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Stellingen
behorende bij het proefschrift
“DERIVATION, IMPLEMENTATION, AND VALIDATION
oF COMPUTER SIMULATION MODELS
FOR GAs-SoLip FLUIDIZED BEDS”
van Berend van Wachem.

- De uitdrukking “two-fluid” model voor een Euleriaans-Euleriaans gas-
deeltjes model is om fysische redenen foutief.
Hoofdstuk 3 van dit proefschrift

. Het tweedimensionale Euleriaanse-Lagrangiaanse gas-deeltjes model ver-
toont realistisch gedrag maar is als kwantitatief model onbruikbaar.
Hoofdstuk 6 van dit proefschrift

. Het is onterecht dat Xu en Yu de drukval over een deeltje in een gasstroom
verwaarlozen bij de berekening van de kracht op dat deeltje.

B.H. Xu and A.B. Yu, Numerical simulation of the gas-solid flow in a flu-
idized bed by combining discrete particle method with computational fluid
dynamics, Chem. Eng. Sci., 52:2785-2809 (1997)

. De juiste coefficienten voor een derde orde nauwkeurige benadering van
een eerste afgeleide op de rand waar de roosterpunten verschoven liggen
ten opzichte van de rand, zijn onjuist geponeerd door Laney en moeten
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an (“EZ’ 8 82

C.B. Laney, Computational Gasdynamics, first edition, Cambridge Uni-
versity Press, UK (1998), pagina 437

. Het vertonen van video's met daarin een grote hoeveelheid kleuren die
meet- of simulatieresultaten representeren heeft een grote emotionele maar
weinig wetenschappelijke overtuigingskracht.

. Bij het maken van de keuze tussen het compressibel en incompressibel
berekenen van een gasstroom, spelen niet alleen de gassnelheid en de tem-
peratuurgradient een rol, maar zijn ook de verschillen in grootte van bron-
termen belangrijk.

. De oorsprong van de jazz muziek ligt in Duitsland en niet in Amerika.
L. van Beethoven, Piano Sonata 32, opus 111, deel 2: Arietta (1820)
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. De kans op vervloeiing van grond die optreedt als gevolg van een aarbev-

ing neemt af met een toenemende graad van consolidatie. In de praktijk is
er echter nooit sprake van “onderconsolidatie”, zoals beweerd door Zijne
Koninklijke Hoogheid.

W.-A. van Oranje-Nassau, redevoering, Japan, Mes 2000

. Als het Westen eerlijk handel zou voeren met tweede- en derde-

wereldlanden, is het doneren van geld in het kader van ontwikkelingshulp
overbodig.

In het heterogene regime van een slurry-kolom zijn de krachten op de
deeltjes als gevolg van vloeistofconvectie veel groter dan de krachten op
de deeltjes als gevolg van de interactie tussen de gas-vloeistof grenslaag
en het hydrofiel of hydrofoob zijn van het deeltje; in het homogene regime
is dit echter niet het geval. Het meten van een hold-up toe- of afname
in het homogene regime door het toevoegen van deeltjes is daarom niet
karakteristiek voor het gehele regime van een slurry- kolom.

Het voor grote bedragen veilen van GSM en UMTS licenties leidt niet tot
een effectief vollere staatkas, maar tot een vergroting van de inflatie.

Bloed- en orgaandonoren zouden bij gebruik van donormateriaal voor
moeten gaan bij mensen die kiezen om niet te doneren maar dat wel zouden
kunnen of hebben gekund.

Het is een verarming voor de roeisport dat de categorie zware-heren-twee-
met-stuurman geen Olympische status meer heeft.

Milieubescherming en economische groei zijn onverenigbaar.

Als bij een zeehondencreche de aaibaarheidsfactor van de zeehonden een
grotere rol speelt dan het behoud van de kwaliteit van de totale zeehon-
denpopulatie, is het voortbestaan van deze zeehondencreche niet gerecht-
vaardigd.

De vraag naar promovendi bij de Nederlandse universiteiten en de vraag
naar gepromoveerden bij Nederlandse bedrijven en instellingen zijn niet
aan elkaar gerelateerd.




Propositions
complementing the dissertation
“DERIVATION, IMPLEMENTATION, AND VALIDATION
oF COMPUTER SIMULATION MODELS
FOR GAS-SoLID FLUIDIZED BEDS”
of Berend van Wachem.

. The expression “two-fluid” model for the Eulerian-Eulerian gas-solid model
is incorrect for physical reasons.
Chapter 3 of this dissertation.

. The two-dimensional Eulerian-Lagrangian gas-solid model shows qualita-
tively realistic behaviour, but is unusable as a quantitative model.
Chapter 6 of this dissertation.

. It is incorrect that Xu and Yu neglect the pressure drop over a particle in
a gas flow in calculating the force on that particle.
B.H. Xu and A.B. Yu, Numerical simulation of the gas-solid flow in a flu-
idized bed by combining discrete particle method with computational fluid
dynamics, Chem. Eng. Sci., 52:2785-2809 (1997)

. The correct coefficients for a third order accurate approximation of the

first derivative on the edge, where the grid points lie staggered with re-

spect to the edlge, have been incorrectly given by Laney and should be
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( 24’8 8’ 24)

C.B. Laney, Computational Gasdynamics, first edition, Cambridge Uni-

versity Press, UK (1998), page 437

. Showing videos with a large amount of colors representing measurement
or simulation data has a large emotional but little scientific cogency.

. Not only the gas velocity and the temperature gradient, but also the dif-
ferences in sizes of source terms are important in choosing to calculate a
gas flow compressible or incompressible.
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. The origin of jazz music lies in Germany and not in the United States.

L. van Beethoven, Piano Sonata 32, opus 111, part 2: Arietta (1820)

. The chance on liquefaction of soil as a result of an earthquake decreases

with an increasing degree of consolidation. In practice, however, soil is
never “underconsolidated” as claimed by His Royal Highness.
W.-A. van Oranje-Nassau, oration, Japan, May 2000

. Donation of money in the framework of development aid is redundant if the

Western countries would trade fairly with second and third world countries.

In the heterogeneous flow regime of a slurry column, the forces on a particle
as a result of fluid convection are much larger than the forces on a particle
as a result of the interaction of the gas-liquid interface and the wettability
of a particle; in the homogeneous regime, however, this is not the case.
Therefore, measuring a hold-up increase or decrease in the homogeneous
regime with the addition of particles is not characteristic for the behaviour
of the complete regime of a slurry column.

Auctioning GSM and UMTS licenses does not lead to an increase of public
money, but to an increase of inflation.

Blood and organ donors should precede in the usage of donor material
compared to people who choose not to donate but could have done so.

It is an impoverishment for the sport of rowing that the category heavy
weight coxed pair is no longer an Olympic one.

Environmental protection is incompatible to economic growth.

If the cuddliness of sea lions is more important than the quality of the sea
lion population for a refuge for sea lions, the existence of this refuge is no
longer justifiable.

The demand of PhD students at Dutch universities is not related to the
demand of PhD’s at Dutch companies and institutions.




1RASsS

Derivation, Implementation, and
Validation of Computer Simulation
Models for Gas-Solid Fluidized Beds

Berend van Wachem







Derivation, Implementation, and
Validation of Computer Simulation
Models for Gas-Solid Fluidized Beds

PROEFSCHRIFT

| ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft,
op gezag van de Rector Magnificus prof. ir. K.F. Wakker,
voorzitter van het College voor Promoties,
in het openbaar te verdedigen
op maandag 18 september 2000 te 16:00 uur T~

e

|
|
|
' door

Berend Gerardus Michiel VAN WACHEM

natuurkundig ingenieur

geboren op 5 juni 1972 te Amsterdam




Dit proefschrift is goedgekeurd door de promotoren:
Prof.ir. C.M. van den Bleek

Prof.dr. R. Krishna

Prof.dr.ir. }.C. Schouten

Samenstelling promotiecomissie:

Rector Magnificus, voorzitter

Prof.ir. C.M. van den Bleek, Technische Universiteit Delft, promotor

Prof.dr. R. Krishna, Universiteit van Amsterdam, promotor

Prof.dr.ir. ]J.C. Schouten, Technische Universiteit Eindhoven, promotor
Prof.dr. ]J.L. Sinclair, Purdue University (Verenigde Staten van Amerika)
Prof.dr. S.W. de Leeuw, Technische Universiteit Delft

Prof.dr.ir. P. Wesseling, Technische Universiteit Delft

Dr.ir. H.C.). Hoefsloot, Universiteit van Amsterdam

Wachem, Berend Gerardus Michiel van

Derivation, Implementation, and Validation of Computer Simulation Models
for Gas-Solid Fluidized Beds / by Berend Gerardus Michiel van Wachem
Dissertation at Delft University of Technology. - With ref.- With summary in
Dutch

ISBN 90-9013931-1

NUGI 812/813

Subject headings: Computer simulations / Gas-solid fluidized beds /
Eulerian-Eulerian / Eulerian-Lagrangian / Granular kinetic theory

Copyright © 2000 by B.G.M. van Wachem

All rights reserved. No part of the material protected by this copyright notice
may be reproduced or utilized in any form or by any means, electronic or
mechanical, including photocopying, recording or by any information storage
and retrieval system, without permission from the author.




Cover: F.A. van Wachem.

NWO TUDelft

The work described in this thesis was financially supported by SON/NWOQO,
the National Dutch Science Foundation for Chemistry, and Delft University
of Technology.







Contents

Summary
Samenvatting (Summary in Dutch)

1 Introduction
1.1 Fluidization . . . . . . . . . . ... .
1.2 Hydrodynamic modeling of fluidized beds . . . . . ... ...
1.3 Research objectives . . . . . .. ... ... ... ...
1.4 Outline . . . . . .. .. . . . ...

2 Kinetic theory of granular flow

2.1 Introduction . . .. .. ... .. ... .. ... ... .
2.2 Probability density function . . . . . .. ... ... ... ...
2.3 The Boltzmann equation . . . . . .. ... ... ........
2.4 Change of particle properties . . . .. .. .. ... ... ...
2.5 Flow of particle properties . . . . . . . .. ... .. ... ...
2.6 Particle collisions . . . . . . ... ... ... .
2.7 Solving Boltzmann's equation . . . . . .. ... ... .....
2.8 Boltzmann's equation in steady, ideal state . . . . . . . . . ..
2.9 Expressingfyinf . . ... ... ... ...
2.10 Solving the PDF for the non-ideal state: Enskog approach . . .
2.10.1 The second approximation to f for a slightly inelastic gran-

ular material . . . .. ...

2.11 Solving the PDF with Grad’s method . . . .. ... ... ...
2.12 Solving f for a bimodal particle distribution . . . . . .. ...
2.13Conclusions . . . . ... Lo

3 Comparison of CFD models for Dense Gas-Solid Flows
3.1 Introduction . . . . .. ... .. ... ... ...
3.2 Governingequations . . . . . . . . ... ...
3.2.1 Comparing the Ishii and Jackson governing equations
3.3 Closurerelations . . . . ... ... ... ... ... .....

xiii

S U BN =

10
11
12
15
16
20
21
23
24

25
29
30
31

35
36
37
42




viii Contents
3.3.1 Kinetictheory . . . . . . . ... ... .. ... 44
3.3.2 Solid-phase stresstensor . . . . . . ... ... ... .. 45
3.3.3 Conductivity of granular energy . . . . . .. ... ... 48
3.3.4 Dissipation and generation of granular energy . . . . . 50
3.3.5 Radial distribution function . . . .. .. ... ... .. 50
3.3.6 Frictionalstress . . . . . . . .. ... .. 51
3.3.7 Interphase transfer coefficient . . . . . ... ... ... 53

3.4 Simulations . . . . . ... Lo 57
3.4.1 Boundary conditions . . . . .. .. ... ... ... .. 57
3.4.2 Initial conditions . . . . . . ... ... ..o 58

35 Testcases . . . . . . . i L e e e e e e e e e e 59
3.5.1 Freely bubbling fluidized beds . . . . . ... ... ... 59
3.5.2 Slugging fluidized beds . . . . . . ... ... ... ... 62
3.5.3 Bubble injection in fluidized beds . . . . ... ... .. 63

3.6 Results and Discussion . . . . . . .. .. .. ... ... .. 63
3.6.1 Governing equations . . . . . . . ... ... ... ... 63
3.6.2 Solidsstressmodels . . . . .. ... ... ... ... 63
3.6.3 Dragmodels . . ... ... ... ... ..., 64
3.6.4 Frictionalstress . . . . . . . . .. ..., 66
3.6.5 Granular energy balance . . . . . ... ... 0L 68

3.7 Conclusions . . . . . . . . ... 69

4 Eulerian Simulations of Gas-Solid Fluidized Beds 75

A. Steady State Results from Simulations . . . . . ... ... ... 76
4 A1 Introduction. . . . . . .. ... ... . 76
4.A.2 Gas-solid multiphase model . . . . ... ... ... .. 78
4.A.3 Simulations . . . . ... Lo 000000 83
4.A.4 Classical bubble size and velocity relations . . . . . . . 86
4.A.5 CFDsimulationresults . . . . . . ... .. ....... 89
4.A.6 Conclusions . . . . . . . . . ... o 91

B. Dynamic behavior of fluidizedbeds . . . . . ... .. ... ... 95
4.B.1 Introduction. . . . .. .. .. ... ... .. ... .. 95
4.B.2 Gas-solid CFDmodels . . .. ... ... ........ 96
4.B.3 Model validation and dynamic simulation results . . . . 97

4.B.4 (A) Velocity of pressure and voidage waves in fluidized beds101
4.B.5 (B) Power of pressure and voidage waves in fluidized beds 104
4.B.6 (C) Reorientation effect in fluidized beds . . . ... .. 107
4.B.7 (D) Chaotic behaviour of fluidized beds . . . . . .. .. 109
4.B.8 Conclusions . . . . . . ... ... ... 110




Contents

5 Modeling of Fluidized Beds with Bimodal Particle Distribution

5.1 Introduction . . . . . . .. .. ... ... ... . ...
5.2 Governing equations . . . . . . . . . . .. ...
5.3 Kinetic Theory for a Bimodal Particle Mixture . . . . .. . ..
5.4 Frictional stress . . . . . . . .. . ...
5.5 Simulations . . . . . . ... ...

5.5.1 Boundary conditions . . . . . ... ... ... .....
5.6 Results and Discussion . . . . . . . .. ... ... .......

5.6.1 Bimodal mixture Case1 . ... ... ... .......

5.6.2 Bimodal Mixture Case 2 . . .. .. ... .. ......
5.7 Conclusions . . . . . . . . ...
5.8 Nomenclature . . . .. ... . .. ... ... . ... ...,
5.A Appendix . . . . ... L

6 Experimental validation of Lagrangian Simulations
6.1 Introduction . .. ... ... .. ... ... . . ... . ...,
6.2 Particlephase . ... ... ... ... ... .. ... ...
6.2.1 Motionof particles . . . . . . .. ... ... ... ...
6.2.2 Collision of particles . . . . ... ... ... .. ....
6.2.3 From two dimensions to three dimensions . . . . . . .
6.3 Gasphase . . . . . .. ...
6.4 Solutionmethod . . . . ... ... ... ... .........
6.5 Experiments and simulations . . . .. .. ... ...
6.5.1 Experimental set-up . . . ... . ... ... ......
6.5.2 Measurements . . . . . . . . . . ...
6.5.3 Simulations . . . ... ... ... L oL
6.5.4 Comparison . . . . . . . . . ..o 0oL
6.6 Results and discussion . . . . . ... ... L.
6.7 Conclusions . . . . . . . .. ..

7 Conclusions and Outlook
7.1 Developments since 1967 . . . . . . . . . ... .. ... ...
7.2 Aimand scope of thiswork . . . . . ... ... ... .....
7.3 Comparing governing equations . . . . . . . . . . .. ... ..
7.4 Interphase momentumtransfer . . . . ... .. ... .. ...
7.5 Validation . . . .. . ... L
7.6 Granular theory for a bimodal particle mixture . . . . . . . ..
7.7 Lagrangian-Eulerian fluidized bed simulations . . . . . . . . .
7.8 Conclusion . . . . . . . ... ..
7.9 Two- versus three-dimensions . . . . . . .. .. .. ... ...
7.100utlook . . . ..o

115
116
118
119
125
126
129
129
129
131
133
135
138

139
140
141
141
142
144
145
147
148
148
149
150
151
151
158




Contents

A The software manual
A.1 PartGas: Lagrangian code with Eulerian coupling

A.1.1 Introduction. . . . . . .. ... ... .. ...
A.1.2 Structure of the solving method . . . . . . ..
A.1.3 Structure ofthecode . . . .. .. ... .. ..
A.1.4 Runningthecode . . .. . ... ... ... ..
A1S5 Makefile . . . . . . . . . ...
A.1.6 info.hpp . . . . . . . .. ...
A17 infile . . . . . . . . . .. Lo ...
A1.8 Output . . . .. ... ... ... ...
A.2 Eulerian-Eulerian gas-solid codes . . . . . . . .. ..
A.2.1 Introduction. . . . . . .. ... ... .....
A.2.2 FORTRANand CFX . .. ... ... .......
A.2.3 equilib . . . . ..o Lo
A2.4 fullgran . . .. .. ... ...
A.25 bimodal . . . . . . . . .. ..o
A.2.6 Pre- and Postprocessing . . .. .. ... ...
A.3 Animations of simulations . . . . . ... ... ....

Bibliography
Nawoord, Epilogue

About the Author




Summary Xi

Summary

This work focuses on the computer modeling of an important application in
dense gas-solid flows: gas-solid fluidized beds. Fluidized beds are commonly
encountered in the chemical, petroleum, pharmaceutical, agricultural, food,
and power generation industries. This thesis describes both the Euler-Euler
and the Lagrange-Euler approach to model dense gas-solid flow.

The Euler-Euler approach is currently considered as being the highest possible
level of continuum modeling, as it allows for dynamic interaction between the
two phases by writing a separate set of mass and momentum equations for
each of the phases. There is still a considerable debate regarding the correct
formulation of the Euler-Euler governing equations and especially about the
closure relations, such as the interphase momentum transfer and the particle-
particle interactions. In this work the different forms of the governing equa-
tions and the closure relations are discussed and validated.

Different forms of the interphase momentum transfer have been proposed in
the literature, but all of them are (semi) empirical and determined on a large
scale at liquid-solid conditions. The different correlations predicting the in-
terphase momentum transfer have been compared in simulations of fluidized
beds to experiments described in the literature and it has been found that the
Wen and Yu (1966) correlation is preferred above the others. The fact that
the momentum transfer between the gas and the solids phase is empirical
and determined under liquid-solid conditions on a fairly large scale is, how-
ever, still a weak chain in the model; the clustering behavior of particles is
alocal scale effect and is obviously different in gas-solid and in gas-liquid flow.

The particle-particle interactions are described as binary collisions, hence
strongly resembling the gas kinetic theory. An important difference between
two colliding particles and two colliding gas molecules is the occurrence of
non-ideal behaviour described by the coefficient of restitution; momentum
is lost during a collision due to local compression of the particle. Taking
into account this non-ideal behaviour, a granular kinetic theory can be de-
rived, describing the particle-particle interactions due to collisional and ki-
netic (streaming) effects. The granular kinetic theory described in this work
does not account for the fact that the gas phase behavior influences the particle-
particle collision, as is important in a liquid-solid or a dilute gas-solid flow.
Some correlations proposed in the literature describing the gas phase fluctu-
ating velocity and the particle phase fluctuating velocity have been applied
in simulations, but have a negligible effect in the case of dense gas-solid flu-
idized beds.

Extensive validation of both the steady-state as well as the dynamic behav-
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ior of gas-solid fluidized bed simulations with data from the literature and
from experiments show that the predicting capability of the Euler-Euler ap-
proach is fairly well. Moreover, most experimental studies only predict the
average steady-state or average dynamic behavior of these reactors, whereas
CFD simulations predict the complete, time-dependent behavior of fluidized
beds. The large drawback in applying CFD to dense gas-solid flows, however,
is the enormous amount of computational costs.

In the 1980's a gas kinetic theory was developed by Lopez de Haro et al. for
gases consisting of multiple different types of ideal molecules. The granular
theory for two species of non-ideal particles has been implemented, verified
and validated in this work. Although the computational effort required to get
results are enormous, an order of magnitude larger than the monodispersed
granular theory, simulation results show the model is capable of successfully
predicting segregation, mixing and inversion of gas-solid fluidized beds with
a bimodal particle size distribution.

The Lagrange-Euler approach describes the behavior of the solids phase at
particle level and describes the behavior of the gas phase at a continuum level.
Most often, the solution of the gas phase is determined on a larger scale than
a single particle. Hence, again an empirical correlation is required to de-
scribe the gas-solids interphase momentum transfer. Moreover, in the two-
dimensional Lagrange approach, particles are modeled as disks, which intro-
duces problems in translating the two-dimensional properties of the disks to
the pseudo three-dimensional solution of the gas phase. Different strategies
for this translation have been studied and validated. Extensive steady-state
and dynamic validation of the Lagrange-Euler approach with detailed small-
scale experiments show this model is not as promising as claimed by many
authors.
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Samenvatting (Summary in Dutch)

Dit proefschrift beschrijft wiskundige modellen voor een zeer belangrijke toe-
passing in gas stromingen met een zeer hoge volume fractie deeltjes: gas-
vaste wervelbedden. Wervelbedden komen veelvuldig voor in de chemische,
olie, farmaceutische, voedings, en energie industrie. Dit proefschrift behan-
delt zowel Euler-Euler modellen als Lagrange-Euler modellen in het beschrij-
ven van stromingsverschijnselen waarin veel deeltjes voorkomen.

Het Euler-Euler model beschrijft zowel de gasfase als de deeltjesfase als een
continuiim waarbij het dynamische gedrag van beide fases wordt beschreven
door de massa- en impulshehoudswetten voor elke individuele fase te be-
schouwen. Zogenaamde sluitingsrelaties worden gebruikt om de eigenschap-
pen van beide individuele fases en de dynamische interactie tussen de fases
te beschrijven. In de literatuur is een veelvuldige discussie omtrent de cor-
recte formulering van de individuele massa- en impulshehoudswetten en met
name omtrent de sluitingsrelaties is geen overeenstemming. Dit werk zet
de behoudswetten en sluitingsrelaties gedetailleerd uiteen en de uitkomsten
van simulaties met de verschillende behoudswetten en sluitingsrelaties wor-
den met elkaar en met experimenteel werk vergeleken.

Verschillende vormen van de impulsoverdrachtsrelatie tussen de gasfase en de
deeltjesfase zijn in de literatuur voorgesteld, maar allen van deze zijn (deels)
empirisch en zijn bepaald uit metingen over een grote lengte- en tijdschaal
in vloeistof condities. Simulaties met verschillende vormen van de impuls-
overdrachtsrelatie zijn vergeleken met experimenten, waarbij de Wen en Yu
(1966) relatie het beste bevonden is. Het feit dat de impulsoverdrachtsrelatie
op een grote lengte- en tijdschaal en in vloeistof condities is afgeleid, maakt
deze relatie een zwakke schakel in het Euler-Euler model. Hierdoor wordt
het dynamische “samenklont” gedrag van deeltjes op zeer kleine schaal niet
goed beschreven.

De deeltjes-deeltjes interacties worden beschouwd als binaire botsingen, en
lijken daardoor sterk op de theorie van de kinetische gas theorie. Een belang-
rijk verschil tussen twee botsende deeltjes en twee botsende gas moleculen
is het niet ideale botsgedrag bij deeltjes, beschreven door de restitutie coef-
ficient. De restitutie coefficient is gedefinieerd als de verhouding van de to-
tale loodrechte impuls voor de botsing en de totale loodrechte impuls erna.
Een granulaire kinetische theorie kan worden afgeleid op basis van dit niet
ideale gedrag, waarin zowel de deeltje botsingen als de deeltjes bewegingen
worden beschouwd. De granulaire theorie beschreven in dit werk verwaar-
loost de invloed van de gasfase op deeltjes-deeltjes botsingen. Het is te ver-
wachten dat deze invloed wel belangrijk is bij vloeistof-deeltjes stromingen
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of gas stromingen met weinig deeltjes. In de literatuur worden vergelijkingen
voorgesteld waarin de correlatie tussen de gasfase snelheidsfluctuaties en de
deeltjesfase snelheidsfluctuaties wordt beschreven. Deze vergelijkingen zijn
toegepast in de simulaties maar blijken een te verwaarlozen rol te spelen.

Een uitgebreide experimentele validatie van zowel het stationaire als het dy-
namische gedrag van gas-vaste wervelbedden met simulaties van het Euler-
Euler model laat zien dat dit model een redelijk goede voorspelling geeft van
het stationaire en dynamische gedrag van wervelbedden. Waar experimenten
beschreven in de literatuur slechts het gemiddelde stationaire gedrag en het
gemiddelde dynamische gedrag beschrijven, voorspelt het Euler-Euler model
het gehele, tijdsafhankelijke gedrag van gas-vaste wervelbedden. Het grote
nadeel van van deze computermodellen is de enorme rekentijd die vereist is
om een complete voorspelling te verkrijgen van een reéle geometrie.

In de jaren 80 is een kinetische theorie ontwikkeld door Lopez de Haro en an-
deren voor gassen bestaande uit verschillende soorten moleculen. De granu-
laire theorie voor twee verschillende, niet ideale deeltjes is geimplementeerd
en gevalideerd in dit werk. Hoewel de rekentijd voor dit model enorm is,
laten simulatieresultaten zien dat dit model in de realiteit in wervelbedden
voorkomende fysische effecten, zoals segregatie, mengen, en inversie van
deeltjeslagen, goed kan beschrijven.

Het Lagrange-Euler model beschrijft het gedrag van de vaste fase als indi-
viduele deeltjes en beschrijft de gasfase als continuiim. Meestal wordt de
oplossing van de gasfase op een grotere lengteschaal bepaald dan de grootte
van een enkel deeltje. Hierdoor zijn wederom (deels) empirische correlaties
vereist om de impulsoverdracht tussen de gasfase en de vaste fase te beschri-
jven. Nog een nadeel van het tweedimensionale Lagrange-Euler model komt
voort uit de vertaling van de tweedimensionale porositeit van de deeltjes fase
naar een driedimensionale porositeit vereist voor de pseudo driedimension-
ale gasfase. Verschillende strategieén voor deze vertaalslag zijn in dit werk
beschreven en gevalideerd. Een uitgebreide stationaire en dynamische vali-
datie van het Lagrange-Euler model met zelf uitgevoerde gedetailleerde ex-
perimenten van een vergelijkbare geometrie laten zien dat dit model niet zo
veel belovend is als door veel auteurs wordt geclaimd.




Chapter 1

Introduction

Abstract

A fluidized bed is widely used in many operations in the chemical, petroleum,
pharmaceutical, agricultural, biochemical, food, and power generation in-
dustries. The hydrodynamic behavior of fluidized systems is non-linear and
therefore very complex. Especially, scale-up from lab-scale to industrial scale
is a major problem. A short introduction into fluidization is given and the
issues in modeling fluidized beds are pointed out. Finally, the research ob-
jectives and outline of this thesis are presented.




2 Introduction

1.1 Fluidization

A collection of particles in a column, tube or container is called a bed of par-
ticles. When a fluid is blown from below into the column, tube or container,
this flow exerts a (drag) force on each individual particle. In fluidization, the
gravity force acting on the particles is (over) compensated by the drag forces
exerted on the particles by the local flow of fluid. This local flow of the fluid is
different for every particle, making the exact behavior of each particle unique.
Gas-solid fluidization probably constitutes the most important industrial ap-
plication involving gas-solid flows (Kunii and Levenspiel, 1991), because of its
excellent heat transfer characteristics and easy solids handling due to solids
mobility. nfluidization different regimes exist, each inhabiting different over-
all gas- and solids-flow patterns and thus different heat- and mass-transfer
properties. Some examples of fluidization regimes are shown in Figure 1.1.
When the gravity force is counter balanced by the average drag force result-
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Figure 1.1: Different fluidization regimes with increasing gas velocity. (Grace,
1990)

ing from the gas flow, the state of fluidization is called minimum fluidization.
Most industrial fluidized systems are operated at a gas flow well above the
so-called minimum fluidization velocity, because then the fluidized solids be-
have somewhat like a fluid, with a highly improved mass and heat transfer.
Depending on the size of the individual particles, bubbles form at a gas flow
somewhere above this minimum fluidization velocity. With so called Geldart
B particles (see Figure 1.2), gas bubbling occurs just beyond the state of mini-
mum fluidization. With finer particles, denoted by Geldart A particles, there is
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a fluidization regime called “delayed bubbling” between the state of minimum
fluidization and the fluidization state in which bubbles form. The gas velocity
at which gas bubbles start occurring is called the minimum bubbling velocity.
Gas bubbles determine the behavior of the fluidized system to a large extent,
and are responsible for solids agitation. This work focusses on bubbling and
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Figure 1.2: The Geldart particle size classification, from very fine particles (C)
to very coarse particles (D) (Geldart, 1973).

slugging fluidized beds (see Figure 1.1). Such fluidized beds typical operate in
the dense flow regime, characterized by a solids volume fraction ranging from
0.4 to 0.6. Bubbling fluidized beds possess several advantages:

o The liquid-like flow of the bed allows easy handling of the particles.
e The solids are rapidly mixed, leading to almost isothermal conditions.

¢ It is possible to continuously operate the bed for both the gas and solid
phases.

e The heat and mass transfer rates between the particles are high.

¢ The circulation of particles makes it possible to add or remove vast quan-
tities of heat.

e The bed is suitable for large-scale operations.
However, fluidized beds inhabit major disadvantages, such as:

o The hydrodynamics of the fluidized bed are very complex.
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¢ The fluidized bed is difficult to scale-up due to its non-linear behavior.
o The erosion rate of the reactor and internals can be very high.

¢ In some processes, agglomeration and sintering of fine particles can oc-
cur which can considerably change the fluidization behavior of the bed.

e The rapid solids mixing induces a significant back-mixing of the gas phase,
which spreads the gas residence time, thus effecting the selectivity and
conversion of the chemical reactions involved.

The success of fluidized beds in industrial operations has shown that the ad-
vantages can outweigh the disadvantages.

The ability to improve existing fluidized beds and to design optimal future
processes strongly depends on the possibility to develop a better understand-
ing of the hydrodynamics of these systems. The difficulty in design consists
mainly of the scale-up problem; many equations describing the behavior of
fluidized beds are empirical and determined under laboratory conditions, giv-
ing too little confidence that these equations scale-up properly to predict the
correct behavior of industrial size fluidized beds.

It has been shown that fluidized beds are deterministic chaotic systems (Daw
and Halow, 1991; Van den Bleek and Schouten, 1993). By accepting this dy-
namic characterization of the fluidized bed, the hydrodynamics may be quan-
tified through non-linear methods. Non-linear analysis techniques determin-
ing the unpredictability of the system through means of the Kolmogorov en-
tropy can possibly determine the type of hydrodynamic behavior of the flu-
idized bed. Scale-up laws based on these quantities have been proposed in
literature (Van der Stappen, 1996; Schouten et al. 1996).

A step further is not only to accept the chaotic behavior of the fluidized bed,
but also to exploit this. It is well-known that applying a small perturbation
to a chaotic system can lead to a different behavior in time. This may well
be possible with fluidized bed reactors. First, however, detailed knowledge
of the hydrodynamics of fluidized beds must be known to understand how,
when, and where to apply a perturbation.

1.2 Hydrodynamic modeling of fluidized beds

Computational fluid dynamics (CFD) is an emerging technique for predicting
the flow behavior of many systems, necessary for scale-up, design or opti-
mization. Although single-phase CFD tools are widely available and in most
cases successfully applied (Hirsch, 1988, Anderson, 1995), multiphase flow
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remains difficult due to the complex mathematics and the difficulty in the
physical description.

CFD models for gas-solid flow can be divided into two groups, Lagrangian
models and Eulerian models. Lagrangian models, or discrete particle models,
calculate the path of each individual particle with the second law of Newton.
The interaction between the particles can be described by a potential force,
by collision dynamics, or this interaction may be neglected. The drawbacks
of the Lagrangian technique are the large memory requirements and the long
calculation time. Moreover, the description of the drag force from the gas
phase acting on each particle is difficult to model accurately, and is in practice
based on experimental correlations.

Eulerian models treat the particle phase as a continuum and average out
motion on the scale of individual particles. Computations by this method
can predict the behavior of dense-phase flows on a realistic geometry. The
drawback of this method, however, is that one requires complex statistics to
translate the behavior of many particles into one continuum. For this pur-
pose, often granular kinetic theory is employed. This is becoming a typical
approach for performing Eulerian simulations.

With nowadays granular kinetic theory, Eulerian simulations should predict
very similar results as Lagrangian simulations, as the assumptions and under-
lying equations applied in both methods are the same. A difference between
the methods arises when the length scale of the averaging in the kinetic the-
ory exceeds the length scale of physical phenomena influencing the behavior.
For instance, clusters of particles can play a role in the stress behavior of the
solids phase. When the length scale of averaging is taken to be larger than
the size of the smallest clusters, a discrepancy between the actual physics and
averaged kinetic theory can occur. This is the key issue for the failure of cor-
rectly describing very fine powders (Geldart A type) with kinetic theory; the
mesh size should be taken only a few particle diameters to obtain sensible
results and this has not been done up to now.

1.3 Research objectives

The key issue of this thesis is to model the hydrodynamics of the fluidized
bed, and verify the outcome of the models with experimental data and exist-
ing empirical correlations. Detailed modeling of the Eulerian model and the
Lagrangian model is undertaken. The goals of this thesis are to:

e determine the correct governing equations of the Eulerian-Eulerian model
for describing gas-solid flows, and compare the impact of applying differ-
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ent governing equations by performing simulations with different gov-
erning equations and compare the outcome of these simulations with
data from the literature.

¢ make an inventory of the closure models describing the solids phase in
the Eulerian-Eulerian model, and compare the impact of each of the clo-
sure relations on simulations. The outcome of the different simulations
is compared with data and empirical correlations from the literature.

e validate the Eulerian-Eulerian CFD model with the well known experi-
mental steady-state data from Hilligardt and Werther (1986) and Darton
et al. (1977) and propose values based on performed simulations for
empirical parameters present in the model proposed by Hilligardt and
Werther (1986).

¢ validate the dynamic predictions from the Eulerian-Eulerian CFD model
by comparing the unpredictability of the fluidized bed expressed by the
Kolmogorov entropy with experimental values, by comparing the most
dominant frequency in the pressure and voidage fluctuations with the
equation proposed by Baskakov et al. (1986), and by comparing the
power spectral density from the fluctuations with the power spectral
densities determined through experiments.

e develop a Eulerian-Eulerian CFD model describing a mixture containing
two particle species and verify the trends predicted by simulations ob-
tained by employing this model with trends put forward by De Groot
(1967), Grace and Sun (1991), Wu and Baeyens (1998) and Rasul et al.
(1999).

o validate the outcome of Lagrangian-Eulerian simulations with experi-
ments described in this thesis.

Results of all performed simulations are validated with experimental work as
much as possible. Obtaining the detailed description of what the experimen-
talist has exactly measured, and the spread and error in the measurements
are some of the key problems in comparing the abundance of data obtained
form the simulations with the experimentalists’ work. The final step would
be to use the simulations to predict new empirical correlations, which predict
values and variation on these values for all types of fluidized bed parameters.

1.4 Outline

In Chapter 2, a detailed derivation of the granular kinetic theory is presented.
All the assumptions and equations are shown. It can be seen that the Eule-
rian model inhabits the same physics as the Lagrangian model.
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In Chapter 3, a detailed derivation of the governing equations of gas-solid
flows is made. One of the most important conclusions of Chapter 3 is that
many researchers are using incorrect governing equations. Also, the influ-
ence of differing granular kinetic theories and interphase drag correlations is
presented. Finally, the impact of all the differences in CFD models are illus-
trated by simulations of three types of fluidized beds.

Chapter 4 presents detailed information regarding simulations of steady state
and the dynamic behavior of fluidized beds, and compares these to gener-
ally accepted measurements of (semi)-empirical correlations from the litera-
ture. New correlation values are presented for existing correlations describ-
ing the bubble rise velocity in fluidized beds. Finally, it is shown that present
gas/solid CFD models can correctly capture the dynamics of fluidized beds.

Chapter 5 presents the development of the kinetic theory for a bimodal mix-
ture of spherical, nearly elastic, spheres. This kinetic theory is implemented
in an Eulerian-Eulerian CFD model. The CFD model is used to demonstrate
some of the key features of binary mixture fluidization, and outcome of the
simulations are compared to trends described in literature.

