il

—
~~ =
- S
= ———
=
_\
X — =
N
. ~
\\‘

N N
N, N 4
. \ \
\{l\“‘ N \ \\
N 5 =
- WA % g
. \
.\\ y N \ 3 \
N ‘L‘L
) ! o .
I‘ ~“ \
/ ™
~
» “\ .
™ \ . .
~ \ .
>. I
'\‘_\
. N
\‘\
. |
"<

Learning a Policy

from User
Preferences

An Interactive Approach to
Multi-Objective Reinforcement Learning

by

Henwel Zeng

to obtain the degree of Master of Science
at the Delft University of Technology,
to be defended publicly on Monday September 8, 2025 at 12:45 PM.

Study Programme: Master Computer Science
Research group: Interactive Intelligence

Study Programme Track: Artificial Intelligence Technology
Thesis advisor: P. Murukannaiah

Daily co-supervisor: Z. Osika

Project Duration: November, 2024 - September, 2025
Faculty: Faculty of Electrical Engineering,

Mathematics Computer Science, Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

]
TUDelft

Preface

This research paper was written as a part of my Computer Science master’s thesis project at Delft Uni-
versity of Technology. The paper presents my work over the past 9-10 months, where | developed a
novel approach to extend the classical Multi-Objective Reinforcement Learning (MORL) by incorporat-
ing an interactive component that allows users to specify their objective preferences during the learning
phase of the MORL algorithm. | combined the intuitions of both the state-of-the-art Prediction-Guided
Multi-Objective Reinforcement Learning (PGMORL) method and the E-NAUTILUS method to create
the User-Guided Multi-Objective Reinforcement Learning algorithm. The algorithm limits the search
space within the user-specified preference values by bounding the space using limits, which allows the
algorithm to quickly converge towards a policy/solution that the user prefers.

The reason | chose and worked on this project was that during my first year, | developed a great
interest in Deep Reinforcement Learning methods and wanted to focus most of my master’s work on
becoming familiar with the Deep RL concept and exploring its practical applications. This Thesis project
allowed me to work on both Multi-objective algorithms and RL methods, which allowed me to extend
my knowledge even further in these CS domains.

During the past 2 years in my master’s, | learned a lot from my professors and PhD researchers through
their works and lectures. Furthermore, also from my colleagues which | also learned and discussed
many new/interesting topics and ways to solve the problems. And for the many hours we have worked
together on projects to create something that we can be proud of.

Specifically, | want to express my gratitude to my daily supervisor, Zuzanna, for guiding me over the
past year through this Thesis project. Her expertise allowed me to explore many different existing
algorithms and methods, and to discuss how to proceed during every stage of this project. Next, | also
want to thank Pradeep as the responsible professor, for giving me meaningful insights and his valuable
feedback on my work.

Beyond academia, | want to thank my friends from the student association DSEA Ignite for their support
and for being an unforgettable part of my student life. | am proud to have served a board year with the
association, even during challenging times. | also want to thank my housemates, with whom | have
shared the past seven years, from the very first day of my bachelor’s to the completion of my master’s.

Finally, | am deeply grateful to my family: my father, mother, and two younger siblings, for their constant
encouragement, patience, and support throughout my studies.

Without the support, guidance, and encouragement of all of you, | would not have been able to reach
this point in my academic journey. For that, | am truly grateful. Thank you!

Henwei Zeng
Delft, September 2025

summary

Many daily-life problems are complex due to their multi-objective nature. For example, we have an
objective to reach a destination by driving a car. The driver’s preference can differ for each person,
some want to drive safely and arrive at their destination in a shorter amount of time. Others drive fast,
but navigate more dangerously through the traffic. Over the past decade, there has been growing re-
search on Multi-Objective Reinforcement Learning (MORL) problems, which simulate the complexities
of real-life scenarios. Because there are multiple objectives to be optimized, the majority of the MORL
meth- ods focus on providing a dense set of solutions called the Pareto Front as a result. The issues
with the current approaches are that generating a large solution set requires high computational costs,
and it can still be difficult for the user to find their most preferred solutions from a large solution set.
One solution to this is to create an interactive method, where the user is asked for their preferred solu-
tions during every iteration of the learning/search process of the algorithm. This allows the algorithm,
by using the provided information, to converge towards a single solution that is preferred by the user,
rather than providing a large collection of solutions. However, currently, there is limited or no literature
on interactive MORL algorithms.

In this work, we dive deeply into the current state-of-the-art MORL works and other Multi-Objective
Optimization (MOO) methods. Literature on Classical Multi-Objective Optimization and Evolutionary
Multi-Objective Optimization methods was exhaustively studied. We took the ideas from different MORL
works and MOO works and combined them to create a novel interactive MORL method.

Our novel algorithm uses a bounding of the search space concept to only search for policies/solutions
that are strictly better than the provided feedback from the user. The user can give feedback by selecting
their most preferred solution in each iteration from the list of non-dominated solutions. By bounding
the search space in this way, the algorithm can slowly converge towards the user’s preferred region
of solutions, while allowing some flexibility to change their preference since they can also choose for
older non-dominated solutions that are outside the current bounded region.

Furthermore, in this work, we also investigated different evaluation methods to properly evaluate the
performance and usefulness of interactive algorithms. We came up with several metrics to compare
the quality of solutions and the performance of the training process. Our metrics consist of creating
an artificial user utility function to compare the final solutions and the number of time steps required to
converge to a preferred solution to test the performance in terms of speed.

Our experiments show that interactive methods can converge faster than non-interactive ones when
user preferences are skewed toward one objective. A limitation, however, is the risk of getting trapped
in local optima, which may slow progress in certain cases. We believe this is a meaningful contribution
to the growing field of interactive MORL by offering both methodological insights and empirical evidence,
laying a foundation for further research on interactive MORL.

