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1. Introduction

1.1. General

Percipitation (rain or snow) leads to run-off. It also leads to soil erosion.
Water and sediment are transported down-hill to the sea or ocean. This
transport takes place via rivers of various sizes and shapes. Knowledge of

the natural processes in rivers (aiver hydraulics on potamofogy)is essential
to understand and predict changes that will occur due to natural causes or due

to human interference by n{ver engineering works.

The combined transport of water and sediment is a three dimensional time
depending phenomenon, which is of a complex nature. A complete deteruministic
description fails due to the sfochastic characterof the morphological
processes. At best a rather schematic approach can be used starting from

the equations of motion and continuity of two phases: water and sediment.
This, however, is only possible when analluvial channel is involved

j.e. the river flowing to its own non-cohesive sediment. The picture can

be completely different if the natural river differs from this idealized
case. This is for instance the case when the alluvial bed contains resistant

spots (clay or rock).

Another example that makes morphological prediction for rivers extremely
difficult is the occurence of extremely rare high discharges that cannot be
predicted. Their influence on the fluvial processes, however, can be extremely
large. This is due to the strongly non-linear relationship between water

movement and sediment movement.

e El1 Nifio, a yearly dislocation in one of the world's largest weather systems
over the Pacific Ocean had a large global impact in 1982-1983.
It has enormous consequences in terms of floods and droughts (Canby, 1984).
Among other things the usual flood of the Chira River (Peru) in the beginning
of the year became so extremely large early 1983, that the river changed its
downstream course over many kilometers due to this single flood.
Early 1984 the tropical cyclone Demoina stayed long time over the Southern
part of Mozambique. De rivers Maputo, Umbeluzi and Incomati obtained extremely
large discharges as locally 700 mm of rainfall occured in a few days.

Estimated discharges were about ten times higher than the recorded maximums.



These examples should be kept in mind when morphrlogical forecasts have to
be made: the predictions can be based on the statistical properties of the

discharge. However, one extreme non-predictable flood can change the whole

situation.

The characteristics of rivers can vary largely due to the properties of the
rainfall, the characteristics of the catchment area (elevation, soil proper-

ties, vegetation, etc.) and the influence of men in the river system.

These aspects will only be treated briefly in the following Sections of Chapter Ls
In Chapter 2 some essential river characteristics are treated, whereas

Chapter 3 is dealing with fluvial processes due to the combined transport

of water and sediment. Finally the principle of morphological predictions

is discussed in Chapter 4. These predictions are necessary to forecast the

morphological changes due to river engineering works.

1.2. Hydrological aspects

Many aspects govern the shape of the

discharge curve Q(t) of a river. In

R e D bt md r—. e e e e e

Fig. 1.1 one aspect has been demon-
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yearly maximum and minimum discharges is formed by the Congo River near
Brazzaville (Fig. 1.2). The values for 1983 were at Brazzaville
Qmax 77 400 m>/s and Qmin 23 000 m’/s. Thus Qmax/Qmin 3.5.
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Fig. 1.2. Congo River near Brazzaville

The above given examples regard perennial niverns: there is a substantial
discharge throughout the year.

On the other hand there are ephemeral nivens: during a large period of the
year there is little or no discharge. Discharge takes place during a short
period in the rainy season. An example is the Choshui River on Taiwan Island.
(Fig. 1.3).

Neile bridge

Fig. 1.3. Lower part of Choshui River (Taiwan)



During the typhoon period (July-September) this - iver carries a substantial
discharge. During the rest of the year the river bed is almost dry. There

is a substantial rainfall in the catchment area (2 555 mm/a) but the rain is
concentrated. Therefore in spite of the fact that the catchment area is
relatively small (3 155 km?) substantial discharges can occur. For the River
Choshui the once-in-hundred years discharge in Hsi-Lo amounts to 24 000 m?/s.

The annual hydrograph Q(t) (or, if expressed in water levels h(t)) is partly
due to the pattern of the rainfall, R(t). The regular shape h(t) for the

River Congo near Brazzaville (Fig. 1.2) is partly due to the fact that 2/3

of the catchment area is located on the Southern Hemisphere while 1/3 is
situated on the Northern Hemisphere. Therefore yearly two monsoons are present.
This leads to two low-water periods. For the River Congo two other aspects
play a role. The catchment area is not very ondulated and is heavily vegetated.

Both aspects contribute to the regular pattern of h(t).
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Fig. 1.4. Discharges for River Benue and River Faro.

In Fig. 1.4 the hydrograph Q(t) of the River Benue is given. This is the
main tributary of the River Niger. In this figure also the hydrograph of
the River Faro, a small tributary of the River Benue is given. The River
Faro with its small catchment area is much more flushy than the much larger

River Benue. Discharge peaks of tributaries are demped in the main river.



1.3. Ceological aspects

The geology of the river basin is an important fzctor in the appearance. The
discharge and sediment transport are characterized by the the catchment area
(variation in elevation, erodibility, vegetation, etc.). Consequently a large

variation in rivers is present. Table 1.l gives some general information.

Discharge

Catchment Water Sediment Sediment as

arca ppm of
River Station 10* km? m’s! mmyr.”' 10* tonyr.® 10°>mm yr.”' discharge (mg1™')
Amazon mouth 7.0 100 000 450 900 90 290
Mississippi mouth 3.9 18 000 150 300 55 530
Congo mouth 3.7 44 000 370 70 15 50
La Plata/Parana mouth 3.0 19 000 200 90 20 150
Ob mouth 3.0 12 000 130 16 4 40
Nile delta 29 3000 30 80 15 630
Yenissci mouth 2.6 17 000 210 11 3 20
Lena mouth 24 16 000 210 12 4 25
Amur mouth 21 11 000 160 52 15 150
Yangtse mouth 1.8 22 000 390 500 200 1400
Wolga mouth 1.5 8400 180 25 10 100
Missouri mouth 1.4 2 000 50 200 100 3200
Zambesi mouth 1.3 16 000 390 100 50 200
St Lawrence mouth 1.3 14 000 340 ' 3 2 7
Niger mouth 1.1 5700 160 40 25 220
Murray-Darling mouth 1.1 400 10 30 20 2 500
Ganges delta 1.0 14 000 440 1 500 1000 3600
Indus mouth 0.96 6400 210 400 300 2 000
Orinoco mouth 0.95 25 000 830 90 65 110
Orange River mouth 0.83 2900 110 150 130 1 600
Danube mouth 0.82 6400 250 67 60 330
Mekong mouth 0.80 15 000 590 80 70 170
Hwang Ho mouth 0.77 4 000 160 1900 1750 15 000
Brahmaputra Bahadurabad 0.64 19 000 940 730 800 1200
Dnjepr mouth 0.46 1600 110 1.2 2 25
Irrawaddi mouth 0.41 13000 1000 300 500 750
Rhine delta 0.36 2200 190 0.72 1 10
Magdalena (Colombia) Calamar 0.28 7 000 790 220 550 1 000
Vistula (Poland) mouth 0.19 1 000 160 1.5 5 50
Kura (USSR) mouth 0.18 580 100 37 150 2000
Chao Phya (Thailand) mouth 0.16 960 190 11 50 350
Oder (Germany/Poland) mouth 0.11 530 150 0.13 1 10
Rhone (France) mouth 0.096 1700 560 10 75 200
Po (ltaly) mouth 0.070 1500 670 15 150 300
Tiber (Italy) mouth 0.016 230 450 6 270 850
Ishikari (Japan) mouth 0.013 420 1000 1.8 100 140
Tone (Japan) Matsudo 0.012 480 1250 3 180 200
Waipapa (Ncw-Zealand)  Kanakanala  0.0016 46 900 11 5000 7 500

Table 1.1. Some basic data of rivers (after Jansen, 1979)

More information on sediment production in river basins is provided by
Fournier (1969). In Table 1.1 the rivers are listed by the length of the main

stem.



The difference in average sediment concentration is large. The champion is the
Yellow River (Huang He) in China. This river is flowing through a loess-area

leading to a substantial transport of fine material.

Figure 1.5 shows some transport
measurements at the station Tungkuan.

Concentrations upto 175 g/liter do

~ 5000 "9
9/L 300 p iQ | Lo00 /s occur.
@ EE 300 O The Yehe River, a tributary upstream
T - :\;_ 2000 T of this station flows through a hilly
— - ‘v ‘\‘ -
; \ loess-area with quite some gully
PN e P(ll) ]
5 » = 0 enos4on. There the mean concentration
T T
June July August is even more than 300 g/liter. The
g
§~ composition Yehe River has a catchment area of
o N
% i bedmaterial only 3208 kn?; the sediment yield
g 20- is above 14400 t/km?.a. On the other
T.104 hand the St. Lawrence River (Canada)

is carrying very little sediment;
this river flows through a number
of lakes.
Fig. 1.5. Example sediment transport
Yellow River (Long & Xiong, 1981)

The present geological processes can still influence a river basin. Near the
confluence of the River Magdalena and the River Cauca (Columbia) the Island
Mompos is situated. This area is due to subsidence caused by the tectonics
in the Andes. Under natural conditions the subsidence is balanced by the

yearly sedimentation during floods.

Another example is reported by Murty (1973). Due to earthquakes in the
Himalayas-slidings occur which bring suddenly and locally large amounts of
sediment in the Brahmaputra River. This causes the low water levels and the

high water levels to rise (Fig. 1.6).
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Fig. 1.6. Water level rises Brahmaputra River indirectly due to earthquakes
(Murty, 1973)

The composition of the rock that is the source of the sediments (= erosion

products) determines the morphological processes.

BED LOAD

BED MATER! SEDIMENT TRANSPORT
TRANSPORT MECHANISM)

Fig. 1.7. Classification of transport.

In Fig. 1.7 the usual (qualitative!) definitions of the various modes of

transport are given:

Bed material thanspont is the transport of the size fractions that are present
in the bed material of the river.
Washload is the transport of the fine particles that are not found in appreciable

quantities in the bed.
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The bed materiual transport is determined by *he composition of t"¢ bed and

by the hydraulic characteristics of the stream. It can be determined by
transport formulae.

On the other hand there is washload. The amount of washload in a reach is only
determined by the upstream supply. Hence it is not determined by the hydraulic
parameters of the stream.

This brings forward a problem because a sediment-water sample taken from the
stream will contain sediment belonging to the bed material load as well as

to the washload (Fig. 1.7).

In practice depending of the geological features of the catchment area rivers
can be distinguished into two types.

In Fig. 1.8 a qualitative plot is given of
the contribution of the various fractions
(Di) to the total sediment transport in a

river.

contribution to
total transport

River A indicates rivers like the River
Rhine, the River Niger and the River

Magdalena. A certain range of grain-

sizes is hardly present.

Fig. 1.8. Definition of washload.

On the other hand, however, other rivers like the Serang River on Java do not
have such a clear distinction. For type A washload can be characterised by a
single grain diameter (50-60 um). For rivers of type B the grain-size

alone cannot be a criterion for the distinction between the two types of

transport.

Sieve opening

D, (um) 150 105 75 62 50 42 35 25 0
P{Di}
(%) 0.9 2.4 4.4 | 6.9 | 9.1 | 11.5] 14.4 21.9| 100

Table 1.2. Grain-sizes of suspended sedidment (Serang River)



As an example Table 1.2 gives a grain-size analysis of a sediment-water

samples taken from the Serang River.

A possible way of distinction seems to be the one indicated independently

by Vlugter (1941, 1962) and Bagnold (1962). The energy balance for particles
in the stream is considered. Particles require energy to remain in suspension.
On the other hand while floating downstream particles deliver potential

energy to the stream.

