who	manages
the	evolution	of	the	system	once	operational.	For	Scrapy	this	class
consists	of	a	few	members	described	more	in	detail	below	and	they
are	the	ones	accepting	and	reviewing	pull-requests.	Notable	is	that
most	of	them	have	a	connection	to	Scrapinghub.

Developers
Construct	new	functionality,	write	tests	for	that	and	give	suggestions
on	how	to	build	the	system.	For	Scrapy	this	class	consists	of	all	the
contributing	members	on	GitHub.

Communicators

Explain	the	system	to	other	stakeholders	via	documentation	and
training	materials.	In	Scrapy	these	are	the	people	who	write	the
documentation	and	those	that	answer	questions	on	forums,	GitHub
and	StackOverflow.	Without	this	active	community	it	would	be
unclear	for	users	how	to	use	the	framework	for	their	unique	project.

Testers

Tests	the	system	to	ensure	that	it	is	suitable	for	deployment.	Scrapy
does	this	by	using	Tox	for	(unit)testing.	New	features	must	be
accompanied	by	test	cases	so	that	tests	can	easily	be	run	before
merging	a	new	code	contribution.	This	class	in	Scrapy	contains	the
reviewers	to	the	pull-requests	on	GitHub	but	also	all	the	developers
who	are	expected	to	test	their	code	before	they	make	a	pull-request.

Users Ultimately	makes	use	of	Scrapy	and	provide	requests	for	new
functionality	and	provide	bug	reports.

Assessors
Oversees	conformance	to	standards	and	legal	regulation.	This	class
consists	mostly	of	the	reviewers	and	thus	overlaps	with	the
Maintainers	class.

Acquirers
Oversees	the	procurement	of	the	product.	As	Scrapy	is	free	to	use
and	uses	open-source	free	modules,	no	entities	can	be	found
belonging	to	this	class.

Table	2:	Classes	of	Stakeholders

To	get	more	insight	into	the	Scrapy	framework	and	development,	an	analysis	of	issues	and
pull-requests	was	made.	The	results	were	that	the	most	active	commenters	and	reviewers
are	Kmike	and	Redapple	who	are	employees	of	Scrapinghub.	A	few	other	actively
contributing	members	were	also	present	by	creating	issues,	pull-requests	and	comments.
Most	of	the	issues	and	pull-requests	are	related	to	fixing	existing	code.	There	are	also
issues	related	to	fixing	technical	debt	and	implementing	new	features.

One	example	of	an	interesting	issue	is	#2568.	The	issue	is	a	discussion	about	removing	old
deprecated	code	versus	keeping	it	for	backward	compatibility.	As	discussed	more	in	the
technical	debt	section,	Scrapy	tends	to	keep	outdated	code	for	a	long	time.	From	looking	at
the	pull-requests	it	is	found	that	Scrapy	often	uses	one	reviewer	and	an	automatic	Codecov
report.	A	final	overview	of	the	stakeholders	is	displayed	in	Figure	2.

Scrapy

381

https://stackoverflow.com/questions/tagged/scrapy
https://tox.readthedocs.io/en/latest/
https://github.com/kmike
https://github.com/redapple
https://github.com/scrapy/scrapy/issues/2568
https://codecov.io/

Figure	2:	Stakeholders	overview

Integrators

From	the	analysis	the	integrators	@Kmike,	@Redapple	and	@Dangra	can	be	identified,	who
are	active	in	reviewing	and	accepting	pull-requests.	The	founders	@Pablo	Hoffman	and
Shane	Evans	also	greatly	contributed	to	the	project.	Pablo	Hoffman	is	still	the	biggest	overall
contributor	to	the	Scrapy	GitHub	but	is	not	active	anymore.	All	of	the	above	is	part	of	the
Scrapinghub	organisation	on	GitHub.

The	method	for	contributing	new	patches	to	Scrapy	can	be	found	on	the	ReadTheDocs	of
Scrapy.	They	encourage	small	patches,	require	all	tests	to	pass	and	that	new	tests	cases
are	created	for	new	features.	If	the	patch	changes	the	API,	the	documentation	changes
should	be	added	together	with	the	feature.

From	the	analysis	on	the	pull-requests	and	issues	it	is	found	that	pull-requests	are	accepted
after	one	member	has	reviewed	it.	All	pull-requests	are	checked	with	an	automatically
executed	Codecov	report.	Pull-requests	are	used	for	code	reviews	and	resolving	GitHub

Scrapy

382

https://github.com/kmike
https://github.com/redapple
https://github.com/dangra
https://github.com/pablohoffman
https://doc.scrapy.org/en/master/contributing.html#writing-patches

issues.	Discussion	on	features	or	bugs	is	done	in	issues	and	there	is	almost	always	an	issue
referenced	in	a	pull-request.	Most	of	the	pull-requests	seem	to	be	corrective	and	fixes	errors
or	other	issues.

3	Context	view
In	this	section	we	will	assume	Scrapy	to	be	a	black	box.	This	will	illustrate	the	project	in	its
context,	while	not	looking	at	the	internal	workings.	We	will	focus	on	which	environmental
factors	Scrapy	depends	on,	and	what	influence	Scrapy	has	on	its	environment.	This
formalisation	of	context	is	described	by	Rozanski	and	Woods,	Chapter	16	[1].

External	entities,	services	and	data

In	this	subsection	we	will	peek	into	the	black	box	and	look	at	how	it	handles	its
dependencies	and	what	it	does	with	other	external	entities	and	services.

Internal	systems	of	the	Scrapy	project	include	the	documentation	website,	the	user
interaction	channels	such	as	Twitter,	an	email	list	and	an	IRC	channel.	The	original
development	environment	for	Scrapy	is	Python	2	and	in	the	past	years	Scrapy	has	gained
Python	3	support.	This	increases	the	complexity	because	there	have	been	breaking	API
changes	in	Python	3	with	respect	to	Python	2.	Aside	from	this,	Scrapy	has	many
dependencies	on	external	libraries,	which	are	listed	in	Table	3.

Scrapy

383

Dependency Purpose Type

lxml Efficient	XML	and	HTML	parser Parsing

parsel HTML/XML	data	extraction	library	written	on	top	of
lxml Parsing

w3lib Multi-purpose	helper	for	dealing	with	URLs	and	web
page	encodings Parsing

cssselect Parse	CSS(3)	to	XPath1.0	expressions,	maintained
by	the	Scrapy	devs	themselves Parsing

Twisted
Asynchronous	networking	framework,	which	the
entire	Scrapy	codebase	is	built	on	top	of.	This
framework	also	allows	for	unit-testing

Networking
and
Security

cryptography
and
pyOpenSSL

Deal	with	various	network-level	security	needs
Networking,
Security
and	Testing

pyOpenSSL Python	wrapper	around	OpenSSL
Networking
and
Security

service_identity Checking	the	validity	of	certificates.
Networking
and
Security

PyDispatcher Process	signals	with	multiple	consumers	and
producers

Helper
libraries

queuelib Collection	of	persistent	(disk-based)	queues,
originally	part	of	Scrapy

Helper
libraries

six Python	2	and	3	compatibility Helper
libraries

Tox Tests	Scrapy	on	Python	versions	2.7,	3.3	-	3.7	and
Pypy Testing

Coverage Measurement	tool	for	code	coverage	of	tests Testing

Table	3:	Scrapy's	dependencies

Scrapy’s	source	code	and	documentation	are	maintained	on	GitHub.	Here,	stakeholders
also	discuss	bugs,	fixes	and	propose	new	features.	The	code	is	available	for	use	and
modification,	although	the	license	needs	to	be	included	and	the	name	Scrapy	cannot	be
freely	used	for	promotion.

Scrapy	is	(unit)tested	using	the	Tox	and	coverage	libraries,	described	in	more	detail	below.
While	Scrapy	is	written	in	Python	and	theoretically	executable	on	any	platform	that	runs
Python,	there	are	some	platform-specific	considerations.	An	example	of	this	is	#2561.	This

Scrapy

384

http://lxml.de/
https://pypi.python.org/pypi/parsel
https://pypi.python.org/pypi/w3lib
https://github.com/scrapy/cssselect
https://twistedmatrix.com/
https://cryptography.io/
https://pypi.python.org/pypi/pyOpenSSL
http://www.pyopenssl.org/en/stable/
https://www.openssl.org/
https://github.com/pyca/service_identity
http://pydispatcher.sourceforge.net/
https://github.com/scrapy/queuelib
https://github.com/benjaminp/six
https://tox.readthedocs.io/en/latest/
https://bitbucket.org/ned/coveragepy
https://tox.readthedocs.io/en/latest/
https://coverage.readthedocs.io/en/coverage-4.3.4/
https://github.com/scrapy/scrapy/pull/2561

pull-request	makes	it	evident	that	running	Scrapy	requires	a	different	setup	and
dependencies	on	an	operating	system	other	than	Linux.

There	are	many	web	crawling	frameworks,	and	defining	competition	is	a	matter	of	choosing
how	wide	to	cast	your	net.	Scrapy	is	the	most	complete	and	mature	web	crawling	framework
in	Python,	but	in	other	languages	and	for	other	scales	there	are	many	other	frameworks	[2].
Scrapy	is	intended	for	a	scale	of	crawling	from	one	site	up	to	a	couple	of	thousand,	but	not
intended	for	example	as	a	broad	web	crawler	to	use	as	a	basis	for	a	search	engine,	such	as
those	employed	by	Google,	Bing	etc.

The	users	of	Scrapy	consist	of	individuals	and	companies.	Some	of	these	companies	are
listed	on	the	Scrapy	website.

When	a	pull-request	is	submitted	to	the	Scrapy	repository,	automated	services	check	the
quality	of	the	submitted	code.	The	tests	are	run	using	the	Travis	continuous	testing	service.
If	tests	fail	in	any	of	the	enabled	Python	versions,	a	red	cross	will	appear	in	the	pull-request,
indicating	that	the	proposed	code	change	should	be	fixed.	For	measuring	the	number	of
code	lines	that	are	covered	by	the	tests,	Codecov	is	used.	This	service	is	publically
accessible	and	displays	exactly	which	lines	are	tested	and	the	percentage	of	those	lines.
This	percentage	is	the	ratio	of	test-covered	lines	and	the	total	amount	of	lines.	It	also	offers	a
very	useful	sunburst	diagram	of	the	coverage	distribution	of	the	code	structure.

An	overview	of	the	relations	Scrapy	has	with	external	entities	is	depicted	in	Figure	3

Figure	3:	External	entities

Scrapy

385

https://scrapy.org/companies/
https://travis-ci.com/
https://codecov.io/

Environmental	impact

Web	crawling	can	make	a	lot	of	requests	to	the	web.	Crawling	a	single	webpage	with	many
requests	can	result	in	a	DDoS	effect	on	the	website	and	make	it	unavailable	or	slow.
Crawling	multiple	webpages	requires	many	DNS	lookups	to	the	crawlers	DNS	server.

A	result	could	be	a	slow	network	and	a	response	from	web	servers	could	be	an	IP	block.
These	problems	can	be	avoided	by	limiting	the	amount	of	requests	to	a	server	within	a	time
limit	and	using	a	local	DNS	server.

4	Development	viewpoint
The	development	view	focuses	on	the	architecturally	significant	concerns,	as	described	by
Rozanski	and	Woods,	Chapter	20	[1].	In	this	section	we	will	describe	how	the	code	is
structured,	how	the	modules	and	their	dependencies	are	organised,	the	way	different
configurations	are	managed	and	the	standardisation	of	design	and	testing.	Additionally,	we
will	investigate	the	planning	and	design	of	the	software	development	environment	which	is
used	to	support	the	development	of	the	system.

Codeline	model

This	subsection	will	describe	how	source	code	is	organised,	tested	and	managed.

Configuration	management

Scrapy	uses	GitHub	for	version	and	configuration	management.	Different	versions	are
maintained	using	tags,	different	configurations	with	branches.	The	latter	are	generally	used
for	big	experimental	features	or	code	rewrites,	where	multiple	developers	contribute	to.	Once
they	are	sufficiently	tested	and	approved	by	the	maintainers,	they	can	be	merged	to	the
master	branch.	An	example	branch	is	asyncio.	Although	not	maintained	anymore,	it
illustrates	the	joint	work	on	the	support	of	a	fundamental	architectural	feature.	In	contrast,
small	changes	to	the	current	configuration	(e.g.	a	bugfix	or	feature)	can	be	pull-requested
directly	to	the	master	branch.

Release	process

A	release	in	Scrapy	is	defined	by	a	release	number	with	3	numbers,	A.B.C.	A	is	the	major
release	number	where	changes	are	rare	and	are	meant	for	large	changes.	Scrapy	is	still	in
version	1.X	and	A	has	only	changed	from	0	to	1	when	Scrapy	was	defined	to	be	production

Scrapy

386

https://github.com/scrapy/scrapy/tags
https://github.com/scrapy/scrapy/tree/asyncio

ready	and	with	a	stable	API.	B	is	the	release	number	for	new	features	and	updates	which
might	break	backward	compatibility.	C	is	only	for	bugfix	updates.

Every	new	Scrapy	release	is	accompanied	with	release	notes	explaining	new	features,	bug
fixes,	documentation	changes	and	dependency	changes.

Releases	are	handled	on	GitHub	using	the	release	system	and	tags.	The	latest	release	1.2.2
was	released	on	dec	6	2016	and	there	are	currently	tags	for	1.2.3	and	1.3.2	on	GitHub.

Documentation	updates	are	required	to	be	created	by	the	developer	with	the	pull-request.
Other	documentation	changes	are	handled	with	the	same	process	as	a	code	update	with
pull-request	and	issues.

Test	build	and	integration	approach

When	a	contributor	adds	a	new	feature	or	fixes	a	bug,	it	is	required	to	write	tests	as	specified
in	the	documentation.	They	should	cover	the	added	or	changed	lines	and	they	should	pass.

The	source	code	is	automatically	tested	with	unit-tests	using	the	Twisted	unit-testing
framework	[3]	in	combination	with	Tox.	Due	to	the	multiple	Python	versions	(2.7	and	3.3	-
3.6)	that	are	supported,	the	tests	are	run	on	each	of	these	versions.	To	ensure	that	all	the
tests	pass	on	each	environment	before	pushing	code	to	the	master	branch,	Travis	is	used.

Analogously,	coverage.py	and	Codecov	ensure	that	the	number	of	tested	code	lines	is
sufficiently	high.	The	dropping	of	coverage	for	a	new	feature	could	indicate	that	it	is	poorly
tested,	which	is	why	this	is	automatically	displayed	in	the	corresponding	pull-request.

Code	structure

We	will	discuss	the	structure	of	the	code	by	describing	the	folders	inside	the	Scrapy	master
branch	for	version	1.3.2.

The	artwork	directory	contains	the	Scrapy	logo	and	fonts	used	for	that	logo.	In	the	debian
directory	are	several	files	responsible	for	packaging	Scrapy	into	a	Linux	executable.	The
docs	folder	contain	the	markdown	sources	for	the	offical	Scrapy	documentation.
Miscellaneous	scripts	for	i.e.	bash	completion	and	coverage	report	can	be	found	in	the
extras	folder.	Scrapy	Enhancement	Proposals	(SEP)	are	placed	in	the	sep	directory.	These
markdown	files	are	mostly	old	feature	proposals.	Automated	tests	are	placed	in	the	aptly
named	tests	folder.	Inside,	there	are	a	few	folders	for	keys,	sample	data	and	with	test	cases
for	a	few	modules.	The	main	source	code	is	all	located	in	the	Scrapy	folder.	Most	modules
are	placed	into	subdirectories	which	are	listed	below.	All	of	the	smaller	modules	are	placed

Scrapy

387

https://doc.scrapy.org/en/master/contributing.html#writing-tests
https://tox.readthedocs.io/en/latest/
https://travis-ci.com/
https://coverage.readthedocs.io/en/coverage-4.3.4/
https://codecov.io/
https://github.com/scrapy/scrapy/tree/1.3.2
https://github.com/scrapy/scrapy/tree/1.3.2/artwork
https://github.com/scrapy/scrapy/tree/1.3.2/debian
https://github.com/scrapy/scrapy/tree/1.3.2/docs
https://doc.scrapy.org/en/1.3/
https://github.com/scrapy/scrapy/tree/1.3.2/extras
https://github.com/scrapy/scrapy/tree/1.3.2/sep
https://github.com/scrapy/scrapy/tree/1.3.2/tests
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy

directly	into	the		scrapy		folder.	There	are	also	old	files	from	moved	modules.	For	example
	spider.py	,	the	spider	code	is	now	in	a	directory	but	the	spider.py	still	exists	in	the	top	folder
with	deprecated	warning	code.

Inside	of	the	source	code	directory,	there	are	three	deprecated	modules:	contrib,	contrib_exp
and	xlib.	They	are	still	there	for	backward	compatibility.	The	contrib	form		contrib		is	now
placed	in	the	extensions	module.

The	core	module	is	for	several	essential	sub-modules;	the	Scrapy	engine,	scheduler,
scraper,	spider	middleware	and	downloader.	Another	integral	part	of	Scrapy	are	the	spiders.

Creating	a	Scrapy	project	requires	one	to	implement	a	spider	to	define	which	webpages
should	be	crawled	and	what	data	should	be	extracted,	as	explained	in	the	documentation.
The	data	extraction	is	done	by	selecting	a	part	of	the	HTML	with	either	css	or	XPath
expressions.	The	implementation	for	this	is	in	the	selector	module	(docs).

Extracting	links	is	a	very	common	use-case,	which	is	why	there	is	the	linkextractors	module
(docs).

Crawling	website's	requires	HTTP	functionality,	which	is	mostly	found	in	the	http	module.
The	HTTP	requests	and	responses	can	be	processed	for	e.g.	caching	and	compression
purposes	with	the	downloadmiddlewares	module	(docs).	The	spidermiddlewares	also	offers
similar	functionality	but	for	the	output	and	input	of	the	spiders	(docs).

The	extracted	data	of	the	spiders	is	put	in	containers	called	items	that	are	managed	by	the
loader.	To	extract	files	and	images	from	these	items,	a	pipelines	can	be	used.	The	pipelines
implement	features	to	avoid	re-downloading	files	and	outputting	extracted	data.

The	contracts	feature	is	used	for	testing	spiders	(docs).	Scrapy	can	be	controlled	from	the
command-line	with	the	the	commands	module	(docs).	However,	we	will	see	in	the	Testing
Debt	section,	this	directory	is	likely	to	be	removed	in	the	near	future.	The	settings	contains
the	default	settings	that	can	be	overridden	in	a	Scrapy	project.

A	big	module	is	utils.	It	contains	different	utilities.	For	example,	help	to	deprecate	functions
or	helper	functions	for	HTTP	objects.

Module	organisation

Large	systems	are	often	organised	into	modules	to	be	able	to	group	related	code.	Modules
help	with	arranging	dependencies	and	lets	developers	work	with	modules	without	affecting
other	modules	and	causing	unexpected	errors	or	changes	to	the	system.

We	have	identified	five	module	categories	for	Scrapy;	the	engine,	downloader,	spiders,	item
processing	and	user	interface.	The	modules	for	each	category	and	their	high-level
dependencies	can	be	seen	in	Figure	4.	The	modules	and	their	dependencies	are	listed	in

Scrapy

388

https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/contrib
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/contrib_exp
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/xlib
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/extensions
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/core
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/spiders
https://doc.scrapy.org/en/1.3/topics/spiders.html
https://www.w3.org/TR/selectors/
https://www.w3.org/TR/xpath/
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/selector
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/linkextractors
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/linkextractors
https://doc.scrapy.org/en/1.3/topics/link-extractors.html
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/http
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/downloadermiddlewares
https://doc.scrapy.org/en/1.3/topics/downloader-middleware.html
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/spidermiddlewares
https://doc.scrapy.org/en/1.3/topics/spider-middleware.html
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/loader
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/pipelines
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/contracts
https://doc.scrapy.org/en/1.3/topics/contracts.html
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/commands
https://doc.scrapy.org/en/1.3/topics/commands.html
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/settings
https://github.com/scrapy/scrapy/tree/1.3.2/scrapy/utils

Table	4	and	Table	5.	The	inter-module	dependencies	have	been	omitted	for	clarity.

Figure	4:	Scrapy	dependency	diagram

Standardisation	of	design

Standardisation	of	design	is	important	since	systems	are	developed	by	a	team.	A	coherent
design	will	benefit	maintainability	and	reliability	since	it	will	be	easier	to	understand	or
compare	different	parts	of	the	system.	The	design	can	be	standardised	by	using	design
patterns	or	common	software.

Some	standardisations	made	by	Scrapy	are	to	encourage	the	use	of	PEP	8	coding	style,	a
documentation	policy.	Even	though	the	PEP	8	coding	style	is	encouraged	it	is	not	heavily
enforced	and	the	code	contains	violations.	Some	examples	are	#2429,	#2147	and	#2368.

Common	design	model

The	common	design	model	lays	out	some	common	practices	used	throughout	the	project	to
create	coherence	and	reduce	duplication.

Logging

Scrapy

389

https://www.python.org/dev/peps/pep-0008/
https://github.com/scrapy/scrapy/pull/2429
https://github.com/scrapy/scrapy/issues/2144
https://github.com/scrapy/scrapy/pull/2368

The	logging	has	five	different	levels:	critical	and	regular	errors,	warning,	info	and	debugging
messages,	in	decreasing	order	of	severity.	Messages	are	written	with	a	short	description	of
what	happened	plus	a	passed	object	to	show	the	state.	Scrapy	uses	Python’s	own	logging.
Previously,	Scrapy	used	its	own	logging	implementation.	According	to	the	documentation,
this	has	been	deprecated	in	favour	of	explicit	calls	to	the	Python	standard	logging,	but	parts
remain	for	backward	compatibility.

External	libraries

External	libraries	should	be	imported	at	the	top	of	the	file,	to	adhere	to	the	PEP	8	standard.
When	importing	internal	classes,	only	the	used	parts	are	imported.	There	are	exceptions	to
this	rule,	one	of	which	is	the	importing	of	optional	libraries.	In	this	case	the	import	is	not
guaranteed	to	work,	so	this	has	to	be	dealt	with.	An	example	of	this	is	in	httpcache.py,	where
the		leveldb		import	is	placed	in	the	class	that	uses	it,	to	avoid	exceptions	from	being
thrown.

Interfaces

Scrapy	interfaces	with	spiders	through	numerically	ordered	layers	of	middleware	which	can
be	customised	or	removed	at	will	through	specification	in	a	middlewares	dictionary.	Each
middleware	layer	needs	to	implement	a	spider	input,	output,	exception	and	startup	method.
Similarly,	Scrapy	interfaces	with	a	downloader	which	does	the	actual	HTTP	requests	through
layers	of	middleware.	These	downloader	middleware	layers	need	to	implement	request,
response	and	exception	methods.	Scrapy	also	allows	for	extensions	to	override	the	default
behaviour.

Scrapy

390

https://docs.python.org/2/library/logging.html
https://doc.scrapy.org/en/master/topics/logging.html
https://github.com/scrapy/scrapy/blob/master/scrapy/extensions/httpcache.py#L348

Module Dependencies

commands utils,	http,	exceptions,	item,	settings,	linkextractors,
contracts,	shell

contracts utils,	http,	exceptions,	item

core utils,	http,	exceptions,	item,	responsetypes,	middleware

downloadermiddlewares utils,	http,	exceptions,	responsetypes,	core

extensions utils,	http,	exceptions,	responsetypes,	mail

http utils,	exceptions,	link

linkextractors utils,	exceptions,	link

loader utils,	item

pipelines utils,	http,	exceptions,	settings,	selector,	middleware

selector utils,	http,	exceptions

settings utils,	exceptions

spidermiddlewares utils,	http,	exceptions

spiders utils,	http,	exceptions,	selector

utils http,	exceptions,	item,	settings,	selector,	spiders

Table	4:	Scrapy	modules

Scrapy

391

Module Dependencies

cmdline utils,	settings,	commands,	crawler

crawler utils,	settings,	core,	extension,	resolver,	interfaces,	signalmanager

dupefilters utils

exceptions

exporters utils,	exceptions,	item

interfaces

extensions utils,	middleware

item utils

link utils

logformatter utils

mail utils

middleware utils,	exceptions

resolver utils

responsetypes utils,	http

shell utils,	http,	exceptions,	item,	settings,	spiders,	crawler

signalmanager utils

spiderloader utils,	interfaces

statscollectors

Table	5:	Scrapy	weak	modules	(.py		files	living	directly	in	the		scrapy		package)

5	Operational	viewpoint
The	operational	viewpoint	will	describe	how	Scrapy	is	operated	in	the	production
environment.	Here	we	will	identify	how	Scrapy	handles	concerns	related	to	control,	manage
and	monitor	the	system.	According	to	Rozanski	and	Woods	Chapter	22	[1]	the	operational
viewpoint	is	often	not	completely	designed	until	it	is	needed	and	the	system	is	already
constructed.	This	is	also	the	case	for	Scrapy,	the	installation	methods,	logging	and	settings
have	changed	during	development.

Installation

Scrapy

392

One	operational	concern	is	installing	and	upgrading	the	system	on	users	hardware	and	how
to	configure	the	installation.

Scrapy	is	included	in	the	PyPi	repository	for	Python	packages.	This	makes	it	possible	to
install,	upgrade	or	uninstall	using	pip.	The	recommended	method	to	install	Scrapy	is	to	use	a
virtual	environment	to	avoid	conflicts	with	system	packages.	On	Windows	Anaconda	can	be
used	for	this	but	it	only	works	for	Python	2.

Live	monitoring

Scrapy	can	be	controlled	by	the	command-line	tools.	It	lets	the	user	create,	edit	and	start
projects.	The	tools	can	also	be	used	to	run	different	Scrapy	features	without	a	project	such
as	scraping	a	single	webpage.

To	monitor	the	system	during	runtime	or	production,	Scrapy	uses	logging,	described	more	in
Logging.	This	is	also	used	to	capture	performance	metrics.

Support

Scrapy	has	two	support	groups,	developers	and	users	of	the	framework.	Developers	mostly
have	problems	with	understanding	the	code	or	tips	on	how	to	solve	programming	problems.
The	developers	get	support	from	each	other	on	GitHub.	Users	of	the	framework	can	get
support	from	StackOverflow	or	other	online	communities.	The	users	often	have	problems
with	installing	Scrapy,	connection	problems	and	implementation	problems.

Operation	in	third-party	environments

Scrapy	may	be	forked	for	any	use	as	long	as	the	name	Scrapy	is	not	used	without	consent,
as	can	be	seen	in	Figure	5	which	shows	the	licence	information	on	GitHub.

Figure	5:	Licence	of	Scrapy.

6	Performance	and	scalability	perspective
Scrapy	is	a	web	crawling	framework,	which	generally	means	that	a	lot	of	HTTP	requests
need	to	be	made	when	it	runs.	The	big	issue	with	that,	is	that	each	request	takes	a	while	to
get	a	response.	What	also	could	happen	is	that	a	response	won't	be	received,	which	will

Scrapy

393

https://pypi.python.org/pypi/Scrapy
https://pypi.python.org/pypi/pip
https://pypi.python.org/pypi/virtualenv
https://stackoverflow.com/questions/tagged/scrapy

take	even	longer.

With	this	thought	in	mind,	the	Scrapy	developers	decided	to	build	the	framework	on	top	of
the	Twisted	framework	[5],	to	be	able	to	handle	HTTP	requests	in	an	asynchronous	manner,
without	the	need	to	write	complex	code.

Twisted	is	a	rather	heavy-weight	networking	framework	which	has	been	around	since	2002.
It	is	written	in	Python	and	heavily	relies	on	the	event-driven	programming	paradigm	[4].	That
means	that	one	can	request	a	webpage,	specify	the	callback	functions	that	should	be	called
when	it	completes	or	throws	an	error,	and	then	run	other	code	while	Twisted	is	making	the
request.	This	requires	no	threads	or	processes	to	be	spawned,	as	it	can	run	in	one	thread,
while	being	non-blocking.	That	does	not	mean	that	Twisted	requires	requests	to	be	made	in
one	thread	only.	It	offers	threading	facilities	to	run	the	requests	in	separate	threads	without
exposing	the	user	to	the	underlying	complexity.	Twisted	is	ideal	for	Scrapy,	as	it	revolves
around	making	many	requests,	processing	the	results,	and	handling	errors	gracefully.	This
choice	has	made	Scrapy	very	performant.

Scrapy	offers	utilities	to	control	the	amount	of	various	performance-related	settings.	This	is
done	by	specifying	parameters	in	the	project	settings	file.	These	settings	involve	specifying
download	delays,	timeout	durations,	cache	sizes,	whether	and	how	often	to	retry	a	failed
request,	threadpool	sizes	etc.	This	way	the	user	has	full	control	over	the	Scrapy
performance	and	it	can	be	fine-tuned	to	meet	their	requirements.

