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Abstract

Cardiovascular diseases continue to be the primary cause of death worldwide, where

the buildup of plaque within arterial walls, known as atherosclerosis, is a major con-

tributor to various acute cardiovascular events. Determining the material properties

and the resulting stress distributions is crucial in the risk assessment of atherosclerotic

plaques, as stress is considered an indicator of plaque vulnerability. Material models

can be found with stress-strain pairs, but experimentally determining stress tensors is

challenging. To address this limitation, we use a recently developed technique called

EUCLID (Efficient Unsupervised Constitutive Law Identification and Discovery) for

material characterisation of a two-dimensional multicomponent atherosclerotic plaque,

based solely on displacement and force data. A finite element model was developed to

simulate the mechanical behaviour of the plaque using the neo-Hookean hyperelastic

model, and noisy data was introduced into the model by applying Gaussian noise on

the displacements. An L-BFGS gradient descent optimiser was used to minimise the

objective function, which is the residual error between predicted internal forces and

true external forces. Results showed that at the expected noise level in clinical imaging

modalities, no physically relevant stress distributions were obtained, where the plaque’s

heterogeneity was observed to affect the accuracy. Clinical imaging was further emu-

lated by systematically removing data to determine the effect of missing data on the

model. No significant deterioration of the accuracy of obtained parameters was seen

until using 10% of the total data, indicating good robustness to missing data. While

the study has limitations, the proposed approach could have implications for the future

diagnosis and treatment of atherosclerosis. Future research could explore alternative

optimisation algorithms or techniques to improve the model’s accuracy under these

conditions.
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1 Introduction

Cardiovascular diseases remain the primary cause of mortality, accounting for over 18

million deaths globally in 2021 (1). Hereditary factors, obesity, and high cholesterol are

among the key contributors to the onset of these diseases, which impose a substantial

burden on patients’ health and healthcare systems. Atherosclerosis, characterised by

the accumulation of fatty and/or fibrous material in the intima of arteries, triggers the

development of cardiovascular diseases, and is further associated with stenosis (arterial

narrowing) and the potential for thrombosis following plaque rupture (2). Accurate

prediction of plaque rupture is a challenging task that necessitates an in-depth under-

standing of the underlying mechanisms governing plaque growth and failure, as well

as sophisticated tools and techniques for identifying vulnerable plaques. Despite an

established classification system for vulnerable plaques, significant challenges persist in

developing predictive models that are sufficiently precise in assessing the likelihood of

plaque rupture.

The assessment of plaque rupture risk is of significant importance in clinical prac-

tice, and given the patient-specific nature of plaque morphology, there is a pressing

need for non-invasive tools to facilitate this evaluation. To accurately characterise

plaque vulnerability, information regarding the stress distribution within the plaque is

required. However, while clinical imaging modalities can provide valuable displacement

data, they do not provide direct stress information. A potential avenue for addressing

this challenge lies in utilising blood pressure measurements, in conjunction with the

aforementioned displacement data, to develop a risk assessment technique that could

prove effective in the absence of direct stress data. Therefore, in this study we aim to

explore the potential use of a simplified EUCLID (Efficient Unsupervised Constitutive

Law Identification and Discovery)(3) framework in characterising the material prop-

erties of atherosclerotic plaques, based only on full-field displacement data and static

equilibrium assumptions. Specifically, we investigate the neo-Hookean material param-

eters of a two-dimensional (2D) heterogeneous atherosclerotic plaque at the expected

noise level in intravascular ultrasound (IVUS).

This work is structured as follows: we begin with an overview of EUCLID and atheroscle-

rosis; then we present the finite element model used to simulate the mechanical be-

haviour of the plaque to obtain full-field displacement data, using the neo-Hookean hy-

perelastic material model. We discuss the techniques and constraints used to discretise

the model and solve the resulting linear system of equations using the Limited-memory

Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS). Finally, we examine the im-

plications of our results for the diagnosis and treatment of atherosclerosis. Overall,
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the study demonstrates that the EUCLID framework and L-BFGS optimisation imple-

mented in this study still need improvement for determining the material parameters

of atherosclerotic plaques at the expected noise level in IVUS; however, future research

may explore alternative modelling approaches or optimisation techniques to improve ac-

curacy in obtaining material parameters and enable more reliable predictions of plaque

rupture.

1.1 EUCLID

EUCLID is a data-driven technique developed by Kumar et al., which allows for the

discovery of parsimonious constitutive laws for isotropic hyperelastic materials (3). It

does so without stress data and with only displacement and force data. The lack of

stress data is circumvented by enforcing linear momentum balance, as discussed in more

depth in subsection 2.2. In the presence of noisy displacement data, it automatically

discovers constitutive models using sparse regression on a large feature library. The

feature library is comprised of three parts: polynomial hyperelasticity laws (Mooney-

Rivlin); volumetric deformation features; and logarithmic features (Gent and Thomas).

In this work we use a simplified form of the EUCLID framework which does not depend

on a feature library as only the neo-Hookean hyperelastic constitutive model is used,

however, the underlying concepts of linear momentum balance and the resulting linear

system of equations remains the same as the original framework.

To date, EUCLID has been used on hyperelastic materials (3) and has also been ex-

tended for path-dependent elastoplasticity to discover hardening mechanisms (4), as

well as for neural network (NN) training for hyperelastic materials (5). The NN method

is similar to the approach in (3), but it is extended to learn several anisotropic con-

stitutive models as well, where accurate estimates of the fibre orientations were found,

even in cases of high noise. The NN-based models were also shown to be capable of

predicting different material behaviour, even in cases which are different to those which

the models were trained on. Good accuracy was achieved, even on simulations with

complex boundary conditions. In the case where EUCLID is applied to plasticity, the

material model library is created from a Fourier series expansion of a yield function,

where EUCLID selects the best Fourier mode based on a balance of linear momen-

tum and from this the hardening behaviour can be determined. Accurate results were

obtained for different types of plastic yield surfaces and hardening mechanisms (4). Ad-

ditionally, the EUCLID framework has been extended to include Bayesian learning in

order to discover elastostatic and elastodynamic isotropic and anisotropic hyperelastic

models. The Bayesian learning approach allows EUCLID to estimate posterior prob-

abilities based on displacements, accelerations, reaction forces and the conservation of

2



linear momentum, and from this the material models are given via probability distribu-

tions. This Bayesian-learning approach improved the speed and efficiency of data usage

by two orders of magnitude compared to previous uses of EUCLID with hyperelastic

materials (6).

1.2 Atherosclerosis

Atherosclerosis is a chronic inflammatory disease characterised by the buildup of sub-

stances such as fats and cholesterol in the inner lining of arteries, leading to narrowing

and hardening of blood vessels, particularly carotid, iliac and aortic arteries. The

narrowing of arteries increases the risk of heart attack, stroke and other acute car-

diovascular complications, since a ruptured plaque can block the flow of blood and

consequently can trigger a thrombotic event. Risk factors for atherosclerosis include

high blood pressure, smoking, obesity, diabetes, high cholesterol levels and a sedentary

lifestyle, which can all contribute to endothelial dysfunction and plaque development.