According to this hypothesis the transport of particles with fall velocity

wc becomes unrestricted if
W § u-i (1-1)
For quartz (ps = 2650 kg/m®) this criterion becomes

W, < 1.6 ui : (1-2)

This VLugten-Bagnofd criterdion does not only contain the characteristics of
the sediment (Wc) but also of the flow (ui). This seems logical: washload
is by definition not taking part in morphological processes. If in a river
a dam is built with a reservoir then the value of wc is decreasing in the
direction of the dam, according to Eq. (1-2). If the reservoir is large
then eventually almost all sediment is trapped, even what was washload in

the undisturbed river.

Remark: The data of the Serang River is Table 1.2 show that all (fine) grain-
sizes are present. It is a typical example of river type B in Fig. 1.8.

The Serang River gets its sediment from the erosion of limestone.

The geolqgical features of the river basin influence the character of a river.

The following examples can be given:

e Some rivers have their origin in a lake. For the Nile River the origin of
the White Nile is Lake Victoria, whereas the Blue Nile comes from Lake Tana
(Ethiopia). Moreover, the discharge of the White Nile is influenced by the
swampy area (the Sudds) where much water is lost due to evaporation. The
Shire River (Malawi), a tributary of the Zambezi River originates from
Lake Malawi.



e Some rivers have a '-ocky section' in their alluvial course. This is for
instance the case with the Orinoco River. “he Rufiji River in Tanzania has
a rocky section at Stiegler's Gorge. At those reaches (nearly) all sediment

is transported as washload.

Example: knowledge of the geology of a river is essential for the understanding
of the character of the river and the use of a river. A typical

example is reported by Neill (1973) as given in Fig. 1.9

ROAD

/ BOTTOM OF
- o~ VALLEY SLOPE
i

;\80‘ TOM OF
VALLEY SLOPES

SITE ORIGINALLY PROPOSED
FOR NEW BRIDGE

ROCK OUTCROPS OF
CHOSEN BRIDGE SITE R

STABLE CHMANNEL N
POST- GLACIAL VALLEY

—

4 km

j—— — —
3

o] 1 2

Fig. 1.9. Geology influencing the selection of bridge site (after Neill, 1973).

By studying the geological characteristics of the river valley a bridge site

could be selected where it is unlikely that in future the river bed will shift.
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1.4. Literature

There exists an abundant amount of literature on potamology and river engineer-
ing. Most of it is scattered in articles. Part of it is from a geological
(sedimentological) nature, others are directed to river engineering. A few
handbooks exist. Scheidegger (1970) has tried from a geomorphological point of
view to describe some river processes in a quantitative sense. A mathematical
approach to various hydrological aspects of rivers is given by Eagleson (1970).
Schumm (1972) and Leopold et al (1964) describe some morphological problems.

For the direction of river engineering Shen (1971) and Jansen (1979) can be
mentioned. The first book contains a number of separate contributions whereas
in the second book an integrated approach is offered. Much information on

sedimentation engineering is offered in Vanoni (1975).

Obviously books do not give during a long time the state-of-the-art. For
recent finding articles are the appropriate source of information. For
instance Jansen (1979) contains material that has mostly been compiled a
decade ago from now (1985). The effort spent in the Netherlands on the
nesearnch project on niversin a close co-operation between Rijkswaterstaat,
the Delft Hydraulics Laboratory and the Delft University of Technology
during more than one decade has brought forward results that have not yet
been incorporated in handbooks. In these lecture notes part of the results

are treated.



2. River characteristics

2.1. General

Given from upstream a discharge Q(t) and attached sediment transport S(t)

of a grain-size D through a valley with a slope i, a river can have many
shapes. Human interference can have altered the shape by major river training
(nommalization on canalization) or by smaller works like local bank pro-
tection.This all influences the appearance of a river. Moreover, the river may
change its shape as a function of time.

Some general characteristics are treated in this Chapter.

2.2. Planform

In Fig. 2.1 the idealized course of a river is demonstrated. From the
head watens the river reaches the middle course as a bradided ndiver
gradualy becoming a meandering niver until in the lower course a delta

formation may take place. In the case of a sea (or ocean) the influence of

the tides is present in the delta.

middle course | lower | erosion

headwaters | course | base

sea

. l
Ibralded meanderingl

Fig. 2.1. Idealized river

A meandering river is characterized by a single channel whereas a braided
river has a number of channels. Leopold and Wolman (1957) have made clear

that slope and discharge characterize the planform.
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Fig. 2.2. Planform types (after Leopold and Wolman, 1957)

They also mention straight nivers as a type of planform. However, this form
seems to be unstable. In a straight river there is a tendency to meander
in the river bed. There appear alternate bars propagating downstream slower
than the normal bedforms. These alternate bars have also been noticed ‘

in straight laboratory flumes with a mobile bed (Wang and Klaassen, 1981).

The composition of Fig. 2.2 brings forward the problem of schematization

of the discharge Q(t) into a single discharge. In Fig. 2.2 the bankf{ull dis-
charge has been taken. It is the discharge just large enough to fill the Low
waten bed. Roughly speaking it is the discharge that occurs once or twice in an

average year.

Figure 2.3 gives an example of a river in which part is braided and part is
meandering. There are indications that the braided part of the Tigris River
(the reach upstream of Balad) has an awmoured bed. Armouring is a result of
a degradated bed composed of different grain sizes. Sorting processes are res-
ponsible for the fact that finally the toplayer of the bed consists of coarse

grains (thickness 1 to 2 D) above the original sediment mixture.
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Human interference can transform
a braided river into a meandering
one. An example is given in

Fig. 2.4. Normalization works in
the 19th century in the River
Rhine downstream of Basle
(Switzerland) have changed the

planform.

The artificial new meanders have

fixed banks. If the new course
is made straight, alternate bars
are likely to occur. This a

nuisance for navigation.

Fig. 2.4. Normalization of the

River Rhine downstream of Basle
(19th century).

More downstream of Basle the original meandering River Rhine has also been

normalized. Figure 2.5 gives an example.

%
4
g

SPEIER,;
Y
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GERMERSHEIM>

O 1 2 3km

Fig. 2:5. Normalization of the River Rhine upstream of Mannheim (19th century)
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In normalized rivers the natural appearance can hardly be recognized. In Fig. 2.6

the change of the River Waal (the main branch of the River Rhine in the

Netherlands) in the course of time is represented.

Fig. 2.6. Development of the River Waal near Tiel (km 910 - 930)
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In this case the original reason for river training was the prevention of
jamming of flooting ice. Icejams caused flood problems. The later works were

carried out to reduce the width to obtain more depth for navigation.

The presence of a meandering or braided rivers has been examined mathematically
by means of a linear stability analysis. Some references are given in

Janssen (1979, p. 133). The study of Olesen (1983) can be quoted in addition.

The characteristics of meandering rivers have also been studied by many
investigators. According to Leopold et al (1964) the meander lenght ()\)
is roughly proportional to the width (Bs) of the river. The same holds
for the relation between A and the radius of curvature (Rm)'

The definitions of the meander characteristics are shown in Fig. 2.7.

Fig. 2.7. Meander characteristics.
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Fig. 2.8. Meander characteristics (after Leopoldet al , 1964).
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The findings of Leopold et af (1964) are represented in Fig. 2.8.

The study of meander characteristics is hampered by the fact that not all
meanders of the same river are equal. Spectral analysis has been applied
by Speight (1965) on the meanders of the Angabunga River (Papua-New Guinea).

Fig. 2.9 shows that there are two peaks in the spectra.

>
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; 100 1 100 0o
: J
<
g - - ”
1 “ 0 el

«0 40 4 0
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Fig. 2.9. Meander spectra for Angabunga River (after Speight, 1965)

This in accordance with Schumm (1963) who suggests that two characteristic

meander lengths may be present for the same stream at the same time.

Another problem is the (varying) discharge. In most cases bankfull discharge
has been used to find relation with the mean meander length. A summary given
in Jansen (1979, p. 137) suggest A = Q% with o = 0.4 to 0.5 if the bankfull
discharge is taken. Ackers and Charlton (1970) have studied the influence

of the hydrograph on the meander length. They studied the River Kaduna
(tributary of the Niger River). They tried to reproduce the meanders by means
of a scale model and found that reproduction was possible with a constant dis-
charge 13% higher than bankfull discharge.

In freely meandering rivers in time meanders propagate downstream and/or
increase their amplitude. If the amplitude becomes very large, the river
may during flood cut-off the bend, leaving the original meander loops as
oxbow Lakes in the river valley. Gradually these oxbow lakes get filled

up with fine material. This causes inhomogeneities of the sediment composi-
tion of the high water bed. Therefore for the Mississippi River the local
alignment of the channel depends largely on the local variation of the

composition of the bank material (Leopold et al, 1964, p. 298).



Hence it is not easy to predict the time deperding behaviour of the planform
of freely meandering rivers. However, attempts are being made (Ikeda et al,

1981; Parker etaf, 1982 and Chang, 1984).

2.3. Longitudinal profile

The idealized river presented in Fig. 2.1 shows that the bedslope becomes
slower in the downstream direction. This is the general tendency found.
Moreover, the mean grain-size decreases in the downstream direction. As early
as 1875 Sternberg describes this phenomenon mathematically (4ee Leliavski,
1955).

The mass reduction (dM) of the grain during the transport process is
supposed to be proportional with the mass (M) of the grains and the distance
(dx) over which the grains are transported.

Hence,

dM = - aMdx (2-1)

in which o is a coefficient describing the properties of the grains and the
river.
Integration gives

M= Mo exp {-ax } (2-2)
in which the integration constant represents the mass at x = o
For the grain-size D this can be transformed into

D= Do exp { —a'x } (2-3)

The variation of D(x) seems to be due to wearing and sorting. The process
has not yet been analysed quantitatively. Leliavski (1955) reports on some
data of M{x} for European rivers. Note that in principle the a-value of
Eq. (2-2) can have quite different values for rivers. Some times the grain-
size can decrease over small distances. This is for instance the case for

the Choshui River (Taiwan) as can be noticed from Fig. 1.3.

Also the longitudinal profile can be approached by an experimental function.
For the Rio Grande (USA) the relation for the bed slope
1b = 0.0022 exp {-5.8 1073 x } has been reported. As i=—azb/3x also zy will

b
be changing exponentially with the distance (s¢e Jansen, 1979, p. 141).



880

890

300
910

920

930

940

950

960

970

(wy) x —

990

1000

S _ ! | 1
o - o o L ~ o ~ &~ ?
S s o en sen s TP A s 2 2 5. g —— g — y—n rp—g— ey S—— 1
: 880 £~ [JSSELKOP i _
+
" | R goo 4. DE STEEC
+
] s vt %00 + DOESBURG
1 + 910 4 DIEREN _i
B + 920 L
ZUTPHEN
— i — — S i i (i i, = 930..'__'_'———_——'——
“+
1 940 T
DEVENTER
] ) 950 4
— e e = |_oLst __ __ __ _
. 960 +-
+
— L2CLL
1 970 +
+ %
~~
s s 2 50y i e e s e i - g' 980 + KATERVEER
N
] b 990 1
W KAMPEN
1 1000 1
. A A A Al e L
Fig.

2.10. Longitudinal profile IJssel River (after Zeekant, 1983)
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As an example of zb(x) and B(X), Fig. 2.10 shows the variation along the
axis of the River IJssel, the minor branch of the River Rhine in the Netherlands.
Downstream of Kampen the River IJssel is discharging into the IJssel Lake.

Hence the downstream part of this river branch is not influenced by tides.

2.4, Confluences and bifurcations

Confluences are mainly present in the upper reach of a river whereas bifurca-

tions are usually present in the lower reach (Fig. 2.1)

For a confluence (Fig. 2.11) the equations of
continuity for water (Q) and sediment (S) hold.

Q = Q1 + Q2 and So =S

o + S (2-4)

1 2

The discharges Ql(t) and Qz(t) may have a

similar shape. This, however, is not always

the case. The confluence of the Niger River and
the Benue River near Lokoja give an example.