Because	Scrapy	is	able	to	handle	a	lot	of	requests,	scrape	the	response	pages	and	save	the
data,	there	is	the	risk	of	memory	issues.	One	way	this	is	handled,	is	by	using	the		queuelib	
library	[5].	It	offers	a	way	to	create	several	types	of	queues	on	the	disk	and	is	optimised	for
speed.	This	prevents	e.g.	HTML	pages	that	have	yet	to	be	scraped	to	overflow	the	memory,
as	it	is	written	to	disk.

As	memory	leaks	are	often	the	cause	of	bad	performance,	Scrapy	has	dedicated	several
utilities	and	documentation	to	debugging	these	leaks	[6].	In	the	documentation	there	is	also
a	page	on	how	to	measure	the	performance	of	a	spider	using	the	built-in	benchmarking	tool
[7].

When	making	a	lot	of	requests,	especially	to	multiple	websites,	several	external	factors	can
limit	performance.	For	example	DNS	servers	or	data	throughput.

There	are	many	more	measures	taken	to	ensure	good	performance	and	scalabity	[8],	[9].
For	the	sake	of	brevity,	not	all	of	them	can	be	discussed.

7	Technical	debt
Technical	debt	can	be	defined	as	[14]	:

Scrapy

394

a	concept	in	programming	that	reflects	the	extra	development	work	that	arises	when
code	that	is	easy	to	implement	in	the	short	run	is	used	instead	of	applying	the	best
overall	solution.

A	static	analysis,	analysis	on	the	use	of	SOLID	principles,	testing	debt	and	the	evolution	of
technical	debt	on	Scrapy	is	described	in	this	section.

Static	analysis

To	identify	the	technical	debt	we	used	Pylint	which	is	a	static	analysis	tool	for	Python.	Pylint
tests	the	source	code	for	coding	standard	PEP	8,	error	detection	related	to	imports	and
interfaces	and	detecting	duplicated	code.

The	result	of	running	Pylint	is	lots	of	errors	and	warnings.	Most	of	the	errors	are	due	to
decisions	taken	by	the	developers	and	some	are	mistakes	or	actual	bad	coding.	The	most
common	errors	in	the	Scrapy	code	are	related	to	docstrings,	imports	or	PEP	8	compatibility
as	can	be	seen	in	Figure	6.

Figure	6:	Results	of	Pylint

Scrapy	does	not	use	docstrings	for	modules	which	are	described	in	the	documentation.	It	is
good	to	not	duplicate	the	information,	also	known	as	the	DRY	(Don't	Repeat	Youself)
principle	[10],	but	this	makes	development	harder	since	docstrings	are	integrated	into	most
IDE's	to	help	code	faster	(introspection).	There	are	also	missing	docstrings	where	they	are
recommended,	such	as	the	'utils'	module	which	has	78	missing	docstring	messages	from
Pylint.

The	results	also	contain	a	lot	of	import	warnings,	some	due	to	convenience	for	the
developers.	By	having	a	lot	of	imports	in	the		scrapy.__init__		file,	Scrapy	modules	can	be
imported	by	using		import	scrapy.Module		instead	of		import	scrapy.package.Class	.	Other

Scrapy

395

https://www.pylint.org/
https://www.python.org/dev/peps/pep-0008/

often	occurring	warnings	in	the	Pylint	report	are	PEP	8	violations	related	to	code	formatting
and	naming	conventions,	some	lazy	exception	handling	and	a	few	'FIXME's.	These	are
errors	with	mostly	low	impact	on	the	system	and	are	not	likely	to	cause	any	problems	but	it	is
always	good	to	keep	the	code	clean	for	easier	future	changes.

The	Scrapy	framework	for	item	pipelines,	DownloaderMiddleware	and	Spider	middleware
have	methods	that	can	be	implemented	by	the	user,	but	the	methods	are	only	documented
in	the	documentation.	This	could	be	implemented	as	abstract	classes	to	inform	the	user	if
they	forgot	to	implement	a	function.	The	abstract	classes	also	help	the	user	to	see	which
methods	they	can	implement	and	the	interface	will	make	it	more	clear	what	type	of
middleware	the	class	is.	The	hard	part	of	designing	the	abstract	classes	is	that	all	methods
are	optional	and	it	has	to	be	compatible	with	current	code.

Scrapy´s	modules	and	dependencies	are	a	bit	messy	and	from	the	dependency	tables
(Table	4	and	Table	5)	we	can	see	that	there	are	modules	with	a	lot	of	dependencies.	This
leads	to	tight	coupling	and	we	can	find	classes	in	the	utils	modules	with	very	few	usages	in
the	code,		ftp.py	,		mulipart.py	,		osssignal.py		which	could	be	moved	to	other	modules	to
reduce	the	dependencies	in	the	utils	module.

Discussions	about	technical	debt

At	the	time	of	writing	there	are	9	TODO's	and	4	FIXME's	in	the	source	code.	In	the	Scrapy
issues	there	are	numerous	discussions	about	fixing	the	technical	debt.	There	is	for	example
issue	#2144	about	making	the	Scrapy	code	PEP	8	compliant.	However	doing	this	would
require	a	lot	of	code	changes	and	all	attempts	have	been	rejected	so	far,	as	it	resulted	in	too
many	merge	conflicts.

There	is	also	issue	#8	that	involves	refactoring	code.	It	has	been	open	since	2011	but	it
appears	that	the	developers	got	inspiration	on	how	to	fix	it	after	the	Django	1.10	release	on
august	2016.

Other	issues	involve	refactoring	as	a	solution,	but	are	all	aimed	at	improving	functionality.
Following	this	mindset,	we	also	created	an	issue	#2633	that	will	improve	documentation	and
also	cleans	up	the	code,	hence	paying	technical	debt.

The	number	of	issues	that	focusses	solely	on	technical	debt,	in	contrast	with	the	number	of
developer	notes	in	the	code,	indicates	that	a	lot	of	technical	debt	issues	are	in	the	source
code.	This	is	not	a	good	practice	since	they	have	the	tendency	to	be	overlooked	and
therefore	will	probably	remain	in	the	code	for	a	long	time.

Scrapy	has	been	around	since	2009,	which	is	a	long	time	for	a	framework.	This	also	means
that	there	have	been	a	lot	of	changes	and	refactors	to	the	code.	Because	of	this,	there	are	a
lot	of	deprecated	modules	and	files	still	present.	The	reason	that	they	have	not	yet	been

Scrapy

396

https://github.com/scrapy/scrapy/issues
https://github.com/scrapy/scrapy/issues/2144
https://github.com/scrapy/scrapy/issues/8
https://github.com/scrapy/scrapy/issues/2633

removed	is	mostly	for	the	sake	of	backward	compatibility,	according	to	the	developers.

To	give	an	example,	the		contrib		module	has	been	fully	deprecated	since	version	1.0.0,
which	was	released	in	2015.	In	Februari	2017	(version	1.3.2)	a	discussion	started	(#2568)
on	finally	removing	the	code.	In	this	issue	it	was	decided	to	document	the	deprecation	policy
to	avoid	deprecated	code	for	living	too	long.	This	will	in	turn	keep	the	code	cleaner,	hence
paying	technical	debt.

SOLID	principles

Scrapy	does	not	often	violate	the	SOLID	principles	[11],	which	is	a	mnemonic	acronym	for
'Single	responsibility,	Open-closed,	Liskov	substitution,	Interface	segregation	and
Dependency	inversion'.	These	five	principles	or	guidelines,	when	applied	together,	will	make
it	more	likely	that	programmers	create	a	system	that	is	easily	maintainable.

The	Scrapy	code	does	not	often	use	deep	levels	of	abstractions,	resulting	in	a	low	code
complexity.	On	the	other	hand	this	lack	of	abstractions	can	create	some	confusion	for
developers.	As	has	been	explained	before,	the		item	pipelines	,		DownloaderMiddlewares	,
	SpiderMiddlewares		but	also	the		Extensions		can	all	be	abstracted.	Each	of	the	classes	in
these	modules	implement	common	optional	methods	or	functionality.	These	could	be
abstracted	in	a	common	interface.	We	contributed	to	the	Scrapy	project	by	implementing	this
change.

Non-intentional	SOLID	violations	are	hard	to	find	as	a	lot	of	the	principles	are	actively	used,
though	not	specifically	discussed	in	the	issues	or	pull-requests.	Examples	of	where	the
principles	are	implemented	can	easily	be	found.	The	contracts	which	are	offered	for	spiders
make	sure	that	the	newly	added	spiders	work	correctly,	can	be	compared	with	the	Liskov
Substitution	Principle.	Any	spider	following	the	contract	can	be	replaced	with	any	other
spider	as	they	all	behave	the	same.	The	Single	Responsibility	Principle	is	largely	adhered	to
with	every	scrapy	functionality	having	its	own	class	which	becomes	immediately	clear	from
the	folder	structure.	The	modules	in	the	DownloaderMiddlewares	are	all	separated	by
different	functionality	(http	authentication,	compression,	proxies,	cookies	etc.)	which	means
that	the	Interface	Segregation	Principle	with	many	client-specific	interfaces	is	widely	used.

Testing	debt

Scrapy	is	overall	a	very	well	tested	framework.	The	overall	testing	code	coverage,	according
to	Codecov,	is	83.57%	for	version	1.3.3.	In	this	section	we	will	focus	on	the	16.43%	of	the
code	that	is	not	covered	by	the	tests.

Scrapy

397

https://github.com/scrapy/scrapy/tree/1.0.0
https://github.com/scrapy/scrapy/tree/1.3.2
https://github.com/scrapy/scrapy/issues/2568
https://doc.scrapy.org/en/latest/topics/contracts.html
https://codecov.io/gh/scrapy/scrapy/commit/b48a0bbfb704289d3f2abe4a1705e2940c9cd569
https://github.com/scrapy/scrapy/tree/1.3.3

Module	/	file Coverage Reason

	commands	 63% The		Command		classes	are	not	properly	tested	if
they	require	a	project.

	cmdline.py	 66% Print	functions	aren't	tested.

	shell.py	 68% Interactive	shell	detection	is	untested	(hard	to
test).	Print	functions	aren't	tested.

	contracts.__init__.py	 67%
Some	bad	weather	cases	are	untested	(easy
to	test).		Commands.add_pre_hook		is	untested
(easy	to	test).

	pipelines.files.py	 65% Amazon	S3	storage	functionality	is	badly
tested.

	extensions	 76% A	lot	of	untested	low-level	(memory)	debugging
utilities	(very	hard	to	test).

	mail.py	 76% Code	returns	before	the	untested	code	if
debug	is	on.	(hard	to	test).

Table	6:	Modules	and	files	with	low	coverage

To	get	a	good	overview	of	where	the	testing	debt	hides,	we	can	employ	Codecov	to	see
which	modules	and	files	have	low	coverage.	In	Table	6	we	have	compiled	an	overview	of	the
modules	and	files	with	low	coverage	accompanied	by	the	reasons	for	this.

What	immediately	becomes	clear	from	Table	6	is	that	the	command-line	interface	related
code	is	generally	poorly	tested.	The	main	reason	for	this	is	that	it	contains	a	proportional
amount	of	functions	dedicated	to	printing	instructions.	Although	it	is	not	hard	to	test	print
statements	in	Python,	it	could	be	speculated	that	the	developers	did	not	feel	the	need	to	test
these	as	they	are	not	very	complex	and	by	looking	at	the	code,	it	is	clear	that	they	work	as
intended.	Another	reason	for	the	low	testing	coverage	of	the		commands		module,	is	that	the
command-line	command	that	requires	a	functional	Scrapy	project	are	mostly	untested.
These	project-only	commands	[docs]	can	be	a	hassle	to	test	because	mocking	an	entire
project,	or	creating	a	project	that	reflects	all	(or	most)	possible	outcomes	of	running	a
command,	is	hard	to	do.

The		contracts		module	has	low	coverage	as	well.	The	reason	for	this	is	rumours	that	the
module	might	be	moved	and	the	code	will	probably	change	[12].

There	is	some	Amazon	S3	storage	functionality	that	is	untested.	However	the	tests	are
present,	but	turned	off	on	Travis	because	they	require	a	real	S3	storage.	At	the	moment	of
writing,	there	is	a	discussion	going	in	#1790	on	how	to	run	these	tests	in	Travis	as	well.

Evolution	of	technical	debt

Scrapy

398

https://codecov.io/gh/scrapy/scrapy/tree/d3f8f3d38a2b2139fc193d39de8ced05993fd2c6/scrapy/commands
https://codecov.io/gh/scrapy/scrapy/src/master/scrapy/cmdline.py
https://codecov.io/gh/scrapy/scrapy/src/master/scrapy/shell.py
https://codecov.io/gh/scrapy/scrapy/src/master/scrapy/contracts/__init__.py
https://codecov.io/gh/scrapy/scrapy/src/master/scrapy/pipelines/files.py
https://codecov.io/gh/scrapy/scrapy/tree/master/scrapy/extensions
https://codecov.io/gh/scrapy/scrapy/src/master/scrapy/mail.py
https://codecov.io/gh/scrapy/scrapy/tree/b48a0bbfb704289d3f2abe4a1705e2940c9cd569/scrapy
https://github.com/scrapy/scrapy/issues/1790

Most	issues	are	picked	up	quite	fast	and	find	their	way	into	master	in	a	relatively	short	time.
Removing	code	which	is	deprecated,	unused	or	misplaced	is	not	one	of	the	top	priorities.
The	earliest	available	Codecov	report	on	the	Scrapy	GitHub	from	19-10-2015	shows	a	total
coverage	of	82.64%.	At	2-4-2017	this	has	improved	to	a	total	coverage	of	84.66%,	showing
a	slight	increase	in	1.5	years.

There	is	no	official	policy	which	determines	when	a	deprecated	function	gets	deleted	from
the	codebase.	As	mentioned	in	issue	#2568,	developers	sometimes	experience	that	coding
is	taking	longer	than	needed	or	that	mistakes	are	being	made	because	of	the	existing
technical	debt.	An	example	of	this	are	almost-alike	imports	(e.g.		scrapy.dupefilter		and
	scrapy.dupefilters)	of	which	one	is	deprecated	but	still	shows	up	in	the	IDE	autocomplete
of	the	developer.

The	same	issue	mentions	the	currently	unwritten	policy	on	removing	deprecated	code:

It	is	OK	to	deprecate	something	in	major	release	X	and	remove	it	in	major	release	X+1
(given	that	they	separated	by	at	least	half	year	or	a	year),	but	if	the	deprecated	path
doesn't	hurt	it	can	be	kept	for	much	longer.

-	@Kmike	on	Feb	28,	2017

This	general	strategy	can	indeed	be	found	when	looking	at	earlier	pull-requests,	where
backward	compatibility	is	often	preferred	compared	to	code	cleanups.	This	is	also	discussed
in	issue	#1096	as	well	as	the	strategy	for	cleanups	which	happen	just	before	new	major
releases.	As	there	are	not	many	major	version	releases	this	does	not	happen	too	often.
There	are	only	23	pull-requests	(of	a	total	of	1290)	related	to	cleanups,	which	started
appearing	from	around	2013	increasing	in	activity	as	time	goes	on.	The	average	time	for
these	changes	to	make	it	to	the	master	vary	from	a	month	to	a	year.

8	Conclusion
Scrapy	is	a	widely	used	and	ever-evolving	scraping	framework.	It	has	a	vast	community	of
users	and	new	features	and	bugfixes	appear	regularly.

In	this	chapter	we	have	analysed	Scrapy	from	different	viewpoints	and	perspectives.	We
have	found	that	due	to	the	long	lifetime	of	the	project,	the	software	architecture	has	become
incoherent.	This	is	gradually	improving,	although	at	a	slow	pace.

We	are	confident	that	Scrapy	will	continue	to	be	the	de-facto	standard	for	scraping
webpages	using	Python.

9	References

Scrapy

399

https://github.com/scrapy/scrapy/issues/2568
https://github.com/kmike
https://github.com/scrapy/scrapy/issues/1096

1.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with
Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.

2.	 https://github.com/BruceDone/awesome-crawler
3.	 https://twistedmatrix.com
4.	 https://en.wikipedia.org/wiki/Event-driven_programming
5.	 https://pypi.python.org/pypi/queuelib
6.	 https://doc.scrapy.org/en/master/topics/leaks.html
7.	 https://doc.scrapy.org/en/master/topics/benchmarking.html
8.	 https://doc.scrapy.org/en/master/
9.	 https://github.com/scrapy/scrapy
10.	 https://en.wikipedia.org/wiki/Don't_repeat_yourself)
11.	 https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
12.	 https://github.com/scrapy/scrapy/issues/1918
13.	 https://doc.scrapy.org/en/0.10.3/topics/architecture.html
14.	 https://en.wikipedia.org/wiki/Technical_debt

Scrapy

400

https://github.com/BruceDone/awesome-crawler
https://twistedmatrix.com
https://en.wikipedia.org/wiki/Event-driven_programming
https://pypi.python.org/pypi/queuelib
https://doc.scrapy.org/en/master/topics/leaks.html
https://doc.scrapy.org/en/master/topics/benchmarking.html
https://doc.scrapy.org/en/master/
https://github.com/scrapy/scrapy
https://en.wikipedia.org/wiki/Don't_repeat_yourself
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design
https://github.com/scrapy/scrapy/issues/1918
https://doc.scrapy.org/en/0.10.3/topics/architecture.html
https://en.wikipedia.org/wiki/Technical_debt

Syncthing:	Open	Source	Continuous	File
Synchronisation
By	Jayachithra	Kumar,	Lidia	Fernandez,	Robert	Carosi,	Sacheendra	Talluri

Abstract
Syncthing	is	an	application	that	enables	users	to	synchronise	files	across	different	devices.
The	application	is	actively	maintained	and	developed	by	a	relatively	small	group	of
developers.	The	foci	of	the	application	are	preventing	data	loss,	security	from	attackers	and
ease	of	use.	Through	our	analysis,	we	found	that	the	simplicity	of	the	architecture,	consisting
of	three	major	layers,	allows	for	easy	addition	of	features	while	still	maintaining	the
robustness	of	the	core	layer	consisting	of	the	synchronisation	logic.	In	general,	we	observe
that	Syncthing	is	a	well	engineered	project	without	glaring	technical	holes	or	major	debt.

Table	of	Content
Introduction
Views

Stakeholders	View
Context	View
Information	Viewpoint

Models
Module	Structure	Model
Common	Design	Model
Codeline	Model
Usability	Perspective

Technical	Debt

Syncthing

401

Identifying	Technical	Debt
Identifying	Testing	Debt
Evolution	of	Technical	Debt

Conclusion
References

Chapter	-	Syncthing

Introduction
Syncthing	is	a	software	application	used	for	synchronising	files	across	devices.	As	its	major
purpose	is	reliable	transport	of	information,	we	considered	it	to	be	a	software	worth	studying.
In	our	study,	we	document	and	analyse	the	engineering	process	of	Syncthing.	We	hope	it
will	provide	the	readers	a	resource	to	look	at	while	building	a	software	of	similar	nature.	That
is,	software	which	deals	with	user	data	of	utmost	importance	and	is	responsible	for	tasks
critical	for	the	safety	of	the	data	such	as	backups.

Our	analysis	consists	primarily	of	three	parts.	The	first	part	deals	with	the	different	views	of
the	system.	The	views	give	an	understanding	of	the	socio-technical	environment	the	system
operates	in.	They	also	give	an	understanding	of	the	basic	principles	the	system	is	organised
around.	The	second	part	gives	a	more	technical	description	of	the	system.	It	consists	of
different	models	and	a	perspective	which	show	the	technical	design	of	the	system	and	the
decisions	that	went	into	that	design.	The	last	section	is	about	technical	debt.	Any	software
which	has	been	around	for	sometime	builds	up	technical	debt.	How	the	debt	is	managed	is
what	makes	this	section	interesting.

Views

Stakeholder	View

Users	use	Syncthing	to	synchronise	their	files	across	different	devices.	We	believe	it	has	a
significant	amount	of	users.	We	extrapolate	this	from	the	data	found	here[1]	and	also	from
the	number	of	stars	on	the	Github	repository.	When	last	checked,	Syncthing	had	22919	daily
active	users	with	reporting	enabled	and	15106	stars.

Developers	contribute	code	to	the	project.	The	most	active	developers	to	the	project	are
@calmh	and	@AudriusButkevicius.	@calmh	is	also	the	founder.	Occasionally,	other
developers	contribute	big	features	but	are	not	really	active	after	that.	The	whole	list	of
current	developers	can	be	found	in	this	file[3].

Syncthing

402

https://github.com/calmh
https://github.com/AudriusButkevicius
https://github.com/calmh

@calmh	and	@AudriusButkevicius	also	have	the	maintainer	status.	So,	they	are
responsible	for	the	direction	the	software	is	going	to	evolve	in.	They	would	also	be	the	de
facto	assessors	and	integrators	as	they	are	responsible	for	any	pull	request	being	merged
and	the	overall	quality.	Specifically,	the	challenges	faced	by	the	integrators	and	how	they
assess	the	pull	requests	is	covered	in	the		Contributions		section	of	the		Codeline	Model	.

The	testers	category	is	an	interesting	category	as	the	developers	themselves	are	the
testers	in	most	cases.	The	maintainers	don't	accept	code	without	any	associated	tests[4].
There	are	also	a	group	of	beta	testers	composed	of	users	and	developers.	The	list	can	be
found	here[5].

The	communicators	category	primarily	consists	of	the	2	maintainers	and	a	user	named
@rumpelsepp.	They	maintain	the	documentation	up-to-date.	There	are	also	several
others[6]	who	have	contributed	to	the	documentation	who	can	be	grouped	under	this
category.

The	support	staff	consists	of	people	who	answer	questions	in	the	support	section	of	the
forum	and	on	the	IRC	channel.	It	consists	of	the	maintainers	and	a	few	others	active	on	the
forum[7].	Other	members	of	the	community,	like	users,	help	each	other	using	the	forum.

@calmh	is	a	de	facto	system	administrator	for	Syncthing	instances	that	use	the	public
discovery	server.	It	is	also	possible	to	use	Syncthing	without	using	the	public	discovery
server.	In	that	case,	whoever	is	hosting	the	discovery	server	used	by	that	Syncthing	instance
becomes	the	system	administrator.	As	Syncthing	is	a	low	level	long	running	system
service.	All	users	also	share	the	role	of	system	administrator	in	some	capacity.

Kastelo	is	the	official	corporate	sponsor	of	Syncthing.	It	is	a	company	founded	by	the
maintainer	of	Syncthing,	@calmh.	It	offers	consultancy	services	and	trainings	related	to
Syncthing.

The	Syncthing	community	provides	public	relay	servers	so	that	people	behind	firewalls	can
use	Syncthing.	These	servers	can	be	found	here[8].	The	operators	of	these	servers	are
suppliers	who	supply	the	infrastructure	required	for	the	people	behind	firewalls	to	use
Syncthing.

Syncthing	is	built	using	the	Go	programming	language.	It	uses	AngularJS	for	its	default
front-end	and	Jenkins	for	continuous	integration.	It	also	uses	several	major	and	minor
libraries	[9].	The	communities	and	companies	behind	all	these	projects	can	be	considered
software	suppliers	in	a	loose	sense.

There	are	also	applications	dependent	on	Syncthing	for	their	own	functionality.	The
developers	and	users	of	these	applications	depend	on	Syncthing	to	provide	the	required
functionality.	Examples	include	syncthing-inotify,	developed	by	@Zillode	and	SyncTrayzor,
developed	by	@canton7.

Syncthing

403

https://github.com/calmh
https://github.com/AudriusButkevicius
https://github.com/rumpelsepp
https://github.com/calmh
https://github.com/calmh
https://github.com/syncthing/syncthing-inotify
https://github.com/Zillode
https://github.com/canton7/SyncTrayzor
https://github.com/canton7

Syncthing	has	several	competitors.	Its	open	source	competitors	include	Librevault	and
several	rsync	based	solutions.	A	popular	closed	source	but	distributed	file	syncronisation
service	is	BTSync/Resilio.	Its	most	popular	competitors	would	be	Dropbox,	Google	Drive
and	others.

The	influence	various	stakeholders	have	on	the	project	can	be	seen	in	Figure	1.

Figure	1:	Power	interest	diagram

Context	View

The	context	view	describes	the	relationships,	dependencies,	and	interactions	between	the
system	and	its	environment.	For	this	purpose,	we	will	determine	the	scope	of	Syncthing	and
we	will	analyse	the	external	entities	and	services	that	interact	with	it.	In	Figure	3	we	provide
a	visual	overview	of	the	different	entities	that	we	are	going	to	describe	in	this	section.

Syncthing

404

https://github.com/Librevault/librevault
https://rsync.samba.org/
https://www.resilio.com/
https://www.dropbox.com/
https://www.google.com/drive/

Figure	2:	Visual	representation	of	Syncthing’s	context	view

There	are	multiple	external	entities	that	Syncthing	interacts	with.	Analysing	its
dependencies,	we	find	that	Syncthing’s	core	is	written	in	Go,	while	its	frontend	is	written	in
Angular.	In	addition,	they	have	used	Ginkgo	as	Go	testing	framework.	As	for	the	database,
Syncthing	uses	LevelDB,	which	provides	key-value	storage.	Syncthing	also	makes	use	of
certain	tools	for	Continuous	Integration.	Among	them,	the	most	important	are	Jenkins	to
perform	test	and	MergeBot	for	automatic	merging	of	Pull	Requests.	Syncthing	community	is
mainly	active	in	Github,	where	they	organise	the	work	and	milestones	and	publish	bugs	and
features.	In	addition,	they	actively	use	a	forum	to	discuss	the	project	further	and	a	freenode
IRC	channel.

Information	View

The	information	view	tracks	the	flow	of	information	through	the	system.	In	this	view,	the	flow
of	data	during	different	stages	of	operation	of	Syncthing	is	explained.

Syncthing

405

https://github.com/syncthing/syncthing/blob/master/GOALS.md
https://angularjs.org
https://onsi.github.io/ginkgo/
https://github.com/google/leveldb
http://freenode.net

Figure	3:	Information	Flow	diagram	with	2	devices

Setup

When	started	for	the	first	time	on	a	device,	Syncthing	generates	a	Device	ID.	This	is	used	to
uniquely	identify	devices	across	the	network.	This	network	could	be	over	the	internet	or	a
local	network.	It	then	broadcasts	these	IDs	on	the	local	network	and	also	registers	itself	with
a	discovery	server	which	is	generally	on	the	internet.	This	process	is	called	announcing.
Then	it	makes	an	index	of	all	the	files	which	are	selected	to	be	synchronized.

Adding	a	device

As	Syncthing	is	a	synchronization	tool,	adding	another	device	to	which	files	are	to	be
synchronized	is	an	important	part	of	operation.	This	can	be	done	when	the	user	informs	the
Syncthing	instances	on	each	device	of	the	Device	ID	of	the	other	device.	The	Syncthing
instances	then	contact	the	Discovery	server	to	identify	the	location	of	the	other	device.	This
is	called	Querying.	Location	of	the	other	device	can	also	be	obtained	by	listening	for	the
announcements	from	that	device	if	both	are	on	the	same	local	network.	After	obtaining	the
location	of	the	other	device,	the	Syncthing	instances	are	ready	to	synchronize.

Synchronization

This	stage	is	when	the	exchange	of	data	takes	place	between	the	devices.	The	devices
which	are	to	be	synchronized	exchange	the	index	of	files	they	have.	The	index	on	each
device	is	called	the	local	model.	The	local	models	of	the	devices	are	exchanged	and	a	global
model	is	obtained	at	each	device.	This	model	is	then	used	to	synchronize	files	or	updates	to
files	using	the	Block	Exchange	Protocol.	If	possible,	this	takes	place	directly	between	the

Syncthing

406

devices	with	the	devices	communicating	and	exchanging	packets	directly.	But	if	the	devices
are	not	directly	reachable	(Possible	if	they	are	behind	a	NAT	for	example),	Relay	servers	are
used.	When	a	relay	server	is	in	use,	packets	are	first	sent	to	the	relay	server	which	pushes
them	to	the	destination.

Models

Module	Structure	Model

Figure	4:	Syncthing's	directory	structure

The	module	structure	model	describes	how	the	project	is	organised.	Figure	4	is	a	high	level
UML	component	diagram	of	Syncthing.	The	project	is	organised	into	clearly	identifiable
layers	with	somewhat	clear	dependencies.	Generally,	the	layer	depicted	above	depends	on
the	one	depicted	below	it,	but	there	are	some	dependencies	which	don't	respect	this
boundary.

The	outer	boxes	represent	layers.	The	inner	boxes	represent	the	individual	components	that
form	those	layers.	The	arrows	represent	that	the	component	at	the	tail	of	the	arrow	depends
on	the	component	at	the	head	of	the	arrow.	The	Platform	corresponds	to	the	Go	standard

Syncthing

407

library	and	other	external	dependencies.	The	Library	is	where	the	major	logic	of	Syncthing
like	the	Block	Exchange	Protocol,	used	for	exchanging	data	related	to	file	changes,	is
implemented.	The	Command	Line	Tools	are	a	collection	of	tools	the	users	actually	use	to
interact	with	the	Syncthing	library.	The	GUI	consists	of	the	web	based	GUI	and	the
command	line	based	GUI.