Figure 1: Cross section of an artery with atherosclerosis. Adapted from (7)

As shown in Figure 1, the three components of the blood vessel (intima, media and

adventitia) form three concentric layers (7). The innermost layer (intima) forms the

interface with the lumen via a single layer of endothelial cells, which regulates transfers

between the blood vessel and tissue. It is this layer which is predominantly affected by

atherosclerosis. The vascular smooth muscle cells (VSMCs) in the media are separated

from the intima by the internal elastic lamina, where the migration of VSMCs to the

intima is associated with the pathogenesis of atherosclerotic plaques (8). The fibrous

cap refers to the region of the intima which separates the lipid-rich plaque core from
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the lumen, but evolves from the original intima tissue due to the VSMCs which enter

the sub-endothelial layer. During atherosclerosis, the endothelial layer becomes dam-

aged and inflammatory cells migrate into this region. The VSMCs play a role in plaque

development and stabilisation by synthesising extracellular matrix components, such as

collagen and elastin, which contribute to the fibrous cap (9). Additionally, foam cells

form when macrophages, a type of white blood cell, engulf oxidized low-density lipopro-

tein (LDL) particles. These foam cells accumulate in the intima layer and contribute

to the development of the “fatty streak” in the earliest stages of disease development,

which subsequently forms the atheroma, characterised by a significant growth of the

lipid-rich plaque core (10). It should be noted, however, that while VSMCs contribute

to the formation of the plaque, their presence in the fibrous cap is beneficial for plaque

stability, since thinning of the cap is partly due to a reduction in VSMCs, which in turn

reduces collagen production (11).

The presence of calcified tissue within the intima also indicates a more advanced, and

potentially vulnerable, atherosclerotic plaque. The amount of calcification depends

on the patient’s disease progression, but it affects the overall mechanical behaviour

since the strength and stresses of a plaque depend on the composition. This tissue is

the stiffest of the plaque components and numerous studies report a Young’s modulus

value in the range of GPa; the same as cortical bone. This is due to the expression

of bone regulating proteins and bone-like cells during the formation of calcifications

(12). Furthermore, calcium is a major component of calcified tissue, forming calcium

phosphate crystals such as hydroxyapatite, which contribute to the hardening of the

plaque. These crystals form microcalcifications, and as an atheroma develops, clusters

of them coalesce and form larger, unified macrocalcifications. Additionally, calcified

tissue can in some cases stabilise the plaque and make it less prone to rupture, but it

can also make the plaque more brittle and increase the risk of fracturing (13).

Plaque vulnerability is attributed to a series of morphological and compositional fea-

tures that make them more prone to rupture, but typically it is characterised by a thin

or fragmented and inflamed fibrous cap overlying a large lipid-rich necrotic core, where

necrotic refers to dead or devitalised tissue (14). The fibrous cap becomes thin and

vulnerable to rupture particularly in regions where there is increased stress due to ei-

ther hydrostatic blood pressure, shear blood flow or circumferential stress generated by

the wall (15). Plaque rupture is a complex biological event but ultimately occurs when

the stresses on the fibrous cap exceed the local strength of the tissue (12). The peak

cap stress of the fibrous cap is therefore of particular importance. This is defined as

the maximum stress the fibrous cap can withstand before it ruptures, where the value
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depends on the properties of the cap, such as thickness and stiffness. As the atheroscle-

rotic plaque grows and the fibrous cap becomes thinner and weaker, the peak cap stress

increases since the cap is less able to withstand the forces exerted on it. Accurately

predicting the stress distribution in atherosclerotic plaques can help to identify regions

where the stress exceeds the peak cap stress, and is therefore more likely to cause rup-

ture. This information can be used to better characterise plaque vulnerability and to

guide earlier interventions aimed at stabilising vulnerable plaques, as well as potentially

preventing adverse cardiovascular events.

Imaging modalities can be used to identify features of a vulnerable plaque; however,

the characterisation of atherosclerotic plaque presents significant challenges due to vari-

ations in plaque vulnerability, as well as the tissue’s inherent heterogeneity. Although

there is agreement regarding the stiffness of certain regions, stiffness values vary sig-

nificantly between studies. Furthermore, there have been reports of plaques rupturing

despite being deemed low-risk based on these criteria (16), highlighting the need for

more accurate and reliable predictors of plaque vulnerability.

Studies on the material characterisation of atherosclerotic plaques are typically con-

ducted ex vivo, but there is a scarcity of human specimens, resulting in testing often

being performed using pig or other animal arteries. The values obtained from these stud-

ies exhibit significant variability between patients and across different studies, which

can be attributed to differences in plaque location, plaque age, and gender. Addition-

ally, the direction of plaque cutting can impact the mechanical behaviour of the plaque

during testing. Furthermore, the type of mechanical testing, such as indentation or in-

flation testing, which produce local or global stiffness measurements, respectively, lead

to discrepancies in results.
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2 Method

2.1 Finite Element Modelling

2.1.1 Geometry

Figure 2 shows the 2D heterogeneous geometry of the cross-section used in this study,

created from histology images of a carotid arteries (17). Within each of the four do-

mains, the material is considered homogeneous. The geometry is discretised into a finite

triangular element mesh with 16,352 nodes. The outer diameter is approximately 10

mm and the lumen diameter is approximately 3 mm. Based on the ground truth values

presented in Table 1, an increase in intraluminal pressure from 80 to 120 mmHg (corre-

sponding to a change in pressure from 10.64 to 15.96 kPa) results in a 10.9% increase in

lumen area, which is consistent with values found in literature (18)(19). Displacements

are generated under a plane strain assumption, which is the assumption that loads are

applied to a three-dimensional body such that deformation occurs in two dimensions

only, and the third dimension is prevented from deforming. This is valid in this work

as we assume negligible deformation in the longitudinal direction of the artery, due to

radially applied pressure.

2.1.2 Displacement Data Generation

The Finite Element Method (FEM) is a numerical technique which simplifies problems

in applications such as structural analysis, heat transfer, fluid mechanics, electromag-

netics and acoustics by discretising a continuum into finite elements. Each element

can be analysed separately since it is difficult, or even impossible, to solve problems

analytically across a whole continuum. In this work, the elements are chosen to be tri-

angular, where each element is characterised by three nodes and their respective shape

functions. Triangular elements provide more geometrical flexibility due to the organic

shape of the specimen, as shown in Figure 2, and require fewer nodes and degrees of

freedom (DOFs), thus leading to higher computational efficiency. Shape functions are

mathematical functions which allow us to interpolate displacements and deformations

across the body. DOFs also define displacement and deformation within the body, but

they specify the number of ways that a node can move or deform under external loads,

i.e. in two dimensions each node has two DOFs.

The FEM is used in this work to generate the displacement fields required for the input

of EUCLID, simulated on the specimen shown in Figure 2. Implemented in Python,

the FEM uses the static equilibrium equation
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K u = f , (1)

to solve for displacements u at each degree of freedom, where K is the tangent stiffness

tensor and f is the vector containing the forces on each degree of freedom. The 2D

geometry results in two-degrees of freedom per node. If one stable solution exists then

K is invertible and the full-field displacements are obtained from u = K−1f .

Figure 2: Schematic of the 2D heterogeneous arterial wall, deformed by an intraluminal
pressure of 120 mmHg (15.96 kPa). Regions displayed are the diseased tunica intima
(intima), lipid-rich necrotic core (lipid tissue), calcified tissue, and the arterial wall,
which is a combined form of the tunica media and tunica adventitia. The fibrous cap is
part of the intima but is distinguished here as the region separating the lipid tissue from
the lumen. Geometry from (17).

The tangent stiffness matrix K is constructed at each load step and requires the nodal

coordinates (x, y) in the updated deformed configuration, and the stress and strain at

each element’s quadrature point. It represents the relationship between the applied

forces and the resulting deformation. When modelling the material using linear elastic-

ity, the tangent stiffness is equivalent to the stiffness matrix, and is therefore constant

since it does not depend on the magnitude of the applied stress. However, this work

uses the neo-Hookean hyperelastic model, where deviation from the linear stress-strain

relationship is observed at higher strains. In this case K represents the derivative of

the stress with respect to the strain and is calculated using the material’s constitutive

law.