Fig. 2.11. Confluence Both rivers have a large discharge in September-

October ('white flood'). In addition the Niger River has a large discharge in
April ('black flood') (see NEDECO, 1959). The Niger River mainly governs the
water level at the bifurcation. Therefore during the 'black flood' the lower
reach of the River Benue contains a backwater curve (Ml - curve). This causes

temporarily sedimentation.
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Figure 2.12 gives an example of a confluence in Venezuela. The Apure River,
near San Fernando de Apure, has a rather regular hydrograph. It regards a
tributary of the Orinoco River . Note the large variation of the bed level
downstream of the confluence with the Portugesa River, especially in the

narrow section B-B. It regards here natural i.e. non-trained rivers.

In the case of a b{fwrcation the discharge (Qo) and sediment transport (So)
coming from upstream are devided. (Fig. 2.13).

0f course here also the continuity equations
of Eq. (2-4) hold. However, now each equation
has two unknowns. Thus additional infor-
mation is necessary.

This distribution of the discharge Qo over
two branches is gove:ned by the fact that at

the bifurcation only one water level can exist.
Hence the Conveyances of the two downstream
Fig. 2.13. Bifurcation rivers determine the distribution of Qo'

The distribution of the transport So at the bifurcation is more complicated.
For some sediment ('washload') the distribution of So is proportional to the
distribution of Qo' For the coarse material, transported as bedload, this is
not the case. The Local geometry of the bifurcation determines the local
flow pattern and this determines the movement of the sediment transported
along the bed. In general a river branching off in an outer bend of another

river receives relatively more sediment (Bulle, 1926).
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Fig. 2.14. Bed profile near the bifurcations of the River Rhine in the
Netherlands



Given the distribution of Q0 and So as well as the continuity of the water
level at the bifurcation, it is not surprising that the bedlevel can show
discontinuities (see also Section 4.5). Figure 2.14 shows these disconti-
nuities at the bifurcations of the River Rhine in the Netherlands. The
situation of the bifurcations is given in Fig. 2.15.
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Fig. 2.15. Bifurcations of the River Rhine in the Netherlands

As the sediment coming from upstream is usually non-uniform, grain-sorting is
likely to occur at a bifurcation. Figure 2.6 gives an example. It requires some
care in sampling to show this pheno-

menon as other causes of grainsorting

4» At (river bends, bedforms) are present at
;* ::/ the same time.
: //, T 1F To obtain Fig. 2.16 over some kilometers
0 [ { ] in each branch samples have been taken
: A ' along the river axis and at distances
" 1/ _f t Y% B from the axis. Each sample had a
- ’/ [ﬁf'. L sufficiently large size to get a good
,'/ 1, Y estimation of the mean grain size ()
! ' ‘T ! - on the pérticular location (de Vries, 1970).

Fig. 2.16. Grain sorting at the

bifurcation Westervoort.
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2.5. River mouths

A river discharges into another river (like the River Benue into the River Niger),
into a lake (like the River lJssel into the lJssel Lake) or in a sea. To a

large extent the water level at the mouth is not governed by the river, it is
therefore an independent boundary condition. At a far distance upstream of the
mouth the water movement and sediment movement are independent of the boundary
condition. Naturally the bed level there is influenced by the presence of the

mouth.

An elementary analysis of some schematic cases is given below:

e River with constant discharge entering a deep lake

The most simple case regards a river with constant width and discharge.
Upstrean of the mouth (x >0) the same S and Q are transported. For uniform
bed material the bottom slope (ib) and the waterdepth (a) will be constant.
Waterlevel and bedlevel are then parallel straight lines.

Due to sedimentation in the lake the mouth will gradually move downstream.
The process is governed by the yearly sediment transport and the depth of

the lake.

e River with varying discharge entering a deep lake
At the mouth (x = 0) the water level h(0,t) = constant. If again the width

(B) and the grain size are supposed to be constant only the variation of
Q has to be considered in addition. It can be stated in general that it
takes much time to change the slope of the longitudinal profile. Hence
the water level upstream of the mouth may vary in time but the bed level
hardly does.

The bed slope (ib) can now be found from the reasoning that the yearly
sediment transport through each cross-section has to be the same. As an
approximation the transport formulae for this case are represented by

n
S = mu with m and n being constant.

The transport can now be expressed with Q and ib as parameters.

n 2 n 2-5
S=Bmu' =Bm {—2—} =Bm{ 2 . Q =43 ( )
Ba B BCi %



in which Chezy equation Q = BCv'aib is used

Hence

s~ q"s | 1b“/3 (2-6)
If £{Q} is the probability density of the discharge then the yearly sediment

transport for each section amounts to
J S(Q).£f{Q}dQ = constant (2-7)

As 1b does not change with the discharge Eqs. (2-6) and (2-7) can be combined.

Bl-n/’.ig‘/’. g Qn/’. £{Q} . dQ = constant ' (2-8)

Also in this case 1b is constant
(if B is). There is one discharge
(Qd) for which the flow is uniform.
For Q # Qd backwater curves are

present (Fig. 2.17). .

For mild (positive) slopes the back-
water curve will be of the Hl-type
if Q<Qd and of the Mz-type for Q>Qd.

Fig. 2.17. River discharging into a
~ lake

It is interesting to look in this case at the depth (ao) in the mouth.
Therefore transport formulae must now be expressed with Q and a as parameters.

Combination of Eqs. (2-5) and (2-7) gives for the yearly transport
s Bnl{—jl-}?f{Q} .dQ = constant (2-9)
0 Bag

If now a is supposed not to vary with Q (which is less likely than for ib)
then Eq. (2-9) can be written as

-n+l -

B a, nf Qn.f{Q) .dQ = constant (2-10)
0
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The comparison of Eqs. (2-8) and (2-10) will be given further attention in
Section 2.6.

o River discharging into a sea

A river discharging into a sea is near the mouth under the influence of the

tidal movement. The tidal movement enlarges the sediment transporting capacity.

Therefore the cross-section will generally increase in the direction of the

mouth. The principle can be explained from the non-linear relationship between

flow velocity and sediment transport.
In Fig. 2.18 the variation of the flow
velocity is given. Due to upstream dis-

charge (Qo) there is the flow velocity u-

The flow velocity due to the tide is

supposed to vary as a sine-function with an

i (€ amplitude U. Therefore the flow velocity
in the cross-section considered reads
Fig. 2.18. Tidal influence

u=u + 1 sinot (2-11)

The transport per unit of width is s and using s = m u® gives for the average

transport s during the tidal period (T):
e | T n
s=T /m {uo + 4 sinwt}  dt (2-12)
o

If the parameters m and n do not change too much this gives with ¢ = Q/u

T
Sem® LT (1 -6 stnwt) M de (2-13)
o
Due to the upper discharge Qo the transport would be s, =m uon.

From Eq. (2-13) follows withwt = 27 andwt = y or dy = wdt:

2n
T =555 [{4sin y + 1) " dy = Bs_ (2-14)
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with

2n
B = 31“- [{4siny + 1}™ dy = 8(¢,n) (2-15)

For instance the following functions for B(¢) can be found analytically:

n=1 B =1
n=3 B =3/2¢%2+1
n=5 B =15/8¢% + 542 +1

These relations are given in Fig. 2.19 for 0 <¢ < 1.
Due to above mentioned non-linear relationship n> 1. Thus B> 1 or s> s,

Consider now two cross-sections. The one up-
stream of the tidal influence (subscript o) has
the characteristics u = us ¢° =0 and B = Bo.
The cross-section under the tidal influence has
the subscript 1. So here the characteristics
are ¢ = ¢1 and B = Bl.

For a constant upper discharge Qo the mass

balance has to express that both cross-

sections have to have the same total trans-

port as So = §, or

0 ' -
0 I

—_— ¢ = i/u

5 Bl %01 T Bo * oo (2-16)

0

Fig. 2.19.8 = f(¢,n) in which - is the transport unit width

in the cross-sectional area A, with Q =u_ .A
: 1 (¢ ol 1

From Eq. (2-16) follows:



y2

Qo Qo
B1 : Bl SR P - Bo SR P (2-17)
11 o o
Or
B a™ B [a 1"
B, = R S S - B (2-18)
1 B n—l-a n B1 Ao

As 8l > 1 for a constant width (Bl=Bo) it follows from Eq. (2-18) that apa..
In general it will follow from Eq. (2-18) that Al> Ao.

The above given analysis is only of a qualitative nature. Near the mouth the
analysis will not hold due to the fact that density currents will be present

and the flow direction will reverse.

2.6. Schematization of the regime

The main characteristic of a river discharge is that this varies in time.
As a consequence the morphological parameters of a river will also be time-
depended. Therefore if morphological forecasts have to be made, this variation

in time has to be taken into consideration.

At present (1985) it has become possible to carry out these morphological
computations with a varying discharge Q(t). However, it is then still
questionable which (recorded) Q(t) has to be taken. There will be a tendency
to use an average year and if possible also wet years will be used. No

systematic research as yet seems to have been carried out.

Instead of a time depending prediction it is possible to study the change of
an equilibrium situation into a new one, leaving the time depending predic-
tions of the transient from one equilibrium into another for a second approxi-
mation. In this steady approach the probability distribution f{Q)} is used.
This method has been used in Section 2.5 to find the equilibrium bed slope of
a river discharging into a lake. In Eq. (2-8) the'right hand side represents
the yearly sediment transport. Hence this equation can be used to study the
change of the slope if the width of the river is changed (see also Section

4.4).
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It has to be remarked that in the above quoted analysis the transport function
is approached by a power law s = m u". This has been done to make the analysis
sufficiently transparent. For practical problems it is quite possible to use

a real transport formula, i.e. one adequate to the river which is studied.

In literature frequently the river regime is drastically schematized into

one single discharge ('dominant discharge'). The use of bankfull discharge for
the study of meander characteristics is an example (Section 2.2).

It can easily be shown that such a dominant discharge does not exists. In
other words one single discharge cannot describe more than one morphological

parameter of a river.

The proof of this statement can be obtained from the example of a river dis-
charging into a lake (see Fig. 2.17). Two parameters are considered vAz

the bed slope ib upstream of the mouth and depth a, at the mouth.

Following the procedure usually applied with the concept of 'dominant discharge’
Eq. (2-8) would lead to a discharge Qd. for the slope ib according to

1
i 1 s qMs, £y aq - BMe L 1 PMs %, REsB
or
n/3 © )
0 -OIQ“/’ . £Q} . dQ (2-20)
i

A similar approach for the depth a, would lead with Eq. (2-10) to a 'dominant'
discharge Qd with
a

n

Q . £{Q}. dQ (2-21)

o 8

n
Q =
a

Equations (2-20) and (2-21) show that always Q. # Qd . In other words one
single discharge cannol lead to correct answers for bgth ib and a,.

Two more remarks can be made in this respect.

(i) The definitions applied to find the 'dominant' discharge use the
characteristics of the ex{4fing river. Obviously a different discharge
has to be applied to forecast the response of the river on man-made

changes in the river system.
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(ii) The above given examples for ib and a show that there is no need to define
such a thing as a 'dominant' discharge. In principle the problem of finding
ib and a, can be solved by means of Eqs. (2-8) and (2-10).

In summary the schematization of the regime of a river can be two-fold.

e For time-depending prediction the 'real' Q(t) has to be used.

e For studying new equilibrium situations it is advised to use the probability
density f{Q} of the discharge.

In practice both f{Q} and Q(t) will be approximated. For instance

RAECHE IR (2-22)

1

[ ac}-]

1

As an example it can be tested whether a continuous probability density f{Q}
based on daily discharges can be approximated by a histogram based on
monthly averaged discharges. As the sediment transport plays a key role

in the morphological predictions it is logical to test this approximation
via S. This can be done by some test computations of the factor o with n

being the number of days in a month and

& = (2-23)

For flushy upper rivers due to the non-linear relationship between Q and S
the value will be o <<1. For lower rivers, however, the discharge usually does
not change rapidly. Then o * 1, which means that Eq. (2-22) can be used thus

the computations can be based on monthly averaged discharges.