The	Syncthing	server,	discovery	server,	relay	server	and	other	miscellaneous	components	in
the	command	line	tools	layer	are	the	components	users	of	Syncthing	use	to	synchronise
their	files	across	devices.	The	Syncthing	server	is	the	one	responsible	for	synchronising	files
across	the	user's	devices	in	a	peer	to	peer	manner	using	the	Block	Exchange	Protocol.	The
discovery	server	helps	Syncthing	servers	find	other	Syncthing	servers	to	synchronise	with.
The	relay	servers	help	Syncthing	servers	behind	firewalls	and	NAT	(Network	Address
Translation)	enabled	networks	connect	to	each	other.	Other	miscellaneous	components	are
used	to	register	a	relay	server	with	the	Syncthing	network,	get	information	on	files	being
synchronised	by	Syncthing	and	other	purposes.

The	sync,	discovery,	protocol	and	database	components	in	the	library	layer	contain	the	core
logic	of	Syncthing.	The	sync	component	calculates	hashes	of	blocks	of	files	and	finds	which
ones	to	synchronise.	The	discovery	component	uses	discovery	servers	to	discover	other
Syncthing	servers	and	also	contains	logic	for	creating	a	discovery	server.	The	protocol
component	implements	the	Block	Exchange	Protocol	which	takes	care	of	the	key	exchange
for	authorisation	and	encryption	between	Syncthing	servers	and	also	communicating
information	about	which	files	need	to	be	synchronised.	The	database	component	is	used	for
interacting	with	the	LevelDB	database	so	that	Syncthing	can	store	information	about	other
Syncthing	servers,	synchronised	and	unsynchronised	files,	block	hashes	and	user
preferences.

The	Go	standard	library,	LevelDB	and	other	miscellaneous	libraries	form	the	platform	layer.
These	are	used	for	encrypting	network	connections,	calculating	hashes,	storing	data	and
several	other	functions.

Common	Design	Model

The	common	design	model	will	cover	aspects	of	the	software	where	common	design
approaches	and	common	software	components	were	used.	As	Syncthing	is	written	in	Go
(also	referred	to	as	golang),	all	practices	in	Effective	Go[11]	are	enforced.

Initialisation:	It	refers	to	the	steps	a	component	is	required	to	take	before	becoming	fully
functional[12].

In	Syncthing,	all	components	are	required	to	do	the	following	during	initialisation.

Instantiate	a	logger	object.	This	is	done	inside	the		debug.go		which	is	present	in	every

Syncthing

408

component.
	main.go		files	are	used	as	entry	points	for	command	line	applications.	In	these	files,	the
init	function	is	used	to	store	the	build	date,	architecture	of	the	system	and	golang
version	to	be	used	for	debugging.
In	components	with		main.go		files,	the	logger	is	initialised	in	the	main	function.

Termination	and	restart	of	operation:	It	refers	to	the	conventions	to	be	followed	when	the
program	terminates	either	properly	or	due	to	an	error.	It	also	includes	the	subsequent	steps
taken	for	recovery	during	a	restart.	In	golang,	concurrency	is	handled	through	lightweight
threads	called	goroutines.	Each	goroutine	has	its	own	stack	trace.	When	a	component	exits
due	to	an	error,	care	is	taken	to	ensure	that	the	stacktraces	of	all	the	running	goroutines	are
printed.	If	an	issue	such	as	database	corruption	is	detected	during	restart	the	user	is	notified
instead	of	silently	logging	to	a	file.

Message	Logging	and	Instrumentation:	For	the	command	line	applications,	the		log	
package	available	in	the	golang	standard	library	is	used.	For	the	main	library,	a	custom
logging	package	is	implemented	and	this	is	imported	and	used	by	every	package.	The
custom	logger	supports	setting	the	name	of	the	calling	component	during	initialisation,
printing	it	along	with	the	error	message.	The	go-metrics	third	party	package	is	used	for
collecting	performance	metrics.	StatHat	is	used	for	collecting	metrics	such	as	daily	active
users.

Internationalisation:	It	refers	to	the	process	of	allowing	the	software	to	support	artefacts	for
different	locales.	Multi	language	support	was	added	to	Syncthing	in	v9.0.	Syncthing	uses
Transifex[17]	for	internationalisation.	Transifex	generates	JSON	formatted	files	containing
the	available	strings	in	the	languages	specified	by	the	person	building	Syncthing.	The
Syncthing	GUI	dynamically	loads	these	translations	and	uses	string	interpolation	to	insert
them	in	the	right	places.	The	language	can	be	configured	in	the	configuration	UI.

Processing	configuration	parameters:	In	the	Syncthing	library,	all	configuration	is	passed
through	the	universal	configuration	object.	This	object	is	passed	to	all	components	which
can	be	configured	and	the	components	read	what	they	require.	They	also	subscribe	to	future
changes	in	the	object.	In	the	command	line	application,	configuration	options	are	passed
through	command	line	flags	using	the		flags		package	found	in	the	golang	standard	library.
Configuration	can	be	passed	to	the	library	using	JSON	or	XML	config	files.	When
configuration	is	changed	using	the	GUI	or	command	line	tools,	these	files	are	also	changed.

Database	interaction:	The	database	used	by	Syncthing	to	store	local	data	is	LevelDB.
LevelDB	unlike	SQL	databases	is	a	low	level	storage	engine	with	a	key-value	interface.
Concurrency	primitives	and	other	facilities	such	as	transactions	are	implemented	in	the		db	
component.	So,	any	interaction	with	the	database	should	go	through	the		db		component.

Syncthing

409

https://github.com/rcrowley/go-metrics
https://www.stathat.com/

Pull	Requests	and	Issues:	Pull	requests	and	issues	follow	specific	formats	defined	in	the
files		PULL_REQUEST_TEMPLATE.md		and		ISSUE_TEMPLATE.md	.	When	a	person	either	makes	a	pull
request	or	opens	an	issue,	GitHub	displays	these	templates	in	the	description	to	be
filled[13].

Codeline	Model

Codeline	Model	is	used	to	keep	an	order	when	it	comes	to	the	organization	of	the	system
code.	In	order	to	describe	Syncthing’s	Codeline	Model,	we	will	provide	an	overview	of	the
source	code	structure	and	the	contribution	process,	based	in	the	information	given	in	[1].

Source	code	structure

Figure	5:	Syncthing's	directory	structure

Syncthing

410

In	the	source	repository[16]	we	can	find	a	tree	of	various	packages	and	directories.	The
actual	code	lives	in	the		cmd/syncthing	.		lib		directories	-contains	all	packages	that	make
up	the	parts	of	syncthing.	The	web	GUI	lives	in		gui	.	A	detailed	description	of	the	structure
can	be	found	in	[15].

Contributions

In	order	to	contribute	to	the	project,	developers	should	submit	a	pull	request	in	the	GitHub
project.	This	pull	request	can	belong	to	three	different	categories[15]-	Trivial,	Minor	or	Major-
following	semantic	versioning[2].	Depending	on	these	categories,	the	pull	request	will	follow
different	requisites	before	being	accepted:

Trivial:	These	may	be	merged	without	review	by	any	member	of	the	core	team.
Minor:	It	can	be	merged	on	approval	by	any	other	developer	on	the	core	or	maintainers
team.
Major:	It	must	be	reviewed	by	a	member	of	the	maintainers	team.

When	tests	are	passed	and	the	pull	request	is	approved,	it	will	be	committed	into	the	main
code.	After	a	commit,	the	next	step	is	the	launch	of	a	release,	which	are	again	classified	into
three	types15]:

A	new	patch	release	is	made	each	Sunday,	although	serious	bugs,	that	would	crash	the
client	or	corrupt	data,	cause	an	immediate	patch	release.
Minor	releases	are	made	when	new	functionality	is	ready	for	release.	This	happens
approximately	once	every	few	weeks.
A	new	major	release	happens	when	a	whole	product	is	ready.	At	the	time	of	writing	this
book,	it	has	not	yet	happened:	the	project	hasn’t	reached	yet	the	1.0.0	version.

During	the	whole	contribution	process,	the	project	uses	Github	issues	to	track	bugs,	feature
requests	or	any	other	requirements	needed	[15].	Some	issues	are	assigned	to	milestones,
which	are	associated	with	future	releases.

Usability	Perspective

The	usability	perspective	aims	to	comprehend	the	ease	with	which	people	who	interact	with
the	system	can	work	effectively[14].	This	perspective	addresses	a	wide	range	of	loosely
connected	concerns	such	as	the	usability	of	User	Interface,	process	flow	around	the	system,
information	quality	and	architecture	of	the	system.	Usability	perspective	focuses	on	the	end-
users	of	the	system,	but	also	addresses	the	concerns	of	any	others	who	interact	with	it
directly	or	indirectly,	such	as	developers,	maintainers	and	support	panel.	In	case	of
Syncthing,	the	success	of	the	system	depends	on	the	effectiveness	with	which	files	can	be
shared	and	synchronised	between	devices	on	local	network	or	between	remote	devices	over

Syncthing

411

the	internet.	By	analysing	the	system	usability	we	get	an	impression	of	what	a	Syncthing
instance	looks	like	and	how	it	facilitates	high	usability.	In	this	section	we	analyse	the	usability
of	Syncthing	by	identifying	the	users,	touch	points	and	the	interaction	between	both.

Identifying	Users

As	the	purpose	of	Syncthing	is	quite	general,	the	user	base	of	Syncthing	cannot	be
narrowed	down	to	a	specific	group	of	people.	However,	Syncthing	has	a	large	user	base.
From	the	latest	information	collected	from	Syncthing	usage	data	we	can	see	that	Syncthing
currently	has	22919	users.	Apart	from	regular	users,	Syncthing	is	also	used	by	developers
and	maintainers	for	testing	and	providing	support.

Identifying	Touch	points

Touch	points	are	defined	as	places	where	a	user	may	interact	with	the	system.	A	Syncthing
instance	can	be	generally	accessed	through	a	web	interface	as	shown	in	Figure	6.	Since
Syncthing	has	such	a	broad	and	diverse	level	of	user	base,	Syncthing's	user	interface	is
kept	simple	to	use	and	easy	to	navigate	through.

Figure	6:	Syncthing	home	screen

Syncthing	developers	divide	the	web	UI	into	two	main	groups:	folder	view	and	device	view.

Folder	View

Syncthing

412

https://data.syncthing.net/

This	is	the	left	side	of	the	interface	shown	in	Figure	6,	that	shows	the	ID	and	the	current
state	of	all	configured	folders.	Clicking	on	the	folder	name	causes	the	section	to	expand	to
show	more	detailed	folder	information	like	its	folder	path	and	the	devices	that	the	folder	is
shared	with.	It	also	shows	two	buttons	Rescan	-	for	forcing	a	rescan,	and	Edit	-	for	editing
the	configuration.	Furthermore,	a	folder	can	be	in	any	one	of	the	following	states:

Unknown	-	while	GUI	is	loading,

Unshared	-	when	you	have	not	shared	this	folder,

Stopped	-	when	the	folder	has	experienced	an	error,

Scanning	-	while	Syncthing	is	looking	in	the	folder	for	local	changes,

Up	to	Date	-	when	the	folder	is	in	sync	with	the	rest	of	the	cluster,

Syncing	-	when	the	device	is	downloading	changes	from	network.

Among	these	folder	details	you	can	see	the	current	"Global	State"	and	"Local	State"
summaries	as	well	as	the	amount	of	"Out	of	Sync"	data	if	the	folder	state	is	not	up	to	date.

Global	State	This	indicates	how	much	data	the	fully	up	to	date	folder	contains.	This	is
basically	the	sum	of	the	newest	versions	of	all	files	from	all	connected	devices.

Local	State	This	shows	how	much	data	the	folder	actually	contains	right	now.	This	can	be
either	more	or	less	than	the	global	state,	if	the	folder	is	currently	synchronising	with	other
devices.

Out	of	Sync	This	shows	how	much	data	needs	to	be	synchronized	from	other	devices.	This
is	basically	the	sum	of	all	out	of	sync	files	-	if	you	already	have	parts	of	such	a	file,	or	an
older	version	of	the	file,	less	data	than	this	will	need	to	be	transferred	over	the	network.

Device	View

This	is	the	right	side	of	the	interface	shown	in	Figure	6,	that	shows	the	overall	state	of	all
configured	devices.	The	local	device	is	always	at	the	top	with	the	remote	devices	in
alphabetical	order	below.	For	each	device	you	see	its	current	state	and	when	expanded,
more	detailed	information.	In	the	detailed	information	it	shows	the	"Download	Rate"	and
"Upload	Rate".	These	transfer	states	are	from	the	perspective	of	a	local	device,	even	those
shown	for	remote	devices.	The	rates	for	the	local	devices	are	the	sum	of	those	for	the
remote	devices.

Apart	from	the	different	UI	groups,	since	Syncthing	is	an	open	source	platform	that	is	used
throughout	the	world,	it	should	be	able	to	provide	support	in	different	languages.	Currently
Syncthing	provides	translations	in	35	different	languages	and	developers	are	working	to	add

Syncthing

413

more	languages	to	the	list.	The	preferred	language	can	be	chosen	from	the	drop-down	menu
on	the	top	right	corner	of	the	window.

Technical	Debt

Identifying	Technical	Debt

In	this	section	we	will	provide	an	analysis	of	the	technical	debt	of	Syncthing.	For	this
purpose,	we	will	use	an	automatic	tool	for	code	quality	analysis.	We	will	describe	in	detail
the	most	relevant	issues	and	we	will	also	indicate	which	parts	of	the	project	present	high-
priority	technical	debt	that	should	be	tackled.

Automated	code	quality	analysis	-	Codebeat

Codebeat	is	a	tool	for	automatic	code	review.	It	gathers	the	result	of	code	analysis	into	a
single,	real-time	report	that	gives	all	project	stakeholders	the	information	required	to	improve
code	quality.	Codebeat	analysis	is	very	thorough	and	it	can	be	consulted	at
[https://codebeat.co/projects/github-com-syncthing-syncthing].	We	won't	include	a	complete
description	of	the	report	in	this	document,	but	we	will	analyze	some	of	the	most
representative	results	that	may	be	of	interest	to	assess	the	technical	debt.

Codebeat	organizes	its	reports	in	three	sections:	Complexity,	Code	Issues	and	Duplication.

Complexity:	In	Codebeat,	high	complexity	indicates	part	of	code	that	contains	too	much
logic	and	should	be	broken	down	into	smaller	pieces.	It	can	also	indicate	that	the	few
existing	functions	are	each	too	busy	and	they	need	to	be	individually	refactored.
Namespaces	with	scores	over	250	are	considered	to	be	high	complexity.	In	Figure	7,	we
can	observe	that	several	namespaces	have	a	high	complexity,	some	of	them	even	ten
times	over	the	minimum	threshold.	All	of	this	issues	should	be	urgently	addressed.

Syncthing

414

http://codebeat.co
https://codebeat.co/projects/github-com-syncthing-syncthing

Figure	7:	Fragment	of	namespaces	ordered	by	complexity

Code	Issues:	In	Codebeat,	code	issues	analysis	contains	pieces	of	code	that	present
several	issues	that	can	be	improved.	In	this	case,	the	number	does	not	represent	a
score:	it	represents	the	number	of	issues	found	in	the	code.	These	issues	can	be
related	to	too	many	lines	of	codes,	too	high	number	of	functions,	too	many	instance
variables	or	too	much	block	nesting.	However,	this	metric	does	not	represent
necessarily	a	problem	that	needs	to	be	addressed:	it	only	indicates	pieces	of	code	that
are	not	ideal,	and	that	may	need	to	be	analysed.	In	Figure	8,	we	can	see	that		main	
package	and		model		library	present	several	issues.	These	pieces	of	code	would
certainly	need	a	revision	to	estimate	how	important	are	these	issues	and	if	they	indeed
pose	a	problem.

Syncthing

415

Figure	8:	Fragment	of	namespaces	ordered	by	code	issues

Duplication:	In	Codebeat,	this	metric	gives	suggestions	of	duplicated	pieces	of	code
that	should	be	redesigned	to	avoid	this	issue.	Although	we	can	see	several	cases	in
Figure	9,	if	we	dive	deeper	in	the	Codebeat	full	analysis,	we	can	see	that	none	of	the
detected	duplication	is	considered	critical:	they	are	just	warnings.	These	issues	are
most	likely	small	duplications	difficult	to	avoid,	and	as	so	they	are	not	urgent	issues	that
should	be	tackled	immediately.

Figure	9:	Fragment	of	namespaces	ordered	by	duplication	level

Identifying	Testing	Debt

Testing	debt	measures	the	extent	to	which	an	application	is	tested	properly,	in	order	to
ensure	that	the	application	keeps	functioning	even	after	changes	are	made.

Syncthing

416

https://codebeat.co/projects/github-com-syncthing-syncthing

Syncthing	requires	every	contributor	to	include	tests	for	both	Minor	commits	-	which	includes
adding	a	simple	new	feature,	bugfix	or	refactoring,	and	Major	commits	-	that	include	adding
new	complex	feature,	large	refactorings	or	changing	the	underlying	architecture	of	(parts	of)
the	system.	These	tests	can	be	run	using	the	"go	run	build.go	test"	command.	When	it
comes	to	code	coverage,	Syncthing	maintains	an	extensive	coverage	report	for	each	build.
Syncthing	uses	cobertura,	an	open	source	code	coverage	tool	and	a	plug-in	of	Jenkins	that
generates	code	coverage	metrics	to	record	and	display.	The	extensive	code	coverage
results	for	Syncthing	can	be	found	here.	These	metrics	are	generated	not	only	for	the	latest
build	but	the	coverage	results	of	the	previous	builds	are	also	kept	track	of,	and	are	used	to
verify	how	these	results	evolve	over	time.	Figure	10	shows	these	code	coverage	results	for
each	package,	class,	and	files,	and	as	we	can	see	the	package-wise	coverage	results	for
Syncthing	remain	a	constant	93%	throughout	several	builds.	However,	by	checking	the
coverage	results	for	objects,	we	notice	that	there	is	a	minor	drop	in	coverage	after	build
2688.	The	current	coverage	is	65%	and	hence	it	is	safe	to	conclude	that	there	is	still	some
room	for	improvement.

Figure	10:	Code	coverage	results

Furthermore	Jenkins	provides	the	code	coverage	results	for	each	package	in	the	application
as	shown	in	Figure	11.	As	we	can	see,	several	packages	under	'lib'	directory	have	a	100%
coverage.	However,	there	are	also	few	packages	like	'lib/relay/protocol'	with	0%	code
coverage	and	this	is	because	the	test	files	in	these	directories	are	empty.	Writing	tests	for
these	directories	would	increase	the	overall	code	coverage	of	the	application	to	a	great
extent.

Syncthing

417

https://wiki.jenkins-ci.org/display/JENKINS/Cobertura+Plugin
https://build.syncthing.net/job/syncthing/lastSuccessfulBuild/cobertura/

Figure	11:	Package-wise	coverage	results

By	drilling	down	further,	we	were	able	to	analyse	the	code	coverage	results	for	each	file	in	a
package	and	each	class	in	a	file.	When	we	get	to	this	level,	Jenkins	displays	both	the	overall
coverage	statistics	for	the	class	and	also	highlights	the	lines	that	were	covered	in	green,	and
those	that	weren't	in	red.	For	example,	in	'cmd/syncthing'	package,	certain	files	like	'gui.go'
have	much	less	code	coverage	as	shown	in	Figure	12	and	thus	reduces	the	overall
coverage	of	the	package.

Syncthing

418

Figure	12:	Coverage	results	for	files

By	studying	the	lines	denoted	by	the	red	highlights,	we	can	see	that	methods	dealing	with
Database	connections	are	not	covered	properly	and	by	fixing	this,	a	potential	technical	debt
could	be	avoided.

Suggestions	to	reduce	the	project	debt

Technical	debt	is	quite	low	in	Syncthing.	In	the	collaboration	guidelines	it	is	specified	that,
before	merging	a	Pull	Request,	the	proposed	code	should	pass	with	0	errors	several	linters
regarding	style	and	syntax,	so	the	project	does	not	present	these	kind	of	issues.	Also,	they
have	been	very	careful	with	their	interfaces,	and	the	duplicates	are	not	high	priority	issues
since	they	usually	have	strong	reasons	to	repeat	some	code.	The	technical	debt	in	this
project	lays	in	its	complexity:	high	cyclomatic	complexity,	too	many	lines	of	codes,	too	many
functions	or	too	deep	block	nesting.	Our	suggestion	will	be	to	redesign	the	most	complex
packages	(such	as		main	,		protocol		library	or		model		library)	in	order	to	reduce	its
complexity	and	improve	its	performance.

As	for	testing	debt,	from	the	analysis	it	is	evident	that	even	though	the	project	on	a	whole
has	a	very	good	code	coverage,	there	is	still	some	room	for	improvement.	However,	in
general	all	source	files	are	tested	and	a	number	of	automatic	tests	are	run	on	the	code	when
a	pull	request	is	triggered	and	hence	there	is	no	major	testing	debt	here.	Another	potential
testing	debt	that	is	evident	from	the	analysis	is	that	the	framework	consists	of	a	large
number	of	css	files	which	are	relatively	harder	to	test.	But	one	could	easily	automate	the
testing	of	certain	UI	features	like	proper	scaling	of	GUI	elements	when	resizing	a	webpage,
verification	of	navigations	etc.	Finally,	we	also	noticed	that	apart	from	testing	Syncthing	at	a
unit	level,	the	developers	have	also	included	few	integration	tests.	However,	these	tests	are
mostly	aimed	at	System	Integration	testing	(SIT).	The	other	aspects	of	the	system	like
security	and	performance	are	neither	tested	nor	scheduled	for	later	testing,	thereby	posing
another	potential	testing	debt.

Evolution	of	Technical	Debt

In	order	to	research	the	evolution	of	technical	debt	within	the	Syncthing	project,	we	will	look
at	how	the	code	evolved	over	time.	The	releases	along	with	the	changelog	will	help	us
understand	what	happened	when	and	why.	Finally,	we	will	look	at	several	issues	and	pull
requests	that	pay	technical	debt	and	discuss	them	in	more	detail.

The	first	release	of	the	Syncthing	project	was	v0.1.0	in	December	2013.	In	the	first	months,
the	release	cycle	was	extremely	short,	sometimes	releasing	twice	in	a	single	day.	Four
months	later,	in	March	2014,	after	over	30	releases	v0.7.0	was	released.	The	code	at	the

Syncthing

419

time,	as	with	many	new	projects	was	changing	a	lot.	The	general	architecture	was	constantly
evolving,	requiring	short	release	cycles	to	keep	up.	Many	of	the	changes	were	to	the
documentation	in	order	to	keep	it	in	sync	with	the	code	itself.

Towards	the	end	of	2014	the	code	started	to	stabilize	with	release	cycles	slowing	down	to
about	once	a	week.	As	the	codebase	grew	more	stable	and	many	of	the	basic	features	had
been	implemented,	it	took	more	and	more	time	to	make	a	meaningful	contribution.
Contributions	became	more	structured	as	more	contributors	joined	the	project.

Platforms

Since	v0.9.6	the		build.sh		script	was	replaced	by		build.go		script	for	better	cross	platform
support.	In	the	beginning	this	caused	a	lot	of	cross	platform	issues	because	no	matter	how
hard	they	tried	to	abstract	away	the	operating	system,	there	were	differences	that	turned	out
problematic.	A	good	example	is	the	allowed	characters	in	filenames	which	are	different	on
Windows	and	Linux.	This	led	the	maintainers	to	drop	support	for	Linux	specific	filenames	in
favour	of	portability.

External	projects	making	use	of	syncthing	such	as	syncthing-inotify,	syncthing-gtk,	and
syncthing-android	started	cropping	up	in	early	2014	and	complicated	matters.	Changes
made	to	the	core	now	needed	to	properly	reflect	in	the	dependent	packages.	This	was	a
source	of	much	frustration	as	it	took	cross	platform	to	a	new	level.	Users	expected	these
implementations	to	work	even	on	Android	TV.	These	projects	were	deliberately	placed	in
separate	GitHub	projects,	to	separate	concerns	of	the	core	project	from	different	frontend
implementations.

Releases

Looking	at	the	different	releases	we	can	see	many	bugs	are	introduced	when	a	protocol
version	is	upgraded.	Aside	from	backwards	incompatibility,	the	protocol	is	often	unstable
until	it	is	tested	by	the	public	in	different	scenarios,	configurations,	operating	systems	etc.
Furthermore,	v0.13.3,	v0.13.4,	and	v0.13.5	are	interesting	releases	as	they	followed	shortly
after	the	major	release	v0.13.0	and	were	labelled	as	'bug-fix	release'.	They	fixed	about	10
bugs	that	were	introduced	and	discovered	only	after	the	major	release.	The	distributed
nature	of	the	Syncthing	project	makes	it	prone	to	concurrency	bugs	that	are	hard	to	detect
by	developers.

v0.13.6	was	the	first	release	that	explicitly	mentioned	cleaning	up	code.	This	so	called
'cleanup-release'	was	first	introduced	in	the	section	about	discussing	technical	debt.	It	shows
Syncthing's	efforts	to	keep	the	codebase	clean	and	prevent	accumulating	interest	on
technical	debt.

Syncthing

420

https://github.com/syncthing/syncthing-inotify
https://github.com/syncthing/syncthing-gtk
https://github.com/syncthing/syncthing-android

Some	of	the	releases	are	labelled	as	bug	fixes	or	security	fixes,	but	it	is	unclear	if	these
problems	were	introduced	as	a	result	of	accumulated	technical	debt.	In	a	complicated
distributed	system,	it	is	always	difficult	to	cover	all	possible	scenarios,	inevitably	exposing
attack	vectors	to	malicious	users.	Having	an	active	and	engaged	community	helps	fixing
these	issues	as	soon	as	they	are	detected.

Conclusion
In	this	chapter	we	have	analysed	Synchting	by	first	using	different	views	and	models,	and
finally	by	looking	at	the	technical	debt	within	the	project.	We	have	seen	how	Syncthing	is
able	to	synchronize	files	between	devices,	while	giving	guarantees	regarding	data	loss,
security,	and	ease	of	use.	The	organization	of	the	code	in	layers	allows	for	separation	of
concerns,	and	provides	a	decoupled	architecture.	This,	along	with	good	code	quality	and
collaboration	practices	results	in	a	healthy	codebase,	with	minimal	technical	debt.	Syncthing
is	an	open	source	project	with	a	strong	core	team	that	provides	a	suitable	alternative	to
proprietary	synchronization	technologies.

References
1.	 Syncthing	User	Data.	https://data.syncthing.net/
2.	 Semantic	versioning.	http://semver.org
3.	 Syncthing	Authors.	https://github.com/syncthing/syncthing/blob/master/AUTHORS
4.	 @calmh's	comment	on	tests.

https://github.com/syncthing/syncthing/pull/3780#issuecomment-268509136
5.	 Syncthing	Beta	Testers.	https://forum.syncthing.net/badges/131/beta-tester
6.	 Syncthing	Scribes.	https://forum.syncthing.net/badges/121/scribe
7.	 Syncthing	Helpful	Members.	https://forum.syncthing.net/badges/126/very-helpful
8.	 Syncthing	Relays.	http://relays.syncthing.net/
9.	 Syncthing	Manifest.	https://github.com/syncthing/syncthing/blob/master/vendor/manifest
10.	 Syncthing.	The	Syncthing	Goals.

https://github.com/syncthing/syncthing/blob/master/GOALS.md.
11.	 Effective	Go.	https://golang.org/doc/effective_go.html
12.	 Separation	of	Initialization	and	Construction.	Stack	Overflow.

http://softwareengineering.stackexchange.com/questions/206086/separation-of-
construction-and-initialization.

13.	 Issue	Templates.	https://help.github.com/articles/creating-an-issue-template-for-your-
repository/

14.	 Nick	Rozanski	and	Eoin	Woods.	2012.	Software	Systems	Architecture:	Working	with
Stakeholders	Using	Viewpoints	and	Perspectives.	Addison-Wesley	Professional.

Syncthing

421

https://github.com/syncthing/syncthing/blob/master/GOALS.md

15.	 Syncthing	Docs.	https://docs.syncthing.net/.
16.	 Syncthing.	Source	Code.	https://github.com/syncthing/syncthing.
17.	 Transifex.	https://www.transifex.com/syncthing/syncthing

Syncthing

422

Telegram-Web

Kilian	Grashoff,	Bart	Heemskerk,	Baran	Usta,	Michiel	Vonk

Delft	University	of	Technology,	2017

Abstract
Telegram-Web	is	a	client-side	web-application,	which	uses	the	Telegram	API	to	enable
instant	messaging	functionality	in	web	browsers.	Its	sole	maintainer	is	Igor	Zhukov,	who
started	the	project	as	a	hobby.	The	application	is	built	using	AngularJS,	UI	bootstrap	and
CryptoJS.	The	project	contains	a	lot	of	technical	debt.	One	form	of	technical	debt	is	the	lack
of	a	modular	structure.	Also,	most	of	the	code	is	not	covered	by	testing	and	almost	no
documentation	is	present.	A	plan	is	proposed	to	pay	off	this	technical	debt,	which	will	make
contributing	to	Telegram-Web	easier.

