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ABSTRACT: In determining wind forces on wind turbine blades, and subsequently on the tower and the foundation, the blade 
response velocity cannot be neglected. This velocity alters the wind force, which depends on the wind velocity relative to that of 
the blades This blade response velocity component of the wind force is commonly referred to as added damping. The relation 
between the relative wind velocity and the actual wind forcing is nonlinear. Moreover, the wind excitation couples the flap and 
edge wise blade motion. This work analyzes both the nonlinear excitation and the coupling of the lateral blade motions. To this 
end, a single blade is modelled as a cantilever beam, which is exposed to the nonlinear wind excitation. Flap and edge wise 
blade motions are coupled via the wind forcing. Thereupon, the continuous model, described by a system of partial differential 
equations, is reduced to a two-degree-of-freedom system, accounting for the principal flap and edge wise modes only. The 
dynamic response is determined in the frequency domain for a blade of the academic NREL5 turbine. The response to the 
quadratic terms in the force formulation is determined with the help of the Volterra series expansion, in combination with the 
harmonic balance technique. Results are presented for a blade of both a non-operating and an operating turbine, where a band-
limited white noise input signal was applied. The quadratic terms in the forcing equations do not contribute much to the total 
responses. For some second order responses, however, negative added damping due to the structural motion is observed. 

KEY WORDS: Aerofoils, quadratic excitation, added damping, modal decomposition, Volterra series expansion. 

1 INTRODUCTION 
The rotor of a wind turbine acts as a damper for the dynamic 
response of its tower and foundation structure. Not only does 
this apply directly for the response to aerodynamic forcing, 
the response to the hydrodynamic forcing of offshore wind 
turbines is damped by the rotor too. The damping effect 
results from the motion of the rotor blades relative to the 
ambient wind velocity. This damping is commonly referred to 
as aerodynamic damping. 

In order to improve understanding of the damping effect of 
a rotor as a whole, the wind-structure interaction of a single 
blade needs to be fully understood. First of all, wind 
excitation couples flap and edge wise blade motion. Second, 
the actual forcing depends nonlinearly on the relative wind 
velocity. For wind turbine blades an additional nonlinearity is 
introduced by the aeroelastic coefficients, which represent the 
shape of the blade and the nature of the response as a function 
of the wind angle of attack.  

Previous research has predominantly been devoted to the 
effect of the nonlinear aeroelastic coefficients. The work done 
by Hansen et al. [1] can be mentioned as representative 
example, in which a nonlinear aeroelastic model is described, 
explicitly accounting for a time-varying angle of attack and 
separation of airflow. An alternative approach was presented 
by Riziotis et al. [2], where linear inviscid and nonlinear 
viscous force contributions are distinguished. A similar 
aeroelastic model was adopted before by Chaviaropoulos [3], 
who addressed the combined flap and edge wise response of 
turbine blades. 

The existing studies have in common that the wind velocity 
dependence of the wind forcing has been linearized. This 
simplification neglects both second order forcing and 
associated added damping components. Analysis of the 
contribution of these nonlinear terms is a specific purpose of 
this work. A single blade is modelled as a cantilever beam, 
which is exposed to the nonlinear wind excitation. Flap and 
edge wise blade motion are coupled via a force formulation. 
Thereupon, the continuous model, described by a system of 
partial differential equations, is reduced to a two-degree-of-
freedom (2DOF) model, accounting for the principal flap and 
edge wise modes only. 

Systems containing nonlinearities of the polynomial type 
can be analyzed in the frequency domain with the application 
of the Volterra series expansion [4]. With this technique, 
higher order system characteristics are expressed by higher 
order Volterra kernels. For fairly simple systems, these 
kernels can be identified with the help of the harmonic 
balance technique [5]. Worden et al. [6] described the kernel 
identification for multi-input multi-output systems. The 
application of the Volterra series expansion to nonlinear fluid-
structure interaction problems cannot be called novel. Wind-
excited structures have been addressed by a number of 
researchers [7-10]. Systems sensitive for added damping have 
been studied by Kareem et al. [11], and more recently by 
Carassale and Kareem [12]. Balajewicz [13] applied the 
Volterra expansion to a two degree of freedom airfoil 
undergoing simultaneously forced pitch and heave. 