When displacement data for the neo-Hookean model is generated, a Newton-Raphson
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iterative procedure must be adopted, which uses successive linearisations of the strain

due to the non-linearity. In order to find the successive displacement ui+1, we perturb

the system by ∆u, such that ui+1 = ui +∆u. The perturbation term can be rewritten

as K−1f , since K is a square, invertible matrix (nd × nd where nd is the total number

of degrees of freedom), and f represents the difference in internal and external forces.

The solution must converge to a residual as close to zero as possible, and in the case

where the residual is not sufficiently small then the process is repeated until the norm

of all forces is below 10−8.

2.1.3 Dirichlet Boundary Conditions

Dirichlet boundary conditions specify the value that a solution to a differential equation

should take at a boundary, thus we use them to impose null displacements on three

degrees of freedom at each load step, such that the artery is free to expand radially but

has sufficiently constrained rigid body motion. The three degrees of freedom correspond

to rotational and translation motion in the x−y plane. In order to preserve the natural

radial expansion, the three degrees of freedom, belonging to two nodes, were chosen

using the maximum and minimum x coordinates of all nodes, as portrayed in Figure 3.

This allowed the lumen nodes to move freely, giving accurate displacements here and

inside the artery, as well as avoiding non-convergence caused by infinite possible dis-

placements and thus a high force residual. In this case the finite element model would

not be able to find a stable solution.

2.1.4 Neumann Boundary Conditions

Neumann boundary conditions prescribe the normal derivative of a differential equation

and are therefore used here to prescribe a traction on the lumen nodes. Traction is a

vector quantity which represents the force per unit area acting on a surface and has

normal and tangential components. The two-dimensional geometry used in this work

requires the traction to be applied on an edge between two neighbouring nodes on the

lumen boundary, which therefore represents the force per unit edge length. The force

arises from the blood pressure exerted on the inner wall of the artery. Since Neumann

boundary conditions specify normal derivatives, we consider the normal component of

the traction vector on the lumen boundary as the Neumann boundary condition. The

force f acting on node a is modelled as the relative contribution of edge forces from the

edges either side of it, i.e.,

fa =
1

2
Pl1n1 +

1

2
Pl2n2 , (2)

where P is the blood pressure, l is the distance of the edge between two nodes and
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n is the normal vector of the edge, as displayed in Figure 3. This traction emulates

the force generated with every heartbeat as blood is pumped through blood vessels,

which ranges from the diastolic pressure (≈ 80 mmHg) to the systolic pressure (≈ 120

mmHg), where 10 mmHg = 1.33 kPa. The pressure is assumed to be static (i.e. no

pulsatility) and P = 120 mmHg was used to model the material behaviour since the

highest risk for plaque rupture is seen with an elevated blood pressure (20).

Figure 3: Schematic of the finite element mesh with Dirichlet and Neumann bound-
ary conditions. Neumann boundary conditions are imposed on all degrees of freedom
which lie on the lumen boundary to emulate intraluminal blood pressure. The black
dots denote the lumen nodes where traction is applied. The components of Equation 2
are highlighted in red. The green dots on the wall edge represent the positions where
Dirichlet boundary conditions are imposed to fix three degrees of freedom, whereby all
displacement is constrained to zero.

The pressure is constrained to act only in the outward normal direction, i.e. away from

the lumen centre, by implementing a check such that the vector from the midpoint

between two nodes to the third lumen element (not on the lumen boundary), with the

normal vector must be positive.

2.1.5 Clinical Imaging and Noise

Clinical imaging modalities, such as IVUS or magnetic resonance imaging, provide

plaque data directly from patients, from which we can obtain displacement data. How-

ever, displacement data inherently contains noise which degrades the quality of mea-

surements. Noise is caused by a variety of factors, but is mainly due to electronic

noise in the measurement system, as well as physical vibrations or movements of the

specimen. In order to emulate clinical imaging conditions, noise is added to each ma-

terial point by means of Gaussian noise, which is defined via its mean and standard

deviation σ. To this end, noisy displacement data is generated with a mean of 0 and
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σ = [10−10, 10−9, 10−8, 10−7, 10−6, 10−5, 10−4, 10−3], defined in units of mm. The use of

multiple noise levels allows close examination of the performance of evaluating material

parameters with EUCLID. According to Lee et al. (21), the expected noise level in

the axial direction of IVUS is 1 µm (10−3 mm), where the ultrasound axial direction is

parallel to the ultrasonic waves, but perpendicular to the 2D body used in this study.

This noise level serves as a threshold for evaluating the accuracy of the C10 parameters

obtained.

2.2 EUCLID

2.2.1 Displacement Fields

We define a as the global node number and ua
i as the nodal displacement, where i =

{1, 2} denotes the degree of freedom. The displacement field is

ui(x) =
nn∑
a=1

ua
iN

a(x) , (3)

where nn is the total number of nodes and Na(x) the shape function, such that Na(x) =

1 when x = xa and Na(x) = 0 when a ̸= b, hence the displacement field ui(x) only

includes contributions from node a and its respective shape function Na(x).

2.2.2 Deformation Fields and Hyperelasticity

The deformation gradient second-order tensor Fij is defined as

Fij =
∂xi

∂Xj

, (4)

where xi denotes positions of particles in the deformed configuration and Xj are posi-

tions in the reference, or undeformed, configuration. Fij describes how material points

move in relation to neighbouring points when the specimen is subject to deformation and

in three-dimensions contains nine quantities (22). Since we consider a two-dimensional

material, the components of Fij are F11, F12, F21 and F22, where 1 and 2 denote the x

and y directions, respectively.

We consider Equation 4 per element’s quadrature point in the discretised mesh as

Fij = δij +
nn∑
a=1

ua
i

∂Na(x)

∂xj

, (5)

where δij represents the Kronecker delta and accounts for the undeformed configuration.
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Biological tissue exhibits a non-linear strain response as a result of stress due to an

applied force, therefore the heterogeneous specimen is modelled as a neo-Hookean hy-

perelastic material. The neo-Hookean model represents stress through the first Piola-

Kirchhoff stress tensor

Pij =
∂W

∂Fij

, (6)

where W is the strain energy density function. The full form of this equation is shown

in subsection A.3. We define the strain energy density as

W = C10(Ĩ1 − 3) +D1(J − 1)2 , (7)

where Ĩ1 is the deviatoric first invariant of the right Cauchy-Green deformation ten-

sor. J is the Jacobian such that J = det(Fij), which represents the relative volume

expansion produced by a deformation. The second Lamé parameter, µ, also known as

the shear modulus, is related to C10 via µ = 2C10, and is assumed constant throughout

deformation in the neo-Hookean model. The constant D1 is related to the bulk modulus

κ as κ = 2/D1, and represents the amount of incompressibility in the material.