In Chapter 6, the Lagrangian-Eulerian model for gas-solid flow is outlined.
Some of the features and assumptions of this model are described and dis-
cussed. This chapter also describes a small laboratory-scale experiment of
which the results are directly compared to results of the Lagrangian-Eulerian
simulations employing the same geometry. Conclusions are drawn upon the
basis of the comparison between the simulations and the experiments.

In Chapter 7 the main conclusions of this chapter are put forward in the
framework of earlier research in simulations describing gas-solid flow. Fi-
nally a short outlook of the future is presented in this chapter.

Appendix A describes the software and animations present on the CD ac-
companying this thesis. With the software, you can reproduce some of the
simulations described in this thesis, or expand to your own wishes. The ani-
mations give some idea of the features of the software.
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Chapter 2

Kinetic theory of granular flow

In this chapter, the derivation of the granular kinetic theory is presented from
first principles. This work is an overview based on the work of Chapman
and Cowling (1970), Jenkins and Richman (1983), Grad (1963), and Lun et al.
(1984).

Abstract

In this chapter, the Boltzmann equation and the physical principles of the
kinetic theory for granular flow are put forward and the resulting Enskog
equation is derived. It is shown how to derive the flow of any particle prop-
erty, and how to incorporate inelastic collisions into the Boltzmann or Enskog
equation. One analytical method is presented that solves the steady-state
form of the Enskog equation assuming fully elastic conditions, leading to the
Maxwellian velocity distribution, and two analytical methods are presented
that approximate the full transient Enskog equation. The results of these
approximations are shown for granular flow with frictionless, inelastic colli-
sions. Finally the method to incorporate a bimodal particle size or weight
distribution is outlined.
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2.1 Introduction

The purpose of this chapter, is to elucidate the observed properties of parti-
cle suspensions, and capture these properties in so-called closure relations.
These closure relations can be employed to describe the continuum behavior
of the particle suspension in the Eulerian-Eulerian framework. The method
described is the kinetic theory of granular flow. We consider an idealized sys-
tem of identically shaped, spherical particles, because the individual behavior
of these particles is well-known. In an ordinary description of particle sys-
tems, usually mechanics (second law of Newton) are used to determine the
behavior of the complete system. In mechanics, the aim is usually to precisely
determine the events that follow from prescribed initial conditions. However,
we seldom know the detailed initial conditions of the particles, that is, the
situation and the state of motion of every particle at a prescribed initial in-
stant. Furthermore, the power of nowadays computers, and even computers
in the next decennia, are quite insufficient to follow all the subsequent mo-
tions and locations of every particle of any practical application. Hence, for
practical applications, we do not elucidate the behavior of the individual par-
ticles, but focus ourselves only on the statistical properties, such as the mean
number or velocity of particles, averaged over a short time interval, or the av-
erage distribution of linear velocities or other motions among these particles.

The restriction we imply ourselves is not only necessary, for the feasibility, it
is also physically adequate, because experiments and simulations of particu-
late systems in nearly all cases produce only such 'average’ properties. Thus,
the aim of the kinetic theory of granular flow is to find out, for example, how
the distribution of the averaged motion of the particles will vary with time;
or again, how a mixture of two sets of particles of different kinds will vary, by
the process known as diffusion or segregation. In this attempt, we consider
both the dynamics of the particle-particle collisions as well as the statistics
of the collisions. In this, we must use probability assumptions, for example,
that the particles are generally distributed throughout a very smali volume.

To start the derivation of the kinetic theory, we will first introduce the aver-
aging through probabilities.

2.2 Probability density function

The distribution of velocities among a large number of particles in a volume
element dr can be represented by the distribution of their velocity points ¢ in
the velocity space. The number density of this volume element will generally
be a function of the location in space, v, of the time, t, as well of the velocity
c. Therefore, the number density of the particles at volume r with velocity
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c at time t is denoted by f(c,r,t). This definition implies that the probable
number of particles which at time t are situated in the volume element (v, r+
dr), and have velocities lying in the range (c,c + dc) is f(c¢,r, t)dedr, where f
is called the probability density function. This does not mean that the given
volume element actually contains this number of particles having velocities in
the range (¢, c+dc) at the time t. This is the average number of such particles
when the fluctuations which occur in a short time dt are smoothed out. This
definition involves a probability concept; the form in which function f appears
will be a result of the probable, or average, behavior of the particles.

The whole number of particles in the space at time t, is obtained by integrating
f over all possible velocities and locations at this time. The number density
is thus defined as,

n(r,t) :Jf(c,r,t)dc (2.1)

The function f can never be negative, must tend to zero as ¢ becomes infinite,
and is assumed to be finite and continuous for all values of t.

When the behavior or number of the particles also depends upon the tem-
perature, T, or the differing mass of the particle, m, the definition of the
probability density function can be extended to

fle,r, T, m,t)dcdrdTdm

indicating the number of particles at time t, in volume element (r, r+dr), with
velocities in the range (c, ¢ + dc), temperatures in the range (T,T + dT), and
masses in the range (m, m+ dm). The resulting equations from this probabil-
ity density function can be derived analogously. In most cases in this work,
however, this extension is not necessary.

2.3 The Boltzmann equation

We consider the situation in which each particle is subject to an external force
with acceleration a. Between times t and t + dt the velocity ¢ of any particle
that does not collide with another particle will change to ¢ + adt, and its
position vector r will change to r + cdt. The number of particles f(c,r, t)dcdr
at time t is equal to the number of particles f(c + adt, r + cdt, t + dt)dedr at
time t + dt if collisions between particles are neglected. The change in f over
dt is caused only by collisions of particles:

{flc+ adt,r + cdt,t + dt) — f(c, v, t)}dedr = aa—etfdcdrdt (2.2)
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where Ocf is the rate of change of f at a fixed point due to particle collisions.

By dividing by dcdrdt and making dt tend to zero, Boltzmann’s equation for
f is obtained:

of of  o.f
or
0.f
pf =2 2.4)

where Df denotes the left-hand side of Equation 2.3.

2.4 Change of particle properties

This section describes the effect of influences which are able to change specific
particle properties; these particle properties can be, for instance, mass, mo-
mentum, or energy. Let ¢ be any particle property. If the Boltzmann equa-
tion is multiplied by ¢dc and integrated over the velocity-space, the equation
of change of particle properties is obtained:

Jcbi)fdc =nC(¢) (2.5)

in which the right-hand term denotes the influence of binary, instantaneous

. . . Ocf ) .
collisions, so it is the integrated form of ——. For convenience, the peculiar
velocity C is used as an independent variable instead of c:

C=c <c> (2.6)
of(C)

The dependency of f on ¢ should also be changed to C, for example for m
of(c— <c>) EE B a_fa(cf <c>) _ 0 <c> of +g£ @.7)

ot ~aCcoat  oC ot N ot oC ' dtoC '

Hence, 3t and 2! have to be replaced by respectively

1ot
of d<e> of and of 9 <e> of
ot at aC or or oC
in order to take account of the dependence of f on t and r through the depen-
dence of C on c¢. Hence, the expression for ©f becomes

of o <c>ﬁ aﬁ
or or oC oC

a_f d <c> of
ot t aC

+ (<e> +C) ( (2.8)
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Now the 'mobile operator’ or 'time-derivative following the motion’ is intro-
duced as is common in hydrodynamics:

D —a—|-<>
Dt ot or

This is the time derivative following the mean flow. Then

Df af of D<C> af af 0 <c>

With this, Equation 2.5 can be rewritten into

Df of af D <c> of of 0 <c>
J¢(§+C o <3¢ Dt aC acCi or >:“C(d’)
(2.10)

For further derivation of this equation, the following integrals are used for
the transformation:

Df D Do m<¢>) Do

Jq)—dc— Jd)de—J—de—Tfn o> (2.11)

Jq) dC—a J(pCde Jaa—d’-c:fdc::$~n<c-a¢> (2.12)
af U,V,W=co 2 b

in which ¢f — 0 as any velocity component approaches +oco. By the same
argument

$—=CdC="m<——>=—"n<Pp> n<=ZC> (2.14)

J‘ of a¢C ¢
oC oC oC

Using these results, we obtain the Enskog equation, which is a generalization
of Maxwell's equation:

Dn <> 0 <c> on<pC>
nO(g) = 2ol <> ar =

_n[ch 0P 9 D<c> 3¢

<D_t>+<ca >+ <a ac Dt »<aC>

o 0 <c>}

aCC or

(2.15)
Setting ¢ = 1, the mass balance can be obtained:

%Jrna <>
Dt or

(2.16)
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This equation is also called the equation of continuity, expressing the conser-
vation of the number of particles in the suspension. lnserting the equation
of continuity into the Enskog equation (Equation 2.15), simplifies the Enskog
equation to

D <> n on <¢pC>

nCle) =n Dt or
D¢ o aq> D <c> oo op 0 <c>
- — — —> — — —C>:
n<Dt>+<Cb >4 <a- ac Dt ac> <aC > or

(2.17)

With ¢ = C, this simplified Enskog equation corresponds to the balance of
linear momentum:

D <c> on<CC>
n +

Dt o =n <a> +nC(C) (2.18)

because <C>= 0. The first term denotes the change, following the motion, of
momentum. The second term denotes the stress tensor due to particle move-
ment. The first term on the right-hand side represents the external body-
forces, as fluid influences and gravity. The last term on the right-hand side
denotes the momentum change due to collisions. The momentum equation
and the continuity equation are identical with the equations of continuity and
momentum derived for a continuous fluid in hydrodynamics. This provides a
justification for the hydrodynamical treatment of a particle suspension.

With ¢ = CC the mean of the second moment of velocity fluctuation is ob-
tained from the simplified Enskog equation:

0
DCC N n <CCC> — 9n <CCo: 0 <c>

"Dt o 37 +2n <aC> +nC(CC) (2.19)

The first term denotes the change of the second moment of velocity fluctua-
tion. The second term represents the third moment of velocity fluctuation.
The first term on the right-hand side represents the transport of the second
moment of velocity fluctuation due to the average velocity of the particles.
The second term on the right-hand side represents the influence of the ex-
ternal forces. It can be readily seen, that if the force does not depend on C,
this term vanishes. The last term represents the influences of collisions on
the second moment of velocity fluctuation. The balance of third moment of
velocity fluctuation is obtained by inserting ¢ = CCC:

CCcCC
nDCCC+an< >=—3n<CCC>'a<c>

: C
Dt or or +3n <aCC>

4+ 3n <CC><c> 8 <c>
or

+nC(CC) (2.20)
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Balances of higher order momenta are fairly easily generated. However, most
methods concerned with solving these equations only consider up to second
order.

2.5 Flow of particle properties

This section describes the influence of the flow of particles upon the particle
properties. Consider the flow of particles across a small element of surface
dS, moving in the system with a velocity ', as depicted in Figure 2.1. Let n be
a unit vector drawn normal to the surface dS. The passage of a particle across
dS is regarded as positive or negative according as the particle crosses dS in
the direction of n. The velocity of the particle is C' relative to the surface dS.
Hence, the surface dS moves with the velocity C' = ¢ — ¢’. Consider all the

, 0
Ccdt— o

Figure 2.1: The passage of particles across surface element dS.

particles whose peculiar velocity lie in the range (C,C + dC). If one of these
particles crosses dS in a time dt, then at the beginning of dt, the particle must
lie somewhere inside the cylinder on dS as base, with the geometry specified
by C'dt (See Figure 2.1). If dr denotes the volume of this cylinder, the number
of particles with velocities in the range (C,C + dC) crossing dS during dt is
fdCdr. The volume of the cylinder is given by dvr = £C’cos8dtdS, where 0 is
the angle between n and C'. The flow of any property ¢ of a particle is given
by

$(C'-m)fdCdtds

referring to the number of particles with a velocity in the range (C,C + dC)
that cross dS in dt and carrying amount of ¢ property with it. The total flow
of ¢ across dS during dt is

detJ(C' n)pfdC = dSdt <n(C"-n)d> (2.21)
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Now, C' = C+ <c> —c/, so that
n <C'¢p>=n <C> +n(<c> —c') <> (2.22)

The second term of Equation 2.22 is driven by the number flow, n(<c> —c’),
which denotes the mean velocity of the particles relative to the surface ele-
ment. If the surface element dS moves with velocity <c>, the number flow is
zero, independent of the orientation of the surface. Hence, the second term
on the right-hand side represents the contribution to the rate of flow of ¢ due
to the net number-flow of particles across dS.

The first term on the right-hand side is independent of the number flow, and
its component normal to dS represents the rate of flow of ¢ when the number
flow vanishes, thus when dS moves with the mean velocity of the particles.
Thus, the vector n <Cd¢> is a flux-vector for the property ¢.

If we consider the momentum of each particle as a flow property, i.e. ¢ = mc,
and insert this into Equation 2.21, we can express the flow of momentum
across a surface dS as

detJ(C’ -n)mefdC = dSdtnm <(C' -n)c>

which represents the normal stress tensor due to kinetic transport of momen-
tum. Rewriting this further, we can obtain

<C! e> =<C! (<e> +C)>=<C,, C>
=<n- (C+ <c> —¢')C>=<C,,C>
Hence the total stress tensor equals
P =p<CC> (2.23)
Likewise, the flux vector of energy is expressed as

q= %p <C*C> (2.24)

Note that the stress tensor and flux vector derived in this section are only due
to the transport of particles; the influence of collisions has not been consid-
ered.

2.6 Particle collisions

In kinetic theory for granular flow, collisions are considered binary and in-
stantaneous. Since only smooth and spherically symmetrical particles are
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considered, the force which either exerts on the other is directed along the
line joining their centers. Moreover, rotation is not considered. It is sup-
posed that the effect of any external force which acts on the particle during
collision can be neglected compared to the dynamic effect of the collision.
With these assumptions, the velocities before and after a collision have defi-
nite values, which are denoted c;, ¢; before the collision, and ¢, ¢} after the
collision. The details of the collision itself are of no importance for the the-
ory; it is only important to know the relation between the initial and the final
velocities.

Before the collision, the relative velocity of the two particles is g = (¢; — ¢;),
and by definition g - n > 0 (otherwise the particles move away from each
other), where n is the normal unit vector lying in the direction of the vector
joining the center of the two particles, defined with its origin at the point
of contact (see Figure 2.2). The collision impulse P exerted by particle j on

Figure 2.2: A pair of colliding particles

particle i is directed along the line connecting the centers,
P =my(c} —¢i) = —m;(c) — &) (2.25)

P can be obtained by characterizing the incomplete restitution of the normal
component of the relative velocity, using the coefficient of restitution e, with
0<e<:

g -n=—-eg-n (2.26)

With equations 2.25 and 2.26 the equation for P can be derived:

mim;
P=——-—>7 1 - .2
" j( +e)(g-nn (2.27)
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Consider the motion of the center of particle j relative to the center of the first
particle, so relative to axes moving with the center of particle i (see Figure
2.3). For such a collision to occur, the center of particle j must cut a plane
through (o; + 0;)>ndn, where o; represents the radius of particle i. Hence,
the center of particle j must lie in a volume (gdt)[(o; + 0;)*ndn]. In a collision
between two particles, the value ¢;, representing a property of particle j, is
changed to ¢j. Thus the particle property ¢ for this particle is changed by the
amount ¢ — ¢;. The change in 3 ¢; due to all collisions where particle i has
a velocity in (¢;, ¢ + dcy), particle j has a velocity in (cj, ¢; + dc;), occurring
in the direction in (n,nn + dn), and in time (t,t + dt) is

((bg —5)f(2)(€i, i, ¢, 7 + (01 + o3I, t)(os + cj)z(g ‘n,t)dnde;dejdrdt
(2.28)

f(2)(ci, 11, €5, 73, ) represents the pair probability density function, indicating
the number density of a pair of particles, where the first particle is located
at r; with velocity c;, and the second particle located at r; with velocity r; at
time t. f(z) characterizes the statistics of binary collisions.

Integration over all values of ¢; and ¢, gives the total change during dt in
5~ ¢i, summed over all particles in dr, due to collisions. Since the number of
particles in dr is ndr, this integral must equal ndrC{¢$)dt. Dividing by drdt,
results in:

nCld); = m (@) — d5)f (€, 7, 5,7+ (05 1 03)m, 1)(0s + 03)%(g - m)dndesde
gn>0

(2.29)

where the condition g -n > 0 indicates that the integration is to be taken over
all values of n, ci, and ¢, for which a collision is impending. For the particle

Figure 2.3: The outlines of two possible colliding particles. Both particles
must lie in a volume (gdt)[(o; + 0;)?ndn] to possibly collide.
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j the rate of increase of property ¢ can be found by the same arguments as
above, only by interchanging the roles of the colliding particles by interchang-
ing subscripts i and j and replacing n by —m. This contribution may thus be
written as

nC(¢); = J” (1 — di)f 2y (e, 15 — (03 + 05)n, ¢5,73) (01 + 05)*(g - n)dnde;de;
g-n>0

(2.30)
A more symmetric form of nC(¢) is obtained by taking one half of the sum of
nC(d); and nC(¢)i . To this effect, f(5)(ci,r; - (07 + 05)n, ¢;, 75, ) is expanded
in a Taylor series about r = r;. On solving the first term in this series,

fizy(ei,1ie5, v+ (01 + 05, t) =

0 <1Gi+0j 0

f(Z)(CiJ’\(Gi+01)n,cj,m>t)+(Gi+01)n6; T Var
0; + 0; 2 02
+(—Tinnﬁ—...>f[z)(ci,r,cj,r+(0-1+0j)n,t) (231)

By inserting Equation 2.31 into Equation 2.30, and taking one half of the sum
of equations 2.29 and 2.30, the collisional rate of change may then be written
as

1

nC(¢p) = ”J (@5 — d5)f(2y(ci, i, ¢5,1 + (00 + 05)n,t) (04 + 03)%(g - n)dndcidc;

g-n>0

1
+ 5 ” (&F — di)f(2) (i, 7i, €5, 7 + (01 + 05N, t) (01 + 07)% (g - n)dndeidc

gn>Q0
Oi + 0j e i ~ 01+ 0j i (UiJrUj)z Ez__
T2 m (b1 d"’"en-(I 2 "or T 3 Mam o
g-n>0
'f(2)(Ci>T,C;',1‘+(01+0j)n,t)(cri+cr,-)2(g-n)dndcidcj (2.32)

The first two integrals on the right-hand side can now be combined. With
this, the collisional rate of change can be expressed into three terms:

_00(¢) 2 <> (bd))

nClp) = x(¢) - =5 - e (2

(2.33)

where © can be seen as a 'transfer’ contribution, and ¥ is a source-like contri-
bution. The last term on the right-hand side arises from extracting the term
537 from the integral, and must be included when the particle property ¢ is

a function of C. The expressions for x and ©, which represent a source-like
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contribution and a flux contribution, respectively, are

xo) =5 [|] wi+oi—o-0n

2
g-n>0
f(2y(ci, T, 65, T1 + (03 + 05)1, 1) (03 + 05)*(g - n)dndceidc; (2.34)
06) =~ 212 [[] ot - oom (1- 25 %n CRE A -...)
g-n>0
Ao (ei, 7, ¢5,7 + (01 + 05)n, 1) (01 + 05)%(g - n)dndcide; (2.35)

For the second order of velocity fluctuation, Equation 2.27 is inserted for the
change of momentum due a collision. When the expression for f(,) is known,
these integrals can be evaluated.

2.7 Solving Boltzmann’s equation

One of the ways to obtain an expression for f and f, from the Boltzmann and
Enskog equations, is through method the of direct numerical simulation of
particles (i.e. follow the trajectories of each individual particle). This requires
the integration of the second law of Newton for each particle, and the colli-
sion algorithm described in the beginning of the previous paragraph. When
the system with particles is not correlated with the initial state, the particle
probability density function can be written as

fle,r,t) =<d(r—x)b(c —u)> (2.36)

in which the averaging is an ensemble averaging over a very large number of
particles and realizations, for all possible locations x and velocities u occur-
ring in the system. The operator 5(x) is one for x = 0 and zero for all other x.
This method is computationally very expensive and even with today’s com-
puters can only be used to compute a relatively small number of particles.

Another discrete particle method which can be applied is the Monte-Carlo
simulation method. In this method, the equations described in the last para-
graphs are solved through a probability process, in which certain random
states are rejected, and some random states are accepted. From the char-
acteristics and number of accepted states, the probability density function f
can be calculated through the averaging over these states with Equation 2.36.
Although this method can be used for a relatively large number of particles,
it is sometimes necessary to sacrifice detailed physical description of the sys-
tem, and again, this method does not reach the number of particles occurring
in practical situations. Therefore, the Boltzmann and Enskog equations are
most often solved through means of calculus.
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2.8 Boltzmann’s equation in steady, ideal state

Consider a simple particulate suspension in which the particles possess only
energy of translation, are subject to no external forces, and no momentum is
lost during the collisions (equal to setting e = 1 in the last paragraph). If the
state is uniform so that the probability distribution function f is independent
of r, the probability distribution function is equal before and after collisions,
SO

fif] = fif; (2.37)
or
lnf{+lnf; =Inf; 4+ Inf; (2.38)

Thus not only is the state of the particulate system steady, collisions as a
whole produce no effect of f. Hence, the effect of every type of collision is
exactly balanced by the effect of the inverse process. This is called detailed
balancing.

The particle properties which remain unaltered by collisions are called sum-
mational invariants. For the above assumptions, the particle system has three
summational invariants:

o1 =1, % = mC, and ¢ = mC? (2.39)

which represent the conservation of mass, momentum, and kinetic energy.
Any linear combination of the three conserved functions ¢''! is also a sum-
mational invariant. But no further summational invariant which is linearly
independent of ¢! can exist for particles whose energy is purely translatory.
From this, we can conclude that Inf is a summational invariant for collisions,
and must thus be a linear combination of ¢!, hence

3
Inf=5) ¢ (2.40)
i=1

where o/ and o3 are scalars and «'?) is a vector. Because the particle
system is uniform, «(Y) must be independent of r and t. Then we find

2

2)\?% /2
Inf=Ina'" +«B3'm <c+%> - (W) m?x(3 (2.41)

(2)

when we now define C' = ¢ — 55, we can find

f':och)ef‘x[“-%mC"y (242)
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where «(°) is a new constant. This result was first obtained by Maxwell in
1867, and the state of the system is therefore said to be a Maxwellian state.
The constants a(i) can be evaluated in terms of the number density n, the
mean velocity <c> and the velocity fluctuations C:

n= dec = (0 Je*“m'%mclz ac’

00 7 27
=al® J c'2e—°““'%mc'zdc’Jsin@d@ J de
0 0 0
_ o) (27 1
=« (m(x(3)> (2.43)

Using the equation for the average momentum,

n <c> = Icfdc

(2)
_ x ' ’
_ J (—0((3) +C ) fdc
a(?) 0 ’ 3. 1 e’ ’
—nd i )JC e ¥me” ¢ (2.44)
X
The second term vanishes because the integrand form is an odd function of

the components of C'. Hence, <c>= g% and C' is identical with C, the
peculiar velocity. Finally, from the definition of energy in the uniform steady
state

1
Sm<Cls— J C?fde

2 2n
3
T

3
=3 (2.45)

Hence, «'3) = —%,—. Consequently the final form for the probability distri-
bution function in the ideal steady state is equivalent to

3
3m 2 _ 2 n 2
f=mn <m) e 3mC*/(2m<C”>) (246)

which is the usual form of the Maxwell probability distribution function. The
Maxwellian distribution is a Gaussian type distribution, as can be seen in
Figure 2.4.
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L

0
C {m/s]

Figure 2.4: A Maxwellian distribution. The numbers indicating the X and
Y-axis are dependent upon the magnitude of <C?%>.

2.9 Expressing f; in f

In early development of kinetic theory, the pair probability distribution func-
tion was expressed as the product of the two individual probability distribu-
tion functions:

fooy (e, i, ¢, 15,t) & fleg, 1i)f(cy,15) (2.47)

This is called the assumption of molecular chaos. In the molecular chaos
assumption, particles are assumed to be randomly distributed, without their
volume playing a role. Hence, particles may overlap. In very dilute systems
this may not lead to a large deviation, as the chance that two particles overlap
is very small. For denser gases, Equation 2.47 is rewritten to

fioy(ei, i, ¢5,15,t) & gofley, mi)f(cy, r5) (2.48)

where go is called the radial distribution function at contact. g, is equal to
one for a dilute particle system, and increases with increasing particle number
density, becoming infinite as the particle system approaches the state in which
the particles are packed so closely together that motion is impossible. The
effect of gy is to reduce the volume in which the center of any particle can
lie, and so to increase the probability of a collision. By the assumption of
molecular chaos, go is only a function of the position and not a function of
the velocity. The function go needs only to be evaluated at the point of contact
and not for every position in the system.
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2.10 Solving the PDF for the non-ideal state: Enskog
approach

The present section deals with the method by which Enskog solved the Boltz-
mann equation in a general case. We consider here a simple particle system,
with only one type of particle. The extension to a bimodal case is, however,
not a difficult one and can be found in section 2.12.

The Enskog method is one of successive approximation. Suppose that the
solution is expressible in the form of an infinite series

f= O 40 462 4 (2.49)

It can be shown that f(© is proportional to n, (') is independent of n, f(?)
is proportional to 1/n, and so on. This implicates that the more dilute the
system is, the more important the higher orders become. Theoretically, it is
possible to describe only a few particles in a space using this method. Practi-
cally, however, this implicates that it is necessary to take an enormous num-
ber of higher orders of (! into account.

Suppose that when ¢ operates on this series, the result can be expressed as a
series in which the i-th term involves only the first i terms of the series,

£(f) = E,(f(o) 4+ @) 4 ) :a(o)(f(o)) + ‘z_’ﬂ)(f(o)’f(ﬂ)
+EP(FO ) @)y (2.50)

which together ensure that &(f) = 0. Substituting this equation into the Boltz-
mann equation, we can find

E(f) = J(fif;) + Df, (2.51)

where the first term denotes the changes due to particle collisions, and the
second term is the left-hand side of the Boltzmann equation, as defined ear-
lier. Then, by substituting Equation 2.49

g =1 fY_6+ ) of” (2.52)

If we take f(°) to be the Maxwellian distribution,
) =ofl® = V9 =0 (2.53)
because the influence of collisions then does not affect the probability dis-

tribution itself. We can thus interpret higher orders of f, f! with i > 0 as
corrections to the Maxwellian state.
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2.10.1 The second approximation to f for a slightly inelastic gran-
ular material

The remainder of this section is devoted to the evolution of the second ap-
proximation to f without an external force. Moreover, the hydrodynamic
equations resulting from the second approximation to f will be presented.
The equation from which ') is to be determined is
(0) (00 (1 (1) ¢(0) (0) ¢(1)

RO =D A0 O (2.54)
As we have expressed f(°) in terms of C, it is convenient to express ©f§” in
a form analogous to that form of © given in C, as in Equation 2.9. Now,

SUpposing we can express @fi” in terms of féo):

~ Dfl9 c af‘°)+ 2o 211 D<ex Aff0N afl®)

n _ S 0 <c>
Dt or oC Dt aC oC

Dfl C:

or
(2.55)

We have now expressed (!’ in terms of the known function f(®’, and this can
be analytically solved

] 2
@f”):f(o){( 3TT1C2 §>C|:aln3 <C>+alnn}

2m <C2> 2 or or
3 ° 0 <c>
+ =z CC: - } (2.56)

in which the fluctuating external forces on the particles are not taken into
account. We now substitute ') = f('®("'. We then find for the right hand
side of Equation 2.54

HEE) 4 A0 =
m (@ + @V — 0" — @M)go ! 1% (0 + 07)%(g - k)dkdeide;

9-k>0

(2.57)

®@ is called a perturbation function, because it denotes the first order alter-
ation of f from a Maxwellian distribution. Because @ is, like f, a scalar, it
suffices to look only at the scalar solutions of Equation 2.57. The right-hand
side of Equation 2.57 is linear in @, and the right-hand side of Equation 2.56

. : N In <C%>
is linear in the space-derivatives of —s <> and n. Hence, the most

general scalar solution of @ is a sum of four parts:
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1 2 .
1. A linear combination of the components of % For this to be a

ol 2
scalar this must be given in the form of the inproduct of %D with

another tensor.

. L J <c>
2. A linear combination of the components of 7

be the scalar product of this with another tensor.

; this must similarly

9lnn

e this must be the scalar

3. Alinear combination of the components of
product of this with another tensor.

4. The most general scalar solution of the equation

m (@ + 0/ — 0" — 0V)gof % (6; + 05)2(g - k)dkdeide; =0

9-k>0
(2.58)

Thus we can write

1 /2 dlnl <C?> 2= 9 <c>
m ___2.,/= 2 . 3 _ 7.
oY = =~ 3,<C>A 5y nB' ar

1 /2 dlnn
2L <c2sD.
nV3 <P

+olM) 4 (M2 e+ oc“‘z')—;—mCz (2.59)

where A and D are vectors which are functions of C, B is a tensor which
is a function of C. a"" (12 and «!"3) are constants. Substituting this
equation into Equation 2.57 we can obtain three different equations,
1 ' , (0) £(0) 2
— (Ai +A; — Ay — Aj)gof; ;7 (o + 03)°(g - k)dkdcidc;
n
g-k>0

C? 5 1
=0 — S 2.
t (3 <C2> 2) 3<C2> ¢ (2.60)

m (D} + D} — Dy — Dy)gofi ;" (01 + 05)%(g - k)dkde;de;

g-k>0

(0) C? 5y / 1
=1 T = ‘6
fi (3 <CZ> 2) 3 <C2> ¢ (2.61)

1 = = = =
n HI (B, + B; — B — Bj)gof. "% (01 + 03)%(g - k)dkdeidc;

1
n

j
g-k>0

03 e (2.62)
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The constants a2} "and «!"3) are to be chosen that the corresponding
form for {1’ satisfies the equations

J¢mﬂndc:f¢mym®nmc:0 (2.63)

where ¢!') denotes any of the summational invariants. When the particle
system is a dissipative system, as with most practical cases, not all of these
invariants go to zero; which makes them no longer invariant of course. If we
substitute the change of momentum and energy due to the collisions, Equa-
tion 2.27, we can find closures for the «’s. The A, D and B are slightly more
difficult to obtain. By the use of Sonine polynomials, however, the above
three integrals for A, D and B can be expressed. We can thus obtain for (")
the expression

°o d<c> 5 C2 dlnl <C>
o — : S 23
W CC:—=+az (2 3 <C2>> ar
5 C? dlnn
2 . 2.
+a3(2 3<C%>)C ar (2.64)

where the constants ay, a> and a3 are a result of the above derivation, but
may also be found by inserting simplified physical situations, as simple shear,
constant granular temperature, or zero velocity.

From this ®, we can express the stress tensor and the flux of fluctuating ve-
locity as

= 2 =
P <CC>:% <C2> 11— m I:] + g’ﬂ(.’m "Z)engjl N (265)
I C 12, 1,
cp<C2Co=— 21|14 En2an — 3)e, .
70 < C> go{{+5n(q 3lesgo| V 3<C>

(c290) =5 2 vn} (2.66)

12 d
=n(2—1Mn -1
+5n(n Jm—1) i

des
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with the abbreviations

8A
S 2.67
¢ n(41 —33n) ( )
2
=Y O 2.6
A= —es (2.68)
1
5 <C?>
_ 3n
O o (2.70)
nm n
€s o TV (2.71)
= 1 N1 =
S= 7 (V <c> +{V <c>} ) —3 (V‘ <c> I) (2.72)

For the momentum equation, the source like contribution, x, is zero (see
Equation 2.35), and thus only the transport contribution © remains (see Equa-
tion 2.34). Thus, the total collisional contribution to the momentum equation
has the exact same form as the stress tensor. Therefore, most researchers de-
note this contribution as ‘the collisional contribution to the particle-particle
stress’. The term for the momentum equation is

= = 4 = ]6 €5 8 =
Omomentum = Pe =§P <C*> nesgol — 5(2P—L-‘r]) I:] + ng(3Tl - 7—)%90] D

— %nue%go [gD + (V- <c>) 1] (2.73)
These equations can be directly used to solve the volume averaged momen-
tum equations for a granular material, as they can be transformed to the
hydrodynamic definitions of viscosities and normal pressure. For the energy
equation, both © and x are non-zero. The form of © is added in the same
form as the flux of fluctuating energy, and is therefore often described as the
addition to the flux of fluctuating energy due to collisions. These terms are

12nce 12
Ocnergy = 4, =— 715 £ {[] + §n2(4n —3)esgo

16 1,
125 d ,, ,<C>>
_ S | Wihadll 74
Dzl (o) 50V @)

3
48 e? <C?>\?
Xenergy :ﬁn(Pn)pTgo( 3 ) (2.75)
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Inserting e = 1 (n = 1) into Equation 2.75 leads to x = 0, which shows that the
energy equation becomes a conserved quantity for systems where collisions
are fully elastic.

2.11 Solving the PDF with Grad’s method

The method developed by Grad, Grads’ 13th moment approximation, is close
to the Enskog approximation, but is slightly different in the treatment of the
derivatives. The higher orders of f are expressed as

0 az 62 ﬁg 63 (0)
(12l % e t .76
flert (1 “5c T Zace Hace o)ty (2.76)

where f(°) denotes the Maxwellian distribution. The coefficients a; which de-
pend on r and t but not on c¢ are first, second and higher order tensor values
functions, symmetric in all of their indices. Inserting this equation, together
with the Maxwellian distribution into Equation 2.1, leads to a; = 0 for the
mean of the velocity fluctuation to equal zero. Moreover, physically the ad-

ditional restriction a; - I = 0 must be imposed.

When Equation 2.76 is truncated after its first three non-zero terms, the re-
maining unknowns are n, <c¢>, <C?>, az, and @s. In principle, they are
determined by equations: the balance of mass, the balance of linear momen-
tum, the balance of energy, the balance of second moment, and the balance
of third moment. Grad assumed that the tensor a3, which lacks any physical
interpretation, is related as

1 .
Ak = 5 (Qimmdjk + Gjmmbik + Akmmbij) (2.77)
With this reduction 13 unknowns remain, leading to the name 13-moment
system. Inserting this equation and the Maxwellian distribution into Equa-
tion 2.76, the following equation can be obtained

fle,r) 3a; 3q; 3C?
- = . -5
floy(c,r) T <C2>2 ce+ 5<C?>2 <<C2>

(2.78)

With this, the balances of the second and third moment equation can be ex-
pressed in terms of a;'s, together with the assumption made above regarding
as.

In order to obtain a solution of the full 13-moment system for dense ma-
terials, some assumptions regarding the order of magnitude of the spatial
derivatives of the mean fields must be made. This is because the positions of
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the centers of two colliding particles are distinguished. Consequently, when
the complete pair distribution function at a collision is assumed to be related
to the velocity distribution functions of each particle, with the radial distri-
bution function at contact, these velocity distribution functions are evaluated
at different points in space. Because Grad solves the thirteen unknowns by
introducing a truncated series expansion for the distribution function, the
derivatives of the mean fields are supposed to be small.

The integrations are similar to the ones in the Enskog solution. The final
result is, after omitting higher order terms and neglecting products of the
perturbation of the Maxwellian velocity distribution. The method itself is,
however, more elegant and is more easily extendible to a more exact analysis
of the full 13-moment system.

2.12 Solving f for a bimodal particle distribution

When considering multicomponent mixtures, there are two ways of describing
such systems. The first way is to solve the first, second and higher moment of
velocity fluctuation equations for each particle species separately, and treat
the collisions between species as additions to each of the separate equations.

In this work, however, the equations are evaluated for the mixture. For in-
stance, the second moment of velocity fluctuation is written as

<CC>= %(TLA <CaACa> +ng <CgCg>) (279)

where the subscript A of B denote the property of the individual species.

Hence, the two equations for the second moment of velocity fluctuation can

be combined:
DCC

d
"y~ ¢ or or

+ ZnZ ai(nava +ngve) + nC(CC) (2.80)
i

(NAVA +ngve) on <CCC> = 2m <CCoe 0 <c>

where v; is the diffusion velocity; the velocity of species i relative to the mean
motion of the mixture,

v; =<Ci>=<c;i— <> (2.81)

in which <c> denotes the average velocity of the mixture.

In the last paragraph, we have already seen that the term P =<CC> is the
particle stress tensor due to streaming, and Vq =<CCC> is the flux of the
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second moment of fluctuating velocity. The total particle stress tensor also
consists out of a collisional part, due to ©, just as the flux of second moment
does. The total stress and flux term can therefore be written as

a= ) (%pi <CIC>+ Y qik> (2.82)

i=A,B K=A,B
ﬁ = (pi <CiCi> + Z ﬁk> (2.83)
i=ALB K=A.B

There are four collisional contributions, that is
1. Collision of species A with species A
2. Collision of species A with species B
3. Collision of species B with species A
4. Collision of species B with species B

Both in the stress tensor and the flux of fluctuating energy, the transfer con-
tribution © is taken into account In the dissipation of second moment of fluc-
tuating velocity, -y, the sourcelike term, &, is also important. Of course, in
the streaming parts of the stress tensor and flux of fluctuating velocity, there
are only two contributions. The dissipation of fluctuating energy, the stress
tensor and the flux of fluctuating energy are all similar to the form of the
monodisperse kinetic theory; there are only twice or four times as much con-
tributions.

