
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Learning a Policy from
User Preferences
An Interactive Approach to
Multi-Objective Reinforcement Learning

Henwei Zeng

Learning a Policy
from User

Preferences
An Interactive Approach to

Multi-Objective Reinforcement Learning

by

Henwei Zeng

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Monday September 8, 2025 at 12:45 PM.

Study Programme: Master Computer Science
Research group: Interactive Intelligence
Study Programme Track: Artificial Intelligence Technology
Thesis advisor: P. Murukannaiah
Daily co-supervisor: Z. Osika
Project Duration: November, 2024 - September, 2025
Faculty: Faculty of Electrical Engineering,

Mathematics Computer Science, Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Preface

This research paper was written as a part of my Computer Science master’s thesis project at Delft Uni-
versity of Technology. The paper presents my work over the past 9-10 months, where I developed a
novel approach to extend the classical Multi-Objective Reinforcement Learning (MORL) by incorporat-
ing an interactive component that allows users to specify their objective preferences during the learning
phase of the MORL algorithm. I combined the intuitions of both the state-of-the-art Prediction-Guided
Multi-Objective Reinforcement Learning (PGMORL) method and the E-NAUTILUS method to create
the User-Guided Multi-Objective Reinforcement Learning algorithm. The algorithm limits the search
space within the user-specified preference values by bounding the space using limits, which allows the
algorithm to quickly converge towards a policy/solution that the user prefers.

The reason I chose and worked on this project was that during my first year, I developed a great
interest in Deep Reinforcement Learning methods and wanted to focus most of my master’s work on
becoming familiar with the Deep RL concept and exploring its practical applications. This Thesis project
allowed me to work on both Multi-objective algorithms and RL methods, which allowed me to extend
my knowledge even further in these CS domains.

During the past 2 years in my master’s, I learned a lot frommy professors and PhD researchers through
their works and lectures. Furthermore, also from my colleagues which I also learned and discussed
many new/interesting topics and ways to solve the problems. And for the many hours we have worked
together on projects to create something that we can be proud of.

Specifically, I want to express my gratitude to my daily supervisor, Zuzanna, for guiding me over the
past year through this Thesis project. Her expertise allowed me to explore many different existing
algorithms and methods, and to discuss how to proceed during every stage of this project. Next, I also
want to thank Pradeep as the responsible professor, for giving me meaningful insights and his valuable
feedback on my work.

Beyond academia, I want to thank my friends from the student association DSEA Ignite for their support
and for being an unforgettable part of my student life. I am proud to have served a board year with the
association, even during challenging times. I also want to thank my housemates, with whom I have
shared the past seven years, from the very first day of my bachelor’s to the completion of my master’s.

Finally, I am deeply grateful to my family: my father, mother, and two younger siblings, for their constant
encouragement, patience, and support throughout my studies.

Without the support, guidance, and encouragement of all of you, I would not have been able to reach
this point in my academic journey. For that, I am truly grateful. Thank you!

Henwei Zeng
Delft, September 2025

i

Summary

Many daily-life problems are complex due to their multi-objective nature. For example, we have an
objective to reach a destination by driving a car. The driver’s preference can differ for each person,
some want to drive safely and arrive at their destination in a shorter amount of time. Others drive fast,
but navigate more dangerously through the traffic. Over the past decade, there has been growing re-
search on Multi-Objective Reinforcement Learning (MORL) problems, which simulate the complexities
of real-life scenarios. Because there are multiple objectives to be optimized, the majority of the MORL
meth- ods focus on providing a dense set of solutions called the Pareto Front as a result. The issues
with the current approaches are that generating a large solution set requires high computational costs,
and it can still be difficult for the user to find their most preferred solutions from a large solution set.
One solution to this is to create an interactive method, where the user is asked for their preferred solu-
tions during every iteration of the learning/search process of the algorithm. This allows the algorithm,
by using the provided information, to converge towards a single solution that is preferred by the user,
rather than providing a large collection of solutions. However, currently, there is limited or no literature
on interactive MORL algorithms.

In this work, we dive deeply into the current state-of-the-art MORL works and other Multi-Objective
Optimization (MOO) methods. Literature on Classical Multi-Objective Optimization and Evolutionary
Multi-Objective Optimizationmethods was exhaustively studied. We took the ideas from different MORL
works and MOO works and combined them to create a novel interactive MORL method.

Our novel algorithm uses a bounding of the search space concept to only search for policies/solutions
that are strictly better than the provided feedback from the user. The user can give feedback by selecting
their most preferred solution in each iteration from the list of non-dominated solutions. By bounding
the search space in this way, the algorithm can slowly converge towards the user’s preferred region
of solutions, while allowing some flexibility to change their preference since they can also choose for
older non-dominated solutions that are outside the current bounded region.

Furthermore, in this work, we also investigated different evaluation methods to properly evaluate the
performance and usefulness of interactive algorithms. We came up with several metrics to compare
the quality of solutions and the performance of the training process. Our metrics consist of creating
an artificial user utility function to compare the final solutions and the number of time steps required to
converge to a preferred solution to test the performance in terms of speed.

Our experiments show that interactive methods can converge faster than non-interactive ones when
user preferences are skewed toward one objective. A limitation, however, is the risk of getting trapped
in local optima, which may slow progress in certain cases. We believe this is a meaningful contribution
to the growing field of interactive MORL by offering both methodological insights and empirical evidence,
laying a foundation for further research on interactive MORL.

ii

Learning a Policy from User Preferences:
An Interactive Approach to Multi-Objective Reinforcement

Learning
Henwei Zeng

Delft University of Technology
Delft, The Netherlands

Zuzanna Osika
Delft University of Technology

Delft, The Netherlands

Pradeep Murukannaiah

Delft University of Technology
Delft, The Netherlands

ABSTRACT
Many real-life problems are complex due to their multi-objective

nature. Over the past decade, there has been growing research

on Multi-Objective Reinforcement Learning (MORL) problems,

which simulate the complexities of real-life scenarios. Because

there are multiple objectives to be optimized, the majority of

the MORL methods focus on providing a dense set of solutions

called the Pareto Front as a result. The issues with the current

approaches are that generating a large solution set requires high

computational costs, and it can still be difficult for the user to

find their most preferred solutions from a large solution set. In

this research, we propose an interactive MORL method where

the user is asked for their preferred solution in every iteration

from the current solution set, and the algorithm utilizes this

information to enhance its learning process to find preference-

aligned solutions. This is achieved by bounding the solution space

to only search for new policies that outperform the previously

user-selected solution within these bounds. We evaluate our

method using an artificial user function to simulate preferences,

comparing it with non-interactive MORL methods. Metrics to

compare the quality of solutions include the number of learning

steps required to converge to a preferred solution, the value

achieved on the artificial user function. The results demonstrate

that the interactive method provides a dense set of solutions

in the user’s region of interest, and it tends to converge faster

towards the user’s preferred solution.

KEYWORDS
Reinforcement Learning, Interactive, Multi-Objective Optimiza-

tion, Preference Learning

1 INTRODUCTION
Many real-world decision-making problems involve balancing

multiple, often conflicting objectives. Improving one objective

frequently leads to the deterioration of another, and such prob-

lems typically require decisions to be made sequentially over

time. A powerful framework for tackling these challenges is

Multi-Objective Reinforcement Learning (MORL), which extends

classical single-objective Reinforcement Learning (RL) to opti-

mize over multiple objectives [20, 35, 41].

Consider navigation optimization in traffic scenarios [50].

When the goal of the driver is to go from one place to their

destination, multiple considerations are often involved, such as

distance, fuel consumption and traffic density. Each user values

those objectives differently, one can prefer a low traffic density

in exchange for a longer distance, and another would prefer a

low fuel consumption. MORL offers two main approaches to

solving such problems. The a priori approach incorporates user

preferences into the learning process from the start, while the a

posteriori approach learns a diverse set of policies that approx-

imate the Pareto front, allowing the user to select a preferred

solution afterward.

However, both approaches have their limitations. A priori
methods lack flexibility; if user preferences change, the agent

typically needs to be retrained entirely. A posteriori methods, on

the other hand, are computationally expensive and often over-

whelm the user with a large set of solutions to choose from. This

results in difficulties in applying MORL to real-world problems.

In contrast, the field of Multi-Objective Optimization (MOO)

offers a third approach, which is the interactive optimization.

Interactive MOO mitigates the limitations of both a priori and a
posteriori methods by incorporating user feedback throughout

the optimization process [13, 24, 26]. This allows the algorithm to

converge toward a single, user-preferred solution without requir-

ing prior knowledge of the user’s preferences or overwhelming

the user with a large set of solutions. The benefits of interactive

optimization include reduced computational cost and the ability

to adapt to evolving preferences, since users can learn about the

trade-offs and adjust their input during the search process.

These insights motivate the integration of interactive MOO

principles into MORL, which makes them more applicable to

complex real-life problems. The interactive MORL literature is

still very limited, there is one existing interactiveMORL approach

that allows the user to specify a target point in the objective space,

which the agent attempts to reach by minimizing the difference

between its expected return and the target [44]. The target can

be updated before and during training, enabling user guidance

throughout the learning process.

In this work, we propose an interactive preference-guided

MORL framework that builds on the PGMORL algorithm [51]

and incorporates ideas from the E-NAUTILUS method [37]. Our

approach allows the user to interactively influence the learn-

ing process by selecting preferred solutions after each iteration.