Values for the Young’s modulus E of each domain are taken from literature and dis-

played in Table 1. We assume a known Poisson’s ratio of ν = 0.49 due to the approxi-

mate incompressibility of biological tissue, where ν represents the ratio of contraction

or expansion in the direction perpendicular to the strain extension, which occurs in the

direction of the applied force. From E we obtain domain-dependent C10 and D1 values

from

C10 =
E

4(1 + ν)
, (8)

and

D1 =
6(1− 2ν)

E
. (9)

Tissue Type Young’s Modulus (kPa) C10 (kPa) D1 (kPa)

Calcified 2300 (23) 386.0 5.22× 10−5

Lipid 18 (23) 3.02 6.67× 10−3

Intima 200 (24) 33.6 6.00× 10−4

Wall 90 (25) 15.1 1.33× 10−3

Table 1: Ground truth values of the Young’s modulus and the resulting neo-Hookean
constants C10 and D1 values for each tissue type in the multicomponent 2D body.
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2.2.3 Equilibrium

To circumvent the lack of stress data, we enforce the balance of linear momentum. In

static equilibrium and assuming no body forces, the balance of linear momentum is

∇ · P = 0 , (10)

where P is the first Piola-Kirchhoff stress tensor. This is equivalent to saying that the

residuals of the stress field must be zero across the whole body in static equilibrium,

and can be rewritten as

∂Pij

∂Xj

= 0 ∀ X . (11)

These equations impose the strong form, which says that the equilibrium condition from

Equation 10 must be met at every point in the field, but this is a difficult condition to

impose so instead we enforce it via the weak form, such that∫
Vi
∂Pij

∂Xj

dx = 0 (12)

where Vi is a vector-valued test function. This is the weak form because instead of the

condition being met at all points, it says that the condition is met only in an average

sense, at each element within a body, thus reducing the requirement for continuity on

the test functions (shape functions).

In order to remove the divergence of the stress field from Equation 12 we integrate

by parts and use Gauss’ divergence theorem (
∫
V
∇ ·A dV =

∫
S
A · n̂ dS, with A repre-

senting a vector field) to remove the remaining divergence of the product between Pij

and Vi to obtain ∫
Ω

Pij
∂Vi

∂xj

dx =

∫
dΩ

PijVinj dx . (13)

The Bubnov-Galerkin method converts a continuous operator into a discrete problem,

so this allows us to rewrite the test function as

Vi(x) =
∑
a

V a
i N

a(x) , (14)

where Na(x) is the shape function of each node, such that a ∈ {1, 2, ..., nn} and nn is

the total number of nodes. V a
i is an arbitrary weight of each shape function. We can

then rewrite Equation 13:
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∑
a

V a
i

(∫
Ω

Pij
∂Na(x)

∂xj

dx−
∫
dΩ

PijnjN
a(x) dx

)
= 0 . (15)

Since we have defined V a
i to be an arbitrary weight, Equation 15 holds true for all V a

i .

We can use that
∑

i cidi = 0 ∀ c implies that di = 0, since the summation must be

zero for all ci. Equation 15 therefore reduces to the following force balance equation

between internal and boundary degrees of freedom∫
Ω

Pij
∂Na(x)

∂xj

dx−
∫
dΩ

PijnjN
a(x) dx = 0 , (16)

where the first integral represents the internal forces due to the stresses within the finite

element body, and the second integral represents the external forces due to the traction

applied on the boundary nodes of the body.

2.2.4 Constraints

We define the degrees of freedom as D = {a, i}, where i ∈ {1, 2} in two dimensions. D is

divided into two sets: Dfree and Dlumen. Dfree contains all the degrees of freedom which

do not have an external force applied directly on them, i.e. all the degrees of freedom

which are not on the lumen boundary and also not Dirichlet degrees of freedom. It

therefore follows that Dlumen are the degrees of freedom which are on the lumen bound-

ary and subject to Neumann boundary conditions, as discussed in subsubsection 2.1.3.

We define traction as ti = Pijnj. The second integral in Equation 16 represents the

external forces due to the traction applied to the boundary nodes. In the case of the

internal nodes, the traction is zero; hence, the second integral in Equation 16 vanishes

and the force balance equation reduces to∫
Ω

Pij
∂Na,i(x)

∂xj

dx = 0 ∀ {a, i} ∈ Dfree . (17)

The imposed Neumann boundary conditions on the lumen boundary provide a force

vector fa
i , such that∫

Ω

Pij
∂Na(x)

∂xj

dx = f lumen,a
i ∀ {a, i} ∈ Dlumen . (18)

2.2.5 Linear System of Equations

Equation 17 and Equation 18 form the two force balance equations in the body and

at the boundary, respectively. We construct the linear system of equations Aijθj = bi.

The matrix Aij represents the coefficients of the linear system, which are obtained by
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linearising the stress tensor with respect to the shape function and material parame-

ters. The vector θj contains the material parameters C10 and D1, which are treated as

unknowns in the linear system. The vector bi represents the vector of external force

magnitudes, which is known due to the intraluminal blood pressure. Therefore, the

linear system Aijθj = bi can be solved to obtain the values of the material parameters

θj that satisfy Equation 17 and Equation 18. Each row in Aij and bi corresponds to a

specific DOF in the system.

The two linear system of equations are defined as

Afree
ij ·

[
C10

D2

]
= 0 and Alumen

ij ·
[
C10

D2

]
= f lumen,a

i , (19)

where 0 represents a vector of zeros. We concatenate these into one global linear system

of equations as

[
Afree

ij

λrA
lumen
ij

]
·



Ccalcified
10

Dcalcified
2

C lipid
10

Dlipid
2

C intima
10

Dintima
2

Cwall
10

Dwall
2


=

[
0

λrf
lumen,a
i

]
. (20)

The hyperparameter λr is a scalar and affects how much emphasis is given to the lumen

force balance equation, with respect to the global linear system of equations (3). It

is important to balance the contribution of different terms in the model so that both

parts of the force balance contribute correctly in the loss function. We discuss how the

tuning of λr affects the accuracy of results in subsection 3.1.

2.2.6 Known Parameters

We rearrange Aijθj = bi for the case of solving for one parameter per domain, where

we assume a known value for D1. This requires removal of the corresponding columns

from Aij, such that it reduces from nd × 8 to nd × 4. Therefore, the dimensionality of

θj is also reduced to 4. We consider the known columns from Aij as Ai,known and the

rows from θj as θknown, such that our linear system of equations becomes

Aijθj = bi − Ai,knownθknown . (21)
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3 Results

The results of this study are as follows: first, we explore the optimisation method used

to solve the linear system of equations and the C10 parameters obtained are presented,

as well as modifications to the set up to examine the effect of heterogeneity. Second,

using the obtained C10 parameters, we present stress distributions in the 2D body at

different noise levels (σ = 10−6 and σ = 10−3 mm). Finally, we present the effect of

removing data from the linear system of equations to emulate missing data from clinical

images.

3.1 L-BFGS Optimisation & Obtaining C10 Parameters

The Limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm pro-

vides a numerical optimisation method to deterministically obtain predictions for C10

parameters, by iteratively searching for the global minimum of an objective function, in

the presence of noise in the displacement measurements. The L-BFGS method allows

faster convergence due to approximation of the Hessian matrix (a square matrix which

contains information about the curvature of the objective function in each direction)

using successive gradients, and uses it to update the search direction and step size, α,

in each iteration (26), where α is the size of the step taken towards the minimum of the

objective function. Choosing an appropriate value of α is critical for the convergence

and stability: if it is too large then the optimiser may overshoot the minimum and

diverge; but if it is too small then the convergence will be slow and the optimiser may

get stuck in a local minimum. The L-BFGS optimiser does however reduce the step size

as the minimum is approached, but a starting value is required. The number of epochs

is the number of steps taken during the optimisation process and 10,000 was found to

be a sufficient number for convergence, since convergence was seen significantly before

this was reached.

The objective, or loss, function is defined as

θoptj = argmin
θ

(
||bfreei − Afree

ij θj||2 + λr||blumen
i − Alumen

ij θj||2
)
. (22)

It is quadratic in θj hence the minimum of the function is when the derivative with

respect to θj is zero. The first term in the loss function corresponds to the discrepancy

between the predicted internal forces and the true external forces on the free region

(non-lumen); whereas the second term corresponds to the discrepancy between the pre-

dicted internal forces and true external forces acting on the lumen region. The use of λr

therefore controls the relative importance of these two terms in the optimisation pro-

cess. If λr is large, the optimisation algorithm will prioritise minimising the second term
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related to the lumen region, but potentially at the expense of higher discrepancies in the

free region. On the other hand, if λr is small, the algorithm will prioritise minimising

the first term, related to the free region, but at the expense of higher discrepancies in

the non-lumen region. This is useful in this case since the lumen region, encompassed

by the intima, is considerably more important for accurate parameter estimation due

to the criteria for a vulnerable plaque.