The perturbation function @ is more complex because it contains the aver-
age velocity and the diffusion velocity of each specie. From the form of @, a
diffusion force vector, d;, which drives the diffusion velocity, can be defined.
The diffusion force is driven by the solids phase normal pressure, the external
forces a, the gradient in the second moment of fluctuating velocity, and the
gradients in each number density times the 'chemical’ potential. The exact
form of these quantities can he found in Chapter 5.

Again, the momentum equation for the bimodal mixture is now physically
closed.

2.13 Conclusions

In this chapter we have seen how the kinetic theory is developed from first

principles. These principles have been discussed and it is shown how to an-
alytically solve the Boltzmann equation in a steady-state case. It has also
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been shown how inelastic collisions can be taken into account in the Boltz-

mann equation.

Two methods of solving the non-ideal transient Boltzmann equation have
been briefly discussed, but without taking an external fluctuating force into
account. From these techniques, it is shown how to derive the constitutive
models for granular flow. Finally, a method to treat a bimodal particle size !

distribution is discussed.

Nomenclature

a coefficients in Grads’ method

a external forces on particle, ms—?

A vector defined on page 26

B matrix defined on page 26

c particle velocity, ms™’

c particle velocity relative to surface, ms='
C particle peculiar velocity, m s~

Cn normal component of velocity, ms™!
ds surface, m?

D vector defined on page 26

e coefficient of restitution

f probability density function

go radial distribution function at contact
m mass of one particle

n number density, m 3

n normal vector, m

P total stress tensor, Pa

r location in space, m

S rate of strain tensor, s~

t time, s

T thermodynamic temperature, K
u,v,w particle velocity in (x,y, z) directions, ms™
Greek

x variable defined on page 22
€ volume fraction

o) any particle property

W variable defined on page 28
v = 11+e)

1
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Subscripts

e
energy
momentum
S

variable defined on page 28

density, kgm~3

angle

flux of fluctuating energy due to collisions
contribution to particle energy due to collisions
variable defined on page 28

change due to particle collisions
applied to energy equation
applied to momentum equation
applicable to particle phase

33
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Chapter 3

Comparison of CFD models for
Dense Gas-Solid Flows

In this chapter a comparison is made between the equations and models de-
scribing dense gas-solid flow in the Eulerian framework. Two different sets of
governing equations are used by researchers to describe dense gas-solid flow
and this chapter shows with a rigorous derivation that only one set is cor-
rect. Also, the different closure models applied in gas-solid flow are shown
and compared with each other. Finally, simulations of different test-cases
are done with different governing equations and closure models to study the
impact of the different governing equations and closure models on the sim-
ulations. The result of the simulations is compared with generally accepted
data and empirical correlations.

This chapter has been submitted for publication:

B.G.M. van Wachem, J.C. Schouten, R. Krishna, C.M. van den Bleek, and
J.L. Sinclair, (1999), Comparative Analysis of CFD Models of Dense Gas-Solid
Systems, submitted to AIChE Journal.
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Abstract

Many gas-solid CFD models have been put forth by academic researchers,
government laboratories, and commercial vendors. These models often differ
in terms of both the form of the governing equations as well as the closure re-
lations, resulting in much confusion in the literature. This paper reviews these
various forms of the models as employed in the literature and in commercial
codes and compares the resulting hydrodynamics through CFD simulations
of fluidized beds. The experimental data on fluidized beds of Hilligardt and
Werther (1986), Kehoe and Davidson (1971), Darton et al. (1977), and Kuipers
(1990) are used to quantitatively assess the various treatments.

It is shown that predictions based on the commonly used governing equations
of Ishii (1975) and the governing equations of Anderson and Jackson (1967)
do not differ in terms of macroscopic flow behavior, but do differ on a lo-
cal scale. The flow predictions are not sensitive to the use of different solid
stress models or radial distribution functions, as the different approaches are
very similar in dense flow regimes. The application of a different drag model,
however, significantly impacts the flow of the solids-phase. Finally, a simpli-
fied algebraic granular energy balance equation is proposed for determining
the granular temperature, instead of solving the full granular energy balance.
This simplification does not lead to significantly different results, but it does
reduce the computational effort of the simulations by about 20%.

3.1 Introduction

Gas-solid systems are found in many operations in the chemical, petroleum,
pharmaceutical, agricultural, biochemical, food, electronic, and power gener-
ation industries. Computational fluid dynamics (CFD) is an emerging tech-
nique for predicting the flow behavior of these systems as is necessary for
scale-up, design, or optimization. For example, Barthod et al. (1999) have
successfully improved the performance of a fluidized bed in the petroleum in-
dustries by means of CFD calculations. Although single-phase flow CFD tools
are now widely and successfully applied, multiphase CFD is still not because
of the difficulty in describing the variety of interactions in these systems. For
example, to date there is no agreement on the appropriate closure models.
Furthermore, there is still no agreement on even the governing equations. In
addition, proposed constitutive models for the solid-phase stresses and the
interphase momentum transfer are partially empirical.

CFD models of gas-solid systems can be divided into two groups, Lagrangian
models and Fulerian models. Lagrangian models, or discrete particle mod-
els calculate the path and motion of each particle. The interactions between
the particles are described by either a potential force (soft particle dynamics,




3.2 Governing equations 37

Tsuji et al., 1993) or by collision dynamics (hard particle dynamics, Hoomans
et al., 1995). The drawbacks of the Lagrangian approach are the large mem-
ory requirements and the long calculation time and, unless the continuous
phase is described using direct numerical simulations (DNS), empirical data
and correlations are required to describe the gas-solid interactions. Eulerian
models treat the particle phase as a continuum and average out motion on
the scale of individual particles, thus enabling computations by this method
to treat dense-phase flows and systems of realistic size. As a result, CFD
modeling based on this Eulerian framework is still the only feasible approach
for performing parametric investigation and scale-up and design studies.

This paper focuses on the Eulerian approach and compares the two sets of
governing equations, the different closure models and their associated pa-
rameters that are employed in the literature to predict the flow behavior of
gas-solid systems. Unfortunately, many researchers propose governing equa-
tions without citing, or with incorrectly citing, a reference for the basis for
their equations. Both Anderson and Jackson (1967) and Ishii (1975) have
derived multiphase flow equations from first principles, but the inherent as-
sumptions in these two sets of governing equations constrain the types of
multiphase flows to which they can be applied. One of the objectives of our
current contribution is to show how these two treatments differ; it is shown
that Ishii's (1975) treatment is appropriate for a dispersed phase consisting
of fluid droplets, and Anderson and Jackson's (1967) treatment is appropri-
ate for a dispersed phase consisting of solid particles. In the case of a solid
dispersed phase, many researchers and commercial CFD codes employ kinetic
theory concepts to describe the solid-phase stresses resulting from particle-
particle interactions. Various forms of the constitutive models based on these
concepts have been applied in the literature. The qualitative and quantitative
differences between these are shown in this paper. The predictions of CFD
simulations of bubbling fluidized beds, slugging fluidized beds, and bubble
injection into fluidized beds incorporating these various treatments are com-
pared to the “benchmark’ experimental data of Hilligardt and Werther (1986),
Kehoe and Davidson (1971), Darton et al. (1977), and Kuipers (1990).

3.2 Governing equations

Most authors who refer to the origin of their governing equations used, refer
to the work of Anderson and Jackson (1967) or Ishii (1975). Anderson and
Jackson (1967) and Jackson (1997) (with correction in Jackson (1998)) use a
formal mathematical definition of local mean variables to translate the point
Navier-Stokes equations for the fluid and the Newton’s equation of motion
for a single particle directly into continuum equations representing momen-
tum balances for the fluid and solid phases. The point variables are averaged
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over regions large with respect to the particle diameter but small with re-
spect to the characteristic dimension of the complete system. A weighting
function, g(|x—vyl), is introduced in forming the local averages of system point
variables, where [x—y| denotes the separation of two arbitrary points in space.
The integral of g over the total space is normalized to unity:

47 Joo g(r)r¥dr=1 (3.1)
0

The 'radius’ 1 of function g is defined by

1 00
J g(r)r2dr = J g(r)r?dr (3.2)
0 1

Provided 1 is chosen to satisfy a « 1 « L, where a is the particle radius and L
is the shortest macroscopic length scale, averages defined should not depend
significantly on the particular functional form of g or its radius.

The gas-phase volume fraction e(x), and the particle number density n(x)
at point x are directly related to the weighting function g:

e(x)g =jv ollx — yl)dVy, (3.3)

nx) =) glix—xp)) (3.4)
P

where V, is the fluid phase volume, and x,, is the position of the center of
particle p. The local mean value of the fluid phase point properties, <f>, is
defined by

c(x)g <f>g (X) :j f(y)g(Ix — y)dV,, (3.5)

g

The solid-phase averages are not defined analogous to the fluid phase av-
erages since the motion of the solid phase is determined with respect to the
center of the particle and average properties need only depend on the proper-
ties of the particle as a whole. Hence, the local mean value of the solid-phase
point properties is defined by

n(x) <f>¢ (x) =) fogllx —xy) (3.6)
P

The average space and time derivatives for the fluid and solid phases follow
from the above definitions. The averaging rules are then applied to the point
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continuity and momentum balances for the fluid. For the solid phase, the
averaging rules are applied to the equation of motion of a single particle p:
avs =
PV = J Goly)n(y)dsy + Y fap + psVog (3.7)
So a#p

where v, is the particle velocity, ps is the particle density, V,, is the volume
of particle p, G is the gas-phase stress tensor, S, denotes the surface of par-
ticle p, and f,,, represents the resultant force exerted on the particle p from
contacts with other particles.

The resuiting momentum balances for the fluid and solid phases, dropping
the averaging brackets <> on the variables, are as follows:

) = =
Pg€g {avq +Vy 'va] =Vl(egog) — ZL 0g -n(y)glx — yldsy + pgeq8
p U5p
(3.8)

d _ _
Ps€s |:—V5 + Vg - vvsjl = Z 9|X 7X‘p|j Egn(Y)dSy + v '65 + Ps€s8 (39)
ot = s

P

The first term on the right hand side of the gas phase equation of motion rep-
resents the effect of stresses in the gas phase, the second term on the right
hand side represents the traction exerted on the gas phase by the particle sur-
faces, and the third term represents the gravity force on the fluid. The first
term on the right hand side of the solid-phase equation of motion represents
the forces exerted on the particles by the fluid, the second term on the right
hand side represents the force due to solid-solid contacts, which can be de-
scribed using concepts from kinetic theory, and the third term represents the
gravity force on the particles. The averaged shear tensor of the gas phase can
be rewritten with the Newtonian definition as

o, = —P9T+ ? (Vvg + (VVvg)T) (3.10)
g
where the gas phase volume fraction is introduced in the volume process.

Note that the forces due to fluid traction are treated differently in the fluid-
phase and solid-phase momentum balances. In the particle phase, only the
resultant force acting on the center of the particle is relevant; the distribution
of stress within each particle is not needed to determine its motion. Hence,
in the solid-phase momentum balance, the resultant forces due to fluid trac-
tion acting everywhere on the surface of the particles are calculated first, then
these are averaged to the particle centers. In the fluid-phase momentum bal-
ance, the traction forces at all elements of fluid-solid interaction are calcu-
lated, then they are averaged to the location of the surface elements. Hence,
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the fluid-phase traction term is given as

ZJ Ty - n(y)gx—ylds, = Z ng—xp!L 04 - n(y)ds, —
P »

p YSp

V- (
SD

a) glx- xplj Gy - n(y))n(y)dsy} +0(V?)
’ (3.11)

which is a result of a Taylor series expansion in g|x—y| about the center of the
particle with radius a. Here terms of O(V?) and higher have been neglected.
Note that the first term on the right hand side of Equation 3.11 is the same as
the fluid traction term in the particle-phase momentum balance. The differ-
ence in the manner in which the resultant forces due to fluid tractions act on
the surfaces of the particles is a key distinction between the Jackson (1997)
and Ishii (1975) formulations. In the Ishii (1975) formulation, applicable to
fluid droplets, the fluid-droplet traction term is the same in the gas phase and
the dispersed phase governing equations.

The integrals involving the traction on a particle surface have been derived
by Nadim and Stone (1991) and are given in Jackson (1997) as

- D¢v
Zg|x_xp|J O'g'n(Y)dSy :E(Vg—vs)+pg€sg+pg€s_é"g
> Sp €g t

(3.12)

V. [az glX — Xp| L (Gg - n(y)In(y)dsy | = —V(esPyg) (3.13)
P P

where § is the interphase momentum transfer coefficient. The final equations
of motion for both phases according to Jackson (1997) are shown in Table 3.1,
both in the form as originally presented in his paper, and in an equivalent al-
ternative form, which is merely a linear combination of the original equations.

In Ishii’s (1975) formulation, the fluid and dispersed phases are averaged over
a fixed volume. This volume is relatively large compared to the size of indi-
vidual molecules or particles. A phase indicator function is introduced, X(r},
which is unity when the point r is occupied by the dispersed phase, and zero
if it is not. Averaging over this function leads to the volume fraction of both
phases,

es = —j X(r)dV, (3.14)
Vv

where V is the averaging volume. Since both the continuous and dispersed
phases are liquids, they are treated the same in the averaging process. Hence,
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the momentum balances for both phases are the same.

aekpk <Vi>
ot

+ V- (erpr <Vi><Vi>) = — V(er <Py>) + V- (ex <Tr>)

+ expkg + My (315)

where k is the phase number and My, is the interphase momentum exchange
between the phases, with Mg + M, = 0. In the Ishii (1975) formulation,
the distribution of stress within both phases is important since the dispersed
phase is considered as fluid droplets. Hence, “jump” conditions are used to
determine M. The interphase momentum transfer is defined as

1 -
Mk:_Z[——j (Piny — ny - T
3

1 _ — _
= E f((<Pki> —Pi)ng— <Pyi> g — Ny - (<> k) + Ny <Tii>)
— L
)
(3.16)

where L; is the interfacial area per unit volume, Py is the pressure in the
bulk of phase k, <Py;> is the average pressure of phase k at the interface,
T denotes the shear stress in the bulk, and <7y; > represents the average
shear stress at the interface. The terms {<Pyi> —Pi)ng and ny - (<Tri> —7Tk)
are identified by Ishii (1975) as the form drag and the skin drag, respectively,
making up the total drag force. The other terms can be written out as

My = drag + <Py> Vey + (<Pri> — <Py>)Ver — (Vey): <Tpi> (3.17)

According to Ishii and Mishima (1984), the last term on the right hand side is
an interfacial shear term and is important in a separated flow. According to
Ishii (1975), the term (<Py;> — <Py>) only plays a role when the pressure
at the bulk is significantly different from that at the interface as in stratified
flows. For many applications both terms are negligible, and

Mg = drag + <P, > Ve (3.18)

The momentum equations for the gas phase and the dispersed phase following
the original work of Ishii (1975) are shown in Table 3.1. Many researchers and
commercial codes modify Ishii's (1975) equations to describe gas-solid flows
(e.g. Enwald et al., 1996). These modified equations are also shown in Tahle
3.1. When Ishii’s (1975) equations are applied to gas-solid flows, the solid-
phase stress tensor is not multiplied by the solids volume fraction, since the
volume fraction functionality is already accounted for in the kinetic theory
description.
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3.2.1 Comparing the Ishii and Jackson governing equations

Comparing the Ishii (1975) and Jackson (1997) momentum balances, the dif-
ferences are twofold. First, Jackson (1997) includes the solids volume fraction
multiplied by the gradient of the total gas-phase stress tensor in the solid-
phase momentum balance, whereas Ishii (1975) only includes the solids vol-
ume fraction multiplied by the gradient of the pressure. Secondly, in the Ishii
(1975) approach in the gas-phase momentum balance, the pressure carries
the gas volume fraction outside the gradient operator; the shear stress car-
ries the gas volume fraction inside the gradient operator. In Jackson (1997)
both stresses are treated equally with respect to the gas volume fraction and
the gradient operators. When the gas phase shear stress plays an important
role, these differences may be significant near large gradients of volume frac-
tion, i.e. near bubbles or surfaces.
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Table 3.1: Governing equations according to Jackson (1997) and Ishii (1975)
applied to gas-solid flow. The explanation of the symbols can be found in the

Nomenclature.

Continuity equations

Oe
a—:+V'(€ng) =0
0€s
at + V - (€sVs) = 0
Momentum equations of Jackson (1997)
o -
Pg [ﬂ +Vg'vvg] =V.T, - VP - £(Vg—Vs) +Pg8
ot €g

ovg

ot ot

ov.
Ps€s [—s + Vs - Vvs] — Pg€s [
[¢]

+V - Ts — VPs

in alternative form:
v, =
Pg€g [a_tg + Vg va] =€gV-Tg — VP — B(vy — Vs) + €4pg8
o,

Ps€s l: ot

+ Vg - VVg} = Eﬁ(vg = Vs) +€es(ps —pglg

+V5-VVS] — eV -Tg—€sVP+V T, — VP, + (Vg —Vs) +€5ps8

Momentum equations of Ishii (1975)

v, =
Po€g [a_tg + Vg va] = —€gVP +V egTg +€gpg8— B(Vg— Vs)

P _
Ps€s [% + Vs - VVs] =—€sVP+ V- €:Ts +€:ps8+ B(Vg — Vs)

applied to gas-solid flow (Enwald et al., 1996):

ov, =
Pg€gqg {a_tg + Vg - va] =—€gVP+V - €Ty +€qpg8— P(Vg — Vs)

Ps€s [% + Vs - VVS] = —€SVP + V . ﬁ=[’5 - Vps + €spsg 4 B(Vg — VS)

Definitions

(vVi + (vVi)T)

Nt —

Ty = 2wDi + (7\i - —ui) tr (6\)T with ﬁi =
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3.3 Closure relations

3.3.1 Kinetic theory

Closure of the solid-phase momentum equation requires a description for the
solid-phase stress. When the particle motion is dominated by collisional in-
teractions, concepts from gas kinetic theory (Chapman and Cowling, 1970)
can be used to describe the effective stresses in the solid phase resulting from
particle streaming (kinetic contribution) and direct collisions (collisional con-
tribution). Constitutive relations for the solid-phase stress based on kinetic
theory concepts have been derived by Lun et al. (1984), allowing for the in-
elastic nature of particle collisions.

Analogous to the thermodynamic temperature for gases, the granular tem-
perature can be introduced as a measure of the particle velocity fluctuations.

1
0=y <v!%> (3.19)
Since the solid-phase stress depends on the magnitude of these particle veloc-
ity fluctuations, a balance of the granular energy (%@) associated with these
particle velocity fluctuations is required to supplement the continuity and
momentum balance for both phases. This balance is given as

3]0 = _
5 |37 (esps®) + V- (esps®vs):| = (_vPsI'f'?s) Vv =V (k,VO) —vs — s

2 |at
(3.20)

where the first term on the right hand side represents the creation of fluctu-
ating energy due to shear in the particle phase, the second term represents
the diffusion of fluctuating energy along gradients in ©, y, represents the
dissipation due to inelastic particle-particle collisions, and J represents the
dissipation or creation of granular energy resulting from the working of the
fluctuating force exerted by the gas through the fluctuating velocity of the
particles. Rather than solving the complete granular energy balance given in
Equation 3.20, some researchers (e.g. Syamlal et al., 1993, Boemer et al.,
1995, Van Wachem et al., 1998, Van Wachem et al., 1999) assume the gran-
ular energy is in a steady state and dissipated locally and neglect convection
and diffusion. Retaining only the generation and the dissipation terms, Equa-
tion 3.20 simplifies to an algebraic expression for the granular temperature:

0= (—VPjJri) L VVs — Vs (3.21)

Because the generation and dissipation terms dominate in dense-phase flows,
it is anticipated that this simplification is a reasonable one in dense regions
of flow.
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3.3.2 Solid-phase stress tensor

The solids pressure represents the solid-phase normal forces due to particle-
particle interactions. In the literature there is general agreement on the form
of the solids pressure, given by Lun et al. (1984) as

Ps = ps€esO[1 + 2(1 + e)goes]
= ps€sO +2gops€lO(1 +e) (3.22)

The first part of the solids pressure represents the kinetic contribution, and
the second part represents the collisional contribution. The kinetic part of
the stress tensor physically represents the momentum transferred through
the system by particles moving across imaginary shear layers in the flow; the
collisional part of the stress tensor denotes the momentum transferred by di-
rect collisions.

The solids bulk viscosity describes the resistance of the particle suspension
against compression. In the literature, there is also general agreement on the
form of the solids bulk viscosity, given by Lun et al. (1984) as

4 [©
As = geszpsdsgo(1 +¢) ;

However, the kinetic theory description for the solids shear viscosity often
differs between the various two-fluid models. Gidaspow (1994) does not ac-
count for the inelastic nature of particles in the kinetic contribution of the
total stress, as Lun et al. (1984) do, claiming this correction is negligible. The
solids shear viscosity of Syamlal et al. (1993) neglects the kinetic or stream-
ing contribution, which dominates in dilute-phase flow. Hrenya and Sinclair
(1997) follow Lun et al. (1984), but constrain the mean free path of the particle
by a dimension characteristic of the actual physical system. This is opposed to
the Lun et al. (1984) theory which allows the mean free path to tend toward
infinity and the solids viscosities tends toward a finite value as the solids vol-
ume fraction tends to zero. Hence, by constraining the mean free path, the
limit of the Hrenya and Sinclair (1997) shear viscosity expression correctly
tends to zero as the solids volume fraction approaches zero.  The Syamlal
et al. (1993) solids shear viscosity also tends to zero as the solids volume
fraction tends to zero. In this case, however, this solids shear viscosity limit
is reached because the kinetic contribution to the solids viscosity is neglected.

Table 3.2 presents the forms for the solids shear viscosity as presented in
the original papers as well as in an equivalent form so that all of the models
can be easily compared. Figure 3.1 shows a comparison of the constitutive
models for the solids shear viscosity as a function of the solid volume frac-
tion. All models yield the same solids shear viscosity at high solids volume
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Figure 3.1: A comparison of the solids shear viscosities from different kinetic
theory models. In this figure e = 0.9, €;nax = 0.65.

fractions. Syamlal et al. (1993) deviate from the others for solids volume
fractions less than 0.3. Hrenya and Sinclair (1997) show a rapid decrease in
solids shear viscosity at extremely dilute solids concentrations.
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Table 3.2: Solids shear viscosity according to Lun et al. (1984), Syamlal et al.
(1993), Gidaspow (1994), and Hrenya and Sinclair (1997). The symbols can

be found in the Nomenclature.

Lun et al. (1984)
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3.3.3 Conductivity of granular energy

Similar to the solids shear viscosity, the solids thermal conductivity, , con-
sists of a kinetic contribution and a collisional contribution. Gidaspow (1994)
only differs from Lun et al. (1984) in the dependency of the solids thermal
conductivity on the coefficient of restitution. Syamlal et al. (1993) neglect the
kinetic contribution to the thermal conductivity. Hrenya and Sinclair (1997)
follow Lun et al. (1984) but also here constrain the mean free path of the
particle by a dimension characteristic of the actual system. Hence, the limit
of their conductivity expression, as with the shear viscosity, correctly tends to
zero when approaching zero solids volume fraction. Syamlal et al. (1993) also
correctly predict zero conductivity at zero solids volume fraction by neglecting
the kinetic contribution.

Table 3.3 presents the equations for the solids thermal conductivity as given
in the original papers, as well as in an equivalent form so that all of the closure
models can be easily compared. Figure 3.2 shows a quantitative comparison
of the constitutive models for the solids thermal conductivity as a function of
the solids volume fraction. All models yield the same thermal conductivity at
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Figure 3.2: A comparison of the solids thermal conductivity from different
kinetic theory models. In this figure e = 0.9, and € mqox = 0.65.

high solids volume fraction. Syamlal et al. (1993) deviate from the others for
solids volume fraction less than 0.3. Hrenya and Sinclair (1997) show a rapid
decrease in thermal conductivity at extremely dilute solids concentration.




3.3 Closure relations 49

Table 3.3: Solids thermal conductivity according to Lun et al. (1984), Syamlal
et al. (1993), Gidaspow (1994), and Hrenya and Sinclair (1997). The symbols

can be found in the Nomenclature.
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3.3.4 Dissipation and generation of granular energy

Jenkins and Savage (1983) represent the dissipation of granular energy due to
inelastic particle-particle collisions as

4 |
vs = 3(1 fez)egpsg()@ (d— g—VNS) (3.23)

For small mean-field gradients associated with a slight particle inelasticity,
the term V - v is typically omitted, as in Lun et al. (1984):

2 €§Ps90 3/2

The rate of energy dissipation per unit volume resulting from the acting of
the fluctuating force exerted by the gas through the fluctuating velocity of the
particles is given by J¢ = B(v, - vi — v/ - v{). The correlation v/ - v{ is equal to
30. The second correlation v/, - v/ is neglected by Gidaspow (1994). However,
Louge et al. (1991) have proposed a closure for this correlation based on the
work of Koch (1990) which we apply here and

_ _ ﬁd(v_r”i)
Js =B (36 de.p /D (3.25)

Using the closure of Louge et al. (1991) for v/ - v, we have found that this

term is of the same order of magnitude as v/, - v.,. It should be noted, however,
that the correlation as proposed by Louge et al. (1991) does not tend to zero
at closest solids packing. Therefore, Sundaresan (1999) has proposed dividing
this correlation by the radial distribution function to correct the closure in this
limit.

3.3.5 Radial distribution function

The solid-phase stress is dependent on the radial distribution function at con-
tact. Lun et al. (1984) employed the Carnahan and Starling (1969) expression
for the radial distribution function. The Carnahan and Starling (1969) expres-
sion, however, does not tend toward the correct limit at closest solids pack-
ing. Because particles are in constant contact at the maximum solid volume
fraction, the radial distribution function at contact tends to infinity. There-
fore, alternate expressions to the Carnahan and Starling (1969) expression
have been proposed by Gidaspow (1994), Lun and Savage (1986), and Sin-
clair and )ackson (1989) which tend to the correct limit at closest packing.
These various forms of the radial distribution function are given in Table 3.4
and are plotted in Figure 3.3 as a function of solids volume fraction, along
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Figure 3.3: Different radial distribution functions compared to the computa-
tional data of Alder and Wainright (1960)

with the data from molecular simulations of Alder and Wainright (1960). The
expression of Gidaspow (1994) most closely coincides with the data over the
widest range of solids volume fractions. However the expression of Gidaspow
(1994) does not approach the correct limit of one as the solids volume fraction
approaches zero. In Figure 3.4, the effect of these different expressions for
the radial distribution functions on the solids shear viscosity is presented. A
difference of up to a factor of two in viscosity can result.

3.3.6 Frictional stress

At high solids volume fraction, sustained contacts between particles occur.
The resulting frictional stresses must be accounted for in the description of
the solid-phase stress. Zhang and Rauenzahn (1997) conclude that particle
collisions are no longer instantaneous at very high solids volume fractions,
as is assumed in kinetic theory. Several approaches have been presented in
the literature to model the frictional stress, mostly originated from geological
research groups. Typically, the frictional stress, 5+, is written in a Newtonian
form:

T =Pt (Vv +(VV)T) (3.26)




52 Comparison of CFD models for Dense Gas-Solid Flows

()

iy
(=]

iy
o
N

N
o—

—
[=}
]

Dimensionless solids viscosity (u p~* d™* ©7°5) [-]

107
R o gy Gidaspow (1994)
10 o g,Lun and Savage (1986) 1
v 9 Sinclair and Jackson (1989)
3 x @, Camahan and Starling (1969)
10°F 0 E
9
1 04 1 i 1 A L s
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Solids \}olume frai:tion -]

Figure 3.4: Solids shear viscosity from different radial distribution functions.
In this figure the solids shear viscosity follows Hrenya and Sinclair (1997);
e =0.9, R=0.01525m, and €, qx = 0.65.

The frictional stress is added to the stress predicted by kinetic theory for
€5 > €5 min’

Ws = Wkinetic T Hf (3.28)

Johnson and Jackson (1987) propose a semi-empirical equation for the normal
frictional stress, Py

(65 - €s,min)]1

Pf =Fr )p

(3.29)

€s,max — €s

where Fr, n, and p are empirical material constants, and € > €5 min, €s,min
being the solid volume fraction when frictional stresses become important.
Fr, n, and p, are material dependent constants. The frictional shear viscosity
is then related to the frictional normal stress by the linear law proposed by
Coulomb (1776)

i = Pesin g (3.30)

where ¢ is the angle of internal friction of the particle. Representative values
for the empirical constants employed in Equations 3.29 and 3.30 are given in
Table 3.5. Another approach, originally from Schaeffer (1987), was employed
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Table 3.4: Radial distribution function according to Carnahan and Starling

(1969), Lun and Savage (1986), Sinclair and Jackson (1989), and Gidaspow

(1994). The symbols can be found in the Nomenclature.
Carnahan and Starling (1969)

_ 1 . 3€s n €s°
T—es 2(1—e)” 2(1—¢5)
Lun and Savage (1986)

€ —z«ses,mux
go = (1 -— )
€s max

Sinclair and Jackson (1989)

111
€ 3
=11
90 [ (es,max) :l
191
()
€s,max

by Syamlal et al. (1993) to describe frictional stress in very dense gas-solid
systems:

Jdo

Gidaspow (1994)

G}

go =

Pr=Ales *es,min)n (331)

P; - sin
we = ¢ Sind (3.32)

2 2 2
T (2us  dvs v, du)? 1 (du, | dvs
€ a((a‘i%) () + (3 )+z(a‘1{f+ )

Values of A =10%%, n =10, €5, min = 0.59, and ¢ = 25° are typically employed.

The approaches of Johnson and Jackson (1987) and Syamlal et al. (1993) are
compared in Figure 3.5. It can be seen that resulting frictional normal stress
can differ by orders of magnitude.

3.3.7 Interphase transfer coefficient

Generally, form drag and skin drag are combined in one empirical parameter,
the interphase drag constant p, in the modeling of the momentum transfer
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Table 3.5: The values for the empirical parameters of Equations 3.29 and 3.30
as suggested by various researchers.

Fr(N/m”] [n| p [esmin ¢ ds [pm] [ ps [ke/m>] ] material reference
0.05 2|3 0.5 28° 150 2500 unknown | Ocone et al. (1993)
3.65-10732 040 - [25.0°| 1800 2980 glass Johnson
and Jackson (1987)
4.0-10732 (0|40 - 25.0° | 1000 1095 poly- Johnson
styrene | and Jackson (1987)
0.05 215 0.5 [28.5°| 1000 2900 glass | Johnson et al. (1990)
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Figure 3.5: A comparison of different expressions for the frictional normal
stress.

between the gas and solid phases. The drag coefficient § is typically obtained
experimentally from pressure drop measurements in fixed, fluidized, or set-
tling beds. Ergun (1952) performed measurements in fixed liquid-solid beds
at packed conditions to determine the pressure drop. Wen and Yu (1966) have
performed settling experiments of solid particles in a liquid over a wide range
of solids volume fractions and have correlated their data and that of others for
solids concentrations, 0.01 < e5 < 0.63. Syamlal et al. (1993) use the empirical
correlations of Richardson and Zaki (1954) and Garside and Al-Bibouni (1977)
to determine the terminal velocity in fluidized and settling beds expressed as
a function of the solids volume fraction and the particle Reynolds number.
From this terminal velocity, the drag force can be readily computed.

The drag model of Gidaspow (1994) follows Wen and Yu (1966) for solid vol-
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ume fractions lower than 0.2 and Ergun (1952) for solids volume fractions
larger than 0.2. The motivation for this hybrid drag description of Gidaspow
(1994) is unclear because the Wen and Yu (1966) expression incorporates ex-
perimental drag data for solids volume fractions larger than 0.2. Moreover,
a step-change in the interphase drag constant is obtained at the “crossover”
solids volume fraction of 0.2 which can possibly lead to difficulties in numerical
convergence. The magnitude of this discontinuity in p increases with increas-
ing particle Reynolds number. The drag coefficients are summarized in Table
3.6 and are compared quantitatively in Figure 3.6 for a range of solids volume
fractions at a fixed particle Reynolds number.
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Figure 3.6: A comparison of different expressions for the interphase drag co-
efficient as a function of solids volume fraction. In this figure Re, = 45. The
symbols can be found in the Notation.
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Table 3.6: Drag coefficient according to Wen and Yu (1966), Gidaspow (1994),
and Syamlal et al. (1993)

Wen and Yu (1966)

3 (1_€s)€spgivg‘vs|

= — 1— —-2.65
B 4CD ds ( 65)
Rowe (1961):
2 0.6871
) Rei—e [1 +0.35((1 — es)Rep) ] if (1 — e5)Rep < 1000
CD = P
044 if (1 — e5)Re, > 1000

dg Pg)vg — Vgl

Re, =
P o

Gidaspow (1994) applies the Ergun (1952) equation for higher volume frac-
tions.

150 CsFa 7 €sPqlVe — Vsl if eg > 0.2
f) = (] - es)d—s2 4 ds ) -
%CD (1— €s)€ng|vg — Vgl (1- es)—2,65 if e, 0.2

Syamlal et al. (1993)

3 es(1—¢
9( 5 S)pglvg__vsl
V. d,

2
Cp = (0.63 +4.8\/ &)
Re

Garside and Al-Dibouni (1977):

Dalla Valle (1948)

1
L / 2 _ 2
V,= 3 (a 0.06Re + 4/ (0.06Re)% +0.12Re(2b — a) + a )

a= (] o es)4.14

b [ 08(1—e)! ¥ ife > 015
Tl (1—e)?8  ife, <015
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3.4 Simulations

The impact on the predicted flow patterns of the differences in the governing
equations and constitutive models are compared for the test cases of a freely
bubbling fluidized bed, a slugging fluidized bed, and a single bubble injection
into a fluidized bed. The particles in a fluidized bed move due to the action of
the fluid through the drag force, and bubbles and complex solid mixing pat-
terns result. Typically, the average solids volume fraction in the bed is fairly
large, averaging about 40 percent, whereas in the the free-board of the flu-
idized bed there are almost no particles (e; ~ 107°).

The simulations in this work were carried out with the commercial CFD code
CFX 4.2 from AEA Technology, Harwell, UK, employing the Rhie-Chow (Rhie
and Chow, 1983) algorithm for discretization. For solving the difference equa-
tions, the higher-order total variation diminishing (TVD) scheme Superbee is
used. This TVD scheme incorporates a modification to the higher-order up-
wind scheme (second order). The time discretization is done with the sec-
ond order backward difference scheme. The solution of the pressure from
the momentum equations requires a pressure correction equation, correct-
ing the pressure and the velocities after each iteration; for this, the SIMPLE
(Patankar, 1980) algorithm is employed. The calculated pressure is used to
determine the density of the fluid phase; the simulations are performed al-
lowing for compressibility of the gas phase. The grid spacing was determined
by refining the grid until average properties changed by less than 4%. Due to
the deterministic chaotic nature of the system, the dynamic behavior always
changes with the grid. The simulations of the slugging fluidized bed and the
freely bubbling fluidized bed were carried out for 25 seconds of real time. 1t
was ohserved that after about five seconds of real time, the simulation has
reached a state in which average properties stay unchanged. Averaged proper-
ties, such as average bubble size and average bed expansion were determined
by averaging over the last 15 of seconds real time in each simulation. A bub-
ble is defined as a void in the solid phase with a solids volume fraction less
than 15%. The bubble diameter is defined as the diameter of a circle having
the same surface as the void in the solid phase; this is called the equivalent
bubble diameter.

3.4.1 Boundary conditions

All the simulations are carried out in a two-dimensional rectangular space in
which front and back wall effects are neglected. The left and right walls of
the fluidized bed are treated as no-slip velocity boundary conditions for the
fluid phase, and free-slip velocity boundary conditions are employed for the
particle phase. The boundary condition for the granular temperature follows
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Johnson and Jackson (1987),

n-(kVO) = P €5V 3O 7

1/3
€
6€s,max [1 - ( s ) :|
€s,max

where the left hand side represents the conduction of granular energy to the
wall, the first term on the right hand side represents the generation of gran-
ular energy due to particle slip at the wall, and the second term on the right
hand side represents dissipation of granular energy due to inelastic collisions.
Simulations we have done with an adiabatic boundary condition at the wall
(VO = 0) show very similar results.