A similar approach may be used for time-depending morphological computations
with Q(t). As will be shown later (see Chapter 3) in morphological computations
often time steps larger than one day can be used. Hence also in that case

discretization is adopted, this time of Q(t).
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3. Fluvial processes

3.1. General

The combined transport of water and sediment in rivers is a complex process
because there is an interaction between the transports of the two phases. The
problem is time-depending, dealing with three space dimensions. It requires a
great deal of schematization in order to be able to describe the problems in a
mathematical sense, leading to mathematical models that can be used for

morphological forecasts.

In this chapter the mathematical description is treated. In the first place
Section 3.2 deals with the one-dimensional approach. Here the average values
of the morphological parameters for each cross-section are considered as
function of time and place. In this approach there is only one space dimension

left, the coordinate x along the river axis.

In Section 3.3 two-dimensional approaches are treated. The two space dimen-

sions are in the first place the x and y coordinate in the horizontal plane.
Also two-dimensiocnal approaches in the x-z plane are considered (Sub-Section
3.3.3). These approaches are necessary when the transport of sediment in

suspension varies considerably in the longitudinal direction.

The basic parameters are indicated in the definition sketch of Fig. 3.1.

e The water depth (a) is mainly of impor-
tance for navigation. Prediction of a (x,y,t)
is anticipated.

e The waten Level (h) is of interest for
the possibility to withdraw water for
irrigation or with regard to flood

problems.

e The bed Level (zb) is important to know
when bank protection works or bridge
piers have to be designed. Obviously
zb(x,y,t) has to be predicted.

Fig. 3.1. Definition sketch.
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3.2. One-dimensional approach

3.2.1. Analysis of basic equations

In the one-dimensional approach the average values of a, h, and z, are con-

sidered for the cross-sections. With h = a + zy according to the definition

(Fig. 3.1) this means that a and z, can be considered as dependent variables

b
for which relevant basic equations have to be fouund. Moreover the flow
velocity u(x,t) and the transport s(x,t) are dependent variables. This means

that four basic equations are required.

The equations are:

9z
du du da b ulu
— + — — —_— = - -
momentum water — + uS—+ ga—+ g5 g, (3-1)
Cca
. da da Ju
continuity water STt Uit a5 © 0 (3-2)
transport formula s = f{u, 8 ,D , C etc} (3-3)
aZb s
continuity sediment -t *3x - © (3-4)

The following remarks have to be made:

(i) The equations are valid for a wide river with constant width B.
The banks are supposed to be fixed or less erodible than the river
bed. For erodible banks also B(x,t) would have to be considered as
a dependent variable. This would require an additional equation,
which is not readily available.

(ii) The equations are valid for s/q<<l; i.e. small mean sediment con-

" centrationms.

(iii) Any suitable transport formula can be used in principle. In this
elementary analysis all parameters except u(x,t) are supposed not
to vary with x and t.

(iv) Equation (3-3) implies that the sediment transport is a function of
the £ocal hydraulic parameters. Hence this model is not applicable if
there is a change in suspended load over short distances

(see Sub-Section 3.3.3).
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It has been shown (de Vries, 1959, 1965) that Egs. (3-1) through (3-4) form
a hyperbolic system with the characteristic celerities dx/dt = c. The three

celerities ¢ ; ;,63 are the roots of the cubic equation:
c® - 2uc? - {ga - u? + gdf/du } ¢ + ugdf/du = 0 (3-5)

An analysis can for instance be found in Jansen (1979, p. 94).

Equation (3-5) can be modified using the following three dimensionless parameters.
e relative celerity ¢ = c/u
e Froude number Fr = u/v/ ga (3-6)

=1
e Transport parameters vy =a df/du

The dimensionless form of Eq. (3-5) becomes then:

2 _2 _2 _2
$% - 2¢ + {1-Fr -¢yFr }+yFr =0 3-7)
% = 1 ! | | ) ! l l
r *© b T [ 1 svmeoL | mecanos o
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- | \_\.;. l l — — | WATER LEVEL + +
g ‘ : A \l _-I—-——-._L_ e | watem evee | — | +
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i
W P b s i l 1_.....
; |
Do
- |
H v-\oi o ]
w0 = oo [
i |
i
- 1
| | : |
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Fig. 3.2. Relative celerity of disturbance (after de Vries, 1969)
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In Fig. 3.2 the three roots 4 (i = 1,2,3) have been represented graphically

as functions of the Froude number and y.

Before analysing this figure it is of importance to pay some attention to
the parameter ¢ .

Using as an approximation s = m u" it follows

_df/du _mnu"! s
a a q

v

(3-8)

Hence ¢ Vv s/q, a value which is usually much smaller than unity. Note that
0(n)=0(5). Therefore in Fig. 3.2 only values ¥ <<1 are sketched. The
figure shows that two celerities €, ,=ut/gaor ¢, , =1 % Fr'-1 are

apparently for Fr < 0.6 not influenced by the mobility of the bed (thus by ).
Inserting for this case the known roots ¢]’2 in Eq. (3-7) lead to an

expression for ¢3- This can be done as follows. Equation (3-7) can be written

as:
(6 =0)(8 =0,)(¢ =6, =0 (3-9)

So comparing Eqs. (3-7) and (3-9) gives

_2
Yy Fr = - ¢1¢2¢3 (3-10)
or
-2 -1 -1
¥ Fr = =(1+Fr )(1-Fr )¢ (3-11)
3
thus
: '
¢ wm —L— , (3-12)
3 1 - Fr2

Note that in Fig. 3.2 for Fr < 0.6 it holds |¢ | >> ¢, Hence if we are
1,2
interested in changes of the bed the Eq. (3-12) can be used for ¢ , moreover
3
|¢ |+ o can be concluded. This implies that the flow can be assumed to be

quasi steady. Thus for this case Eqs. (3-1) through (3-4) can be simplified to



LT v B P (3-13)
C-a
Ju da _ _

az tuy, = 0 or g =ql(t) (3-14)
s = f{u, parameters]) (3-15)
%, s (3-16)
—— + — - O

dt X

Thus for Fr < 0.6 the system of equations can be decoupled. Equations (3-13) and

(3-14) can be combined to the equation for the backwater curve
u _ gg] azb u3
ax Llrasx =92 (3-17)
d Cq

For a given discharpe q and known bed level zy the flow velocity u can be

computed for specific boundary conditions.

Moreover Eqs. (3-15) and (3-16) can be combined into:

>

z

o
Q
La)]
2
w
c

t du “Ax 0 (3-18)

l

[-*]

Thus for known velocities u the bed level in future can be computed with

Eq. (3-18) if the appropriate boundary conditions are applied.

Hence Eqs. (3-17) and (3-18) in principle can be used for the description of
morphological processes in rivers.

Two additional assumptions can lead to a further simplification of Eqs. (3-17)
and (3-18). This leads to two mathematical models that can be used for analysing

morphological phenomena.

(i) For small values of x and t the friction term (right hand side) in
Eq. (3-17) can be neglected with respect to the other terms. This gives
the s4impfe wave model.

(ii) For ZLange values of x and t the backwaten effects (first terms in Eq.
(3-17)) can be neglected. This leads to the parabolic model.
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ad (1) The characteristics of the Samfe wave wodel can be demonstrated
easily when in addition the assumption Fr << ] is made. The momentum

equation (FEq.(3-13)) simplifies then into

9z
da b _dh _ SR
Gy = 3x - 0 thus h = const. (3-19)

This means that the water level is horizontal. ('adgid £&id approximation')

As q = u.a = constant, it can be written u a/dx + adu/dx = 0

Combining this with Eq. (3-18) vields

3z

b df (u) uda
= ——— -—1 =0 -20
at * du . { ax] 3 )

Considering in addition Eqs. (3-8) and (3-12) for Fr? << 1 gives

9z
b da
—_—=C — = (3‘21
It I x o )
From Eq. (3-19), however, follows 3a/at = -azb/at. Hence
3 da )
it + c x 0 (3-22)

An application of this simple-wave equation is given in Sub-Section 3.2.2.

ad (ii) The parabolic modelf is obtained from Eq. (3-17) if the first term
(responsible for the backwater effects) is neglected.

Differentiation with respect to x gives

2
22, T T (3-23)
3 x2 C°q 9x
Eliminating 3u/dx from Eqs. (3-18) and (3-23) gives
2
9z, df(w) . 1 .ocu | ?H
it d 3 q =0 (3-24)
- q 9x
Linearization yields
df (u) cu? _ af(ui/du o /M (3-25)

1
du 37 g di/du dio/dn
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The parabolic model gives therefore the following morphological

equation to describe the changes of the bedlevel

3z azzb
- K = -
_'_ﬁ W 0 (3 26)
with
dso/du nmun-—1 3nso
K = - ~ . = - (3-27
dlo/du 1/ 3uz/clq 10 )

in which the subscript o refers to the orginal uniform situation

for which changes are considered.

Remanks :

e In the above derivation only differentiation with respect to x has been
applied. Therefore the derivation remains valid for q = q(t) and s = s(t).
‘For a river with varying discharge K = K(t). Hence the general equation

reads

9z 32z
50 - KB —=2 =0 (3-28)

2

9x

e In the derivation backwater effects have been neglected. This is only
valid if relatively large values of x are considered. Comparison with the
complete equation leads to the conclusion that the assumption implies the
condition A>2 to 3 withp = xiolao . The 'length scale' A is a characteris-
tic parameter for the river considered. Note that A = 1 is obtained for a
river reach with a length over which the difference in piezometric head is
equal to the normal depth.

An application of the use of Eq. (3-18) is given in Sub-Section 3.2.2.



3.2.2. Example: Deformation of a dredged trench

— —— o In Fig. 3.3 a trench is represented dredged
. across a river (t=0).
i " 9 How will the trench bc deformed if only
e bedload transport is present?

-—_——_——\\\\\_________,/J' ’ It has to be noted that relatively small

values of x are concerned. Hence the

W SN S
A4mple wave equationcan be applied.

Fig. 3.3. Dredged trench.
The variation in the depth a is so large that the celerity c cannot be con-
sidered constant. .
If the variation in depth is considered it follows from Eq. (3-20) with
n
S =mu

9z
b n -1 da
3 [ mnu ] a 5= 0 (3-29)

Or, for a constant discharge and a horizontal water level szlat = da/dt

thus
n
Ja,mng | 3a_, (3-30)
ot n+1 9x
a
Thus
da da
3¢ * cla) i 0 (3-31)

Now the deformation of the trench can be estimated qualitatively for t > 0.

Three parts can be considered:

e The hornizontal bed will not deform as da/dx = 0, henced u/dx =0
thus 3 s/dx = 0 and therefored z/3t = 0.

e The downstream sLope will become flatter because da/3x < 0 thus 3 u/dx > 0
or 3s/dx > 0 and 3c/3x > 0. A point of the slope with depth a will move in
the time At downstream over a distanceAx = c(a)At.

e The upstream sLope will for t > 0 get steeper. This will continue until

the slope will be under the angle of repose.
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In Fig. 3.4 the situation is sketched for t = 0 for t = 4 t.

AT EXPANSION- WAVE  SHOCK- WAVE

SHOCK~ WAVE EXPANSION- WAVE

Fig. 3.4. Deformation of a hump and a trench.

In this figure also the deformation of a hump instead of a trench is given.
Note the similarity and the difference. A gradual flattening of a slope is
similar to what is called in gasdynamics an expansion wave. The opposite
(the slope becomes steeper) is called a shock wave.