The metric used to quantify the average difference between the true and predicted

parameters is the Root Mean Square Error (RMSE):

RMSE =

√
1

n

∑
i

(θtruei − θpredictedi )2 , (23)

where n = 4 is the number of parameters in the vector of C10 parameters θj. A low

RMSE indicates good estimates of the C10 parameters, whereas a high RMSE shows

that the C10 estimates are, on average, significantly different from the true values. We

choose to estimate the C10 parameters only, using the method described in subsubsec-

tion 2.2.6, since attempts to estimate eight parameters (C10 and D1 in each domain)

yielded significantly higher RMSE values and less accurate predictions overall.

Two hyperparameters α and λr are used, where a hyperparameter refers to a value

which is defined before the optimisation begins. We tune them to investigate the rela-

tionship between the step size and regularisation parameter on the predictions of C10

parameters at increasing noise levels. The L-BFGS optimisation also requires an initial

guess of the parameter vector θj in order to make initial updates to the direction and

step size. Different initialisations were implemented, such as using the exact ground

truth values or using zero. However, since the C10 parameters can take a wide range of

values depending on the plaque’s age for example, the chosen vector of initial parame-

ters was [0.1, 0.1, 0.1, 0.1]. This avoids over-reliance on known values as the aim of this

work is to test the applicability of EUCLID in clinical scenarios where we do not have

access to ground truth values. Finally, a positive constraint was applied so the model

can only predict C10 ≥ 0, as the shear modulus cannot be negative. This constraint

was applied using a rectified linear unit (ReLU) function.

Figure 4 shows how the RMSE in θj changes with respect to increasing noise on the

displacement, with multiple combinations of hyperparameters λr and α. At no noise

(σ = 0 mm), the estimates of the C10 parameters should be close or equal to the ground

truth values, such that the RMSE is ≈ 0 kPa, since at this noise level the linear system

of equations being solved is the inverse of the boundary problem used to generate the
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displacement data. It could be argued that this criteria need not be met if the RMSE

was low, but ̸= 0 kPa, and the hyperparameter set showed good generalisation to C10

estimations at higher noise levels, as would be indicted by an approximately constant

RMSE with increasing noise. However, within the scope of this work, this was not seen,

so the process for selected the best set of hyperparameters was the lowest RMSE at the

highest noise level.
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Figure 4: Root mean square error (RMSE) in the C10 estimates vector θj with increasing
noise standard deviation (σ) on the displacements, with D1 treated as a known value.
The legend displays the different combinations of hyperparameters, λr (regularisation
parameter) and α (step size), which were used in the L-BFGS optimisation.

It is clear from Figure 4 that there are multiple hyperparameter sets which do not fulfil

this criteria, as shown by a large RMSE (≈ 190 kPa). There are various reasons for

why such combinations of λr and α cause this, such as λr weighting the lumen DOFs

too heavily, as seen by a correct estimate of the C10 intima value, but at the expense

of the other region’s C10 values. This is typically the case when λr is 200 and 500.

Additionally, the step size is either too small or large and converges in the wrong global

minimum or overshoots it. The hyperparameter set λr = 50 and α = 10−4 (pink line

on Figure 4) shows a better performance due to a lower RMSE (125 kPa), but does not

meet the requirement of accurate predictions at σ = 0 mm. The hyperparameter set

λr = 200 and α = 10−2 (green line on Figure 4) shows good parameter estimates until

noise level σ = 10−8 mm, but then shows significant increase in the RMSE at noise

level σ = 10−7 mm.
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The three hyperparameter sets denoted by the blue and dashed purple and red lines on

Figure 4 show the best combinations, with the set λr = 50 and α = 10−1 (red dashed

line) as the better of the three due to the slightly lower RMSE value at noise level

σ = 10−6 mm. Table 2 displays the parameters for this set, where we see that the C10

values in the calcified and wall regions do not have physically-interpretable estimates

at noise level σ = 10−5 mm, as shown by C10 = 0 kPa and C10 = 0.13 kPa, respec-

tively, where the zero value is due to the restriction implemented to ensure there are

no negative C10 values. The lipid C10 value at this noise level (0.081 kPa) represents a

97% deviation from the ground truth value (3.02 kPa). The C10 intima value here is

21.08 kPa (37% deviation from the true value of 33.56 kPa), and is the best parameter

estimate at this noise level.

σ (mm) Calcified Lipid Intima Wall

ground truth 385.9 3.020 33.56 15.10

0 385.9 3.005 33.56 15.09

10−10 385.9 3.000 33.56 15.09

10−9 385.9 3.000 33.56 15.09

10−8 386.1 3.018 33.56 15.10

10−7 328.1 3.036 33.61 15.14

10−6 327.5 2.826 33.57 14.50

10−5 0 0.081 21.08 0.13

10−4 0 0 0.06 0

10−3 0 0 0 0

Table 2: C10 parameters obtained in each tissue domain at increasing noise standard
deviation (σ) from the hyperparameter set λr = 50 and α = 10−1 (red dashed line on
Figure 4). The ground truth values are displayed in addition to the C10 values obtained.

At σ = 10−7 mm, we see good accuracy in the C10 values of the intima and wall region,

with a percentage difference from the ground truth as 0.03% and 3.9%, respectively.

The lipid region has a higher deviation with a 9.7% difference. The calcified region has

the strongest deviation at this noise level with a value of 14.9%.

Noise level σ = 10−6 mm is the highest noise level where we still obtain non-zero

C10 parameters in all four regions. The intima’s C10 percentage difference increases to

1.43% here. The wall region has a percentage difference of 12.4% and the lipid region’s

difference is 6.4%. The calcified region increases to 15.0%, which is not a significant

increase from σ = 10−7 mm.
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3.1.1 Removing Heterogeneity

We explore the effect that heterogeneity plays on the accuracy of the C10 values by re-

moving the degrees of freedom belonging to the calcified region from the linear system

of equations Aijθj = bi. This requires removal of one column in Aij and the correspond-

ing row in θj, i.e. if the first column is removed in Aij then the first row in θj must also

be removed. Additionally, the rows corresponding to calcified DOFs in Aij and bi must

also be removed from the calculations. The displacement data is generated considering

the full heterogeneity of the body, i.e., the full-body strain information is accurately

produced, ensuring a physically admissible force balance, but the calcified DOFs are

removed afterwards. Within the context of this study, this approach is justifiable given

the importance of accurately predicting the parameter for the intima region encompass-

ing the fibrous cap. Although one could argue that DOFs corresponding to the lipid

and wall regions could also be removed to further reduce complexity, the primary objec-

tive of this work is to investigate the limits of parameter determination with EUCLID

in the presence of heterogeneity. Consequently, systematically eliminating complexity

until homogeneity is achieved would not align with the aims of this thesis investigation.
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Figure 5: No calcified DOFs. Root mean square error (RMSE) in the C10 estimates
vector θj with increasing noise standard deviation on the displacements, with D1 treated
as a known value. The legend displays the different combinations of hyperparameters,
λr (regularisation parameter) and α (step size), which were used in the L-BFGS opti-
misation.
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The magnitude of the RMSE is lower in Figure 5 with the calcified DOFs removed,

as shown by a maximum at ≈ 21 kPa. This is expected since deviations from the

true calcified C10 value are larger in magnitude due to the relatively larger C10 value

(385.9 kPa). However, the performance of determining the three C10 parameters is in

general better without the calcified DOFs, as can be seen in Table 3, where the obtained

parameters are displayed from the hyperparameter set λr = 50 and α = 10−4. There

is no significantly better performing combination of λr and α in this set up (as shown

by the multiple lines trending in the same way on Figure 5), so the values displayed

in Table 3 serve to highlight the improvement in parameters without calcified DOFs.