30
(pllvslip|2—7(] _ewz) (333)

The boundary condition at the top the free-board (fluid phase outlet) is a
so-called pressure boundary. The pressure at this boundary is fixed to a ref-
erence value, 1.013-10° Pa. Neumann boundary conditions are applied to the
gas flow, requiring a fully-developed gas flow. For this, the free-board of the
fluidized bed needs to be of sufficient height; this is validated through the
simulations. In the freeboard, the solids volume fraction is very close to zero
and this can lead to unrealistic values for the particle velocity field and poor
convergence. For this reason, a solids volume fraction of 10~ is set at the top
of the free-board. This way the whole free-board is filled with a very small
number of particles, which gives more realistic results for the particle phase
velocity in the freeboard, but does not influence the behavior of the fluidized
bed itself.

The bottom of the fluidized bed is made impenetrable for the solid phase
by setting the solid-phase axial velocity to zero. For the freely bubbling flu-
idized bed and the slugging fluidized bed, Dirichlet boundary conditions are
employed at the bottom with a uniform gas inlet velocity. To break the sym-
metry in the case of the bubbling and slugging beds, initially a small jet of
gas is specified in the bottom left hand side of the geometry. In the case of
the bubble injection, a Dirichlet boundary condition is also employed at the
bottom of the fluidized bed. The gas inlet velocity is kept at the minimum flu-
idization velocity, except for a small orifice in the center of the bed, at which
a very large inlet velocity is specified. Finally, the solids-phase stress, as well
as the granular temperature, at the top of the fluidized bed are both set to
zero.

3.4.2 Initial conditions

Initially, the bottom part of the fluidized bed is filled with particles at rest
with a uniform solids volume fraction. The gas flow in the bed is set to its
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Table 3.7: System properties and computational parameters.

Parameter | Description Freely bubbling | Slugging Bubble injection
fluidized bed | fluidized bed | into fluidized bed
(Kuipers, 1990)

ps [kg/m>] | solids density 2640 2640 2660

pg [kg/m?] | gas density 1.28 1.28 1.28

Hg [Pas] gas viscosity 1.7-107° 1.7-1073 1.7-10"°>

ds [pm] particle diameter 480 480 500

e[-] coefficient of restitution 0.9 0.9 0.9

€max [] max. solids volume fraction 0.65 0.65 0.65

Um¢ [m/s] | min. fluidization velocity 0.21 0.21 0.25

Dt [m] inner column diameter 0.5 0.1 0.57

H¢ [m] column height 1.3 1.3 0.75

Hpe [m] height at minimum 0.97 0.97 0.5
fluidization

€sms -] solids volume fraction 0.42 0.42 0.402
at minimum fluidization

Ax [m] x mesh spacing 7.14.1073 6.67-1073 7.50-10 ?

Ay [m] y mesh spacing 7.56-1073 7.43.1073 1.25-1072

minimum fluidization velocity. In the freeboard a solids volume fraction of
107° is set, as explained above. The granular temperature is initially set to
10770 m? s—2.

3.5 Test cases

With increasing gas velocity above the minimum fluidization velocity, U,
bubbles are formed as a result of the inherent instability of the gas-solid sys-
tem. The behavior of the bubbles significantly affects the flow phenomena in
the fluidized bed, i.e. solid mixing, entrainment, and heat and mass transfer.
The test cases in this comparative study are used to investigate the effect of
different closure models and governing equations on the bubble behavior and
bed expansion. Simulation results of each test case are compared to generally
accepted experimental data and (semi) empirical models. The system prop-
erties and computational parameters for each of the test cases are given in
Table 3.7; the computational meshes are shown in Figure 3.7. The test cases
are discussed in greater detail in the following sections.

3.5.1 Freely bubbling fluidized beds

In the freely fluidized bed case, the gas flow is distributed uniformly across
the inlet of the system. Small bubbles form at the bottom of the fluidized
bed which rise, coalesce, and erupt as large bubbles at the fluidized bed sur-
face. In order to evaluate the CFD model predictions, we use the Darton et
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Figure 3.7: The computational grid of the simulated fluidized beds with the
gas inlet boundary condition. (a) freely bubbling fluidized bed, (b) slugging
fluidized bed, and (c) bubble injection into a fluidized bed. See Table 3.7 for

the exact mesh spacing.
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al. (1977) bubble model for bubble growth in freely bubbling fluidized beds.
This model is based upon preferred paths of bubbles where the distance trav-
elled by two neighbouring bubbles before coalescence is proportional to their
lateral separation. Darton et al. (1977) have validated their model with mea-
surements of many researchers. Their proposed bubble growth equation for
Geldart type B particles is

Dp = 0.54(U — Up¢)®*(h +44/A0)%8 g7 02 (3.34)

where Dy, is the bubble diameter, h is the height of the bubble above the inlet
of the fluidized bed, U is the actual superficial gas inlet velocity, and A, is the
'catchment area’ which characterizes the distributor. For a porous plate gas
distributor Darton et al. (1977) propose 4y/Ay = 0.03m.

Werther and Molerus (1973) have developed a small capacitance probe and
the statistical theory to measure the bubble diameter and the bubble rise ve-
locity in fluidized beds. This capacitance probe can be placed in the fluidized
bed at different heights and radial positions in the bed. The bubble rise veloc-
ity is determined by placing two vertically spaced probes and correlating the
obtained data. The capacitance probe measures the bubbles passing it, i.e.
the bubble is pierced by the capacitance probe. The duration of this piercing
is dependent upon the size of the bubble, the rise velocity of the bubble, and
the vertical position of the bubble relative to the probe.

Hilligardt and Werther (1986) have done many measurements of bubble size
and bubble velocity under various conditions using the probe developed by
Werther and Molerus (1973) and have correlated their data in the form of the
Davidson and Harrison (1963) bubble model. Hilligardt and Werther propose
a variant of the Davidson and Harrison (1963) model for predicting the bubble
rise velocity as a function of the bubble diameter,

ub:ﬂ)(U*Umf)Jr(PVv gdb (335)

where ¢ is a constant. Pyle and Harrison (1967) have determined that ¢ =
0.48 for a two dimensional geometry, whereas in three dimensions the Davies-
Taylor relationship gives ¢ = 0.71. The symbols 1\ and v, added by Hilligardt
and Werther (1986), are empirical coefficients based on their data, which are
dependent upon the type of particles and the width and height of the fluidized
bed. For the particles and geometry employed in this study, Hilligardt and
Werther (1986) propose 1 ~ 0.3 and v ~ 0.8. Proposals of values for ¥ and
v under various fluidization conditions, determined by simulations, are given
by Van Wachem et al. (1998).

Hilligardt and Werther (1986) also measured bed expansion under various
conditions. Predictions of the bed expansion from the CFD simulations are
compared to these data.
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3.5.2 Slugging fluidized beds

In the case of the slugging fluidized beds, coalescing bubbles eventually reach
a diameter of 70% or more of the column diameter, resulting from either a
large inlet gas velocity or a narrow bed. The operating conditions employed in
the simulations correspond to the slugging conditions reported by Kehoe and
Davidson (1971), who present a detailed study of slug flow in fluidized beds.
The experiments of Kehoe and Davidson (1971) were performed in slugging
fluidized beds of 2.5, 5, and 10 cm diameter columns using Geldart B particles
from 50 to 300 um diameter and with superficial gas inlet velocities up to 0.5
m/s. X-ray photography was used to determine the rise velocity of slugs and
to determine the bed expansion. Kehoe and Davidson (1971) use their data
to validate two different equations for the slug rise velocity, both based on
two-phase theory,

Uglyg = U~ Ui + %/gDT (3.36)
iglug = U~ Unmi + %/ngT (3.37)

Equation 3.36 is the exact two-phase theory solution. Equation 3.37 is a
modification of Equation 3.36, based on the following observations:

1. For fine particles (< 70pum) the slugs travel symmetrically up in the flu-
idized bed, so the slug rise velocity is increased by coalescence.

2. For coarser particles (> 70um) the slugs tend to move up the walls, which
increases their velocity.

According to Kehoe and Davidson (1971), Equations 3.36 and 3.37 give upper
and lower bounds on the slug rise velocity. Furthermore, Kehoe and Davidson
(1971) measured the maximum bed expansion (H,qy) during slug flow. They
validated their theoretical analysis which led to the result that

Hmox - Hmf _ u-— umf

3.38
Hr Ubub ( )

where upyp is the rise velocity of a slug without influence of the gas phase,

Upyh = %/g[)T or (3.39)
ubub = —(g—\/ngT (340)

corresponding to Equations 3.36 and 3.37. Hence, they also propose upper
and lower bounds on the maximum bed expansion.
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3.5.3 Bubble injection in fluidized beds

Single jets entering a minimum fluidized bed through a narrow single orifice
provide details of bubble formation and growth. Such experiments were car-
ried out by Kuipers (1990). Kuipers (1990) reported the shape of the injected
bubble as well as the quantitative size and growth of the bubble with time us-
ing high-speed photography. The superficial gas inlet velocity from the orifice
was U = 10m/s, and the orifice was d = 1.5 10~?m wide.

3.6 Results and Discussion

Predictions based on simulations of these three test cases are used to compare
the different governing and closure models. For this comparative study, only
one particular closure model is varied at a time to determine the sensitivity
of the model predictions to that particular closure. No coupling effects were
investigated. The default governing equations are those given by Jackson
(1997), and the default closure models are the solid phase stress of Hrenya
and Sinclair (1997), the radial distribution function of Lun and Savage (1986),
the frictional model of Johnson and Jackson (1987) with empirical values given
by Johnson et al. (1990), the complete granular energy balance neglecting J,
and the drag coefficient model of Wen and Yu (1966).

3.6.1 Governing equations

Simulations of the slugging bed case were performed with both the Ishii (1975)
and the Jackson (1997) governing equations. Figure 3.8 shows the predicted
maximum bed expansion with increasing gas velocity during the slug flow and
the two correlations of Kehoe and Davidson (1971). Figure 3.9 shows the
increasing slug rise velocity with increasing gas velocity. Clearly, the exact
formulation of the governing equation does not have any significant influence
on the prediction of these macroscopic engineering quantities, and both CFD
models do a good job at predicting these quantities. Microscopically, how-
ever, there does seem to be a difference in the predictions as indicated in
Figure 3.10. The flow of the gas phase in areas of large solids volume fraction
gradient is slightly different, leading to a different solids distribution. Specifi-
cally, Figure 3.10 shows that the Jackson (1997) governing equations produce
a more round-nosed bubble shape than the Ishii (1975) equations, because
the path of the gas-phase is different.

3.6.2 Solids stress models

The exact solid-phase stress description does not influence either the freely
bubbling or the slugging fluidized bed predictions, as is expected from Fig-
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Figure 3.8: Predicted maximum expansion of a slugging fluidized bed with in-
creasing gas velocity with the governing equations of Jackson (1997) and Ishii
(1975), and the additional term J, in the granular energy equation (Equation
3.25). The predictions are compared with the two-phase theory as proposed
and validated by Kehoe and Davidson (1971) (Equation 3.38).

ure 3.1; this figure shows that between 0.4 and 0.6 solids volume fraction,
which is dominant in the cases studied, all solids-phase stress predictions are
equal. Moreover, the influence of the radial distribution upon the stress does
not give rise to any variation in the predictions of the engineering quantities
associated with these simulations; the variation of the solids phase stress as
a function of radial distribution function, shown in Figure 3.4, is small be-
tween 0.4 and 0.6 solids volume fraction, as long as the Carnahan and Star-
ling (1969) equation is not employed. From the magnitude of the terms on
the solid-phase momentum balance during simulations of fluidized beds, it
can be concluded that gravity and drag are the dominating terms and that
solids-phase stress predicted by kinetic theory plays a minor role.

3.6.3 Drag models

Coordinating with results of the comparison of the drag models shown in Fig-
ure 3.6, the Syamlal et al. (1993) dragleads to a lower predicted pressure drop
and lower predicted bed expansion than the other two drag models. Figure
3.11 shows the average simulated bed expansion employing different drag
models in the freely bubbling fluidized bed case, compared to measurements
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Figure 3.9: Predicted slug rise velocity with increasing gas velocity with the
governing equations of Jackson (1997) and Ishii (1975), and the additional
term J in the granular energy equation (Equation 3.25). The predictions are
compared with the two-phase theory as proposed and validated by Kehoe
and Davidson (1971) (Equations 3.36 and 3.37). The constant ¢ = 0.48.

of Hilligardt and Werther (1986). The drag model of Syamlal et al. (1993)
underpredicts the bed expansion compared to the findings of Hilligardt and
Werther (1986), and therefore also underpredicts the gas hold-up in the flu-
idized bed.

Figure 3.12 shows the simulated bubble size as a function of the bed height
when employing different drag models, compared with the Darton et al. (1977)
equation. Although the spread in the simulations is fairly large, all of the in-
vestigated drag models are in agreement with the equation put forth by Dar-
ton et al. (1977). Figure 3.13 shows the predicted bubble rise velocity em-
ploying different drag models in a freely bubbling fluidized bed, compared to
the empirical correlation of Hilligardt and Werther (1986). All of the investi-
gated drag models are in fairly good agreement with the empirical correlation.

Because the bubble sizes predicted by the different drag models are all close
and the predicted bed expansion differs between the models, variations in the
predicted solids volume fraction of the dense phase exist between the mod-
els, with the Syamlal et al. (1993) drag model predicting the highest solids
volume fraction in the dense phase.
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(b)

Figure 3.10: A rising bubble in a slugging fluidized bed predicted by (a) the
governing equations of Jackson (1997) and (b) by the governing equations of
Ishii (1975) at the same real time. Increasing grey tones represent increasing
solid volume fraction. The lines are contours of equal solids volume fraction.

Figure 3.14 shows the quantitative bubble size prediction for a single jet en-
tering a minimum fluidized bed based on the drag models of Wen and Yu
(1966) and Syamlal et al. (1993) which are compared to the experimental data
of Kuipers (1990). Moreover, in Figure 3.15 we show the resulting qualita-
tive predictions of the bubble growth and shape and also compare these with
photographs of Kuipers (1990). The Wen and Yu (1966) drag model yields
better agreement with Kuipers' (1990) findings for both the bubble shape and
size than the Syamlal et al. (1993) drag model. The Syamlal et al. (1993) drag
model underpredicts the bubble size and produces a bubble that is more circu-
lar in shape than in the experiments of Kuipers (1990) and in the simulations
with the Wen and Yu (1966) drag model.

3.6.4 Frictional stress

Frictional stresses can increase the total solid-phase stress by orders of mag-
nitude and is an important contributing force in dense gas-solid modelling.
The simulation of the single jet entering a fluidized bed reveals that the size
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Figure 3.11: Predicted bed expansion as a function of gas velocity based on
different drag models and with and without frictional stress. The predictions
are compared to the experimental data of Hilligardt and Werther (1986). The
spread in the simulation data with the drag model of Gidaspow (1994) is in-
dicated by the lines.

of the bubble is not significantly influenced by the frictional stress, as shown
in Figure 3.14. Figure 3.11 shows that the predicted bed expansion in the
freely bubbling fluidized bed, however, is significantly less without frictional
stress. Moreover, the number of iterations for obtaining a converged solu-
tion is almost doubled when frictional stress is omitted. Without frictional
stress, there is less air in the dense phase, the maximum achieved solids pack-
ing is higher (maximum achieved solids volume fraction increased from 0.630
to 0.649), and the bed expansion is less. When frictional stress is neglected
in the simulations, convergence difficulty arises because the maximum solids
volume fraction specified in the radial distribution function is approached and
the derivative of the radial distribution function near maximum solids volume
fraction is extremely steep. Moreover, the solid-phase stress in the dense re-
gions is significantly decreased because the predicted granular temperature in
the dense regions of flow is very low (© ~ 10->m?2s~2) due to the magnitude
of the dissipation term. In order to still obtain convergence, we have written
the radial distribution function as a Taylor series approximation at very high
solids volume fraction. Adding frictional stress in the simulations prevents
this problem because then the solids volume fraction does not approach the
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Figure 3.12: Predicted bubble size as a function of bed height at U = 0.54m/s
based on different drag models and compared to the correlation of Darton et
al. (1977).

maximum packing value.

3.6.5 Granular energy balance

The influence of the additional generation and dissipation term J in the gran-
ular energy balance is determined in the case of the slugging fluidized bed.
Figure 3.8 shows the predictions of the maximum bed expansion as a func-
tion of increasing gas velocity for simulations with and without this additional
term. Figure 3.9 also shows the predicted rise velocity of the slugs with and
without this additional term. Although this additional term J, results in as
much as 20% higher granular temperature values (granular temperature in-
creased from 0.138 m?s~2 to 0.165 m?s 2), this does not seem to influence
the predicted bed expansion or the slug rise velocity.

Simulations of slugging fluidized beds were also performed using the sim-
plified algebraic granular energy equation, Equation 3.21. There were no
differences in predicted bed expansion, bubble size, or bubble rise velocity
due to this simplification versus using the full granular energy balance. This
simplified equation does give rise to deviations in the granular temperature
as much as 10% (granular temperature decreased from 0.138 m?s 2 to 0.0127
m2s—2) from full granular energy balance predictions. The computational ef-
fort for solving the complete granular energy equation is about 20% higher
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Figure 3.13: Predicted bubble rise velocity as a function of the bubble di-
ameter at U = 0.54m/s based on different drag models and compared to the
experimental correlation of Hilligardt and Werther (1986).

than calculating the granular temperature from the algebraic equation. More
simulation results on the freely bubbling fluidized bed case with the algebraic
equation are given in Van Wachem et al. (1998) and Van Wachem et al. (1999)

3.7 Conclusions

In this paper we have compared different formulations that are employed in
CFD models for gas-solid flow in the Eulerian/Eulerian framework. We dis-
cussed the basis for the formulation of the two different sets of governing
equations common to the two-fluid literature with respect to the nature of
the dispersed phase. It is shown in detail that the modeling of gas-solid flows
requires different governing equations than the modeling of gas-liquid flows.
We have also compared various closure models both quantitatively and qual-
itatively. For example, we have shown how the hybrid drag model proposed
by Gidaspow (1994) produces a discontinuity in the drag coefficient, how an
order of magnitude difference in the normal stress is predicted by the various
frictional stress models, and how the Syamlal et al. (1993) model predicts a
lower bed expansion than with the other drag models.

Finally, we have studied the impact of the two governing equations and the
various closure models on simulation predictions in three fluidized bed test
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Figure 3.14: Bubble diameter as a function of time for a bubble formed at
a single jet of U = 10m/s. A comparison is made between the experiments
of Kuipers (1990), model simulations using the drag coefficient of Wen and
Yu (1966) with and without frictional stress, and model simulations using the
interphase drag coefficient of Syamlal et al. (1993).

cases. It is shown that the resulting predictions based on the two sets of gov-
erning equations are similar on an engineering scale but are different in terms
of microscopic features associated with individual bubbles or localized solids
distributions. It is also shown that the model predictions are not sensitive
to the use of different solids stress models or radial distribution functions.
In dense-phase gas-solid flow, the different approaches in the kinetic the-
ory modeling predict similar values for the solid-phase properties. From an
analysis of the individual terms on the momentum balance of the solid-phase
momentum balance during the simulations, it can be concluded that grav-
ity and drag are the most dominating terms; this is why the two different
sets of governing equations predict similar results, and why the exact solid-
phase stress prediction is of minor importance. At very high volume fraction,
frictional stress can influence the hydrodynamic prediction due to its large
magnitude.

Simplifying the granular energy balance by retaining only the generation and
dissipation terms is a reasonable assumption in the case of fluidized bed mod-
eling and reduces the computational effort by about 20%. Finally, the manner
in which the drag force is modeled has a significant impact on the simulation
results, influencing the predicted bed expansion and the solids concentration
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in the dense-phase regions of the bed.
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empirical constant

catchment area of distributor
drag coefficient

particle diameter, m

strain rate tensor, s

diameter, m

inner column diameter, m

coefficient of restitution

fluid phase point property

empirical material constant, N m 2
weighting function

gravitational constant, ms 2

radial distribution function

height of bubble in fluidized bed, m
minimum fluidization bed height, m
column height, m

fluctuating velocity/force correlation, kg m—3s~!
interfacial area per unit volume, m
interphase momentum exchange
empirical constant in frictional stress
number density

normal vector, m

empirical constant in frictional stress
pressure, N m—2

point in space

characteristic length scale, m
Reynolds number

surface, m?

time, s

inlet (superficial) gas velocity, ms~’
minimum fluidization velocity, ms~!
velocity vector, ms™!

volume, m3

ratio of terminal velocity of a group of particles to that
of an isolated particle

position vector

phase indicator

x mesh spacing, m
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Ay y mesh spacing, m

Greek

B interphase drag constant, kgm™3s~!
€ volume fraction

n =J(1+e)

o) angle of internal friction

© constant

o' specularity coefficient

v dissipation of granular energy, kgm=3s~'
K solids thermal conductivity, kgm 's '
A bulk viscosity, Pas

Amtp mean free path, m

n shear viscosity, Pas

v empirical coefficient

P empirical coefficient

P density, kgm—3

[ total stress tensor, N m—2

T viscous stress tensor, N m 2

e granular temperature, m?s 2
Subscripts

b bubble

bub single bubble

dil dilute

f frictional

g gas phase

i interface

k either phase

mf minimum fluidization

min minimum; Kick-in value

max maximum

P particle

s solids phase

slip slip

slug slug

w wall
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Figure 3.15: Experimental and simulated bubble shapes associated with a
single jet at U = 10m/s and at t = 0.10s and t = 0.20s. Comparison is made
between the (a) experiment of Kuipers (1990), (b) model simulation using
the interphase drag constant of Wen and Yu (1966), and (c) model simulation
using the interphase drag coefficient of Syamlal et al. (1993).
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Chapter 4

Eulerian Simulations of
Gas-Solid Fluidized Beds

In this chapter various simulations are done of freely bubbling fluidized beds.
As seen in the previous chapter, the employed equations in this chapter are
not always the optimum ones in physical sense. Because the equations in this
chapter are used by many researchers and are employed by most commercial
CFD codes, it is very interesting to elucidate the behavior of the simulations
on an engineering scale.

Part A of this chapter researches steady state properties of fluidized beds,
as the average bubble size and the average bubble rise velocity. Also, values
are given predicting the bubble size and rise velocity of the simulated fluidized
beds.

Part B adresses the dynamic behavior of the fluidized bed by looking at pres-
sure and voidage waves, and the unpredictability of the fluidized bed behav-
ior.
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Part A:

Steady State Results from Simulations

This part has been published as:

B.G.M. van Wachem, ]J.C. Schouten, R. Krishna, and C.M. van den Bleek,
(1998), Eulerian Simulations of Bubbling Behaviour in Gas-Solid Fluidized
Beds, Computers and Chemical Engineering, 22, pp $299-S307

Abstract

In literature little attempt has been made to verify experimentally Eulerian-
Eulerian gas-solid model simulations of bubbling fluidized beds with existing
correlations for bubble size or bubble velocity. In the present study, a CFD
model for a free bubbling fluidized bed was implemented in the commercial
code CFX of AEA Technology. This CFD model is based on a two fluid model
including the kinetic theory of granular flow. Simulations of the bubble be-
havior in fluidized beds at different superficial gas velocities and at different
column diameters are compared to the Darton et al. (1977) equation for the
bubble diameter versus the height in the column and to the Hilligardt and
Werther (1986) equation, corrected for the two dimensional geometry using
the bubble rise velocity correlation of Pyle and Harrison (1967). It is shown
that the predicted bubble sizes are in agreement with the Darton et al. (1977)
bubble size equation. Comparison of the predicted bubble velocity with the
Hilligardt and Werther (1986) equation shows a deviation for the velocity
of smaller bubbles. To explain this, the predicted bubbles are divided into
two bubble classes : bubbles that have either coalesced, broken-up, or have
touched the wall, and bubbles without these occurrences. The bubbles of this
second class are in agreement with the Hilligardt and Werther (1986) equa-
tion. Fit parameters describing the bubble behavior of Hilligardt and Werther
(1986) are compared to the fit parameters obtained in this work. It is shown
that coalescence, break-up, and direct wall interactions are very important
effects, often dominating the dynamic bubble behavior, but these effects are
not accounted for by the Hilligardt and Werther (1986) equation.

4.A.1 Introduction

Fluidized multiphase reactors are of increasing importance in nowadays chem-
ical industries, even though their hydrodynamic behavior is complex and not
yet fully understood. Especially the scale-up from laboratory towards indus-
trial equipment is a problem. For example, equations describing the bubble
behavior in gas-solid fluidized beds are (semi) empirical and often determined




4 Part A: Steady State Results from Simulations 77

under laboratory conditions. For that reason there is little unifying theory de-
scribing the bubble behavior in fluidized beds.

Computational fluid dynamics (CFD) is becoming more and more an engi-
neering tool to predict flows in various types of apparatus on industrial scale.
Although the tools for applying single phase flow CFD are widely available,
application of multiphase CFD is however still complicated from both a phys-
ical and a numerical point of view. Moreover, experimental validation of
multiphase CFD models is still in its infancy because simulations are time
consuming and reliable predictions of average flows in large scale equipment
are therefore not readily obtained.

Almost all the work on the simulation of gas-solid fluidized beds is limited to
a qualitative (visual) comparison of simulated bubble shapes or bubble sizes
with pictures of bubbles obtained from single orifice experiments of bubble
formation and bubble growth (e.g., Kuipers et al., 1991). Obvious reasons for
this are the already mentioned time consuming character of the simulations
as well as the lack of reliable measurements for validating the calculated pre-
dictions. Moreover the research efforts of most groups working in this field
are aimed at development of still more detailed CFD models for two phase
flow, while little attention is paid to the evaluation of the simulation results
from an engineering point of view. This is strange, because at the one hand,
nowadays the computational power of modern computers is increasing con-
siderably, enabling the simulation of many bubbles in relatively large scale
equipment; at the other hand, in the classical fluidization literature an abun-
dance of data is available in the many (semi) empirical correlations that relate
bubble sizes and rise velocities in single and multiple bubble beds to fluidiza-
tion conditions.

Recently for Geldart group A powders, Ferschneider and Mége (1996) have
used a Eulerian CFD model for the simulation of free bubbling fluidized beds,
for one fluidization condition, showing the bubble sizes and bed expansion.
They concluded that although the model predicts the bubble sizes through-
out the bed correctly for one specific fluidization condition, the model is not
suitable to predict the bed expansion of this type of particles.

The purpose of the work presented in this paper is to quantitatively com-
pare the Eulerian-Eulerian simulation of bubble sizes and rise velocities in
fluidized beds with Geldart group B particles, at different fluidization condi-
tions, with predictions by generally accepted and applied equations that can
be found throughout the literature. This will provide insight into the validity
of this type of CFD codes used in the simulations of free bubbling fluidized
beds. If these codes appear to be applicable, they can be used to generate
engineering correlations to be used in the design of bubbling fluidized bed
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reactors.

4.A.2 Gas-solid multiphase model

In spite of the increasing computational power, the number of particles in
gas-solid flow in large scale equipment is still much too large to handle each
particle separately. Simulating each particle separately is called a Lagrangian
method, which can be used to study microscopic properties of fluidized beds
(Tsuji et al., 1993). The CFD model used in this work, however, is based on
a two fluid model (TFM) extended with the kinetic theory of granular flow as
derived from the kinetic theory of gases (Chapman and Cowling, 1970). In a
TFM both phases are considered to be continuous and fully interpenetrating.
The TFM has first been proposed by Anderson and Jackson (1967) and Pritch-
ett et al. (1978). These firstly proposed models have zero gas and solids vis-
cosities. Physical behavior dominated by the drag between the solids phase
and the gas phase, like the formation of bubbles at a single orifice, is success-
fully predicted by these models. To overcome the deficiency of these inviscid
models, for instance not being able to describe the forces on tubes, a solids
viscosity was added to the model by Jackson (1985). Unfortunately realistic
physical values for this solids viscosity as well as for the solids stresses were
not known.

Jenkins and Savage (1983), Lun et al. (1984), and Ding and Gidaspow (1990)
described the solids phase as a non-interstitial fluid. This approach is based
on the kinetic theory of dense gases, as presented by Chapman and Cowling
(1970). In this approach the usual thermodynamic temperature is replaced
by the granular flow temperature. The solids viscosity and stress are a func-
tion of this granular temperature, which varies with time and position in the
fluidized bed.

Continuity and momentum equations

Different physical TFM models exist in literature, and have been described
and compared to each other by Boemer et al. (1995). The most promising set
of equations in the sense of fast numerical convergence and accurate physical
results is used in this work.

The well-known continuity equation, or mass balance for phase i (gas or solid)
reads :

0
a(ﬁipi)JrV'(ﬂptVi) =0 (4.1)

€gt+es=1 (4.2)
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where € is the volume fraction of each phase, v the velocity, and p the density.
Mass exchange between the phases, e.g. due to reaction or combustion, is
not considered.

The momentum balance for the gas phase is given by the Navier-Stokes equa-
tion, modified to include an interphase momentum transfer term :

0 =
a(egpgvg) +V - (egPgVgVg) =V - Tg +€gpg8+
—¢gVP — B(vg — V) (4.3)

where T is the viscous stress tensor, g is the gravity acceleration, P is the ther-
modynamic pressure, and f is the interphase momentum transfer coefficient.
The solids phase momentum balance is given by :

0 _
a(espsvs) + V- (espsVsVs) =V - T5 + €5ps8 +
—e VP — VP 4 B(vy — V) (4.4)

where P is the solids pressure obtained from the kinetic theory of granular
flow, as discussed below. Both the shear viscosity and the bulk viscosity are
used in the viscous stress tensor, which is discussed by Bird et al. (1960).

Kinetic theory of granular flow

Equivalent to the thermodynamic temperature for gases, the granular tem-
perature can be introduced as a measure for the energy of the fluctuating
velocity of the particles. The granular temperature is defined as

Qs = %v’z (4.5)

where ©; is the granular temperature, and v’ is the solids fluctuating velocity.
The equation of conservation of the solids fluctuating energy can be found in
Ding and Gidaspow (1990) :

310
z l:a(esps@s)‘f'v'(esps@s)vs -

(-9PI+7,):VV4V (ko VO, ) — o + o (4.6)

where kg is the diffusion coefficient, ye is the dissipation of fluctuating en-
ergy, and ®g is the exchange of fluctuating energy between the phases.

The dissipation of fluctuating energy is described by Jenkins and Savage (1983):

4
Yo = 3(1—e?)elpsgoOs (d—\/%—v-vs) (4.7)
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where gy is the radial distribution function, which is discussed below, e is the
coefficient of restitution of colliding particles, and d; is the particle diameter.

The solids pressure represents the solids phase normal forces due to particle-
particle interactions. Its description based on the kinetic theory of granular
flow was developed by Jenkins and Savage (1983) and Lun et al. (1984). In
this approach both the kinetic and the collisional influences are taken into
account. The kinetic part describes the influence of particle translations,
whereas the collisional term accounts for the momentum transfer by direct
collisions. The solids pressure of Lun et al. (1984) is used in this work :

P: = €5PsOs(1 4 2goes (1 +€)) (48)

The bulk viscosity is a measure for the resistance of a fluid against compres-
sion. It is obvious that the importance of the bulk viscosity depends strongly
on the velocity gradients. In a fluidized bed, the bulk viscosity and the shear
viscosity are in the same order of magnitude, and thus the bulk viscosity
should not be neglected, as is done in simulating Newtonian fluids. The equa-
tion of Lun et al. (1984) is used in this work :

4 [ O
As = gespsdsgo(] +e) T (4.9

where A; is the bulk viscosity of the solids phase.

Whereas pressure and bulk viscosity describe normal forces, the shear viscos-
ity accounts for the tangential forces. It was shown by Lun et al. (1984) that
it is possible to combine different inter-particle forces and to use a momen-
tum balance similar to that of a true continuous fluid. Similar to the solids
pressure, a solids phase viscosity can be derived from the kinetic theory. The
shear viscosity is built up out of two terms : one term for the dilute region
and one term for the dense region. In literature different expressions for the
solids shear viscosity can be found. In this work the approach of Gidaspow
et al. (1982) is used, because this approach is validated by comparison with
measured data :

4
Ms = z€spsdsgoll +e)y/— +
Zﬁp d.v/©O 4 2
N | [ 10
+ e [1 + 59063(1 + e)} (4.10)

where ; is the shear viscosity of the solids phase.

In the extreme dense regions of the bed (e ~ €, max), the particle stresses are
dominated by inter-particle friction rather than by collisions and fluctuating
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motion. The two-dimensional stress tensor for a granular material which is
about to yield is proposed by Sokolovski (1965) and Jackson (1983) :

Py -sind
- - -
1 qus _ dv vy Quy
es\/@((;c ay) +<ay) +(61;))

ou, | ov. )’
oy ox

(4.11)
_I_

PN

where ¢ is the angle of internal friction, u and v are the velocity components,
and x and y are the Cartesian directions of u and v.

The radial distribution function used in the equations above is the equilib-
rium radial distribution at particle contact derived from statistical mechanics.

It can be seen as a measure for the probability of inter-particle contact. The
equation of Ding and Gidaspow (1990) is used in this work :

)T

9o =
where €5 mwax is the maximum solids packing, usually between 0.6 and 0.7.

U] W

Instead of solving the complete balance of the solids fluctuating energy, equa-
tion (4.6), an algebraic expression was proposed by Syamlal et al. (1993) .
This approach assumes that the granular energy is dissipated locally, neglect-
ing the convection and diffusion, and retaining only the generation and the
dissipation terms, resulting to :

0= (—P;T +i) LYV — Yo (4.13)

This approach is only valid under the assumption that the volume fraction of
the solids phase stays high, and the velocity of the solids phase stays relatively
low. In this regime most granular energy is dissipated locally, and little is left
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to flow away. Equation (4.13) can then be rewritten into :

0 =

(-(Kles +ps) tr (ﬁs) +

4-\/(K1csS + ps)? tr2 (Ds) +4Kseq-

2K tr (ﬁj) +K, tr2 (ﬁs)-
] 2€SK4 ]

(4.14)

where ﬁs is the solids strain rate tensor, and with the abbreviations :

Ki =2(1+¢€)psgo

Ky = fﬁdsps“ +e)esgo — %K3
ds s

K3 = £ (34(3%

2
[T+ 20+ e)(3e — Nesgo] + 5% 00(1 +¢))

_ 1200—e’)psgo
Ks = d. v/

When using this algebraic equation in stead of solving the balance for the
granular temperature, much faster convergence is obtained during simula-
tions. It has been shown by Boemer et al. (1995) that using this approach
hardly affects the granular temperature in the bubbling regime.

Interphase momentum exchange

In this work the interphase drag function of Syamlal et al. (1993) is used. This
drag function is based upon Richardson and Zaki (1954), Dalla Valle (1948),
and Garside and Al-Dibouni(1977) :

3 €5€
ﬁ:ZCD:/Z—g(fg'lvg_vd (4“15)

r
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with

2
Cp = (0.63 +4.8 \%)

€
o[ 08ey? ifeg 2015
T er% ife, <015
Re= dspg"vg Vs'
Hy

where Cp, is the drag coefficient, V. is the ratio of terminal velocity of a group
of particles to that of an isolated particle, Re is the particle Reynolds number,
and 4 is the gas viscosity.

This approach is only valid if the distribution of particles on the size of the grid
cells can be assumed homogeneous. The size of the grid cells in multiphase
simulations is in the order of one square centimetre. Especially in systems
with very low solids concentration, like for instance circulating fluidized beds,
the number of particles in a grid cell is largely fluctuating compared to the
total number of particles, and this approach can give incorrect results.

4.A.3 Simulations

Simulation code

The differential equations (1), (3) and (4) mentioned in the previous section
all express a conservation principle and are solved on a unit-volume basis.
Thus the conservations need to yield over all possible finite volumes cover-
ing the whole problem space. Solving differential equations this way is called
finite volumes. The differential equations express the conservation over an
infinitesimal control volume and need to be discretized over the used finite
volumes. This mathematical process is described by Patankar (1980).

The simulations were carried out with the commercial CFD code CFX4.1c
from AEA Technology, Harwell, UK. This package allows free implementa-
tion of extra equations, boundary conditions, and differencing schemes. The
granular kinetic theory and the granular equations described in the previous
section were implemented into this code. The discretization used by CFX is
the so called Rhie-Chow (Rhie and Chow, 1983) algorithm. This algorithm
can be used with a non staggered grid : all the discretized variables are stored
at the same boundary points.
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For solving the difference equations obtained from the differential equations,
the higher order TVD scheme min-mod is used. This TVD scheme incorpo-
rates a modification to the higher-order upwind scheme. Sokolichin et al.
(1997) have shown that solutions obtained with the TVD scheme result in less
numerical diffusion than lower order schemes. Less numerical diffusion leads
to a sharper interface between the gas and the solid boundary (e.g. at bub-
bles or at the freeboard). The solution of the pressure from the momentum
equations requires a pressure correction equation, correcting the pressure and
the velocities after each iteration of the discretized momentum equations. In
this work the SIMPLE algorithm developed by Patankar (1980) is used for this
purpose. The calculated pressure is used to calculate the density of the gas
phase.