Remarnks :

(i) For the above given considerations it is essential that s = f(u) holds.
For small distances this implies that bedload transport is postulated.
In the case of suspended load the picture can be completely different.

(i1) The information on the deformation of a hump will be used to explain
the morphological phenomena occuring due to closure of one branch of

a river flowing around an island (Section 4.6).

3.2.3. Example: Morphological time-scale for rivers

The parabolic model derived in Sub-Section 3.2.1 can be used to obtain some
information on the speed at which morphological processes in rivers take

place. A monphological time-scale can be defined (de Vries, 1975).



1t is assumed that the river considered is
discharging into a lake. At t=0 the water
level of this hypothetical lake is lowered
over a distance h., This leads to a
degradation of the riverbed which ends at
t-» w. When also the bed level is lowered

over a distance Ah.

For the mathematical solution of the problem

reference is made to the original publication

(de Vries 1975). See also Jamssen (1979, p. 123).

Fig. 3.5. Definition sketch.

1f the x-axis is taken along the original bed level upstream from the mouth

(x = 0) then the bed level variation zb(x.t) is described by

” (3-32)
zb(x,t) = - Ah erfc S7KE
in which the 'complementany erron- function'is described by
erfc y = 5% S exp {-u?}. du (3-33)
Y .
y -1.0 -0.5 -0.2 -0.1 0 0.1 0.2 0.5 1.0 2.0
rfc y 1.84 I:52 1.22 1.11 1.00| 0.89|0.78 [0.48] 0.16 | 0.005

Table 3.1 Complementary error-function.

In the first place it will be assumed that the discharge is constant. This
facilities understanding. The solution of Eq. (3-32) can be used to answer the

following question:

1§ a station x = Lmi,s selected, at what time t = Tm will the dearadation have
neached 50% o4 the ginal value?



y n
“Prom 'Eq. (3-32) is follows with Table 3.1 f
Cerfc = /KT R | (3-34)
‘ n { 7> ; l ‘(.’h 547
Hence the paraneter R plays al key role in the descriptien“of this norpioiogical

process.

i P o oo
{ [ S8

“In pracflce the river discharge will vary in time. It can be sﬁd@n kdé Vrles;il915)
that ‘for K = K (t) the solution of the problem is given by :

{mf .)_\ "{),,_I
e Lot | o ef.0 g5 ‘
V21x,T) - b erfe X | (3-35)
N H.2/Lgthk R "w;ﬁw,-J ad.::
‘Hence- the joz)ﬂegradaciﬁn is reache& ac t = T for x = E if’ Ly
‘ . S ;,_._w-v:,miff, -
2.0 L A ; meiv(f.x(r)at ; . mj,.: ; (3-36)
NN LI Wi — e o
Using Eq. (ﬁ -27) onelmay define the' parameter Y with s f
| (md 0£8) |
tyear tyear o
YT TR =‘§i‘.-.’ ARICT s (3_37)
| Byos o” B4 zc.0 bagmys? ns? |

i ‘ {slavsaus
The integral of Eq (3-37) denptes the average yearly transport of the river.

S— e e et et e et R e

i

r i vy | [ I CF£.D gaoM 84 | RUGC
Hencé»dc x ¥ h; ‘the SOZ*dégradatibn is reached afteé Nm ;ear¢ with .
Ity I . S S VN
N S i | (3-38)
{} m ‘ YH-' e ¢ P { wacho) i QO TG
)% § | Toe | 2.8 L

For a number of rivers Table 3.2 gives the value of N . For Lm the large

value L = 200 km has been chosen to fullfil the requirements for the para-
bolic model A>2 to 3.



Table 3.2. Morphological time-scale (after de Vries, 1975) for Ln

STATION 1 'l
RIVER (approx. distance n i 3a/i N |
to sea)
mm *IO_A km centuries
|
Rhine Zaltbommel 2 1.2 100 20 i
(Netherlands) (100 km) |
i
Magdalena Puerto Berrio 0.33 5 30 2 i
(Colombia (730 km) ‘
-
Dunaremete 2 3.5 40 10 i
(1826 km)
Nagymaros 0.35 0.8 180 1.5
Danube (1695 km)
(Hungary) Dunaujvaros 0.35 0.8 180 1.5
(1581 km) !
Baja 0.26 0.7 210 0.6
(1480 km)
Tana Bura 0.32 3.5 50 2
(Kenya) (230 km)
Apure San Fernando 0.35 0.7 200 4.4
(Venezuela)
Mekong Pa Mong 0.32 1.1 270 1.3
(Thailand)
Serang Godong 0.25 2.5 50 2.0
(Indonesia)
Rufiji Stiegler's Gorge 0.4 3.2 20 4.0
(Tanzania)
= 200 km.
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3.2.4. Comparing equilibrium situations

In this Sub-Section for a number of standard problems the steady state
solutions due to morphological changes will be discussed. An equilibrium
situation in a river is changed into a new equilibrium. This means that the
basic equations are considered for azblat = 0. In the most simple cases with

a constant width it means that also 3s/dx = 0 and 3a/3x = 0.

Hence the analysis can be carried out with

3/2 i

Q=CBa 1b (3-39)

and

S=Bmu" | (3-40)
In this elementary analysis m and n are supposed to be constant. The same
holds for C or if the Strickler formula with C = 25(a/kN)l/6 is used the

value of kN is supposed to be constant.

The examples given below are essential for the understanding of the time-

depending morphological predictions treated in Chapter 4.

Case I: Withdrawal of water from a river

From a river with a constant width (B) a part

a0 A Q of the constant discharge Q is withdrawn.
' What changes take place eventually (i.e. for
x<0 . x>0 t¥=)?
—t

a *0 a-ac
At the intake (Fig. 3.6) the width is continuous.

Hence s has to be same at the upstream side
(minus sign) and the downstream side (plus sign).

Fig. 3.6. Withdrawing water Thus s_ = s_.

Apparently

mu =mu (3-41)



or
- A
1 .44 (3-42)

or with a=a_ - Aa

é—a- = Aj. = .A_g (3_43)

The sudden change Aa at the intake has to be reflected by a step Azb in the

bed: Azb = Aa because the water level is continuous (h_ = h+).

In this case the smaller discharge can only carry the original transport if
the downstream bedslope increases eventually. With the assumption ¢ = C+
it follows

qQ -Aq =C{a - A8a}3/2 (i +a 1"} (3-44)

in which 4 is the original bedslope. Equations (3-39) and (3-44) give for the

relative change of the slope

AL _ /0 . 4Q -t
T~ 1-60/0 0 ifAQ <<Q (3-45)

If not the assumption C_= C+ but kN- = kN+ is made then the result is
Ai _ : -

B Y ' (3-46
E—(AQ/Q):I /3 :

The proof is left to the reader.

Case II: Withdrawing sediment from a river

AS From a river with a constant width B and a

constant discharge Q, sediment is withdrawn

at a constant rate AS from t = 0. The sediment
x<0 - x 30

S X0 c_as is used for building:.purposes.

Fig. 3.7. Withdrawing sediment
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The new equilibrium situation (t* ) can be estimated as follows.Using again

s =n u" it follows
‘ -1
Q = B.a.u = B.a.{s/m}" (3-47)
Hence (see Fig. 3.7):
=1 -1

a.s" = (a + pa)(s - As)n (3-48)

if Aa is the increase of the depth for x> 0.
From Eq. (3-48) follows with a = a_

-1
ba _ | | 3-49
la l:l-(As/s):| : g )

In the downstream reach the slope has to decrease. This can be estimated by

means of Chézy formula and the assumption C_ = C+.

From Q_ = Q+ and B_ = B+ follows

ad/2 i« (a_+0a)3/2 (1i_ - a1)* | (3-50)
thus

ATi =1 - l: - (As/le b (3-51)
The exponent 3/n becomes 10/3n’if kN- = kN+ is assumed instead of C_ = C+

Case III: Change of width

x <0 x=0 X0 A river with fixed banks and constant width B
= o
——T Jrasee=———_ is narrowed for x> 0 to a new width Bl' The
8 ’ 8 discharge Q is constant. Instead of the old
[ |
depth (ao) for x>0 and t+ = the new depth
BT S I —— becomes a .

Fig. 3.8. Change of width
From S0 = S, and Qo = Q, follows with s = m un.

n-1
a1 [o} n
- =] = L (3-52)
a B
o



For x = 0 there is a bottom step because the water level is continuous. The

bottom step is Az, = a) - a.

b

In this case the new slope (i;) is smaller than the old slope (ig).
With the assumption Co = C) it follows easily from the Chézy equation

. n-3
B _|B e (3-53)
i |B -

(o] [} .

If one assumes kNo = kNl instead of Co = Cl then the exponent in Eq. (3-53)
becomes: (4n - 10)/3n.

Remanks :
(i) For a varying discharge and a width that does not vary too much the
above given analysis can also be given, using f{Q} . This is the
analysis given in Section 2.5 resulting in Eq. (2-8). The estimate
for the new slope according to Eq. (3-53) therefore also holds for
a varying discharge. This equation is graphically represented in Fig. 3.9.

’ l
1]
e | © 0.30
, 1.2 4 I — “0

+0.0%

1090

¢ 29>

£ 0.95

*0.90

* 0.8>

:0cC0

Fig. 3.9. Consequences of constriction of river width.



(ii) According to Eq. (3-53) as also can be seen fron Fig. 3.9 the new slope
is equal to the old slope if n = 3. According to the Meyer-Peter and
Mueller (1948) formula this is the case for a large transport of coarse
bed material. It should be remarked that the above given analysis is
an elementary one. In a practical problem a more in-depth-approach is

advised taking into account the change in roughness that may occur.

(111) In the three cases described above a discontinuity in Q, S and B
respectively lead at x = o to a discontinuity in the depth. As the water
level is continuous (no hydraulic jump) this will result in a step Az
in the bed. The bed £evel has then not yet been obtained. This is
because the bed level is governed by the water level (boundary condition)

b

at the downstream end of the channel. The bottomlevel.Azb is reached

only for t+» = ,

3.2.5. Influence of suspended load transport

So far the morphological processes have been described by using a transport
formula s = f(u), thus assuming that the sediment transport can be described
by the £ocal hydraulic conditions. This is true when bedload transponrt is
present. In the case of suspended Load thansport, however, it is only true
for steady uniform flow. This also the situation for which transport
formulae are developed and tested experimentally.

The first question is how transport can be estimated for non-uniform gLow.

It is customary and justified to introduce the friction term in the differential
equation for the backwater curve (equation of B&langer) as if the flow were
uniform. Similarly this can be done for bedload. The local shear stress can

by means of the Ch&zy formula be transformed into the flow velocity.

Hence ai = u?/C2,

For non-uniform flow with suspended load this cannot be done without res-
trictions. This is related to question what Local means in this respect.

For non-uniform flow and suspended load a distinction has to be made between
transport and thansport capacity:

a
transport (s8') = [u¢dz

transport capacity s = f(u) i.e. following from a formula



in which ¢ denotes the sediment concentration.
Generally in the case of suspended load
ej3ufbx >0 pgives s' < s

edu/dx <o gives s"'> s

The explanation can be found from the following rather extreme example.
Suppose a steady uniform flow in a laboratory flume with a fixed bed for

X < 0 and a mobile bed of fine sediment for x > 0. The mean concentration
over the vertical is ¢. For large values of x the average equilibrium con-
centration 30 is reached. It requires a certain adaption fength to reach the
equilibrium concentration over the entire depth. This equilibrium concen-

tration belongs to the flow conditions present and the sediment characteristics.
1.0 -

i

0,75

——

)
ehezy = 50" wV2/s
W/ug= 0:0106L

0,5
chezy =50 mvz/s
W/ug=0.2128
025
0 15 30 LS 60 75 90

Fig. 3.10. Adaptation concentration vertical (after Galappatti, 1983)

In Fig. 3.10 the theoretical adaptation of the concentrations determined by
Galappatti (1983) is given. It has been assumed that at a distance z = 0.0125 a
the concentration is instantaneously equal to the equilibrium concentration.