These preferences are then used to constrain the search space

to policies that are strictly better than the selected one, focusing

exploration on the region of interest.

To summarize, our contributions are as follows:

• We introduce a novel interactive MORL algorithm with

an evolutionary search component. During the learning

process, the user selects their most preferred solution, and

the algorithm bounds the search space to focus on im-

proving upon this solution. This guides the search toward

the user’s preferred region and results in a compact set of

high-quality policies.

• To evaluate our algorithm, we adopt and adapt several

evaluation strategies from the field of evolutionary algo-

rithms (EA) [2, 7, 8, 21] to enable fair and meaningful

comparisons with a non-interactive baseline. Specifically,

we make use of artificial user utility functions, measure

the number of steps required to reach predefined target

values, and compare the final output solutions between

methods.

The paper is structured as follows: In Section 2, we will re-

view the preliminaries, explaining key concepts utilized in this

work and discussing related research. We will then move to Sec-

tion 3, where we will go over the existing implementations first,

and afterwards we introduce our proposed method and provide

a detailed explanation. Next, in Section 4, we will present the

specifics of our experimental setups, such as environments and

evaluation methods. This will be followed by Section 5, where

we will thoroughly analyze the results and provide explanations.

In Section 6, we will shortly go over what could be improved and

suggest directions for future research on interactive MORL. Fi-

nally, in Section 7, we will summarize our findings and conclude

our work.

2 BACKGROUND
In the following subsections, a background is given about multi-

objective optimization (MOO) and some of the current state-of-

the-art MORL methods in how they calculate the Pareto front.

Afterwards, classical and evolutionary interactive approaches

are explained in more depth.

2.1 Multi-Objective Problem
We define the multi-objective problem as follows:

max 𝑓 (𝑥) = max{𝑓1 (𝑥), 𝑓2 (𝑥), . . . , 𝑓𝑖 (𝑥)} (1)

with 𝑖 ≥ 2 conflicting objective functions 𝑓𝑖 . Usually, we want to

maximize all the objective functions simultaneously. 𝑥 is the ob-

jective value and the vector of objective function values 𝑧 =

𝑓 (𝑥) = (𝑓1 (𝑥), ..., 𝑓𝑖 (𝑥))𝑇 is the objective vector, due to the

conflicting nature of the functions, it is often not possible, in

non-trivial settings, to get a solution where all individual ob-

jective function values are optimal in the multi-objective prob-

lem [13, 24, 26, 28, 37]. This brings us to the definition of Pareto
Optimality:

Definition 1 (Pareto Optimality). A solution 𝑥 is (globally)
Pareto optimal if there does not exist another solution 𝑥 ′ such
that 𝑓𝑖 (𝑥 ′) ≥ 𝑓𝑖 (𝑥) for all 𝑖 = 1, . . . , 𝑘 and 𝑓𝑗 (𝑥 ′) > 𝑓𝑗 (𝑥) for at
least one index 𝑗 .

An objective vector 𝑧∗ ∈ 𝑍 is Pareto optimal if there does not
exist another vector 𝑧 ∈ 𝑍 such that 𝑧𝑖 ≥ 𝑧∗

𝑖
for all 𝑖 = 1, . . . , 𝑘 and

𝑧 𝑗 > 𝑧∗
𝑗
for at least one index 𝑗 . Equivalently, 𝑧∗ is Pareto optimal

if the policy corresponding to it is Pareto optimal.

A set of all Pareto Optimal solutions is called the Pareto set,
and the image of such a set is called the Pareto front.

To formally determine whether one solution is better than

another in a multi-objective context, we rely on the concept of

Pareto dominance. Pareto dominance provides a partial ordering

of solutions based on the idea that one solution is strictly better

if it performs at least as well across all objectives and strictly

better in at least one.

Definition 2 (Pareto Dominance). Given two objective vec-
tors 𝑧, 𝑧′ ∈ 𝑍 , we say that 𝑧 Pareto dominates 𝑧′ (denoted 𝑧 ≻ 𝑧′)
if 𝑧𝑖 ≥ 𝑧′

𝑖
for all 𝑖 = 1, . . . , 𝑘 and 𝑧 𝑗 > 𝑧′

𝑗
for at least one index 𝑗 .

Equivalently, a solution 𝑥 Pareto dominates another solution 𝑥 ′

if 𝑓𝑖 (𝑥) ≥ 𝑓𝑖 (𝑥 ′) for all 𝑖 = 1, . . . , 𝑘 , and 𝑓𝑗 (𝑥) > 𝑓𝑗 (𝑥 ′) for some
𝑗 .

For most multi-objective optimization methods, using and hav-

ing knowledge of the ideal and nadir vector can be quite valuable.

The ideal vector, 𝑧∗ = (𝑧∗
1
, ..., 𝑧∗

𝑖
)𝑇 , contains the most optimal indi-

vidual objective function values, which is the highest value for a

maximization problem. The nadir vector, 𝑧𝑛𝑎𝑑 = (𝑧𝑛𝑎𝑑
1

, ..., 𝑧𝑛𝑎𝑑
𝑖

)𝑇 ,
on the other hand, is defined as the objective vector where each

value is the worst possible outcome. In practice, calculating the

nadir vector can be quite challenging, but it can be approximated

using a pay-off table or other more recent approximation meth-

ods [4, 12, 24].

2.2 Multi-Objective Reinforcement Learning
Within MORL, we can formulate the multi-objective problem as

a Multi-Objective Markov Decision Process (MOMDP) [20]. The

MOMDP is represented by the tuple ⟨𝑆,𝐴,𝑇 ,𝛾, 𝜇, 𝑅⟩ where:

• 𝑆 is the state space.

• 𝐴 is the continuous or discrete action space.

• 𝑇 : 𝑆 × 𝐴 → 𝑆 is the transition function, specifying the

probability of transitioning from state 𝑠 to 𝑠′ given action

𝑎.

• 𝛾 ∈ [0, 1) is the discount factor
• 𝜇 : 𝑆 → [0, 1] is the probability distribution over the initial
states

• 𝑅 : 𝑆 × 𝐴 × 𝑆 → R𝑑 is the vector reward function, over

𝑑 ≥ 2 number of objectives.

The main difference between MOMDP and the traditional

single-objective MDP is the vector of rewards 𝑅, since we get a

reward value for each objective for each action that we take in the

environment. This makes the problem much more complex, as

traditional RL methods cannot learn with multiple reward values

during the learning process of the agent, and we cannot make

use of the fact that we can maximize a single reward. Within

MORL, we can classify the methods into two main categories

depending on the output of the algorithm. First, we have a single-

policy method, where the output is a single solution. The user’s

preference must be known before starting the training of the

agent(s). A major drawback of this method is that the preference

of user might change. Then the policy has to be retrained by

adjusting the preferences. For the second method, we have the

multi-policy method, where the output is a set of solutions whose

corresponding objective vectors form an approximation of the

Pareto front. For this method, the user preference is not known

a priori, but the preferred policy can be selected after generating

the output. This method is slower to train compared to the single-

policy method, but the user can easily switch to a different policy

when the preference changes, since the algorithm outputs a wide

coverage of different policies. Both methods depend on what

we call the user utility, where the user’s preference for different
objectives is mapped to a scalar value [20, 32].

2.2.1 Scalarization Functions. One of the solutions to the vec-

torized reward problem is that we make use of a scalarization

function, also known as a utility function in themajority ofMORL

literature [20], 𝑢 : R𝑑 → R. The scalarization function maps the

vector of rewards of the policy to a single scalar value. This effec-

tively reduces ourMOMDP problem to a single-objective problem.

Another advantage of the scalarization function is that we can

also take the user utility into account, this approach allows us

to collect the user’s preference a priori and use that information

to derive desirable policies [35]. We can split the scalarization

function into two categories, namely linear and non-linear scalar-
ization The most common linear scalarization function is the

weighted sum of the values for each objective function [17]:

𝑈 (𝑧) = 𝑈 (𝑓 (𝑥)) = 𝜔⊤ 𝑓 (𝑥) =
𝑚∑︁
𝑖=1

𝜔𝑖 𝑓𝑖 (𝑥) (2)

Where𝑈 (𝑧) represents the singular scalarized reward from the

objective vector of rewards 𝑧, theweights𝜔 can be used to express

the preference of the user. However, the drawback of a linear

scalarization is that it is unable to approximate a concave Pareto

Front, as policies in the concave area usually receive less scalar-

ized reward compared to the policies in convex regions [35, 47].

Therefore, we also have non-linear scalarization functions, such

as the weighted Chebyshev scalarization function [45], to approxi-

mate the true Pareto Front.

2.2.2 Single-Policy Methods. When a single policy & a linear

scalarization function method is chosen, meaning with a known

user utility, any standard single-objective RL algorithm can be

applied to multi-objective problems by transforming MOMDP

into MDP with linear scalarization using weights [35]. When the

true Pareto front can only be approached by non-linear scalar-

ization functions, one MORL method that can be considered is

the Expected Utility Policy Gradient (EUPG) [34]. The EUPG op-

timizes over the expected value of the utility of the return using

a policy gradient method combined with Monte-Carlo simula-

tions. Van Moffaert et al. [45] proposed the non-linear Chebyshev

scalarization function, where the weights are applied to the 𝐿∞,

which is also known as the Chebyshev metric.

min

𝑥∈R𝑛
𝐿∞ (𝑥) = max

𝑜=1,...,𝑚
𝜔𝑜

��𝑓𝑜 (𝑥) − 𝑧∗𝑜
��

(3)

Where the 𝑧∗𝑜 is the utopian point, which is the ideal vector plus

some small constant 𝜖 : 𝑧∗𝑜 = 𝑧∗+𝜖 , this is combinedwith the single-

objective Q-learning algorithm to get the new multi-objective

Q-learning algorithm (MO Q-learning).