Table 4.1: List of values of model parameters used in the simulations.

Symbol Description Value Comment/reference
ps  solids density 2600 kgm 3 glass beads
pg  gas density 1.28 kgm ™3 air at ambient condi-

dp particle diameter

e coefficient of restitution
€max Mmaximum solids packing
) angle of internal friction

Um¢ min. fluidization velocity
At time step
Ax  mesh spacing

(CH granular temperature

Up  superficial gas velocity
D:  column diameter

Hi¢ column height

Hms settled bed height

500 um (Geldart B)
0.60

0.61

25°

0.25 ms™'
1.0107° — 107%s
601073 —10 2m

107° — 0.1m?s?

0.5 — 1.0ms™!
02 -04m
0.6m

0.34m

tions

no size distribution
Boemer et al. (1995)
Syamlal et al. (1993)
Johnson and Jackson
(1987)

from Ergun (1952)

for convergence

to reduce numeric diffu-
sion
Balzer
(1993)
a range is used
a range is used
fixed value
fixed value

and Simonin

Fluidization conditions

The values used for the parameters needed in the simulations can be seen
in Table 4.1. The simulated fluidized bed is a two-dimensional rectangular
column. Air at ambient temperature and pressure is used for the fluidizing
gas. The gas is treated compressible and thus the density is coupled to the
pressure, according to the ideal gas law. For the solids, uniform sized glass
beads were used. It has been shown by De Groot (1967) that the diameter
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distribution has a large influence on the fluidization behavior of the granular
material. De Groot states it is difficult to fluidized monodisperse solids, espe-
cially in larger beds. There is however little known yet about the exact cause
and effect and it is unknown how a physical diameter distribution should be
implemented into a TFM, and what the effect would be. The TFM is not an
exact model of a fluidized granular material, and it is questionable whether
an implemented diameter distribution or not would make a large difference.

The size of the time step influences two effects : the convergence of the itera-
tions regarding the solution of the differential equations, and the computation
time. The time step used for the highest simulated fluidization velocity, (i.e.,
four times U,.¢) is 1.0- 10 4s and for the lowest velocity (i.e., two times U,,¢)
twice this size is used. Both were checked to be sufficiently small.

The size of the grid spacing in multiphase flow is of the order of one square
centimetre. This is found to be an optimum between computational effort
and numerical diffusion. The larger the grid spacing is, the more numerical
diffusion will take place. At high fluidization velocities, diffusion of mass is
less important than at lower fluidization velocities. In this work it is found
that lower fluidization velocities require a finer mesh. Using a coarse mesh
at lower fluidization velocities leads to lower porosities in bubbles, and thus
to less realistic results. The mesh chosen in this work for two times U, is
Ax =7.0-1073m, and for four times U+ is Ax = 1.0 - 102 m. These values
lead to similar volume fraction inside bubbles at all simulated fluidization
conditions.

Boundary and initial conditions

All simulations are carried out in a pseudo two-dimensional square space in
which there are no front and back wall effects. In the simulations particles
cannot travel freely in the third dimension : the momentum equations are
only solved for two dimensions. Numerically this can be seen as two symme-
try planes placed right in the front and at the back of the fluidized bed.

The left and right wall of the fluidized bed are treated as no slip boundary
conditions for the gas phase : the velocity of the gas phase is set to zero at
the wall. For the solids phase a different condition should be used: particles
can move downwards while touching the wall. It seems not very important
what kind of slip condition is chosen at the wall, as long as particles are able
to fall down at the wall. In this work a free slip condition is chosen : the
particles find no hinder in their downward or upward velocity when they are
near a wall.

The boundary condition at the top of the fluidized bed is a so-called pres-
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sure boundary. The pressure in the mesh cells at the top of the fluidized bed
are fixed at a specific value. Neumann boundary conditions are applied to the
gas flow velocity. This is also called ‘fully developed flow' : the derivatives
of the upward velocity in the horizontal direction are assumed zero. It is im-
portant that the freeboard of the fluidized bed is high enough, so that fully
developed flow can be physically expected.

From the momentum balances, the mass flux, containing the concentration,
is solved. If the concentration is zero or within the computational inaccuracy,
this can lead to unrealistic values for the particle velocity field, resulting in
an unrealistic drag force and that leading to an unrealistic gas velocity field.
For that reason, a very small solids concentration (~ 10~¢) for the particle
phase is set in the top cells, leading to particle ‘leakage’ into the fluidized bed
(Balzer and Simonin, 1996). This way the whole freeboard is filled with a very
small number of particles. The number of particles in the freeboard is cho-
sen small enough not to have any influence on the physics in the fluidized bed.

At the bottom of the fluidized bed, the gas inflow is specified. This is called
a Dirichlet boundary condition. In the beginning of the simulation a small
perturbation is specified in one of the cells of the bottom. This is to break the
horizontal symmetry. In an actual fluidized bed this is caused by the random
packing of the particles. The distributor is made impenetrable for the solids
phase: the solids downward velocity is set to zero in the bottom cells.

For the initial condition the bottom half of the bed is filled with particles
at a particle concentration of 0.58. The gas flow in the bed is set to minimum
fluidization velocity at t = 0. In the freeboard a very small number of particles
is set, as was explained above.

4.A.4 Classical bubble size and velocity relations

A lot of experimental work has been done in the 70’s and 80’s regarding the
bubble behavior in gas-solid fluidized beds. The Darton et al. (1977) bubble
model is a generally accepted semi-empirical model for bubble growth. The
model is based upon the preferred paths of bubbles where the distance trav-
elled by two neighbouring bubbles before coalescence is proportional to their
lateral separation. The proposed equation is :

Dy = 0.54(Up — U )24 (M4 44/Ap)°8 /g02 (4.16)

where Dy, is the bubble diameter, h is the height of the bubble above the
distributor, and A, is the ‘catchment area’ which characterises the distribu-
tor; 0.54 is the only experimentally determined constant. This model is not
applicable to slug flow, nor to Geldart C powders. Werther and Molerus
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Figure 4.1: The visual representation of a simulation of 0.4 m width column
at 4 times U, 5.

(1973) developed a small capacitance probe to measure the bubble diameter
and the bubble velocity. This capacitance probe can be placed in the fluidized
bed, at different heights and radial positions. The bubble velocity can be
determined by placing two capacitance probes above each other, and corre-
lating the data obtained. The main problem in this approach is translating
the measured pierced lengths into an average bubble diameter with a distri-
bution. To accomplish this, Werther (1974) assumed the bubble shape to be
elliptical. Knowing the total number of bubbles that have passed the probe,
he determined an average bubble diameter and diameter distribution from
the measured pierced lengths.

Davidson and Harrison (1963) proposed a bubble rise velocity according to
the two phase theory of fluidization :

up = U— U+ @/ gdo (4.17)

where ¢ is the analytically determined square root of the Froude number
of a single rising bubble in an infinitely large homogeneous area. Pyle and
Harrison (1967) have determined that ¢ = 0.48 for a two dimensional ge-
ometry, whereas in three dimensions ¢ = 0.71. Equation 4.17, however, did
not satisfy the results obtained by Werther (1974). Hilligardt and Werther
(1986) explained the differences between Werther's measurements and the
two phase flow equation by the following observations : 11
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Figure 4.2: Bubble diameters versus bed height at 2 times U, in 2 0.4 m
width column.

1. under normal operating conditions for bubble formation without slug-
ging, the visible flow rate is clearly lower than the excess gas velocity
(U - Umf);

2. bubbles of a given size rise faster in a fluidized bed of larger diameter.

They proposed an adapted equation for the bubble rise velocity :

up = P(U —Upme) + @v/gdo (4.18)

to correct for the two differences mentioned. Hilligardt and Werther (1986)
have determined empirical correlations for the parameters { and v for dif-
ferent types of solids. They have done experiments with similar particles as
used in this work (ps = 2640kgm~3, d,, = 480um), and have used these simu-
lations to establish the values for the parameters of Geldart group D particles,
because Molerus (1982) has characterised this solid under group D. The pa-
rameter { describes the deviation of the visible bubble flow rate, Vy, from
the two phase theory :

Vi

P

Values for { have been experimentally obtained by Hilligardt and Werther
(1986) :

(4.20)
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for Geldart group D particles. This was later simplified by Kunii and Leven-
spiel (1991) to a similar, but bubble height independent formula.

The parameter v accounts for that part of the deviation from the behavior
from a single bubble, which is not reflected by the additive term (U — U ).
Hilligardt and Werther (1986) have experimentally determined for Geldart
group D solids :

v =0.87 (4.21)

4.A.5 CFD simulation results

The fluidized state of the bed can be visualised by plotting different grey tones,
assigned to different solid volume fraction regions, in the grid cells. This is
done in Figure 4.1 by assigning darker grey tones to increasing solid volume
fractions.

In this paper a bubble is defined as an area where the solid volume fraction is
below a certain value. The value in this work is chosen at 15%. This value is
also used by other authors and does not depend on the mesh coarseness : the
value of 157% lies before the largest solid volume fraction gradient leading to a
bubble edge. To ensure this, the mesh for the lower fluidization velocities is
finer than for higher velocities. Confined areas with more than one cell with
a solid volume fraction below 20% are defined as bubbles. The diameter of
this bubble is calculated as if its shape is circular and the diameters and cen-
tres of all bubbles in the bed are recorded. Bubble velocities are determined
by studying the bubble diameter and centre in consecutive time steps, thus
enabling the calculation of the complete bubble trajectory.

The main objective of this work is to validate the outcome of the CFD model
with existing empirical equations for bubble size and velocity. This valida-
tion can be difficult, because it is not always exactly clear what authors have
measured in reality : have they taken all the bubbles into account, or only the
larger bubbles; have they included effects as coalescence, break-up, and wall
effects? Experimentally it can be very hard to obtain precise physical data
from a fluidized bed, whereas simulations like in this work produce an abun-
dance of data. When comparing a model to measurements, it is important to
retrieve similar data from the model as is retrieved from the measurements.
For the empirical models of Hilligardt and Werther (1986) and Darton et al.
(1977), bubbles touching the column walls were not considered. The deter-
mination of the bubble velocity by Werther (1974) was done by not taking
effects like coalescence and break-up during the observation into account.
These effects should not be considered when comparing the predicted bubble
trajectories to the correlation of Hilligardt and Werther (1986). For compar-
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Figure 4.3: Bubble rise velocity versus bubble diameter at 4 times U, in a
0.4 m width column. All bubbles predicted from the simulation are shown.

ison with the Darton et al. (1977) equation, the bubbles in each simulation
are divided into twelve categories of increasing bubble diameter. Figure 4.2
shows the bubble diameter and the distribution of each category together
with the estimated average bubble diameter by the Darton et al. equation
for one condition. It can be seen that the predicted bubble diameters are
slightly smaller in the higher part in the fluidized bed, but not in disagree-
ment. This can be due to a deficiency of the used measuring technique by
Darton et al. (1977) in measuring very small bubbles.

The bubble rise velocities versus the bubble diameters are shown in Figure
4.3. This figure shows an enormous spread in bubble rise velocities, due to
coalescence, break-up, and bubbles interacting directly with the wall. Figure
4.4 shows the same bubbles averaged into eight classes with increasing bubble
diameter. It can be seen that especially smaller bubbles show deviating be-
havior : the average small bubbles rise faster through the bed than predicted
by Hilligardt and Werther (1986), whom have only used bubbles of 0.04m and
larger to establish their correlation; a wake of a bubble has a larger effect on
a trailing small bubble than on a trailing larger one. Figure 4.5 shows part of
bubble trajectories without coalescence, break-up, and bubbles touching the
wall. The symbol ‘+' is used for bubbles which are not within £+ 30% of the
Darton et al. (1977) equation, and the symbol ‘x’ is used for the remaining
bubbles. In this figure also the equation proposed by Hilligardt and Werther
(1986) is shown. The unaffected bubble trajectories averaged in classes and
a fit of this data is shown in Figure 4.5. The values for the coefficients
and v proposed by Hilligardt and Werther (1986), and the resulting values of
the fits from all simulated fluidization conditions are shown in Table 4.2. For




4 Part A: Steady State Results from Simulations 91

o =~
@ - o
T T T
x

Bubble Rise Velocity [m/s]
o
' [
\
\
\
x4y
%
\\
\

=3
N
——
\
\
A
\
\

o
)

x  Simulated data in classes
—— Hilligardt and Werther (1986)
0 h A

[4] 0.02 0.04 0.06 0.08 0.1 a.12 0.14 0.16
Bubble Diameter [m]
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classes.

the determination of the parameters at each fluidization condition, over 3000
bubbles are used. The simulation results are in reasonable agreement with
the values proposed by Hilligardt and Werther (1986). One of the main is-
sues in testing the CFD model is comparing the abundance of data out of each
simulation to the empirical relations developed by measurements. Measur-
ing techniques and the processing of the outcome of these measurements do
not always reflect the exact physical behavior of a system. In the Hilligardt
and Werther (1986) bubble model, coalescence, break-up, and direct wall ef-
fects are not included. This work shows however, that these effects are very
important in the bubble behavior, especially with smaller bubbles. Figure 4.3
shows that a large number of bubbles do coalesce, break-up, or have wall in-
teractions, and that these bubbles do not necessarily have the rising velocity
predicted by the Hilligardt and Werther (1986) equation.

4.A.6 Conclusions

The predicted values of the bubble diameter at a certain bed height are in
agreement with the Darton et al. (1977) bubble equation. The comparison
of the parameters \ and v with Hilligardt and Werther (1986) show that the
values are in the same order of magnitude, and that the model of Hilligardt
and Werther (1986) is in agreement with the (larger) bubbles predicted by
simulations. In this work, however, some dependency is seen of both pa-
rameters upon the fluidization condition. Hilligardt and Werther do not state
which fluidization conditions they have used to obtain the values for . Possi-
bty 1 is less fluidization condition independent as reported by Hilligardt and
Werther (1986).
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The large abundance of data obtained from a simulation gives much infor-
mation about the dynamic behavior in fluidized beds and can be a very valu-
able tool, not only in the validation of existing empirical correlations, but
also in the improvement of existing correlations, the determination of new
correlations, or the calculation of specific physical properties of a certain con-

figuration.




4 Part A: Steady State Results from Simulations

Bubble Rise Velocity [m/s]
o o -
o @ — >

o
o

o

o
o
2>

Fitted curve

*  Simulated and sorted data in classes
— Hilligardt and Werther (1986)

0

0.02 0.04

006 008 01
Bubble Diameter [m]

0.12 0.14

0.16

93

Figure 4.6: Bubble rise velocity versus bubble diameter at 4 times U, in a
0.4 m width column. Predicted bubbles not affected by coalescence, break-
up, and bubbles touching a wall during the calculation of the velocity grouped
into eight classes.

Table 4.2: Comparison of calculated values for 1\ and v from the CFD model
simulations at different column diameters and fluidization velocities with the
values from the Hilligardt and Werther (1986) model.

CFD model H.&W. | CFDmodel H.&W. | CFDmodel H.&W.
Uy Para- Column diameter
fm/s] | meter 20 cm 30 cm 40 cm
0.50 P 1.1 0.26 - 0.35 1.0 0.26 - 0.35 0.90 0.26-0.35
v 0.62 0.87 0.61 0.87 0.63 0.87
0.625 v 0.71 0.26 - 0.35 0.62 0.26 - 0.35 0.81 0.26 - 0.35
v 0.74 0.87 0.70 0.87 0.66 0.87
0.75 P 0.32 0.26 - 0.35 0.40 0.26 - 0.35 0.48 0.26 0.35
v 0.79 0.87 0.87 0.87 0.95 0.87
0.875 P 0.24 0.26 - 0.35 0.24 0.26 - 0.35 0.49 0.26 - 0.35
v 1.01 0.87 1.26 0.87 0.81 0.87
1.0 P 0.22 0.26 - 0.35 0.34 0.26 - 0.35 0.50 0.26 - 0.35
v 0.86 0.87 0.91 0.87 0.74 0.87
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Part B:

Dynamic behavior of fluidized beds

This part has been published as:

B.G.M. van Wachem, ].C. Schouten, R. Krishna, and C.M. van den Bleek,
(1999), Validation of the Eulerian Simulated Dynamic Behaviour of Gas-Solid
Fluidized Beds, Chemical Engineering Science, 54, pp 2141-2149.

Abstract

In this paper, a Eulerian-Eulerian CFD model for a freely bubbling gas-solid
fluidized bed containing Geldart-B particles is developed for studying its dy-
namic characteristics. This CFD model is based on the kinetic theory of gran-
ular flow. Van Wachem et al. (1998) have shown that this model is capable
of providing reasonable predictions of the time-averaged properties, such as
the time-averaged bubble size and bhubble rise velocity. In this paper, the
dynamic characteristics of the gas-solids behaviour at different superficial gas
velocities, at different column diameters, and at different pressures are evalu-
ated, namely (A) the velocity of pressure and voidage waves through the bed,
(B) the power of the low and high frequencies of the pressure and voidage
fluctuations, (C) the reorientation of the gas-solids flow just above minimum
fluidization and the effect of elevated pressure upon this reorientation, and
(D) the Kolmogorov entropy. The CFD simulation results for items (A) through
(D) are compared with experimental data and with appropriate correlations
from the literature.

A good agreement is found between the Eulerian-Eulerian CFD simulations
of bubbling fluidized bed dynamics, and the data from experiments in the lit-
erature. This is a strong incentive for the further development of this type of
simulation models in fluidized bed reactor design and scale-up.

4.B.1 Introduction

Fluidized beds are increasingly important in today’s chemical industry; how-
ever, their hydrodynamic behaviour, and hence their scale-up, is still poorly
understood. Models describing the behaviour of fluidized beds are often
(semi-)empirical and have been mostly determined under laboratory condi-
tions. There is still no unifying theory available to describe the hydrodynamic
behaviour of fluidized beds.
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There is an increasing use of Computational Fluid Dynamics (CFD) as an en-
gineering tool for predicting the flow behaviour in various types of equip-
ment on an industrial scale. Although the tools for applying single-phase flow
CFD are widely available, application of multiphase CFD remains complicated
from both a physical and a numerical point of view. Moreover, experimental
validation of multiphase CFD calculations is still in its infancy because sim-
ulations are time-consuming, so reliable predictions of flows in large-scale
equipment are not easily obtained. Van Wachem et al. (1998) have shown
that a Eulerian-Eulerian multiphase CFD model correctly predicts the time-
averaged bubble properties (i.e., bubble size and rise velocity) of a gas-solid
fluidized bed consisting of Geldart-B particles at various column diameters
and superficial gas velocities. This result indicates that CFD models will be
useful tools for the steady-state design of fluidized bed reactors. Besides the
time-averaged properties, the dynamic characteristics of the fluidized bed’s
behaviour are important for choosing the appropriate conditions for stable
operation and control.

Time-series analysis of pressure fluctuation data in bubbling fluidized beds
has revealed that the fluid dynamics of fluidized beds are chaotic and low-
dimensional (Schouten et al., 1996). These chaotic dynamics are supposed to
be due to the behaviour of the rise and interaction of bubbles.

The goal of the present work is to validate these dynamic characteristics of the
Eulerian-Eulerian gas-solid model applied to freely bubbling fluidized beds
containing Geldart-B particles, by comparing the simulated behaviour of the
CFD model with trends predicted by appropriate empirical correlations and
experimental data. With this goal in mind, the operating conditions applied
are the same as those were used in the development of the empirical corre-
lations and measurements.

4.B.2 Gas-solid CFD models

CFD models of gas-solid systems can be divided into two groups: Lagrangian
models and Eulerian models. Lagrangian models, or discrete particle models,
calculate the path of each particle in the gas-solid system. The interaction
of these particles can be modelled by either a potential force (soft particle
dynamics), or by collision dynamics (hard particle dynamics). The drawback
of these models is the long calculation time needed to simulate the gas-solid
motion in an apparatus of realistic size, while still requiring empirical data and
correlations to describe the gas-solid interaction. Lagrangian models can be
used to generate granular properties for use in the simpler Eulerian models.
Eulerian models describe the locally averaged properties of gas-solid flow,
which smooth out discontinuities, thus enabling computation by this model
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to cover much larger geometries. A strategy for this averaging, however, must
be chosen. The Eulerian CFD model used in this work, is based on a two-fluid
model (TFM), which uses an extended Navier-Stokes equation to describe the
solids phase and the gas phase so both phases are considered to be contin-
uous and fully interpenetrating. Granular viscosities and granular pressure
are derived from the kinetic theory of granular flow, which is derived from an
analogy with the kinetic theory of gases (Chapman and Cowling, 1970). In this
approach, thermodynamic temperature is replaced by granular flow tempera-
ture, as a measure of the fluctuating velocity of the particles. The interaction
of the gas and solids phases is modelled empirically (Syamlal et al., 1993).
There is as yet no fundamental theory to describe gas-solid interactions in a
rigorous manner.

Different TFM models have been described in the literature and are com-
pared by Boemer et al. (1995). The most promising set of equations in the
sense of fast numerical convergence and accurate physical results is used in
this work.

The time-averaged equations of conservation of mass and momentum, in the
Eulerian framework, are given in Table 4.3. The solids pressure and viscosi-
ties, needed for the conservation equation for the solids momentum, and the
quantities needed to calculate the solids pressure and viscosities are summa-
rized in Table 4.4. The interphase momentum exchange equations are given
in Table 4.5. A description of the symbols can be found in the Nomenclature,
and a complete explanation of these quantities is found in Van Wachem et al.
(1998).

Table 4.3: The mass and momentum balances of the Eulerian-Eulerian CFD
model. The symbols are explained in the Nomenclature.
S €40g) +V’(€gpgvg)zo
(esps) + V- (egpsvs) =0
€9+ € = 1
3:(€9PgVg) + V- (€4pgVgVg) =V Ty +egpg8+ —€gVP — vy —Vy)
%(espsvs) + V- (€5psVsVs) =V - Ts + €sPs8+ —€s VP — VP + B(Vg ~ V)

4.B.3 Model validation and dynamic simulation results

There are different techniques to determine dynamic characteristics of flu-
idized beds. Experimentally, for example, a pressure probe, an optic probe,
or an X-ray probe can be used to study these characteristics. The pressure
probe measures pressure fluctuations, indirectly caused by the rising and in-
teraction of gas bubbles, bed mass oscillation, and turbulence. Optic probes
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Table 4.4: The granular equations in the Eulerian-Eulerian CFD model are
taken from Syamlal et al. (1993), Boemer et al. (1995), Ding and Gidaspow
(1990), Lun et al. (1984), and Jenkins and Savage (1983). An explanation of
the symbols can be found in the Nomenclature.
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Table 4.5: The interphase momentum exchange equations used, taken from
Syamlal (1993), Richardson and Zaki (1954), Dalla Valle (1948), and Garside
and Al-Dibouni (1977). An explanation of the symbols can be found in the
Nomenclature.
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and X-ray probes measure voidage fluctuations, indirectly caused by circulat-
ing solids, gas and particle turbulence, and especially rising bubbles.

The processing of these signals can be done in different ways. Firstly, the
velocity of the fluctuations can be studied. This velocity can be found by
multiplying bed height by the frequency at which the power spectral density
(PSD) is maximal. Another way of finding this velocity is by correlating the
fluctuations determined in different parts of the bed and dividing the dis-
tance between the measuring points by the time at which the correlation is
maximal. Secondly, the PSD of the fluctuations gives information about how
powerful a certain frequency in the signal is. Thirdly, fluctuations can be stud-
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ied by looking at their predictability, expressed in the Kolmogorov entropy.
Analysis of pressure fluctuations by Schouten and Van den Bleek (1992), Daw
and Halow (1991), and Schouten et al. (1996) have revealed that fluidized
beds are chaotic and low-dimensional. Using this technique, Van den Bleek
and Schouten (1993) show a reorientation of the gas-solids flow occurring in
fluidized beds just above minimum fluidization.

This work validates the dynamics of the Eulerian-Eulerian gas-solid CFD model
applied to fluidized beds, by (A) comparing the velocity of the pressure waves

to the work of Baskakov et al. (1986) and the velocity of voidage waves to

the bubble rise velocity, (B) studying the fall off of frequencies above 10 Hz,

(C) comparing the predictability of the voidage and pressure fluctuations just

above minimum fluidization velocity with Van den Bleek and Schouten (1993),

and (D) comparing the predictability of the voidage and pressure fluctuations

at higher gas velocities with Schouten et al. (1996).

The differential and granular equations mentioned in this paper are solved
with the commercial finite volume CFD package CFX4.1c from AEA Technol-
ogy, Harwell, UK. This package allows free implementation of extra equa-
tions, boundary conditions, and differencing schemes. The granular equations
(Table 4.8) and the momentum transfer equations (Table 4.9) have been im-
plemented in this code. The simulations are carried out in a two-dimensional
Cartesian space in which there are no front and back wall effects. Particles
cannot travel in the third dimension; the momentum and mass conservation
equations are only solved in two directions.

The solution of the pressure from the momentum equations requires a pres-
sure correction equation, correcting the pressure and the velocities after each
iteration of the discretized momentum equations. In this work the SIMPLE
algorithm developed by Patankar (1980) is used for this purpose. The gas
phase is treated as a compressible fluid and density is coupled to pressure,
according to the ideal gas law.

For solving the difference equations obtained from the differential equations,
the higher order Total Variation Diminishing (TVD) scheme min-mod is used.
This TVD scheme incorporates a modification into the higher-order upwind
scheme.

The choice of time step for integrating the differential conservation equations
influences both the convergence of the solution and the total computation
time. The time step used for the highest simulated fluidization velocity (i.e.,
four times U,,¢) is 1.0- 10 “s and for the lowest velocity (i.e., two times U, ¢)
twice this size is used. Both were found to be sufficiently small.
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Table 4.6: List of values of model parameters used in the simulations.

Symbol Description Value Comment/reference

ps  solids density 2600 kgm > glass beads

pg  gas density 1.28kgm~* air at ambient condi-
tions

dp particle diameter 500 um (Geldart B) no size distribution

e coefficient of restitution 0.60 Boemer et al. (1995)

€Emax Maximum solids packing  0.61 Syamlal et al. (1993)

¢ angle of internal friction 25° Johnson and Jackson
(1987)

Ums min. fluidization velocity — 0.25 ms™! from Ergun (1952)

At time step 1.0107° —107%s for convergence

Ax  mesh spacing 6.0107> — 107 m  to reduce numeric diffu-
sion

©,  granular temperature 107° — 0.1 m?s 2 Balzer and Simonin
(1993)

U  superficial gas velocity 05 — 1.0ms™" a range is used

D:  column diameter 02 - 04m a range is used

H:  column height 0.6m fixed value

Huns settled bed height 0.34m fixed value

The size of the grid spacing in multiphase flow is of the order of one square
centimetre. This was found to be an optimum between computational effort
and numerical diffusion. The larger the grid spacing is, the more numerical
diffusion will take place. At high fluidization velocities, diffusion of mass is
less important than it is at lower fluidization velocities. In this work it is
found that lower fluidization velocities require a finer mesh. Using a coarse
mesh at lower fluidization velocities leads to higher solids volume fractions in
bubbles, and thus to less realistic results. The mesh chosen in this work for
two times U, is Ax = 7.0-10~3 m, and for four times U; is Ax = 1.0-107% m.

Fluidization conditions

The values of the model parameters used can be seen in Table 4.10. For the
gas phase, the properties of air at ambient temperature and pressure were
used. At low fluidization velocities, simulations with two times ambient pres-
sure were also performed. The density of the air at this elevated pressure is
calculated according to the ideal gas law. For the solids phase, uniform glass
beads were used. The minimum fluidization velocity, U, of this material
is almost independent of the density of the gas phase in the region between
ambient pressure and two times ambient pressure.
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All simulations were started by fluidizing the bed at four times U, ( to fully mix
the solids phase. During the first period of 0.1 seconds of the simulation, the
fluidizing gas is injected in a slightly asymmetrical manner in order to initiate
an asymmetric situation. If the boundary conditions are fully symmetrical,
the solution will remain symmetrical for a period of about 5 seconds, leading
to rectangular bubbles. Eventually the numerical round-off errors will lead
to the same, asymmetric solution. In reality the asymmetric situation will
be caused by an asymmetric particle packing. After about 8 seconds, when
an averaged stationary behaviour is achieved, the superficial gas velocity is
instantly lowered to the required value.

To study the reorientation phenomenon, simulations were performed with
superficial gas velocities of 0.25, 0.30, 0.35, 0.40, 0.50, and 0.60 m/s in a col-
umn of 0.3 m ID. These simulations were performed at two different pressures
to study the pressure effect upon the reorientation of fluidized bed hydrody-
namics.

To study the power spectral densities of the voidage and pressure signals and
to calculate the Kolmogorov entropy for comparison with the correlation of
Schouten et al. (1996), superficial gas velocities of 0.50, 0.63, 0.75, 0.88 and
1.0 m/s are applied. The column diameter is varied between 0.2 and 0.4 m 1D.

Since one of the goals of this work is to validate our dynamic CFD simula-
tion results with published experimental data, we would need to extract the
same information from these dynamic simulations as that measured by the
experimentalist. For the simulated pressure signal, pressure in a small vol-
ume, a computational mesh cell was recorded to describe an experimental
pressure sensor as accurately as possible. Measuring the voidage or solids
volume fraction optically or by an X-ray technique, implies measuring the
voidage or solids volume fraction of a volume in a horizontal plane, which is
done by obtaining these fluctuations in a complete horizontal plane of mesh
cells from the simulations.

4.B.4 (A) Velocity of pressure and voidage waves in fluidized
beds

Pressure waves

Pressure fluctuations have been studied experimentally by many researchers
because they are relatively simple and inexpensive to measure. It is difficult,
however, to construct a model from pressure fluctuations, predicting the com-
plete dynamics of the fluidized bed. The dominant frequency in the pressure
signal, however, is commonly reported and associated with a regular fluctua-
tion in bed height (Roy et al., 1990).
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Roy et al. (1990) discuss several models describing the mechanism and the
velocity of the dominant pressure waves in fluidized beds and conclude that
the velocity of the dominant pressure wave in a fluidized bed is on the order
of 10 m/s (the velocity of sound under these conditions). One of the models
discussed by Roy et al. (1990), originally developed by Baskakov et al. (1986),
describes a fluidized bed where only one bubble at a time erupts at the bed
surface. The theory of this model is founded on the assumption that pressure
fluctuations in the fluidized bed are similar to the oscillations of a liquid in
U-shaped tubes. From this model the following can be derived:

H
th =7 T‘“f (4.22)

where t,, is the natural period of oscillation of the fluidized bed, H..+ the
minimum fluidization bed height, and g the gravity constant. The natural
period of oscillations, dominating the pressure waves, is most often experi-
mentally assumed to coincide with the highest power in a frequency spectrum
of a fluidized bed pressure time series. This natural period can also be found
by cross-correlating two pressure fluctuation signals, measured at different
heights in the bed. The vertical distance of the measuring probes, divided
by the time delay found by the highest cross-correlation, is then used as the
velocity of the most dominating pressure wave in the fluidized bed. In this
work, the velocity of the most dominant pressure waves is determined by the
highest power in the frequency spectrum, as in the work of Van der Schaaf et
al. (1998).

Figure 4.7 shows an example of a simulated pressure fluctuation signal. In
Figure 4.8 the most dominant frequency in the pressure fluctuations obtained
from CFD simulations is compared with the theory of Baskakov et al. (1986).
There does not appear to be any systematic trend in dependence of this dom-
inant frequency on the superficial gas velocity, the column diameter, or the
height of the measuring probe in the fluidized bed. Prediction of the fre-
quency of the most dominant pressure wave is in good agreement with the
theory developed by Baskakov et al. (1986), especially at higher gas veloci-
ties.

Voidage waves

Little is known about voidage fluctuations in gas-solids fluidized beds because
they are hard to determine and especially to interpret. The velocity of voidage
waves can be found in the same manner as the velocity of pressure waves, ei-
ther by looking at the power spectrum of one series or by cross-correlating
two spatially separated voidage fluctuation time series.
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Figure 4.7: Simulated pressure fluctuations in a fluidized bed, D; =
0.2 m, Uy = 050 m/s, h = 0.1 m. The type of particle used is given in Ta-
ble 4.6.

In this work, the rise velocity of voidage waves is compared to the rise ve-
locities of the bubbles to establish a relationship between the voidage signal,
which is measurable, and the bubble rise velocity.

The natural period of oscillation is smaller for pressure fluctuations than for
voidage fluctuations (the velocity of pressure waves is larger than the velocity
of voidage waves). In this work, the velocity of the voidage waves is deter-
mined by cross correlating because this method is more accurate for short
time series than for the natural period of oscillation.

Figure 4.9 is an example of a simulated voidage signal. In Figure 4.10 we
compare the velocity at which the vertical component of the voidage fluctua-
tions propagates through the column with the bubble rise velocity determined
from the simulations by tracking the position of individual bubbles. It is clear
from Figure 4.10 that though there is a good correlation between these two
velocity measures, other factors such as large-scale solids circulation will in-
fluence the voidage fluctuations velocity.
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Figure 4.8: The dominant frequency in the simulated pressure fluctuations as
a function of the superficial gas velocity, compared to the theory of Baskakov
et al. (1986). The error bars denote the spread due to data obtained at
different heights in the fluidized bed and for different column diameters.

4.B.5 (B) Power of pressure and voidage waves in fluidized beds

At higher frequencies, the power spectral density function (PSD) of pressure
fluctuations obtained in a fluidized bed shows a power-law decay with in-
creasing frequency (Ding and Tam, 1994), often with a non-integer value for
the slope of the power-law decay in a log-log plot. The underlying physics of
this power-law decay at increasing frequency, are believed to originate from
bubble coalescence and bubble formation (Van der Schaaf et al., 1998). Ex-
perimentally, it has been found that the slopes of the power-law decay of the
PSD of pressure fluctuations in a bubbling fluidized bed in a log-log plot lie
between -2 and -5 (Van der Schaaf et al., 1998).

Ding and Tam (1994) showed that the power spectral densities of voidage
fluctuations at high frequencies also obey a power-law decay. The slope of
this power-law decay in a log-log plot, however, is different from the slope
of the power-law decay obtained from the PSD of pressure fluctuations in a
log-log plot, but it also is a non-integer.

Several explanations for the power-law decay of the pressure fluctuations ob-
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Figure 4.9: Simulated voidage fluctuations in a fluidized bed, D: =
0.2 m, Up =050 m/s, h =0.1 m.

tained in a fluidized bed can be found in the literature (Van der Schaaf et
al., 1998). Supposing the fluctuations originate from a Brownian system, an
explanation can be found in Gaspard and Wang (1993). They conclude that
Brownian systems exhibit a power-law decay at increasing frequencies. Par-
ticles in a Brownian system can move in a specific direction without being
correlated to their previous movement, in contrast to the particles or bubbles
in a fluidized bed. Ding and Tam (1994) suggest that the number of possible
derivatives of the measured pressure fluctuation is equal to the slope of the
power-law decay in a log-log plot. This is only true, however, if the slope of
the power-law decay is an integer.

Another approach to explaining power-law decay, is to study a pressure or
voidage fluctuation originating from a single rising bubble in a fluidized bed:
this somewhat resembles a triangular signal, increasing prior to the passing
of a bubble, and decreasing right after the bubble passes (Figure 4.11). The
PSD of a signal consisting of triangular waves gives a very spiky power-law
decay, as depicted in Figure 4.12. The average slope of this power-law decay
in a log-log plot, depends upon the height, width, and the number of discon-
tinuities per period of the triangular signal. When a signal is formed from
an increasing number of triangular waves, each with different characteristics
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Figure 4.10: Bubble rise velocity versus the vertical voidage fluctuation ve-
locity. The line is drawn to show the trend.

(i-e., height and width), more and more spikes arise in the higher frequencies
of the PSD, eventually leading to a smooth power-law behaviour, because all
the valleys between two spikes are filled up by other spikes. The passage
of different sizes of bubbles may somewhat resemble a measured signal with
differing triangular waves, where the amplitude (a function of bubble diam-
eter), and the width of the triangular wave (a function of passage time) are
physically coupled.