(here for x > 0).



It appears that the adaptation fength depends on the parameter W/u, and the
roughness (C-value). In this example no sediment supply at x=0 is presert.
Hence erosion will follow for x » 0. In Fig. 3.10 the situation is considered

for which no erosion has yet taken place (thus small value of t).

In practice morphological computations are carried out with numerical models
with discrete values Ax and At. 1f L is the adaptation length than two cases
can be distinguished.
e Ax > L. In this case the one-dimensional morphological model can be used
for suspended load as for bed load.
e Ax < L. Now in fact a two dimensional (vertical) model has to be used.
The concentration ¢ (x,z,t) has to be calculated and the transport
s' = fu ¢dz has to be deternined before bed-level variations by means of

the equation of continuity for the sediment can be computed.
Between these two cases Galappatti (1983) has developed an asymototic
approach which extends the region for which a one-dimensional approach can

be used. (See!Sub-Section 3.3).

3.3. Two-dimensional approaches

3.3.1. Flow in river bends

To understand the bed level in river bends some attention has to be paid

‘to the details of the flow in bends of

e open channels.

— B In Fig. 3.11 a circular bend in a

laboratory flume is sketched. The up-
stream and downstream parts of the flume

are straight. The (fixed) bed is horizontal.

In the first approach friction is neglected.
This implies that potential flow can be
postulated. In this problem a natural
coordinate system is appropriate. Here s

is the coordinate along the streamline and

Fig. 3.11. Circular bend.
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n the direction normal to thc flow line (thus s-n is the horizontal plane).
The b-axis is perpendicular to the s-n plane. The components of the velocity
vector are “9' un and ub respectively. According to the definitions of s,n and

b it holds u, # 0; u = 0 and uy = 0. However, derivatives of u and uy exist.

For steady flow the momentum equations in the natural coordinate system read:

du

_s __1L1o9p ' 3-54
- S 5sta's : ( )
u 2 1
S - _213p ' -
r p an e n (3 55)
0 = - _1.. 3_2 + a' (3"56)

p 9b b

in which p is the pressure. The right-hand sides contain the components of
the acceleration a'that is present in addition (e.g. due to gravity and/or
friction). In Eq. (3-55) the radius of curvature of the streamline is
indicated by the parameter r.

If friction is neglected only g is present in a'. This implies a's=0; a'n =0
and a'b = g. Hence Eq. (3-56) indicates that in the (vertical) b-direction
the hydrostatic pressure distribution is present.

If the piezometric head is measured from the bed level, then the Bernoulli

equation along the streamline gives

u_ 2 -
- + a = constant 3 57)
29

The absence of friction means that potential flow can be postulated. This
means that here is one Bernoulli-constant for the entire flow field.

In the n-direction holds

s )
=2 = 20 - Fud
™ {gla-2)} (3-58)



if z is the distance to the bottom.

Hence

2

= - 3 (3-59)

gr n

Differentiation of Eq. (3-57) with respect to r gives

Ug aus da
—5 3:: - 4 5;'= 0 (3-60)

The coordinate n is taken positive in the direction of the centre of curvature.

Hence 3/3r = -3/3n. Combining Eqs. (3-59) and (3-60) gives

2
ui=_8_a=a_a=_u_s_?_"l_s_ (3-61)
gr an dr g 9dr
or ,
=3
u_ = r | (3-62)
s

Hence the assumption of potential flow leads to the conclusion that the largest

flow velocities are found in the inner bend.

Now the 1nf1ueﬁce of friction can be taken into consideration. In a vertical
there is only one value of da/dr. As ug is due to friction larger at the

water surface than near the bed it holds

- dus da

s _8 , @
g dr dr
u dus . da

— e
g dr dr

e water surface

e bed level

Hence the water particles near the water surface are slightly deviating out-
ward whereas the water particles near the bed are slightly deviating inward
(usg‘_1 dus/dr relatively small). Thus in
the bend there exists a helicoidal §Low.
This helicoidal flow is composed of a main

current in the direction of the channel

OUTER BEND

axis and a circulation in the cross-section

(Fig. 3.12).

INNER BEND

Fig. 3.12. Circulation in the cross-section
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The water level in the bend has a slope perpendicular to the river axis.
The value of the difference in head (AH) accross the river can be estimated
using Eq. (3-59).

If to is the radius of curvature of the inner bend then

r +B

° " u
AH= f '—r dr (3-63)
!'o 9

Example:
For the River Waal at a certain place E, = 2 km and B = 260 m. The average flow
velocity is u_ = 1.2 m/s. The Eq. (3-63) can be approached by

c| @

s2 _ (1.2)%. 260

by = g(r_ + uB) B = 5.68(2000 +130)

= 0.02 m (3-64)

So far it has been assumed that the bed level in the bend is horizontal.
However, when the bed is mobile, this is not a stable situation. Due to the
helicoidal flow near the bed the transport will have a direction to the

inner bend. The means that the transport vector has a component in the
direction transverse to the channel axis. The inner bend becomes shallower
while the outer bend gets a greater depth. The cross slope becomes so steep
that the perpendicular transport component is compensated by a transport
downwards due to gravity. The change of the bed level implies that in a
natural river Eq. (3-62) will not hold anymore. The velocity ug is relatively
large then in the oufer bend.

By Van Bendegom (1947) and Rosovskii (1957) the magnitude of the secondary
velocity has been studied theoretically assuming for the velocity distri-
bution in the vertical a power law and a logarithmic law respectively.

More details can be found in Jansen (1959, p. 59).
In Fig. 3.13 the two theoretical profiles are compared with measurements.

It has to be noted that these measurements are not easy to be carried out
accurately. This is because the velocity vector U has the component u in
the direction of the river axis and the radial component v. Generally

u >> v. This means that a small error in the measurement of u leads to a

large error in v.



+ EXPERIMENTAL
—— THEORETICAL POWER LAW

PROFILE (n=8)
——— THEORETICAL LOGARITHMIC
PROFILE (C=44 m%/s)

A
iR
cai<

Fig. 3.13. Secondary current (v) in a riverbend: comparison of theory and

measurement (after Kondrat'ev ef al, 1959)

As v <<u, the total shear stress at the bed makes only a small angle 6 with

the river axis (order of magnitude § = 1 to 2°).

The flow through bends in open channels will not be discussed here in detail.
For a thorough investigation on this topic reference is made to de Vriend (1981).

The studies by Van Bendegom (1947) and Rosovskii (1959) assume that locally
the velocity field is adapted to the local radius of curvature. According

to de Vriend and Struiksma (1983) this can only be the case if there is much
friction! In general there will be phase lag. The velocity field lags behind
the change in geometry (expressed e.g. in the radius of curvature). It seems

that this lag is essential in explaining the bed topography in river bends.

Experimentally it has been shown (de Vries, 1961) that in the branches of

the Rhine in the Netherlands phase lags do exist in the bends between some
morphological parameters. If along a line parallel to the river axis the flow
velocity u(s,r), the depth a(s,r) and the mean grain size Dm(s,r) are measured,
then these morphological parameters vary in the s-direction. By treating

the experimental data statistically it was shown that u reacts more downstream
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than a on a variation in the radius of curvature and D“l rcacts more downstream
than u. These tendencies were also found in a scale model of a reach

of the Lower Rhine. This demonstrates the complexity of the flow in a curved
alluvial channel especially if the bed material is not uniform, as usually is

the case in nature.

3.3.2. Bed configurations in bends

The bed configuration in river bends are of paramount importance in river
engineering. In the bends the depth at the outerbend is of importance in the
design of bankprotections. Also the availabe width in the bend with a certain
required depth for navigation is important to know. Between the bends

i.e. at the alver crossings the available depth is of importance to navigation.

An early statistic research was carried out by Lely (1922) for the Rhine
branches in the Netherlands. The research was carried out for rivers reaches
with constant width (B) and fixed banks. Lely's conclusions were
e The mean depth across the river in the bends is about the same as at
the crossings.
e The change in the curvature (r) of the bend leads to a change in the
transverse slope (B) of the bed. The transverse slope reacts about
13 B downstream of a change in r (phase lag).
e The magnitude of B depends on r with (metric units):

B = — ‘ (3-65)

Based on the work of van Bendegom (1947) in NEDECO (1959) a method is given
to compute for a hypothetical river with fixed banks the depth accross the
river for an infinitely long circular bend. Hence this approach does not
consider a variation in the s-direction. Using the expression for the bed

shear stress it was derived:

da 3 dr
= 2o -66
;7- 2‘11x rAD (3 )
in which
= radius of curvature of the circular bend
D = mean grain size

i_ = longitudinal slope



l)l)

and

- 2n? : (3-67)
¢ Z(n+2) (n+3)

The parameter n is here rhe exponent of the powerlaw for the vertical velocity

)

distribution (u(z) = z"

The additional hypothesis
i .r=1i .r (3-68)

(in which the subscript o stands for the outer bend) is questionable.

Equations (3-66) and (3468) lead to

1.5qi r
1 _J1_1 __ oo -
-2 _{;_r} o (3-69)
(o] (o]

|-

This equation sometimes gives good results especially as the coefficient

can be used to tune the equation, this in fact also holds for D.

Apmann (1972) studies the same problem. He argues that

o1

da
=m 3-70
dr ( )

o

in which the coefficient m depends on the {fow parameter AD/ai. The maximum

depth B in the outer bend follows then from

a (m+1) (1-x./r )
max _ i" o (3-71)

m+1
1 - {ri/ro}

From measurements of the Buffalo Creek a value m = 2.5 is deduced by Apmann.

For the Rhine branches in the Netherlands m = 7 is found.

Odgaard (1981) concludes that for this axial-symmetrical approach the expression

da/dr

=T = K (3-72)

axis
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is used by various authors albeit that the expression for K differs. According

to Odgaard the expression K = 2FD2 is ucsed by van Bendegom (1947) with

Fp = u/YgAD . Odgaard uses laboratory measurements from Zirmerman & Kennedy (1978)
and his own data from the Sacramento River. He concludes that his expression

for K has to be preferred above the ones used by others. Odgaard does not

discuss the work of Apmann (1972).

The above indicated approaches all considered axial-symmetrical flow and there-
fore neglect phase lags between u and a. Moreover uniform bed material is

postulated (no grain sorting in the bends).

A completely different approach to predict the bed topography is river bends
is indicated by Finstein. This is a statisticdl analysis and synthesis based

on the following assumptions. The basic idea is that for a river reach with

(nearly) constant width

e The regime Q(t) is the same.
e The composition of the bed material is the same.

e The influences of the banks can be neglected if B/a >> 1.

For each cross-section therefore only the geometry in the horizontal plan is

different. The geometry is expressed by the radius of curvature only.

For the river considered part of the reach is used to deduce the statistical
parameters and they are used to predict the bed morphology downstream. There-
fore measured bed level zb(y) are matched with a linear series of (orthogonal)

legendre polynomials Pr(y). Here y is measured perpendicular to the river axis.
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Fig. 3.14. Legendre polynomials
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The functions Pr(y) are given in Fig. 3.14.
y) = + * s a P (y)+ coeee #+ . -7
2, (y) = a P (y) +aP(y) +a P (y)+ a Po(y) (3-73)

The parameters a for any cross-section n are related to the curvature C of

the cross-section p upstream of n according to

Po

= + I . R
ar,n Ao,r o Ap,r Cn—p+l (3-74)

The parameters a belong to a certain cross-section whereas the parameters A

belong to the entire river.

The procedure is now as follows:

Analysdis :

(i ) Use the measured bed levels zb(y) to determine the coefficient a from
Eq. (3-73).