11

Learning a Policy from User Preferences:
An Interactive Approach to Multi-Objective Reinforcement
Learning

Henwei Zeng
Delft University of Technology
Delft, The Netherlands

ABSTRACT

Many real-life problems are complex due to their multi-objective
nature. Over the past decade, there has been growing research
on Multi-Objective Reinforcement Learning (MORL) problems,
which simulate the complexities of real-life scenarios. Because
there are multiple objectives to be optimized, the majority of
the MORL methods focus on providing a dense set of solutions
called the Pareto Front as a result. The issues with the current
approaches are that generating a large solution set requires high
computational costs, and it can still be difficult for the user to
find their most preferred solutions from a large solution set. In
this research, we propose an interactive MORL method where
the user is asked for their preferred solution in every iteration
from the current solution set, and the algorithm utilizes this
information to enhance its learning process to find preference-
aligned solutions. This is achieved by bounding the solution space
to only search for new policies that outperform the previously
user-selected solution within these bounds. We evaluate our
method using an artificial user function to simulate preferences,
comparing it with non-interactive MORL methods. Metrics to
compare the quality of solutions include the number of learning
steps required to converge to a preferred solution, the value
achieved on the artificial user function. The results demonstrate
that the interactive method provides a dense set of solutions
in the user’s region of interest, and it tends to converge faster
towards the user’s preferred solution.

KEYWORDS

Reinforcement Learning, Interactive, Multi-Objective Optimiza-
tion, Preference Learning

1 INTRODUCTION

Many real-world decision-making problems involve balancing
multiple, often conflicting objectives. Improving one objective
frequently leads to the deterioration of another, and such prob-
lems typically require decisions to be made sequentially over
time. A powerful framework for tackling these challenges is
Multi-Objective Reinforcement Learning (MORL), which extends
classical single-objective Reinforcement Learning (RL) to opti-
mize over multiple objectives [20, 35, 41].

Consider navigation optimization in traffic scenarios [50].
When the goal of the driver is to go from one place to their
destination, multiple considerations are often involved, such as
distance, fuel consumption and traffic density. Each user values
those objectives differently, one can prefer a low traffic density
in exchange for a longer distance, and another would prefer a
low fuel consumption. MORL offers two main approaches to
solving such problems. The a priori approach incorporates user
preferences into the learning process from the start, while the a

Zuzanna Osika
Delft University of Technology
Delft, The Netherlands

Pradeep Murukannaiah
Delft University of Technology
Delft, The Netherlands

posteriori approach learns a diverse set of policies that approx-
imate the Pareto front, allowing the user to select a preferred
solution afterward.

However, both approaches have their limitations. A priori
methods lack flexibility; if user preferences change, the agent
typically needs to be retrained entirely. A posteriori methods, on
the other hand, are computationally expensive and often over-
whelm the user with a large set of solutions to choose from. This
results in difficulties in applying MORL to real-world problems.

In contrast, the field of Multi-Objective Optimization (MOO)
offers a third approach, which is the interactive optimization.
Interactive MOO mitigates the limitations of both a priori and a
posteriori methods by incorporating user feedback throughout
the optimization process [13, 24, 26]. This allows the algorithm to
converge toward a single, user-preferred solution without requir-
ing prior knowledge of the user’s preferences or overwhelming
the user with a large set of solutions. The benefits of interactive
optimization include reduced computational cost and the ability
to adapt to evolving preferences, since users can learn about the
trade-offs and adjust their input during the search process.

These insights motivate the integration of interactive MOO
principles into MORL, which makes them more applicable to
complex real-life problems. The interactive MORL literature is
still very limited, there is one existing interactive MORL approach
that allows the user to specify a target point in the objective space,
which the agent attempts to reach by minimizing the difference
between its expected return and the target [44]. The target can
be updated before and during training, enabling user guidance
throughout the learning process.

In this work, we propose an interactive preference-guided
MORL framework that builds on the PGMORL algorithm [51]
and incorporates ideas from the E-NAUTILUS method [37]. Our
approach allows the user to interactively influence the learn-
ing process by selecting preferred solutions after each iteration.
These preferences are then used to constrain the search space
to policies that are strictly better than the selected one, focusing
exploration on the region of interest.

To summarize, our contributions are as follows:

e We introduce a novel interactive MORL algorithm with
an evolutionary search component. During the learning
process, the user selects their most preferred solution, and
the algorithm bounds the search space to focus on im-
proving upon this solution. This guides the search toward
the user’s preferred region and results in a compact set of
high-quality policies.

e To evaluate our algorithm, we adopt and adapt several
evaluation strategies from the field of evolutionary algo-
rithms (EA) [2, 7, 8, 21] to enable fair and meaningful
comparisons with a non-interactive baseline. Specifically,
we make use of artificial user utility functions, measure

the number of steps required to reach predefined target
values, and compare the final output solutions between
methods.

The paper is structured as follows: In Section 2, we will re-
view the preliminaries, explaining key concepts utilized in this
work and discussing related research. We will then move to Sec-
tion 3, where we will go over the existing implementations first,
and afterwards we introduce our proposed method and provide
a detailed explanation. Next, in Section 4, we will present the
specifics of our experimental setups, such as environments and
evaluation methods. This will be followed by Section 5, where
we will thoroughly analyze the results and provide explanations.
In Section 6, we will shortly go over what could be improved and
suggest directions for future research on interactive MORL. Fi-
nally, in Section 7, we will summarize our findings and conclude
our work.