To determine the dynamic response of an actual turbine, the 
blade characteristics of the NREL5 turbine are adopted [14]. 
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Responses for a non-operating feathered blade and a rotating 
blade are determined, on which basis both the contribution of 
the second order forcing and the total added damping are 
identified. In achieving the latter, a comparison with a system 
without added damping has been made. 

2 MODEL DESCRIPTION 

2.1 Blade model 
A turbine blade is modelled as a cantilever beam of length R, 
rigidly fixed to the hub (see Figure 1). The beam is described 
within a rotating frame of reference. The r axis represents the 
longitudinal axis of the undeformed blade, where the origin 
coincides with the point of rotation. 

 
Figure 1. Blade model. 

Figure 2 presents a cross section of the blade, in which the x 
and y axes coincide with its principal axes; the x axis 
represents the weak and the y axis the strong axis. The XY 
coordinate system is adopted to describe flap and edge wise 
blade motion; the X axis coincides with the plane of rotation 
and the Y axis is directed normal to this plane. The angle β 
describes the angle between the local x and the global X axis, 
and is composed of both fixed blade twist and varying blade 
pitch. The blade twist generally varies along the longitudinal 
axis. Here, the blade twist is taken constant. 

 
Figure 2. Blade cross-section. 

In accordance with Burton et al. [15], the blade is described 
as a geometrically linear Euler-Bernoulli beam. The initially 
uncoupled equations of motion for deformation in x and y 
direction – combined in the vector u – read: 

 

 
2 2 2

2 2 2t r rt r r
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞+ + − =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂∂ ∂ ∂ ⎝ ⎠⎝ ⎠⎝ ⎠

u um c EI T u F . (1) 

 
Both the displacement vector u and the force vector F 

comprise an x and a y component. The coefficient matrices are 

all diagonal; m describes the distributed mass, c represents the 
structural damping, which is assumed to be proportional to 
mass and stiffness, EI consists of the bending stiffness 
components with respect to the principal axes, which vary 
with r, and T describes the tension, resulting from rotation of 
the blade. 

2.2 Force definition: drag and lift 
Figure 3(a) depicts a cross section of the blade model, 
subjected to an air flow field W. The local width of the 
aerofoil is given by c and α represents the angle between the 
flow vector and the local x axis, the so-called angle of attack. 
 

 
(a) 

 
(b) 

Figure 3. (a) Blade cross-section exposed to a wind velocity 
vector W with an angle of attack α. (b) Lift and drag force 

definitions, resulting from the vector W. 

An aerofoil situated in an air flow experiences a force 
parallel to the direction of the flow and a force perpendicular 
to the flow direction – drag and lift respectively – as presented 
in Figure 3(b). In this paper, drag is restricted to viscous drag, 
and can be expressed as: 

 

 1
2 dcCρ=D W W , (2) 

 
where ρ the air density and Cd is the Reynolds number 
dependent drag coefficient, accounting for the frictional 
stresses that can develop as a result of the air flow. The lift 
force for attached flow can be determined from [15]: 

 
 ( )ρ= ×L Γ W  (3) 

 
where Γ is the air circulation strength, defined as: 
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 1
2 l rC c=Γ W e . (4) 

 
er is the unit vector along the local r axis. The lift coefficient 
Cl can for relatively small angles α be expressed as: 

 
 2 sinlC π α= . (5) 

 
The force vector F is a function of r and time t. Of its 

constituents, the air flow vector W is both r and t dependent, 
as is automatically the angle of attack α. The chord width c 
and the drag coefficient Cd vary in space only, if the Reynolds 
number dependency of the latter is neglected 

2.3 Constituents of the air flow vector 
Both drag and lift are defined in relation to the air flow vector 
W, which is positioned with an angle α to the local x axis of 
the aerofoil. Figure 4 presents the vector W, which is active 
under the angle α with respect to the symmetry axis of the 
aerofoil and the angle φ with respect to the plane of rotation. 
The vector W can be thought of as a summation of vectors: 
   

 
t

∂
= + −

∂
uW W w , (6) 

 
where W  represents the mean air flow velocity and w the 
velocity fluctuations around the mean. The time derivative of 
u represents the structural response velocity, which is 
responsible for the added damping. 