In Figures 4.13 and 4.14, the PSDs of the simulated pressure and voidage
fluctuations are shown. In Figure 4.15, the slopes of the power-law decay
in the log-log figures for all simulated fluidization operating conditions are
depicted. Figure 4.15 shows that the operating conditions have very little
influence on the slope of the power-law decay and that the values for the
power-law decay of the pressure fluctuations are in good agreement with the
values reported by Van der Schaaf et al. (1998), i.e., between -2 and -5. The
simulated voidage fluctuations exhibit a different power-law decay than sim-
ulated pressure fluctuations, which is also shown in a simulation by Ding and
Tam (1994).

The true underlying physics and the meaning of the slope of the power at
higher frequencies remain unknown. The idea that every bubble emits a tri-
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Figure 4.11: A passing bubble leads to a triangular wave in the voidage or
pressure signal. The larger the bubble diameter, the larger the amplitude of
the triangular wave (h) will be. The duration of the wave (t) is coupled with
the diameter of the bubble and the bubble rise velocity.

angular wave, where the width and height of the wave are physically coupled,
leads to a PSD similar to the pressure waves from fluidized beds.

4.B.6 (C) Reorientation effect in fluidized beds

Van den Bleek and Schouten (1993) measured the predictability of pressure
fluctuations in a gas-solid fluidized bed, expressed by the Kolmogorov en-
tropy, as a function of the superficial gas velocity just above the minimum flu-
idization velocity, to investigate the onset of chaos in gas-solid fluidized beds.
It was found that between minimum fluidization and the freely-bubbling state
an intermediate regime exists, where predictability first increases and then
decreases, and then increases again. This local minimum of predictability de-
notes a sort of reorientation of the fluidized bed.

The so-called particle array model, consisting of five particles in a one-dimensional

vertical array with these two basic forces, drag and gravity, shows the same
type of reorientation (Van den Bleek and Schouten, 1993). Also, the cellu-
lar automata model with thousands of particles in a two-dimensional space,
incorporating drag and gravity forces, shows this reorientation (Van Wachem
et al., 1997). The underlying physics of this reorientation are not yet fully
understood.
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Figure 4.12: The Power Spectral Density (PSD) of a triangular wave.

In this work, simulations are performed with Geldart-B type particles, with
seven increasing superficial gas velocities, each just above the minimum flu-
idization velocity. The particle type used in this work differs somewhat from
the particle type used by Van den Bleek and Schouten (1993); the qualitative
reorientation effect, however, is believed to be independent of particle types,
and is even observed in bubble columns.

This work also presents reorientation at a higher pressure. Yates (1996) re-
ports that elevated pressure increases the superficial gas velocity at which
bubbles are formed. This should be clearly visible in the entropy plot show-
ing reorientation.

The pressure and voidage time series obtained from the simulations with a
superficial gas velocity just above the minimum fluidization velocity at ambi-
ent pressure, performed with two different column diameters, show the same
qualitative reorientation effect as that experimentally observed by Van den
Bleek and Schouten (1993), as is depicted in Figure 4.16. The simulations
performed at two times the ambient pressure show that the valley shifts to
higher gas velocities; the reorientation predicted by the simulations done at
a higher pressure starts (decrease of entropy) and ends (increase of entropy)
at a higher gas velocity, as can be seen in Figure 4.16. This implies a delay
in the gas velocity at which bubbles are formed, in conformity with available
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Figure 4.13: Power spectral density of the simulated pressure fluctuations in
a fluidized bed, Dy =0.2 m, Uy =0.50 m/s, h =0.1 m.

experimental data (Yates, 1996).

4.B.7 (D) Chaotic behaviour of fluidized beds

The hydrodynamic behaviour of bubbling gas-solid fluidized beds can be de-
scribed as chaotic (Schouten and Van den Bleek, 1992; Daw and Halow, 1991;
and Schouten et al., 1996). The low-dimensional chaotic behaviour is due to
rising and interacting bubbles. The chaotic characteristics of dynamic systems
can be estimated from a time series of only one of the systems’ characteristic
variables, such as pressure or voidage fluctuations in bubbling fluidized beds.
One important characteristic is the Kolmogorov entropy, which measures the
rate of loss of information (expressed in bits of information per unit of time)
and quantifies the unpredictability of chaotic systems. The limiting values
for the Kolmogorov entropy are infinity for completely random systems and
zero for completely deterministic systems. Schouten et al. (1996) derived
the following empirical relationship between the Kolmogorov entropy, K, and
characteristic fluidized bed operating conditions, such as the superficial gas
velocity, Uy, the minimum fluidization velocity, U,,, the bed diameter, D,
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Figure 4.14: Power spectral density of the simulated voidage fluctuations in
a fluidized bed, Dy = 0.2 m, Up = 0.50 m/s, h=0.1 m.

and the settled bed height, H; :

Up — unlf>o~4 I)T.I'2

K(bi =107
(bits/s) =10 ( U T

(4.23)

In this work, the Kolmogorov entropy is calculated from pressure and voidage
time series produced using CFD simulations at settled bed height. The CFD
simulations are performed with similar operating conditions used to establish
the correlation given by Equation 4.23.

The comparison between Equation 4.23 and the simulations is made in Figure
4.17. Although the quantitative comparison is not excellent, the simulations
do reflect the behaviour of Equation 4.23. Furthermore, the spread of the ex-
perimental measurements used to establish Equation 4.23 is also very large.

4.B.8 Conclusions

In this paper we have carried out simulations of the dynamic behaviour of
laboratory-scale gas-solid fluidized beds containing Geldart-B powders. The
dominant frequency of the pressure fluctuations of these simulations agrees
with that in the theory of Baskakov et al. (1986). The velocity at which the
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Figure 4.15: The slopes of the power-law decay after about 10 Hz in the PSD
figure (Figures 4.13 and 4.14) for different column diameters, superficial gas
velocities and either simulated pressure or voidage fluctuations.

voidage fluctuations propagate vertically through the column appears to cor-
relate with the bubble rise velocity. The power-law decay characteristics of
the PSD of the pressure and voidage fluctuations match those observed by
Ding and Tam (1994) and Van der Schaaf et al. (1998).

Our dynamic Eulerian simulations are able to reproduce the reorientation ef-
fects in fluidized beds in the vicinity of the point at which the first bubbles
are formed. Simulations with increasing pressure show that the valley in the
plot of the Kolmogorov entropy versus gas velocity (Figure 4.16) shifts to the
right. This implies delayed bubbling, in conformity with experiments. It ap-
pears that Eulerian simulations have the intrinsic capability to portray the
influence of increased system pressures.

Since we have demonstrated that Eulerian simulations are able to correctly re-
produce the dynamic characteristics of laboratory scale-fluidized beds, we are
reasonably confident that such simulations could be used to study the influ-
ence of column diameter and height on fluidized bed performance. Therefore,
Eulerian CFD simulations could be useful scale-up tools.
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defined in Table 4.5
drag coefficient
particle diameter, m

strain rate tensor, s~!
column diameter, m
coefficient of restitution
gravitational constant, ms~
radial distribution function
height in fluidized bed, m
minimum fluidization bed height, m
settled bed height, m
column height, m
Kolmogorov entropy, bits s
variables defined in Table 4.4
pressure, Nm 2

Power Spectral Density
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Greek Letters

time step, s

natural period of oscillation, s
superficial gas velocity, ms '
minimum fluidization velocity, m s~
velocity vector, ms™!

ratio of terminal velocity of a group of particles to that of
an isolated particle

mesh spacing, m

1

interphase drag constant, kgm 3 s~!

voidage

angle of internal friction, °©
bulk viscosity, Pas

shear viscosity, Pas
density, kgm™3

viscous stress tensor, N m~
granular temperature, m? s~
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Subscripts

g gas phase

mf minimum fluidization

max maximum

S

solids phase




Chapter 5

Modeling of Fluidized Beds
with Bimodal Particle
Distribution

In this chapter the kinetic theory for a mixture of two particle species is de-
veloped, in the framework of the theory outlined in Chapter 2. The developed
kinetic theory describing a himodal mixture of smooth, nearly elastic spheres,
is implemented in an Eulerian-Eulerian CFD model. Trends reported in liter-
ature describing the behavior of a fluidized bed containing a bimodal particle
mixture are compared with outcome of simulations with the kinetic theory for
a bimodal particle mixture. Also the phenomenon “inversion’””, which denotes
the change of the segregation direction at higher gas velocities compared to
lower, is physically explained directly from the himodal kinetic theory.

This chapter has been submitted for publication:

B.G.M. van Wachem, ).C. Schouten, R. Krishna, C.M. van den Bleek, and
J.L. Sinclair, (1999), Modeling of Gas-Fluidized Beds with Bimodal Particle
Distribution, submitted to AIChE Journal.
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Abstract

This chapter develops a computational fluid dynamics (CFD) model for gas-
solid fluidized beds containing a mixture of two particle species. In order to
calculate the stresses of the solid phase, the kinetic theory of granular flow
is extended to take account of a binary mixture of smooth, nearly elastic,
spheres.

Simulations with the developed model are used to demonstrate some key
features of binary mixture fluidization:

1. The bed expansion with a binary mixture of particles of different sizes,
but identical densities, is significantly higher than that of a system con-
sisting of mono-sized particles of the same mean size as the bimodal
mixture. Furthermore, the minimum fluidization velocity for the binary
particle system is significantly lowered. The mixing behavior of the bi-
nary mixture of particles, characterized by the mixing index, increases
with increasing superficial gas velocity.

2. For a binary mixture of particles consisting of larger sized particles of
lower density and smaller sized particles of higher density,the larger,
lighter, particles segregate to the top of the fluid bed while the smaller,
heavier, particles segregate to the bottom. With increasing fluidization
velocity, this segregation pattern reverses and the phenomenon of “in-
version’” occurs.

5.1 Introduction

1t is well known in practice that the particle size distribution (PSD) plays an
important role in the behavior of gas-solid mixtures. Many researchers have
studied the effect of the PSD on the hydrodynamic behavior of fluidized beds.
For instance, De Groot (1967) concluded that the bed expansion of industrial
fluidized beds may increase by a factor of two when a large PSD is employed
instead of a monodisperse distribution.

Grace and Sun (1991) performed numerous fluidized bed experiments with a
monodisperse, a bimodal, and a wide particle size/weight distribution of Gel-
dart type A particles. Grace and Sun (1991) studied the influence of “fines”
on the hydrodynamics in the fluidized bed. They defined fines as particles
with a diameter less than approximately 40um. They reported that the mini-
mum fluidization velocity was higher with the wide or bimodal PSD versus the
monodisperse PSD with the same mean size. Also, as previously concluded by
De Groot (1967), the bed expansion was larger for a wide or bimodal PSD than
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for a monodisperse PSD. This difference of bed expansion is small around the
minimum fluidization velocity and increased with increasing superficial gas
velocity. Although the experiments of Grace and Sun (1991) were carried out
with small particles of Geldart A type, their results present a good qualita-
tive description of the different types of behavior of fluidized beds with a
monodisperse PSD and a bimodal PSD.

In a fluidized bed reactor, the mixing action is produced by the rising of bub-
bles, whose associated wake and drift leads to the motion of particles. The
bubbles in a fluidized bed containing a binary mixture also cause segregation.
In fluidized beds containing a binary particle mixture, either by size or density,
complete mixing is only achieved under specific hydrodynamic conditions. Wu
and Baeyens (1998) experimentally studied the effect of a bimodal PSD on the
mixing action in fluidized beds with fairly large particle types, both Geldart B
and D type particles. They defined a mixing index M,

X
— _ 5.1
<X> G-

where X is the concentration of larger/heavier particles in the top region of
the dense bed, and <X> is the average concentration of larger/heavier parti-
cles in the entire bed. M equal to 1 corresponds to perfect mixing. Wu and
Baeyens (1998) correlated the mixing index to the superficial gas velocity, the
bed aspect ratio (H/D+), the minimum fluidization velocity of the smaller and
larger particles, and the particle diameter ratio. The mixing index was small
for gas velocities near the minimum fluidization velocity, and increased with
gas velocity. The scatter on their correlation was, however, very large.

Rasul et al. (1999) studied the different types of segregation occurring in
fluidized beds containing a bimodal PSD, by studying the “segregation po-
tential” of fluidized beds containing a bimodal PSD. Specifically, they studied
the case of a binary mixture with small, heavy particles and large, lighter
particles. At a low fluidization gas velocity, the small, heavy particles were
preferentially segregated at the bottom of the fluidized bed, and large, lighter
particles were at the top. With increasing gas velocity, “inversion” can occur.
This means that the small heavy particles moved preferentially upward in the
bed and the light, larger particles moved downward.

The main goal of our work is to simulate the flow behavior of fluidized beds
containing a bimodal PSD and to compare this flow behavior with that of flu-
idized beds containing a monodisperse PSD. The simulation predictions are
compared with the experimental data and observations of the authors men-
tioned above. The details of the physics behind the previous experimental
results are elucidated via the simulations.
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5.2 Governing equations

The two-fluid model is applied to describe the flow of the dense gas-solid
mixture. The continuity equations of the gas phase and the particle mixture
phase are

Oeg +V-(equg) =0 (5.2)
ot
de
a; + V- (esus) =0 (5.3)

where ug is the gas phase velocity and ¢4 is the gas phase volume fraction.
The momentum balances for the gas phase and the particle mixture follow
Jackson (1997),

ou =
Pg€qg [a_tg +ugVu4 =¢€qV Ty —€gVP — B(ug—us) + €4pg8 (5.4)

:esv'%g_esvp+v'$s+B(ug*us)+€spsg (5~5)

ou
Ps€s ['a% + usvus

where P is the gas phase pressure, g is the gravity acceleration, f3 is the inter-
phase momentum transfer coefficient, T4 is the gas phase shear stress tensor

which is assumed Newtonian, and ﬁ is the solids phase stress tensor with a
kinetic and collisional contribution (given by kinetic theory) and also a fric-
tional contribution:

P, =P +P (5.6)

s, kinetic 7 ¥ s,collision + Ps,friction

Pirog (1998) proposed the following modification of Wen and Yu (1966) equa-
tion for the drag force exerting on a particle in the vicinity of other particles

€g€s,ips|ug - us|
ds

Fi = —fi(es,A,€5,8)Cp (5.7)

4

where f;i(es) is the hindered settling velocity function, which is defined as
files.A,€s,8) = Vi/Vio. Viis the actual settling velocity for the particle in the
suspension and V; o is the settling velocity of an isolated particle. The drag
coefficient proposed by Rowe (1961) is employed:

24

_ 15((1— eo)Rey )87 if (1—
Co = Rey(1 <o) [1 +0.15 ({1 — €)Rey) J if (1 —e)Re, < 1000

0.44 if (1 — e4)Re, > 1000
(5.8
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In the case of a bimodal particle mixture, i = A or B, the total interphase
momentum transfer coefficient is § = Fa + Fg. Pirog (1998) proposed for the
settling velocity function for species i in a himodal suspension

fi(es,A)es,B) = H (] _Cs,q)o‘iq (59)

q=A,B

where «;; are empirically determined constants in the form of

2
o;j Oj
&ij = dp + ay (0—i> +az <0_—1> (5.10)

Values for ag, a1, and a, are given by Pirog (1998) for different particles and
solids volume fractions based on the results of his settling experiments.

5.3 Kinetic Theory for a Bimodal Particle Mixture

In order to describe solid-phase stresses in the framework of the two-fluid
model for dense gas-solids flows typically concepts from kinetic theory are
employed. The kinetic theory for granular materials has been developed by
Jenkins and Savage (1983), Lun et al. (1984), and others, analogous to the
kinetic theory of gases (Chapman and Cowling, 1970), accounting for the in-
elastic nature of particle-particle collisions. This theory has been used by
many researchers to successfully describe both dense and dilute dry partic-
ulate flows, as well as dense and dilute fluidized particulate flows. Almost
all work to date has considered monodisperse particulate systems. However,
Jenkins and Mancini (1987) have developed kinetic theory for a mixture of bi-
modal disks and a mixture of bimodal spheres assuming a Maxwellian velocity
distribution of the disks or spheres. Lopez de Haro et al. (1983) have devel-
oped kinetic theory for a gas consisting of a mixture of multiple components,
employing a revised Enskog method (Van Beijeren and Ernst, 1973). Using
the approach of Lopez de Haro et al. (1983) as a basis, Jenkins and Mancini
(1989), Zamankhan (1995), and Arnarson and Willits (1998) developed kinetic
theory for a binary particle mixture of spheres involving perturbations to the
Maxwellian velocity distribution. These latter theories, with modifications
outlined below, are used in this work to describe the solid phase stress and
fluctuating velocities of the bimodal particle mix.

We consider a mixture of smooth, nearly elastic spheres of two different
species A and B. These spheres have mass m;, number density n;, radius oy,
and velocity c;, where i is either species A or B. The mass density p; is given
by the product of m; and n;. The number density n and the mass density p
of the mixture are given by the sum of the corresponding densities of the two
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constituents. The mean velocity of each species is denoted by u; =<¢;>. The
mass average velocity of the mixture can be written as:

1
Ug = B(pAuA + ppug) (5.11)

The peculiar velocity of each species is defined as: C; = ¢; —u;. The diffusion
velocity, v, which is absent from the kinetic theory for monodisperse mixture
of particles, is defined as:

Vi =<Ci>=<C{ — Us> (5.12)
It then follows that
PAVA +pBVE =0 (5.13)

The granular temperature is related to the peculiar velocity and, unlike the
monosized particle theory, also to the mass of the individual particle specie:

T = %mi <Ciz> (514)

The mixture temperature can be writtenas T = %(nATA—i—nBTB). The mixture
balance of granular energy is:

3 [oT 3 =

5n [a"‘v (Tu )]ETV‘(TLAVA“*'H-BVB):V'C[PSZVUS
+ Z i+ piB) - (Nava + npve) — ¥ (5.15)
k=A,B

where q is the mixture energy flux, P is the total solids stress tensor of the
mixture, F; is the total force acting on species i, and vy is the rate of granular
energy dissipation. The first term on the left hand side denotes the time de-
pendency of the mixture granular energy, the second term is the convection
of the mixture granular energy, and the third term denotes the convection of
mixture granular energy due to the relative species movement. On the right
hand side, the first term denotes the diffusion of the mixture granular energy
along the gradients in the mixture granular temperature, the second term is
the creation of mixture granular energy due to shear in the particle phase, the
third term denotes the creation or dissipation of mixture granular energy due
to external forces, and the last term is the dissipation of granular energy due
to inelastic particle-particle collisions.

The mixture energy flux is defined as:

q= Z (% <piCiCi®> + Z qik> (5.16)

i=A,B k=A,B
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The first term on the right hand side is a transport or kinetic contribution to
the mixture energy flux and the second term, gy, is a collisional contribution.

Similarly, the kinetic and collisional contributions to the solid phase stress
tensor are given as

Ps kinetic + collision = Z <<p‘1cici> + Z Pik) (5.17)
i-A.B K—A.B

where the first term represents the kinetic or transport contribution to the
pressure tensor and the second part, Py, the collisional contribution. Using
the revised Enskog theory, the equations for the pressure tensor and the en-
ergy flux can be expressed in terms of particle and flow parameters as (Jenkins
and Mancini, 1989)

1

<piCiCi> = TT— i Thio(D — 3Vuj) (5.18)
= 2 = 8 2mim
Piy = gﬂo—gkninkTI* Eniﬂkﬁ(f?kgik'f |:bi0Mki +4/ mikﬂ"fc Uik:| '
= 1 =
-{D§Vusl] (5.19)

and

1 , 5 [2T 5 [13
7 <piCGiCi*> = F g EVT + 7 Tm(ntiodi + a0V (InT)) (5.20)
2T 2 1
ik =24/ —mn 2 Mg MiucMud | air — S0iky ) ——
ik min Nk 07 Gk MikcMic {a 17 30k ™M
T2 ; 1
=\ 5 3 unkTo3 Gik - |1/ — (ntiodi + apVInT ) (Mix — Myi )+
23 my
1
-Tr—l;(ntkodk + akoV lI'lT)

where oix = oy + 0, Mix = My + my, and My, = mi/my,. For the coefficient
bio, Jenkins and Mancini (1989) give for 1 # k,

VT

(5.21)

bi(ni + %Kii + %KikMki) + 3’3—2 Mk Myt /2miy 07 (e + éKkk + %KikMik)

bio =5 —
giknineVTlbiby — 232 o 1 Mix My /mix )]

(5.22)

Mi Mii 2 ZYTLi MxOkk 7t
b; = 4002 [TV Vi £ 2 kIkk T 5.
Tl 2mik 3 * S5my 8ok nigik Y Mk (5-23)
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where Kix = %nmnkgikcr%k. For the coefficients aio and t;p, there has been
some confusion in the literature. Arnarson and Willits (1998) claim that Jenk-
ins and Mancini (1989), Zamankhan (1997) and Hsiau and Hunt (1996) have
developed incorrect expressions for these coefficients. Moreover, Kincaid et

(1987) have investigated the convergence of the orders of the Enskog
approximation and found that the first order Enskog approximation is not
accurate, even for small differences in particle size and/or mass. Therefore,
Arnarson and Willits (1998) calculate the necessary coefficients correctly and
up to the second order. With i # k their results are:

1
aip = Zw/mu<mknk (Mi{zaﬂ - Mf’(zam) (5.24)
e = 15 (ocln 1Ky + ]3M1kMk1nkKk> (5 25)
= Sﬁninkgikofk\/ Mki K{iXk — ]69M Mil ’
2
(= 15M2, + 8Mix My + 6M2, + 2v2—kIkkOkk 5.26
0.8 ki + ikMki + ik + n-lgikcrizk\/m—{]: ( )
1 3/2, 3my
tio = =——v/MixMmgn 2t + M + 5.27
10 2p ik kTl ( i1 ) Sﬁpnigiko_izk\/m ( )

ti1 —

3vVMi ( o — 13Mg, ) (5.28)

8v/MMinkgikoZ, \ ootk — 169M2 M2
2 8
Ki=1+ 57171’119110'131 + gMikMkirmkgingk (5.29)

Because Jenkins and Mancini (1989) and Arnarson and Willits (1998) have only
used bimodal kinetic theory to study the case of steady homogeneous shear,
contributions to the total solids stress tensor linear in V - ug; were not con-
sidered. When this term does play a role, the solids stress must be extended
with a contribution incorporating the solids bulk viscosity. The bulk viscosity
contribution can be expressed as (Bird et al. 1960):

= 2 —\ =
Ps bulk = (A— Zuitr (D) I (5.30)

where A is the solids bulk viscosity and  is the solids shear viscosity, which
can be determined from Equations 5.19 and 5.18 by considering the terms

linear in D. Following the derivation for a binary mixture of gas molecules by
Lopez de Haro and Cohen (1984), an equation for the bulk viscosity of elastic

spheres can he derived:
/2Tm1mk
3 Z Z KixOix p— (531)

i=A,B k—=A,B

For nearly elastic particles, the perturbation on the Maxwellian velocity dis-
tribution can be employed to derive an expression for the total rate of energy
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dissipation. Jenkins and Mancini (1989) present the rate of energy dissipation
in the lowest Enskog approximation. In the second order Enskog approxima-
tion, it can be written as

2rtmi T3
y=Y Y 20uchnime—s(1 - e) 2romak T (5.32)
i=A,Bk-A,B Mik mimg

where e; is the coefficient of restitution for a collision of particle species i
with particle species k. For the diffusion velocity of each specie, Jenkins and
Mancini (1989) give

T (ntiod: +aioVInT) (5.33)

V: = —
' Zmi

dependent on the diffusion force

i Fi F ]
d = - d ':VP + Pk (—— — —k>] + —(ni + 2M i Kix + Kii)VInT
npT mi o My n
ni [ Ol Opi
— + —Vny 5.34
+nT (ankVnk + aniVn) (5.34)

Using the thermodynamic relationships (Reed and Gubbins, 1973),

P_(8A> __(aA)
)/ NS NS —

and by using the dependency of P and w; on T, it can be shown that
dar = —dg (5.35)
Because the chemical potential, y;, is only dependent upon T, n, and ny,

(oJU%} Opi Oy -
i = i 5.
Vi e Vny + aniVn + a7 Vi (5.36)

The latter equation can be used to replace the derivatives in n; and ny in
Equation 5.34, and rewrite Equation 5.34 in terms of derivatives depending
upon the location only.

To date, all authors investigating binary particle mixtures use the radial dis-
tribution function of Mansoori et al. (1971)

1 36i 0% & 0i0 2og2
ik = + — +2 i 2 5.37
Yik l—ey op+0x(l—eg)? (0’1+Gk> (1-€4)3 ( )
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where &, = 4n(nach + ngol)/3, and thus ¢, = &;. This expression how-
ever, does not tend to infinity when the total solids volume fraction,e;, ap-
proaches the maximum packing of spheres. Therefore, we propose a similar
radial distribution function which has the correct limit for the solids volume
fraction when approaching the maximum packing limit for a bimodal mixture
of spheres

1 3610 g ook \? £3
Jik = = Lk 2 42 ( K )  —
1 — 0i + Ok <] € ) 0; + O (] € )
€s,max €s,max €s,max
(5.38)

where €5 nax iS the maximum solids volume fraction. The two radial distri-
bution functions are compared in Figure 5.1. At high solids volume fraction,
which often occurs in fluidized beds, the difference in radial distribution func-
tions is large. The chemical potential is a function of the radial distribution
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Figure 5.1: The radial distribution function of Mansoori et al. (1971) com-
pared to the radial distribution function proposed in this work, for a 50/50
mix with oa = 250um and og = 100pum.
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function and for a binary gaseous mixture (Reed and Gubbins, 1973)

Vv

pi/\ 2 0 3 1
ui:len—rrﬁf—ﬂkT Z Z NaNpogs | —59apdV
q 3 ON; a—A,B B=A,B o V

T.V,Ni#i
(5.39)

where N5 and Ny are the total number of particles of each species, and thus
na = Na/V. Equation 5.39 has been solved with the new radial distribution
function given in Equation 5.38 using Mathematica (Wolfram, 1988), and the
result is given in Appendix A. Shauly et al. (1988) use a semi-empirical model
to predict the increase in the maximum solids volume fraction with different
compositions of the binary mixture

€5 max . ]+3|b|3/2 €5,A 32 €s.B (5 40)
€s,max,mono B 2 €5 €g '

with b = (oA —0i)/(0a +05) and €5 max, mono iS the maximum solids volume
fraction in case of a monodisperse particle mixture equal to 0.65. Figure 5.2
shows an example of the variation of €5 ywqax as a function of mixture compo-
sition.

5.4 Frictional stress

In regions with very high solids volume fractions, as frequently present in
fluidized beds, sustained contacts between particles occur. These frictional
stresses must be accounted for in the description of the total solids-phase
stress. The frictional stress is added to the kinetic and collisional contribu-
tions to the stress given by kinetic theory when the solid volume fraction ex-
ceeds some kick-in value, €, min. The frictional stress is in a Newtonian form
(Johnson et al., 1990) and is added to the total stress tensor when e, > €, min,
and the frictional stress is described by

B Pel + e (Vv+ (Vv)T) if eg > €5 min
s, friction — 0

-

5.41
if €s S €5, min ( )

where P; represents the normal frictional stress and s represents the fric-
tional shear viscosity. For the normal frictional stress, the semi-empirical
equation of Johnson and Jackson (1987) is employed

(€5 — €5, min )9

€s,max — €s)P

P = Fr (5.42)
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Figure 5.2: The maximum solids volume fraction, ¢ . qx, of 2 mixture with
oA = 250um and og = 100pum as a function of mixture composition.

The values proposed by Johnson et al. (1990) for the empirical material con-
stants are Fr = 0.05Nm~2, q = 2, and p = 5, for particles similar to those
studied in this work. The frictional shear viscosity is related to the frictional
normal stress by the linear law proposed by Coulomb (1776),

pus = Pesing (5.43)

where ¢ represents the angle of internal friction. This frictional stress model
assumes a monodisperse PSD and does not contribute to or initiate segrega-
tion.

5.5 Simulations

The CFD model as just described is used to simulate two-dimensional gas-
solid fluidized beds at different superficial gas velocities and with different
particle weights and sizes. In summary, the solution of the nine primary
variables us, ug, ng, ny, €, T, and P, is achieved by solving the nine Equa-
tions 5.2, 5.3, 5.4, 5.5, 5.13, and 5.15. From these variables, the individual
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solids phase velocities can be calculated by solving Equations 5.11 and 5.13
by employing Equation 5.12.

Simulations of fluidized beds have been performed with a bimodal PSD for
two cases of particles and mixture properties as given in Table 5.1. In Case 1,
we have also performed a simulation of a fluidized bed with a monodisperse
PSD exhibiting the same Sauter mean diameter as the bimodal PSD. The em-
ployed fluidization and computational parameters are given in Table 5.2. The
calculation of the minimum fluidization velocities is based upon the empirical
correlation of Wen and Yu (1966). Due to the coarseness of the particles, the
minimum fluidization velocity is equal to the minimum bubbling velocity.

The simulations in this work were carried out with the commercial CFD code
CFX 4.2 from AEA Technology, Harwell, UK. The equations for the solids
phase stress for the bimodal particle mixture, the solids mixture tempera-
ture, the drag on the particle mixture, and the diffusion velocities were imple-
mented into this code. For solving the differential equations, the higher-order
total variation diminishing (TVD) scheme Superbee is employed. This scheme
is a modification of the higher-order upwind scheme. The SIMPLE algorithm
is used to correct the pressure from the gas phase velocities (Patankar, 1980).
The gas phase is assumed to be compressible and the calculated pressure is
used to determine the gas-phase density. Initially, the bottom part of the

Table 5.1: Physical properties of the binary and monodisperse particle sys-

tems
diameter density U ¢ Terminal Average
Particles (2 ¢) [um] [kam™3] [m/s] Velocity [m/s] Mass Fraction
Case 1
Bimodal mixture
glass beads 500 2640 0.19 20 0.5
glass beads 200 2640 0.04 3.2 0.5
Monodisperse mixture with same Sauter mean diameter
glass beads 485 2640 0.18 19 1.0
Case 2
Bimodal mixture
polystyrene 500 1150 0.09 8.2 0.30
glass beads 200 2640 0.04 3.2 0.70

fluidized bed is filled with a random mixture of two particles at rest with a
uniform solids volume fraction. In Case 1, the mass fraction is set 0.5 for
both the large and small particles. In Case 2, the solids volume fraction is set
equal; the mass fractions are not equal because the density of each species is
different.
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Table 5.2: System properties and computational parameters.

Parameter | Description value
pg Lkg/m?] | gas density 1.28
Hy [Pas] gas viscosity 1.7-107°
e[-] coefficient of restitution 0.9
ew [-] wall coefficient of restitution 0.9
ao [-] empiric constant Eq. 5.10 11.28
ar [-] empiric constant Eq. 5.10 -9.69
az [-] empiric constant Eq. 5.10 1.49
€max [-] maximum monodisperse
solids volume fraction 0.65
o [-] angle of internal friction 28
Dt [m] inner column diameter 0.15
Hy [m] column height 0.3
Hune [m] height at minimum 0.16
fluidization
€s.mf -] solids volume fraction 0.42
at minimum fluidization
Ax [m] x mesh spacing 1.00-1072
Ay [m] y mesh spacing 1.00-1072
At [s] timestep 1.00- 1075

Limiting case validation runs were performed with the CFD code describing
the bimodal particle mixture by setting the volume fraction of one particle
species to 10 > and the other to a realistic value; hence, the hydrodynamics
of the flow should be completely determined by the particle species with the
large volume fraction. The results in terms of bed expansion and bubble size
gave results at two simulated superficial gas velocities equal to the CFD code
employing the granular kinetic theory for a monodisperse particle mixture, as
employed by Van Wachem et al. (1998, 2000). The computational effort for a
run with the CFD code describing the bimodal particle mixture, however, is
increased by one order of magnitude over a run involving the monodisperse
particle mixture. Because of the magnitude of the required computational ef-
fort, each simulation has been performed up to fourteen seconds of real time.
One simulation takes almost four weeks of computational time on a 166 Mhz
IBM RS 6000 computer. Hence, on these short time-scales it was impossi-
ble to obtain good statistics on bubble behavior or on the dynamics of the
pressure fluctuations.
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5.5.1 Boundary conditions

All the simulations were carried out in a two-dimensional Cartesian space
in which front and back wall effects are neglected. The left and right walls
of the fluidized bed are treated as no-slip boundaries for the gas phase and
free-slip boundaries for the particle mixture. The boundary condition for
the mixture temperature follows the equation of Johnson and Jackson (1987)
for a monosized particle configuration, but is corrected for the difference in
definition of the mixture temperature (Equation 5.14),

3Tn
TIPE
€ 3Tn
neq— ey [l - 21 et (544
6€s,mux [] - (E : > :|
s, max

where @’ is the specularity coefficient. The first term represents the genera-
tion of mixture temperature due to particle slip at the wall, while the second
term represents dissipation of fluctuating energy due to inelastic particle-wall
collisions. Simulations performed with an adiabatic boundary condition at
the wall (VT = 0) show very similar results.

The boundary condition at the top of the free-board (fluid phase outlet) is
a pressure boundary; the pressure at this boundary is fixed to a reference
value. Neumann boundary conditions are applied to the gas flow, requiring
fully developed gas flow. The solids volume fraction is held constant to 10~¢
at the outlet to ensure convergence and a physical solids velocity field in the
free-board. In this way, the whole freeboard is filled with a very small num-
ber of particles, which does not influence the behavior of the fluidized bed.

At the bottom of the fluidized bed, Dirichlet boundary conditions are em-
ployed for the gas phase in which the superficial gas velocity is specified. The
bottom is made impenetrable for the solids phase by setting the solids axial
velocity to zero.

5.6 Results and Discussion

5.6.1 Bimodal mixture Case 1

Figure 5.3 shows a visual representation of the total solids volume fraction
and the relative diffusion velocity of the larger species for bimodal mixture
Case 1. It can be clearly seen that the time-dependent segregation mainly
occurs in and near voids, and that bubbles are the cause of this segregation
behavior. From Figure 5.4 it can be clearly seen that the bed expansion is
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Figure 5.3: A visual representation of the total solids volume fraction indi-
cating the bubbles and the bed surface with contour lines and indicating the
relative velocity of the larger particles.

larger in the fluidized bed with a bimodal mixture than in the fluidized bed
with a monodisperse mixture. This is mainly due to the upward diffusion
of the smaller particle species. Figure 5.5, which gives the variation in bed
expansion as a function of the fluidization velocity, also shows that the bed
expansion is higher in the fluidized bed with a bimodal mixture than in the
fluidized bed with a monodisperse mixture. This result is consistent with the
experimental observations of De Groot (1967) and Grace and Sun (1991). In
the case of the bimodal mixture, a layer of the smaller particles dominates
the mixture in the top 25% of the bed. The difference in the bed expansion
between the bimodal and monodisperse cases with increasing gas velocity
reaches a maximum and then begins to decrease as the particle mixing in the
bimodal case improves., as well shown in Figure 5.6. The minimum fluidiza-
tion velocity of the bimodal mixture determined from the simulation results is
Ums = 0.14m/s, whereas the minimum fluidization velocity of the equivalent
monodisperse mixture is U+ = 0.19m/s. This observation also agrees with
the studies done by De Groot (1967) and Grace and Sun (1991). Part of the
difference between the bed expansion behavior and the shift of the minimum
fluidization velocity can be explained because the drag force and the gravity
force depend on different types of averaging(see Equation 5.9).

Figure 5.6 shows the result of the computation of the mixing index based on
the simulations of the bimodal mixture Case 1. The mixing index was deter-
mined by dividing the solids volume fraction of the large particles in the top
25% of the fluidized bed by the average solids volume fraction of the large par-
ticles in the entire bed. At velocities above the minimum fluidization velocity,
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Figure 5.4: The strip-averaged solids volume fraction as a function of bed
height for the the bimodal mixture and the monodisperse mixture Case 1
(Table 5.1) at U = 0.27m/s. For the bimodal mixture, the total solids vol-
ume fraction and the solids volume fraction of the individual Iarge and small
particle species are shown.

the predicted mixing index increases with superficial gas velocity, conforming
with the experiments and observations of Wu and Baeyens (1998). The thick-
ness of the layer of finer species occurring in the top of the bed decreases with
increasing superficial gas velocity and the top layer of particles in the fluidized
bed is getting increasingly better mixed.