2 BACKGROUND

In the following subsections, a background is given about multi-
objective optimization (MOO) and some of the current state-of-
the-art MORL methods in how they calculate the Pareto front.
Afterwards, classical and evolutionary interactive approaches
are explained in more depth.

2.1 Multi-Objective Problem

We define the multi-objective problem as follows:

max f(x) = max{fi(x), f2(x),..., fi(x)} (1)

with i > 2 conflicting objective functions f;. Usually, we want to
maximize all the objective functions simultaneously. x is the ob-
jective value and the vector of objective function values z =
f(x) = (Ax), ... i(x)T is the objective vector, due to the
conflicting nature of the functions, it is often not possible, in
non-trivial settings, to get a solution where all individual ob-
jective function values are optimal in the multi-objective prob-
lem [13, 24, 26, 28, 37]. This brings us to the definition of Pareto
Optimality:

DEFINITION 1 (PARETO OPTIMALITY). A solution x is (globally)
Pareto optimal if there does not exist another solution x” such
that fi(x") > fi(x) foralli =1,...,k and fj(x") > fj(x) for at
least one index j.

An objective vector z* € Z is Pareto optimal if there does not
exist another vector z € Z such that z; > z;k foralli=1,...,k and
zj > z}f for at least one index j. Equivalently, z* is Pareto optimal
if the policy corresponding to it is Pareto optimal.

A set of all Pareto Optimal solutions is called the Pareto set,
and the image of such a set is called the Pareto front.

To formally determine whether one solution is better than
another in a multi-objective context, we rely on the concept of
Pareto dominance. Pareto dominance provides a partial ordering
of solutions based on the idea that one solution is strictly better
if it performs at least as well across all objectives and strictly
better in at least one.

DEFINITION 2 (PARETO DOMINANCE). Given two objective vec-
tors z,z' € Z, we say that z Pareto dominates z’ (denoted z > z’)
ifzi 2z} foralli=1,...,k and z; > z} for at least one index j.

Equivalently, a solution x Pareto dominates another solution x’
iffi(x) = fi(x’) foralli =1,...,k, and fj(x) > fj(x’) for some
Jj.

For most multi-objective optimization methods, using and hav-
ing knowledge of the ideal and nadir vector can be quite valuable.
The ideal vector, z* = (z;‘, z;‘)T, contains the most optimal indi-
vidual objective function values, which is the highest value for a
maximization problem. The nadir vector, Znad — (z?“d, e z;‘“d)T,
on the other hand, is defined as the objective vector where each
value is the worst possible outcome. In practice, calculating the
nadir vector can be quite challenging, but it can be approximated
using a pay-off table or other more recent approximation meth-
ods [4, 12, 24].

2.2 Multi-Objective Reinforcement Learning

Within MORL, we can formulate the multi-objective problem as
a Multi-Objective Markov Decision Process (MOMDP) [20]. The
MOMDP is represented by the tuple (S, A, T, y, y, R) where:

o S is the state space.

e A is the continuous or discrete action space.

e T:SXA — S is the transition function, specifying the
probability of transitioning from state s to s’ given action
a.

e y € [0,1) is the discount factor

e 1 :S — [0, 1] is the probability distribution over the initial
states

e R:SxAxXS — RY is the vector reward function, over
d > 2 number of objectives.

The main difference between MOMDP and the traditional
single-objective MDP is the vector of rewards R, since we get a
reward value for each objective for each action that we take in the
environment. This makes the problem much more complex, as
traditional RL methods cannot learn with multiple reward values
during the learning process of the agent, and we cannot make
use of the fact that we can maximize a single reward. Within
MORL, we can classify the methods into two main categories
depending on the output of the algorithm. First, we have a single-
policy method, where the output is a single solution. The user’s
preference must be known before starting the training of the
agent(s). A major drawback of this method is that the preference
of user might change. Then the policy has to be retrained by
adjusting the preferences. For the second method, we have the
multi-policy method, where the output is a set of solutions whose
corresponding objective vectors form an approximation of the
Pareto front. For this method, the user preference is not known
a priori, but the preferred policy can be selected after generating
the output. This method is slower to train compared to the single-
policy method, but the user can easily switch to a different policy
when the preference changes, since the algorithm outputs a wide
coverage of different policies. Both methods depend on what
we call the user utility, where the user’s preference for different
objectives is mapped to a scalar value [20, 32].

2.2.1 Scalarization Functions. One of the solutions to the vec-
torized reward problem is that we make use of a scalarization
function, also known as a utility function in the majority of MORL
literature [20], u : R? — R. The scalarization function maps the
vector of rewards of the policy to a single scalar value. This effec-
tively reduces our MOMDP problem to a single-objective problem.
Another advantage of the scalarization function is that we can
also take the user utility into account, this approach allows us
to collect the user’s preference a priori and use that information
to derive desirable policies [35]. We can split the scalarization

function into two categories, namely linear and non-linear scalar-
ization The most common linear scalarization function is the
weighted sum of the values for each objective function [17]:

m

UGz) =U(f(x) = f(x) =) oifi(x) (2)

i=1

Where U(z) represents the singular scalarized reward from the
objective vector of rewards z, the weights w can be used to express
the preference of the user. However, the drawback of a linear
scalarization is that it is unable to approximate a concave Pareto
Front, as policies in the concave area usually receive less scalar-
ized reward compared to the policies in convex regions [35, 47].
Therefore, we also have non-linear scalarization functions, such
as the weighted Chebyshev scalarization function [45], to approxi-
mate the true Pareto Front.