 
Figure 4. Pitched blade cross-section exposed to a wind 

velocity vector W with an angle of attack α. 

Physical understanding of these components can be 
obtained when considering these vector terms within the 
global frame of reference. The Y component of W  represents 
the mean wind velocity perpendicular to the rotational plane. 
Within the plane of rotation, the mean air flow velocity equals 
the tangential velocity of the aerofoil, calculated from the 
rotational speed of the rotor Ω and the r coordinate of the 
aerofoil cross section under consideration. 

The air flow fluctuations of the w vector are related to 
ambient aerodynamics, such as the turbulence intensity and 
the turbulence length scale. Both out-of-plane and in-plane 
wind fluctuations wX and wY, respectively, can be determined 
on the basis of existing wind turbulence spectra. In both cases, 
the wind fluctuation needs to be corrected for the rotation of 
the aerofoil. In addition to this, the aerofoil experiences the 

mean in-plane wind velocity XW  as a sinusoidal varying air 
flow. 

In order to incorporate these vectors in the equations of 
motion, the vector components need to be transformed to the 
local reference system by rotation over the angle β. After 
transformation to the local reference system, the vector 
components are referred to as Wx and Wy, and follow from: 

 

 
( )
( )

cos sin

cos sin
Yx

y Y

r WW
W W r

β β

β β

⎡ ⎤Ω +⎡ ⎤
⎢ ⎥= =⎢ ⎥
⎢ ⎥−Ω⎢ ⎥⎣ ⎦ ⎣ ⎦

W , and (7) 

 
( )( )( )

( )( )( )
cos cos sin

cos cos sin

X X Yx

y Y X X

w W t ww
w w w W t

β β

β β

⎡ ⎤+ Ω +⎡ ⎤ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥− + Ω⎣ ⎦ ⎣ ⎦

w  (8) 

2.4 Modal decomposition 
The motion of the turbine blade is described by a system of 
coupled nonlinear partial differential equations, allowing for 
motions in both x and y direction, see Equation (1). Coupling 
takes place via the forcing term, due to the structural response 
velocity. Likewise, the nonlinearity is pronounced in the 
forcing term, since eventually in both drag and lift forcing 
terms the multiplication W|W| appears. 

Due to the presence of the damping and the centrifugal 
stiffening term, the system of differential equations contains 
operators that are not self-adjoint, implying that no classical, 
i.e., real, dynamic modes with fixed nodes exist. In order to 
identify structural modes of vibration, a phase shift within 
each mode should be accounted for. 

Despite the nonlinear components and the presence of non-
classical damping, the system of partial differential equations 
is reduced to a system of ordinary differential equations by 
means of modal decomposition. Both x and y are expressed as 
an infinite series of generalized coordinates q and shape 
functions ψ: 

 

 ( ) ( )

1

n n
x x x

n

u q ψ
∞

=

= ∑ , and (9) 

 ( ) ( )

1

n n
y y y

n

u q ψ
∞

=

= ∑  (10) 

 
The adopted shapes functions, or modes, correspond to 

those of an undamped and untensioned blade. Since these 
modes do not fulfil the orthogonality conditions with respect 
to all differential operators, the initial partial differential 
equations cannot be decomposed into a system of uncoupled 
ordinary differential equations. By restricting the 
decomposition to the first modes for both x and y directions, a 
system of two ordinary differential equations can be obtained, 
only coupled via the structural response velocity. After 
multiplication of both differential equations by (1)

xψ  and (1)
yψ , 

respectively, and integration over r, the following ordinary 
differential equations remain: 

 

 
2 (1) (1)

(1) (1) (1)
2

0

d d
d

dd

R
x x

x x x x x x
q q

M C K q F r
tt

ψ+ + = ∫ , and (11) 
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2 (1) (1)

(1) (1) (1)
2

0

d d
d

dd

R
y y

y y y y y y

q q
M C K q F r

tt
ψ+ + = ∫  (12) 

 
The corresponding 2DOF system is illustrated by Figure 5. 