5.6.2 Bimodal Mixture Case 2

Two simulations were performed of a fluidized bed containing the bimodal
particle mixture capable of inversion. Figure 5.7 shows the strip- and the last
four seconds of fourteen seconds s time-averaged solids volume fraction as a
function of bed height with a fluidization velocity of U = 1.08 m/s. It is clearly
seen that the larger, lighter particles segregate to the top of the fluidized bed
and the smaller and heavier particles segregate downwards. Due to the short
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Figure 5.5: The predicted bed expansion as a function of superficial gas ve-
locity for the bimodal particle mixture Case 1 (Table 5.1) compared with a
monodisperse particle mixture.

time averaging, the spread on the points is fairly large. The results for a higher
gas velocity, U = 1.85m/s, shown in Figure 5.8, show the opposite segre-
gation behavior. Due to the much larger granular temperature and granular
temperature gradients, the diffusion force is directed in the opposite direction
compared to the diffusion force at the lower gas velocity. Both averages were
determined in the interval between 10 and 14 s of real time. These times are
much too short to predict the final segregated state. Therefore, a quantitative
comparison with the literature is therefore not possible. The trends shown,
however, are the same as reported by Rasul et al. (1999). Rasul et al. (1999)
show rules of thumb when inversion can take place, but from the kinetic the-
ory of a binary mixture of particles, inversion can be easily explained. The
diffusion force and diffusion velocity, described by Equations 5.33 and 5.34,
are dependent on four quantities; the gradient in granular pressure, the gra-
dient in granular temperature, the gradient in chemical potential, and the
difference in force between one particle species and the other. In the case
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Figure 5.6: The predicted mixing index as a function of superficial gas velocity
for the bimodal particle mixture Case 1 (Table 5.1).

that Rasul et al. (1999) studied, the force difference between the small and
heavy particles and the large and light particles is dominant at low gas veloc-
ity. Both the gravity force and the upward drag force lead to a much smaller
upward force for the small and heavy particles. Hence, the diffusion force
and thus the diffusion velocity cause a downward movement of the small and
heavy particles. When the gas velocity is increased, however, the gradients
in granular temperature and granular pressure become dominant terms in the
equations for the diffusion force and the diffusion velocity.

5.7 Conclusions

In this paper we describe a CFD model for gas-fluidized beds containing a
bimodal particle size distribution. The particle phase stress in the fluidized
are predicted by means of the granular kinetic theory for a binary mixture of
smooth, nearly elastic spheres.
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Figure 5.7: The strip- and 4 s time-averaged solids volume fraction of the
bimodal mixture Case 2 fluidized bed at U = 1.08 m/s. The lines are drawn to
guide the eye.

The employed CFD model correctly predicts the increased bed expansion com-
pared to fluidized beds with a monodisperse particle size distribution, as ob-
served in experiments by de Groot (1967). Related to this, the minimum
fluidization velocity is also significantly lowered in the simulations with a bi-
modal particle size distribution, as experimentally observed by Grace and Sun
(1991). The CFD model with a bimodal particle size distribution is also able to
show inversion, as observed by Rasul et al. (1999). The three physical effects
derived from first principles causing inversion are presented, based upon the
granular kinetic theory for a bimodal mixture.

Finally, it is noted that the calculation times are extremely large. There-
fore, it is not possible to predict the behavior of fluidized beds containing a
bimodal mixture over a time-scale of a few seconds of fluidized beds with a
realistic size.
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Figure 5.8: The strip- and 4 s time-averaged solids volume fraction of the
bimodal mixture Case 2 fluidized bed at U = 1.85m/s. The lines are drawn to

guide the eye.
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particle mass, kg
mixing index
normal vector, m
number density, m~
empirical material constant
normal pressure, N m~2
Particle Reynolds number
empirical material constant
mixture energy flux, kgm?s—3
granular temperature, kgm? s~
average velocity, ms™’
superficial gas velocity, ms™
diffusion velocity, ms~’
volume of a particle, m3
small species volume fraction
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interphase drag constant, kgm=3s~!

volume fraction

angle of internal friction

specularity coefficient

rate of granular energy dissipation, kgms~
bulk viscosity, Pas

shear viscosity, Pas

chemical potential

density

particle radius, m

viscous stress tensor, Nm™ 2

3

first particle species

second particle species

gas phase

i-th particle species

k-th particle species

employ properties of species i and k
maximum

at minimum fluidization

minimum; kick-in value
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mono monodisperse particle size distribution
s solids mixture
slip slip

w wall
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5.A Appendix

The chemical potential for the radial distribution coefficient as defined in
Equation 5.39
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Chapter 6

Experimental validation of
Lagrangian Simulations

This chapter describes the Lagrangian-Eulerian model in which the trajecto-
ries of individual particles in a continuous gas-phase flow are calculated. Also,
experiments were performed in a small laboratory-scale experimental setup
and compared to simulations of the same geometry and particle properties.
Both voidage and pressure time-series obtained from the simulations and the
experiments are compared to each other, to obtain insight into the accuracy
of the physical assumptions made in this Lagrangian model.

This chapter has been accepted for publication:

B.G.M. van Wachem, ).C. Schouten, R. Krishna, and C.M. van den Bleek,
(2000), Experimental validation of Lagrangian-Eulerian Simulations of Flu-
idized Beds, accepted for publication in Powder Technology.
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Abstract

The present study aims to validate two-dimensional Lagrangian-Eulerian sim-
ulations of gas-solid fluidized beds by comparing these with dedicated exper-
imental data obtained with polystyrene Geldart type D particles of 1.545 mm
size.

Experimental data on pressure, voidage, and bed height fluctuations, and
the power spectral density are compared with three different implementa-
tions of the Eulerian-Lagrangian model. Though qualitative trends found in
the experiment are correctly reproduced by the simulations, it is found that
the simulations are particularly sensitive to porosity estimation procedures
used in the three different simulation strategies employed. Furthermore, the
phenomenon of particle clustering predicted by the model do not conform
to experimental observations; this is because the physics of the break-up of
clusters is not properly captured in the model.

6.1 Introduction

Due to increasing computer power, discrete particle models, or Lagrangian
models, have become a very useful and versatile tool to study the hydrody-
namic behavior of particulate flows. In these models, the Newtonian equa-
tions of motion are solved for each individual particle, and a collision model
is applied to handle particle encounters. Recently, such particle models have
been combined with an Eulerian fluid model to simulate freely bubbling flu-
idized beds and circulating fluidized beds (e.g. Tsuji et al., 1993, Hoomans
et al., 1995, Xu and Yu, 1997). Up to date, however, these models have not
been properly validated by comparison with experiments.

Another approach in simulating the behavior of fluidized beds is through
Eulerian-Eulerian modeling. In this approach the particle phase is averaged
and thus the particles are not seen as separate objects, as in Jackson (1997)
(volume averaging) or Zhang and Prosperetti (1994) (ensemble averaging). Af-
ter the correct particle and gas governing equations are obtained, closure re-
lations need to be applied to describe the particle-particle interactions and
the gas-particle interactions. The conservation laws applicable during a hard
sphere collision are volume averaged to describe the particle-particle inter-
actions. This was done for an ideal gas consisting of fully elastic particles by,
for instance, Chapman and Cowling (1970). For more realistic particles, Lun
et al. (1984) successfully derived the kinetic theory of granular flow (KTGF).
This theory provides the particle-particle closure derived from first principles.

The drawback of volume averaging the particle phase, as in the Eulerian-
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Eulerian approach, is the loss of small-scale information. In the Eulerian-
Eulerian approach, it is impossible to predict the paths of individual particles,
while Lagrangian models can be used to study the flow of each individual par-
ticle. In the Lagrangian-Eulerian approach, in which the paths of individual
particles are calculated, many researchers do employ a coarser grid resolu-
tion for the gas phase equations than the length-scale that is used in the
particle-phase calculations. Hence, the gas-phase does not perceive, initiate,
group, or break-up particle clusters when the clusters are smaller than the
length scale of the gas-phase solution. As a result, microscale cluster forma-
tion is not driven by gas flow, but only by particle-particle collisions. Also,
due to the different averaging scales, the gas does not flow around small clus-
ters of particles, but flows through them as if the clusters are a fixed porous
medium. Only when clustering is mainly initiated by particle-particle colli-
sions and clusters are much larger than the gas-phase averaging scale, the use
of a coarser gas-phase grid resolution is justified.

The goal of this work is to validate the predictions of the Lagrangian-Eulerian
model with experiments of a small fluidized bed with Geldart D particles, to
gain insight in the effect of the assumptions made in the Lagrangian-Eulerian
model derivation. The small bed geometry and the large particles make
the computationally expensive Lagrangian-Eulerian simulations of this sys-
tem feasible. Results obtained from simulations of the pressure fluctuations,
voidage fluctuations, bed expansion, and the visual representation of the lo-
cation of the particles are compared to experiments with the same geometry,
particle type, and superficial gas velocities.

6.2 Particle phase

We consider flows of homogeneous, inelastic, frictional spheres in a two-
dimensional geometry. The path of each individual particle is calculated, this
is called a Lagrangian calculation. The calculation of the paths of the particles
consists of two steps: (i) the motion of the particles, and (ii) the treatment of
the collision of a particie with another particle.

6.2.1 Motion of particles

The motion of individual particles is completely determined by Newton's sec-
ond law of motion. The forces acting on each particle are gravity and the
traction force of the gas phase on the particle. Thus, the momentum equa-
tion describing the acceleration of the particle is (Jackson, 1997)

_ V.
meas = Mg+ V,V-T— V, VP + Be—‘(vgfvs) (6.1)

s
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where a; is the acceleration of one particle, V; is the volume of one particle,
T is the local gas phase shear tensor, P is the local normal pressure, ¢, is
the local solid volume fraction, and 3 represents the interphase momentum
exchange coefficient, as is well-known from two-fluid models. The gas phase
shear tensor is defined as

_ 2 —\ =

T=2u fgutr (D) i (6.2)
where D is the strain rate tensor,

= 1

D=3 (Vv +(vv)') (6.3)

and p the gas-phase viscosity. In most cases, the magnitude of the gas-phase
shear tensor is not significant and its contribution can be safely omitted, as
it is an order of magnitude smaller than the pressure drop. Xu and Yu (1997)
omit the pressure drop term in their particle phase momentum equation. This
pressure drop term, however, is not negligible but the same order of magni-
tude as the interphase momentum transfer coefficient.

The interphase momentum transfer coefficient {3 is given by Wen and Yu (1966)
as

1— s/ts B —
pcplleleala Vil j2es (6.4
4 a4,

with the drag coefficient C, given by Rowe (1961) as

24 :
e [140.15 (1~ e.)Rep )] if (1~ €5 )Re, < 1000
Cp = Rep (1 —€s)
0.44 if (1 — e5)Rep, > 1000
(6.5)
where the particle Reynolds number Re,, is defined as
Re, = TpPolVs ~ Vsl (6.6)

Hg

The interaction of the particle rotation with the gas-phase is neglected. This
assumption is verified in the results section.

6.2.2 Collision of particles

The collisions between two particles are assumed binary, and the velocities
of the particles emerging from a collision are calculated by considering the
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balance of linear and angular momenta in the collision. The simplified model
proposed by Louge (1994), originally developed by Maw et al. (1976), is em-
ployed to describe the dynamics of individual collisions. During a collision,
energy is stored in elastic deformations associated with both the normal and
the tangential displacements of the contact point relative to the center of the
sphere. Because the release of this energy may affect the rebound signifi-
cantly, coefficients of restitution associated with both the normal and tan-
gential components of the velocity point of contact are taken into account.
This model is employed for both particle-particle and particle-wall collisions.

We consider two colliding spheres with diameters d; and d, with masses m;
and m; with centers located at ry and r;. The unit normal along the line
joining the centers of two spheres is n = (r; —r,)/|ry —r2|. During the col-
lision, sphere 2 exerts an impulse J onto sphere 1. Prior to the collision the
spheres have translational velocities ¢; and ¢, and angular velocities w; and
w>. The corresponding velocities after the collision are denoted by primes.
The velocities before and after collision are related by

mi(c — 1) = —my(ch —c2) =1 (6.7)
and

2Ly, 21
d—:(w]—wl):——z(w'z—wz):—nx] (6.8)

where I = md?/10 is the moment of inertia about the center of a homogeneous
sphere. In order to determine the impulse ], the relative velocity q at the
point of contact is defined:

d d
q=(c1 —¢2) — (%cm +72w2) X n (6.9)

With the above equations, the contact velocities before and after the collision

are given by
7 (1 1 5/ 1 1
Q’q_§< +—>J—z<—+—>n(l-n) (6.10)

my mz my mz

The coefficient of restitution, e, characterizes the incomplete restitution of the
normal component of q:

n-q =—en-q (6.11)

where 0 < e < 1. In collisions that involve sliding, the sliding is assumed to
be resisted by Coulomb friction and the tangential and normal components
of the impulse are related by the coefficient of friction p:

nx]=umn-) (6.12)
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where pu > 0. Combining Equations 6.10 through 6.12 provides an expression
for the impulse transfer in the case when the collision is sliding:

(1+e)(q-n)n+ p(1 +e)cotylq —n(q - n)]
()
my m;

where vy is the angle between q and n and the superscript 1 denotes that
the collision involves sliding. With small v the collision is sliding, and as y
increases the sliding stops when

-

(6.13)

nxq =-inxq (6.14)
or equivalently
2(14¢)
tyo = 0o 6.15
cotvo 7(1+e)u ( )

where 0 < & < 1 is the tangential coefficient of restitution. Collisions with
Y > vo do not involve sliding but sticking, and in this case the impulse is
found by combining Equations 6.10, 6.11 and 6.14:

o __(+ella-mn+ 2(1+&)lq—n(q-n)
()
my mp

In this expression, the superscript 2 denotes the collision does not involve
sliding, but sticking. The three parameters e, u, and & are taken to be con-
stant and independent of the velocities.

(6.16)

Collisions with a flat wall are treated by considering the wall as a particle
with infinite mass and with the appropriate wall values of ¢, u, and &.

6.2.3 From two dimensions to three dimensions

If the local porosity, €4, is calculated by dividing the empty space (not oc-
cupied by particles) by the total space, this will give a different result in
two dimensions and in three dimensions. To correct for this inconsistency,
Hoomans et al. (1995) suggests to transform the two-dimensional porosity
with the following equation:

2

]i
m( €20)

where e,p is the porosity defined as the area occupied by disks in the two-
dimensional space. The basis of this equation is to assume equal spacing be-
tween the two-dimensional disks in a hexagonal lattice and three-dimensional

(6.17)

€3p =1—
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particles in a FCC lattice. Xu and Yu (1997) propose a different equation,

K
Vi
im1
AV
in which the summation is taken over all the particles in the volume AV, which
is the volume of a computational cell with the thickness of one particle, thus
AV = AxAydy, and V; is the volume of particle i. This equation gives slightly
different predictions for e3p than the equation proposed by Hoomans et al.
(1995).

€3D = 1— (618)

Because of the ideal spherical particles in the two-dimensional simulations,
the ideal solids packing can be easily obtained. In practice, however, this
packing is never obtained. A third method should also be considered, namely
the one proposed by Hoomans et al. (1995) with an empirical parameter con-
taining the maximum experimental solids packing in practice, v, thus

2 3
esp=1—v (1—ep)? (6.19)
V3
1—¢ i ini
v 3D,experimental minimum (6.20)

1~ €35 theoretical minimum

Both the Equations 6.17 and 6.19 are used in this work and the results of
simulations employing both forms are compared with each other.

A fundamental problem regarding the translation of the corresponding num-

ber of particles in two-dimensions to the number of particles in three-dimensions

is the pressure drop. When the two-dimensional bed is filled with particles
up to a certain height, the number of two-dimensional particles is not equal
to the number of particles as experienced by the gas-phase, due to the trans-
lation of the voidage from two-dimensions to three-dimensions. Hence, the
pressure drop calculated in the gas-phase is less than the weight of the par-
ticles, by the pre-factor in Equation 6.17. Thus, the pressure drop calculated
by two-dimensional Lagrangian simulations will predict too low a pressure
drop compared to experiments with the same initial bed height. Increasing
the number of particles to correct for this loss of weight will increase the pres-
sure drop, but will also change the dynamics of the particle phase because the
height over diameter ratio of the dense fluidized bed is changed.

6.3 Gas phase

The motion of the gas-phase is calculated from the volume averaged gas-
phase governing equations as put forward by Jackson (1997). The continuity
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equation for the gas phase is
979 | V-eqvg =0 (6.21)

and the momentum balance is

d -
%gvg + V- (egpgVgVq) =— €gVP + €4V - Ty + €408
K
Vi — Vs
‘ZMM"“XS") (6.22)
i=1 §

in which the last term represents the interphase momentum transfer between
the gas phase and each individual particle. & represents a pulse function,
which is one if its argument is zero and zero otherwise. The last term is to
ensure that the interphase momentum transfer is only taken into account in
the gas-phase momentum equation at the location of the corresponding par-
ticle.

The left and right walls of the fluidized bed are treated as no-slip velocity
boundary conditions for the gas-phase. Dirichlet boundary conditions are
employed at the bottom with a uniform gas inlet velocity. The boundary
condition at the top the fluidized bed is a so-called pressure boundary. The
pressure at this boundary is fixed to a reference value, 1.013-10°> Pa and Neu-
mann boundary conditions are applied to the gas-phase velocity, requiring a
fully-developed gas flow.

As was indicated earlier, a problem of this Lagrangian-Eulerian approach
is the length-scale of the averaging. In the Eulerian-Eulerian approach the
length scales of the averaged gas-phase and particle-phase are equal and the
“sub-grid” behavior of the particles is described with the kinetic theory of
granular flow. In the Lagrangian-Eulerian approach, the length-scale of the
gas-phase is larger than the length-scale of the particle phase. The infor-
mation of gas induced movement of particles, as well as particle induced
movement of gas, cannot be transferred between the phases on the eddy
or individual particle scale. Hence, a computational cell in which a small
cluster of particles is present is penetrated by the gas-phase, similar as a
fixed porous medium; the gas phase does not discriminate between homoge-
neously distributed particles or clustered particles within one cell. In reality,
the gas-phase “dodges” the particle cluster and moves perpendicular to the
initial flow before the cluster. Particle clustering due to the local gas flow is
thus not captured in the Lagrangian-Eulerian approach. This treatment of the
particle-gas phase coupling should be well kept in mind when attempting to
use this simulation method.
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6.4 Solution method

The gas-phase is calculated on a computational grid with individual grid size
of four to eight particle diameters. The gas-phase governing equations have
been solved on a staggered grid (Patankar, 1980) employing the SIMPLE al-
gorithm to determine the pressure of the gas phase. The discretization of the
terms is done with a second order TVD scheme in space and the second order
Crank-Nicholson scheme in time. The preconditioned bi-conjugent gradient
method was employed to solve the discretized gas-phase equations. The gas-
phase solution was verified to be grid independent on the employed grid size,
by means of grid refinement.

The solid volume fraction in the gas-phase momentum equation is determined
from the number of particles in the gas-phase computational cell, by employ-
ing Equation 6.17. The interphase momentum transfer is calculated from the
last term of the gas-phase momentum balance, and this coupling is treated ex-
plicit. To justify this, a very small time-step is employed, At ~ 1.0-10~*s. The
gas-phase properties at the particle surface are calculated by area weighted
averaging, as shown in Figure 6.1. This method is not mesh-size indepen-
dent, as there is a direct coupling between average particle properties, such
as particle porosity and velocity, and the gas-phase. The mesh-size of the
gas-phase needs to be small enough to predict realistic gas-particle interac-
tions, and large enough to determine an accurate average value for the particle
porosity, momentum transfer, and velocity. We have found that the length
of one gas-phase grid cell should be in the order of four to ten particle di-
ameters. After initialization of both phases, first the shortest collision time
of each particle is determined. This is done by comparing the location and
velocity of each particle with the other particles in the near vicinity by using
a particle-phase mesh, without checking a pair of particles twice, as indicated
by Figure 6.2. The collision time between two particles is determined by
(Allen and Tildesley, 1980)

—F12:C12— \/(1‘12 ce12)2 —cfy [, — (i + 3d2)?]

2
€12

teol = (623)
where r12 = r1 —r; and ¢y = ¢; — ¢,. If the inproduct ri2 - ¢12 > 0, the
particles are moving away from each other and will not collide. If the overall
shortest collision time (of all the particles) is larger than the time-step of the
gas-phase calculation, the particle positions are updated by the integration
of Equation 6.1 with the same time-step as the gas-phase. Hereafter, the
gas-phase properties are computed and the forces exerted by the gas phase
on each individual particle are calculated. Now, the shortest collision times
are determined again and the process is repeated from the beginning.
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Figure 6.1: The principle of area weighted averaging. The gas-phase proper-
ties are given in the corners of the gas-phase cell by the gas-phase solution
and are averaged to the center of the particle (denoted by the black dot) by
using the overlying areas as weighting factors. This figure has been adapted
from Hoomans et al. (1995).

If the overall shortest collision time is smaller than the time-step of the gas-
phase, the particle positions are updated by this shortest overall collision
time. Hereafter, the collision of the two particles in question is executed.
Then again, the shortest collision times of all particles are calculated. This is
repeated, until the overall shortest collision time is shorter than the time-step
of the gas-phase calculation minus the time-steps of all previous collisions
during this iteration. When the overall shortest collision time is larger than
the time remaining until the end of the gas-phase time-step, the gas-phase is
updated. This process is repeated until the required real time of simulation
is obtained.

6.5 Experiments and simulations

6.5.1 Experimental set-up

The experimental set-up consisted of a two-dimensional plexiglass rectangu-
lar column, 500 mm high, 90 mm wide, and 8 mm deep. A schematic rep-
resentation of the set-up is given in Figure 6.3. The gas flow was controlled
with a variable area flow meter and a valve. The dry air from the compres-
sor system was humidified to reduce static electricity build-up in the fluidized
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Figure 6.2: A three-by-three particle mesh. The shortest times of collision
of the particles in the center cell are determined by comparing the locations
and velocities of the particles in the white center cell with all the particles
in the nine particle cells. For the calculation times in the next particle cell,
comparing the particles in that cell with the particles in the white cell is no
longer necessary.

bed. The gas was only humidified partially to prevent condensation of water
in the bed (operating temperature 17 °C); polystyrene spheres with a density
of 1150 kg m~3 and a diameter of 1.54 mm (1.41 - 1.68 mm sieve fraction) were
used as particle system. The bed was filled to a height of 90 mm, correspond-
ing to 39 g of particles, which leads to a packed bed voidage of 0.475. The
minimum fluidization velocity calculated using Ergun’s equation is 0.74 m/s,
agreeing quite well with the experimentally determined value of 0.72 m/s.
The experiments were carried out at superficial gas velocities of U = 0.80m/s,
U=09m/s,and U=1.0m/s.

6.5.2 Measurements

Absolute pressure fluctuations were measured with Kistler piezo electric pres-
sure transducers, type 7261 at the side of the bed at heights of 45, 85, and
225 mm from the distributor plate. This sensor type measures the pressure
fluctuation relative to the average pressure with an accuracy of 2 Pa. The
sensors were connected to 0.10 m long copper tubes of 4 mm ID, the total
dead volume of sensor and tube was 2500 mm?>. The tubes were equipped
with 40 ym mesh wire gauze at the tips, to prevent particles from entering.
This set-up has been thoroughly tested for distortion of pressure fluctuation
amplitude and phase (Van Ommen et al., 1999). No significant influence was
found at frequencies typical for gas-solids fluidized beds (0-150 Hz). Also, the
absolute pressure was measured with a Validyne differential pressure trans-
ducer, type DP15, at a height of 5 mm. For each time-series, 300,032 data
points were recorded to file with 16 bits ADC using a SCADAS I1 data acqui-
sition system (LMS, Breda, The Netherlands). The sample frequency was set
to 1000 Hz with a filter frequency of 314 Hz. The time-series were analyzed
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Figure 6.3: The experimental set-up employed in this work. The symbols P
indicate where the pressure signals are determined.

using Fourier analysis and compared to the simulations. In addition to pres-
sure measurements, digital video recordings (25 frames/s, 60 s long) of the
fluidized bed were made and analyzed. The local voidage was calculated, from
the light intensity determined by the video recording, using the Lambert-Beer

relation,
1 I
- _ _ 6.24
€s 3 In (Io) ( )

where I is the measured light intensity, Iy is the minimum light intensity,
and a is obtained from calibration of the measured light-intensity and the
corresponding known solids concentration.

6.5.3 Simulations

There are several ways of determining the number of particles which need
to be used in a two-dimensional simulation in order to be able to mimic the
experiments. The solids volume fraction in the two-dimensional configura-
tion at the minimum fluidization velocity can be determined by transforming
the measured solids volume fraction with Equation 6.17 to the appropriate
two-dimensional solids volume fraction. When the diameter-height aspect
ratio of the fluidized bed is equal to the experiments, this approach leads to
3110 required particles. When the ideal two-dimensional maximum solids
volume fraction is used, the number of required particles is 4080. The parti-
cle specifications used in the simulations are the same as in the experiments.
The empirical parameter in the fit equation to translate the porosity from
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two dimensions to three dimensions, Equation 6.19, is determined experi-
mentally to be v = 0.89. For the coefficient of restitution and coefficient of
friction, generally proposed values were employed. As long as the coefficient
of restitution is well above 0.5 and not very close to 1.0, the dependency of
the simulation results on the coefficient of restitution is not very large. The
coefficient of friction has little influence, as the total rotational energy of the
particles in the fluidized bed is very small. The details of the simulation con-
ditions are specified in Table 6.1. Both the simulations and the experiments
were carried out at superficial gas velocities of U =0.8m/s, U =0.9m/s, and
U=10m/s.

Three different simulation strategies were followed. In strategy A, the equa-
tion of Hoomans et al. (1995) is employed to translate the two-dimensional
porosity into a three-dimensional one. The simulations with this strategy
contain 3110 particles. In strategy B, the fit equation (Equation 6.19) to
translate the porosity from two dimensions to three dimensions is employed.
Simulations with this strategy also contain 3110 particles. Strategy C also em-
ploys the Hoomans et al. (1995) equation, but the simulations contain 4080
particles. Figure 6.4 shows the kinetic energy and the rotational energy as
a function of time. The average rotational energy is an order of magnitude
smaller than the average kinetic energy. Hence, rotational effects, including
influence of particle rotation on the gas-phase, can be safely neglected.

6.5.4 Comparison

The locations of all the particles in the simulations of the fluidized bed are
qualitatively compared to the digital video recordings made of the fluidized
bed at the same operating conditions. More quantitatively, the simulation
predictions of the total time-averaged pressure drop over the fluidized bed,
the pressure fluctuations at 45 mm above the distributor, the average voidage
fluctuations in a plane at 45 mm above the distributor, and the time-dependent
bed expansion are compared with experiments employing the same operating
conditions. Furthermore, the power spectral densities (PSD) of the simu-
lated pressure fluctuations are compared with the experimentally determined
predicted fluctuations.

6.6 Results and discussion

Figure 6.5 shows a visual comparison of the location of the particles in three
simulations at a superficial gas velocity at U = 0.9 m/s and snapshots from the
corresponding experiment covering a complete period from bubble formation
to bubble eruption. In all three simulation strategies employed, large clusters
of particles were found to be present at the top of the bubble during bubble
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Figure 6.4: The total kinetic energy and rotational energy as a function of
time predicted by a simulation of a fluidized bed with a superficial gas velocity
u=0.9m/s.

eruption. This phenomenon is not observed in the experiments. The simu-
lated particle clusters are too stable, which is attributed to the Lagrangian-
Eulerian approach, as discussed earlier. The top series of snapshots in Figure
6.5 represents the simulation as a result of employing strategy A. The period
of bed oscillation from bubble formation to bubble eruption of the simula-
tion is visually in fair agreement with the experiment. The second series
represents a simulation as a result of employing strategy B. Although the bed
oscillation is similar to the one observed in the experiment, the bubble dy-
namics are not. Due to the extra decreased mass effect because of the fit
parameter in Equation 6.19, the gas-phase experiences too little resistance
from the particle phase. The third series represents a simulation as a result
of employing strategy C. The bubble eruption of this series gives a too high
bed height compared with the experiment, because the height of the simu-
lated fluidized bed is larger than employed in the experiment. The agreement
of the time between bubble formation and bubble eruption of the comparison
between all simulations and the experiments is reasonable. Comparison of
the simulations and experiments at superficial gas velocities of U = 0.8 m/s
and U = 1.0m/s show similar results.




6.6 Results and discussion 153

Table 6.1: Properties of the particles and fluidized bed used in the experi-
ments and the Lagrangian-Fulerian simulations.

Parameter Description Value

ps [kg/m3] | solid density 1150

pg [kg/m3] | gas density 1.28

ng [Pas] gas viscosity 1.7-107°

dp [mm] particle diameter 1.545

e[-] coefficient of restitution 0.9

w -] coefficient of friction 0.3

U ¢ [m/s] | minimum fluidization velocity 0.74

Dy [m] inner column diameter 0.0898

Hms [m] height at minimum 0.09
fluidization

€s.mf -] solids volume fraction 0.525
at minimum fluidization

v [-] empirical parameter 0.89
in Equation 6.19

Ax [m] X mesh spacing 9.97-10 3

Ay [m] y mesh spacing 9971073

The pressure drop in the simulations with 3110 particles is lower (strategy
A 340 Pa, strategy B 300 Pa) than the pressure drop measured in the ex-
periments (480 Pa). The predicted pressure drop by the simulation applying
strategy C is in very good agreement (483 Pa) with the experiment.

Figure 6.6 shows a comparison of a sample of the pressure fluctuation time-
series determined at 45mm above the distributor at U = 0.9m/s. In strat-
egy A, the shape and amplitude of the pressure fluctuations deviate clearly
from the experiment; the maximum amplitudes are higher and the peaks are
sharper. This suggests that the gas voids in the simulation are larger. The
time-scale of the pressure fluctuations is in fairly good agreement with the
experiment. The shape and time-scale of the pressure fluctuations obtained
by following strategy B are in reasonable agreement with the pressure fluctu-
ations determined in the experiment; the amplitude of the fluctuations, how-
ever, is much smaller. This suggests that in the simulation voids are much
smaller than observed in the experiment, confirmed by the visual observa-
tions of Figure 6.5. The time-scale of the pressure fluctuations obtained from
simulations following strategy C agrees reasonably with the experimentally
determined pressure fluctuations, but the amplitude is much too high. This
suggests that the voids in this simulation are much larger than observed in
the experiment. Also the shape of the fluctuations is somewhat different com-
pared to the experimentally determined pressure fluctuations.
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Figure 6.5: Ten snapshots of a visual representation of the location of the
particles at equidistant times (given at the bottom of the series in s) at a
superficial gas velocity of U = 0.9 m/s. The top series represents a simulation
employing strategy A, the second series is a result of strategy B, and the third
series is a result of employing strategy C. The bottom series are snapshots of
the experiment taken by a video camera.

The power spectral densities (PSD) of the complete pressure fluctuating time-
series determined at U = 0.9 m/s at 45 mm above the distributor are shown in
Figure 6.7. This figure shows that the location of the dominant frequency at
approximately 3 Hz, imposed by the bubble behavior, is similar in the experi-
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Figure 6.6: Pressure fluctuation samples taken at U = 0.9 m/s at 45 mm above
the distributor, resulting from the three simulation strategies compared to
the experiment.

ment and in all the simulations. This figure confirms that this most dominant
frequency is less pronounced in the simulations than in the experiment, de-
noted by the more broad maxima in the PSD of the simulations at the most
dominant frequency. The decrease in the PSD curve in Figure 6.7 at fre-
quencies exceeding 5 Hz, a power law fall-off, is a typical feature of gas-solid
fluidized beds (Van Wachem et al., 1999); the agreement between experiment
and simulations is remarkably good on this point.

Figure 6.8 shows the voidage fluctuations, as a function of time, averaged
in a horizontal plane at 45 mm above the distributor, at U = 0.9m/s, of the
three simulation strategies in comparison with the experiment. Simulated
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Figure 6.7: The power spectral density (PSD) as a function of frequency of
the pressure fluctuation series at 45 mm above the distributor at U = 0.9m/s,
resulting from the three simulation strategies compared to the experiment.

voidage fluctuations as a result of strategies A and C show too large fluctua-
tions and also the shape of the fluctuations is too sharp in comparison with
the experiment. This also suggests that the voids present in the simulations
following strategies A and C are too large. Simulations performed with strat-
egy B show shapes and amplitudes that are much more similar to the mea-
sured voidage fluctuations. All three simulation strategies predict a slightly
too small time-scale of the voidage fluctuations. Figure 6.9 shows the bed
height as a function of time as a result of the three simulation strategies and
the experiment at U = 0.9m/s. All simulation strategies show quite differ-
ent results compared to the experiment. The average time-scale of the bed
fluctuation is in fairly good agreement, which can also be seen from Figure
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Figure 6.8: Fluctuations of the solids volume fraction averaged in a horizontal
plane at 45mm above the distributor at U = 0.9m/s, as a function of time,
resulting from the three simulation strategies compared to the experiment.

6.5. The amplitudes of the bed expansion in simulations by strategy A and C
are too large. This is a result of too vigorous bubbling, indicating larger gas
voids than present in the experiments. The bed expansion amplitude from
simulations following strategy B is too small. Enlarging the empirical factor
v in Equation 6.19 will improve the results, as this translation equation will
then produce results closer to strategies A and C.

The average bed expansion and its standard deviation for the three simulation
strategies and the experiment are shown in Table 6.2. Strategy A compares
well to the experiment; it seems that the increase in void size, due to the
interphase-momentum transfer equation, is accounted for by the number of
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Figure 6.9: Fluctuations of the bed height at U = 0.9m/s, as a function of
time, resulting from the three simulation strategies compared to the experi-
ment.

particles.

6.7 Conclusions

The goal of this paper is to validated two-dimensional Lagrangian-Eulerian
simulations of a gas-solid fluidized bed containing polystyrene particles with
laboratory-scale experiments of the same geometry. One difficulty in the
two-dimensional Lagrangian-Eulerian model is the translation of the two-
dimensional porosity of the particles to a three-dimensional one, required by
the gas-phase and the interphase momentum transfer. To tackle this prob-
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Table 6.2: The average bed expansion and the standard deviation determined
for the three simulation strategies and the experiment.

Gas velocity: 08m/s | 0.9m/s 1.0 m/s
Strategy Bed expansion [m]

A 0.119 £ 0.021 | 0.124 £ 0.027 | 0.146 £ 0.332
B 0.094 + 0.003 | 0.097 +£ 0.008 | 0.104 + 0.180
C 0.162 + 0.041 | 0.190 £ 0.046 | 0.212 + 0.298
experiment 0.114+ 0.009 | 0.120 £ 0.019 | 0.138 £ 0.019

lem we have followed three strategies, A, B, and C, in performing simulations,
each with different assumptions. In one of the strategies, we have included
an empirical parameter to fine-tune the pressure drop or the bed expansion
with the experimentally determined one. We have not found a strategy, how-
ever, that can successfully predict all features of the fluidized bed as observed
in the experiments. Performing three-dimensional Lagrangian simulations
either with a two-dimensional or three-dimensional Eulerian gas-phase will
overcome the difficulty in translating the two-dimensional porosity to a three-
dimensional one, but will increase the computational cost as the number of
particles to obtain the required bed height in three-dimensions is much larger
than in two-dimensions.

Because the gas-phase hydrodynamics are resolved on a larger scale than the
particle-phase dynamics, the method is not grid independent and “micro-
scale” clustering cannot be captured. Animations show that “micro-scale”
clustering does contribute to the total fluidized bed behaviour. Resolving the
gas phase on a scale smaller than the particle size, either by direct numerical
simulation (DNS) (Hu, 1996) or by the more elegant fictitious domain method
(Glowinski et al., 1999), can resolve this problem.

Overall, the two-dimensional Lagrangian-Eulerian simulations are in fair agree-
ment with the experiments. With an added empirical parameter in the trans-
lation from the two-dimensional porosity to the three-dimensional porosity
the pressure drop or the bed expansion can be fine-tuned. To capture the
behaviour of the physics of the fluidized bed more precisely, applying a three-
dimensional Lagrangian-Eulerian method is advised.

Nomenclature
a empirical parameter
a particle acceleration, m s>

c particle velocity, ms~'
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Greek

Al T o< ™

Subscript

0

1,2
2D
3D

9

drag coefficient

particle diameter, m
column width, m
coefficient of restitution
gravitational constant, ms~
height, m

moment of inertia, kg m?
impulse transfer during collision, kg ms
number of particles
light intensity, cd
particle mass, kg
normal vector, m
pressure, Pa

relative velocity, ms™
Reynolds number
point in space, m
time, s

inlet (superficial) gas velocity, ms™
minimum fluidization velocity, m s’
velocity vector, ms™'

volume of computational cell, m3
particle volume m3

x mesh spacing, m

y mesh spacing, m

2

1

1

1

interphase drag constant, kgm 3 s~!

angle between impact and normal
volume fraction

friction coefficient

empirical parameter

density, kgm—3

viscous stress tensor, N m~—2
tangential coefficient of restitution

minimum intensity
particle index
two-dimensional
three-dimensional
gas phase
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Chapter 7

Conclusions and Outlook

This chapter gives a brief overview of the research described in this thesis.
Goals and conclusions of this thesis are presented in the framework of research
performed by other workers in the past. Finally, a short outlook to the near
future is given.