Introduction
Instant	messaging	applications	offer	real-time	transmission	of	text	over	the	internet.	They
allow	for	effective	communication,	because	a	recipient	can	almost	instantly	see	a	received
message.	Because	of	their	text-based	nature	they	can	also	be	used	in	many	settings.
Telegram	is	a	free,	cloud-based	instant	messaging	application	with	a	focus	on	security	and
speed.	It	offers	a	well	defined	public	API	to	enable	developers	to	implement	their	own
systems.	There	are	official	Telegram	clients	for	various	mobile	and	desktop	platforms,	and
an	official	web	client.	All	of	Telegram's	official	clients	are	open	source	projects.

Telegram-Web	(a.k.a	Webogram)	is	the	official	web	client	of	Telegram.	It	is	hosted	on
web.telegram.org	and	also	packaged	as	Chrome	and	Firefox	extensions.	Telegram-Web
started	as	a	hobby	of	its	creator,	Igor	Zhukov,	and	was	an	unofficial	client	at	first.	Later,	it

Telegram	Web

423

https://github.com/kiliangrashoff/
https://github.com/bartist/
https://github.com/baranusta/
https://github.com/Stapelpanda/
http://web.telegram.org

became	the	official	web-client	for	Telegram.	In	this	chapter,	Telegram-Web's	architecture	is
analyzed.	First	its	features	and	stakeholders	are	discussed.	Then	its	architecture	is
discussed	by	means	of	a	context,	development,	and	deployment	view.	The	deployment	view
is	relevant,	because	the	deployment	of	Telegram-Web	is	somewhat	unconventional.
Telegram-Web	is	further	investigated	from	the	internationalization	perspective.	This
perspective	is	interesting	because	Telegram-Web	supports	multiple	languages,	and	a	strict
procedure	is	used	to	guarantee	the	quality	of	translations.	Finally	technical	debt	in	the
project	is	analyzed.	Telegram-Web	suffers	from	significant	technical	debt,	so	a	plan	is
proposed	to	pay	off	this	debt.

Stakeholder	Analysis
The	stakeholders	involved	in	the	development	of	Telegram-Web	were	analysed	in	several
ways.	First,	ten	recent	issues	and	ten	recent	pull	requests	were	investigated.	Pull	requests
and	issues	that	had	extensive	discussion	were	selected	for	analysis.	Pull	requests	that
contained	major	changes	to	the	project	were	also	selected.	This	selection	gave	information
on	relevant	stakeholders,	and	how	they	interact.	Secondly,	the	GitHub	contribution	statistics
were	analysed.	This	second	analysis	helped	to	make	sure	that	no	relevant	stakeholders
were	missed	in	the	first	analysis.	The	involved	stakeholders	were	categorized	as	described
by	Rozanski	and	Woods.	[13]

maintainer	and	assessor:	Igor	Zhukov	started	the	project,	and	is	its	sole	maintainer.
This	can	be	concluded	from	the	fact	that	he	is	the	only	one	that	merges	pull	requests
and	closes	issues	on	GitHub.	He	also	assumes	various	other	roles	in	Telegram-Web's
development	(see	below).	Since	he	is	the	sole	person	who	controls	what	is	approved	to
merge	into	Telegram-Web,	he	is	regarded	as	assessor	as	well.
acquirer:	Telegram	Messenger	LLP	was	founded	by	Pavel	Durov,	Nikolai	Durov	and
Axel	Neff.	[15]	Telegram	Messenger	LLP	develops	the	core	Telegram	service	and	its
API.	Although	Telegram-Web	is	the	official	web	client	for	Telegram,	Igor	Zhukov's
relationship	to	Telegram	Messenger	LLP	is	unclear.	The	reason	for	this	is	that	Telegram
Messenger	LLP	is	highly	secretive,	after	its	founders	left	Russia	for	political	reasons.
[12]	However,	Igor	Zhukov	used	to	work	for	the	same	company	as	the	Telegram
founders	(VKontakte).	[10]	For	that	reason,	is	assumed	that	he	is	either	employed	by
Telegram	Messenger	LLP,	or	has	close	ties	to	it.	Therefore,	Telegram	Messenger	LLP,
represented	by	CEO	Pavel	Durov,	is	regarded	as	acquirer.
system	administrator	and	suppliers:	due	to	Telegram's	secretive	nature,	it	is	unclear
who	administrates	the	deployment	of	Telegram-Web,	therefore	the	system	administrator
is	unknown.	It	is	also	unclear	who	supplies	the	hardware	that	runs	this	deployment,	so
the	suppliers	are	unknown	too.
communicators:	the	analysis	of	GitHub	issues	showed	that	@stek29	and	@Ryuno-Ki

Telegram	Web

424

https://github.com/zhukov/webogram/graphs/contributors
https://github.com/stek29
https://github.com/Ryuno-Ki

reply	frequently	to	issues,	therefore	acting	as	communicators.	Markus	Ra	is	the	press
contact	for	Telegram	Messenger	LLP,	so	he	acts	as	communicator	as	well.	The	people
in	the	Telegram	Support	Initiative	are	the	final	group	of	communicators.	They	are
volunteers	who	answer	questions	by	other	users	using	Telegram	itself.
developers:	the	analysis	of	pull	requests	and	the	GitHub	contributors	graph	showed
that	@stek29	and	@Ryuno-Ki	are	the	only	people	who	have	recently	contributed
significant	changes,	so	they	are	the	main	active	developers	besides	Igor	Zhukov.
production	engineer	and	tester:	@Ryuno-Ki	set	up	a	framework	for	testing	and
created	some	initial	tests	for	Telegram-Web,	so	he	is	regarded	as	having	both	these
roles.
users:	every	user	of	Telegram-Web	is	considered	a	stakeholder.	Telegram-Web	can	be
used	in	four	ways:

1.	 Chrome	app;
2.	 Firefox	app;
3.	 hosted	online	(http://web.telegram.org	and	Github	pages	on

https://zhukov.github.io/webogram);
4.	 self-hosted.

The	following	additional	types	of	stakeholders	were	also	identified.	The	explanation	for	each
type	describes	why	these	groups	are	relevant	stakeholders	in	addition	to	the	stakeholders
described	above.

candidate	developers:	submitters	of	pull	requests	yet	to	be	merged	or	rejected	indicate
interest	in	a	feature	to	the	developers	and	maintainer.	Despite	their	work	not	being
merged,	they	influence	the	development	of	Telegram-Web.	This	influence	is	evident	in
the	analyses	for	pull	requests	#330	and	#1306.
reviewers:	reviewers	actively	influence	the	development	of	Telegram-Web	by	reviewing
the	work	of	candidate	developers.	@zhukov	acts	as	reviewer,	since	he	reviews	the
works	by	all	contributors	before	deciding	if	he	will	merge	their	work.	@stek29	and
@Ryuno-Ki	also	voluntarily	review	pull	requests	on	GitHub.
translators:	volunteer	translation	teams,	led	by	Markus	Ra,	influence	Telegram-Web	by
making	the	translations	used	by	Telegram.	This	process	will	be	explained	in-depth	in	the
internationalization	perspective.
maintainers	of	derivative	works:	these	maintainers	have	an	interest	in	the
development	of	Telegram-Web,	since	they	can	pull	in	any	work	that	happens	to
Telegram-Web	into	their	own	work.	Since	Telegram-Web	has	many	forks,	the	GitHub
network	graph	functionality	could	not	be	used	to	find	derivative	works.	A	script	was
written,	which	calculates	the	number	of	diverging	commits	for	each	repository	on
GitHub.	Two	major	derivative	works	were	found:

hippopogram	by	@I-hate-farms	with	his	own	added	features	like	markdown
support.	[9]

Telegram	Web

425

https://core.telegram.org/tsi
https://github.com/zhukov/webogram/graphs/contributors
https://github.com/stek29
https://github.com/Ryuno-Ki
https://github.com/Ryuno-Ki
http://web.telegram.org
https://zhukov.github.io/webogram
https://github.com/zhukov/webogram/pull/330
https://github.com/zhukov/webogram/pull/1306
https://github.com/zhukov
https://github.com/stek29
https://github.com/Ryuno-Ki
https://github.com/I-hate-farms/hippopogram
https://github.com/I-hate-farms

TWebogram	by	@rubenlagus	is	a	version	of	Telegram-Web	with	additional
functionality	to	help	with	the	Telegram	Support	Initiative.	[14]

competitors:	competitors	are	interested	in	the	development	of	Telegram-Web	since
they	have	a	competing	service.	WhatsApp	and	Facebook	messenger	are	the	two	chat
clients	with	the	most	users	worldwide,	both	are	owned	by	Facebook,	Inc.	[11]	They	have
a	web-version	that	competes	directly	with	Telegram-Web.	IRC	and	Signal	compete
based	on	specific	features	that	are	advertised	both	for	them	and	Telegram.	IRC	is
known	for	having	a	large	ecosystem	of	bots,	which	Telegram	has	too.	Signal	is	known
for	its	privacy	features,	Telegram	advertises	this	also.

People	contacted

Igor	Zhukov	was	contacted,	since	he	is	the	person	with	the	most	influence	and	knowledge
about	Telegram-Web.	Questions	were	asked	about	what	the	best	way	was	to	make	small
contributions	to	Telegram-Web	and	how	he	came	to	start	Telegram-Web.	He	replied	that	any
contributions	would	be	helpful,	but	that	he	did	not	have	suggestions	besides	the	issues	on
GitHub.	He	confirmed	that	he	started	Telegram-Web	as	a	hobby.

While	submitting	pull	requests	with	tests	(#1355	and	#1362),	a	request	to	review	was	sent	to
@Ryuno-Ki,	since	he	set	up	the	Telegram-Web	testing	framework.	He	made	some	helpful
suggestions,	which	were	incorporated	in	our	pull	requests.

Context	View
This	section	will	discuss	the	relationships	between	Telegram-Web	and	external	entities.
Telegram	itself	will	be	treated	as	a	black	box.

System	Scope

Telegram-Web	is	an	application	built	against	the	Telegram	API	to	allow	mobile	and	desktop
users	to	use	Telegram	without	installing	an	application.	On	some	platforms	(Firefox	OS	and
Chrome	OS)	this	application	can	even	be	installed	since	there	are	no	native	apps	available
on	those	platforms.	The	scope	of	this	chapter	is	limited	to	Telegram-Web,	so	the	Telegram
API	is	considered	an	external	entity.

History

Messaging	has	been	around	even	before	the	Internet	by	using	postal	and	other	services.
When	the	internet	came	around	there	were	multiple	ways	to	communicate,	some	looked	like
sending	a	letter	to	each	other	(email).	There	were	also	message	boards	and	public	chat

Telegram	Web

426

https://github.com/rubenlagus/webogram
https://github.com/rubenlagus
https://github.com/zhukov/webogram/pull/1355
https://github.com/zhukov/webogram/pull/1362
https://github.com/Ryuno-Ki

channels	in	which	(like	IRC)	even	had	private	messaging.

Telegram	itself	is	more	comparable	to	either	MSN	messenger,	or	more	recent	mobile
applications	such	as	Whatsapp	or	Facebook	Messenger.	What	these	applications	offer	is	a
service	to	communicate	with	other	persons,	either	alone	or	in	group-chats.	Telegram	tries	to
differentiate	from	this	service	by	providing	more	secrecy	and	the	ability	to	create	bots,	these
bots	are	programs	which	allow	the	user	to	play	a	game	and	or	provide	integration	with	third
party	services.	[6]

Telegram-Web	has	mainly	been	developed	by	@zhukov.	It	started	as	a	hobby	and	since	13-
11-2014	it	is	adopted	as	the	Official	web	client	of	Telegram.	[8]	Over	time	other	contributors
tried	to	help	out	@zhukov	by	issuing	a	pull	request	with	their	contribution.	As	can	be	seen	in
table	1	@zhukov	is	still	the	lead	developer	of	this	application.

Time
period

Time	period
(exact) Contributors

first	week 5	-	12	Jan only	@zhukov

first
month 5	Jan	-	5	Feb help	from:	@paulmillr	for	setting	up	the	repo	and

@imangani	for	a	small	MIME	fix.

first	year 5	Jan	2014	-	5
Jan	2015

22	contributors	which	totaled	to	58	commits	vs	158
commits	by	@zhukov

second
year

6	Jan	2015	-	6
Jan	2016 25	commits	by	contributors,	423	commits	by	@zhukov

remainder 7	Jan	2016	-	31
Mar	2017

21	commits	by	other	contributors	and	254	commits	by
@zhukov

Table	1:	commits	done	to	Telegram-Web	over	time

Context	Diagram

Telegram	Web

427

https://github.com/zhukov
https://github.com/zhukov
https://github.com/zhukov
https://github.com/zhukov/webogram/graphs/contributors?from=2014-01-05&to=2014-01-12&type=c
https://github.com/zhukov
https://github.com/zhukov/webogram/graphs/contributors?from=2014-01-05&to=2014-02-05&type=c
https://github.com/paulmillr
https://github.com/imangani
https://github.com/zhukov/webogram/graphs/contributors?from=2014-01-05&to=2015-01-05&type=c
https://github.com/zhukov
https://github.com/zhukov/webogram/graphs/contributors?from=2015-01-06&to=2016-01-06&type=c
https://github.com/zhukov
https://github.com/zhukov/webogram/graphs/contributors?from=2016-01-07&to=2017-03-31&type=c
https://github.com/zhukov

Figure	1:	Context	Diagram

Context	Model

The	context-diagram	as	seen	in	figure	1	is	an	overview	of	the	components	connected	to
Telegram-Web.	The	following	subsections	will	start	at	the	bottom	of	the	diagram,	then	review
the	top	part	and	finally	the	interconnection	and	reason	why	Telegram	itself	is	also	included.

Development

At	the	bottom	five	groups	are	visible.	Together	they	represent	the	development	of	Telegram-
Web:

third-party	libraries:	the	third	party	libraries	which	can	be	found	at	the	Telegram-Web
GitHub	page;
development:	the	main	developers	selected	from	the	pull	request,	issue	and	fork
analysis,	as	described	in	the	stakeholder	analysis;
development	environment:	the	languages	used	in	the	project,	AngularJS	is	the
framework	upon	which	the	whole	application	is	built	and	thus	classified	as	part	of	the
development	environment.
development	platform:	to	aid	the	development	process,	a	central	code	and	issue
location	is	needed.	In	this	case	GitHub	is	used	in	combination	with	Waffle.io	to	show	the

Telegram	Web

428

https://github.com/zhukov/webogram#third-party-libraries
https://github.com
https://waffle.io

current	issue	status.
building	&	testing:	some	tools	are	used	to	build	Telegram-Web,	by	creating	a
standardized	build	process	using	make	and	gulp	no	steps	can	be	forgotten

Users	and	Competitors

Excluding	the	Bot	group	the	top	parts	consist	of:

users:	which	consist	of	the	end-users	and	two	special	groups	which	run	their	own	fork:
TSI	with	some	additional	branding	and	Hippopogram	a	derivation	with	some	additional
features;
browsers	&	apps:	which	shows	the	cross-browser	version	and	the	packaged	apps	for
both	Chrome	and	Firefox;
competitors:	which	show	widely	used	chat	apps	with	comparable	functionality.

Telegram	API

The	Telegram-Web	application	cannot	exist	without	the	Telegram	API,	since	Telegram-Web
is	only	a	client	that	needs	the	data	stored	behind	the	Telegram	API.	The	external	services
and	bots	accessed	through	the	Telegram	API	are	a	big	influence	on	the	development	of
Telegram-Web.	One	example	of	this	is	the	Youtube	bot.	For	usability	a	thumbnail	returned
from	the	bot	is	embedded	into	the	chat.	Telegram-Web	has	functionality	to	handle	this.

Development	View
This	section	describes	the	architecture	of	Telegram-Web.	The	development	view	helps	to
support	the	development	process.	Its	concerns	are	common	design	approaches,	module
structure,	and	codeline	organization.	Each	of	these	concerns	will	be	discussed	in	this
section.	[13]

Common	design	model

Common	design	approaches	and	design	constraints	are	helpful	to	keep	the	system
coherent.	Each	developer	has	to	follow	the	AngularJS	patterns	that	are	used	in	the	project.
Additionally,	security	is	an	important	concern	of	Telegram.	Therefore,	Telegram-Web	has	to
adhere	to	strict	constraints	while	interacting	with	the	server.	[18,19,20]

AngularJS	design	patterns

Telegram	Web

429

https://github.com/rubenlagus/webogram
https://github.com/I-hate-farms/hippopogram

Telegram-Web	is	designed	as	a	Single	Page	Application	and	uses	the	AngularJS	1
framework.	AngularJS	was	specifically	developed	to	make	building	single	page	web
applications	easy,	which	is	probably	why	it	was	used	for	Telegram-Web.	It's	based	on	the
Model-View-Controller	design	pattern,	which	structures	an	application	in	three	parts:

model:	the	data	(also	called	state)	of	the	application;
view:	the	interface	of	the	application,	which	shows	the	data	in	the	model.	The	view	is
defined	in	HTML-based	Template	files;
controller:	component	that	updates	the	model	when	the	user	makes	a	change	to	the
view.	This	is	the	place	where	business	logic	such	as	validation	of	the	user	input
happens.

There	are	some	additional	types	of	components	in	AngularJS:

directives:	updates	part	of	the	view	when	the	model	changes;
filters:	functions	that	format	data	for	display	to	the	user;
services:	reusable	business	logic	that	is	independent	of	views.

Figure	2	shows	the	(possible)	dependencies	between	these	different	types	of	components.
An	arrow		A->B		indicates	that	components	of	type		A		can	depend	on	components	of	type
	B	.

Figure	2:	the	model	of	different	components	of	AngularJS

Telegram	Web

430

https://en.wikipedia.org/wiki/Single-page_application

Module	structure	model

The	module	structure	model	defines	the	organization	of	the	system’s	source	code.	It
specifies	the	modules	into	which	the	individual	source	files	are	collected	and	the
dependencies	among	these	modules.	[13]

Figure	3	shows	the	Telegram-Web	modules,	as	defined	using	AngularJS	modules	and
explicit	dependencies	between	them.	Injected	dependencies	will	be	discussed	later.

Figure	3:	Telegram-Web	module	structure

Telegram	Web

431

The	main	module	of	the	Telegram-Web	is	called	myApp,	and	depends	explicitly	on	all
modules	that	are	part	of	it,	as	well	as	all	external	modules.	The	only	functionality	that	the
myApp	module	itself	provides,	is	to	specify	the	controllers	that	AngularJS	injects	for	three
different	URL's:		/	,		/login	,	and		/im	.	Those	three	controllers	in	turn	trigger	loading	of	the
templates	that	contain	the	needed	components	for	the	page	to	be	displayed.

Internal	Modules

Each	of	the	component	types	(controllers,	directives,	filters,	services,	and	templates)
function	as	described	in	the	section	on	the	AngularJS	component	structure.	The
recommended	way	to	use	modules	in	AngularJS	is	to	make	a	module	for	every	individual
feature	and	reusable	component	in	the	application.	[2]	However,	Telegram-Web	only	has	a
single	module	per	component	type	except	for	the	following	separate	modules:

	i18n		is	the	internationalization	module.	It	provides	functionality	to	show	the	interface	in
one	of	the	languages	that	Telegram-Web	supports.
	utils		provides	several	functionalities.	It	mainly	consists	of	services	to	write,	read	and
transfer	data	to	local	storage	and	over	the	web.
	mtproto		implements	the	low-level	functionality	of	the	MTProto	protocol	that	Telegram-
Web	uses	to	connect	to	the	Telegram-API.
	mtproto.wrapper		uses	the	functionality	provided	by	MTProto	to	provide	high-level
functionality	that	is	used	in	other	modules.

External	modules

The	myApp	module	depends	on	external	modules,	that	can	be	used	by	any	of	the	modules
within	myApp.	Telegram-Web	depends	on	the	following	external	modules:

	Toaster		provides	a	way	to	show	notifications	on	the	webpage	itself;
	Mediaplayer		provides	an	easy	way	to	play	media	from	inside	AngularJS	applications,
by	wrapping	the	<audio>	and	<video>	HTML	tags	in	a	directive;
	ui.bootstrap		implements	the	Bootstrap	user	interface	elements	in	AngularJS
directives;
finally		ngRoute	,		ngSanitize	,		ngTouch		and		ngAnimate		are	modules	for	specific
functionalities	that	AngularJS	provides.

Injected	dependencies

The	explicitly	defined	dependencies	of	AngularJS	modules	only	determine	the	order	in	which
AngularJS	constructs	different	components.	These	components	are	free	to	specify
arguments	that	they	need	outside	of	their	module,	which	are	injected	by	AngularJS.	This

Telegram	Web

432

https://getbootstrap.com/

means	that	the	dependencies	as	listed	in	figure	3	are	far	from	complete,	in	fact	almost	all
modules	in	Telegram-Web	reference	most	of	the	other	modules.	Figure	4	is	an	overview	of
injected	dependencies	between	components	in	internal	modules.

Figure	4:	Telegram-Web	module	structure	with	injected	dependencies

Layering	rules

Because	the	dependencies	between	modules	in	Telegram-Web	are	unmanaged	there	is	no
clear	grouping	of	modules	into	layers	possible.	Since	there	are	no	layers,	there	are	also	no
layering	rules.

Codeline	model

The	codeline	model	specifies	the	organization	of	files	and	the	interaction	with	external	tools.
First,	the	directory	structure	and	configuration	files	are	specified.	Then,	the	tools	that	are
used	for	building	and	testing	are	documented.	Finally,	the	strategy	for	source	code
management	is	explained.

Directory	structure	and	Configuration

The	root	folder	contains	the	project	files	such	as:

	package.json	,	which	gives	information	about	the	package/application;
	gulpfile.js	,	which	allows	building	a	distributable	version;
	LICENSE	,		README.md	,	and		CONTRIBUTING.md	,	which	give	repository	information	and

Telegram	Web

433

explain	how	someone	can	contribute.
	Dockerfile	,	specifies	how	the	application	runs	a	Docker	container.

The	folder	structure	then	boils	down	to:

	.tx		Transifex	configuration;
	app/	,	application	files	such	as	a	manifest	and	the	start	file:		index.html	;
	app/fonts	,	Google	fonts;
	app/img	,	project	image	files;
	app/js/lib	,	mainly	non	AngularJS	files;
	app/js	,	mainly	AngularJS	files;
	app/less	,	LESS	Stylesheet;
	app/nacl	,	Native	Client	C	files,	which	compile	to	a		pexe		file;
	app/partials	,	HTML	views;
	app/vendor	,	third-party	libraries;
	scripts	,	external	scripts	for	downloading	Google	fonts,	country	name	translation	and
emojis;
	test/unit	,	unit	tests.

All	configuration	parameters	and	constants	must	be	put	in	the		config.js		file.	When	forking
Telegram-Web	an		API_id		and		API_hash		must	be	retrieved	at	https://my.telegram.org.

Building	and	testing

The	Telegram-Web	project	is	based	upon	JavaScript	and	AngularJS.	The	package	manager
	yarn		is	used	to	download	all	dependencies.	Recently	the	test	runner		KarmaJS		and	test
framework		Jasmine		were	added.	Using	the	configuration	in		karma.conf.js		the	tests	can	be
run	by	executing		gulp	karma-single		for	a	single	run	or		gulp	karma-tdd		for	continuous
testing.	In	continuous	testing	mode		KarmaJS		watches	for	file	changes	and	then	reruns	the
test.

The	building	process	is	based	on		Gulp		and	has	a	list	of	tasks,	specified	in		gulpfile.js	.
These	tasks	are	named	according	to	the	goal	of	the	task	(e.g.	copy-images).	There	is	also	a
	Makefile		which	can	be	used	to	call	several	Gulp	and	Transifex	tasks	together	to	perform
common	actions.	For	example,	using	the	command		make	package		will	execute	gulp	to	build
the	software,	remove	unnecessary	files,	and	package	it	as	a	zip	file.

Source	management

The	Telegram-Web	repository	is	located	on	GitHub.	The	main	developer	(@zhukov)	uses
one	branch	for	software	development	and	one	for	the	GitHub	pages	hosted	version.

Telegram	Web

434

https://my.telegram.org
https://www.github.com/zhukov/webogram
htps://www.github.com/zhukov

When	users	want	to	contribute	it	is	recommended	to	open	an	issue	for	the	proposed
changes	before	starting	development.	This	helps	to	prevent	unnecessary	effort.	Telegram-
Web	uses	the	forking	workflow.	[5]	In	the	forking	workflow	the	user	forks	the	repository	and
makes	their	changes	in	a	separate	branch.	When	they	have	completed	their	work,	they	can
request	the	code	to	be	merged	into	the	main	repository	by	issuing	a	pull	request.	After	a	pull
request	is	issued,	Igor	Zhukov	reviews	it.	He	decides	whether	to	merge	the	contribution,
request	changes	to	it,	or	reject	it.

Deployment	view
Althought	the	name	of	Telegram-Web	would	suggest	it's	a	web	application	most	of	the
processing	power	is	needed	at	the	Telegram	API,	which	is	out	of	scope	for	this	chapter.
Therefore	only	the	packaging	and	distribution	of	the	client-side	application	will	be	discussed.

Packaged	Apps

All	versions	of	Telegram-Web	can	be	treated	as	a	packaged	app,	through	a	market	place	or
from	the	Webclient.	The	package	is	the	same	for	different	platforms,	although	they	look	at
different	files	to	execute	the	application:

	webogram.appcache	:	hosted	version	of	Telegram-Web;
	manifest.webapp	:	Firefox	Packaged	App;
	manifest.json	:	Chrome	Packaged	App.

The		webogram.appcache		is	a	list	of	files	which	are	downloaded	to	the	users	browser	cache.
The	other	two	are	comparable	to	each	other,	the	Firefox	version	has	more	options	(custom
permission	messages	and	activity	references).

Dependencies

In	the	packaged	manifests	permissions	are	given	to	give	the	user	control	over	the	app.	The
Chrome/Firefox	app	manifest	asks	permission	on	installing,	while	the	hosted	version	asks
permission	whenever	needed.	The	manifest	contains	the	following	permissions:

	notifications	,		push	,	and		desktop-notification	:	these	permissions	are	needed	to
get	notified	on	events	like	receiving	a	message;
	webview		and		fullscreen	:	the	webview	is	needed	to	"embed	guest	content",	since	the
app	is	a	package	webpage,	and	must	be	able	to	go	fullscreen	to	give	the	user	a	full	app
experience;
	{"fileSystem":	["write"]}	,		storage	,		unlimitedStorage	,	and		device-storage:
{music,pictures,sdcard,videos}	:	to	store	received	images;

Telegram	Web

435

http://web.telegram.org

	contacts	:	to	start	a	chat	with	a	known	contact.

Most	of	these	permissions	are	soft	dependencies.	For	example:	a	user	can	only	send	or
receive	a	picture	if	they	access	to	their	storage.	The	same	holds	for	contacts.	In	addition,	if	a
user	denies	push	access	he/she	cannot	receive	notifications.

Throughput	needed

Since	the	packaged	apps	are	served	through	either	the	Chrome	or	Firefox	Marketplace	the
only	infrastructure	needed,	is	for	the	hosted	variant.	The	webcache	consists	of	the	files
specified	in	the	webogram.appcache.	These	files	are	downloaded	from	the	server	(if	caching
is	allowed)	when	a	user	starts	the	app	for	the	first	time	or	when	the	application	is	updated.
All	packaged	versions	are	the	same	and	consist	of	5,65	MB	of	data.	When	removing	the
manifests	and	files	not	specified	in	the		webogram.appcache		5,44	MB	is	used,	divided	over	84
files.

Two	better	known	hosted	versions	of	Telegram-Web	are:

Telegram-Web
Github	Pages	-	Zhukov

For	the	Github	pages	the	NGINX	webserver	is	used	with	a	Content	Delivery	Network	(CDN)
to	distribute	load	across	the	globe.	The	Telegram-Web	headers	show	that	the	webserver
used	is	NGINX	1.6.2.	a	server	which,	depending	on	hardware	and	configuration,	can	handle
over	500.000	requests/sec.	[1]	It	is	more	likely	that	the	server	runs	out	of	bandwith	before	it
reaches	its	requests	threshold.	Using	the	network	bandwidth	available	and	dividing	it	by	the
size	of	a	package,	a	rough	number	of	users	simultaneous	updating	is	calculated.	The	results
of	this	calculation	are	shown	in	table	2.

Speed Updates	/	second Updates	/	Hour

1Gb/s 23 82800

10Gb/s 235 846000

Table	2:	number	of	updates	possible	per	network	bandwith
It	is	hard	to	judge	whether	the	current	infrastructure	is	sufficient	to	allow	all	users	to	update
in	a	timely	fassion.	No	one	besides	the	hosting	party	knows	what	the	current	demand	is
during	updates.	Using	a	CDN	like	the	GitHub	pages	does	mitigate	this	problem.