2.2.3 Multi-Policy Methods. The literature on the multiple poli-

cies MORL algorithm is more substantial than the single policy

algorithm since it is usually assumed that user do not know their

exact preference a priori. Furthermore, most of the recent MORL

works focus on linear scalarization functions. Abels et al. [1]

proposed a dynamic weights method where the multi-objective

Q-network output depends on the importance of each objective.

The network is trained on a Diverse Experience Replay (DER)

that can make use of the non-stationary weight settings. A simi-

lar work by Reymond et al. [33] also utilizes a single conditioned

network that can encompass all non-dominated policies. The

main advantage of such a network is that it is easily scalable in

terms of the number of objectives and is very sample-efficient.

Another approach is the work of Xu et al. [51], where they make

use of a prediction-guided model to train a population of net-

works efficiently. The non-dominated policies are stored in a

Pareto Archive, and the user can select their preferred policy

from the archive after training. Similarly, the work of Parisi et al.

[31] is also a population-based evolutionary method, where the

algorithm tries to effectively learn the continuous approximation

of the Pareto Front using an episodic exploration strategy and

importance sampling.

2.2.4 Interactive MORL Methods. A third approach to obtaining

the user’s preferred policy is the interactive method. Limited

research has been conducted in the interactive MORL domain,

Figure 1: Interactive Method Classifications:
(1) Interactive Selection Methods, (2) Interactive Search Methods

where user preferences are incorporated during the learning pro-

cess of the agent to produce a single satisfactory policy. The ad-

vantage of this approach is that it eliminates the need for the user

to specify their preferences a priori and avoids the higher compu-

tational costs associated with generating multiple policies. One

interactive approach is the idea of Vamplew et al. [44], where they

extend the Multiple Direction Reinforcement Learning (MDRL)

and Q-learning approach to the task of learning multi-objective

Pareto Optimal policies. This Q-steering algorithm can then be

extended to where the user can interactively specify a target

point and the agent steers towards the target point by trying to

minimize the distance between the average reward and the target.

However, some issues were raised during the experiments of the

algorithm, for example, when we strongly favour one objective

over all others, the algorithm can fail to converge to an optimal

policy. Another issue is the high memory requirement of the

Q-steering algorithm, which makes it harder to scale to a high-

dimensional problem. Other interactive MORL works are based

on the multi-objective multi-armed bandits (MOMABs) prob-

lem. Roijers et al. [36] used an interactive Thompson Sampling

method for MOMABs. Similar to our approach, the algorithm em-

ploys a linear weighted-sum scalarization function, as described

in Equation 2. By asking pairwise comparison queries to the user,

the algorithm can learn the preference of the user, which can be

translated to the weights 𝜔 .

2.3 Interactive Multi-Objective Optimization
In most MOO methods, the involvement of a decision maker
(DM) is crucial, as the DM needs to select the most preferred

solution/policy. We know three different kinds of categories for

MOO, which are a priori, a posteriori and interactive methods. In

a priori methods, the preference of DM is known beforehand, the

algorithm can search for a single Pareto Optimal solution that fits

the preference. In a posteriori methods, however, the algorithm

does not know the preference and usually tries to generate the

Pareto front and the DM can select their most preferred solution

afterwards. And lastly, we have the interactivemethodswhere the

DM is actively participating and providing feedback during the

search process, at the end, a final Pareto Optimal solution is found

according to the DM’s preferences. Interactive MOO has many

advantages over a priori or a posteriori optimization methods.

The DM can slowly learn more about the problem and what kind

of solution is possible and can adjust their preference during

the search process. Furthermore, compared to the a posteriori

method, the DM will not be overwhelmed by the many different

solutions, rather they get to choose from a small set of solutions

until they find a single solution that fits their preference.

Within interactive methods, we could classify the methods

into two different classes [22]:

• Interactive Selection Methods, those methods are usually

semi-a posteriori since the algorithm runs in two phases.

The first phase is where we generate a Pareto front, and

the second phase is where the algorithm guides the DM

to their preferred solution in the generated Pareto front.

• Interactive Search Methods, where the algorithm asks for

user feedback to steer the search process towards a more

relevant and preferred area for the user. Often, evolution-

ary multi-objective optimization (EMO) methods are clas-

sified within this class.

2.3.1 Interactive Selection Methods. Interactive Selection Meth-

ods is also what is called the classical interactive MOO in the

literature. Usually, a set of solutions is generated and presented

to the DM. The DM can then provide feedback or select their pre-

ferred solution. Based on the feedback, a more representative set

of solutions is generated. This is repeated for several iterations

until the DM finds a satisfying solution [24]. The advantage of the

Interactive Selection method is that the process of generating the

Pareto front and the interactive process are separated, meaning

that the time required by the DM to arrive at a preferred solution

is generally reduced compared to involving the DM during the

search process. Within the interactive MOO field, we can further

divide interactive methods into different classifications based on

what type of feedback the DM needs to provide [23, 24, 26, 38].

• Aspiration LevelsMethod: In the aspiration levelsmethod [9,

49], the DM provides what their aspiration levels are for

each objective function value 𝑓𝑖 (𝜋) for all 𝑖 . The aspira-
tion levels represent the minimum value or return that the

solution policy needs to reach for the DM to be considered

satisfactory. Similar methods that require some reference

point or a goal to reach also fall into this category.

• Classification Method: In the classification method [4, 27],

the DM needs to provide some information on how each

objective value needs to be changed to become their de-

sired solution. This is often done by giving feedback on

whether the value needs to be improved, remains as it is,

or can be worsened. In multi-objective problems, it is sim-

ply not always possible to improve objective values while

keeping other values the same; therefore, some objective

values need to be worsened if you want to improve some

other values.

• Trade-Off Method: The trade-off method is one of the more

classical interactive methods. In this class, we utilize the

trade-off between two different objective value functions.

The DM usually needs to "trade" by diminishing the value

of one objective function to improve the value of another

objective function, while all other objective functions re-

main the same. This scheme is what we call the subjective
trade-off [18, 29]. Another popular scheme is to show two

solutions and ask the DM the desirability of such trade-off,

we call this the objective trade-off [10, 52].

• Comparing SolutionsMethod: In this method, the DMneeds

to select their preferred solution from the presented set

of solutions [25, 37, 40]. Based on the selected solution,

new solutions are generated that are similar to the se-

lected solution. Usually compared to the other methods,

the cognitive load from the DM is lower since the DM only

needs to select a solution rather than giving (sophisticated)

preference information.

2.3.2 Interactive Search Methods. In contrast to the first method,

interactive multi-objective meta-heuristics involve the DM with

the MOO algorithm during the run, steering the search towards

a more desired segment of the Pareto front [22]. Compared to the

Interactive Selection method, a notable limitation of this method

is its requirement to search through many different solutions and

iterations during the search or learning process. This can cause

human fatigue due to the necessity for continuous feedback to

the algorithm. Certain algorithms have been enhanced to pre-

dict human preferences, thereby reducing the need for constant

interaction by the decision maker [42]. The majority of inter-

active multi-objective meta-heuristics are evolutionary MOO

methods. One of the very first methods of this kind was proposed

by Tanino [43], where the evaluation of the current population

is derived from the preference of the DM. The DM can point

out unsatisfactory solutions or provide some kind of aspiration

level. Many interactive multi-objective evolutionary algorithms

(I-MOEA) differ in what part of the algorithm is adjusted using

the preference of the DM, it can be either objectives, dominance

and crowding distance [5, 19]. In the objectives case, usually

the objective values get changed according to DM’s preference,

which will guide the search process slowly towards the preferred

region. An example would be the work ofWagner and Trautmann

[46], where they optimize a desirability function of the objectives,

which expresses the preference of the user. To adjust dominance,

the Pareto dominance is often replaced by a different dominance

function that considers the preference information [6, 14, 39].

In those functions, they often use a reference point, supplied

by the DM, and derive the dominance from the distance to the

reference point while preserving the original Pareto Dominance

as much as possible. Finally, crowding distance is a metric used to

estimate the proximity of a solution to its neighbouring solutions

in the objective space. A high crowding distance means that the

solution is in a sparse region, with a low number of neighbour-

ing solutions. An example would be a light beam search method

combined with the NSGA algorithm from Deb and Kumar [11],

where they search in the neighbourhood of interesting solutions.

3 METHOD
In this section, the core algorithms are introduced, where the

inspiration has been drawn from for ourmethod design: PGMORL

and the E-Nautilus method [37, 51]. In the last subsection, the

adjustments to the PGMORL algorithm, for including interactive

optimization with user feedback, are explained in more depth.

3.1 Prediction-Guided Multi-Objective
Reinforcement Learning (PGMORL)

The PGMORLmethod is amulti-policy evolutionaryMORLmethod

where the algorithm constructs a set of Pareto-optimal policies

that capture the Pareto front [51]. The algorithm consists of 3

different stages:

3.1.1 Warm-up Stage. In the warm-up stage, the algorithm ini-

tializes 𝑛 different starting agents/networks, and those policies

are paired with one of the 𝑛 evenly distributed non-negative

weights {𝜔𝑖 }(
∑

𝑗 𝜔𝑖, 𝑗 = 1, 1 ≤ 𝑖 ≤ 𝑛) for the rewards. Then the

agents are trained using theMOPPO algorithm for a fixed amount

of k iterations. The warm-up stage is important before running

the core evolutionary stage of the algorithm, as the agents need

to get out of the low-performance policy region before the model

can compare the agents in the next stage.