2.2.2 Single-Policy Methods. When a single policy & a linear
scalarization function method is chosen, meaning with a known
user utility, any standard single-objective RL algorithm can be
applied to multi-objective problems by transforming MOMDP
into MDP with linear scalarization using weights [35]. When the
true Pareto front can only be approached by non-linear scalar-
ization functions, one MORL method that can be considered is
the Expected Utility Policy Gradient (EUPG) [34]. The EUPG op-
timizes over the expected value of the utility of the return using
a policy gradient method combined with Monte-Carlo simula-
tions. Van Moffaert et al. [45] proposed the non-linear Chebyshev
scalarization function, where the weights are applied to the Lo,
which is also known as the Chebyshev metric.

min Loo(x) = max w, |f0 (x) - zZ| (3)
xeR” o=1,...m

Where the z}; is the utopian point, which is the ideal vector plus
some small constant €: z, = z"+¢, this is combined with the single-
objective Q-learning algorithm to get the new multi-objective
Q-learning algorithm (MO Q-learning).

2.2.3 Multi-Policy Methods. The literature on the multiple poli-
cies MORL algorithm is more substantial than the single policy
algorithm since it is usually assumed that user do not know their
exact preference a priori. Furthermore, most of the recent MORL
works focus on linear scalarization functions. Abels et al. [1]
proposed a dynamic weights method where the multi-objective
Q-network output depends on the importance of each objective.
The network is trained on a Diverse Experience Replay (DER)
that can make use of the non-stationary weight settings. A simi-
lar work by Reymond et al. [33] also utilizes a single conditioned
network that can encompass all non-dominated policies. The
main advantage of such a network is that it is easily scalable in
terms of the number of objectives and is very sample-efficient.
Another approach is the work of Xu et al. [51], where they make
use of a prediction-guided model to train a population of net-
works efficiently. The non-dominated policies are stored in a
Pareto Archive, and the user can select their preferred policy
from the archive after training. Similarly, the work of Parisi et al.
[31] is also a population-based evolutionary method, where the
algorithm tries to effectively learn the continuous approximation
of the Pareto Front using an episodic exploration strategy and
importance sampling.

2.2.4 Interactive MORL Methods. A third approach to obtaining
the user’s preferred policy is the interactive method. Limited
research has been conducted in the interactive MORL domain,

Selection Phase o= :,::?,Ioen

. Set of =
(1): EEECHEE ———) e

— Single

solution

Figure 1: Interactive Method Classifications:
(1) Interactive Selection Methods, (2) Interactive Search Methods

where user preferences are incorporated during the learning pro-
cess of the agent to produce a single satisfactory policy. The ad-
vantage of this approach is that it eliminates the need for the user
to specify their preferences a priori and avoids the higher compu-
tational costs associated with generating multiple policies. One
interactive approach is the idea of Vamplew et al. [44], where they
extend the Multiple Direction Reinforcement Learning (MDRL)
and Q-learning approach to the task of learning multi-objective
Pareto Optimal policies. This Q-steering algorithm can then be
extended to where the user can interactively specify a target
point and the agent steers towards the target point by trying to
minimize the distance between the average reward and the target.
However, some issues were raised during the experiments of the
algorithm, for example, when we strongly favour one objective
over all others, the algorithm can fail to converge to an optimal
policy. Another issue is the high memory requirement of the
Q-steering algorithm, which makes it harder to scale to a high-
dimensional problem. Other interactive MORL works are based
on the multi-objective multi-armed bandits (MOMABs) prob-
lem. Roijers et al. [36] used an interactive Thompson Sampling
method for MOMABS. Similar to our approach, the algorithm em-
ploys a linear weighted-sum scalarization function, as described
in Equation 2. By asking pairwise comparison queries to the user,
the algorithm can learn the preference of the user, which can be
translated to the weights «.

2.3 Interactive Multi-Objective Optimization

In most MOO methods, the involvement of a decision maker
(DM) is crucial, as the DM needs to select the most preferred
solution/policy. We know three different kinds of categories for
MOO, which are a priori, a posteriori and interactive methods. In
a priori methods, the preference of DM is known beforehand, the
algorithm can search for a single Pareto Optimal solution that fits
the preference. In a posteriori methods, however, the algorithm
does not know the preference and usually tries to generate the
Pareto front and the DM can select their most preferred solution
afterwards. And lastly, we have the interactive methods where the
DM is actively participating and providing feedback during the
search process, at the end, a final Pareto Optimal solution is found
according to the DM’s preferences. Interactive MOO has many
advantages over a priori or a posteriori optimization methods.
The DM can slowly learn more about the problem and what kind
of solution is possible and can adjust their preference during
the search process. Furthermore, compared to the a posteriori
method, the DM will not be overwhelmed by the many different
solutions, rather they get to choose from a small set of solutions
until they find a single solution that fits their preference.

Within interactive methods, we could classify the methods
into two different classes [22]:

o Interactive Selection Methods, those methods are usually
semi-a posteriori since the algorithm runs in two phases.
The first phase is where we generate a Pareto front, and
the second phase is where the algorithm guides the DM
to their preferred solution in the generated Pareto front.

o Interactive Search Methods, where the algorithm asks for
user feedback to steer the search process towards a more
relevant and preferred area for the user. Often, evolution-
ary multi-objective optimization (EMO) methods are clas-
sified within this class.