7.1 Developments since 1967

In 1967 Anderson and Jackson derived the volume-averaged governing equa-
tions to describe gas-solid flow. In 1978 Pritchett et al. performed simula-
tions of a bubble injection with similar governing equations. In these mod-
els, it was unknown how to treat the solid-phase stresses. Physical behavior
dominated by drag between the solid-phase and the gas-phase, like the for-
mation of bubbles at a single orifice, can be successfully predicted by these
models. To overcome the deficiency of these governing equations without
a proper treatment of the solid-phase stresses, Jackson proposed a solid-
phase viscosity model in 1985. Realistic values for the solid phase stress
were, however, unknown. In 1983 Jenkins and Savage started to derive the
kinetic theory for granular flow for a mixture of identical, smooth, nearly elas-
tic, spherical particles, analogously to the kinetic theory for gases, as derived
by Chapman and Cowling in 1970. The main difference of the kinetic theory
for granular flow compared to the kinetic theory for gases, is that collisions
occur without conserving energy and momentum. Not only the total energy
in the system but also the energy of the vibration of the particles is no longer
conserved, making the derivation of the theory more complex. In 1984 Lun
et al. presented their final equations of the kinetic theory of granular flow.
The research done in the present thesis is largely based on these equations.
Some authors have presented their own derivation of the kinetic theory of
granular flow. Gidaspow (1994) has presented kinetic theory of granular flow
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equations with particular assumptions regarding the elasticity of the parti-
cles. Syamlal et al. (1993) neglect streaming contributions (contributions due
to particle movement) dominating in the dilute flow regime, studying only
dense flow of particles in gas with these equations. Also, some work has
been done in describing the influence of the gas-particle interactions on the
particle fluctuating velocity.

7.2 Aim and scope of this work

The work presented in this thesis provides an overview of all the different
approaches in the literature and assesses the qualitative and quantitative dif-
ferences. Furthermore, the different models described in the literature are
compared directly and by their impact on the simulation results. It is shown
that the differences between the theories are negligible in the case of a dense
gas-solid fluidized bed; the “newer” theories predict the same solid-phase
stress as the “classic” Lun et al. theory. Gas turbulence and gas-solid turbu-
lent interactions can be safely omitted due to the dense character of the sys-
tem. Moreover, an analytical equation predicting the granular temperature
is recommended. Simulations show that this analytical equation predicts the
same granular temperature as obtained when solving the full granular energy
balance, but the computational effort is significantly decreased.

7.3 Comparing governing equations

In 1975 Ishii has rigorously derived a set of governing equations for fluid-
fluid low. Many researchers, however, use Ishii's equations for gas-solid
flow. This thesis shows that these governing equations are fundamentally
different from the equations derived by Anderson and Jackson. The Ander-
son and Jackson governing equations are correct for gas-solid flow and the
Ishii governing equations are correct for fluid-fluid (i.e. gas-liquid) flow. The
differences between simulations with each of the sets of governing equations
applied to gas-solid fluidized beds are not large in terms of bed expansion or
bubble behavior, but are clearly present on the scale of local solids volume
fraction and local solids volume fraction gradients. In other gas-solid flows,
in which sharp gradients in solids volume fraction occur, the difference be-
tween the Ishii and the Anderson and Jackson governing equations may be
even more pronounced.
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7.4 Interphase momentum transfer

In 1952 Ergun has determined a (semi) analytical equation predicting the
pressure drop over a fixed bed as a function of gas flow and bed porosity.
The determined pressure drop can be translated into the gas-solid interphase
momentum transfer. Richardson and Zaki (1954) extended this work by de-
termining the influence of the settling velocity of one particle in a liquid-solid
fluidized bed in the vicinity of other particles. Wen and Yu (1966) have ex-
tended the work of Ergun (1952) by increasing the range of solids volume
fraction and taking the measurements of many researchers into account. All
three of the mentioned theories, or a combination of these theories have
been used in simulations of gas-solids flows by researchers. This thesis shows
that these three theories in determining the gas-solid interphase momentum
transfer may lead to very different results. The equation proposed by Wen
and Yu gives the best results in simulations of fluidized beds. An unresolved
problem so-far, is that the scale on which the interphase momentum transfer
equation is applied is much smaller than the scale on which the equation was
determined by experimentalists. Possibly Lagrangian-Eulerian simulations
with a very detailed gas-phase solution, or Lattice-Boltzmann simulations
can resolve this in the near future and result in a more fundamental theory
to describe gas-solid interphase momentum exchange.

7.5 Validation

Some researchers have described simulations of freely bubbling fluidized beds
or a bubble injection into a fluidized bed, but hardly any researchers have
properly validated the outcome of these types of simulations. This valida-
tion, when performed at all, mostly consists of qualitatively comparing pho-
tographic material with the simulation results. One of the major goals of this
thesis is to rigorously validate the outcome of simulations of freely bubbling
fluidized beds, slugging fluidized beds, and bubble injection into fluidized
beds. In this work the time-averaged properties, such as bed expansion and
bubble behavior, and the dynamic properties, such as the frequency behavior
of voidage and pressure fluctuations, and the unpredictability of the behav-
ior quantified by the Kolmogorov entropy of the fluidized bed, are validated
by comparison with experimental data and correlations from the literature.
Two-dimensional CFD simulations of gas-solid fluidized beds described in this
thesis predict the time-averaged and dynamic behavior of fluidized beds fairly
well. Quantities as bubble size, bubble rise velocity, dominant frequency of
the pressure fluctuations at a point in the fluidized bed, and the Kolmogorov
entropy are in good agreement with existing theory, measurements and em-
pirical correlations. This work shows that dense gas-solid CFD models are
capable of giving a good prediction of the actual flow patterns in fluidized
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beds, and are a very valuable tool, not only in the validation of existing em-
pirical correlations, but also in the improvement of existing correlations, the
determination of new correlations, and in the calculation of specific physical
properties of a certain configuration.

7.6 Granular theory for a bimodal particle mixture

This thesis also presents the derivation of the kinetic theory of granular flow
for a bimodal particle mixture. With this theory, the behavior of a fluidized
bed containing two spherical particle species with different densities and/or
diameters can be predicted. This theory also predicts the diffusion velocity
of one species relative to the other species and can thus predict segregation.
From the basis of this theory, the driving physics behind segregation can be
divided into three main causes: gradients in granular temperature, gradients
in the “chemical” potential, and the difference in external force between the
two particle species. The results of simulations described in this work of flu-
idized beds containing a bimodal particle size distribution show the correct
trends, as an increased bed expansion and the possibility of inversion, com-
pared to experiments described in the literature. However, the computational
effort for this model is tremendous. Hence, it is still impossible to achieve
simulations of a large enough time-scale to fully validate this bimodal theory.

7.7 Lagrangian-Eulerian fluidized bed simulations

Finally, this thesis presents Lagrangian-Eulerian simulations of gas-solid flu-
idized beds, and the results of the simulations are compared to experiments
also described in this thesis. Lagrangian models have been put forward in the
literature as powerful tools in predicting the small-scale behavior of parti-
cles. In the Lagrangian model, the locations and trajectories of each particle
are tracked. The gas-phase is solved on a fairly coarse grid and the forces
on the particles are calculated by interpolation of the grid points on which
gas-phase solution is predicted. Hence, calculation of detailed flow of the
gas phase is neglected, leading to some deviating results compared to exper-
iments described in this work. Also, the translation from two-dimensional
to three-dimensional simulations is a major problem. Some results, like the
dynamics of the particle phase, however, are predicted fairly well when com-
paring to experiments. The Lagrangian-Eulerian model in this form seems
less promising than claimed by some authors.
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7.8 Conclusion

The overall conclusion of this thesis is that gas-solid CFD models for fluidized
beds are capable of capturing all important physics and give a good prediction
of the hydrodynamic behavior of fluidized beds. In the near future, this model
can be used to improve or derive empirical correlations capturing the behavior
of fluidized beds, like bubble behavior or bed expansion, or can be directly
used to scale-up gas-solid fluidized beds.

7.9 Two- versus three-dimensions

To obtain even better predictions of fluidized beds, preferably three-dimensional

simulations should be performed instead of two-dimensional. Currently,
there are two bottlenecks in performing three-dimensional simulations. First,
the required computational effort is very large. With the current growth of
computational power, however, it is expected that this problem will be over-
come within a few years. Secondly, it is fundamentally more difficult to in-
vert a three-dimensional discretization matrix than a two-dimensional one.
However, mathematicians have achieved major improvements on the solv-
ing algorithms for sparse three-dimensional matrices and also this problem
will be surely overcome within the next few years. Therefore, the current
trend in multiphase flow to perform two-dimensional simulations will shift
to performing three-dimensional simulations.

7.10 Outlook

With increasing computational power, Lagrangian-Fulerian simulations can
solve the gas phase on a scale much finer than the particle size, so that no
empiric equations are necessary in describing the gas-solid interphase mo-
mentum transfer and the gas can easily move around every individual particle
or cluster. This simulation technique will then provide a very powerful tool
in predicting the gas and solids flow behavior in specific areas of the gas-solid
flow apparatus, or predict the correct gas-solid interphase momentum trans-
fer on the scale required by the Eulerian-Eulerian models, hence functioning
as an “input” model. The Lagrangian-Eulerian technique can emerge to be-
come a very promising technique in describing gas-particle flows on a very
small scale.

On the long term, much effort will be devoted to studying simulation tech-
niques capable of describing non-spherical, non-elastic, deformable multi-
component particle mixtures. In the Lagrangian-Eulerian method this re-
quires an order of magnitude increase in computational power and a difficult
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extension of the granular dynamics algorithm. In the Eulerian-Eulerian tech-
nique this will require a fundamental difference in the derivation of both the
governing equations and closure models.




Appendix A

The software manual

This chapter describes the software present on the CD belonging with this
thesis.

You are free to copy, use or change this software. Copies of this
software may be freely copied provided that all the files from the
original package are distributed together and unmodified. Modifi-
cations may be added separately. This program may not be sold or
licensed. Neither may a fee be charged for its use. If a fee is charged
in connection with this program it should cover the cost of copying
or distribution. UNDER NO CIRCUMSTANCES should payment of
such fees be understood to constitute legal ownership. If you use this
software to publish or present results in any form, we kindly ask you
to refer to our work.

Berend van Wachem, the author.

B.G.M.v.wachem@tue.nl

DISCLAIMER

THIS SOFTWARE COMES WITHOUT ANY KIND OF WARRANTY,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIM-
ITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. USE IT AT YOUR OWN
RISK. AUTHORS ARE NOT RESPONSIBLE FOR ANY DAMAGE OR
CONSEQUENCES RAISED BY USE OR INABILITY TO USE THESE
PROGRAMS.

i [ . |
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A.1 PartGas: Lagrangian code with Eulerian coupling

A.1.1 Introduction

PartGas is a two-dimensional computer code to calculate the individual tra-
jectories of particles in (disks) in a two-dimensional confined space. In the
same space, it is possible to solve a continuous fluid, applying two-way cou-
pled drag interactions with the particle phase. The theory behind this code is
described in Chapter 6 of the thesis.

First, the structure of the solving method is presented. Then, the structure
of the software is presented. Finally, it is shown how to enter the physical
parameters and run the code.

A.1.2 Structure of the solving method

The problem space is divided up into a number of particle cells. The parti-
cles in the problem space are all located inside these particle cells. When the
smallest collision time (see Chapter 6) needs to be calculated, the location
and velocities of particles in a specific particle-cell are only compared with
particles in the same particle cell or neighbouring particle cells, see Figure
A.1 and Chapter 6 of the thesis. The gas phase is solved on Eulerian cells.

Figure A.1: A three by three particle mesh. The shortest calculation times
of the particles in the center cell are calculated by comparing the location
and velocity of the particles in the white center cell with all the particles
in the nine particle cells. For the calculation times in the next particle cell,
comparing the particles in that cell with the particles in the white cell is no
longer necessary.

The coupling of the gas-phase variables to each individual particle is done by
means of surface averaging, see Figure A.2.
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In the computer code, one or more particle cells must fit into one
Eulerian cell!
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Figure A.2: The principle of surface weighted averaging. The gas-phase prop-
erties are given in the corners of the gas-phase cell by the gas-phase solution
and are averaged to the center of the particle (denoted by the black dot) by
using the overlying areas as weighting factors.

This is a very important restriction. In practical situations, however, this re-
striction is not a limiting one. Figure A.3 shows an example configuration.

A.1.3 Structure of the code

All the software has been developed in C++. The most important classes (In
C++ a class is a specific collection of variables and functions) in the software
are:

e GasPhase contains the staggered variables (velocities) and the non-staggered
variables (pressure and density) of the gas phase. Furthermore, this
class contains all the procedures to calculate an update of the gas phase,
including the SIMPLE pressure correction iteration, solving the mo-
mentum equations, and calculating the coefficients of the descritization
method. In this specific code, only a UPWIND and CENTRAL scheme
are available. The time can be descretized with Cranck-Nicholson or
first order.

e ParticleCell contains the particle cells and a linked list to the particles
belonging into the cell. ParticleCell also contains pointers to all neigh-
bouring particle cells. ParticleCell does not contain any procedures.
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Figure A.3: One Eulerian cell (continuous line) contains six by five particle
cells (dashed lines).

e Eulerian contains pointers to the particle cells belonging in the specific
Eulerian cell. The class Eulerian also contains functions to calculate
the forces on the particles from the gas phase and vice-versa. Eulerian
does not contain any pointer to the particles; particles must be allocated
through the pointers to the particle cells.

e Particles is the main class of the particle phase. It contains the array
with the particles, functions to place and move the particles, and per-
forms the input/output of the particle information through the classes
0UTput and INput.

e Particle is a very small class containing the diameter, velocity, and
rotation of each particle.

1

The file code. cpp is the main program that glues the gas-phase and the particle
phase together. This is done by calling C-like functions from the file cfunc. cpp.
Due to the organized structure of C++ the code is easily readable.

A.1.4 Running the code

The files in the directory PartGas can be read on most MS-DOS and UNIX
based computers and contains the C++ header files, denoted by *.hpp, the C++
program files, denoted by *.cpp, a Makefile, the inputfile infile, and two
MatLab, denoted by *.m, files for post-processing.
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A.1.5 Makefile

First, edit the Makefile for your specific computer. An example of the Makefile
is shown in Program A.1 The CFLAGS variable contains the achieved optimiza-
tion of the compiler. -g -G denotes the code will be suitable for debugging
and profiling. 02 and 04 are specific optimizations. Please refer to the manual
of your C++ compiler. The CC variable contains the name of the C++ compiler.
In the case of the GNU compiler this will be g++, wheras this above example is
suitable for HP-UX. The rest of the makefile contains the rules for compiling
the executable partgas and the dependencies.

A.1.6 info.hpp

The file info.hpp contains the neccesary physical parameters and particle-
phase properties, and the debug and geometry information. An example of
the file info.hpp is given in Programs A.2 and A.3. The file info.hpp contains
10 different sections:

1. The geometry of the system. In this section the total number of particle
cells is specified, as well as the number of particlecells in one Eulerian
cell. Also, the X and Y dimensions of the system are given in m.

2. The particle properties. The amount of particles, the initial perturba-
tion velocity (granular temperature), the particle density (in kg m=3), the
particle diameter (m), and the particle-particle and particle-wall resti-
tution and friction coefficients are specified.

3. The timestep of the system. Please note that this MUST be the same
timestep as specified in the gas phase.

4. The gas constants are specified which again need to equal the gas con-
stants in the gas-phase solver.

5. The gravity acceleration. This way the gravity can also be put under a
specific angle.

6. The input/output and restart options can be specified. Also how often
the intermediate results are written to disk is specified here.

7. The NULL pointer. In most compilers (in all of the ones 1 know) this
should he a zero.

8. The debug options. This might be an important section if you want to
add/alter/improve the code. Debug options include to verify the energy
conservation during particle/particle collisions, to verify that particles
do not overlap and input/output options to ensure correct working of
the code. Options with a C++ comment symbol, are turned OFF.
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Program A.1 The Makefile for the PartGas executable.
# .SUFFIXES: .hpp .cpp

CFLAGS=+04
# CFLAGS=-g -G
# CFLAGS=+02

CC=aCC

LIBS=-1m

OBJECTS = partlist.o particb.o particle.o general.o
cfunc.o jo.o Cell.o parser.o energy.o

HFILES = particb.hpp particle.hpp partlist.hpp general.hpp
types.hpp cfunc.hpp info.hpp parser.hpp Cell.hpp
info.hpp

# generic rule (van .C -> .o)

.Cpp-.0:
$(CC) -c $(CFLAGS) $<

#i## Executables creeren :
partgas: $ (OBJECTS) code.o $(0BJS2) Makefile
$(CC) $(CFLAGS) -o $@ code.o $(OBJECTS) $(0BJS2) $(LIBS)

#### dependencies:
code.o: code.cpp $(HFILES) Makefile

particb.o: particb.cpp $(HFILES) Makefile

io.o: io.cpp io.hpp types.hpp Makefile info.hpp
particle.o: particle.cpp $(HFILES) Makefile

part.o: part.cpp $(HFILES) Makefile

partlist.o: partlist.cpp $(HFILES) Makefile
general.o: general.cpp $(HFILES) Makefile

cfunc.o: cfunc.cpp $(HFILES) Makefile

Cell.o: Cell.cpp $(HFILES) Makefile
parser.o: parser.cpp $(HFILES) Makefile
energy.o: energy.cpp $(HFILES) Makefile
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Program A.2 The file info.hpp in which the partilce-phase and debug options
are given. Part 1 of 2.

#include <math.h>

#ifndef INFO_

#define INFO_

//

// 1. Geometry of the system:

//

#define XBOX 36 // Amount of particle cells in X-direction

#define YBOX 88 // Amount of particle cells in Y-direction

#define EULERX 4 // Amount of particlecells in ONE EULERCELL in X-direction
#define EULERY 4 // Amount of particlecells in ONE EULERCELL in Y-direction
#define XSIZ 0.08975 // total geometry size in X-direction

#define YSIZ 0.219383888 // total geometry size in Y-direction

//

// 2. Particle properties

1/

#define NPART 3110 // amount of particles
#define NBEADS_ 0 // void

#define PERTUBVELOC 0.05 // amount of fluctuating initial velocity
#define MASS 1150 // particle demnsity
#define DIAM 0.001545 // particle diameter

#define COR 0.95 // coefficient of restitution of particle/particle
#define CORW 0.95 // coefficient of restitution of particle/wall
#define FC 0.15 // friction coefficient of particle/particle
#define FCW 0.1 // friction coefficient of particle/wall

#ifndef PI

#define PI 3.141692654 // PI

#endif

#ifndef M_PI
#define M_PI 3.141592654
#endif

#define ALIGNPLACE_ // place particle neatly instead of random
// 3. Timestep of the system. PLEASE note that this timestep

// MUST equal the timestep specified in the gas phase file infile
//

#define TS_ 1.0E-4 // Timestep

1/

// 4. Gas constants

/

#define TEMP 293.0 // temperature of gas
#define MG 28.8E-03 // molecular weight of gas
#define MUG  18.0E-06 // gas viscosity.

#define R 8.3143 // gas constant.

. continued ..
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Program A.3 The file info.hpp in which the partilce-phase and debug options
are given. Part 2 of 2.

//

// 5. Gravity

//

#define gravityy 9.810

#define gravityx 0.00

//

// 6. Input/Output specifications

//

#define RESTART 1 // Restart from previous run?

// #define RESTART_VELOCITY_ZERO_ // Put velocities on zero restart
#define TIMERESTART_. 0.891 // Restart at which time

#define FNAME "visc.dta" // Filename for 0UTput

#define FN2 "energy.dta" // Filename for Energyoutput

#define FN3 "shear.dta" // Filename for detailed shear info
#define WEGSCHRIJF 10 // Write data to disk each XX timesteps
#define IFNAME "inzak.dta" // Filename for INput (only when RESTART=1)

/7

// 7. NULL-pointer
/7

#define NULL O

// 8. Debug options

// #define DEBUG_ENERGY_ // verify enery consevation during collisions
// #define DEBUG_COL_ONSCREEN_ // place particle velocities on screen
// before and after each collision
// #define CHECK_OVERLAP_ // Check overlap of particles
// #define OUTPUT_DATA_TC_SCREEN_ // write particle data of 1 cell to
// screen each timestep.

// #define DEBUG_DIMENSION_ // Check dimensions of cells

// #define DEBUG_CELL_ // Write all information about cells to
// screen.

#define COLL_LOW_VELOC_CORRECT_ // Correct C.0.R. for very low veloc.

#define DIAGONAL_ // ALWAYS LEAVE ON!

//

// 9. Gas-Coupling options

/!

// #define DECOUPLEGAS_ // Leave Gas Pase QUT if uncommented

//

// 10. Periodic boundary conditions

//

// #define PERIODIC_UP_DOWN_ // periodically couple up/down walls
#define STRESSCALC_ // calculate particle stresses in geometry

// #define LEFTVELOC_. -1.0 // VOID

// #define RIGHTVELOC_ 1.0 // VOID

#endif
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9. Gas coupling. If this option is turned on, NO gas phase information is
calculated and the particle paths are updated as if they move in vacuum,

10. Periodic boundaries. Here the upper and lower geometry can be speci-
fied as a periodic boundary for the particles.

It is important to realize that the code PartGas must be recompiled
every time you change info.hpp and you want the changes to affect
the simulation.

A.1.7 infile

Program A.4 An example of the file infile containing the properties of the
gas-phase solver
# inputfile for gas-phase solver

#
# (c) Berend van Wachem, 1998, 1999, 2000

# timestep : <amount of variations> <timestep size #1> <timestep amount #1> etc.
timestep: 3 5.0e-4 10 2.0e-4 10 1.0e-4 100000

inletvelocity: 0.80
viscosity: 1.8e-5
Xwidth: 0.08975
Yheight: 0.21938888
Xcells: 9

Ycells: 22
Unauwkeurig: 1.0e-12
Vnauwkeurig: 1.0e-11
Pnauvkeurig: 1.0e-8

#masssource <waarde> (relatieve massa verlies toelaatbaar)
masssource: 1.0e-6

#maxiter <waarde> (maximaal aantal toelaatbare iteraties)
maxiter: 50

# beginwaardes:
vstart: 0.28
ustart: 0.0
pstart: 0.0
epsstart: 1.0

# gaswaarde :
molmas: 28.8e-3
pomgeving: 1.013e+b

The file infile contains the input parameters regarding the gas-phase
solver. The line specifying the timesteps contains 3 types of timesteps: the
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first two timesteps and the number of timesteps are carried out without any
particles present. The last timestep is the actual timestep of the gas-phase
solver coupled with the particle-phase solver. This timestep MUST equal the
timestep specified in info.hpp. Also, the sizes of Xwidth, Ywidth must equal
the actual domainsize specified in info.hpp. The numbers behind Xcells and
Ycells denote the number of Eulerian cells in the X and Y directions. Xcells
must equal XBDﬁx, and the same for the Y direction. The rest of the file is
fairly straightforward, and contains information regarding the gas velocity at
the inlet, the physical parameters of the gas, the accuracy and maximal effort
of the solver, and the initial conditions.

Be sure to check that the information you specify in infile regarding
the geometry size, the amount of Eulerian cells, and the gas-phase
properties equal the ones stated in info.hpp!

A.1.8 Output

The program PartGas creates three outputfiles,

visc.dta, shear.dta, and energy.dta. The first file contains the information
regarding the particle locations, velocities, rotations, average particle vol-
ume fraction, and the local gas phase pressure. The file shear.dta contains
the data of the particle shear tensor split up in two by two directions, and
in the effects of particle-particle collisions and particle streaming. The file
energy.dta contains the information regarding the energy of the particles.
This file is now obsolete due to the functionality of visc.dta.

Two MatLab files are supplied with this package:

¢ particle.mplotsthe location of every particle in the geometry and shows
the Eulerian mesh in the same figure. A second figure shows the local

pressure field, and a third figure shows the local solids volume fraction
field.

e shear.m shows the local kinetic and collisional stress in the two domi-
nant directions.

Both files are short and are easily to extend to specific output wishes.
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A.2 Eulerian-Eulerian gas-solid codes
The Eulerian-Eulerian codes described in this section need the com-
mercial softwarepackage CFX 4.x to run!

A.2.1 Introduction

Multiple Eulerian-Eulerian gas-solid codes are available with this thesis. The
first code describes the gas-solid flow with the equilibrium assumption for
the granular energy, as discussed in thesis chapter 3. This software is located
in the directory equilib. The gas-solid code which solves the full granular
energy equation is located in the directory fullgran. Finally, the code that
described the gas-solid flow with a bimodal particle distribution is located in
the directory bimodal.

Next to the FORTRAN files required for CFX, the codes also contains a Mat-
Lab file for post-processing and a C++ file for mesh generation.

A.2.2 FORTRAN and CFX

CEX is a commercial flow solver (finite volume solver) in which there is a
large amount of freedom to change physical models, properties of flow, or to
introduce a complete new flow-type. Within CFX, different file types exist:

1. The command file, or x.fc file. This file is fairly self-explanatory. In
this file, the outline of the problem is specified. For instance, how
much memory the total run wil use, how much additional variables
are needed, which FORTRAN files should be incorporated, the size of the
timestep and the number of timesteps, and the simple physics of the
problem, as the gas-density, the temperature and pressure. It is also
possible to specify output options in the command file. With the FORTRAN
file USRINT.F this option is obsolete.

2. The grid file, or x.geo file. This file contains the specifics regarding the
mesh. It can either be made with CFX-BUILD or with the file meshgen. cc
added with these packages.

3. The FORTRAN files, or *.F files. In these files the variables within CFX
can be changed. These FORTRAN files will be called every iteration and
directly interact with the numerics in CFX. This way, all the different
variables and equations can be monitored and/or altered.
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To run CFX, the CFX executable (runf3d) needs to be called with the appro-
priate options. Examples of how to call CFX are given in the files parrun and
parrund.

You do NOT have to compile the FORTRAN files yourself; If you specify
the FORTRAN files to CFX apropriately, CFX will compile the files for
you

A.2.3 equilib
The equilibrium code in the directory equilib contains the files:

1. mO1.fc This is the CFX command file for a “startup-from-scratch” run (no
restart). You can change some of the physical properties in this code,
but you also need to change these in the FORTRAN file. Be sure to set the
correct timestep and the correct amount of timesteps on line 85.

2. m01.f This is the CFX FORTRAN file for a no-restart run. The physical
properties you can change are:

e Particle diameter (DP). Change the code on lines: 494, 1364, and
1773

¢ Particle restitution coefficient (EEE). Change the code on lines: 1358
and 1767

e Maximum particle volume fraction (FRMAX). Change the code on
lines: 1352 and 1764

e Angle of internal friction (FI). Change the code on line: 1368

¢ Minimum fluidization velocity (VFLOWMIN). Change the code on lines:
204 and 2176

e Actual fluidization velocity (VFLOW). Change the code on line: 2177

e Location of the initial jet to break symmetry (JSTART and JEND).
Change the code on lines: 2172 and 2173

e Initial gas volume fraction in bottom of the bed (VFG0). Change the
code on line: 200

e Initial fraction of the filling height of the fluidized bed (VULH). Change
the code on line: 218

If you cange partice properties please do so in the command file and
on all places in the FORTRAN file.
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3. m02.fc This is the CFX command file for a restart run, continuing from
a previous run. You can change some of the physical properties in this
code, but you also need to change these in the FORTRAN file. Be sure to
set the correct timestep and the correct amount of timesteps on line 86.

4, m01.f This is the CFX FORTRAN file for a restart run. The physical prop-
erties you can change are:

e Particle diameter (DP). Change the code on lines: 219, 1089, and
1498

¢ Particle restitution coefficient (EEE). Change the code on lines: 966,
1083 and 1492

e Maximum particle volume fraction (FRMAX). Change the code on
lines: 1077 and 1489

o Angle of internal friction (FI). Change the code on line: 1093

e Minimum fluidization velocity (VFLOWMIN). Change the code on line:
| 1905

| o Actual fluidization velocity (VFLOW). Change the code on line: 1906

5. m01.geo This is the file containing the geometry information for the run.
This file can be created with the CFX package CFX BUILD or with a C++
file explained later.

6. usrtrn.f and bubble.f. These FORTRAN files are for creating individual
timeseries of variables and to track the bubbles formed in the simula-
tion. They may be omitted.

7. parrun The scriptfile for an initial run. This file contains only a few lines
and calls CFX with the neccesary command and fortran files. Be sure to
specify an appropriate temporary directory.

8. parrund The scriptfile for a restart run. This file contains only a few lines
and calls CFX with the neccesary command and fortran files. Be sure to
specify an appropriate temporary directory and a restart file.

A.2.4 fullgran

This directory contains the code to simulate a gas-solid flow with solving the
full granular energy equation. The structure of this code is slightly different
as the previous code, because the FORTRAN files are not grouped in mOx.f, as
in the previous code, but are stand-alone. The files contained in the directory

e USRBCS.F This is the file in which the initial boundary conditions are
specified; with small jet to perturb the symmetry of the system.
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¢ USR2BCS.F This is the file in which the boundary conditions in case of a
restart are specified; witout any perturbing jet.

e USRINT.F This is the file in which the initial conditions are specified; how
high the bed is filled and at which solids volume fraction.

e USRSRC.F In this file the neccesary source terms on the momentum equa-
tions and on the granular energy balance are added.

e USRVIS.F In this file the solids phase viscosity is calculated.

e USRBF.F In this file the gravity is added to the solids and gas phase mo-
mentum balaces.

e USRDIF.F This file contains the calculations for the conductivity of fluc-
tuating energy.

e USRIPT.F This file contains the interphase momentum tranfer between
the gas and the solids phase as described by Wen and Yu (1966). Two ad-
ditional models can be used instead of this file, namely USRIPT-ERGUN.F
is the Gidaspow (1994) drag model, and USRIPT-SYAMLAL .F describes the
Syamlal et al. (1993) drag model.

e USRCVG.F controls the convergence criteria.
e GNULL.F contains the radial distribution function.

e PACK.F calculates the neccesary frictional stress, as described in the the-
Sis.

¢ parrun is the scriptfile to run an initial problem. Specify the correct
temporary directory.

e parrund is the scriptfile to run a restart problem. Specify the correct
temporary directory.

Please refer to the CFX 4.x user manual for details on the FORTRAN
programming and the variable names

The physical properties you can change are:

o Particle diameter (DP). Change line 239 in USRDIF.F, line 273 in USRSRC.F,
line 234 in USRVIS.F, and line 248 in USRIPT.F.

¢ Particle restitution coefficient (COR). Change line 237 in USRDIF.F, line
275 in USRSRC.F, and line 232 in USRVIS.F
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e Maximum particle volume fraction (MX or MAXFRAC or VFMAX). Change line
268 in USR2BCS.F, line 274 in USRBCS.F, line 5 in PACK.F, and line 5 in
GNULL.F.

e Minimum fluidization velocity (VFLOWMIN). Change line 264 in USR2BCS.F,
line 270 in USRBCS.F, and line 256 in USRINT.F.

o Actual fluidization velocity (VFLOW). Change line 265 in USR2BCS.F and
line 272 in USRBCS.F.

e Particle-wall coefficient of restitution (CORW). Change line 266 in USR2BCS.F
and line 272 in USRBCS.F.

o Specularity coefficient (SPEC). Change line 269 in USR2BCS.F and line 275
in USRBCS.F.

e Mean free path restriction length (R). Change line 241 in USRDIF.F, line
276 in USRSRC.F, and line 235 in USRVIS.F.

o Amount of gas volume fraction in dense fluidized bed (VFG0). Change line
252 in USRINT.F.

e Fraction of filling height (vULH). Change line 269 in USRINT.F.

A.2.5 bimodal

The directory bimodal contains all the neccesary files to perform simulations
of fluidized beds containing a bimodal particle distribution. The physics and
equations are described in Chapter 6 of the thesis. The structure of the code
is very similar with the previous code, full. The only important difference
is, that it is much more easy to change the particle properties. This can be
done in the file called PARTSPEC.F, shown in Figure A.5. The file is reasonable
self-explanatory; DP is the particle diameter, RHO is the particle density, COR is
the coefficient of restitution, and TMAX is the maximum solids volume fraction.
The number between the brackets indicates the specie number. This is the
only place where particle properties need to be changed.

The gas phase properties need to be changed in multiple places:

1. The time steps and the number of timesteps in the files m01.fc and
m02.fc.

2. The miminum fluidization velocity (VFLOWMIN) in USRBCS.F on line 299,
in USR2BCS.F on line 292, and in USRINT.F on line 279.

3. The fluidization velocity (VFLOW) in USRBCS . F on line 300, and in USR2BCS . F
on line 293.
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Program A.5 The file PARTSPEC.F in which the physical properties of the par-

ticles are specified.

SUBROUTINE PARTINFO

COMMON /PARTSPEC/DP,RHO,PI,VP,QM,COR,SR,TMAX
DOUBLE PRECISION DP(2),RH0(2),PI,VP(2),QM(2),COR

DOUBLE PRECISION SR(2),TMAX

DP(1) = 500.0D-6

DP(2) = 200.0D-6

RHO(1) = 2640.0D0

RHO(2) = 2640.0D0
PI=3.141592D0

VP (1)=PI*(DP(1)#%3)/6.0D0
VP(2)=PI*(DP(2)#*%3)/6.0D0
QM(1)=RHO(1)*VP(1)
QM(2)=RHO(2)*VP(2)
COR=0.90D0
SR(1)=0.5D0*DP (1)
SR(2)=0.5D0*DP(2)
TMAX=0.65D0

END
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The file chemk. cc is a C++ file which calculates the chemical potential
needed to predict the behavior of a granular mixture of two species.
CEX will NOT compile C++ files. You need to compile this file with your
own C++ compiler and link the resulting object (x.0) file within CFX.
Be sure to specify the correct optimization options when compiling.
An example of this is shown in the parrun script.

For the initial condition, lines 267 through 275 are shown in Program A.6.
The variable ONDT1 defined on line 270 specifies the fraction of species A :
species B. For example, if ONDT1=QM(2) /QM(1) as in the current example, the
mass fraction of species A is equal to that of specie B. The overall solids vol-
ume fraction is specified in last line shown in Program A.6. The relative filling
height (VULH) is specified in USRINT.F on line 292.

Program A.6 Lines 267 through 275 of USRINT.F indicating the initial condi-
tions of species A and B.
c

C ONDT1 = mass fraction of species 1. So X#QM(2)/QM(1)
C then massl:mass2 are 1:X
C

ONDT1=1.0DO*QM(2) /QM(1)
ONDT2=VP (1) *ONDT1+VP(2)

PRINT *,’ONDT1,0NDT2’,0NDT1,0NDT2

VFG0=0.48D0

Caution! It is very difficult to obtain a well converged solution with
the full bimodal kinetic theory. Very small timesteps (=~ 107°) are
advised.

A.2.6 Pre- and Postprocessing

In all three packages, the C++ file meshgen. ccis included. With this file you can
make uniform meshes very easy. To specify the size of the geometry and the
amount of meshcells, edit lines 3 through 6 of the file meshgen.cc, as shown
in Program A.7. The variables XWID and YLEN indicate the size of the geometry
in meters in the X and Y direction, respectively. The variables NI and NJ are
the amount of meshcells in the X and Y direction respectively.

Postprocessing is done in MatLab with the file cfdtijd.m. This file can read
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Program A.7 Lines 3 through 6 of the file meshgen. cc
#define NI 400

#define NJ 20

#define XWID 1.00

#define YLEN 0.10

any variable have specified in the file USRTRN. F during the execution of CFX.
You can also specify in USRTRN.F how often the solution is written to disk.
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A.3 Animations of simulations

This section described some AVI animations of simulations performed for this
work. The animations van be found in the directory Movies. This directory
contains four directories with movies:

e Euler This directory contains animations of simulations freely bubbling
or slugging fluidized beds. The specifications regarding the superficial
gas velocity and the particle properties can be found in the file index.dat.

e Inject This directory contains animations of simulations of a gas jet
penetrating into a minimum fluidized bed. The specifications regard-
ing the jet velocity and the particle properties van be found in the file
index.dat.

e Lagrangian This directory contains animations of simulations of the Lagrangian-
Eulerian model. Particle and gas properties are given in the file index.dat.
Also, video animations of the actual experiment are present.

e Shearing This directory contains some animations of particles subject
to an external shear or compression. These are animations of current
work, and have not been published yet.
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