Figure 2: Evolutionary stage of PGMORL Algorithm [51]

Figure 3: E-NAUTILUS [37], example with two iterations, where
from the selected solution in 𝑧1, a new iteration is generated with
solutions that are strictly better than the selected solution

3.1.2 Evolutionary Stage. In the evolutionary stage, as shown in

Figure 2, the algorithm keeps track of the current and past popu-

lation of the agents along with their performances. Then it uses

an analytical model to predict which combination of weights and

agents will improve the Pareto front the most based on the past

data. The model selects n different policy-weight combinations

to train in the next l training iterations, producing new offspring

policies. The evolutionary stage is finished after m number of

generations. During this stage, a Pareto archive is used, and all

non-dominated policies are stored, which will be the output at

the end of the stage.

3.1.3 Post-processing Stage. At the final stage, the Pareto front

is constructed from the set of final policies. The algorithm groups

similar policies into families. A continuous Pareto representa-

tion will then be computed by linearly interpolating the policy

families.

3.2 E-Nautilus
E-Nautilus is an Interactive Selection MOO method where we

require an already generated Pareto front of the solutions [37].

This method takes the human aspects regarding trade-offs and

anchoring bias into consideration. The algorithm has 3 stages, a

preprocessing stage where we get the Pareto front of the solu-

tions, a decision-making stage where the DM interacts with the

algorithm to reach their preferred solution, and finally a post-

processing stage where we find the closest solution from the

Pareto front to the selected solution of the DM. The main advan-

tage of using these stages is that there is no human interaction

needed in the first and last stage, the first stage usually requires

the most time, since generating the Pareto front to an MOO prob-

lem can take an extensive amount of time. The main functionality

of this method lies in the interactive decision-making stage. In

short, during the interactive stage, the DM is iteratively shown a

Algorithm 1 Interactive Preference-Guided MORL

1: Input: Number of agents 𝑛, warm-up iterations 𝑘 , training

interval 𝑙 , max generations𝑚

2: Initialize: Generate 𝑛 initial agents with evenly distributed

weights 𝜔 : {𝜔𝑖 }(
∑

𝑗 𝜔𝑖, 𝑗 = 1, 1 ≤ 𝑖 ≤ 𝑛)
3: for 𝑘 do ⊲ Warm-up stage

4: Train {(𝑛𝑖 , 𝜔𝑖)}𝑛𝑖=1
agents using MOPPO

5: end for
6: Initialize population P with trained agents

7: for generation 𝑔 = 1 to𝑚 do ⊲ Evolutionary stage

8: Evaluate all agents in P
9: User selects most preferred policy: 𝜋𝑝𝑟𝑒 𝑓

10: Extract objective vector 𝑧𝑝𝑟𝑒 𝑓 = [𝑥1, 𝑥2, . . .] from 𝜋𝑝𝑟𝑒 𝑓

11: Define bounds based on ℓ (𝑧) = 𝑧 − 𝛿 ·
√︁
|𝑧 |

12: Filter population: P𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑 = {𝜋 ∈ P | 𝑧 (𝜋) ⪰ ℓ (𝑧)}
13: Use prediction model to select 𝑛 agents from P𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑

14: for 𝑙 do
15: Train {(𝑛𝑖 , 𝜔𝑖)}𝑛𝑖=1

selected agents using MOPPO

16: end for
17: Update P with new agents

18: end for
19: Output: Final set of policies within bounds; user selects final

preferred policy

set of intermediate points between the nadir point and the ideal

point as seen from Figure 3. The DM selects its most preferred

point, and new points are generated that are closer to the pro-

vided Pareto front, but also dominate the selected point. This

ends when the maximum number of pre-specified iterations is

reached or the DM has already selected one solution from the

Pareto front.

3.3 Interactive Preference-Guided
Multi-Objective Reinforcement Learning

In this section, we propose our main contribution. An interactive

MORL method that searches for Pareto Optimal policies using

the preference information that is provided by the DM. To make

it interactive, it is crucial to identify the best moment in the

algorithm to request user feedback and to utilize the user input

to generate a more preferred policy. Our idea is to modify the

PGMORL algorithm to make it interactive by using some core

intuitions behind the interactive E-NAUTILUS method.

3.3.1 Overview. The overview is also presented in Algorithm 1.

Initially, we opted to maintain the warm-up stage consistent with

the original PGMORL algorithm, where we initialize 𝑛 agents

and weights: 𝜔 . The agents and their corresponding weights are

trained for 𝑘 warm-up iterations. This phase facilitates initial

exploration and learning about the environment, which is critical

for the agents. Furthermore, actions from the agents are usually

highly noisy. Therefore, interacting with DM usually will not

result in anything meaningful. After warming up, we proceed

to the evolutionary stage. In this stage, the DM will be actively

interacting with the algorithm. During each generation𝑔, the DM

can provide their preference information based on the current

Pareto front by selecting their preferred policy 𝜋𝑝𝑟𝑒 𝑓 . And then

the information is used to select the next agent-weights combina-

tion to train for 𝑙 iterations. In the next subsection 3.3.2, we will

go into more details about this part. After the maximum number

of generations𝑚, the evolutionary stage terminates and a final

Figure 4: Bounding the search space

set of policies from the Pareto Archive, filtered by the bounds,

is shown to the DM. The DM can make their final choice by se-

lecting their most preferred policy in case there is more than one

policy. The post-processing stage is removed compared to the

original PGMORL algorithm, as there is no need to post-process

the set of solutions since the output of the interactive method is

only one policy.

3.3.2 Limit search region through bounding the objective vector.
At each iteration, before selecting the agent-weights combina-

tions for training, the current Pareto front will be presented to

the DM. From the current front, the DM can choose their most

preferred solution. The algorithm then uses the preference in-

formation extracted from the objective values from the selected

solution 𝑧𝑝𝑟𝑒 𝑓 = [𝑥1, 𝑥2, . . .]. Using the objective vector, we set a
lower (or upper, in case of minimization) bound that the objective

vector must meet before being considered to become a candi-

date to train in the next iteration. To allow some exploration,

the bounds are relaxed by a small margin 𝛿 ·
√︁
|𝑧 |, in case more

solutions in the neighbours have more potential to improve com-

pared to the preferred solution. Formally, we define the lower

bound ℓ as:

ℓ (𝑧) = 𝑧 − 𝛿 ·
√︁
|𝑧 | (4)

Finally, the predictionmodel is only able to select agents that have

a strictly better performance than the lower bounds: 𝑧 (𝜋) ⪰ ℓ (𝑧).
This limits the search space to only agents that have similar or

better performance than the preferred solution. At every gen-

eration, the bounds will slowly become tighter until the search

converges to a region that is close to the true Pareto front, as

shown in Figure 4.

4 EXPERIMENTAL SETUP
We implement our interactive multi-objective reinforcement

learning by extending the PGMORL [51] method available in

morl-baselines [16]. The code can be found on our GitHub page.
1

We test ourmethod, the PGMORL and the PGMORL+E-NAUTILUS
method, on several MORL environments, which are explained in

the next subsection. In the rest of this section, we will describe

evaluation methods to properly compare our method against the

a posteriori PGMORL as a baseline. In our work, we implement

a novel technique that does not yet have established evaluation

methods. We are using some ideas from interactive evolutionary

and interactive MOO methods to evaluate the performance of

our method and the non-interactive method [2, 7, 8, 21].

1
https://github.com/Henweiz/interactive_MORL

4.1 Environments
We employ two mo-gym environments:

mo-mountaincarcontinuous-v0 and
mo-halfcheetah-v5 [16]. These environments were chosen as

they allow seamless integration with the current implementation

of PGMORL, and the core of our algorithm is similar to PGMORL.

4.1.1 mo-mountaincarcontinuous-v0. is a continuous and multi-

objective version of the classic mountaincar environment [30].

The environment is a car that is placed at the bottom of a valley.

The goal of the agent is to make the car reach the flag on the

top of the right hill. The observation space is the position of the

car along the x-axis and the velocity of the car. The action is the

acceleration that can be applied to the car in either direction.

And finally, there are two reward values for this environment:

(1) Time penalty: The time it takes to reach the destination

(2) Fuel cost:

A negative norm based on the action vector: −||𝑎𝑐𝑡𝑖𝑜𝑛 | |2

Therefore, the trade-off in this environment is either, spend a

considerable amount of fuel to reach the destination faster. Or

an efficient use of fuel, but having a higher time penalty.

4.1.2 mo-halfcheetah-v5. is a Multi-Joint dynamic with Contact

(MuJoCo) environment [48]. Where physical contact between

the robot and the environment is simulated. The environment

consists of 9 different body parts and joints connecting them.

The action space of the agent is to control the joints in such a

way that it makes the cheetah robot run forward. Furthermore,

it also has a large observation space consisting of the position of

the body parts and their velocities. The rewards consist of the

following:

(1) Forward reward: The agent receives a positive reward

when it moves forward in the right direction

(2) Control cost: A negative reward for the agent when it

takes large actions

The goal of the environment is to enable the robot cheetah to

move as fast as possible in the desired directionwhile maintaining

a low control cost.