2.5 Force decomposition 
In order to take a closer look at the right hand sides of the sets 
of differential equations, first the scalar equations of the 
forcing vector F are presented: 

 

 1 1
2 2x x d x l yxF D L cC W cC Wρ ρ= + = −W W  (13) 

 1 1
2 2y y y d y l xF D L cC W cC Wρ ρ= + = +W W  (14) 

 
It can immediately be recognized that the decomposition 
concerns the multiplications xWW  and yWW . 

Furthermore, the aeroelastic coefficients Cd and Cl are α 
dependent. Equation (5) introduced a simple relation between 
Cl and α, which is valid for attached flows. With reference to 
Figure 4, the following expression can be derived: 
 

 sin yW
α =

W
 (15) 

 
This expression reveals the time dependency of the angle of 
attack and introduces an additional coupling between the 
motions in x and y direction. It should be noted that blade 
torsion, mainly resulting from the twisted shape of the blade, 
brings an important contribution to the time variation of the 
angle of attack α. Since the twist angle is neglected in the 
current analysis, no α variation due to torsion takes place. 

 
Figure 5. 2DOF representation of the turbine blade. 

The drag coefficient Cd is assumed to be α independent. 
This assumption is valid for relatively small values of α. This 
condition was already adopted for the lift coefficient Cl. 
Applying now the modal decomposition gives the following 
expressions for Fx and Fy: 

 

 

(1)
(1) (1)

22 (1)(1)
(1) (1)

2(1)
(1)

d1
2 d

dd
       

d d

d
       

d

x
x d x x x

yx
x x x y y y

y
y y y

q
F cC W w

t

qq
W w W w

t t

q
c W w

t

ρ ψ

ψ ψ

πρ ψ

⎛ ⎞
= + −⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞
× + − + + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞
− + −⎜ ⎟⎜ ⎟

⎝ ⎠

(16) 

 

(1)
(1) (1)

22 (1)(1)
(1) (1)

(1)(1)
(1) (1)

d1
2 d

dd
       

d d

dd
       

d d

y
y d y y y

yx
x x x y y y

yx
x x x y y y

q
F cC W w

t

qq
W w W w

t t

qq
c W w W w

t t

ρ ψ

ψ ψ

πρ ψ ψ

⎛ ⎞
= + −⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞⎛ ⎞
× + − + + −⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞
+ + − + −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(17) 

 
In accordance with Equation (11) and (12) both expressions 

need to be multiplied with 1
xψ  and 1

yψ , respectively, and 
integrated with respect to r over the interval 0 ≤ r ≤ R. It 
should be noted that in general the chord width c and the drag 
coefficient Cd are r dependent. The same applies for the 
tangential velocity of the aerofoil XW , which is calculated 
from the rotational speed of the rotor Ω and r. 

3 VOLTERRA SERIES EXPANSION 
Nonlinearities of the polynomial type can be dealt with in the 
frequency domain by means of the Volterra series expansion. 
With the application of this method, the frequency dependent 
structural responses (1)

xQ  and (1)
yQ  can be written as an infinite 

series: 
 

 (1) (1; )

1

i
j j

i

Q Q
∞

=

= ∑ , for j = x, y. (18) 