Internationalization	Perspective

Telegram	Web

436

https://zhukov.github.io/webogram/webogram.appcache
https://web.telegram.org
https://zhukov.github.io/webogram

Rozanski	and	Woods	[13]	describe	the	internationalization	perspective	as	"the
internationalization	perspective	ensures	the	system’s	independence	from	any	particular
language,	country,	or	cultural	group".	The	Telegram	app	is	used	by	milions	of	users	all
around	the	world.	That's	why	the	internationalization	perspective	played	a	significant	role
designing	the	system.	This	section	discusses	how	the	internationalization	perspective
affected	the	system.

Internationalization	of	Project

As	stated	earlier,	the	project	is	hosted	by	GitHub	and	a	number	of	developers	contributed
who	are	from	all	around	the	world	such	as	Argentina,	India,	Taiwan	and	many	more.	[7]	To
enable	people	across	the	world	to	contribute	easily	the	language	used	in	the	code,	in	the
discussions	under	issues,	and	in	the	PR's	is	English.

Localization

Telegram	Messenger	LLP	aims	to	serve	all	the	users	in	the	most	convenient	way	for	them.
This	is	why	they	aim	to	provide	the	service	in	their	own	language.	Currently	Telegram-Web
has	six	different	languages	support.	The	default	language	of	the	app	is	English.	However,
when	the	app	is	visited	and	a	language	has	not	been	set	before	the	browsers	default
language	is	checked.	If	languages	is	supported,	the	app	is	configured	and	shown	in	this
language.	Besides	these	supported	languages	some	language	translations	are	under
development.	For	the	translation	Transifex,	which	will	be	discussed	in	detail	below,	is	used.
Telegram-Web	also	supports	different	accents	in	some	languages.	That	is	why	the
necessary	characters	that	are	used	in	those	accents	are	defined	manually	in	'config.js'	file	as
'Config.LatinizeMap'	variable.

Transifex

Transifex	is	a	third	party	service	that	provides	a	collaborative	localization	platform.	It	is	used
for	each	of	the	client	projects	of	Telegram.	[21]	This	service	has	been	used	for	translations
since	Telegram-Web	became	the	official	web	app	for	Telegram.	The	project	is	managed	by
both	Igor	Zhukov	and	the	Telegram	Head	of	Support,	Markus	Ra.	In	order	to	add	support	for
a	new	language	in	official	Telegram-Web,	it	has	to	be	approved	and	translated	completely.
There	are	currently	seven	languages	that	are	being	translated	by	volunteers	selected	by
Telegram	Support	Team.	These	languages	are	for	example:	Turkish,	Korean	and	Chinese.

Translation	Guideline

Telegram	Web

437

https://www.transifex.com/telegram/telegram-web/
https://www.transifex.com/telegram/telegram-web/

As	a	policy	Telegram	relies	on	volunteers	for	many	services	to	keep	the	Telegram	free.	[22]
Translation	is	one	of	these	services.	The	Telegram	Messenger	LLP	expects	each	client's
translation	to	follow	similar	principles	to	provide	a	pleasant	service	to	the	users.	Translations
must	be:

consistent:	should	be	consistent	in	all	platforms;
natural:	instead	of	translating	word	by	word,	it	should	reflect	the	culture;
default:	similar	to	the	language	that	other	popular	apps	uses;
beautiful:	should	look	like	the	app	is	built	in	that	region;
looks	good:	words	must	not	cause	any	problem	with	UI.

Technical	Debt
Technical	debt	is	the	difference	between	how	a	project	is	run	currently	and	how	it	should	be
run	in	an	optimal	way.	[17]	In	this	section	the	technical	debt	of	the	Telegram-Web	project	will
be	dissected	and	discussed.	The	debt	will	be	discussed	in	three	forms:	architectural	debt,
testing	debt,	and	documentation	debt.	The	evolution	of	the	technical	debt	will	be	examined
and	a	solution/working	method	is	proposed	to	pay	off	the	debt.

Architectural	Debt

Architectural	debt	occurs	when	the	architecture	of	a	software	system	is	not	optimized,
making	development	more	difficult.	The	Module	Structure	Model	shows	that	Telegram-Web
suffers	from	architectural	debt.	This	is	because	most	of	the	code	is	not	split	up	into	modules.
Instead	Telegram-Web	contains	only	a	few	very	large	modules.	Examples	are	the	files
	controllers.js		(2796	LOC)	and		directives.js		(1927	LOC)[22],	both	part	of	the	MyApp
module.	This	is	not	how	the	AngularJS	module	system	is	meant	to	be	used.	The	system's
intention	is	that	every	component	that	implements	a	feature	is	made	into	an	individual
module.	[2]

Comparing	the	current	master	to	the	oldest	version	of	the	Telegram-Web	source	on	GitHub
shows	that	most	of	the	module	structure	remained	unchanged.	Because	the	project	was	a
lot	smaller	back	then,	this	was	not	as	much	of	a	problem	as	it	is	now.

Splitting	the	large	modules	into	smaller	modules	would	not	fix	the	dependency	management,
because	AngularJS	does	not	impose	restrictions	on	module	connectivity.	Migrating	to
Angular	2	would	solve	a	part	of	that	issue	because	it	is	more	strict	and	offers	more	tools	on
module	management.	[3]

SOLID	Violations

Telegram	Web

438

https://github.com/zhukov/webogram/tree/0993489bafdcfb42e568bc69d459bc5a3597c720

Both	the	Single-responsibility	principle	and	the	Open-closed	principle	are	violated	due	to	the
lack	of	module	structure.	[16]	The	lack	of	module	structure	leads	to	a	lack	of	consideration	of
dependencies,	causing	many	components	to	depend	on	many	others.	Because	there	are	no
modules	with	well-defined	interfaces,	all	code	is	open	to	modification.	It	is	also	not	possible
to	depend	on	the	functionality	of	a	single	module,	meaning	that	the	code	is	closed	to
extension.

Because	Telegram-Web	is	not	programmed	using	object-oriented	principles,	the	Liskov
substitution	principle,	Interface	segregation	principle	and	Dependency	inversion	principle	do
not	apply.	[16]

Testing	Debt

Code	needs	to	be	tested	in	order	to	assure	the	quality	and	code	needs	to	conform	to	a	style
in	order	to	improve	the	readability	of	the	code.	Whenever	code	is	not	tested	or	does	not
conform	to	a	code	style	it	creates	testing	debt.	The	testing	debt	of	Telegram-Web	will	be
examined	and	discussed	below.

Code	Testing

Libraries	for	testing	JavaScript	code	are	present	since	pull	request	#1293.	Because	this	pull
request	is	merged	recently,	it	lacks	proper	coverage	by	unit	testing	or	any	other	testing	as
can	be	seen	in	table	3.

File %	Stmts %	Branch %	Funcs %	Lines

js/ 7.51 0.83 1.98 7.52

controllers.js 7.09 1.31 6.47 7.12

directives.js 4.65 0 0.46 4.66

filters.js 9.7 16.67 17.65 9.7

services.js 7.93 0.12 0.77 7.93

templates.js 100 100 100 100

Table	3:	Code	coverage	since	latest	addition	of	tests.	templates.js	is	generated	by	gulp	and
is	fully	tested	via	testing	directives.js
Table	3	shows	that	the	project	doesn't	have	any	UI	or	End-to-End	testing,	because	no
testing	framework	for	these	kind	of	tests	are	added	to	the	project.	It	is	argued	in	PR	#1293
that	most	of	the	code	is	tied	to	UI.	Testing	UI	would	enable	developers	to	check	if	UI
changes	still	conform	to	certain	guidelines,	like	the	one	that	may	be	enforced	on	the	main

Telegram	Web

439

https://github.com/zhukov/webogram/pull/1293
https://github.com/zhukov/webogram/pull/1362/commits/fc87ea450ffbd52d2fbd69e063af16f58678ff56
https://github.com/zhukov/webogram/pull/1293

developer	by	Telegram.	The	exact	guidelines	are	unclear	since	none	were	found.	However,
based	on	issue	#1357,	it	is	more	likely	that	style	is	based	on	the	main	developers	best
judgement.

Code	Style

@zhukov	added	StandardJS	to	the	project	on	the	28th	of	June,	2016,	saying	"for	now	it
doesn’t	pass	well,	but	that’s	a	start".	However,	it	is	not	strictly	required	that	contributions	do
not	add	StandardJS	errors	to	the	code.	The	result	is	a	large	amount	of	errors	in	several	files:
1145	errors	in	ten	non-library	files	and	24414	errors	in	library	files.	Most	of	the	later	errors
are	found	in	app/js/lib/config.js:	23506	errors,	most	of	which	are	spacing	errors	and	the
usage	of	double	quotation	marks	for	strings.

Documentation	Debt

Documentation	is	a	vital	part	of	software	development.	It	increases	the	quality	of	the
software	by	helping	developers	to	follow	the	same	rules.	This	also	increases	the
maintainability	of	the	software.

There	is	no	documentation	that	describes	the	architecture	of	Telegram-Web.	There	is	also
very	little	technical	documentation	with	information	about	the	code.	There	is	some	info	about
localization.	Another	existing	document	which	can	be	considered	technical	documentation	is
the	projects	GitHub	page.

However,	there	is	no	documentation	associated	with	the	source	code.	For	example	there	is
no	document	on	the	data	structures	used	or	explanation	of	the	complex	functions.	AngularJS
provides	an	example	of	how	JSDoc	can	be	used	for	documentation.	[4]	However,	the
Telegram-Web	code	contains	no	documentation	comments,	so	no	documentation	can	be
generated	using	these	tools.

Evolution	of	Technical	Debt

For	checking	the	evolution	of	technical	debt	the	CodeClimate	CLI	tool	is	run	on	branches
over	a	period	of	time,	starting	at	commit	160	and	increasing	by	160,	as	can	be	seen	in	table
3.	These	are	saved	as	JSON	files	which	can	then	be	processed	by	any	common	scripting
language,	in	this	case	PHP.

Telegram	Web

440

https://github.com/zhukov/webogram/issues/1357
https://github.com/zhukov
http://standardjs.com/
https://github.com/zhukov/webogram/blob/master/app/js/locales/README.md
https://github.com/zhukov/webogram

Commit
Hash By Date Message

8743a5d Bart
Heemskerk

2017-02-21
17:06:13	+0100

Removed	npm	libraries	from	Code
Climate	Testing

5cf067a Igor
Zhukov

2016-06-13
15:23:25	+0300 Added	tooltip

2e994c1 Igor
Zhukov

2015-11-29
21:12:40	+0300 Updated	changelog

3c55bed Igor
Zhukov

2015-07-10
19:36:24	+0300 Improved	mobile	UX

a317a5b Igor
Zhukov

2015-03-19
02:44:49	+0300 Bump	to	0.4.1

17e79e7 Igor
Zhukov

2014-12-28
20:54:42	+0100 disabled	own	fonts

6653fe7 Igor
Zhukov

2014-10-27
20:31:00	+0300 Fixed	$timeout

441e7ef Igor
Zhukov

2014-09-15
14:46:11	+0400 Fixed	search	messages	bugs

b996717 Igor
Zhukov

2014-06-09
20:45:32	+0400 Test	cache	manifest	update

b9b7c11 Igor
Zhukov

2014-03-19
15:25:53	+0400

Update	Makefile	to	support	gulp
publish

e999975 Igor
Zhukov

2014-01-23
17:49:24	+0400 File	download	improvements

Table	3:	Evaluated	commits

CodeClimate

CodeClimate	is	a	code	analysis	tool	which	has	a	lot	of	different	configuration	and	so-called
engines.	Each	engine	can	test	the	code	for	a	different	aspect.	Based	on	the	number	of
issues	the	engines	finds	in	a	code	project,	that	project	will	get	a	code	between	0	and	4,	with
4	meaning	that	the	project	has	no	issues.

CodeClimate	was	configured	to	run	three	engines	over	each	commit:

CSS-Lint:	which	validates	css;
ES-Lint:	which	is	a	pluggable	Javascript	linter;
Fixme:	which	checks	the	comments	for	words	indicating	a	'to	do'	like
TODO,BUG,FIXME	or	XXX.

Telegram	Web

441

Graph

The	result	of	running	CodeClimate	on	the	selected	ten	commits	can	be	found	in	figure	5.	On
the	horizontal	axis	of	this	graph	the	number	of	commits	is	shown	instead	of	time.	This	is	to
take	into	account	that	there	were	more	active	and	less	active	periods	in	the	development
period.

Figure	5:	Evolution	over	time,	sorted	by	ES-Lint	and	CSS-Lint	errors

Proposal	for	paying	off	technical	debt

In	order	to	pay	off	the	technical	debt	discussed	in	this	section,	the	following	steps	are
proposed:

1.	 Improve	test	coverage:	as	it	stands	there	is	not	enough	test	coverage	to	guarantee
that	the	functionality	will	remain	the	same	when	drastically	changing	the	architecture.
This	step	has	been	initiated	by	some	contributions,	which	have	added	seven	tests	for
the	controllers.

2.	 Split	larger	files	into	dedicated,	smaller	files:	the	project	consists	of	a	few,	large	files,
each	file	representing	one	module	of	the	system	(like	controllers.js	and	directives.js).	By
splitting	these	modules	into	smaller	modules,	where	each	module	has	its	own	file,	the
project	will	be	more	comprehensible.	Each	file	can	also	get	its	own	dedicated

Telegram	Web

442

http://eslint.org/docs/rules/
https://github.com/CSSLint/csslint/wiki/rules
https://github.com/zhukov/webogram/pulls?utf8=%E2%9C%93&q=%20test%20is%3Apr%20author%3Abartist%20

documentation.
3.	 Refactor	Code	smells:	CodeClimate	has	found	several	code	smells,	like	duplication,

over-complex	functions	and	functions	with	too	many	statements.	Refactoring	the	code
to	eliminate	these	smells	makes	the	code	more	maintainable.

4.	 Migrate	to	Angular	2:	Angular	2	has	better	support	for	managing	the	architecture	and
dependencies	of	the	modules	than	AngularJS.	Migrating	to	Angular	2	will	improve
maintainability,	because	it	has	stronger	reinforcement	of	architectural	principles	(usage
of	modules).

5.	 Add	continuous	intergration:	at	this	point	a	CI	service	should	be	linked	to	the	project,
to	assure	no	new	technical	debt	will	be	introduced.

Conclusion
Telegram-Web	was	studied	in	this	chapter	by	analysing	its	architecture	through	several
views	and	perspectives.	The	development	view	shows	that	Telegram-Web	lacks	a	good
module	structure.	Further	analysis	of	technical	debt	revealed	that	a	lack	of	documentation
and	testing	are	also	issues	for	this	project.	These	issues	undermine	the	development
process	by	slowing	down	developers	who	want	to	add	features	or	fix	bugs.	They	also
discourage	new	developers	that	want	to	contribute	to	the	project.	The	cause	of	this	debt	can
be	attributed	to	the	evolution	of	Telegram-Web,	which	started	as	an	unofficial	client.	Because
the	end-user	does	not	notice	the	debt	directly	and	due	to	practical	constraints,	fixing	it	is	a
low	priority	for	the	maintainer.	However,	paying	some	of	this	debt	would	help	Telegram-Web,
by	making	it	significantly	easier	for	new	developers	to	contribute	to	the	project.	A	plan	is
proposed	to	help	start	this	process.	Several	contributions	have	been	made	to	implement	the
first	steps.

References
1.	 500,000	Requests/Sec	–	Modern	HTTP	Servers	Are	Fast,

https://lowlatencyweb.wordpress.com/2012/03/20/500000-requestssec-modern-http-
servers-are-fast/.	Accessed	19-03-2017.

2.	 AngularJS	Developer	Guide:	Modules	-	Recommended	Setup,
https://docs.angularjs.org/guide/module#recommended-setup.	Accessed	06-03-2017.

3.	 AngularJS	to	Angular	Quick	Reference,	https://angular.io/docs/ts/latest/cookbook/a1-a2-
quick-reference.html.	Accessed	29-03-2017

4.	 AngularJS:	Writing	documentation,	https://github.com/angular/angular.js/wiki/Writing-
AngularJS-Documentation.	Revision	21

5.	 Atlassian:	Forking	Model,	https://www.atlassian.com/git/tutorials/comparing-
workflows#forking-workflow.	Accessed	06-03-2017.

Telegram	Web

443

https://github.com/zhukov/webogram/pulls?utf8=%E2%9C%93&q=%20test%20is%3Apr%20author%3Abartist%20
https://lowlatencyweb.wordpress.com/2012/03/20/500000-requestssec-modern-http-servers-are-fast/
https://docs.angularjs.org/guide/module#recommended-setup
https://angular.io/docs/ts/latest/cookbook/a1-a2-quick-reference.html
https://github.com/angular/angular.js/wiki/Writing-AngularJS-Documentation
https://www.atlassian.com/git/tutorials/comparing-workflows#forking-workflow

6.	 Bots:	An	introduction	for	developers,	https://core.telegram.org/bots	Accessed	02-04-
2017

7.	 Contributors	list,	https://github.com/zhukov/webogram/graphs/contributors.	Accessed
01-04-2017.

8.	 GitHub	Compare	README.md,
https://github.com/zhukov/webogram/commit/05a0ddca0e070216933df81cbaa35c42f82
37bee	Accessed	31-03-2017

9.	 I-hate-farms/hippopogram	GitHub	repository,	https://github.com/I-hate-
farms/hippopogram.	Accessed	27-02-2017.

10.	 LinkedIn	Profile	Igor	Zhukov,	https://www.linkedin.com/in/igorzhukov/.	Accessed	27-02-
2017.

11.	 Most	popular	mobile	messaging	apps	worldwide	as	of	January	2017,
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-
apps/.	Accessed	27-02-2017.

12.	 Once	Celebrated	in	Russia,	the	Programmer	Pavel	Durov	Chooses	Exile,
https://www.nytimes.com/2014/12/03/technology/once-celebrated-in-russia-
programmer-pavel-durov-chooses-exile.html.	New	York	Times,	2014.	Accessed	27-02-
2017.

13.	 Rozanski,Nick	and	Woods,Eoin.	Software	Systems	Architecture:	Working	with
Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.

14.	 rubenlagus/TWebogram	GitHub	repository,	https://github.com/rubenlagus/webogram.
Accessed	27-02-2017.

15.	 Russia’s	Zuckerberg	launches	Telegram,	a	new	instant	messenger	service,
http://www.reuters.com/article/idUS74722569420130830.	Reuters,	2013.	Accessed	27-
02-2017.

16.	 SOLID	principles,	https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-
oriented-design.	Accessed	29-03-2017

17.	 Technical	Debt,	https://github.com/delftswa2017/course-info-
2017/blob/master/slides/04-technical-debt.pdf.	Accessed	29-03-2017

18.	 Telegram	API:	authentication	guide,	https://core.telegram.org/api/auth.	Accessed	06-03-
2017.

19.	 Telegram	API:	security	guideline,	https://core.telegram.org/mtproto/security_guidelines.
Accessed	2017-03-06.

20.	 Telegram	API:	MTProto	protocol,	https://core.telegram.org/mtproto/.	Accessed	06-03-
2017.

21.	 Telegram	Translation	Repositories	at	Transifex,
https://www.transifex.com/telegram/public/.	Accessed	01-04-2017.

22.	 Telegram	Translation	Guideline,	https://core.telegram.org/translating_telegram.
Accessed	01-04-2017.

23.	 Test	coverage	of	Telegram-Web,

Telegram	Web

444

https://core.telegram.org/bots
https://github.com/zhukov/webogram/graphs/contributors
https://github.com/zhukov/webogram/commit/05a0ddca0e070216933df81cbaa35c42f8237bee
https://github.com/I-hate-farms/hippopogram
https://www.linkedin.com/in/igorzhukov/
https://www.statista.com/statistics/258749/most-popular-global-mobile-messenger-apps/
https://www.nytimes.com/2014/12/03/technology/once-celebrated-in-russia-programmer-pavel-durov-chooses-exile.html
https://github.com/rubenlagus/webogram
http://www.reuters.com/article/idUS74722569420130830
https://scotch.io/bar-talk/s-o-l-i-d-the-first-five-principles-of-object-oriented-design
https://github.com/delftswa2017/course-info-2017/blob/master/slides/04-technical-debt.pdf
https://core.telegram.org/api/auth
https://core.telegram.org/mtproto/security_guidelines
https://core.telegram.org/mtproto/
https://www.transifex.com/telegram/public/
https://core.telegram.org/translating_telegram

https://codeclimate.com/github/bartist/webogram/coverage.	Accessed	Build	#7
24.	 Used	3rd	party	libraries	by	Telegram-Web,

https://github.com/zhukov/webogram/blob/master/app/vendor/README.md.	Accessed
06-03-2017.

Telegram	Web

445

https://codeclimate.com/github/bartist/webogram/coverage
https://github.com/zhukov/webogram/blob/master/app/vendor/README.md

Visual	Studio	Code
By	Daan	Schipper,	Julian	Faber,	Rick	Proost	and	Wim	Spaargaren.
Delft	University	of	Technology

Visual	Studio	Code	is	a	lightweight	open	source	text	editor	developed	under	Microsoft	and
can	be	contributed	to	through	the	GitHub	repository		vscode	.	Extra	functionality	for	Visual
Studio	Code	is	provided	by	means	of	extensions,	which	can	also	be	developed	by	third	party
developers.	This	chapter	gives	an	overview	of	several	software	architectural	views	and
perspectives,	and	describes	the	structure	of	the	project.	First	the	stakeholders	of	Visual
Studio	Code	are	discussed	and	the	results	of	an	interview	with	one	of	those	stakeholders	is
shown.	After	this,	the	people,	system	and	other	external	entities	with	which	Visual	Studio
Code	interacts	is	detailed.	Next,	the	software	development	process	is	described	and	the
functional	elements	of	Visual	Studio	Code	are	examined.	Moreover,	the	performance	of
Visual	Studio	code	is	analysed,	and	lastly	the	included	features	of	Visual	Studio	Code	are
discussed.

Table	of	contents
Introduction
Features
Stakeholders
Integrators
Context	view
Development	View
Functional	View
Performance	and	scalability
Conclusion
References

VSCode

446

https://github.com/daanschipper
https://github.com/julianfx
https://github.com/rpjproost
https://github.com/wimspaargaren
https://code.visualstudio.com/
https://github.com/microsoft/vscode

Introduction
This	chapter	will	give	an	overview	on	the	architecture,	structure,	workflow	and	testing	in	the
development	environment	of	Visual	Studio	Code.	Visual	Studio	Code	is	a	new	type	of	tool
that	combines	the	simplicity	of	a	code	editor	with	what	developers	need	for	their	core	edit-
build-debug	cycle.	Visual	Studio	Code	provides	comprehensive	editing	and	debugging
support,	an	extensibility	model,	and	lightweight	integration	with	existing	tools.	Visual	Studio
Code	is	updated	monthly	with	new	features	and	bug	fixes.	It	can	be	downloaded	for
Windows,	Mac	and	Linux	on	the	Visual	Studio	Code's	website.	The		vscode		repository	is
where	developers	can	contribute	by	adding	issues	or	making	pull-requests.	Visual	Studio
Code	is	developed	and	made	open-source	by	Microsoft,	because	there	was	no	lightweight
alternative	provided	by	Microsoft	for	their	more	complex,	fuller	featured	IDE,	Visual	Studio.
Visual	Studio	Code	therefore	comes	without	compilers	to	stay	lightweight,	but	can	still	utilize
them	by	installing	extensions.	In	this	chapter,	the	Visual	Studio	Code	environment	is
described	in	several	different	perspectives.

Features
This	section	gives	an	overview	of	the	different	features	of	Visual	Studio	Code.	In	Figure	1	an
overview	of	the	different	features	of	Visual	Studio	Code	can	be	found.

VSCode

447

https://code.visualstudio.com
https://code.visualstudio.com/Download
https://github.com/microsoft/vscode

Figure	1:	Visual	Studio	Code	feature	overview.

Out	of	the	box,	over	30	different	programming	languages	are	supported.	For	these
languages	Visual	Studio	Code	provides	syntax	highlighting,	auto-indention	and	code
completion	by	using	IntelliSense.	IntelliSense	includes	a	variety	of	code	editing	features
such	as	code	completion,	parameter	info,	quick	info	and	member	lists	which	can	be	seen	in
Figure	2.

VSCode

448

https://code.visualstudio.com/docs/languages/overview
https://code.visualstudio.com/docs/editor/intellisense

Figure	2:	IntelliSense	auto	completion	in	Visual	Studio	Code	(source).

Visual	Studio	Code	also	provides	an	interactive	debugging	tool,	which	makes	users	able	to
step	through	source	code	and	inspect	variables	for	example.	The	debug	screen	can	be	seen
in	Figure	3.

Figure	3:	Debug	support	in	Visual	Studio	Code	(source).

Visual	Studio	Code	also	has	integrated	Git	support,	for	the	most	common	git	commands.	In
Figure	4	an	overview	of	the	git	support	is	shown.

VSCode

449

https://code.visualstudio.com/docs/editor/intellisense
https://code.visualstudio.com/docs/editor/debugging
https://code.visualstudio.com/docs/editor/debugging
https://git-scm.com/

Figure	4:	Visual	Studio	Code	git	integration	(source).

Third	party	developers	can	also	write	extensions	for	Visual	Studio	Code	to	provide	extra
functionality	to	the	core	program.	These	extensions	can	be	installed	by	users	through	the
Extensions	Marketplace.

Stakeholders
Stakeholders	are	the	people,	groups	or	entities	with	an	interest	in	an	organization.	Visual
Studio	Code	is	a	large	open-source	project	in	which	many	stakeholders	are	involved.
Rozanski	and	Woods	[1]	classify	multiply	stakeholders,	the	most	important	for	Visual	Studio
Code	are	described	below.

Developers

Developers	are	defined	as	the	stakeholders	who	construct	and	deploy	the	system	from
specifications	(or	lead	the	team	that	do	this).	The	development	teams	located	in	Zürich	and
Redmond	are	the	main	developers	of	Visual	Studio	Code.	These	are	the	developers	which
can	be	assigned	to	issues	and	merge	pull	requests	on	the	Microsoft	Visual	Studio	Code
GitHub	repository.	The	developers	of	Visual	Studio	Code	try	to	process	the	issues	on
GitHub,	which	improves	the	program	with	new	features	or	bug	fixes.

Users

VSCode

450

https://code.visualstudio.com/docs/editor/versioncontrol
https://marketplace.visualstudio.com/

Users	are	defined	as	the	stakeholders	who	define	the	system's	functionality	and	ultimately
make	use	of	it.	Users	of	Visual	Studio	Code	are	software	developers.	The	interest	of	users	in
Visual	Studio	Code	is	that	it	is	a	lightweight	tool,	and	is	free	to	use.	Visual	Studio	Code
provides	the	simplicity	of	a	code	editor	with	what	developers	need	for	their	core	edit-build-
cycle.	Users	can	influence	the	system	by	requesting	new	features	and	reporting	bug	fixes	on
GitHub.

Support	staff

Support	staff	is	defined	as	the	stakeholders	who	provide	support	to	the	users	for	the	product
or	system	when	it	is	running.	Visual	Studio	Code	provides	support	to	users	in	four	different
ways.	Coding	questions	can	be	asked	on	Stack	Overflow.	Bug	reports	and	new	feature
requests	can	be	done	via	issues	on	GitHub.	For	other	feedback	Twitter	is	used	and	it	is	also
an	option	to	send	an	e-mail	with	comments	or	questions.	The	different	types	of	support	can
be	accessed	through	the	following	links:

Stack	Overflow
GitHub
Twitter
opencode@microsoft.com

Integrators
In	this	section	the	Visual	Studio	Code	workflow	is	described.	It	explains	how	newly	written
code	gets	placed	in	production,	whether	it	is	written	by	a	Visual	Studio	Code	developer,	or	a
contributor.	It	also	gives	insight	on	how	large	software	projects	can	handle	overhead	of
having	a	lot	of	developers	and	contributors.

Integrators	are	the	ones	that	decide	whether	new	code,	or	changes	to	old	code,	can	be
merged	with	the	actual	code	in	production.	The	tasks	and	challenges	which	these	integrators
have,	are	therefore	analyzing	pull	requests	and	review	them	by	making	comments	or	even
suggestions.	When	code	is	approved	by	the	integrator,	or	multiple	integrators,	it	can	be
merged	to	production	code.	Often	the	integrators	also	have	a	lot	of	involvement	in	the
planning	and	road	map,	so	they	prioritize	issues	at	hand,	but	also	discuss	new	features.	In
short,	integrators	will	deal	with	importance,	as	well	as	feasibility	of	issues,	coding	standards,
such	as	commenting	and	naming	conventions,	and	make	sure	code	is	in	line	with	software
architecture	or	discusses	refactoring	if	needed.	Also,	large	features	that	influence	the
architecture	of	the	code	base,	or	user	interface,	are	only	assigned	to	the	development	team.