4.2 Evaluation methods
To evaluate the effectiveness of our proposed approach, we com-

pare three different methods: our interactive preference-guided

MORL, the baseline non-interactive PGMORL method, and a

hybrid method that combines PGMORL with the E-NAUTILUS

interactive decision-making procedure. These methods are se-

lected to assess how user interaction—either integrated during

learning or applied after learning—affects the quality and rele-

vance of the resulting solutions.

• Interactive Preference-Guided MORL:
Our proposed method, where the user provides feedback

during the learning process to guide the search toward

their preferred region of the solution space. The algorithm

adaptively restricts the search based on the selected solu-

tion to focus exploration.

• PGMORL: A non-interactive baseline method that com-

bines evolutionary search and prediction modeling to gen-

erate a diverse set of policies approximating the Pareto

front.

• E-NAUTILUS+PGMORL: A two-phase hybrid method.

First, PGMORL is used to generate a Pareto-optimal so-

lution set. Then, E-NAUTILUS is applied to interactively

select the user’s preferred solution from the final set.

4.2.1 Artificial user selection. For our interactive methodology

to evaluate performance between the interactive method and

the non-interactive method, it is essential to establish a model

of user behaviour within the environment. Employing a human

user for this process is usually impractical for the experiment

framework, as it proves time-consuming when the algorithm

operates over an extended duration, requiring the human user to

constantly interact with it. Therefore, we use an artificial user

selection method with a predefined utility function to determine

its preferred policy [8]:

𝑈 (𝑥1, 𝑥2) = 𝜔1 · 𝑥1 + 𝜔2 · 𝑥2 (5)

Where 𝑥1 and 𝑥2 are the average episodic rewards for the objec-

tives across five validation episodes. And𝜔 is the weight assigned

to the objective value. However, a limitation of utilizing an ar-

tificial user is its lack of ’flexibility’ in decision-making when

compared to a human decision maker (DM). Human DMs are

capable of learning and adapting throughout the agent’s training

phase, usually resulting in a change of preference, whereas an

artificial user consistently opts for the option with the highest

utility function value. For our experiments, we have designed

three distinct artificial users, each characterized by specific linear

utility functions tailored for maximization problems:

• User A: with equal preferences:𝑈 (𝑥1, 𝑥2) = 0.5 ·𝑥1+0.5 ·𝑥2

• User B: with preference on objective 1: 𝑈 (𝑥1, 𝑥2) = 0.7 ·
𝑥1 + 0.3 · 𝑥2

• User C: with preference on objective 2: 𝑈 (𝑥1, 𝑥2) = 0.3 ·
𝑥1 + 0.7 · 𝑥2

During each interactive decision-making instance, the artificial

user selects the solution with the highest utility, as determined

by its predefined user utility function. The selected solution is

returned as feedback to the interactive method, which then uses

it to update the bounds that constrain the search space.

To evaluate the performance of the method over time, we track

two metrics based on the artificial user’s utility assessments:

• Maximum User Utility𝑈𝑚𝑎𝑥 (𝑔): This metric represents

the highest utility value in the population at generation

𝑔. It is computed by evaluating all individuals using the

artificial user’s utility function and selecting the one with

the highest value. This serves as an indicator of the best

solution quality for the user’s preferences:

𝑈max (𝑔) = max

𝑖∈𝑃 (𝑔)
𝑈 (𝑥𝑖

1
, 𝑥𝑖

2
) (6)

• Average Population Utility𝑈 (𝑔): This is the mean util-

ity value of all individuals in the population at generation

𝑔. It indicates whether the population as a whole is con-

verging toward the user’s preferred region. Higher value

means that the population is close to the preferred solu-

tion:

𝑈 (𝑔) = 1

|𝑃 (𝑔) |
∑︁

𝑖∈𝑃 (𝑔)
𝑈 (𝑥𝑖

1
, 𝑥𝑖

2
) (7)

Where P(g) is the population at evolutionary generation 𝑔 and

𝑈 (𝑥𝑖
1
, 𝑥𝑖

2
) is the utility value of individual 𝑖 based on its objective

values 𝑥1 and 𝑥2.

4.2.2 Steps until threshold reached. An alternative evaluation

metric involves measuring the number of global steps or the

number of generations required for the algorithm to reach a

predefined utility threshold. This threshold represents a mini-

mum acceptable performance level as determined by the artificial

user’s utility function. Formally, for a given threshold value 𝜏 ,

we define the stopping time 𝑡𝜏 as the first global step at which

the individual with the highest utility in the population exceeds

the threshold:

𝑡𝜏 = min {𝑔 | 𝑈max (𝑔) ≥ 𝜏} (8)

The goal of the interactive method is to require fewer steps to

reach this threshold 𝜏 compared to the non-interactive baseline,

due to the guidance provided by the DM, which helps steer the

agents toward regions of the objective space that align more

closely with the user’s preferences. For evaluation, we define

three distinct target thresholds, each corresponding to a specific

preference profile:

• Target A: A balanced threshold 𝜏𝑐 considering equal per-

formance on both objectives 𝑥1 and 𝑥2

• Target B: A threshold 𝜏𝑎 focused on maximizing objective

𝑥1

• Target C: A threshold 𝜏𝑏 focused on maximizing objective

𝑥2

For each generation, instead of using an artificial user function

to select the most preferred policy, we use the Euclidean distance

metric 𝑑 (x, y) =
√︃∑𝑛

𝑖=1
(𝑥𝑖 − 𝑦𝑖)2

to select the closest solution

to the target solution as the artificial DM.

4.2.3 Quality of the Final Policy. The primary objective of the

previous comparisons was to evaluate our interactive method

against a non-interactive baseline. To further assess its perfor-

mance, we compare the final solution generated by our method

with that selected by E-NAUTILUS, a well-established interac-

tive decision-making approach. Importantly, only E-NAUTILUS

operates on a precomputed Pareto front—specifically, the one

produced by the base PGMORL implementation—whereas our

interactive method generates its own final solution through

preference-guided search during training. For both methods, the

final solution is selected based on the artificial user’s utility func-

tion, as described in Subsection 4.2.1. To ensure a fair and ro-

bust comparison, we aggregate the outputs from three different

random seeds and apply Pareto filtering to remove dominated

solutions across these runs. The selected solutions are then eval-

uated based on their utility values and whether one dominates

the other. For E-NAUTILUS, we also must specify the number of

solutions shown per iteration as well as the total number of iter-

ations. Although increasing these parameters typically improves

selection accuracy, we set both to 3 in our experiments to match

the limited size of the PGMORL-generated Pareto fronts in the

tested MORL environments.

5 RESULTS
The training details and their hyperparameters can be found in

Appendix A. The experiments are run on the Delft High Perfor-

mance Computing Centre (DHPC) [15].

(a) Balanced Preference (b) Focus Objective 1 (c) Focus Objective 2

Figure 5: MountainCar: Maximum User Utility under different preference settings.

(a) Balanced Preference (b) Focus Objective 1 (c) Focus Objective 2

Figure 6: MountainCar: Average Population Utility under different preference settings.

5.1 Artificial Utility Function
In the artificial utility function evaluation, we look at both the

best individual performance𝑈𝑚𝑎𝑥 (𝑔) and the population perfor-

mance 𝑈 (𝑔) over time. We run each experiment for 3 different

seeds.

5.1.1 mo-mountaincarcontinuous-v0. The maximum user utility

values are shown in Figure 5. Overall, the performance of the two

methods is largely comparable. Under the balanced preference

setting, the interactive method initially outperforms the non-

interactive method, although the latter catches up over time. For

objective focus 1, both methods maintain similar performance

throughout the experiment. In contrast, under objective focus 2,

the interactive method starts with lower performance but quickly

reaches a similar policy to the non-interactive approach. Across

all three scenarios, the interactive method ultimately achieves

higher maximum user utility, continuing to improve over time,

whereas the non-interactive method tends to converge earlier.

In Figure 6, we see the average population utility over time.

All three plots show similar results, where the interactive method

clearly converges to the preferred region of the user by filtering

individuals that are not within the bounded limits. For the non-

interactive method, the population utility remains roughly the

same after the initial improvements. This shows that the non-

interactive opts for an even spread of the different solutions

rather than converging to a single region in the search space. For

both plots, we also see that the averages converge quite quickly,

with barely any improvements over time.

Overall, the results indicate that both methods are generally

capable of finding solutions aligned with the user’s preference

within a similar number of training steps. However, as shown

in Figure 6, the interactive method tends to discover a higher

number of similar solutions within the preferred region. Addi-

tionally, Figure 5 reveals that when preference is placed on the

second objective (𝑥2), the interactive method performs slightly

worse compared to the other preference settings. We assume this

is caused by the environmental dynamics and reward structure.

Specifically, the first objective (𝑥1) represents the time penalty

to reach the goal, while the second objective (𝑥2) corresponds

to fuel consumption. Prioritizing 𝑥2 early in training may hin-

der the agent’s ability to reach the goal efficiently, as it learns

to minimize fuel usage. This not only increases the cost for 𝑥1

but also inadvertently raises 𝑥2 due to prolonged episode dura-

tions and a higher number of actions. In contrast, when focusing

on objective 1 or adopting balanced preferences, the interactive

method typically outperforms the non-interactive method across

different seeds. These observations highlight the importance of

initially optimizing for 𝑥1 before shifting focus to 𝑥2.