 
The superscript (1) refers to the modal shape, which was 

adopted to derive the generalized coordinates. From here on, 
this superscript will be omitted. Each component ( )i

jQ  can be 

expressed in terms of the input functions xW%  and yW% – where 
the tilde indicates the frequency domain representation of wx 
and wy – and the Volterra kernels ( )i

jH . From the first order 
Volterra kernels, linear transfer functions can be recognized 
instantly. In the specific case of the system under 
consideration, the first order term of the Volterra series yields 
 

 ( ) ( ) ( ) ( ) ( )(1) (1) (1)
; ;j j x x j y yQ H W H Wω ω ω ω ω= +% % . (19) 

 
The explicit reference to the frequency dependency is adopted 
for convenience sake. For the second order term it follows: 
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( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

(2) (2)
; 1 1 1 1 1

(2)
; 1 1 1 1 1

(2)
; 1 1 1 1 1

1 d
2

1           

,

,

,

d
2

1           d
2

j j xx x x

j xy x y

j yy y y

Q H W W

H W W

H W W

ω ω ω ω ω ω ω ω
π

ω ω ω ω ω ω ω
π

ω ω ω ω ω ω ω
π

∞

−∞

∞

−∞

∞

−∞

= − −

+ − −

+ − −

∫

∫

∫

% %

% %

% %

(20) 

 
, where both the Volterra kernels and the input signals are a 
function of ω and ω1. 

An elegant method to derive the Volterra kernels is the 
harmonic probing technique, which is based on the idea that a 
harmonic input results in a harmonic output. For instance, by 
stating that 

 
 i 0,t

x yw e wω= = , and (21) 

 ( ) ( )(1) (1) i (1) (1) i
; ;,t t

x x x y y xq H e q H eω ωω ω= = , (22) 
 
the first order Volterra kernels can be obtained by solving the 
algebraic equations for the coefficients of i te ω  only. The same 
procedure applies for the second order kernels, where the 
input and output take the form 

 
 1 2i i 0,t t

x yw e e wω ω= + = , and (23) 

 
( ) ( )
( ) ( )

1 2

1 2

i i(2) (1) (1)
; 1 ; 2

i(2)
; 1 2      2 ,

t t
x x x x x

t
x xx

q H e H e

H e

ω ω

ω ω

ω ω

ω ω +

= +

+
 (24) 

 
( ) ( )
( ) ( )

1 2

1 2

i i(2) (1) (1)
; 1 ; 2

i(2)
; 1 2      2 ,

t t
y y x y x

t
y xx

q H e H e

H e

ω ω

ω ω

ω ω

ω ω +

= +

+
 (25) 

 
The second order kernels can be derived from the terms 

containing ( )1 2i te ω ω+ . For the input frequencies it should apply 
that 1 2ω ω ω+ = . The procedure must be repeated for zero wx 
and double harmonic wy input, to derive the ( )(2)

; 1 2,x yyH ω ω  

and ( )(2)
; 1 2,y yyH ω ω  kernels. The cross-kernels follow from 

 
 1 2i i,t t

x yw e w eω ω= =  (26) 

 
( ) ( )
( ) ( )

1 2

1 2

i i(2) (1) (1)
; 1 ; 2

i(2)
; 1 2       2 ,

t t
x x x x y

t
x xy

q H e H e

H e

ω ω

ω ω

ω ω

ω ω +

= +

+
 (27) 

 
( ) ( )
( ) ( )

1 2

1 2

i i(2) (1) (1)
; 1 ; 2

i(2)
; 1 2       2 ,

t t
y y x y y

t
y xy

q H e H e

H e

ω ω

ω ω

ω ω

ω ω +

= +

+
 (28) 

 
The response to finite order polynomials can be determined 

exactly with the application of the Volterra series expansion in 
combination with the harmonic probing technique. 
polynomials of infinite order, however, require truncation in 
order to suit Volterra analysis. The same applies for finite 
order polynomials that consist of too many terms, since for 
higher order kernels the method becomes computationally 
expensive. 