VSCode

451

http://stackoverflow.com/questions/tagged/vscode
https://github.com/Microsoft/vscode/blob/master/CONTRIBUTING.md
https://twitter.com/code
mailto:opencode@microsoft.com

Figure	5:	Pull-request	workflow	(source).

Figure	5	depicts	the	actual	workflow	of	adding	newly	developed	code	to	the	project.

Integrators	Visual	Studio	Code

It	is	hard	to	really	determine	every	integrator	in	the	Visual	Studio	Code	team,	because
everyone	in	the	team	can	be	assigned	as	reviewer.	Although	everyone	of	them	can	review,
not	everyone	of	them	can	integrate	or	in	other	words	merge.	The	most	interesting	part	found
during	the	pull	request	analysis	is	that	there	are	different	integrators	for	different	parts	of	the
system.	The	Visual	Studio	Code	team	also	automated	the	assigning	process	of	integrators
to	pull	requests	by	having	a	bot	analyze	the	history	of	the	changed	files.	The	integrators	then
spend	2-3	hours	a	day	to	give	advise	or	merge	pull	requests,	told	by	@egamma	in	the
interview.	Coding	guideline	and	continuous	integration	are	also	used	in	the	process	of
reviewing,	these	are	discussed	further	in	the	chapter.

Feasibility

Integrators	of	Visual	Studio	Code	accept	small	changes	from	the	community	fairly	quick.	The
integrators	also	warn	contributors	when	they	are	in	over	their	heads,	or	just	may	need	to
invest	a	lot	of	their	time	if	they	continue	on	the	selected	issue.	The	bigger	features	and	tasks
are	at	request	in	Visual	Studio	Code,	and	normally	only	distributed	to	the	Visual	Studio	Code
team.	The	integrators	at	Visual	Studio	Code	mostly	have	an	idea	on	how	a	solution	must	be
to	fit	in	the	architecture,	so	the	integrators	will	also	deny	workarounds	and	tell	you	upfront
when	another	bigger	solution	is	expected.

Context	view

VSCode

452

https://docs.rhodecode.com/RhodeCode-Enterprise/collaboration/pr-flow.html
https://github.com/egamma

The	context	view	of	a	system	defines	the	relationships,	dependencies,	and	interactions
between	the	system	and	its	environment.	The	environment	in	the	context	are	the	people,	the
systems,	and	external	entities	with	which	the	system	interacts	[1].	The	context	view	diagram
in	Figure	6	shows	the	identified	entities	and	in	what	way	they	relate	to	Visual	Studio	Code
and	each	other.

Figure	6:	Context	view	diagram

The	project	is	built	using	Electron,	which	takes	TypeScript,	JavaScript,	CSS,	and	HTML	and
builds	it	into	executables	for	the	different	operating	systems.	The	website	for	Visual	Studio
Code	then	distributes	these	built	executables	for	each	of	the	operating	systems.	Next	to
distribution	the	website	also	gives	documentation	such	as	the	API,	docs,	updates	on	new
versions,	and	a	blog.

Another	important	element	in	the	context	of	Visual	Studio	Code	are	extensions.	These
extensions	are	generally	developed	by	external	developers	to	give	extra	functionality	to
Visual	Studio	Code	and	to	personalize	the	experience	for	each	user.	An	example	is	an
extension	that	provides	supplementary	programming	language	support,	like	syntax
highlighting	and	debugging.

GitHub	is	used	to	manage	the	code	and	track	issues	provided	by	users	and	developers,
which	can	then	be	solved	through	contribution.	The	GitHub	repository	also	includes	a	wiki
which	describes	among	other	things	how	the	project	is	structured,	how	you	can	contribute,
and	links	to	resources.

The	main	stakeholders	included	in	this	diagram	are	the	acquirer	Microsoft,	the	developers,
and	the	competitors.	The	users	and	developers	are	treated	as	the	same	entity,	because	they
perform	similar	roles	in	the	context	of	Visual	Studio	Code.	Some	of	the	competitors	that	are
identified	are	Atom,	Sublime,	Vim,	and	Neovim,	but	many	other	similar	editors	are	available.

VSCode

453

These	are	competitors	because	all	of	them	strive	to	be	lightweight	text-editors	and	provide
extra	functionality	besides	just	editing	text.	An	IDE	like	IntelliJ,	for	example,	is	not	considered
a	competitor,	since	it	is	more	complex	in	use	and	not	as	lightweight.

Development	view
This	section	describes	the	architecture	that	support	the	software	development	process,	the
way	the	code	is	structured	and	the	standardization	of	design	and	testing.

Module	organization

Visual	Studio	Code	consists	of	a	layered	and	modular	core	that	can	be	extended	using
extensions	as	seen	in	Figure	7.	Extensions	are	run	in	a	separate	process	referred	to	as	the
extension	host,	which	utilises	the	extension	API.

Figure	7:	Module	organization

Target	environments

VSCode

454

The	core	of	Visual	Studio	Code	is	fully	implemented	in	TypeScript.	Inside	each	layer	Visual
Studio	Code	is	organized	by	the	target	runtime	environment.	These	layers	will	be	explained
in	detail	in	the	next	section.	This	ensures	that	only	the	runtime	specific	APIs	are	used.	In	the
Visual	Studio	Code	project,	the	following	target	environments	have	been	distinguished:

common:	Source	code	that	only	requires	basic	JavaScript	APIs	and	run	in	all	the	other
target	environments.
browser:	Source	code	that	requires	the	browser	APIs	like	access	to	the	DOM.
node:	Source	code	that	requires	Nodejs	APIs
electron-browser:	Source	code	that	requires	the	Electron	renderer-process	APIs
electron-main:	Source	code	that	requires	the	Electron	main-process	APIs

The	code	is	organized	this	way	because	of	the	API-like	architecture	the	Visual	Studio	Code
team	applied.	The	layered	way	of	splitting	the	project	means	that	the	base	does	not	depend
on	anything	else	then	the	base.	The	API-like	architecture	means,	that
configurations/services/extensions	can	inject	almost	all	kind	of	data	that	Visual	Studio	Code
relies	on.	Outside	developers	can	thus	make	modifications	to	Visual	Studio	Code	without
learning	the	whole	system.	Developing	new	extensions	also	becomes	more	attractive,	since
a	service	or	lots	of	data	can	easily	be	injected.	The	editor	layer	of	Visual	Studio	Code,	is	also
a	stand-alone	editor,	called	Monaco	Editor,	and	therefore	a	very	modular	part	of	the	project.

Codeline	organization

The	core	of	Visual	Studio	Code	is	partitioned	into	the	following	layers:

base:	Provides	general	utilities	and	user	interface	building	blocks
platform:	Defines	service	injection	support	and	the	base	services	for	Visual	Studio	Code
editor:	The	"Monaco"	editor	is	available	as	a	separate	downloadable	component
workbench:	Hosts	the	"Monaco"	editor	and	provides	the	framework	for	"viewlets"	like
the	Explorer,	Status	Bar,	or	Menu	Bar,	leveraging	Electron	to	implement	the	Visual
Studio	Code	desktop	application.	Next	the	layers	are	detailed	and	the	functionality	of
each	is	explained.

The	base	layer

The	code	present	is	the	base	layer	is	used	throughout	Visual	Studio	Code.	The	common
environment	provides	amongst	others	the	structure	to	handle	errors	in	Visual	Studio	Code,
processes	the	events	and	declares	the	URI	and	UUID.	In	the	common	environment	the	code
ranges	widely	from	simple	functions	to	reduce	code	duplication,	such	as	returning	a	hash
value	for	an	object,	to	complex	code	which	handles	asynchronous	processes.	Also,	the
structure	to	handle	errors	is	declared	in	the	common	environment,	as	well	as	event	handling
and	declaration	of	URIs	and	UUIDs.

VSCode

455

https://github.com/Microsoft/monaco-editor

In	the	node	environment	functionalities	are	present	that	read	the	configuration	files,	handle
the	checksum	for	encryption,	character	encoding	and	decoding,	directory	and	file
manipulation	and	network	handling.	The	imported	modules	are	related	to	operating	system-
related	utility	methods,	such	as	reading	and	writing	of	files,	on	the	system	on	which	Visual
Studio	Code	runs	on.	Network	modules	are	also	imported	in	this	module	to	interact	with	the
web.

Besides	the	standard	environments		browser	,		common		and		node	,	the	base	layer	also
contains	the		parts		and		worker		environments.

The	parts	environment	consists	of	three	parts.	The	first	part	is		ipc	,	which	stands	for	inter-
process	communication.	As	the	name	suggest,	this	handles	the	communication	between
processes	in	Visual	Studio	Code.	Next	is	the		quickopen		part,	this	handles	the	functionality
of	the	quick	open	file	menu.	Lastly	is	the	part	called		tree	,	which	is	the	base	of	the
implementation	of	the	DOM	tree	of	Visual	Studio	Code.	This	includes	the	data	the	tree
contains	and	the	frequently	used	code	to	render	the	tree.

The	final	environment	is	the	worker	environment.	A	worker	is	a	script	that	runs	in	the
background,	independently	of	other	scripts	without	affecting	the	performance	of	the	page.	In
this	environment	the	implementation	of	a	worker	is	present	as	well	as	a	worker	factory.

The	platform	layer

The	platform	layer	defines	service	injection	support	and	the	base	services	for	Visual	Studio
Code.	The	Visual	Studio	Code	project	is	organized	around	services	of	which	most	are
defined	in	the	platform	layer.	Services	is	able	to	reach	the	clients	via	constructor	injection.

A	service	definition	consists	of	two	parts:	the	interface	of	a	service,	and	a	service	identifier.
The	latter	is	required	because	TypeScript	doesn't	use	nominal	but	structural	typing.	A
service	identifier	is	a	decoration	and	should	have	the	same	name	as	the	service	interface.

The	platform	layer	builds	upon	the	base	layer,	it	creates	instances	and	registers	services	for
almost	all	things	you	see	and	do	not	see	in	Visual	Studio	Code.	Commands	through	the
developer	pallette,	keybindings,	clipboard	are	all	handled	by	the	platform	layer,	but	also	the
visible	parts,	like	searchbar,	markers	are	all	handled	here.	The	workbench	layer	in	its	turn
builds	upon	the	platform	layer,	which	initializes	much	more	details,	like	CSS,	that	are	not
handled	in	the	platform.

Extensions	are	all	instantiated	and	registered	through	the	platform	layer,	which	give	the
extensions	a	lot	of	power	over	the	Visual	Studio	Code	system.

The	editor	layer

VSCode

456

The	editor	layer	is	the	part	of	the	system	that	handles	the	functionality	and	displaying	of	the
Monaco	Editor.	It	handles	everything	from	syntax	highlighting	for	different	languages	to	user
input	like	copying,	pasting	and	selecting	text.

Also	services	are	defined	in	the	editor	layer,	which	can	be	used	by	the	controllers	to	fetch
certain	data.	One	of	these	services	is	TextMate,	which	interprets	grammar	files	for	the	use	of
text	highlighting.

The	final	part	of	the	editor	layer	is	contributions.	Contributions	are	separate	components	that
extend	the	functionality	of	the	editor.	The	functionalities	are	for	example	hiding	and	unhiding
(block)comments,	code	indentation,	and	the	usage	of	links.	The	contributions	have	styling
elements	included	where	applicable	(e.g.	link	highlighting),	and	in	some	cases	their	own
tests.

The	workbench	layer

The	workbench	layer	hosts	the	Monaco	Editor	and	provides	the	framework	for	viewlets.
These	viewlets	are	for	example	the	explorer,	status	bar	and	menu	nar	and	make	use	of	the
Electron	framework.

The	common	environment	has	one	component,	namely	the	editor.	The	different	editor
components	implement	the		baseTextEditorModel		from	the		editor		module.	Furthermore
there	are	components	like		panel	,		options		and		viewlet	.	All	of	these	components	provide
interfaces	for	common	environment	of	the	workbench.

The	electron-browser	environment	implements	the	actual	GUI	of	the	workbench,	which	is
based	on	the	Electron	framework.	An	overview	of	this	component	is	shown	in	Figure	8.	The
	main		component	fires	up	the	workbench.	First	the		shell		component	is	called.	The		shell	
component	contains	the	different	components	from	which	the	actual	workbench	is	build.	The
shell	makes	use	of	five	components.

	crashReporter	:	handles	the	workbench	in	case	of	a	crash.
	nodeCachedDataManager	:	saves	the	settings	of	the	workbench.
	command	:	handles	the	different	keybindings	which	can	be	use	in	the	workbench.
	extensionHost	:	handles	the	different	extensions	installed	in	the	workbench.
	actions	:	handles	all	sorts	of	actions	which	can	be	done	in	the	workbench,	such	as
zooming	in/out,	switching	from	window	and	opening	a	new	window.

VSCode

457

https://github.com/Microsoft/monaco-editor
https://github.com/Microsoft/monaco-editor
https://electron.atom.io/

Figure	8:	Workbench	electron-browser	component

The		parts		environment	contains	all	components	which	together	compose	the	Visual	Studio
Code	workbench.	There	are	at	the	moment	of	writing	twenty	eight	different	parts.	Examples
of	parts	are		git	,		search		and		output	.

A	set	of	rules	have	been	defined	which	each	part	must	obey:

There	cannot	be	any	dependency	from	outside	vs/workbench/parts	into
vs/workbench/parts.
Every	part	should	expose	its	internal	API	from	a	single	file	(e.g.
vs/workbench/parts/search/common/search.ts).
A	part	is	allowed	to	depend	on	the	internal	API	of	another	part	(e.g.	the	git	part	may
depend	on	vs/workbench/parts/search/common/search.ts).
A	part	should	never	reach	into	the	internals	of	another	part	(internal	is	anything	inside	a
part	that	is	not	in	the	single	common	API	file).

Standardization

Visual	Studio	Code	is	a	code	editor	used	by	over	four	million	active	users	that	welcomes
developers	to	contribute.	Without	standardization	of	code	and	testing,	contributions	are	not
properly	developed	and	the	code	base	becomes	a	disaster.	Contributors	can	submit	bug
reports,	suggest	new	feature,	build	extensions,	comment	on	new	ideas,	or	submit	pull
requests.

VSCode

458

Visual	Studio	Code	has	a	wiki	where	developers	can	find	information	about	the	code	base
and	instructions	on	how	to	build	Visual	Studio	Code	from	the	source.	A	detailed	explanation
on	how	you	can	contribute	is	also	listed	in	the	wiki.	Coding	guidelines	are	also	listed	on	the
wiki	which	define	how	code	should	be	written	in	order	to	keep	every	file	readable	and
maintainable.

Visual	Studio	Code	uses	tools,	called	linters,	to	enforce	the	coding	guidelines.	These	tools
have	configuration	files	and	are	set-up	in	the	git	root	of	Visual	Studio	Code.	By	installing
these	linters	as	extensions	in	Visual	Studio	Code,	developers	get	notified	by	visualized
errors	and	other	kind-of	messages	in	the	editor.	The	linters	perform	static	analysis	over
written	code,	following	the	rules	in	the	specified	config	files.

Furthermore,	Visual	Studio	Code	is	tested	with	the	use	of	the	JavaScript	testing	framework
Mocha.	Also	a	smoke	test	is	performed	before	each	release.	This	Smoke	test	is	carried	out
to	make	sure	all	major	functionality	works	as	intended.

Lastly,	Visual	Studio	Code	uses	Travis	CI	and	Appveyor	for	continuous	integration	on
GitHub.	Travis	CI	is	used	for	testing	if	the	build	runs	on	Linux	and	Mac	OS.	AppVeyor	runs
the	build	test	on	Windows.

Technical	debt

Technical	debt,	also	known	as	design	debt	or	code	debt,	is	a	concept	in	programming	that
reflects	the	extra	development	work	that	arises	from	wrong	implementations.	When	code
that	is	easy	to	implement	in	the	short	run	is	used	instead	of	applying	the	best	overall
solution,	adjustments	need	to	be	made	in	the	long	run.	The	overall	best	solution	stems	from
the	architecture	used	and	followed	for	the	system	being	developed,	so	identifying	technical
debt	requires	knowledge	of	the	used	architecture	and	implementation	of	existing	code.
Technical	debt	can	also	arise	from	different	usage	of	multiple	different	syntaxes	in	one
programming	language.	This	causes	readability	of	code	to	decrease	and	maintaining	code
gets	more	difficult.

Identifying	technical	debt

As	mentioned	in	the	standardization	section,	Visual	Studio	Code	make	use	of	linters.	Rules
for	naming	conventions,	type	casting,	and	code	styles	are	written	here	to	ensure	that
contributors	to	Visual	Studio	Code	do	not	create	an	increase	in	technical	debt.	Whenever	the
contributor	does	not	install	these	linters,	they	get	notified	by	the	pre-commit	checks	which
Visual	Studio	Code	offers.	If	these	checks	fail,	it	means	there	is	some	sort	of	technical	debt
which	must	be	fixed	before	being	able	to	commit	and	push	the	desired	contribution.

VSCode

459

https://github.com/microsoft/vscode/wiki
https://github.com/Microsoft/vscode/wiki/Coding-Guidelines
https://github.com/Microsoft/vscode/wiki/Coding-Guidelines
https://mochajs.org/
https://github.com/Microsoft/vscode/wiki/Smoke-Test
https://travis-ci.org/
https://www.appveyor.com/

In	the	development	view	the	layers	of	Visual	Studio	Code	were	identified.	One	reason	for	the
layered	structure	was	the	low	dependency	in	the	layers.	MaDGe	is	a	tool	for	checking
dependency	between	Javascript	files	and	can	be	used	to	test	the	previously	mentioned	low
dependency.	The	conclusion	can	be	drawn	after	running	the	tool	that	no	technical	debt	can
be	found	by	inspecting	dependency	here.

Identifying	testing	debt

At	the	moment	of	writing,	2832	unit	tests	are	written	for	Visual	Studio	Code.	The	unit	tests
can	be	easily	run	through	the	command	line,	which	takes	about	fourteen	seconds	to	carry
out.	Visual	Studio	Code	provides	a	way	to	generate	a	coverage	report,	as	described	on	their
wiki	page.	This	coverage	report	generates	an	HTML	website	which	include	test	coverage	of
every	component.	In	Figure	9	the	overall	code	coverage	result	is	shown.

Figure	9:	The	overall	code	coverage	of	Visual	Studio	Code.

The	generated	report	divides	test	quality	in	three	different	categories:		bad	,		medium		and
	good	.	At	the	moment	of	writing,	the	overall	code	coverage	of	Visual	Studio	Code	has	a
medium	code	coverage.

This	testing	debt	can	be	improved	by	simply	adding	more	tests.	This	could	be	done	by	just
hiring	extra	developers	whose	primary	task	is	to	expand	the	amount	of	tests.	Also	various
testing	tools	are	available	to	automate	this	process.

A	possibly	better	way,	would	be	to	let	contributors	test.	Letting	contributors	improve	the
testing	debt	which	can	be	done	as	follow.	Test	cases	could	be	added	as	issues	on	GitHub	for
contributors	to	implement,	since	this	is	not	done	currently.	Another	possibility	is	to	demand
unit	test	for	each	contribution.	This	way	code	which	is	added	by	contributors	outside	of	the
Visual	Studio	Code	core	development	team	is	automatically	tested.

Discussion	about	technical

The	discussion	of	technical	debt	is	mostly	present	on	GitHub.	A	label	'debt'	exists	to	mark
related	issues	and	in	the	monthly	iteration	plans	developers	can	be	assigned	to	work	on	an
issue	related	to	technical	debt.	On	GitHub	the	monthly	iteration	plan	is	presented,	of	which
some	tasks	are	categorized	as	technical	debt.

Also	TODO	mentions	are	present	in	the	source	code,	of	which	most	are	assigned	to	a
specific	developers.	This	ensures	that	the	problem	is	not	left	as	is.

VSCode

460

https://github.com/pahen/madge
https://github.com/Microsoft/vscode/blob/master/test/README.md
https://github.com/delftswa2017/team-vscode/tree/master/deliverables/d3/coverage
http://www.softwaretestinghelp.com/most-popular-web-application-testing-tools/

Functional	view
The	Functional	view	of	a	system	defines	the	architectural	elements	that	deliver	the	system’s
functionality	[1].	The	view	shows	the	key	functional	elements,	the	external	interfaces,	and
the	internal	structure	of	the	system.

Functional	capabilities

Functional	capabilities	define	what	the	system	is	required	to	do	and	what	it	is	not	required	to
do	[1].	Since	Visual	Studio	Code	strives	to	be	a	lightweight	code	editor,	the	main
functionalities	that	it	needs	to	have	coincide	with	that.	Table	1	shows	the	core	functionalities
required	of	Visual	Studio	Code	and	describes	what	their	responsibilities	are.

Functionality Description

Editor

The	main	component	of	the	system	is	the	editor	itself,	which	Visual
Studio	Code	calls	the	Monaco	editor.	Its	main	responsibilities	are
showing	the	text	from	files,	syntax	highlighting,	and	the	editing	of	the
text	in	the	file.

Search The	search	functionality	enables	the	user	to	search	for	occurrences	in
files.	It	also	gives	the	functionality	to	replace	these	occurrences.

Explorer
The	file	explorer	displays	the	folder	structure	of	an	opened	folder	and
shows	the	contained	files.	Next	to	this	it	also	has	the	functionality	to
change	between	editors	and	show	the	open	editors.

Debugging
The	debugging	component	allows	for	debugging	applications	written	in
Visual	Studio	Code.	Using	breakpoints	and	a	debugging	environment,
the	code	of	the	program	being	debugged	can	be	analyzed.

Marketplace The	marketplace	provides	a	way	to	install	new	extensions	and	provide
information	on	these	extensions.

Use
extensions

The	system	enables	the	use	of	external	extensions	to	change	how
certain	parts	of	Visual	Studio	Code	work.	It	makes	changes	by	being	a
connection	between	the	extensions	and	the	program.

Git The	git	component	allows	the	user	to	make	use	of	git	version	control	in
Visual	Studio	Code	itself.

Table	1:	Functional	capabilities

For	a	text	editor	it	is	clear	what	it	is	not	required	to	do,	for	example	IDE's	can	compile	the
written	code	and	a	text	editor	should	not.	Since	Visual	Studio	Code	is	more	than	just	a	text
editor	there	are	functionalities	that	are	not	part	of	its	responsibilities.	As	an	example,	it
should	not	directly	implement	the	functionalities	of	external	extensions,	since	this
responsibility	lies	with	the	extension	itself.	From	the	interview	it	is	know	that	Visual	Studio

VSCode

461

Code	tries	to	be	inbetween	text	editors	and	IDE's,	such	that	it	takes	useful	functionalities
from	the	IDE	but	still	keeping	the	lightweight	aspect	of	editors.	This	means	that	it	should	not
require	functionalities	to	make	it	a	full-blown	IDE.

External	interfaces

The	external	interfaces	provided	by	Visual	Studio	Code	mainly	concern	functionality	to	make
extension	development	possible.	Among	other	things	the	functionality	concerns	making
changes	to	the	editor,	such	that	syntax	highlighting	for	different	languages	can	be	achieved.
Next	to	that	it	also	allows	specific	debuggers	for	languages	to	be	made.	There	are	too	many
interfaces	to	completely	list	them	in	this	report,	so	for	a	full	list	of	available	external
interfaces	refer	to	the	API.	As	an	example	of	what	is	provided,	table	2	shows	a	few	of	the
accessable	interfaces.

Namespace Description

window The	window	namespace	deals	with	the	current	window	of	the	editor,	it
shows	messages	to	user	and	keeps	track	of	open	editors.

extensions Provides	the	ability	to	get	extension	by	their	id	and	can	then	activate
them,	this	way	extensions	can	make	use	of	other	extensions.

CommentRule Holds	the	properties	of	how	line	and	block	comments	for	a	language
work.

TextDocument

Represents	a	text	document,	such	as	a	source	file.	It	holds	properties
for	the	filename,	the	uri	of	the	file,	and	the	number	of	lines.	It	also
provides	functionality	for	getting	the	text	from	the	document	and
saving	the	file.

TextEditor Represents	the	text	editor	that	is	attached	to	a	document,	it	holds	the
selected	text	and	it	can	perform	edits	and	decorate	text.

Table	2:	Examples	of	external	interfaces

Internal	structure

In	the	section	on	the	development	view	the	different	environments	of	Visual	Studio	Code	are
described,	namely	the	base,	code,	editor,	platform,	and	workbench	environments.	Each	of
the	different	functionalities	belong	to	different	environments,	which	are	as	follows:

The	search,	explorer,	debugging,	marketplace,	and	git	functionalities	are	a	part	of	the
workspace	environment.
The	use	of	extensions	is	a	part	of	the	platform	environment.
The	entire	editor	funcitonality	is	the	editor	environment.

VSCode

462

https://code.visualstudio.com/docs/extensionAPI/vscode-api

Performance	and	scalability
Performance	and	scalability	are	important	factors	in	big	software	projects.	These	factors
should	be	kept	in	mind	from	the	start,	while	performance	regression	in	an	early	level	might
not	be	noticeable,	but	when	scaling	to	many	users,	or	to	large	files,	in	the	case	of	Visual
Studio	Code,	the	system	should	still	be	working	properly.

Desired	quality

The	desired	quality	of	Visual	Studio	Code	is	to	be	a	lightweight	code	editor,	which	supports
developers	in	their	core	edit-build-debug	cycle.	To	satisfy	this,	Visual	Studio	Code	should
perform	well	in	both	real	and	perceived	performance.	To	effectuate	this,	Visual	Studio	Code
tries	to	let	the	user	experience	be	lightweight	as	well.	And	to	keep	up	the	performance	of
Visual	Studio	Code,	feature	owners	need	to	agree	with	any	architectural	impact	a	change
may	make.

Applicability

Since	Visual	Studio	Code	is	lightweight	the	requirements	to	run	Visual	Studio	Code	are	that
it	should	run	on	recent	hardware.	It	is	recommended	to	use	a	processor	of	1.6GHz	or	faster
and	at	least	1	GB	of	ram.	Though	the	performance	of	Visual	Studio	Code	itself	is	tested	and
known,	there	are	elements	from	which	the	performance	is	unknown.	Namely	the	extensions
which	can	be	installed	from	the	marketplace,	since	these	extensions	are	developed	by	third
party	developers.

Concerns

One	of	the	biggest	concerns	for	Visual	Studio	Code	is	the	response	time.	It's	important	that
users	do	not	have	to	wait	considerably	long	for	opening	files,	since	this	reduces	the	time
they	are	able	to	develop	software.	This	response	time	can	be	combined	with	the	peak	load
behavior	when	large	files	are	opened.	This	causes	peak	load	behavior,	since	the	whole	file
needs	to	be	loaded.
To	reduce	these	concerns	Visual	Studio	Code	tries	to	tackle	the	predictability	concern,	by
providing	stable	releases	every	month.

Activities

To	visualize	performance	of	Visual	Studio	Code,	practical	testing	is	needed.	It	is	difficult	to
determine	good	practical	tests,	while	Visual	Studio	Code	can	be	used	in	many	ways.	This	is
why	practical	tests	gives	the	developer	insight	of	performance	on	specific	scenarios	and	not

VSCode

463

https://code.visualstudio.com/docs/supporting/requirements

project	wide	performance.

The	next	practical	tests	are	performed	for	performance	measurement,	all	on	the	same
hardware	run	three	times:

Start-up	time	of	VS	Code
File-open	time	while	VS	Code	is	already	open
RAM	usage

For	the	practical	testing	a	small	script	was	written	to	generate	a	text	file	with	one	million
lines.

Figure	10:	RAM	usage	in	MB	and	start-up	times	in	seconds

Figure	10	depicts	that	the	usage	of	RAM	does	not	increase	rapidly	when	opening	big	files.	A
file	with	one	million	lines	does	not	give	that	much	of	an	impact	on	the	memory	of	Visual
Studio	Code.	For	opening	the	file	however	there	is	a	significant	increase	in	loading	time,
from	0,39	seconds	to	1.90.	Because	developers	open	and	edit	many	files	in	a	project,	this
can	be	an	important	metric	for	the	Visual	Studio	Code	development	team.	Since	improving
these	loading	times	ensures	that	the	system	does	not	slow	down	its	users.	Visual	Studio
Code	does	not	allow	opening	a	file	with	more	than	ten	million	lines,	displaying	the	message

VSCode

464

	The	file	will	not	be	displayed	in	the	editor	because	it	is	very	large	.	Opening	the	one
million	lines	file	did	not	seem	to	have	such	an	impact	on	the	resources,	so	this	is	probably
precaution	against	automatic	opening	of	project	files.