5.1.2 mo-halfcheetah-v5. Figure 7 displays the results for the

Maximum User Utility. For objective focus 1, the non-interactive

method clearly outperforms the interactive method. In contrast,

for objective focus 2, both methods achieve comparable perfor-

mance. Under the balanced preference, the interactive method

performs better during the initial half of training, but the non-

interactive method eventually catches up and surpasses it. Com-

pared to the mo-mountaincarcontinuous-v0 environment, the

interactive

method in mo-halfcheetah-v5 generally fails to outperform the

non-interactive method by the end of training.

Figure 8 presents the Average Population Utility results. The

trends observed are generally consistent with those from the

other environment and across all preference types. However, in

contrast to the mo-mountaincarcontinuous-v0 environment,

the mo-half-
cheetah-v5 environment exhibits the opposite behaviour in

terms of variance across seeds. Specifically, the interactivemethod

shows significantly higher variance, while the non-interactive

method appears more stable. For objective focus 2, one seed re-

sulted in an empty population at a certain point during training.

This likely occurred due to the population selection mechanism,

where only the best-performing individuals are retained each

generation. If, after applying the preference-based bounds, no

individuals meet the criteria, the population may be left empty.

The results indicate that the non-interactive method generally

outperforms the interactive approach.We believe this is primarily

due to the interactive method becoming trapped in local optima,

leading the algorithm to repeatedly select the same policy across

multiple generations before any potential improvement can be

made. This highlights a limitation of our evaluation setup: the ar-

tificial user consistently selects the same solution, whereas a real

user might adjust their selection strategy upon noticing a lack of

progress. Moreover, we observed that the mo-halfcheetah-v5
environment poses a significant challenge for training compared

to mo-mountaincarcontinuous-v0. Even the base PGMORL al-

gorithm struggles to generate a well-formed, continuous Pareto

front in this setting. The results for objective 1 suggest that thor-

ough policy exploration is critical in this environment. How-

ever, the interactive method with bounding the search space

significantly restricts exploration, which in turn slows the per-

formance improvement compared to the more freely exploring

non-interactive method.

5.2 Steps to Reach Threshold
For this evaluation, we compared our interactive method and the

non-interactive baseline. Each experiment is run for 3 different

target values and five different seeds. The average is reported in

the tables.

5.2.1 mo-mountaincarcontinuous-v0. For this environment, we

decided to go for a maximum of 5 million global steps before

timing out the run, and the following three threshold values:

• Target A: [-1, -1], with a focus on balanced objectives

• Target B: [-0.8, -1.2], with a focus on optimizing objective

1

• Target C: [-1.8, -0.5], with a focus on optimizing objective

2

The results of the experiment can be found in Table 1. We can see

that for target A, the non-interactive baseline performs slightly

better than the interactive method. Both modes were able to

reach the target values within the maximum allotted global steps.

For targets B and C, we see that the interactive method performs

significantly better than the non-interactive method. The inter-

active method was able to find a policy that dominates the target

policy much faster and was able to find it within 5 million global

steps, while the non-interactive method failed quite consistently.

Moreover, the standard deviation of the interactive method is rel-

atively low for target C, which means it is able to find a preferred

point fast and consistently.

We see from these results that the interactive method is able to

find policies that are more focused on one objective faster, rather

than a balanced policy placed in the middle of the Pareto front.

Our intuition is that a balanced policy is easier to find when the

exploration space is large, since you can reach it from multiple

angles. For example, a policy that performs well for 𝑥1 and then

trains with a high weight for 𝑥2 in the following iteration(s) and

vice versa. When we are limiting the bounds for the balanced

policy, it will only improve the most when the weights are even

(𝜔 (0.5, 0.5)).
However, when we are putting more weight on one objective,

the interactive method performs better since we do not waste

resources on training policies that go in a different direction

(high weight on the other objective). Therefore, the algorithm is

able to find the preferred solution much faster compared to the

non-interactive baseline.

5.2.2 mo-halfcheetah-v5. For this environment, we decided to

go for a maximum of 7.5 million global steps before timing out

the run and the following three threshold values:

• Target A: [5, -7], with a focus on balanced objectives

• Target B: [7, -20], with a focus on optimizing objective 1

• Target C: [1, -0.5], with a focus on optimizing objective 2

From the results, we can observe that the environment is more

difficult compared to the mo-mountaincarcontinuous-v0 envi-

ronment, as there are many more failed runs. For both target A

and B, the non-interactive baseline performs significantly better

compared to the interactive method. We noticed that the issue

with the interactive method in this environment is that it gets

much more easily stuck in local maxima compared to the non-

interactive method, which is also mentioned before in Subsection

5.1.2. The artificial user then selects the same policy for multiple

iterations without getting a better-performing solution. The non-

interactive has much higher exploration space, so it is possible

to reach the target thresholds from multiple angles, similarly

to what we discussed in the mo-mountaincarcontinuous-v0
results section. This is also one of the issues of the PGMORL

algorithm design mentioned by the authors Xu et al. [51], as

the algorithm can get stuck for a long period of time in local

minima/maxima in order to reach a better performance. We also

noticed that when the interactive method is able to find a solu-

tion, it does so in a similar number of global steps as the base-

line method. However, for target C, it is much easier for the

interactive method to find a dominating policy compared to the

non-interactive counterpart.

5.3 Quality of Final Policies
Figure 9 shows the Pareto-filtered results aggregated over three

different seeds. The figure includes the final outputs selected

by E-NAUTILUS+PGMORL for each of the three artificial user

utility functions, as well as the final outputs from our Interactive

Preference-Guided MORL approach. To improve visual clarity

in cases where solutions overlap, a small jitter is applied, for ex-

ample, the final solution selected by E-NAUTILUS for objective

𝑥1 is the same as the one chosen for the balanced preference.

The interactive method (denoted by triangles) tends to produce

final solutions clustered around high values of objective 1 (𝑥1),

while the non-interactive method yields more dispersed solutions

across the objective space. We hypothesize that this behaviour

arises because utility values are more easily maximized when

prioritizing 𝑥1. This is likely due to the higher reward scale associ-

atedwith 𝑥1 compared to 𝑥2. Additionally, since 𝑥1 corresponds to

the time penalty for reaching the goal, optimizing it often results

in lower fuel consumption as well, thereby indirectly improving

𝑥2. To test this hypothesis, we conducted a separate experiment

in which rewards were normalized before being passed to the

user utility function. The results, shown in Figure 10, display a

less concentrated spread of solutions. Notably, a few solutions

produced by the interactive method are now shifted more toward

the 𝑥2 direction. Across all experiments, we observe that the

final policies are non-dominated with respect to each other. An

interesting finding is that the interactive method consistently

offers multiple similar high-quality solutions in the same region

in the final output after aggregation across seeds. When utility

normalization is applied, more preferred solutions emerge for

the artificial user.

The results for the mo-halfcheetah-v5 environment, shown

in Figure 11, differ notably from those of mo-mountaincarcontinuo-

(a) Balanced Preference (b) Focus Objective 1 (c) Focus Objective 2

Figure 7: HalfCheetah: Maximum User Utility under different preference settings

(a) Balanced Preference (b) Focus Objective 1 (c) Focus Objective 2

Figure 8: HalfCheetah: Average Population Utility under different preference settings.

Table 1: Comparison between interactive and non-interactive method
for mo-mountaincarcontinuous-v0 environment

Targets [𝑥1, 𝑥2] Method Avg Steps (·10
6) ± Std Avg Time per Run Timeouts

A: [-1, -1]

Interactive 2,448 (± 0,621) 0:16:56 -

Non-Interactive 1,968 (± 0,520) 0:14:07 -

B: [-0.8, -1.2]

Interactive 2,928 (± 0,935) 0:20:31 -
Non-Interactive No results 0:36:17 5/5

C: [-1.8, -0.5]

Interactive 1,584 (± 0,215) 0:11:28 -
Non-Interactive 3,104 (± 1,750) 0:23:18 2/5

Table 2: Comparison between interactive and non-interactive method
for mo-halfcheetah-v5 environment

Targets [𝑥1, 𝑥2] Method Avg Steps (·10
6) ± Std Avg Time per Run Timeouts

A: [5, -7]

Interactive 3,845 (± 3,340) 0:50:04 2/5

Non-Interactive 1,690 (± 0,210) 0:20:59 -

B: [7, -20]

Interactive 6,230 (± 1,958) 1:19:03 4/5

Non-Interactive 2,652 (± 2,152) 0:34:37 1/5

C: [1, -0.5]

Interactive 3,072 (± 2,839) 0:38:34 -
Non-Interactive 6,538 (± 2,715) 1:24:54 4/5

us-v0. These results are from the non-normalized reward exper-

iment, and we observe that the final policies are more widely

spread across the objective space for the interactive method. Inter-

estingly, as in the mountain car environment, the final solutions

selected by E-NAUTILUS for the balanced preference and for

objective 𝑥1 are the same policy.

In this environment, variation between runs with different

seeds is more pronounced.We assume this is often due to whether

the algorithm’s exploration gets trapped in a local maximum or

not. When the artificial user prioritizes a single objective, we ob-

serve that E-NAUTILUS tends to have policies that dominate our

interactive MORL method on 𝑥1, while our interactive method

finds higher-performing solutions for 𝑥2, and also has solutions

that are more towards the high-valued 𝑥2 region. For the bal-

anced preference, however, E-NAUTILUS+PGMORL generally

dominates the solutions produced by our interactive method.