To facilitate the harmonic balance technique, a Taylor series 
expansion is applied to the right hand sides of the equations of 

motion, Equation (16) and (17). The input and output 
variables wx, wy, qx and qy are taken as expansion variables. 
Expansion is carried out to the third order, implying that linear 
and quadratic components are accounted for. 

4 CASE STUDY 

4.1 NREL5 turbine 
To analyze the structural response of a wind turbine blade, the 
blade characteristics of the academic NREL5 turbine are 
adopted [14]. A typical aspect of these blades is the relatively 
high Lock number, which expresses the aerodynamic lift 
capability of a blade in comparison to its weight. As a result 
of this, other researchers – among which Bir and Jonkman 
(2007) [16] – have found high aerodynamic damping values, 
which may be not in the same range as for other turbine types. 
The first flap wise natural frequency, for bending around the 
local x axis, is approximately 4.21 rad/s; whereas the first 
edge wise natural frequency is approximately 6.79 rad/s.  

4.2 Excitation 
The dynamic responses are determined on the basis of a 
relatively simple input signal, which can be described as: 

  
 x yW W W= =% % % , and (29) 

 iW W e θ=% % . (30) 
 
This signal is applied simultaneously in x and y direction. The 
amplitude is given a value larger than zero, only within the 
frequency intervals from -5.0 rad/s to -0.5 rad/s and from +0.5 
rad/s to +5.0 rad/s. θ represents a random phase angle as a 
function of the excitation frequency ω, with values in the 
range from –π to +π. In the time domain, the excitation 
function represents a noisy signal, consisting of frequencies 
from +0.5 rad/s to +5.0 rad/s. The input content at negative 
frequencies is taken into account to correctly carry out the 
convolution of Equation (20). The signal is defined with 
frequency steps of 0.1 rad/s. 

4.3 Non-operating turbine 
First, the response of a standstill blade is analyzed. The blade 
is assumed to be pointing upwards and feathered into the 
direction of the mean wind velocity. A feathered blade is 
pitched over an angle ½π, implying that both drag and lift are 
as small as possible. The mean wind velocity is 10 m/s. The 
amplitude of the excitation signal is chosen such that the 
maximum amplitude in the time domain is approximately 1.0 
m/s. This corresponds to an uniform amplitude W%  of the 
band-limited white noise signal of 0.4 m. The aeroelastic drag 
coefficient is set at 0.1, irrespective of the angle of attack. The 
lift coefficient follows from Eq. (5). 

Figure 6 presents the linear frequency-domain responses. 
Only the results for positive frequencies are presented. As 
could have been expected, the motion only takes place within 
the frequency interval of the excitation signal. In absence of a 
mean wind component normal to the feathered blade, only a 
cross-flow response in y direction takes place.  
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Figure 6. First order frequency responses non-operating 

turbine blade. 

The second order responses, which are presented in Figure 
7, mainly show content for the 2

;x xxQ  response. The peak 
response is observed at the first natural frequency for motion 
in x direction. The input signal does not contain energy at this 
frequency. Hence, it is shown that frequencies outside the 
input signal can be excited via the quadratic terms. In addition 
to this, it should be noted that an extra excitation at ω = 0 can 
be observed too. 

The erratic shape of the second order response graph results 
from the random phase that was adopted in the formulation of 
the input signal, see Equation (30). From this it follows that 
the amplitude of the second order response is input phase 
dependent. 
 

 
Figure 7. Second order frequency responses non-operating 

turbine blade. 

 
Figure 8. Combined frequency responses non-operating 

turbine blade. 

Figure 8 depicts the combined first and second order 
responses. The total response is dominated by the response in 
y direction. The quadratic terms do not contribute much to this 
outcome. The peak response in x direction, that was observed 
in Figure 7 cannot completely be neglected. For a feathered 
blade it shows to be the main contribution in x direction. 

 

 
Figure 9. First order frequency responses operating turbine 

blade. 