Tactics

Another	way	Visual	Studio	Code	tries	to	optimize	processing	is	by	spending	a	entire	week
after	a	release	to	try	and	optimize	the	implementation.	It	may	occur	that	some	parts	of	the
code	have	been	rushed	in	order	to	ship	it	with	the	release.	Processing	is	not	really
prioritized,	but	since	Visual	Studio	Code	depends	on	certain	frameworks	such	as
IntelliSense	keeps	working	until	files	are	too	large.	To	minimize	the	use	of	shared	resources,
modules	are	divided	in	different	layers	such	as	base	and	common.	Finally	Visual	Studio
Code	uses	asynchronous	processing	in	the	form	of	a	worker.	As	discussed	in	the
development	view	workers	can	be	used	to	run	desired	processes	in	the	background	which
do	not	affect	performance	of	the	current	page	of	Visual	Studio	Code.

Conclusion
The	goal	of	this	chapter	was	researching	the	open-source	project	Visual	Studio	Code	and
presenting	a	detailed	description	on	the	software	architecture,	aswell	as	the	factors	it
depends	on	to	be	a	success.	These	factors	are	determined	in	the	development	view,
performance	perspective,	technical	debt	and	by	interviewing	Erich	Gamma.	In	the	chapter	is
concluded	that	the	architecture	is	divided	in	different	layers	and	that	continuous	integration
tools	and	linters	are	used	for	maintaining	code	quality.	Visual	Studio	Code	development	is
driven	by	the	community,	prioritization	of	features	comes	from	issue	tracking	and	every	week
a	feature	is	implemented	and	optimized	by	the	internal	development	team.	The	chapter
indicates	the	importance	of	a	structured	workflow	that	can	ever	be	improved	so	that	code
quality	can	be	maintained,	even	with	many	developers	contributing.	There	is	still	room	for
improvement	in	technical	debt,	like	TODO's	which	are	forgotten	and	test	coverage	what	is
lacking	behind.	Most	of	the	development	environment	however	is	taken	good	care	of	what	is
shown	in	the	chapter.	Visual	Studio	Code	now	has	over	four	million	users	and	delivers	a	new
version	every	month.

References
1.	 Nick	Rozanski	and	Eoin	Woods.	2011.	Software	Systems	Architecture:	Working	with

Stakeholders	Using	Viewpoints	and	Perspectives.	Addison-Wesley	Professional.

VSCode

465

https://github.com/egamma

VSCode

466

Yarn
By	Tim	van	der	Lippe,	Chris	Langhout,	Gijs	Weterings	and	Chak	Shun	Yu.

Delft	University	of	Technology

Abstract

Yarn,	an	alternative	client	for	the	existing	npm	registry,	went	open-source	at	October	11th
2016.	Yarn	started	as	an	internal	project	at	Facebook.	Now	Google,	Exponent	and	Tilde	are
collaborating.	For	this	chapter,	the	architecture	of	Yarn	was	analyzed	in	detail.	Furthermore,
technical	debt	has	been	identified	and	solutions	were	proposed.	Some	of	these	solutions
were	implemented	and	provided	to	the	development	team	as	contributions.	The	Yarn	project
looks	very	promising,	and	is	already	used	by	a	lot	of	people.	More	and	more	projects	are
choosing	Yarn	over	npm,	and	this	will	only	increase	as	bugs	are	resolved	and	additional
features	roll	out.

Introduction
Over	the	past	years,	the	growth	of	JavaScript	(an	implementation	of	ECMAScript)	has
exploded.	It	is	used	in	almost	every	segment	of	programming,	from	front-end	to	the	world	of
embedded	devices.

Yarn

467

https://github.com/timvdlippe
https://github.com/clanghout
https://github.com/gijsweterings
https://github.com/keraito
https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://facebook.github.io/react/
http://shop.oreilly.com/product/0636920041504.do

To	be	able	to	manage	all	components,	libraries	and	frameworks	written	for	all	these
applications,	Isaac	Z.	Schlueter	started	work	on	the	npm	package	manager	and	npm
registry.	Like	JavaScript	itself,	the	growth	of	the	registry	seems	to	have	no	ceiling.	In	Figure
1,	the	growth	of	the	npm	registry	is	displayed.

Figure	1.	Diagram	showing	the	growth	of	the	npm	registry.	Source:	modulecounts.com

But,	the	explosive	growth	of	this	ecosystem	also	brings	on	challenges.	Facebook	in
particular	had	issues	dealing	with	the	growth	of	npm	modules	in	their	React.js	project	[2].
This	was	due	to	the	npm	client's	way	of	handling	sub-dependencies,	and	the	non-
determinism	of	their	install	algorithm.

To	solve	these	issues,	Sebastian	McKenzie(@kittens),	a	Facebook	employee,	started	work
on	Yarn	on	Jan	23rd	2016.	Soon	after,	Exponent,	Google,	and	Tilde	joined	to	collaborate	on
the	project,	discussing	features,	strategies	and	architecture.	Ten	months	later,	the	first	official
release	of	Yarn	was	public.

While	the	big	issues	with	the	npm	client	were	resolved	by	Yarn,	the	speed	of	development
and	the	ever-changing	ecosystem	for	which	Yarn	is	built	resulted	in	new	challenges.
Managing	technical	debt,	dealing	with	open	source	development	and	keeping	up	with	the
demands	of	users	are	the	biggest	challenges	for	Yarn,	in	order	to	stay	successful.	In	this
chapter,	that	process	is	analyzed,	and	meaningful	contributions	are	provided	and	described.

Stakeholder	Analysis

Yarn

468

http://izs.me/
https://www.npmjs.com/
https://docs.npmjs.com/misc/registry
https://www.facebook.com/
https://facebook.github.io/react/
https://github.com/kittens
https://yarnpkg.com/lang/en/
https://github.com/yarnpkg/yarn/commit/086c2ecceb280b15cbece9337c1b588899a4a08c
https://blog.expo.io/
https://google.com
http://www.tilde.io/
https://code.facebook.com/posts/1840075619545360

As	described	before,	one	of	the	main	reasons	that	Yarn	was	created,	and	thus	exists,	is
Facebook	and	their	product	React.js.	They	are	two	of	the	most	important	parties	involved
with	Yarn,	also	known	as	stakeholders.	A	stakeholder	analysis	was	conducted	to	identify	all
the	stakeholders	of	Yarn,	according	to	the	categories	described	in	Rozanski	and	Woods
(2012)	[1].	This	section	is	dedicated	to	elaborating	on	this	analysis.	The	most	significant	and
important	stakeholders	will	be	provided,	together	with	a	description	of	their	role	in	the	Yarn
project.

Acquirers

The	incentive	of	creating	Yarn	started	from	Facebook,	as	they	ran	into	problems	with
consistency,	security,	and	performance	with	npm	[2].	Yarn	was	launched	by	Facebook	[2]
and	most	members	of	the	core	development	team	are	employees	of	Facebook.

Assessors

The	complete	Yarn	project	team	is	in	a	sense	an	assessor	of	Yarn,	as	all	developers
oversee	the	project	and	try	to	make	sure	that	it	conforms	to	standards	and	quality.	This	is
reinforced	by	their	Code	of	Conduct,	which	states:	"[They	are	responsible]	for	clarifying	the
standards	of	acceptable	behavior	and	are	expected	to	take	appropriate	and	fair	corrective
action	in	response	to	any	instances	of	unacceptable	behavior"	[3].	Three	individuals	stood
out	from	this	group:	@bestander,	@daniel15	and	@wycats.

@bestander	is	an	employee	of	Facebook.	He,	at	the	time	of	writing,	is	the	second
highest	contributor	of	the	repository.	But	more	importantly,	he	takes	an	active	role	in	the
GitHub	repository	by	overseeing	and	starting	discussions	and	reviewing	almost	all	the
(recent)	issues	and	PRs.	He	is	also	very	active	on	the	RFC	GitHub,	a	place	dedicated
for	the	Yarn	project	team	to	discuss	about	important	aspects	of	Yarn.	The	RFC	process
is	elaborated	upon	in	Release	Management.

@daniel15	is	also	part	of	Facebook.	He	is,	like	@bestander,	also	highly	active	on	the
GitHub	repository.	He	does	a	lot	of	explaining	in	issues	and	pull	requests,	helping
external	contributors	with	their	improvements.

@wycats	is	not	an	employee	of	Facebook.	He	was	approached	due	to	his	experience
with	application-level	package	managers	(Bundler	for	Ruby	and	Cargo	for	Rust)	and
now	part	of	the	Yarn	project	team	[4].	Although	his	contributions	in	the	form	of	lines	of
code	are	relatively	low,	his	main	importance	comes	from	elsewhere.	He	is	actively
involved	on	the	RFC	repository	for	Yarn,	and	plays	an	important	role	in	the	discussion
and	decisions	on	features	and	the	overall	design	of	Yarn.

Communicators

Yarn

469

https://github.com/bestander
https://github.com/daniel15
https://github.com/wycats
https://github.com/bestander
https://github.com/yarnpkg/yarn/
https://github.com/yarnpkg/rfcs
https://github.com/daniel15
https://github.com/bestander
https://github.com/wycats
https://bundler.io/
https://www.ruby-lang.org/en/
https://crates.io/
https://www.rust-lang.org/en-US/
https://github.com/yarnpkg/rfcs

Communicators	are	described	as	parties	which	"provide	training	for	support	staff,
developers,	maintainers,	and	so	on,	and	create	manuals	for	the	users	and	administrators	of
the	product	or	system"	[1].	To	identify	communicators,	the	history	of	various	documents	in
the	project	have	been	looked	into.	Examples	are	the		CONTRIBUTING.md	,	a	guide	on	how	to
correctly	contribute	to	the	Yarn	project,	the		README.md	,	and	the		CODE_OF_CONDUCT.md	.	In	the
history	of	these	files,	we	have	searched	for	people	who	have	made	significant	contributions
to	these	files	with	the	purpose	of	guiding	or	helping	other	users.	Using	this	method,
@kittens,	@cpojer	and	@thejameskyle	were	identified	as	communicators.	Not	surprisingly,
they	are	all	members	of	the	Yarn	project	team.

Next	to	these	people,	there	are	also	all	the	contributors	to	the	GitHub	repository	of	the
website	of	Yarn.	Their	work	is	of	significant	value	to	other	stakeholders,	as	the	website
contains	startup	guides,	installation	guides,	manuals	and	more	information	about	Yarn.

Competitors

Before	Yarn,	two	package	managers	for	web	development	ecosystem	existed.	At	first	Bower
was	seen	as	the	early	alternative	to	npm,	then	Yarn	was	created	as	an	improvement	over
npm.	Following	the	announcement	of	Yarn	[2],	Bower	suggested	its	users	to	use	Yarn
instead	of	Bower	despite	the	dropped	support	of	Bower	in	Yarn	[5].	That	left	npm	and	Yarn
as	competitors	of	each	other	on	the	field.	Specifically,	the	npm	client	is	the	competitor	of
Yarn,	as	npm	is	also	a	supplier	of	Yarn	due	to	its	connection	with	the	npm	registry.

Developers

For	the	developer	stakeholders,	the	decision	was	made	to	split	the	category	and	define
additional	sub-types	of	developers.	The	sub-types	and	their	respective	criteria	are	defined	as
follows:	Core	developers,	who	have	write	access	to	the	repository	and	contribute	frequently,
external	contributors,	who	do	not	have	write	access	to	the	repository,	and	offer	pull	requests
from	forks	of	the	repository.

The	core	developers	of	Yarn	are	@kittens,	@bestander,	@daniel15,	and	@cpojer.
These	are	the	parties	that	started	development	before	Yarn	became	open-source.	Not
surprisingly,	they	are	all	part	of	the	Yarn	project	team.	@kittens	is	by	a	significant
difference	in	commits	the	top	contributor	to	the	Yarn	project,	as	well	as	the	creator	of
Yarn.

Other	developers	that	contributed	significantly	to	the	repository	of	Yarn,	but	are	not	part
of	the	Yarn	project	team,	are	external	contributors.	Currently,	232	contributors	are	listed
on	GitHub.	Together,	they	form	the	developers	of	the	Yarn	community.

Suppliers

Yarn

470

https://github.com/kittens
https://github.com/cpojer
https://github.com/thejameskyle
https://github.com/yarnpkg/website
https://bower.io/
https://github.com/kittens
https://github.com/bestander
https://github.com/daniel15
https://github.com/cpojer
https://github.com/kittens

Suppliers	are	parties	which	"build	and/or	supply	the	hardware,	software,	or	infrastructure	on
which	the	system	will	run"	[1].	For	Yarn,	only	npm	was	identified	as	a	supplier.	This	relation
results	from	the	reliance	of	Yarn	on	the	npm	registry	[2].	Although	Yarn	is	created	to	replace
the	existing	workflow	of	the	npm	client,	thus	being	a	competitor,	it	emphasizes	the
compatibility	with	the	npm	registry	[2].	As	this	registry	is	built,	maintained	and	provided	by
npm,	npm	is	classified	as	a	supplier.

Users

Besides	Facebook,	important	users	of	Yarn	are	Exponent,	Google	and	Tilde.	They	were
heavily	involved	in	the	design	and	creation	of	Yarn	[2].	The	Polymer	team	is	another
important	user.	Polymer	was	approached	by	Facebook,	asking	what	requirements	they	had
for	using	Yarn	[6].	Other	than	Polymer,	the	Yarn	team	reached	out	to	Ember,	Angular	and
React.js	to	make	sure	that	Yarn	would	be	a	good	fit	for	projects	that	are	using	these
frameworks	[4].	Last,	but	not	least,	there	is	the	Yarn	community.	Part	of	them,	the
developers,	were	already	mentioned.	Not	all	of	the	community	are	developers,	but	every
person	in	the	community	is	a	user	of	Yarn.	They	define	what	they	expect	of	Yarn,	mainly
through	GitHub	issues,	and	ultimately	form	and	make	use	of	Yarn.

Context	View
The	context	view	(Figure	2)	shows	the	interaction	between	Yarn	and	its	environment.	The
most	important	stakeholders	are	represented	in	the	view.	The	user	base	of	Yarn	is	slowly
growing	as	people	and	projects	are	trying	it	out	as	a	substitute	for	npm.	Yarn	lists	Bundler,
Cargo	and	npm	as	inspiration	in	the	readme	of	their	GitHub	page	[7].	Bundler	is	a	manager
for	Ruby	application's	gem	dependencies.	Cargo	is	the	package	manager	for	Rust	and	npm
is	the	preceding	JavaScript	package	manager.

Yarn

471

https://www.polymer-project.org/
https://emberjs.com/
https://angularjs.org/
https://facebook.github.io/react/

Figure	2.	Diagram	displaying	the	context	of	Yarn.

Yarn	is	implemented	in	JavaScript	that	runs	on	Node.js.	The	packages	a	user	can	install	are
retrieved	from	the	npm	registry.	Flow.js	is	used	to	typecheck	the	code.

For	continuous	integration	(CI),	Travis	CI,	CircleCI,	AppVeyor	and	Jenkins	are	used.	These
three	services	are	not	only	used	for	continuous	integration,	they	are	also	functioning	as
separate	integration	tests	to	check	compatibility.	The	community	of	Yarn	exists	on	Twitter,
Facebook,	Discord,	GitHub	and	on	their	own	site	(where	the	documentation	also	exists).

Official	support	of	the	Yarn	project	is	given	by	numerous	projects,	these	include	Angular,
Polymer,	React.js	and	Bower.	Bower	even	went	as	far	as	mentioning	Yarn	as	their	successor
[5].

Performance	Perspective
Performance	is	one	of	the	key	features	of	Yarn,	prominently	displayed	on	the	homepage
(see	Figure	3).	In	this	section,	the	architectural	decisions	made	to	ensure	high	performance
are	listed.

Yarn

472

https://nodejs.org/en/
https://github.com/flowjs/
https://github.com/travis-ci
https://github.com/circleci
https://github.com/appveyor
https://jenkins.io/
https://twitter.com/yarnpkg
https://www.facebook.com/yarnpkg
https://discord.gg/yarnpkg
https://github.com/yarnpkg
https://yarnpkg.com/lang/en/
https://yarnpkg.com/lang/en/

Figure	3.	Performance	advertised	as	one	of	the	key	features	of	Yarn.

One	of	the	primary	usecases	for	Yarn	is	the	performance	feature	compared	to	the	npm.	In
the	initial	blogpost	of	Yarn	[2],	the	developers	point	out	that	by	parallelizing	operations	the
installation	of	dependencies	is	significantly	faster	via	Yarn	compared	to	npm.	The	most
known	usecase	is	React	Native.	Concrete	benchmarks	are	published	on	the	Yarn	website
for	which	different	configurations	of	Yarn	are	compared	against	the	npm	client.	These
benchmarks	show	that	the	installation	process	of	Yarn	is	an	order	of	magnitude	faster.

Architectural	Support	for	Performance

The	parallelization	of	Yarn's	installation	process	occurs	in	three	different	phases	[2]:

Resolution	of	dependencies
Fetching	dependencies
Linking(/Copying)	dependencies

These	three	different	phases	correspond	to	the	package	structure,	as	described	in	the
architecture.	For	each	dependency,	the	first	step	is	to	resolve	the	package	in	the	registry.
This	step	will	include	discovery	of	its	sub-dependencies.	First,	all	resolutions	are	done	in
parallel.	Then,	if	there	are	any	sub-dependencies,	they	are	asynchronously	added	to	the	set
of	dependencies.	Finally,	once	all	dependencies	are	resolved,	the	resolution	phase	is
finished.

Every	resolved	dependency	is	saved	and	written	to	a		yarn.lock		lockfile.	The	lockfile	of
Yarn	locks	down	a	resolved	version,	which	means	that	consecutive	installations	do	not
require	resolution.	Memory	and	storage	is	therefore	sacrificed	in	favor	of	preventing	network
requests	to	resolve	dependencies.

Once	all	dependencies	are	resolved,	or	read	from	the	lockfile,	the	content	of	each
dependency	is	fetched.	Yarn	maintains	a	global	cache	on	the	users	machine,	in	which	one
installation	per	version	exists	for	every	package.	In	other	words,	there	will	be	one	instance	of
	A@1.0		and	once	instance	of		A@2.0		in	the	global	cache.	When	a	dependency	is	fetched,	the
fetcher	first	checks	this	global	cache.	If	a	package	already	exists	there,	then	no	network

Yarn

473

https://facebook.github.io/react-native/
https://yarnpkg.com/en/compare

request	is	triggered.	Else,	a	network	request	is	spawned	and	the	content	of	the	dependency
is	inserted	in	the	global	cache.	Finally,	the	dependency	is	copied	into	the	local
	node_modules/	.	This	architectural	approach	ensures	that	re-installation	of	common
packages	does	not	unnecessarily	delay	the	install	process.

Every	step	for	each	dependency	is	fully	asynchronous	in	the	Yarn	architecture,	which	allows
full	parallelization	of	every	installation	step.

Architecture
The	architecture	of	a	system	is	dependent	on	the	processes	and	workflows	of	the
development	team,	as	well	as	the	project	itself.	To	illustrate	this,	this	section	first	explains	the
high-level	package	structure,	then	identifies	key	design	patterns.	Next,	an	analysis	of	the
testing	practices	of	the	development	team	is	discussed.	Finally,	the	Yarn	release	process	is
analyzed.

Package	Structure

Yarn	has	several	distinct	functional	elements	performing	various	functions.	The	aim	of	this
section	is	to	identify	these	elements,	and	describe	their	responsibilities	and	interaction.	For
this,	the	top-level	packages	from	the	folder	with	the	main	functionality,		src/	,	are	used.
These	packages	are	the	most	representative	for	the	elements	in	the	project,	as	they	group
the	underlying	modules	by	functionality.	In	the	end,	Figure	4	shows	a	diagram	displaying	the
overall	structure.

Almost	every	package	exports	all	functionality	in	an		index.js	,	to	ease	the	importing	of
classes	in	this	package.	Moreover,	it	allows	developers	to	restructure	a	package	later,
without	breaking	the	usages	of	the	APIs	exposed	in	the	package	if	they	would	directly
reference	the	source	files.

Starting	The	Process

The	main	interaction	between	Yarn	and	its	users	is	via	the	cli	commands.	Whenever	a	user
issues	a	command,	it	will	trigger	a	corresponding	process.	The	details	of	this	process	are
described	in	the	corresponding	command	file	in		Commands	.	The	whole	process	is	then
orchestrated	using	the		Package	Resources	.	One	of	the	major	processes	is	the	installation
process,	which	will	be	covered	step	for	step	in	this	section.

Resolving	Dependencies

Yarn

474

The	first	step	in	this	process	is	to	resolve	all	the	dependencies	of	the	user.	Resolvers	are
responsible	for	resolving	the	location	of	the	packages	specified	by	the	user.	Based	on	the
incoming	package	name	and	version,	the	resolver	determines	where	the	actual	source
code/distribution	of	the	dependency	is	stored.	Several	implementations	are	available	in	the
	resolvers		package,	which	can	resolve	to	external	sources	such	as	GitHub.

After	obtaining	the	location	of	a	package,	the	resolver	puts	all	the	information	inside	a
registry.		Registries		are	responsible	for	retrieving	information	of	packages	from	the	global
npm	registry.	Several	registry	strategies	are	implemented	in	this	package.

Fetching	Dependencies

After	resolving	all	the	dependencies,	all	the	registries	containing	their	information	are
received	by		Fetchers	.	Fetchers	are	used	to	retrieve	the	content	of	external	dependencies
from	their	respective	sources.	Multiple	extensions	of	the	base	class	are	implemented	for	the
specific	sources.

Linking	Dependencies

The	last	step	of	this	process	is	to	link	everything	together,	after	fetching	all	the	dependencies
from	their	respective	sources.	This	is	done	in	in	the	project	folder	of	the	user.	Essential	in
this	process	is	the		Lockfile	.	The	lockfile,	as	its	name	suggests,	is	responsible	for	locking
down	the	package	versions	of	all	dependencies	from	a	project.	The	functionality	of	parsing
and	writing	the	lockfile	is	implemented	in	this	element.	Details	of	this	process	are	provided	in
the	performance	perspective.

Common	Resources

The	above	process	is	described	with	the	main	workflow	as	a	common	thread.	Due	to	this,
some	elements	are	not	touched	upon,	as	they	are	mostly	used	for	tasks	outside	of	the	main
scope.	Here,	these	elements	are	listed	and	described.

Reporters.	Yarn	can	report	its	status	via	various	reporters.	The	primary	implementation
of		BaseReporter		is	the		ConsoleReporter	,	which	has	its	own	subfolder
	reporters/console/	.	This	package	also	handles	localization	in	the		reporters/lang/	
package.
Util.	The	biggest	package	thus	far	is		util	,	which	contains	numerous	files	with	specific
functionalities	which	would	not	fit	in	a	different	package.	This	package	also	contains
classes	that	implement	functionality	that	is	used	by	multiple	other	packages.	There	does
not	seem	to	be	a	cohesive	organisation	in	this	package	with	one	other	than		index.js	
exposing	the	other	classes.

Yarn

475

Top	level	resources.	The	top	level	package	contains	several	resources,	including
config	and	types	for	the	application.	Moreover,	it	contains	the	errors	used	to	report	to
the	user	and	logic	to	handle	package	content.

Figure	4	displays	the	relations	between	the	elements	that	are	described	in	the	whole
process	above.	An	arrow	from	package	A	to	B	indicates	that	A	depends	on	B.

Figure	4.	Diagram	displaying	the	package	structure	of	Yarn.

Identifying	Key	Design	Patterns

Keeping	a	piece	of	software	maintainable,	stems	in	having	a	great	baseline	architecture.
Part	of	this	architecture	is	the	proper	application	of	design	patterns.

Strategy	Pattern	in	Fetchers	and	Resolvers

Since	packages	that	can	be	installed	by	Yarn	can	come	from	different	sources,	it	is	important
to	consider	these	different	paths.	For	example,	resolving	a	request	for	a	package	can	go
through	the	npm	registry	most	of	the	time,	but	for	some	packages	this	does	not	hold.	An
example	is	internal	packages	hosted	on	the	organization's	GitHub.

To	summarize	from	Yarn's	announcement	blog	[2],	the	installation	process	of	a	package	is:

1.	 Recursively	resolve	all	dependencies	of	a	package.
2.	 Fetch	the	package	by	first	checking	if	it	is	already	downloaded,	and	if	not,	download	it

from	the	source.
3.	 Link	everything	together	by	copying	the	files	from	the	global	cache	into	the

	node_modules		directory.

These	steps	ensure	a	deterministic	install.

Yarn

476

The	first	two	steps	make	sure	the	packages	can	come	from	a	wide	range	of	sources.	To
achieve	this,	Yarn	employs	a	strategy	pattern.	Yarn	analyzes	the		lockfile		and
	package.json	,	and	retrieves	all	names	and/or	git	repositories	from	all	packages	listed.	By
resolving	these	dependencies	through	the	corresponding	resolvers,	it	is	possible	to	support
many	sources	in	a	stable	and	governed	way.

If	a	package	is	not	already	cached	locally,	it	needs	to	be	fetched.	Again,	depending	on
where	the	package	is	hosted,	Yarn	employs	a	different	strategy	to	actually	fetch	the
package.	Some	sources	provide	compressed	archives,	others	are	git	repositories	that	need
to	be	cloned,	while	even	others	may	simply	exist	on	the	filesystem.	These	different
strategies	are	all	very	neatly	implemented,	extending	from	a	base	class	to	deduplicate
common	logic.	A	caveat	we	encountered	was	that	some	functions	were	defined	in	the	base
class,	to	instantly	reject	the		Promise		returned.	This	is	done	because	JavaScript	does	not
have	abstract	classes,	allowing	the	forced	implementation	by	a	subclass.	With	the	current
size	of	these	classes,	it	is	still	manageable	to	catch	these	methods	by	hand.	It	should	be
noted	that	is	not	an	ideal	solution.	This	is	a	direct	limitation	of	both	the	language	and	the
typechecker	used	by	Yarn.

Adapter	Pattern	for	the	JSON	Reporter

The	reporters	can	distribute	the	output	for	Yarn	commands	to	various	destinations	in	various
formats.	Among	other	use	cases,	this	is	primarily	used	to	be	able	to	report	to	users	in	the
console,	as	well	as	save	reports	during	CI	processes.	The	JSON	reporter	[8],	for	example,
writes	all	reports	to	a	JSON	structure,	which	is	saved	to	a	file.	Since	most	of	the	messages
can	be	handled	in	the	same	way,	most	methods	in	this	reporter	do	the	exact	same	thing:	call
the		_dump		method	with	the	type	of	message	and	the	details.	That	method	then	writes	the
object	to	the	file.	Because	its	job	is	to	translate	from	one	system	to	the	other,	this	is	an
adapter	pattern	that	transforms	the	workflow	of	the	reporters	to	that	of	a	file	writer.

Testing	Strategy

Testing	is	an	integral	part	of	the	review	process	for	Yarn.	For	every	bug	fix	and	feature
addition,	tests	as	well	as	a	test	plan	are	required.	There	are	multiple	practices	for	testing
code.	First	of	all,	every	bug	fix	requires	a	unit	test	that	reproduces	the	original	issue	and
(once	the	fix	has	been	applied)	verifies	the	issue	is	resolved.	The	unit	test	also	serves	as	a
regression	test,	to	make	sure	that	the	original	bug	is	not	reintroduced	after	other	changes
are	made	to	the	system.	Secondly,	feature	additions	are	tested	with	integration	tests.
Examples	of	such	integration	tests	can	be	found	in	the	test	suite	for	CLI	commands	in
	__tests__/commands/	.

Yarn

477

https://git-scm.com/
http://www.json.org/

Tests	are	run	via		yarn	test	,	essentially	bootstrapping	Yarn's	functionality	to	invoke	scripts
to	also	execute	the	tests.	The	actual	tests	are	run	by	Jest,	a	testing	framework	also
developed	by	Facebook.	Jest	can	run	tests	concurrently,	to	speed	up	the	build	and	also	test
potential	concurrency	issues	for	Yarn.	When	running	the	tests,	several	coverage	metrics	are
also	measured.	The	overall	coverage	can	be	inspected	after	all	tests	are	executed.	@kittens
indicated	that	obtaining	near	100%	coverage	is	a	goal	of	the	development	team.	At	the	time
of	writing,	the	coverage	is	around	60%,	which	could	be	improved.

Ensuring	Continuous	Code	Quality

One	notable	thing	on	the	Yarn	GitHub	page	is	the	usage	of	four	different	CI	services,	namely
Travis	CI,	CircleCI,	AppVeyor	and	Jenkins.	Normally,	one	service	is	enough	to	check
whether	all	tests	succeed.	In	the	case	of	Yarn,	however,	every	CI	service	has	additional
functionality	as	a	platform	test.	If	the	build	fails	on	one	of	the	services,	this	could	indicate	a
platform	specific	bug.	In	practice,	it	often	occurs	that	one	of	the	CI	services	fails.	This	is
caused	by	timeout	errors	that	we	also	experienced	locally.	The	failing	test	suite	probably
depends	on	an	active	internet	connection	and	a	slight	delay	in	this	has	a	probability	to	fail
the	test.	Lastly,	Jenkins	also	does	nightly	end-to-end	tests	in	a	Ubuntu	Docker	container	[11]

Release	Management

In	#376,	@kittens	asks	@bestander	and	@wycats	suggestions	for	a	regular	release
process.	@wycats	suggests	a	six	week	release	cycle,	as	used	in	Rust	and	Ember	(acquired
from	Chrome	and	Firefox),	which	means	that	every	six	weeks	a	new	major	version	is
released.	Bugfixes	can	still	be	released	as	fast	as	possible,	but	under	strict	CI.	At	the	point
of	writing,	the	focus	of	Yarn	lies	mainly	at	fixing	bugs	and	resolving	issues,	and	less	on
adding	new	functionalities.	Despite	this,	new	substantial	features	are	still	welcome.	For	this,
developers	are	directed	to	follow	the	Request	For	Comments	(RFC)	process	happening	in
the	yarnpkg/RFCs	repository.