In summary, neither method consistently dominates the other

across all scenarios. However, when the artificial user "properly"

selects solutions that closely align with their stated preferences,

the interactive method is more likely to produce outcomes that

lie within the desired region of the objective space compared

to E-NAUTILUS+PGMORL. This highlights the strength of the

interactive approach in aligning with specific user preferences.

On the other hand, as discussed in previous subsections, the

Figure 9: Final Policy Outputs of MountainCar Environment

Figure 10: Final Policy Outputs of MountainCar - Normalized

Figure 11: Final Policy Outputs of HalfCheetah Environment

interactive method is more prone to getting trapped in local

optima compared to the non-interactive approach, primarily due

to its more constrained exploration space, caused by the bounds,

which limit its ability to discover diverse solutions.

6 FUTUREWORK
Currently, our integration of interactivity remains relatively sim-

ple, and there is significant room for further improvements. For

instance, we have only tested linear utility functions and envi-

ronments with largely linear Pareto fronts. An interesting future

direction is to investigate whether interactive preference guid-

ance can enable the discovery of non-linear trade-off solutions,

particularly in environments that are typically unreachable using

linear scalarization approaches.

Additionally, the current PGMORL implementation supports

only two continuous objectives. Extending this to higher-dimensional

objective spaces would be valuable for understanding how well

the interactive method scales and performs in more complex

decision scenarios.

Another limitation we observed is that the algorithm tends

to become trapped in local optima, an issue that becomes more

pronounced when the search space is constrained by user prefer-

ences. To address this, future work could incorporate a dynamic

relaxation of the preference bounds, activated when the algo-

rithm detects a prolonged stagnation in policy improvement.

One aspect we were unable to investigate in this work is the

impact of human fatigue. Frequent interaction with the algorithm

over long training periods can be demanding for DMs. It would

be valuable to explore methods for reducing the frequency of

required interactions, either through predictive modeling of user

preferences or by strategically scheduling queries, in order to

minimize the cognitive load on the human user.

6.1 Incorporate Interactivity into MORL
algorithms

Our work primarily introduces a method to incorporate user in-

teractivity into MORL algorithms, guiding the search toward pre-

ferred regions of the solution space. So far, we have implemented

this by applying bounds to the evolutionary search component

of the MORL algorithm. We believe this concept is generalizable

to any MORL method that relies on population-based optimiza-

tion and individual selection. Using interactive selection for an

individual in the population allows the evolutionary method to

generate solutions that are similar to the selected solutions. For

other classes of MORL algorithms, different forms of interactiv-

ity could be explored, for example, incorporating a target point

and/or changing the reward structure, as proposed by Vamplew

et al. [44]. Many current multi-policy methods use a selection

model that typically chooses the next policy to train based on the

maximization of coverage metrics like hypervolume or diversity.

To make MORL interactive, the user should be able to intervene

during this policy selection step. However, for some algorithms,

this can be difficult since user intervention will often conflict

with the optimal policy selection algorithm, resulting in slower

convergence or reduced hypervolume efficiency. In most cases,

non-interactive methods will outperform purely interactive ones

in terms of the quality of the final solutions or training durations.

Consider the Generalized Policy Improvement (GPI) MORL

from Alegre et al. [3]. The method allows for a sample-efficient

learning by identifying the optimal weight vector to train on

using GPI. The selection method relies on what they define as

corner weights. Corner weights are weight vectors where two

or more policies share the same value when calculated using

the utility function. The corner weight with the most promising

improvement is then selected to train. If we want to extend this

algorithm to make it interactive, a suggestion is to adjust the

selection model so that the user is able to select their preferred

corner weight to train, rather than using GPI. It is important

to recognize that corner weights are to maximize hypervolume

gains; Selecting preferred corner weights might not always help

the algorithm converge towards the user’s preferred region. Since

corner weights tend to be more concentrated in areas where the

policies can be improved the most.

7 CONCLUSION
This work provides valuable insights into the novel research area

of interactive Multi-Objective Reinforcement Learning (MORL).

We argue that interactive MORL is a promising direction for

the future of reinforcement learning, especially given that many

complex real-world problems are inherently multi-objective and

often require human-in-the-loop decision-making. Incorporating

user feedback during the learning process can accelerate con-

vergence toward preferred solutions and reduce the cognitive

burden of manually selecting solutions from the final output of a

posteriori multi-policy MORL algorithms.

In this paper, we introduced the concept of Interactive Preference-

GuidedMORL, where the search space of the algorithm is dynami-

cally constrained based on the user’s previously selected solution.

This bounding approach limits the exploration of the policy space

to regions of interest, thereby aligning the search more closely

with the decision-maker’s preferences. We also proposed several

evaluation strategies by adapting ideas from existing literature,

including the use of artificial user utility functions, measuring

the time required to reach a target solution, and comparing final

outputs between interactive and non-interactive methods.

Our experimental results show that using a bounded search

space leads to a greater concentration of solutions in the user’s

preferred region and allows the interactive method to find a

satisfactory solution more quickly than its non-interactive coun-

terpart. However, the constrained exploration can also make the

algorithm more susceptible to getting trapped in local optima.

This limitation suggests potential for future work on dynamically

relaxing the search bounds when stagnation is detected.

Overall, we believe our work makes a meaningful contribution

to the growing field of interactiveMORL by offering bothmethod-

ological insights and empirical evidence, laying a foundation for

further research on interactive MORL.

8 ACKNOWLEDGMENTS
I would like to thank my daily supervisor, Zuzanna Osika for the

guidance throughout my thesis period and Pradeep Murukanna-

iah for his valuable feedback on many aspects of this research.

Lastly, I would like to express my gratitude to the Delft High

Performance Computing Centre (DHPC) [15], for allowing me

to use the hardware provided to run the experiments.

A HYPERPARAMETERS

Table 3: Hyperparameters used for each environment.

Experiment Env Ref Point Origin # Parallel Envs Pop Size Warmup Evol. Iters Steps/Episode Global Steps Gamma

MountainCar mo-mountaincarcontinuous-v0 [-110, -110] [-110, -110] 4 6 10 10 1000 2.5M 0.995

Threshold MountainCar mo-mountaincarcontinuous-v0 [-110, -110] [-110, -110] 4 6 10 10 1000 5M 0.995

HalfCheetah mo-halfcheetah-v5 [-100, -100] [-100, -100] 4 6 40 40 400 5M 0.99

Threshold HalfCheetah mo-halfcheetah-v5 [-100, -100] [-100, -100] 4 6 40 40 400 7.5M 0.99

Table 4: Description of hyperparameters used in all experiments.

Parameter Description

env MO-Gym ID of the multi-objective environment used

ref_point Reference point in the objective space

origin Origin point in the objective space during evaluation (usually same as ref_point)

parallel_envs Number of parallel environments for experience collection

pop_size Number of agent-weight combinations that are trained during each generation

warmup_iterations Initial warm-up iterations to get the policies out of low-performance region

evolutionary_iterations Number of training iterations for each generation

steps_per_episode Maximum number of environment steps per episode

global_steps Total number of environment steps used for training

gamma Discount factor used in return calculation

The rest of the hyperparameters are the default PGMORL hyperparameters, which can be found in our code on GitHub
2
. The random seeds we used for our experiments in Section 5.1

and 5.3 are 1, 42, and 100. For the threshold experiments in Section 5.2, we used 5 different seeds, which are 1, 7, 10, 42, and 100.

2
https://github.com/Henweiz/interactive_MORL

REFERENCES
[1] Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steck-

elmacher. 2019. Dynamic weights in multi-objective deep reinforcement

learning. In International conference on machine learning. PMLR, 11–20.

[2] Bekir Afsar, Kaisa Miettinen, and Francisco Ruiz. 2021. Assessing the perfor-

mance of interactive multiobjective optimization methods: A survey. ACM
Computing Surveys (CSUR) 54, 4 (2021), 1–27.

[3] Lucas N Alegre, Ana LC Bazzan, Diederik M Roijers, Ann Nowé, and Bruno C

da Silva. 2023. Sample-efficient multi-objective learning via generalized policy

improvement prioritization. arXiv preprint arXiv:2301.07784 (2023).
[4] R_ Benayoun, J De Montgolfier, Jo Tergny, and O Laritchev. 1971. Linear

programming with multiple objective functions: Step method (STEM). Mathe-
matical programming 1, 1 (1971), 366–375.

[5] Jürgen Branke. 2008. Consideration of partial user preferences in evolution-

ary multiobjective optimization. Multiobjective optimization: Interactive and
evolutionary approaches (2008), 157–178.

[6] Jürgen Branke and Kalyanmoy Deb. 2005. Integrating user preferences into

evolutionary multi-objective optimization. In Knowledge incorporation in
evolutionary computation. Springer, 461–477.

[7] Jürgen Branke, S Greco, R Słowiński, and P Zielniewicz. 2010. Interactive

evolutionary multiobjective optimization driven by robust ordinal regression.

Bulletin of the Polish Academy of Sciences: Technical Sciences 3 (2010).
[8] Jürgen Branke, Salvatore Greco, Roman Słowiński, and Piotr Zielniewicz.

2014. Learning value functions in interactive evolutionary multiobjective

optimization. IEEE Transactions on Evolutionary Computation 19, 1 (2014),

88–102.

[9] John Telfer Buchanan. 1997. A naive approach for solving MCDM problems:

The GUESS method. Journal of the Operational Research Society 48, 2 (1997),

202–206.