4.4 Operating turbine 
In contrast to the non-operating turbine, the blade is now 
given a rotational speed of 12.1 rpm. This coincides with the 
rated rotor speed of the adopted turbine. The corresponding 
mean wind velocity is 11.4 m/s. Blade pitch is set at 0.1. All 
other parameters are the same as in the previous non-operating 
case. In addition it should be mentioned that the effect of 
rotation is not processed in excitation signal. 

The first order response is dominated by the vibrations in y 
direction resulting from excitation in y direction (see Figure 
9), which – due to the small pitch angle – can be referred to as 
flap wise motion. The shape of the response graph reveals the 
overdamped character of the motion, which was already 
referred to in section 4.1. The responses in edge wise direction 
are shown to be much smaller. 

 

 
Figure 10. Second order frequency responses operating 

turbine blade. 

The second order responses, see Figure 10, show content in 
x direction. The main response takes place at frequencies that 
are not present in the excitation signal. Nevertheless, the peak 
response, at the edge wise natural frequency, is still an order 
of magnitude smaller than the corresponding linear response. 
This can more clearly be seen in Figure 11, which shows the 
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combined responses. The second order results do not alter the 
first order response much. 

 

 
Figure 11. Combined frequency responses operating turbine 

blade. 

4.5 Response without added damping 
The combined linear and quadratic dynamic responses for a 
turbine blade of both a non-operating and an operating turbine 
have been determined. These total responses are now 
compared to the frequency responses while neglecting the 
added damping, see Figure 12 and Figure 13. 

 

 
Figure 12. Combined frequency responses non-operating 

turbine blade without added damping. 

 
Figure 13. Combined frequency responses operating turbine 

blade without added damping. 

When comparing Figure 12 to Figure 8, the strong damping 
of the response in y direction can immediately be recognized. 
The structural motion reduces the peak an order of magnitude. 
This effect is even stronger for the operating blade, where the 

added damping decreases the flap wise response by two orders 
of magnitude. These results are related to the first order 
responses and confirm previous research results (for instance 
[16]).  

Figure 14 and Figure 15 provide a more detailed view on 
the second order responses without added damping. When 
comparing these graphs to their damped equivalents, Figure 7 
and Figure 10, a remarkable aspect can be distinguished. 
While the y contributions reduce due to the structural 
response, the added damping for the motion in x direction is 
negative, i.e., the peak values increase when added damping is 
accounted for. An explanation for this effect can be found in 
Equation (16). Acknowledging the dominance of the lift term, 
the second term of the equation, it follows that the 
contribution of the structural motion, which is negative for the 
linear case, gives a positive quadratic contribution to the 
forcing. This effect is observed for both the non-operating and 
the operating turbine. 

 

 
Figure 14. Second order frequency responses non-operating 

turbine blade without added damping. 

 
Figure 15. Second order frequency responses non-operating 

turbine blade without added damping. 

5 CONCLUSIONS 
This paper describes the derivation of a reduced 2DOF model 
for a wind turbine blade. The coupled nonlinear wind 
excitation, including structural motion was elaborated and the 
structural response was analyzed in the frequency domain. To 
this end, use was made of the Volterra series expansion. The 
estimation of the contribution of the quadratic forcing 
components was the main purpose of this work. 

Dynamic responses were determined for both a non-
operating blade and an operating blade. Use was made of the 
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blade characteristics of the NREL5 turbine. As excitation, 
additionally to the mean wind speed, a band-limited white 
noise signal was adopted, which acted simultaneously on both 
degrees of freedom. 

The quadratic terms in the forcing equations did not show to 
contribute much to the total responses. Some second order 
responses were shown to be negatively damped due to the 
structural motion. As the higher order response is strongly 
input dependent, implying that no linear relation between 
input and output exists, the response to different input signals 
should still be investigated.  