2.3.1 Interactive Selection Methods. Interactive Selection Meth-
ods is also what is called the classical interactive MOO in the
literature. Usually, a set of solutions is generated and presented
to the DM. The DM can then provide feedback or select their pre-
ferred solution. Based on the feedback, a more representative set
of solutions is generated. This is repeated for several iterations
until the DM finds a satisfying solution [24]. The advantage of the
Interactive Selection method is that the process of generating the
Pareto front and the interactive process are separated, meaning
that the time required by the DM to arrive at a preferred solution
is generally reduced compared to involving the DM during the
search process. Within the interactive MOO field, we can further
divide interactive methods into different classifications based on
what type of feedback the DM needs to provide [23, 24, 26, 38].

o Aspiration Levels Method: In the aspiration levels method [9,
49], the DM provides what their aspiration levels are for
each objective function value f; () for all i. The aspira-
tion levels represent the minimum value or return that the
solution policy needs to reach for the DM to be considered
satisfactory. Similar methods that require some reference
point or a goal to reach also fall into this category.

o Classification Method: In the classification method [4, 27],
the DM needs to provide some information on how each
objective value needs to be changed to become their de-
sired solution. This is often done by giving feedback on
whether the value needs to be improved, remains as it is,
or can be worsened. In multi-objective problems, it is sim-
ply not always possible to improve objective values while
keeping other values the same; therefore, some objective
values need to be worsened if you want to improve some
other values.

o Trade-Off Method: The trade-off method is one of the more
classical interactive methods. In this class, we utilize the
trade-off between two different objective value functions.
The DM usually needs to "trade" by diminishing the value
of one objective function to improve the value of another
objective function, while all other objective functions re-
main the same. This scheme is what we call the subjective
trade-off [18, 29]. Another popular scheme is to show two
solutions and ask the DM the desirability of such trade-off,
we call this the objective trade-off [10, 52].

o Comparing Solutions Method: In this method, the DM needs
to select their preferred solution from the presented set
of solutions [25, 37, 40]. Based on the selected solution,
new solutions are generated that are similar to the se-
lected solution. Usually compared to the other methods,
the cognitive load from the DM is lower since the DM only
needs to select a solution rather than giving (sophisticated)
preference information.

2.3.2 Interactive Search Methods. In contrast to the first method,
interactive multi-objective meta-heuristics involve the DM with
the MOO algorithm during the run, steering the search towards
a more desired segment of the Pareto front [22]. Compared to the
Interactive Selection method, a notable limitation of this method
is its requirement to search through many different solutions and
iterations during the search or learning process. This can cause
human fatigue due to the necessity for continuous feedback to
the algorithm. Certain algorithms have been enhanced to pre-
dict human preferences, thereby reducing the need for constant
interaction by the decision maker [42]. The majority of inter-
active multi-objective meta-heuristics are evolutionary MOO
methods. One of the very first methods of this kind was proposed
by Tanino [43], where the evaluation of the current population
is derived from the preference of the DM. The DM can point
out unsatisfactory solutions or provide some kind of aspiration
level. Many interactive multi-objective evolutionary algorithms
(I-MOEA) differ in what part of the algorithm is adjusted using
the preference of the DM, it can be either objectives, dominance
and crowding distance [5, 19]. In the objectives case, usually
the objective values get changed according to DM’s preference,
which will guide the search process slowly towards the preferred
region. An example would be the work of Wagner and Trautmann
[46], where they optimize a desirability function of the objectives,
which expresses the preference of the user. To adjust dominance,
the Pareto dominance is often replaced by a different dominance
function that considers the preference information [6, 14, 39].
In those functions, they often use a reference point, supplied
by the DM, and derive the dominance from the distance to the
reference point while preserving the original Pareto Dominance
as much as possible. Finally, crowding distance is a metric used to
estimate the proximity of a solution to its neighbouring solutions
in the objective space. A high crowding distance means that the
solution is in a sparse region, with a low number of neighbour-
ing solutions. An example would be a light beam search method
combined with the NSGA algorithm from Deb and Kumar [11],
where they search in the neighbourhood of interesting solutions.

3 METHOD

In this section, the core algorithms are introduced, where the
inspiration has been drawn from for our method design: PGMORL
and the E-Nautilus method [37, 51]. In the last subsection, the
adjustments to the PGMORL algorithm, for including interactive
optimization with user feedback, are explained in more depth.

3.1 Prediction-Guided Multi-Objective
Reinforcement Learning (PGMORL)

The PGMORL method is a multi-policy evolutionary MORL method
where the algorithm constructs a set of Pareto-optimal policies
that capture the Pareto front [51]. The algorithm consists of 3
different stages:

3.1.1 Warm-up Stage. In the warm-up stage, the algorithm ini-
tializes n different starting agents/networks, and those policies
are paired with one of the n evenly distributed non-negative
weights {w;} (X j wij = 1,1 < i < n) for the rewards. Then the
agents are trained using the MOPPO algorithm for a fixed amount
of k iterations. The warm-up stage is important before running
the core evolutionary stage of the algorithm, as the agents need
to get out of the low-performance policy region before the model
can compare the agents in the next stage.

Evolutionary Stage
A

f2 4 , f2
;‘. - 2a)°- - 4 4/' .
A ‘ v : A T
) T T e |4
t t, > . Prediction Model A f” 57
7 A
A o079 >’

A i
Previous Solution @ Current Population Unselected Predicted Offspring @ Selected Predicted Offspring
—> RL > Prediction

fy

Figure 2: Evolutionary stage of PGMORL Algorithm [51]

© Solution
@ Selected Solution
2 — Bounds

%
o
Ja—

2= g o

Figure 3: E-NAUTILUS [37], example with two iterations, where
from the selected solution in z!, a new iteration is generated with
solutions that are strictly better than the selected solution

3.1.2 Evolutionary Stage. In the evolutionary stage, as shown in
Figure 2, the algorithm keeps track of the current and past popu-
lation of the agents along with their performances. Then it uses
an analytical model to predict which combination of weights and
agents will improve the Pareto front the most based on the past
data. The model selects n different policy-weight combinations
to train in the next [training iterations, producing new offspring
policies. The evolutionary stage is finished after m number of
generations. During this stage, a Pareto archive is used, and all
non-dominated policies are stored, which will be the output at
the end of the stage.