(ii) For the river with known geometry (C) determine the parameter A from
Eq. (3-74).

Synthesdis:

(i ) In Eq. (3-74) the parameters A are now known. For another part of the
river C is known thus a . can be computed from Eq. (3-74).

]
(ii) With known parameters a. - in Eq. (3-73) the bed level zb(y) can be

L]
computed.

f
It remains to be seen how many (N) polynomials have to be used. Moreover the
number (po) of cross-sections upstream of the cross-sections considered has
to be selected.
Einstein (1971) used in his application to the Missouri River N = 6 and he

took P, = 15 which means a distance of about 2 km.

Nijdam (1973) applied the method to the Waal River. He also took N = 6 but
selected P, = 30 which means that the geometry upto a distance of 3% km
upstream of the cross-section considered is responsible for the bed level

in that cross-section.

-~
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Fig. 3.15. Statistical prediction of bed levels (Waal River after Nijdam, 1973)

Some results are given in Fig. 3.16. It has to be remarked that the result is
sensitive to the selection of P, Moreover Nijdam reports that the results

are less good at the crossings. With respect to Fig. 3.16 it has to be remarked
that the disagreement for section B between measured and predicted bed level at
the left hand bank seems to be due to the fact that locally a groin is present.

Hence the assumption of absence of wall-influences is there not justified.



The statistical method treated have has another essential underlying assumption
viZ the presence of an alfuvial bed. If part of the bed is not erodible (rock,
clay-layers, armoured areas) then the prediction fails. Obviously the method
also fails in the case for the Meuse River near Roermond in the Netherlands.
The bed consists there of gravel that only is transported at large discharges.
At moderate discharges some sand is trans-

\\ OUTER BEND INNER BE??// ported over the gravel bed. The bed profile

— of the bends in this river differs from an
alluvial river (Fig. 3.16). There is no
sand deposition in the outer bend. Via the

GRAVEL SAND
~— —! crossing the sand is transported to the
inner bend. There sand deposits are present.
In this river morphological predictions are
Fig. 3.16. Cross-section Meuse difficult, because transport formulae do not
River near Roermond apply. Hence the transport of sand in a reach

is governed by the supply at the upstream end. This is a similar situation as
can be present in an alluvial river with suspended load. For this part of the
Meuse River the sediment transport is 4maffen than the sediment transport

capacity. The gravel layers prevent erosion.

Gradually it becomes possible to compute bed levels in alluvial bends based
on the hydrodynamic equations. In the two-dimensional (horizontal) water
equations the effect of the helicoidal flow has to be incorporated. The
sediment equations have also to be taken for the two-dimensional case. More-

over some formula has to be adopted for the direction of the transport.

In Fig. 3.17 some results are given ot the two-dimensional model SEDIBO being
developed by the Delft Hydraulics Laboratory (Schilperoort et al, 1984).

The results look promissing in spite of the fact that the presence of uniform
sediment was assumed. The computations have been carried out for a constant

discharge.

The development of these types of morphological models is in the direction
of also including the case of a sediment mixture and/or the presence of

suspended load.
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1984)



3.3.3 Two-dimensional vertical

In Sub-Section 3.2.5 it has already been indicated that in thec case of sus-
pended load changes in the geometry over relatively short distances may cause
that the local sediment transport is not equal to the local sediment transport

capacity.

The mathematical models with one space dimension can then not be used. In
stead a two-dimensional model (vertical) is applied to determine the sediment
concentration ¢ (x,z). In that case no sediment transport formula is applied

but the transport is determined by the integral /¢(z) u(z) dz over the depth.

For a first introduction in this type of models reference can be made to
Kerssens et af(1979).
The concentration (x,z) is determined by solving the two-dimensional convection-

diffusion equation

(3-75)

[+
|
1
|
L
&
+
™
vl
b
1}
o

in which

W = fall velocity
€ = €(z) = eddy viscosity

Note that if the flow is steady uniform for both water and sediment, than the
first term of Eq. (3-75) disappears. Equation (3-75) then leads to the well-
known Rouse-distribution for uniform flow. The solution of Eq. (3-75) requires
a boundary condition at the bed. The discussion of these type of models is

outside the scope of these lecture notes.
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4., Morphological predictions

4.1. General

Artificial interference in a river system by engineering works (discharge
regulation, water level regulation, normalization, canalization etc.) will
lead to a response of the river. It is required to predict the response to
the artificial interference. However, only part of the response can be

predicted.

For instance if the discharge of a river is controled by installing a large
dam (like in the River Nile and the Zambezi River) it can be expected

that major changes can take place downstream in the characteristics of the
river. To the writer's knowledge no prediction techniques have been success-
ful in the respect. At best the xegime theonry can be used to predict some
tendencies. This 'theory' (see Graf, 1971, p. 243-272) has little to do with
a theory in the usual sense. River characteristics are related statistically.
However, to use this statistical relations to predict changes when the
boundary conditions (e.g. by discharge control) are altered is questionable.
No rivers have been analysed thoroughly in this respect. This also due to
the fact that changing of the appearance of a river takes time and the regime

'theory' does not contain time as a parameter.

The best predictions of cﬁanges can be carried out when the morphological
problems involved can be described in a deterministic way. This is why in
this Chapter the predictions are restriced to cases in which the banks are
fixed or when the mobility of the banks is much smaller than that of the
(alluvial) bed.

The morphological predictions can in principle be obtained by scale models
and mathematical models. However, some problems are too complicated to give

a reliable prediction.

As an example the morphological problems present at the access to the ports of
Brazzaville (Congo) can be mentioned. Figure 4.1 gives the situation of the

'Port a Grumes' (Timberport) along the Congolese branch of the Congo River.
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KINTELE

'Port a Grumes'

M'BAMOU
ISLAND

Fig. 4.1. Situation 'Port 3 Grumes', Brazzaville

The main branch of the river flows along the other side of the M'bamou Island.
(Zairese branch). Just downstream of Brazzaville and Kinshasa the Kintamo
rapids are situated. This is why at the port the logs transported along the
river are loaded on trains to be transported to the coast (Pointe Noire).

The Congolese branch is characterized by islands and bars. Although the sediment
transport of the Congo River is relatively small (see Table 1.1) nevertheless

serious morphological problems can occur (D = % mm).
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The 'Port a Grumes' has been designed in the sixties when the deep channel
of the Congolese branch had a favourite position with respect to the river
bank near Brazzaville. In 1972 the port was completed.

In 1977 the access to the port became difficult. In 1982 the deep channel

of the Congolese branch was located at a large distance from the river bank
(Fig. 4.2).

Bank ddsssacisd
1965 (deep channel)
1982 (deep channel) — — —
Rock

Fig. 4.2. Channel changes of the Congo River near Brazzaville

The prediction of these changes in the position of the channel(s) by means of
a scale model is not possible because a large area has to be reproduced. At
present (1985) also a mathematical model is not available for quantitative
forecasts. This is because the flow pattern has a strong three-dimensional

character governing the distribution of sediment upstream of the bars and the

islands. .

Given the size of the problem it is questionable whether river engineering
works (perhaps except maintenance dredging) can improve the situation. Logically

the problems are most serious for navigation in dry years (see also Fig. 1.2).
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In the following sections the possible morphological prediction for some
cases are treated. It will become clear that the river has to be schematized
considerably to make morphological computations possible. The predictions are

only carried out for problems that can be schematized in one space dimension.

4.2. Withdrawal of water

4.2.1. Principle

In Sub-Section 3.2.4 (Case I) the basic principle is considered on treating the
the problem of withdrawal of water from a river. In practice the water is with-

drawn for irrigation, industrial water, cooling water, etc.

The case is taken in which water is withdrawn at x = L from the varying dis-
charge Q(t) of the river. The discharge withdrawn ( Q) may also vary in time.
Downstream (x L) the reaction of the river has to be considered. In this

case the banks are supposed to be fixed and the bed material is uniform.

First of all the new equilibrium situation (Subscript 1) is investigated. The
probability distribution fo{Q} of the the old situation changes into £,{Q}
for the new situation.

As the yearly sediment transport is the same in the two cases:
0;“s(Q) . £ 1Q)dq = Jﬁ%(q). £{Q) dq (4-1)

Using as an approximation a powerlaw for the sediment transport, i.e. using

Eq. (2-6) for B = constant gives

3/n
by nf“Q“/3fo{Q}aQ

: —
Tho o 073 £1{0}dg

(4-2)

As less water has to transport the same amount of sediment, ib ibo'

At the mouth for the same reason the depth will decrease.
For a constant width B the ratio for the depths in the mouth (ao /aoo)
can be deduced from Eq. (2-10)
l/n
a Owanle{dQ} (4-3)

a

00 Of“Q"foQ{dQ}
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Fig. 4.3. Withdrawal of water at x = L

In Fig. 4.3 the changes of the bed are drawn for a constant discharge. The
water level at the intake rises with an amount L'Aib. At the mouth the depth
reduces with Aa =a -a .,

o oo o]
Note that the same depth reduction is present at the intake!

Just downstream of the intake the bed level rises eventually with A a + L. ibf

Remark :

It requires some additional analysis to see how Fig. 4.3 would look like for
a regime with fo{Q} which is transformed into fl{ Q} due to the withdrawal of
water. The bed levels remain the same but the water levels have to be given

further attention.

Downstream of the intake Fig. 4.3 can be interpreted as the situation for a
discharge le for which just uniform flow exists with a normal depth just

equal to a .. This discharge is found from

°
- > n : = -n n 4=4
a, éQ fl{Q}dQ a, . le (4-4)

Upstream of the intake uniform flow with normal depth equal to a 1is present

for a discharge Qdo with
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n n

-n n -
a Of Q fO{Q} dQ = a_  Q (4=5)

The continuity of 4ediment in the new equilibrium situation requires
(4-6)

As a1 < a it follows Qd1< Qdo’ The character of the backwater curve for the
steady flow in Fig. 4.3 upstream: of the intake depends now in the value of A Q
(the discharge withdrawn). Upstreamof the intake the flow is uniform if just
AQ = = .

Q Qdo le. Other possibilities are:

- T =
(1) AQ >»Qd° le. he upstream discharge is now Qo le‘+A Q > Qdo' There

will be a backwater curve of the M, type.
(11) AQ < Qdo - le. The upstream discharge is Qo = le + AQ < Qdo' Now upstream
of the intake the backwater curve will be of the M;-type.

4.2,2. Application of fixed weir

In order to obtain a sufficiently high water level at the intake sometimes a
fixed weir is installed. This is common practice on Java to withdraw irrigation

water from a river. In this case the water level at the intake is discontinuous.

The bed level upstream of the weir is obviously influenced by the presence of
the weir. In case all sediment passes eventually the weir (t+> ) the bed level
can be estimated. This is the case if the sediment passes over the top of the
weir or when it is flushed through the weir by special gates.

The yearly sediment transport in the old

equilibrium situation amount to
V= 6 s(Q) . fO{Q} . dQ (4-7)

When this yearly amount passes the weir then

the eventual average bed level rise (A zb)

upstream of the weir can be found by expressing

the transport formula as a function of the
depth.
Fig. 4.4, Sedimentation upstream

of fixed weir.
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1f a is the height of the crest of the weir above the original bed level then

the depth (al) upstream of the weir follows from (Fig. 4.4):

a =a, +O0H - bz, (4-8)
in which the depth of flow (A H) over the weir is a (known) functions of the
discharge (Q). Hence with S = B m u"

@

- —— 92 4 -

V=/Bm st manay) - fo10)-a (4-9)
(] b

Combination of Eqs. (4-7) and (4-9) shows that Azb is the only unknown.

Solution is possible e.g. by means of the #egufa falsi. Note that in this

case f{Q} is the same in the old and the new situation. Naturally any

suitable (real) sediment transport formula can be used.