Unavoidably, the presented approach carries some 
limitations. First, the geometrically linear blade formulation 
does not allow for blade twist along the longitudinal axis. Its 
validity for larger deformations is limited too. Second, the 
modal reduction is restricted to the first modes only. Since the 
adopted modes are not adjusted for secondary effects as 
centrifugal stiffening and added damping, their validity may 
be poor. Torsional motion is not incorporated, implying that 
variations in angle of attack are not fully accounted for. 
Furthermore, the aeroelastic relations, which are functions of 
this angle of attack are assumed to be linear. These relations 
are only valid for attached flows, implying that the angle of 
attack should be relatively small. Last of all, due to the 
coupled flap and edge wise excitation, also cubic and even 
higher nonlinearities appear in the forcing formulation. These 
terms have been neglected. 

ACKNOWLEDGMENTS 
This work is supported by the Far and Large Offshore Wind 
(FLOW) innovation program. 

REFERENCES 
[1] M.H. Hansen, M. Gaunaa, and H.A. Madsen. A Beddoes-Leishman type 

dynamic stall model in state-space and indicial formulations. Risø-R-
1354(EN). Risø National Laboratory, Roskilde, Denmark, June 2004. 

[2] V.A. Riziotis, S.G. Voutsinas, E.S. Politis, and P.K. Chaviaropoulos. 
Aeroelastic stability of wind turbines: the problem, the methods and the 
issues. Wind Energy, 7: 373-392, 2004. 

[3] P.K. Chaviaropoulos. Flap/lead-lag aeroelastic stability of wind turbine 
blades. Wind Energy, 4:183-200, 2001. 

[4] W.J. Rugh. Nonlinear system theory. The John Hopkins University 
Press, Baltimore, Maryland, 1981. 

[5] C. Hayashi. Nonlinear oscillations in physical systems. McGraw-Hill, 
New York, NY, 1964. 

[6] K. Worden, G. Manson, and G.R. Tomlinson. A harmonic probing 
algorithm for the multi-input Volterra series. Journal of Sound and 
Vibration, 201(1): 67-84, 1997. 

[7] A. Kareem. Nonlinear wind velocity term and response of compliant off-
shore structures. Journal of Engineering Mechanics, 110: 1573-1578, 
1984. 

[8] S. Benfratello, G. Falsone, and G. Muscolino. Influence of the quadratic 
term in the alongwind stochastic response of SDOF structures. 
Engineering Structures, 18(9): 685-695, 1996. 

[9] A. Kareem, M.A. Tognarelli, and K.R. Gurley. Modeling and analysis 
of quadratic term in the wind effects on structures. Journal of Wind 
Engineering and Industrial Aerodynamics, 74-76: 1101-1110, 1998. 

[10] S. Benfratello, M. Di Paola, and P.D. Spanos. Stochastic response of 
MDOF wind-excited structures by means of Volterra series approach. 
Journal of Wind Engineering and Industrial Aerodynamics, 74:1135-
1145, 1998. 

[11] A. Kareem, J. Shao, and Tognarelli. Surge response statistics of tension 
leg platforms under wind and wave loads: a statistical quadratization 
approach. Probabilistic Engineering Mechanics, 10: 225-240, 1995. 

[12] L. Carassale and A. Kareem. Modeling nonlinear systems by Volterra 
series. Journal of Engineering Mechanics, 136: 801-818, 2010. 

[13] M. Balajewicz, F. Nitzsche, and D. Feszty. Application of multi-input 
Volterra theory to nonlinear multi-degree-of-freedom aerodynamic 
systems. AIAA Journal, 48(1): 56-62, 2010. 

[14] J. Jonkman, S. Butterfield, W. Musial, and Scott G. Definition of a 5-
MW reference wind turbine for offshore system development. Technical 
Report NREL/TP-500-38060, National Renewable Energy Laboratory, 
Golden, Colorado, February 2009. 

[15] T. Burton, N. Jenkins, D. Sharpe, and E. Bossanyi. Wind energy 
handbook. Wiley, West Sussex, UK, second edition, 2011. 

[16] G. Bir and J. Jonkman. Aeroelastic instabilities of large offshore and 
onshore wind turbines. In Journal of Physics: Conference Series, 
volume 75. IOP Publishing, 2007. 