3.1.3 Post-processing Stage. At the final stage, the Pareto front
is constructed from the set of final policies. The algorithm groups
similar policies into families. A continuous Pareto representa-
tion will then be computed by linearly interpolating the policy
families.

3.2 E-Nautilus

E-Nautilus is an Interactive Selection MOO method where we
require an already generated Pareto front of the solutions [37].
This method takes the human aspects regarding trade-offs and
anchoring bias into consideration. The algorithm has 3 stages, a
preprocessing stage where we get the Pareto front of the solu-
tions, a decision-making stage where the DM interacts with the
algorithm to reach their preferred solution, and finally a post-
processing stage where we find the closest solution from the
Pareto front to the selected solution of the DM. The main advan-
tage of using these stages is that there is no human interaction
needed in the first and last stage, the first stage usually requires
the most time, since generating the Pareto front to an MOO prob-
lem can take an extensive amount of time. The main functionality
of this method lies in the interactive decision-making stage. In
short, during the interactive stage, the DM is iteratively shown a

Algorithm 1 Interactive Preference-Guided MORL

1: Input: Number of agents n, warm-up iterations k, training
interval [, max generations m

2: Initialize: Generate n initial agents with evenly distributed
weights 0: {w;}(Xjwij=1,1<i<n)

: for k do > Warm-up stage
Train {(n;, w;) }!_, agents using MOPPO
: end for

. Initialize population # with trained agents

: for generation g = 1 to m do > Evolutionary stage
Evaluate all agents in P

User selects most preferred policy: 7?7/

10: Extract objective vector 2P7ef = [x1,x,...] from nPref
11 Define bounds based on £(z) =z - - \/m

12: Filter population: Pfijrereq = {7 € P | 2(7) = £(2)}

O N U W

13: Use prediction model to select n agents from Prijsereq
14: for I do

15: Train {(n;, w;)}-, selected agents using MOPPO
16: end for

17: Update £ with new agents

18: end for

19: Output: Final set of policies within bounds; user selects final
preferred policy

set of intermediate points between the nadir point and the ideal
point as seen from Figure 3. The DM selects its most preferred
point, and new points are generated that are closer to the pro-
vided Pareto front, but also dominate the selected point. This
ends when the maximum number of pre-specified iterations is
reached or the DM has already selected one solution from the
Pareto front.

3.3 Interactive Preference-Guided
Multi-Objective Reinforcement Learning

In this section, we propose our main contribution. An interactive
MORL method that searches for Pareto Optimal policies using
the preference information that is provided by the DM. To make
it interactive, it is crucial to identify the best moment in the
algorithm to request user feedback and to utilize the user input
to generate a more preferred policy. Our idea is to modify the
PGMORL algorithm to make it interactive by using some core
intuitions behind the interactive E-NAUTILUS method.

3.3.1 Overview. The overview is also presented in Algorithm 1.
Initially, we opted to maintain the warm-up stage consistent with
the original PGMORL algorithm, where we initialize n agents
and weights: w. The agents and their corresponding weights are
trained for k warm-up iterations. This phase facilitates initial
exploration and learning about the environment, which is critical
for the agents. Furthermore, actions from the agents are usually
highly noisy. Therefore, interacting with DM usually will not
result in anything meaningful. After warming up, we proceed
to the evolutionary stage. In this stage, the DM will be actively
interacting with the algorithm. During each generation g, the DM
can provide their preference information based on the current
Pareto front by selecting their preferred policy #” ref And then
the information is used to select the next agent-weights combina-
tion to train for [iterations. In the next subsection 3.3.2, we will
go into more details about this part. After the maximum number
of generations m, the evolutionary stage terminates and a final

Q Previous Solution
@ Selected Solution
— Weights
— Bounds
red
o g »°
o
©
(@]
o
-
o]

4

Figure 4: Bounding the search space

set of policies from the Pareto Archive, filtered by the bounds,
is shown to the DM. The DM can make their final choice by se-
lecting their most preferred policy in case there is more than one
policy. The post-processing stage is removed compared to the
original PGMORL algorithm, as there is no need to post-process
the set of solutions since the output of the interactive method is
only one policy.

3.3.2 Limit search region through bounding the objective vector.
At each iteration, before selecting the agent-weights combina-
tions for training, the current Pareto front will be presented to
the DM. From the current front, the DM can choose their most
preferred solution. The algorithm then uses the preference in-
formation extracted from the objective values from the selected
solution zPref = [x1, %2, ...]. Using the objective vector, we set a
lower (or upper, in case of minimization) bound that the objective
vector must meet before being considered to become a candi-
date to train in the next iteration. To allow some exploration,
the bounds are relaxed by a small margin & - \/|7 , in case more
solutions in the neighbours have more potential to improve com-
pared to the preferred solution. Formally, we define the lower
bound ¢ as:

t(z)=2z-6 7| (4)
Finally, the prediction model is only able to select agents that have
a strictly better performance than the lower bounds: z(r) = £(z).
This limits the search space to only agents that have similar or
better performance than the preferred solution. At every gen-
eration, the bounds will slowly become tighter until the search
converges to a region that is close to the true Pareto front, as
shown in Figure 4.

4 EXPERIMENTAL SETUP

We implement our interactive multi-objective reinforcement
learning by extending the PGMORL [51] method available in
morl-baselines [16]. The code can be found on our GitHub page.!