These values are an improvement from those displayed in Table 2 since the error on the

intima C10 at noise level σ = 10−5 mm is 10.4%, compared to 37% seen in Table 2. The

C10 parameter obtained for the lipid region at this noise level yielded a percentage error

of 13.2%, an improvement of 84% from the results with all regions. The C10 parameter

in the wall region shows an 86% improvement, with a deviation from the ground truth

as 12.1%.

σ (mm) Lipid Intima Wall

ground truth 3.020 33.56 15.10

0 3.019 33.56 14.96

10−10 3.019 33.56 14.96

10−9 3.019 33.56 14.96

10−8 3.018 33.55 14.96

10−7 3.034 33.61 14.96

10−6 3.151 33.57 14.98

10−5 2.627 30.07 13.27

10−4 0.098 8.28 0.099

10−3 0.090 0 0.098

Table 3: No calcified DOFs. C10 parameters obtained in three tissue domains (lipid,
wall and intima) at increasing noise standard deviation (σ) from the hyperparameter set
λr = 50 and α = 10−4 (pink line on Figure 4). The ground truth values are displayed
in addition to the C10 values obtained.

In this set up, the smaller λr value of 5 is not favourable, since the two lines (green and

orange) which do not meet the requirement of RMSE = 0 kPa at low noise belong to

this value. We can then conclude that the effect of the combination of hyperparameters

with λr =50, 200 or 500 is minimal, showing that the L-BFGS can sufficiently optimise

the loss function until σ = 10−5 mm. A possible reason for this is that there is one

pronounced global minimum in the loss function when the calcified region is removed,

making convergence to a solution of θj less complex.
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3.2 Stress Distributions

The RMSE is calculated for the whole C10 solution vector θj and therefore provides an

overview of the optimiser’s predictions as a whole; however, the RMSE can be dom-

inated by poor predictions in particular regions. In particular, the calcified region is

where we see the accuracy in the obtained C10 value deteriorate first. While the RMSE

provides insight into the overall performance, the aim of the this research is to be able

to predict parameters under clinical imaging conditions in order to classify a vulnerable

atherosclerotic plaque. Therefore, we consider the stress distributions based on the

noisy displacement data and the predicted parameters in each domain, with a known

D1 value, as shown by the middle columns in Figure 7 and Figure 8. The 12 subfigures

presented in each of these figures represent each component of the first Piola-Kirchhoff

stress tensor Pij in 2D (Pxx, Pxy, Pyx and Pyy). True stress distributions are shown

as a comparison in the first column, calculated from ground truth C10 values and true

displacement data. The difference between the predicted and the true values ∆Pij is

displayed in the third column.

The stress distributions at noise levels σ = 10−6 and 10−3 mm are displayed: the

former is the highest noise level where the C10 values in all domains are physically rel-

evant; and the latter is shown as this is the expected level of noise in clinical imaging,

as discussed in subsubsection 2.1.5. Table 6 and Table 5 provide the mean Pij values

as a guide for second column of the stress distributions. Due to the multiple orders

of magnitude across the regions, we display the stress using a logarithmic scale. This

requires the absolute value of the stress components to be used, so we lose clarity about

whether elements are in compression or tension, but within the scope of this research the

figures provided are deemed sufficient since we are interested in the stress magnitude.

Each subfigure has its own scale depending on the range of data present in that distri-

bution and the figures are made with the hyperparameter set λr = 50 and α = 1×10−1.

The calcified region is the small region in Figure 7 (see Figure 6 for domains). It is

this region where significant deviation from the C10 parameter and the resulting stress

distribution is seen at the lowest noise level. This deviation is shown by a percentage

difference from the true mean stress P̄ij of 99% in all four regions. This large percentage

difference is however not observed in the intima, wall and lipid regions. In the lipid and

intima regions, we see good agreement with the true P̄ij values, as shown by percentage

differences of ≈ 6% in the lipid region, and ≈ 2% in the intima region. The percentage

difference from the wall region’s true P̄ij is slightly larger at ≈ 12%.

Figure 8 shows the stress distributions at σ = 10−3 mm, produced using the obtained
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C10 values (Table 2) and the true D1 values. The obtained values for C10 are all 0 kPa,

hence the stress components in all regions show a close-to-zero distribution (highlighted

in Table 6). Physically, this implies that the body is in a state of mechanical equilib-

rium, where the external forces acting (blood pressure force) are balanced by the internal

forces within the body. However, since in this case the body is subject to deformation

by an intraluminal pressure of 120 mmHg (15.96 kPa), there should be resultant internal

stresses, as we see deformation (as shown by the strain map in ?? in subsection A.2). A

deformation is a result of a stress which itself is caused by a force, and the strain map,

which shows the distribution of strains throughout the 2D body, is a direct consequence

of the internal stresses caused by the external force.

Figure 6: The regions of the 2D heterogeneous body are displayed for comparison to the
stress distributions shown in Figure 7 and Figure 8. The x and y directions are also
shown.
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Tissue P̄xx P̄xy P̄yx P̄yy

Calcified 8.52 ± 7.00 5.51 ± 3.04 5.51 ± 3.04 8.65 ± 7.16
Lipid 1.36 ± 0.99 1.27 ± 0.63 1.28 ± 0.64 1.04 ± 0.70
Intima 7.86 ± 6.85 7.26 ± 6.18 7.41 ± 7.02 7.80 ± 6.79
Wall 2.24 ± 2.26 2.11 ± 1.92 2.12 ± 1.94 2.23 ± 2.25

Table 4: No noise. True mean (P̄ij) ± standard deviation (kPa) of the stress distri-
bution values without noise in each tissue region.

Tissue P̄xx P̄xy P̄yx P̄yy

Calcified 0.072 ± 0.059 0.047 ± 0.026 0.046 ± 0.026 0.074 ± 0.060
Lipid 1.27 ± 0.93 1.19 ± 0.58 1.20 ± 0.60 0.97 ± 0.65
Intima 7.75 ± 6.76 7.16 ± 6.71 7.31 ± 6.93 7.96 ± 6.69
Wall 1.97 ± 1.98 1.85 ± 1.69 1.86 ± 1.70 1.96 ± 1.97

Table 5: Noise level σ = 10−6 mm. Mean (P̄ij) ± standard deviation (kPa) of
the predicted stress distributions, in each of the four domains, produced with noisy dis-
placement data and the obtained C10 values. D1 values are assumed to be known.These
values supplement the second column of figures in Figure 7.