[10] Vira Chankong and Yacov Y Haimes. 2008. Multiobjective decision making:
theory and methodology. Courier Dover Publications.

[11] Kalyanmoy Deb and Abhay Kumar. 2007. Light beam search based multi-

objective optimization using evolutionary algorithms. In 2007 IEEE congress
on evolutionary computation. IEEE, 2125–2132.

[12] Kalyanmoy Deb and Kaisa Miettinen. 2009. Nadir point estimation using

evolutionary approaches: better accuracy and computational speed through

focused search. In Multiple Criteria Decision Making for Sustainable Energy
and Transportation Systems: Proceedings of the 19th International Conference on
Multiple Criteria Decision Making, Auckland, New Zealand, 7th-12th January
2008. Springer, 339–354.

[13] Kalyanmoy Deb, Karthik Sindhya, and Jussi Hakanen. 2016. Multi-objective
optimization. CRC Press, 161–200.

[14] Kalyanmoy Deb, Ankur Sinha, Pekka J Korhonen, and Jyrki Wallenius. 2010.

An interactive evolutionary multiobjective optimization method based on

progressively approximated value functions. IEEE Transactions on Evolutionary
Computation 14, 5 (2010), 723–739.

[15] Delft High Performance Computing Centre (DHPC). 2024. DelftBlue Super-

computer (Phase 2). https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2.

[16] Florian Felten, Lucas N. Alegre, Ann Nowé, Ana L. C. Bazzan, El Ghazali

Talbi, Grégoire Danoy, and Bruno Castro da Silva. 2023. A Toolkit for Reliable

Benchmarking and Research in Multi-Objective Reinforcement Learning. In

Proceedings of the 37th Conference on Neural Information Processing Systems
(NeurIPS 2023).

[17] Florian Felten, El-Ghazali Talbi, and Grégoire Danoy. 2024. Multi-Objective Re-

inforcement Learning based on Decomposition: A taxonomy and framework.

Journal of Artificial Intelligence Research 79 (2024), 679–723.

[18] Arthur M Geoffrion, James S Dyer, and A Feinberg. 1972. An interactive

approach for multi-criterion optimization, with an application to the operation

of an academic department. Management science 19, 4-part-1 (1972), 357–368.
[19] Dunwei Gong, Xinfang Ji, Jing Sun, and Xiaoyan Sun. 2014. Interactive

evolutionary algorithmswith decision-maker s preferences for solving interval

multi-objective optimization problems. Neurocomputing 137 (2014), 241–251.

[20] Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström,

Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M Zint-

graf, Richard Dazeley, and Fredrik Heintz. 2022. A practical guide to multi-

objective reinforcement learning and planning. Autonomous Agents and Multi-
Agent Systems 36, 1 (2022), 26.

[21] Sandra Huber, Martin Josef Geiger, and Marc Sevaux. 2015. Simulation of

preference information in an interactive reference point-based method for

the bi-objective inventory routing problem. Journal of Multi-Criteria Decision
Analysis 22, 1-2 (2015), 17–35.

[22] Andrzej Jaszkiewicz and Jürgen Branke. 2008. Interactive multiobjective evolu-

tionary algorithms. InMultiobjective Optimization: Interactive and Evolutionary
Approaches. Springer, 179–193.

[23] Mariano Luque, Francisco Ruiz, and Kaisa Miettinen. 2011. Global formulation

for interactive multiobjective optimization. Or Spectrum 33 (2011), 27–48.

[24] Kaisa Miettinen. 1999. Nonlinear multiobjective optimization. Vol. 12. Springer
Science Business Media.

[25] Kaisa Miettinen, Petri Eskelinen, Francisco Ruiz, and Mariano Luque. 2010.

NAUTILUS method: An interactive technique in multiobjective optimization

based on the nadir point. European Journal of Operational Research 206, 2

(2010), 426–434.

[26] Kaisa Miettinen, Jussi Hakanen, and Dmitry Podkopaev. 2016. Interactive

nonlinear multiobjective optimization methods. Multiple criteria decision

analysis: State of the art surveys (2016), 927–976.
[27] Kaisa Miettinen and Marko M Mäkelä. 2006. Synchronous approach in inter-

active multiobjective optimization. European Journal of Operational Research
170, 3 (2006), 909–922.

[28] Kaisa Miettinen and Marko M Mäkelä. 2002. On scalarizing functions in

multiobjective optimization. OR spectrum 24 (2002), 193–213.

[29] Kaisa Miettinen, Francisco Ruiz, and Andrzej P Wierzbicki. 2008. Introduc-

tion to multiobjective optimization: interactive approaches. In Multiobjective
optimization: interactive and evolutionary approaches. Springer, 27–57.

[30] Andrew William Moore. 1990. Efficient Memory-based Learning for Robot
Control. Technical Report. University of Cambridge.

[31] Simone Parisi, Matteo Pirotta, and Jan Peters. 2017. Manifold-based multi-

objective policy search with sample reuse. Neurocomputing 263 (2017), 3–14.

[32] Roxana Rădulescu, Patrick Mannion, Diederik M Roijers, and Ann Nowé.

2020. Multi-objective multi-agent decision making: a utility-based analysis

and survey. Autonomous Agents and Multi-Agent Systems 34, 1 (2020), 10.
[33] Mathieu Reymond, Eugenio Bargiacchi, and Ann Nowé. 2022. Pareto condi-

tioned networks. arXiv preprint arXiv:2204.05036 (2022).
[34] DiederikMRoijers, Denis Steckelmacher, andAnnNowé. 2018. Multi-objective

reinforcement learning for the expected utility of the return. In Proceedings of
the Adaptive and Learning Agents workshop at FAIM, Vol. 2018.

[35] Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley.

2013. A survey of multi-objective sequential decision-making. Journal of
Artificial Intelligence Research 48 (2013), 67–113.

[36] Diederik M Roijers, Luisa M Zintgraf, and Ann Nowé. 2017. Interactive

thompson sampling for multi-objective multi-armed bandits. In International
conference on algorithmic decision theory. Springer, 18–34.

[37] Ana B Ruiz, Karthik Sindhya, Kaisa Miettinen, Francisco Ruiz, and Mariano

Luque. 2015. E-NAUTILUS: A decision support system for complex multiob-

jective optimization problems based on the NAUTILUS method. European
Journal of Operational Research 246, 1 (2015), 218–231.

[38] Francisco Ruiz, Mariano Luque, and Kaisa Miettinen. 2012. Improving the

computational efficiency in a global formulation (GLIDE) for interactive mul-

tiobjective optimization. Annals of Operations Research 197 (2012), 47–70.

[39] Lamjed Ben Said, Slim Bechikh, and Khaled Ghédira. 2010. The r-dominance:

a new dominance relation for interactive evolutionary multicriteria decision

making. IEEE transactions on Evolutionary Computation 14, 5 (2010), 801–818.

[40] Ralph E Steuer and Eng-Ung Choo. 1983. An interactive weighted Tchebycheff

procedure for multiple objective programming. Mathematical programming
26 (1983), 326–344.

[41] Richard S Sutton, Andrew G Barto, et al. 1998. Reinforcement learning: An
introduction. Vol. 1. MIT press Cambridge.

[42] Hideyuki Takagi. 2001. Interactive evolutionary computation: Fusion of the

capabilities of EC optimization and human evaluation. Proc. IEEE 89, 9 (2001),

1275–1296.

[43] Tetsuzo Tanino. 1993. An interactive multicriteria decision making method

by using a genetic algorithm. In Proc. of International Conference on System
Science & System Engineering. 381–386.

[44] Peter Vamplew, Rustam Issabekov, Richard Dazeley, Cameron Foale, Adam

Berry, Tim Moore, and Douglas Creighton. 2017. Steering approaches to

Pareto-optimal multiobjective reinforcement learning. Neurocomputing 263

(2017), 26–38.

[45] Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. 2013. Scalarized

multi-objective reinforcement learning: Novel design techniques. In 2013 IEEE
symposium on adaptive dynamic programming and reinforcement learning
(ADPRL). IEEE, 191–199.

[46] Tobias Wagner and Heike Trautmann. 2010. Integration of preferences in

hypervolume-based multiobjective evolutionary algorithms by means of desir-

ability functions. IEEE Transactions on Evolutionary Computation 14, 5 (2010),

688–701.

[47] Hongze Wang. 2024. Multi-objective reinforcement learning based on nonlin-

ear scalarization and long-short-term optimization. Robotic Intelligence and
Automation 44, 3 (2024), 475–487.

[48] Paweł Wawrzyński. 2009. A cat-like robot real-time learning to run. In Inter-
national Conference on Adaptive and Natural Computing Algorithms. Springer,
380–390.

[49] Andrzej P Wierzbicki. 1980. The use of reference objectives in multiobjective

optimization. In Multiple criteria decision making theory and application: Pro-
ceedings of the third conference Hagen/Königswinter, West Germany, August
20–24, 1979. Springer, 468–486.

[50] Xi Xiong, Jianqiang Wang, Fang Zhang, and Keqiang Li. 2016. Combining

deep reinforcement learning and safety based control for autonomous driving.

arXiv preprint arXiv:1612.00147 (2016).

[51] Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Woj-

ciech Matusik. 2020. Prediction-guided multi-objective reinforcement learning

for continuous robot control. In International conference on machine learning.
PMLR, 10607–10616.

[52] Stanley Zionts and Jyrki Wallenius. 1976. An interactive programming method

for solving the multiple criteria problem. Management science 22, 6 (1976),
652–663.

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2