The	intention	of	the	RFC	process	is	the	control	of	new	features	that	people	suggest	to	add	to
the	project.	This	process	is	meant	for	people	that	want	to	suggest	"substantial"	changes	to
Yarn	or	its	documentation.	A	few	examples	of	these	changes	are:

A	feature	with	a	new	API	surface	area	that	requires	a	feature	flag	(described	in	feature
flag	section	below).
The	removal	of	one	or	more	features	that	are	already	shipped	as	part	of	a	release.
Introduction	of	new	idiomatic	usage	or	conventions,	even	when	it	includes	no	code
changes	to	Yarn	itself.

Yarn

478

https://github.com/facebook/jest
https://github.com/kittens
https://github.com/yarnpkg/yarn/issues/510
https://github.com/yarnpkg/yarn/issues/376
https://github.com/kittens
https://github.com/bestander
https://github.com/wycats
https://github.com/wycats
https://www.google.com/chrome/
https://www.mozilla.org/en-US/firefox/products/
https://github.com/yarnpkg/rfcs

The	RFC	process	is	a	great	opportunity	to	get	more	eyeballs	on	your	proposal	before	it
becomes	a	part	of	a	released	version	of	Yarn.	Quite	often,	even	proposals	that	seem
"obvious"	can	be	significantly	improved	once	a	wider	group	of	interested	people	have	a
chance	to	weigh	in.	Source:	Readme	RFCs	repository

All	development	to	the	Yarn	project	happens	via	pull	requests,	forcing	the	run	through	CI.
The	master	branch	must	always	have	a	succeeding	CI	run.

After	the	first	major	release,	the	focus	is	kept	on	closing	issues	as	fast	as	possible.	When
that	slows	down,	the	six-week	major	release	cycle	will	be	adopted.	This	slow	down	has	not
yet	happened	at	the	time	of	writing.

The	fast	release	process	is	largely	automated	by	@bestander.	The	master	branch	is	taken
and	a	new	version-stable	branch	is	created	along	with	a	tag.	A	Jenkins	build	is	triggered	and
builds	a	.tar	file,	that	is	deployed	to	GitHub	releases.	Then,	@bestander	tests	it	on	internal
Facebook	repositories.	Any	bugs	found	will	be	reported	in	issues.	When	fixes	for	these	bugs
are	merged	into	master,	they	are	added	to	the	version	branch.	After	that,	the	changes	are
added	to	npm,	and	the	CI	builds	and	deploys	the	new	version.

Feature	Flags

As	mentioned	before,	before	adding	a	new	feature,	the	RFC	process	is	followed.	When	a
new	feature	is	being	developed	it	is	wrapped	in	a	feature	flag.	This	means	that	this	feature	is
not	used	by	default	in	the	Yarn	application,	but	can	be	enabled	by	enabling	the
corresponding	flag.	When	a	feature	is	stable	enough,	the	decision	can	be	made	to	enable
this	feature	by	default	and	therefore	disabling	the	feature	flag	ability	for	this	feature.

Technical	Debt
Technical	debt	is	"a	metaphor	for	tasks	that	were	left	undone,	but	that	run	a	risk	of	causing
future	problem	if	not	completed"	[9].	Identifying	technical	debt	is	therefore	an	interesting	task
to	measure	the	maintainability	and	stability	of	Yarn.

To	analyze	the	technical	debt	of	Yarn,	several	inspections	tools	were	run	on	the	source
code.

Code	Smells

JSInspect	provides	a	report	in	the	console	of	the	matches	it	found.	A	match	consists	of	the
detected	common	source	code	and	the	files	between	which	this	code	is	shared.	Additionally,
the	diff	between	these	files	is	also	provided,	highlighting	the	differences	and	similarities.

Yarn

479

https://github.com/yarnpkg/rfcs/blob/4928eabd3f673bee4700039a3a8dd328c6daec21/README.md#when-to-follow-this-process
https://github.com/bestander
https://github.com/bestander
https://github.com/danielstjules/jsinspect

Figure	5.	Result	of	a	JSInspect	run	on	the	Yarn	`src/`	folder.

At	the	time	of	writing,	an	execution	of		jsinspect		on	the		src/		folder	of	the	Yarn	project
resulted	in	32	matches	found	across	123	files	(see	Figure	5).	Not	all	of	them,	however,	are
actual	code	smells,	as	JSInspect	looks	for	any	similarity	between	source	code	and	matches
onto	that.	The	correctly	identified	code	smells	are	mostly	duplication,	such	as	three
instances	of	the	same	error	reporting	function	in	one	file.	The	risk	involved	with	this	is	the
Shotgun	Surgery	code	smell,	where	modifications	require	changes	at	multiple	locations.

Code	Maintainability

Plato,	a	JavaScript	tool	with	the	purpose	of	visualizing	source	complexity	of	JavaScript	files
and	projects,	was	also	used	to	analyze	the	project.	Running	Plato	creates	a	detailed	report
focusing	on	Maintainability,	Source	Lines	of	Code	(SLOC),	Proneness	to	Errors	and
Complexity	of	the	code.	Since	the	computation	of	the	Maintainability	index	mainly	relies	on
lines	of	code,	only	the	true	lines	of	code	are	touched	upon	[10].

Figure	7.	Source	lines	of	code	of	each	individual	source	file	in	Yarn.

The	average	source	file	of	Yarn	contains	136	SLOC.	A	more	informative	metric	would	be	to
see	the	relation	of	this	metric	between	files.	Therefore,	the	SLOC	for	every	individual	source
file	in	the	Yarn	project	is	shown	in	Figure	7.	A	large	amount	of	variation	in	SLOC	can	be
observed	between	the	source	files	of	the	project.	Two	files	stand	out	significantly	from	the
rest	in	terms	of	SLOC,	namely		src/cli/commands/install.js		and		src/util/fs.js		with	800
and	769	lines	respectively.	Both	of	these	files	are	susceptible	of	large	functions	and	classes,
and	containing	too	many	responsibilities.	Consequently,	these	files	are	at	risk	of	becoming	a
God	Class.

Current	Code	Coverage

Testing	is	an	integral	part	of	the	workflow	of	the	Yarn	core	team.	Issue	#510	shows	that	the
team	is	actively	aware	of	its	code	coverage	and	aims	to	increase	the	overall	coverage.	The
code	coverage	of	Yarn	is	integrated	in	the	test	runner	Jest	per	the		--coverage		CLI	option.	A

Yarn

480

https://sourcemaking.com/refactoring/smells/shotgun-surgery
https://github.com/es-analysis/plato
https://sourcemaking.com/antipatterns/the-blob
https://github.com/yarnpkg/yarn/issues/510
https://facebook.github.io/jest/docs/cli.html#coverage

	coverage/		folder	is	created	which	shows	a	webpage	(see	Figure	8)	with	the	coverage	per
folder,	file	and	even	per	line.

Figure	8.	Diagram	displaying	the	code	coverage	per	folder.

Initially	the	coverage	report	did	not	show	the	coverage	for	completely	uncovered	files.	A	pull
request	was	submitted	to	trigger	the	coverage	for	all	files	in	the	source	folder.	The	total
statement	coverage	is	therefore	at	the	moment	of	writing	67,18%.	Primarily	the
	cli/commands/		folder	is	largely	untested,	with	a	lot	of	commands	0%	covered.	There	is	no
apparent	reason,	however	in	the	pull	request	that	introduced	a	lot	of	the	commands,
@kittens	noted	that	tests	will	be	deferred	to	a	new	PR.	Up	to	this	moment,	these	tests	are
non-existent	and	therefore	a	clear	example	of	technical	debt.	Other	folders	(apart	from
	cli/)	are	significantly	better	covered;	the	majority	of	them	has	a	coverage	of	80%	or
higher.

Mitigation	of	Technical	Debt

In	order	to	mitigate	as	much	technical	debt	as	possible,	Yarn	makes	use	of	the	issues	and
pull	requests	of	GitHub.	By	reviewing	each	others	work	in	pull	requests,	technical	debt	is
prevented	as	much	as	possible.

Yarn

481

https://github.com/yarnpkg/yarn/pull/2892
https://github.com/kittens
https://github.com/yarnpkg/yarn/pull/235#issuecomment-241946099

Issues	on	GitHub	are	used	a	lot:	on	March	11th	2017	more	than	700	open	issues	exist	and
over	1200	issues	are	closed.	The	big	issue	at	the	moment	is	that	more	issues	are	opened
than	closed	in	the	same	timeframe.	Because	of	this,	it	is	becoming	more	and	more	difficult	to
monitor	all	issues.	A	lot	of	these	issues	should	have	probably	been	closed,	but	as	the
amount	is	so	big,	keeping	track	is	difficult.

In	order	to	guide	external	developers	trough	the	process	of	contributing,
CONTRIBUTING.md	lists	five	steps	to	follow	before	opening	a	pull	request:

1.	 Fork	the	repo	and	create	your	branch	from		master	.
2.	 If	you've	added	code	that	should	be	tested,	add	tests.
3.	 If	you've	changed	APIs,	update	the	documentation.
4.	 Ensure	the	test	suite	passes.
5.	 Make	sure	your	code	lints.

Testing	and	documentation	play	a	role	in	these	steps,	contributing	to	the	mitigation	of
technical	debt.	Every	opened	pull	request	is	reviewed	by	at	least	one	core	developer,	and	if
needed,	more	developers	are	notified	and	asked	for	an	opinion.	It	seems	that	the	core
developers	have	distributed	categories	of	contributions,	which	can	be	seen	in	who	replies	to
a	pull	request.	For	example,	@bestander's	main	focus	is	on	contributions	related	to
implementation,	while	@daniel15	is	more	focused	on	reviewing	project	related	contributions.

When	someone	wants	to	submit	a	"substantial"	change,	the	Yarn	team	requests	an
additional	design	process	through	the	yarnpkg/rfcs	repository.	The	description	of	a
substantial	change	is	described	in	the	README	of	the	RFCS	repository.	In	the	section
Release	Management,	the	RFC	process	is	explained.	This	process	is	used	to	"produce
consensus	among	the	Yarn	core	team".

A	great	example	of	the	complete	contributing	process	can	be	found	in	#2836.	Quoting	the
reaction	of	@bestander	on	this	pull	request:

Great	job	on	pushing	through	the	whole	feature	from	RFC	to	great	implementation	with
tests	and	docs,	@dguo!

Conclusion
With	the	speed	Yarn	was	brought	to	market,	the	challenges	it	faces	in	the	ecosystem,	and
the	dependency	on	the	npm	registry,	it	is	maneuvering	in	a	difficult	space.	However,	Yarn
has	a	solid	foundation	with	multiple	big	companies	expressing	interest	and	contributing	their
time	to	make	sure	it	is	a	qualitatively	excellent	tool.	Beyond	that,	the	open	source	community
is	very	vocal	about	their	issues,	needs	and	desires.

Yarn

482

https://github.com/yarnpkg/yarn/blob/19eb5007510f039c61630948b01a491c3ccdde23/CONTRIBUTING.md
https://github.com/bestander
https://github.com/daniel15
https://github.com/yarnpkg/rfcs/blob/4928eabd3f673bee4700039a3a8dd328c6daec21/README.md#when-to-follow-this-process
https://github.com/yarnpkg/yarn/pull/2836
https://github.com/bestander
https://github.com/dguo

In	this	chapter,	we	have	analyzed	Yarn's	architecture	from	different	viewpoints,	including	the
package	structure	and	inter-dependencies.	Here,	we	found	that	Yarn	is	ready	for	growth,
with	an	open	structure	to	add	more	functionality.	We	identified	technical	debt	in	the
codebase,	and	how	Yarn	deals	with	this	debt.	For	some	of	the	issues	identified,	we	have
been	able	to	propose	fixes	by	opening	several	pull	requests.

With	the	adoption	of	Yarn	in	the	ecosystem,	the	transparent	RFC	process,	and	the	solid	core
team,	we	are	confident	Yarn	can	overcome	its	challenges	and	will	continue	to	be	a	key	layer
in	the	JavaScript	ecosystem.

References
1.	 Nick	Rozanski	and	Eoin	Woods.	Software	Systems	Architecture:	Working	with

Stakeholders	using	Viewpoints	and	Perspectives.	Addison-Wesley,	2012.
2.	 Sebastian	McKenzie,	Christoph	Pojer,	James	Kyle.	Yarn:	A	new	package	manager	for

JavaScript.	https://code.facebook.com/posts/1840075619545360.	2016.
3.	 Contributor	Covenant	Code	of	Conduct.

https://github.com/yarnpkg/yarn/blob/12ff2bca446f2173de8c0861cb61b075fbf726f9/CO
DE_OF_CONDUCT.md.	25	Aug	2016.

4.	 Yehuda	Katz.	Why	I'm	Working	on	Yarn.	http://yehudakatz.com/2016/10/11/im-excited-
to-work-on-yarn-the-new-js-package-manager-2/,	Oct	11,	2016.

5.	 Ben	Mann.	Using	Bower	with	Yarn.	https://bower.io/blog/2016/using-bower-with-yarn/.
12	Oct	2016.

6.	 Google	Chrome	Developers.	What's	New	in	Polymer	Tools	(Polymer	Summit	2016).
https://youtu.be/guYHn0P8bKQ?t=17m10s.	Oct	18,	2016.

7.	 Yarn	README.md.
https://github.com/yarnpkg/yarn/blob/19eb5007510f039c61630948b01a491c3ccdde23/
README.md.	February	27,	2017.

8.	 https://github.com/yarnpkg/yarn/blob/89f181491e1258032c2b0365855ee2f1c37a913d/s
rc/reporters/json-reporter.js.	March	6,	2017.

9.	 Carolyn	Seaman.	Measuring	and	Monitoring	Technical	Debt,	University	of	Maryland
Baltimore	County.
https://pdfs.semanticscholar.org/81c0/8b976f959b092f3768c74c4c307cba55a853.pdf.
March	27,	2013.

10.	 Arie	van	Deursen.	Think	Twice	Before	Using	the	“Maintainability	Index”.
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
August	29,	2014.

11.	 Yarn	Jenkins	builds	https://build.dan.cx/view/Yarn/	May	5,	2017.

Yarn

483

https://code.facebook.com/posts/1840075619545360
https://github.com/yarnpkg/yarn/blob/12ff2bca446f2173de8c0861cb61b075fbf726f9/CODE_OF_CONDUCT.md
http://yehudakatz.com/2016/10/11/im-excited-to-work-on-yarn-the-new-js-package-manager-2/
https://bower.io/blog/2016/using-bower-with-yarn/
https://youtu.be/guYHn0P8bKQ?t=17m10s
https://github.com/yarnpkg/yarn/blob/19eb5007510f039c61630948b01a491c3ccdde23/README.md
https://github.com/yarnpkg/yarn/blob/89f181491e1258032c2b0365855ee2f1c37a913d/src/reporters/json-reporter.js
https://pdfs.semanticscholar.org/81c0/8b976f959b092f3768c74c4c307cba55a853.pdf
https://avandeursen.com/2014/08/29/think-twice-before-using-the-maintainability-index/
https://build.dan.cx/view/Yarn/

Yarn

484

Contributions	for	DESOSA	2017
This	chapter	outlines	some	of	the	contributions	made	by	several	teams	to	their	open	source
project.	Contributions	have	been	categorized	based	on	their	types.	At	the	end,	a	list	of	all
mentioned	Pull	Requests	is	provided	for	more	information.	It	should	be	mentioned	that	much
more	Pull	Requests	were	filed	during	the	course,	this	chapter	only	sketches	a	broad
overview	of	the	diversity.

Documentation	fixes
Several	teams	proposed	changes	to	the	documentation	of	their	projects.	This	could	go	as	far
as	fixing	typo's	or	updating	the	documentation	for	deprecated	/	added	features.	One	of	the
teams	to	file	such	Pull	Requests	was	Kibana	(#10709	:white_check_mark:,	#10714
:white_check_mark:,	#10715	:white_check_mark:).	Often,	these	Pull	Requests	were	merged
without	much	discussion.

Bug	fixes
Several	teams	went	through	the	issue	lists	of	their	projects	to	find	bugs	to	fix.	An	example
would	be	the	bug	in	the	search	functionality	of	Visual	Studio	Code:	when	a	user	searched	for
two	terms	in	Visual	Studio	Code,	the	'clear	results'	button	was	clicked	and	alt+up	was	used
to	get	the	last	search	item,	the	second	last	was	shown.

To	get	the	last	history	item	the	function		showPreviousSearchTerm()		was	called	in	the	file
	src\vs\workbench\parts\search\browser\searchWidget.ts	.	This	function	is	shown	in	Snippet	1

public	showPreviousSearchTerm()	{

				let	previous	=	this.searchHistory.previous();

				if	(previous)	{

								this.searchInput.setValue(previous);

				}

}

Snippet	1	-	Original	method	for	showing	previous	search	terms

The	problem	was	however,	that	this	function	returns	the	second	last	element	from	an	array
of	previously	searched	search	terms.	When	a	user	hits	the	'clear	results'	button,	no	element
is	added	to	this	array.	This	means	that	after	hitting	'clear	results'	the	function
	showPreviousSearchTerm()		will	return	the	second	last	item,	which	is	obviously	not	the	last

Contributions	for	DESOSA	2017

485

https://github.com/elastic/kibana/pull/10709
https://github.com/elastic/kibana/pull/10714
https://github.com/elastic/kibana/pull/10715
https://github.com/Microsoft/vscode/issues/21600

searched	item.	First,	a	solution	was	created	using	a	flag	to	indicate	that	the	'clear	results'
button	was	hit,	but	after	looking	further	into	this	a	new	bug	was	introduced.	A	better	solution
was	to	change	the	function	such	that	when	the	search	term	value	is	empty	the
	showPreviousSearchTerm()		should	return	the	current	history	element	instead	of	the	previous.
The	solution	is	shown	in	the	Snippet	2.

public	showPreviousSearchTerm()	{

				let	previous;

				if	(this.searchInput.getValue().length	===	0)	{

								previous	=	this.searchHistory.current();

				}	else	{

								previous	=	this.searchHistory.previous();

				}

				if	(previous)	{

								this.searchInput.setValue(previous);

				}

}

Snippet	2	-		showPreviousSearchTerm		with	the	fix	applied

To	propose	this	solution	for	Microsoft	Visual	Studio	Code	a	pull	request	was	filed	(#21859
:white_check_mark:).	After	signing	the	CLA	the	Travis	build	had	to	be	fixed	and	some	more
feedback	had	to	be	processed.	A	maintainer	(@sandy081)	found	a	problem	with	the
proposed	solution.	After	resolving	this	problem	the	pull	request	was	accepted	by	the	project.

Another	bug	that	has	been	resolved	is	a	problem	with	prefix	matching	within	Visual	Studio
Code.	When	a	user	searched	for	the	number	'4'	in	both	command	palette	and	the	settings
editor	of	Visual	Studio	Code.	The	search	function	did	not	only	match	'4',	but	also	matched
the	letter	'T'.	So	these	search	functions	matched	false	positives.

Visual	Studio	Code	calculates	the	distance	between	alphanumeric	values.	This	works	nicely
for	lowercase	and	uppercase	letters.	However,	the	distance	between		4		and		T		happens	to
be	32	as	well.	The	original	method	is	shown	in	Snippet	3.

Contributions	for	DESOSA	2017

486

https://github.com/Microsoft/vscode/pull/21859
https://github.com/sandy081
https://github.com/Microsoft/vscode/issues/22401

if	(ignoreCase)	{

				if	(isAlphanumeric(wordChar)	&&	isAlphanumeric(wordToMatchAgainstChar))	{

								const	diff	=	wordChar	-	wordToMatchAgainstChar;

								if	(diff	===	32	||	diff	===	-32)	{

												//	ascii	->	equalIgnoreCase

												continue;

						}

				}	else	if	(word[i].toLowerCase()	===	wordToMatchAgainst[i].toLowerCase())	{

								//	nonAscii	->	equalIgnoreCase

								continue;

				}

}

Snippet	3	-	Original	method		_matchesPrefix	

The	pull	request	that	was	filed	to	fix	this	has	been	closed	(#22743	:x:).	The	maintainer
pushed	a	fix	for	the	problem	which	reused	an	already-existing	method	for	this	comparison.
This	was	a	better	approach	than	adding	the	same	functionality	again.

While	some	teams	fixed	reported	bugs,	other	teams	also	discovered	bugs	themselves.	An
example	issue	was	found	by	team	Yarn,	where	the	initial	run	of	the	test	suite	failed	on	one	of
the	team	members	computers.	The	underlying	issue	was	usage	of	spaces	in	the	local
directory	of	Yarn.	Based	on	a	similar	issue	on	the	Node	repository,	the	fix	was	to	escape
(with	quotes),	the	executing	location	of	Yarn	in	the	test	suite.	Consequently,	a	pull	request
(#2700	:white_check_mark:)	was	opened	and	quickly	merged	thereafter	by	@bestander.

A	similar	issue	was	found,	where	running	the	test	suite	broke	on	the	initial	checkout.	This
time,	pre-existing	usage	of	Yarn	influenced	the	outcome	of	the	test	suite.	The	tests	were
therefore	not	run	in	isolation	and	could	be	influenced	by	the	configuration	of	the	user.	An
initial	fix	was	submitted	(#2725	:construction:),	but	was	insufficient	as	@bestander	pointed
out	the	test	suite	should	use	mocks	instead.	At	the	moment	of	writing,	the	pull	request	is	still
ongoing	as	mocking	the	configuration	has	been	unsuccesful	thus	far.

Several	members	of	team	Yarn	use	Yarn	in	their	daily	development	toolkit	too.	In	a	different
course,	they	were	using	Yarn	as	well	and	discovered	a	bug.	Packages	which	do	not	supply
binaries	would	be	logged	by	Yarn.	However,	the	call	to	the	reporter	missed	an	argument	of
the	package	name.	As	team	Yarn	was	familiar	with	the	architecture	of	the	project,	finding	the
issue	took	little	time	and	#2969	:white_check_mark:	was	submitted	to	fix	this	small	issue.

Technical	debt

Contributions	for	DESOSA	2017

487

https://github.com/Microsoft/vscode/pull/22743
https://github.com/nodejs/node/issues/6803
https://github.com/yarnpkg/yarn/pull/2700
https://github.com/bestander
https://github.com/yarnpkg/yarn/pull/2725
https://github.com/bestander
https://github.com/yarnpkg/yarn/pull/2969

Another	popular	topic	was	technical	debt.	As	part	of	the	course	the	(amount	of)	technical
debt	was	analysed	using	tools,	such	as	SonarQube.	Teams	could	use	their	findings	to
improve	the	projects	that	they	were	analysing.

For	instance,	the	Kibana	team	tried	to	remove	unnecessary	usage	of	the	Lodash	library
(#10746	:white_check_mark:).	There	are	multiple	methods	in	Lodash	that	can	easily	be
replaced	by	very	similar	native	ES6	methods.	These	unnecessary	lodash	methods	have
been	removed	in	the	contribution.	Using	different	tools	to	look	for	technical	debt	the	Kibana
team	found	more	issues.	Some	syntax	errors	were	found	in	the	test	code.	There	was	an
incorrect		.json		file	and	a	quoting	issue	with	a		.sh		file.	This	was	another	possibility	for	a
contribution	(#10747	:white_check_mark:).

Besides	removing	packages,	outdated	dependencies	can	also	be	upgraded.	The	Yarn	team
did	a	cleanup	(#2812	:white_check_mark:)	to	upgrade	the	old	dependencies.	Additionally,
several	breaking	changes	of	the	typechecker	Flow	were	fixed.	This	pull	request	was	merged
within	a	couple	of	days	by	@bestander.	As	a	consequence	of	this	pull	request,	now
whenever	Flow	releases	a	new	version,	Yarn	upgrades	within	a	couple	of	days	in	contrast	to
the	months	it	took	before.

While	external	dependencies	can	be	outdated,	internal	function	calls	can	be	too.	An	example
is	an	internal	logging	call	in	Yarn,	which	was	using	the		console		directly,	rather	than	their
new		Reporter		infrastructure.	Team	Yarn	submitted	a	simple	line	change	(#2844
:construction:),	but	@bestander	pointed	out	that	there	was	an	undocumented	reason	for
sticking	to		console	.	In	fact,	@kittens	pointed	out	in	a	different	pull	request	(that	is	still	open)
that	it	would	break	external	tooling	integration.	Up	to	this	point,	there	is	no	test	that	verifies
this	issue	to	ensure	no	breaking	changes	are	introduced.	For	this	reason,	#2844	is	blocked
and	left	open	until	the	underlying	issue	has	been	resolved.

New	features	and	behavioral	changes
Besides	documentation/bug	fixes	and	resolving	technical	debt,	teams	also	contributed	new
features	and	(potentially	breaking)	behavioral	changes.

The	direct	competitor	and	inspiration	of	Yarn,	npm,	changed	in	its	latest	major	version	a
behavioral	change	regarding	the	output	of	error	logs	of	npm.	Since	compatibility	with	npm	is
one	of	the	main	goals	of	Yarn,	it	is	important	to	update	the	code	of	Yarn	accordingly.
Therefore,	#2870	:construction:	was	submitted	to	fix	this.	This	pull	request	also	included	a
brand	new	test	suite	to	test	the	entrypoint	of	Yarn:		src/cli/index.js	,	which	was	untested
up	to	this	point.	Initially,	@bestander	was	reluctant	to	change	the	behavior,	but	pointed	out	a
different	and	more	user-friendly	solution.	At	the	moment,	the	pull	request	still	has	to	be
updated	to	incorporate	the	feedback.

Contributions	for	DESOSA	2017

488

https://www.sonarqube.org/
https://lodash.com
https://github.com/elastic/kibana/pull/10746
https://github.com/elastic/kibana/pull/10747
https://github.com/yarnpkg/yarn/pull/2812
https://flow.org/
https://github.com/bestander
https://flow.org/
https://github.com/yarnpkg/yarn/pull/2844
https://github.com/bestander
https://github.com/kittens
https://github.com/yarnpkg/yarn/pull/1980#discussion_r89621763
https://github.com/yarnpkg/yarn/pull/2844
https://github.com/yarnpkg/yarn/pull/2870
https://github.com/yarnpkg/yarn/blob/6d8dcec7e84d7271bc3acde2946cfcc5a93b530f/src/cli/commands/index.js
https://github.com/bestander

An	interesting	side-note	is	that	in	#2870	a	different	bug	was	found	in	the		--cache-folder	
option	on	the	commandline.	While	the	pull	request	is	not	merged,	this	particular	bug	fix	was
incorporated	by	Facebook	employee	@arcanis	in	#3033.

Measuring	and	maintaining	good	code	coverage	is	required	to	remain	with	a	healthy
software	project.	Correctly	calculating	code	coverage	is	therefore	crucial,	to	measure	which
parts	of	a	project	require	tests	to	keep	confidence	in	the	product.	While	investigating
technical	debt,	team	Yarn	discovered	that	the	code	coverage	tool	of	Yarn	was	incorrectly
configured	and	did	not	report	completely	untested	files.	Luckily,	Jest	(the	testrunner	used	by
Yarn)	incoporates	code	coverage	calculation	and	has	configuration	available.	A	one-line
change	pull	request	(#2892	:white_check_mark:)	was	submitted	to	fix	this	inconsistency	and
sadly	point	out	that	the	code	coverage	of	Yarn	was	20	percent	lower	than	previously
reported.	As	a	consequence,	the	Yarn	core	developers	shifted	more	focus	on	tests	and	now
more	strictly	enforce	tests	when	integrating	pull	requests.

Contributions	for	DESOSA	2017

489

https://github.com/yarnpkg/yarn/pull/2870
https://facebook.com
https://github.com/arcanis
https://github.com/yarnpkg/yarn/pull/3033/files#diff-867becf4a9c2c6c6d4e7c1278750724eR372
https://facebook.github.io/jest/
https://github.com/yarnpkg/yarn/pull/2892

	Introduction
	Arduino
	Gradle
	JabRef
	JUnit5
	Jupyter Notebook
	Kafka
	Kibana
	Magento
	Mapbox GL JS
	Matplotlib
	Mockito
	Neovim
	Netty
	Node
	Processing
	Scikit-learn
	Scrapy
	Syncthing
	Telegram Web
	VSCode
	Yarn
	Contributions for DESOSA 2017