Tissue P̄xx P̄xy P̄yx P̄yy

Calcified (3.56±2.69)×10−6 (9.91±12.9)×10−8 (9.14±10.6)×10−8 (3.59±2.70)×10−6

Lipid (4.79±3.63)×10−4 (3.63±4.01)×10−5 (6.63±7.13)×10−5 (4.08±3.11)×10−4

Intima (4.23±3.27)×10−5 (3.10±4.20)×10−6 (4.79±7.09)×10−6 (4.31±3.31)×10−5

Wall (8.28±6.40)×10−5 (3.38±4.04)×10−6 (5.06±6.38)×10−6 (8.31±6.39)×10−5

Table 6: Noise level σ = 10−3 mm. Mean (P̄ij) ± standard deviation (kPa) of
the predicted stress distributions, in each of the four domains, produced with noisy dis-
placement data and the obtained C10 values. D1 values are assumed to be known.These
values supplement the second column of figures in Figure 8.
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True Pxx Predicted Pxx ∆Pxx

True Pxy Predicted Pxy ∆Pxy

True Pyx Predicted Pyx ∆Pyx

True Pyy Predicted Pyy ∆Pyy

Figure 7: Noise level σ = 10−6 mm. Components of the first Piola-Kirchhoff stress
tensor Pij. Deformed by 120 mmHg (15.96 kPa). The first column represents the true
stress distributions. The second column represents the predicted stress distribution with
noisy displacement data and the obtained C10 values from the L-BFGS loss function
optimisation. The third column shows the absolute error between the true and predicted
distributions.
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True Pxx Predicted Pxx ∆Pxx

True Pxy Predicted Pxy ∆Pxy

True Pyx Predicted Pyx ∆Pyx

True Pyy Predicted Pyy ∆Pyy

Figure 8: Noise level σ = 10−3 mm. Components of the first Piola-Kirchhoff stress
tensor Pij. Deformed by 120 mmHg (15.96 kPa). The first column represents the true
stress distributions. The second column represents the predicted stress distribution with
noisy displacement data and the obtained C10 values from the L-BFGS loss function
optimisation. The third column shows the absolute error between the true and predicted
distributions.
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3.3 Systematic Data Reduction

We systematically reduce the data in the linear system of equations, i.e. the number of

rows in Aij and bi are reduced. Heat maps are shown for different percentages of the

total number of rows (32,704), up until 0.06%, where each row represents a DOF in

the 2D heterogeneous body. This is analogous to receiving a DIC image with missing

data, which is commonplace due to noise in measurements or the software lacking

displacement information in certain regions, hence the model would be working with

an incomplete displacement field. The aim of this is to understand how the optimiser

performs under these conditions, and to determine the minimum data requirement for

achieving accurate results. As the results presented in previous sections do not meet

the expected noise level present in clinical images, the purpose of this is to compare the

results of L-BFGS with the full set of DOFs (100% of DOFs as displayed on the figures).

This tells us the robustness of the optimiser from which we can gain insights into the

applicability of using it in real-world situations where the data availability may be less

than ideal. As in subsection 3.2, we use the L-BFGS optimiser with the regularisation

parameter λr = 50 and the step size α = 10−1.
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Figure 9: C10 parameters as a function of percentage of DOFs and noise level, in each
of the four domains. The C10 parameters are estimated using the L-BFGS optimisation
with λr = 50 and α = 10−1.
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The heat maps presented in Figure 12 show that at noise level σ = 10−10 to 10−8 mm,

the values obtained for the C10 parameters are accurate until 1% of the total DOFs

used in the calculations in all four domains, where 1% of the total number gives an

integer value of 327 DOFs. Below this number of DOFs, for all four of the domains,

the L-BFGS optimiser could not obtain any non-zero C10 values.

The largest effect of data reduction is seen in the calcified region, where accuracy of C10

parameters at the 1% of DOFs level deteriorates prematurely relative to higher per-

centages (DOFs ≥ 5%). At this percentage, C10 = 0 kPa at a noise level of σ = 10−7

mm, with deviation from the ground truth already occurring at σ = 10−8 mm (two

orders of magnitude before the other regions at the same percentage level), although

the deviation is not significant at 1.4%. This can be explained by the method used

to perform this test: the sampled rows are randomly selected, thus the likelihood of

a row which corresponds to any DOF in the calcified domain is far smaller than any

other region, as a result of these DOFs comprising only 2% of the total number of DOFs.

The lipid and wall regions show similar behaviour as the displacement data is reduced,

in that they both make give non-zero C10 values at σ = 10−6 mm. At noise levels above

this the C10 values obtained are 0 kPa. At σ = 10−6 mm in the lipid region, there is

no correlation between the percentage of DOFs used, as shown by random fluctuations

in the parameters obtained. The wall region, on the other hand, sees some correlation

with the percentage of DOFs; fewer DOFs means the accuracy in the parameter suffers.

A possible reason for why the obtained C10 values in these regions behave in a similar

way is due to their proximity to the lumen, meaning they are more affected by the ap-

plied pressure force, as well as lower ground truth stiffnesses, hence more deformation

and consequently higher signal-to-noise ratio relative to the calcified region. There are

more DOFs in the wall than the lipid region (40% compared to 17% of the total), which

is a possible explanation for the slightly better C10 estimates at noise level σ = 10−5

mm for DOFs ≥ 5%.

The intima region shows the same trend as the other three regions as the C10 values

yielded at noise σ = 10−10 mm and below 1% DOFs are physically unrealistic (C10 = 0

kPa). Accuracy relative to the true C10 value is maintained until 1 % DOFs at noise

σ = 10−5 mm. At noise level σ = 10−4 mm, the C10 value is obtained as ≈ 21 kPa,

as seen is subsection 3.1, but this is only maintained until 10% DOFs. Furthermore,

it must be noted that in this region and the lipid and wall regions there are some C10

values obtained as low as 0.06% and 0.07%, but there is no clear correlation here. The

reason for this is unclear since this method uses the same set of randomly selected rows
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for a given percentage level, so if C10 values are obtained at σ = 10−8 mm, for example,

then values should also be obtained at σ = 10−10 mm.

The linear system of equations is robust until 10% total DOFs in the intima region

and 1% in the calcified, lipid and wall regions, where robustness is evaluated against

the values obtained with 100% DOFs. Since the intima region contains the fibrous cap,

it is more important for parameter and stress distribution prediction, hence we conclude

that 10% of the displacement data is required for obtaining C10 values in this way.
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4 Discussion

The aim of this study was to test the applicability and performance of EUCLID for

the material characterisation of multicomponent atherosclerotic plaques. Specifically,

we sought to obtain the C10 neo-Hookean material parameters in a 2D finite element

body. The geometry was based on a cross-section of an atherosclerotic diseased artery

with four domains, where the domains themselves were considered to be homogeneous.

A plane strain assumption was used, along with a near-incompressibility assumption of

ν = 0.49. Gaussian noise was artificially added in order to emulate IVUS images. The

aim was to be able to predict material parameters at an expected displacement noise

standard deviation σ = 1 µm (10−3 mm). Displacement data was generated using the

FEM with all material points modelled as a neo-Hookean solid to capture any potential

non-linear behaviour. Mechanical loading was done via intraluminal blood pressure of

120 mmHg to mimic arterial expansion. The objective function (Equation 22) was min-

imised using the L-BFGS optimisation algorithm. This function represents the residual

error between the predicted internal forces (Aijθj) and the true external forces (bi), and

was defined as the L2 norm. θj is the solution vector containing the domain-dependent

C10 neo-Hookean parameters.

Results were presented in the form of the RMSE as a function of displacement noise

standard deviation σ, obtained C10 values, stress distributions and systematic data re-

duction. The RMSE shows the accuracy in the whole solution vector θj, whilst the

stress distributions calculated from the C10 values and noisy displacement data high-

lighted specific regions in the heterogeneous body where accuracy suffered. The RMSE

was displayed to convey the impact of different sets of hyperparameters λr and α. When

using all regions, i.e. when the solution vector θj contains four C10 values, λr = 50 was

found to be optimal. This regularisation parameter weights the relative contribution of

lumen (boundary) and non-lumen (internal) in the objective function. A value of 50 also

corresponds to the ratio of non-lumen to lumen DOFs. The stress distributions high-

light the effect of the deviation of the calcified C10 parameter at σ = 10−6 mm, where

a 15% deviation from the true C10 value caused a loss in accuracy of 99% compared

to the true mean stress distribution, in each stress component Pij. However, this devi-

ation in the stress calculation is also in part due to the noise added to the displacements.