We test our method, the PGMORL and the PGMORL+E-NAUTILUS

method, on several MORL environments, which are explained in
the next subsection. In the rest of this section, we will describe
evaluation methods to properly compare our method against the
a posteriori PGMORL as a baseline. In our work, we implement
a novel technique that does not yet have established evaluation
methods. We are using some ideas from interactive evolutionary
and interactive MOO methods to evaluate the performance of
our method and the non-interactive method [2, 7, 8, 21].

!https://github.com/Henweiz/interactive_ MORL

4.1 Environments

We employ two mo-gym environments:
mo-mountaincarcontinuous-v@ and

mo-halfcheetah-v5 [16]. These environments were chosen as
they allow seamless integration with the current implementation
of PGMORL, and the core of our algorithm is similar to PGMORL.

4.1.1 mo-mountaincarcontinuous-v0. is a continuous and multi-
objective version of the classic mountaincar environment [30].
The environment is a car that is placed at the bottom of a valley.
The goal of the agent is to make the car reach the flag on the
top of the right hill. The observation space is the position of the
car along the x-axis and the velocity of the car. The action is the
acceleration that can be applied to the car in either direction.
And finally, there are two reward values for this environment:

(1) Time penalty: The time it takes to reach the destination
(2) Fuel cost:
A negative norm based on the action vector: —||action||?

Therefore, the trade-off in this environment is either, spend a
considerable amount of fuel to reach the destination faster. Or
an efficient use of fuel, but having a higher time penalty.

4.1.2 mo-halfcheetah-v5. is a Multi-Joint dynamic with Contact
(MuJoCo) environment [48]. Where physical contact between
the robot and the environment is simulated. The environment
consists of 9 different body parts and joints connecting them.
The action space of the agent is to control the joints in such a
way that it makes the cheetah robot run forward. Furthermore,
it also has a large observation space consisting of the position of
the body parts and their velocities. The rewards consist of the
following:

(1) Forward reward: The agent receives a positive reward
when it moves forward in the right direction

(2) Control cost: A negative reward for the agent when it
takes large actions

The goal of the environment is to enable the robot cheetah to
move as fast as possible in the desired direction while maintaining
a low control cost.

4.2 Evaluation methods

To evaluate the effectiveness of our proposed approach, we com-
pare three different methods: our interactive preference-guided
MORL, the baseline non-interactive PGMORL method, and a
hybrid method that combines PGMORL with the E-NAUTILUS
interactive decision-making procedure. These methods are se-
lected to assess how user interaction—either integrated during
learning or applied after learning—affects the quality and rele-
vance of the resulting solutions.

e Interactive Preference-Guided MORL:

Our proposed method, where the user provides feedback
during the learning process to guide the search toward
their preferred region of the solution space. The algorithm
adaptively restricts the search based on the selected solu-
tion to focus exploration.

e PGMORL: A non-interactive baseline method that com-
bines evolutionary search and prediction modeling to gen-
erate a diverse set of policies approximating the Pareto
front.

¢ E-NAUTILUS+PGMORL: A two-phase hybrid method.
First, PGMORL is used to generate a Pareto-optimal so-
lution set. Then, E-NAUTILUS is applied to interactively
select the user’s preferred solution from the final set.

4.2.1 Artificial user selection. For our interactive methodology
to evaluate performance between the interactive method and
the non-interactive method, it is essential to establish a model
of user behaviour within the environment. Employing a human
user for this process is usually impractical for the experiment
framework, as it proves time-consuming when the algorithm
operates over an extended duration, requiring the human user to
constantly interact with it. Therefore, we use an artificial user
selection method with a predefined utility function to determine
its preferred policy [8]:

U(x1,%2) = 01 - X1 + w2 - X2 5)

Where x; and x; are the average episodic rewards for the objec-
tives across five validation episodes. And w is the weight assigned
to the objective value. However, a limitation of utilizing an ar-
tificial user is its lack of ’flexibility’ in decision-making when
compared to a human decision maker (DM). Human DMs are
capable of learning and adapting throughout the agent’s training
phase, usually resulting in a change of preference, whereas an
artificial user consistently opts for the option with the highest
utility function value. For our experiments, we have designed
three distinct artificial users, each characterized by specific linear
utility functions tailored for maximization problems:

o User A: with equal preferences: U(x1,x2) = 0.5-x1+0.5-x2

e User B: with preference on objective 1: U(x1,x3) = 0.7 -
x1+0.3-x9

e User C: with preference on objective 2: U(x1,x2) = 0.3 -
x1+0.7 - x2

During each interactive decision-making instance, the artificial
user selects the solution with the highest utility, as determined
by its predefined user utility function. The selected solution is
returned as feedback to the interactive method, which then uses
it to update the bounds that constrain the search space.

To evaluate the performance of the method over time, we track
two metrics based on the artificial user’s utility assessments:

e Maximum User Utility Uy;4x (g): This metric represents
the highest utility value in the population at generation
g. It is computed by evaluating all individuals using the
artificial user’s utility function and selecting the one with
the highest value. This serves as an indicator of the best
solution quality for the user’s preferences:

Umax(9) = ‘max U(xi,xé) (6)
i€P(g)

o Average Population Utility U(g): This is the mean util-
ity value of all individuals in the population at generation
g. It indicates whether the population as a whole is con-
verging toward the user’s preferred region. Higher value
means that the population is close to the preferred solu-
tion:

0@ ==— > Ulxlxd))

PO 44

Where P(g) is the population at evolutionary generation g and
U (x}, xy) is the utility value of individual i based on its objective
values x1 and x3.