4.2.3. Example: Morphological predictions Tana River

In Jansen (1979, p.433-440) a practical example is given regarding the
morphological consequences of a proposed weir in the Tana River. The water

is withdrawn for irrigation purposes.
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Fig. 4.5. Tana River (Kenya)
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The computations were made with the Engelund-Hansen (1967) transport formula
(n = 5) based on the availabe data (Dgy = 0.32 mm; io = 0.35'10-a). Using
Eq. (4-9) the eventual rise of the bedlevel upstream of the weir was estimated
at Azb =~ 2 m for a, = 4m.

Note: In Jansen (1979, p.437) the term (1 - dh/ds) in Egs. (6.4-12),

(6.4-13) and (6.4-15) has to be deleted.

As can be seen from Table 3.2 the Tana River is relatively fast. The main
reason to carry out time-depending computations was the wish to get informed
about zb(t) downstream of the weir. Qualitatively temporéry erosion can there

be expected. This is due to the fact that for small values of t a small sediment
supply via the weir will be present due to the sedimentation upstream of the
weir. The computations showed a temporary degradation of 3 to 4 m downstream
of the weir to be reached after 6 months. Note that on top of this degradation

Local scour downstream of the weir may be present.

4.3. Withdrawal of sediment

In Sub-Section 3.2.4 the principle of the withdrawal of sediment from a river
has been discussed with respect to the new equilibrium situation (t> =) due to

the continuous dredging of part of the sediment transported.

Now the problem will be treated in a more general sense. The problem can occur
due to 'sand mining'. However, a similar problem can be present due to the
subsidence of the river bed due to mining of gas, oil, coal, etc. in deep
layers below the river bed. From the basic equations (see Sub-Section 3.2.1)
the water equations are still valid. This holds also for the equations for the

sediment transport.

The equation of continuity for the solid phase requires a change. This

equation now reeds

sz »
3t e = Wix,t) (4-10)

(o5}

9 3

The right-hand side represents a souwrce-term describing the lowering of the

bed due to subsidence. This term will be non-zero in a certain reach of a river.



Fig. 4.6. Sediment withdrawal (t = 0 and t>®)

In Fig. 4.6 the situation is sketched for continuous dredging of 4 S at x = L.
As has been shown in Sub-Section 3.2.1 downstream of x = L the slope will
for t» = become flatter and the depth smaller. For a constant discharge the

water level at x = L will lower over a distance Ah = L-Ai = L(i° - 11).

In the interval 0 < x < L the depth will increase byA a, following from

Eq. (3-49). Just downstream of x = L the bed will finally have lowered over
a distance Azb(L,m) =Ah +4A a. At x =1 the bed level is discontinuous. The
bottom step is Aao. For all values x > L both the bed levels and the water

levels are lowered by Ah.

In Fig. 4.6 a mild positive bedslope has been assumed. Therefore the flow
is subcritical. Note that the water level and bed level have to be drawn
starting from the erosion-base (sea or lake level). This is the only point

that remains the same for t = 0 and t+ « .

Remank :

(1 ) The situation of Fig. 4.6 is a rather theoretical one. In practice both
Q and AS will be time-depending. However, to understand the results of
time-depending morphological computations such a simplified case is of
great help.

(ii) The lowering of water- and bed-levels due to withdrawal of sediment may
have negative side-effects to other users of the river (e.g. for a water

intake).
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4.4, Constriction of width

Figure 4.6 gives also the general solution for t-+ « if the width is constricted
in the interval 0 < x < L. For the smaller width the slope becomes flatter and

the depth larger. (See also Fig. 3.9).

To understand the morphological phenomena it is of impcrtance to study the

situation at t = 0 thus before any change of the bed has taken place.

%
I

®

x
f—’

T
-

Fig. 4.7. Constriction of width: situation at t = 0.

In Fig. 4.7 the longitudinal profile is given. In the reach 0 < x <L the width
has been reduced from B to B). Therefore the nonmal depth is there larger. For
a mild positive slope backwater curve M, and M, are present as indicated in
Fig. 4.7.

This gives regions of erosion and sedimentation. In Fig. 4.8 the function S(x,0)
is indicated qualitatively.

sedimentation |, erosion e
x=0 x=L
—_— X

Fig. 4.8. Function S(x,0) due to constriction.
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At x = 0 and x = L there will be discontinuities in the bed level. To study
these discontinuities it is of importance to realize that both the transport
of water and sediment is continuous at x = 0 and x = L. However, the continuity

of the sediment cannof be studied by

%]
[+ 3]
n

z

b

B— +
t

|
[}
o

(4-11)

@
¥
x

becaused zb /3t is not defined at the discontinuities. However, the continuity
equation holds in the integral foam namely S_ = S, Moreover ofcourse Q_ = Q,.

Hence with s = m u " and q = u.a.
n-1

B
3 - | " (4-12)

As the water level is continuous the step in the bed level is equal to the

differenced a = a, - a

e For x = 0 the result is a_(o,t) < a+(o.t). Hence there is a downward bottom
step in the flow direction.

e For x = L the result is a_(L,t) > a+(L.t). This gives in the flow direction
a step upward in the bottom.

The function S(x,0) as indicated in Fig. 4.8 will lead to erosion and sedimen-
tation. At x > L temporary sedimentation takes place which has disappeared at
t+ o, In the final situation, for a constant discharge Q° the sediment trans-

port follows from S(x,») = constant = So.

For t+ = the following changes of the bed level compared to the old equilibrium

are present

° x> L no change
e 0 <x <L lowering = (io - 11)(L - x) + Az'b
° - x< 0 lowering = (io - il)L

in which Az' follows from Eq. (3-52) and i, from Eq. (3-53).

b
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4.5. Bend cutting

River navigation may be improved by cutting a sharp bend. In Fig. 4.9 a schematic
example is given. A morphological computation has been carried out for a varying
discharge, solving Eqs. (3-17) and (3-18).

In order to understand the morphological processes Fig. 4.10 inuicates the principle.
In this figure the water level differences are exaggerated. In the new bend

(reach II) it is assumed that the bed level at t = 0 follows a straight line

between the bed levels of the reaches I and III of the river. The length L of

o
the original bend is shortened to Lj;. Thus ibl > ibo' As q = C::tn3/2 ibli it follows
a <a . Hence at t = 0 backwater curves are present (Figs. 4.9 and 4.10).

1

Q +500 mYs
B=150m 37

e ve—
C= 45 ms 0 05 1km
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‘ﬂ“ AFTER 1 YEAR I
- =—=—=— AFTER 2 YEARS
St ~ULTIMATE EQUILIBRIUM

30 32 34 A B 40 42 44 46

DISTANCE IN km

Fig. 4.9. Short-cut of a single channel (after Jansen, 1979)
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Ay » (Le=ty) iy,

Fig. 4.10. Principle of bend-cutting (t = 0)

The situation for t = 0 cannot be an equilibrium one. The velocity gradients
(Qu/9x) lead to transport gradients (3s/3x). Henced zblat # 0.

In Fig. 4.11 schematically the
function S(x,0) is sketched for

S(x,0) the case B(x) = constant. As
azblat + 3s/3x = 0 the reach I
has erosion for t = 0., Sedimenta-

tion occurs in reach II (t = 0).

®

For t > 0 temporary sedimentation
occurs in reach III.
Fig. 4.11 Function S(x,0) for Fig. 4.10.

For reach II at t +« the original bed level is again present. For t-+> = the bed
level in reach I has been lowered by Azb = (Lo - L )ib.

Remark :

(1 ) For slow rivers dredging in the new bend will prevent the temporary
reduction of the depth in reach III due to sedimentation. For quick
rivers this is not necessary. One may even dredge along the alignment
of the new bend a pilof channel. The river will then reach relatively
soon the new situation.

(11) Naturally the old bend will be closed by means of a dam preferably during
low discharges. For Fig. 4.9 the computations have been carried out

assuming that at t = 0 the dam was constructed.
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4,6. Channel closure

In Fig. 4.12 an example is given, taken from Jansen (1979, p.348) regarding

the increase of depth for navigation by the closure of one river branch.
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Fig. 4.12. Closure of a branch (after Jansen, 1979)
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In this case the river is flowing around an island. The narrow branch is
closed in order to arrive eventually at the situation that the other branch

is deepended. In the example of Fig. 4.12 the discharge varies in time.

To understand the behaviour of zb(x,t) first the situation for a constant dis-
charge is considered.

For t < 0 at x = 0 (the bifurcation) and at x = L (the confluence) a step in
the bed level Azo will be present. This step cannot be computed as it depends
on the distribution of the sediment at the bifurcation (see Section 2.4). Also
the slopes in the two branches for t < 0 depend in the distribution of water
and sediment at the bifurcation.

]
~“_lf*“~ Hz

[T SpeE—p——

»
-

Fig. 4.13. Principle of channel closure (t = 0).

In Fig. 4.13 the situation at t = 0 is given; the minor branch has just been
closed. The essential difference with Fig. 4.10 is that here the bottom steps

Azo are present; they originate from the situation at t < O.



82

Besides these two steps there are two more steps present due to the change
in width at x = 0 and x = L for t > 0. These are the steps treated in
Sub-Section 3.2.4 (Case III).

Thus for t > 0 there are fouwr bottom steps present:

e For x = 0: (1 ) The step because B0 >B,. This step remains at x = 0 for t > 0.
(i1 ) The stepA z originates from t < 0. This propagates downstream
for t > 0. It is an expansion wave, so it becomes flatter for
t > 0.
e For x = L: (iii) A step because B2 < Bo, this step stays at x = L,
(iv ) A step Azo from the situation at t < 0. This discontinuity

propagates downstream for t > 0. It is a shockwave.

To understand the behaviour of step (i1) and (iv) reference can be made to

Fig. 3.4 where the deformation of a hump is sketched.

Inspection of Fig. 4.13 shows that zb(x.t) indeed contains the four bottom

steps indicated above.

Remarks :

(1 ) As was explained in Section 4.4 the presence of discontinuities in the
width at x = 0 and x = L makes that the differential equation expressing
the sediment continuity does not apply at the discontinuities because
azb/at is not defined there. The continuity of sediment is expressed in
integnal form because S(x,t) is continuous.

(11) Figure 4.12 shows that the water depth downstream of the island is tempo-
rary decreased due to sedimentation. Apparently the example regards a
relatively slow river. In practice it may be advisable to 'help' the river
by means of dredging. Otherwise the benefit of the local river improvement

will be obtained only after some time.
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Main symbols

symbol description dimensions
a depth ﬁj
A area [sz
B width (L]
c celerity [LT—I]
C Chézy-coefficient [;%T-ﬂ

grain diameters BJ
Fr Froude number -]
g acceleration of gravity [?T-ﬂ
h water level ﬂJ
H energy head L]
i (energy) slope Eﬂ
kN Nikuradse sandroughness L]
L length ﬁJ
M mass [M]
P pressure &ﬂ:lT-z]
q discharge per unit width BFT-q
Q discharge [L’T-l]
r radius of curvature ﬁJ
R hydraulic radius ﬁJ
s sediment transport per unit width [L’T_l]
(bulk volume)

S sediment transport (bulk volume) [;’T—q
t time Eﬂ
u flow velocity in x-direction [LT—q
v flow velocity in y-direction ELT_q
w flow velocity in z-direction [LT_q
W fall velocity [LT_I]
X horizontal coordinate EJ
X transport parameter = s/ n3/2¢§Z [-]
y horizontal coordinate ﬁJ
Y flow parameter =AD /uai [—]

N

vertical coordinate PJ
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< =B - -
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bed level

= W/ku,

relative density sediment = (ps -p)/ o
turbulent viscosity

= z/a = relative depth

von Kdrmian constant

= xi/a = length scale river
ripple factor

kinematic viscosity

density of water

density of sediment
shearstress

sediment concentration
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