Removing the calcified DOFs (subsubsection 3.1.1) improved the accuracy of the model,

suggesting that the heterogeneity of the 2D finite element body impacts the model’s

accuracy. The improvement in C10 parameter accuracy without calcified DOFs was

also seen in the intima, lipid and wall regions. Furthermore, the heat maps (Figure 12)

show that using 10% of the total data yields accurate C10 parameters in the four re-
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gions, where accuracy was compared to the full data-set (100% DOFs).

Overall, the method fails to replicate stress distributions in any significant range at the

desired noise level of 10−3 mm. The highest noise level where accuracy was maintained

in the stress distributions and C10 parameters obtained was 10−6 mm, suggesting this

method requires improvement for the applicability of plaque risk assessment in a clin-

ical setting. The estimated stress distribution within each region at 10−3 mm resulted

in an effective stress of 0 kPa, indicating an equilibrium distribution. This presents a

challenge in assessing the risk of atherosclerotic plaque, as a low predicted stress level

may erroneously suggest a low risk of plaque rupture. Therefore, the algorithm’s current

form, with positive constraints enforced on the C10 parameters or fine-tuning the λr and

α hyperparameters, is insufficient for this boundary value problem. Possible reasons

for this are the small displacements and resulting small strains due to the intraluminal

pressure (displayed in subsection A.2), as well as the heterogeneity present in the 2D

finite element body. The small displacements impact the signal-to-noise ratio (SNR),

which is calculated as

SNR =
Psignal

Pnoise

, (24)

where Psignal and Pnoise represent the power of the signal and noise, respectively. The

SNR is calculated using the maximum power of the signal, in this case the maximum

displacement which is of the order of 10−1 mm (as shown in subsection A.1). At the

expected IVUS noise level 10−3 mm, this yields a SNR of 102. However, for the ac-

curacy of C10 parameters required at σ = 10−7 mm (RMSE ≈ 0 kPa), the L-BFGS

optimiser requires at least a SNR of 105. Sufficient predictions are made in three re-

gions (excluding the calcified region) at σ = 10−5 mm, where a SNR of 103 would be

required. Although the SNR is calculated with the maximum signal, the displacements

in the calcified region, especially in the y direction, are typically 10−2 mm which is an

order of magnitude smaller than in the intima region, thus resulting in SNR an order of

magnitude lower. This is due to the higher shear modulus in the calcified region, as well

as it being the furthest away from the applied force at the lumen boundary. This means

that any force applied at the boundary will need to be transmitted across more nodes,

and the internal stresses caused by this force will yield smaller strains. Additionally,

this is the smallest region, accounting for only 2% of the total elements. Therefore, the

calcified C10 parameter occurs in fewer equations in the system of equations. This effect

is especially prevalent in the case where the lumen DOFs are weighted with a higher

value of λr, since the relative importance of the calcified DOFs decreases. Overall, the

small strains encountered in this deformation pose a challenge to this method, as they

are more susceptible to errors in the predictions.
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The heterogeneity defined in this work also reduces the accuracy of parameters ob-

tained at higher noise levels, as reflected by a reduction in the RMSE (Figure 5), as

well as an increase in accuracy of the C10 parameters in σ = 10−5, relative to the case

with all regions, showing improvement in the noise performance by one order of mag-

nitude. As discussed previously, this approach is valid to both explore the effect of

obtaining parameters in a multicomponent domain, and because the intima region is of

more significance during plaque risk assessment. To this end, future work could explore

parameter estimation in a heterogeneous intima region.

In this work the ground truth values are known which mean that the errors calculated

are with respect to the ground truth. In a clinical setting the ground truth estimates

are not known. In such a case, the proposed technique requires further research in

order to reach state-of-the-art noise levels in clinical imaging devices. In conclusion,

the L-BFGS optimiser’s performance in predicting the C10 neo-Hookean parameters

is limited by the noise level in the input data and the heterogeneity of the 2D finite

element body. Future research could investigate alternative optimisation algorithms or

techniques to improve the model’s accuracy under these conditions. Furthermore, the

role of the heterogeneity could be further explored by using different geometries which

would allow the effect of the distance of domains from the applied forces, or the sizes

of domains to be properly quantified. Additionally, different constraints within the op-

timisation procedure could be explore, such as using reasonable estimates of the orders

of magnitudes of parameters, rather than just defining that C10 > 0 kPa, since this re-

sulted in highly inaccurate stress distributions at the expected noise level. Techniques

to de-noise the displacement data could also be explored.
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5 Conclusion

This work has explored the use of EUCLID, a computational framework based on discov-

ering constitutive models without stress data, for determining four domain-dependent

neo-Hookean constants C10 using noisy displacement data. The aim of this was to test

whether it could aid in the risk assessment of atherosclerotic plaques as the stress dis-

tributions, particularly in the intima region overlying the lipid core, are a key indicator

of plaque vulnerability. Whilst good accuracy was observed in the stress distributions

at σ = 10−5 mm in the intima, wall and lipid regions, the expected level of noise (10−3

mm) yielded physically unrealistic stress distributions. This poses as the key limitation

of this work; however, the method is robust against missing data. This was highlighted

by accuracy in the four C10 parameters obtained until 10% of the total DOFs, with 1%

being achieved in some regions. This signifies that if improvements are made to the

optimisation method and/or displacement data is significantly denoised, this framework

could still have implications in the risk assessment of atherosclerotic plaques.
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A Appendix

A.1 Displacement Histograms

The absolute displacements in each direction and in each of the four domains are pre-

sented, to convey the magnitude of the signal present in the displacement data. The

directions x and y are displayed separately, rather than the magnitude of the displace-

ment vector (
√

u2
x + u2

y) as the linear system of equations is defined in terms of degrees

of freedom. Each degree of freedom represents either the x or y direction of a node in

the finite element body.
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Figure 10: Displacements in the x direction due to an intraluminal pressure of 120mmHg
(15.96 kPa). The four domains calcified, lipid, intima, wall are displayed separately in
blue, green, red and yellow, respectively.
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Figure 11: Displacements in the y direction due to an intraluminal pressure of 120mmHg
(15.96 kPa). The four domains calcified, lipid, intima, wall are displayed separately in
blue, green, red and yellow, respectively.
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A.2 Strain Distribution at 120 mmHg

Exx Exy

Eyx Eyy

Figure 12: Green-Lagrange Strain Tensor (E) components in 2D at 120 mmHg.
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A.3 First Piola-Kirchhoff Stress Components

We define the determinant of the deformation gradient tensor detFij = F11F22−F12F21.

The four components of the first Piola-Kirchhoff stress tensor Pij in two-dimensions are:

P11 =

(
2F11

det(Fij)
2
3

− 2F22(1 + F 2
11 + F 2

12 + F 2
21 + F 2

22)

3det(Fij)
5
3

)
C10+2F22(det(Fij)−1)D1 (25)

P12 =

(
2F12

det(Fij)
2
3

+
2F21(1 + F 2

11 + F 2
12 + F 2

21 + F 2
22)

3det(Fij)
5
3

)
C10−2F21(det(Fij)−1)D1 (26)

P21 =

(
2F21

det(Fij)
2
3

+
2F12(1 + F 2

11 + F 2
12 + F 2

21 + F 2
22)

3det(Fij)
5
3

)
C10−2F12(det(Fij)−1)D1 (27)

P22 =

(
2F22

det(Fij)
2
3

− 2F11(1 + F 2
11 + F 2

12 + F 2
21 + F 2

22)

3det(Fij)
5
3

)
C10+2F11(det(Fij)−1)D1 (28)
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