4.2.2 Steps until threshold reached. An alternative evaluation
metric involves measuring the number of global steps or the
number of generations required for the algorithm to reach a
predefined utility threshold. This threshold represents a mini-
mum acceptable performance level as determined by the artificial
user’s utility function. Formally, for a given threshold value 7,
we define the stopping time ¢; as the first global step at which
the individual with the highest utility in the population exceeds
the threshold:

tr = min{g | Unax(9) > 7} ®)

The goal of the interactive method is to require fewer steps to
reach this threshold 7 compared to the non-interactive baseline,
due to the guidance provided by the DM, which helps steer the
agents toward regions of the objective space that align more
closely with the user’s preferences. For evaluation, we define
three distinct target thresholds, each corresponding to a specific
preference profile:

e Target A: A balanced threshold 7, considering equal per-
formance on both objectives x; and x

o Target B: A threshold 7, focused on maximizing objective
X1

e Target C: A threshold 73 focused on maximizing objective
X2

For each generation, instead of using an artificial user function
to select the most preferred policy, we use the Euclidean distance

metric d(x,y) = /2%, (x; — y;)? to select the closest solution

to the target solution as the artificial DM.

4.2.3 Quality of the Final Policy. The primary objective of the
previous comparisons was to evaluate our interactive method
against a non-interactive baseline. To further assess its perfor-
mance, we compare the final solution generated by our method
with that selected by E-NAUTILUS, a well-established interac-
tive decision-making approach. Importantly, only E-NAUTILUS
operates on a precomputed Pareto front—specifically, the one
produced by the base PGMORL implementation—whereas our
interactive method generates its own final solution through
preference-guided search during training. For both methods, the
final solution is selected based on the artificial user’s utility func-
tion, as described in Subsection 4.2.1. To ensure a fair and ro-
bust comparison, we aggregate the outputs from three different
random seeds and apply Pareto filtering to remove dominated
solutions across these runs. The selected solutions are then eval-
uated based on their utility values and whether one dominates
the other. For E-NAUTILUS, we also must specify the number of
solutions shown per iteration as well as the total number of iter-
ations. Although increasing these parameters typically improves
selection accuracy, we set both to 3 in our experiments to match
the limited size of the PGMORL-generated Pareto fronts in the
tested MORL environments.

5 RESULTS

The training details and their hyperparameters can be found in
Appendix A. The experiments are run on the Delft High Perfor-
mance Computing Centre (DHPC) [15].

Balanced

500k ™

00k ™ L5M ™

(a) Balanced Preference

ity - Focus Objective 1

(b) Focus Objective 1

Maximum User Utility - Focus Objective 2

= interactive —

User Ut

global_step

15M

(c) Focus Objective 2

Figure 5: MountainCar: Maximum User Utility under different preference settings.

Average Population Utility - Balanced

— interactive = non_interactive = inter.

™ 15M 500k M

(a) Balanced Preference

Average Population Utility - Focus Objective 1

(b) Focus Objective 1

Average Population Utility - Focus Objective 2

= interactive —

1.5M N M

(c) Focus Objective 2

Figure 6: MountainCar: Average Population Utility under different preference settings.

5.1 Artificial Utility Function

In the artificial utility function evaluation, we look at both the
best individual performance Upqx(g) and the population perfor-
mance U(g) over time. We run each experiment for 3 different
seeds.

5.1.1 mo-mountaincarcontinuous-v0. The maximum user utility
values are shown in Figure 5. Overall, the performance of the two
methods is largely comparable. Under the balanced preference
setting, the interactive method initially outperforms the non-
interactive method, although the latter catches up over time. For
objective focus 1, both methods maintain similar performance
throughout the experiment. In contrast, under objective focus 2,
the interactive method starts with lower performance but quickly
reaches a similar policy to the non-interactive approach. Across
all three scenarios, the interactive method ultimately achieves
higher maximum user utility, continuing to improve over time,
whereas the non-interactive method tends to converge earlier.

In Figure 6, we see the average population utility over time.
All three plots show similar results, where the interactive method
clearly converges to the preferred region of the user by filtering
individuals that are not within the bounded limits. For the non-
interactive method, the population utility remains roughly the
same after the initial improvements. This shows that the non-
interactive opts for an even spread of the different solutions
rather than converging to a single region in the search space. For
both plots, we also see that the averages converge quite quickly,
with barely any improvements over time.

Overall, the results indicate that both methods are generally
capable of finding solutions aligned with the user’s preference
within a similar number of training steps. However, as shown
in Figure 6, the interactive method tends to discover a higher
number of similar solutions within the preferred region. Addi-
tionally, Figure 5 reveals that when preference is placed on the
second objective (x2), the interactive method performs slightly
worse compared to the other preference settings. We assume this
is caused by the environmental dynamics and reward structure.

Specifically, the first objective (x1) represents the time penalty
to reach the goal, while the second objective (x2) corresponds
to fuel consumption. Prioritizing x7 early in training may hin-
der the agent’s ability to reach the goal efficiently, as it learns
to minimize fuel usage. This not only increases the cost for x;
but also inadvertently raises x» due to prolonged episode dura-
tions and a higher number of actions. In contrast, when focusing
on objective 1 or adopting balanced preferences, the interactive
method typically outperforms the non-interactive method across
different seeds. These observations highlight the importance of
initially optimizing for x; before shifting focus to xz.

5.1.2 mo-halfcheetah-v5. Figure 7 displays the results for the
Maximum User Utility. For objective focus 1, the non-interactive
method clearly outperforms the interactive method. In contrast,
for objective focus 2, both methods achieve comparable perfor-
mance. Under the balanced preference, the interactive method
performs better during the initial half of training, but the non-
interactive method eventually catches up and surpasses it. Com-
pared to the mo-mountaincarcontinuous-v@ environment, the
interactive

method in mo-halfcheetah-v5 generally fails to outperform the
non-interactive method by the end of training.

Figure 8 presents the Average Population Utility results. The
trends observed are generally consistent with those from the
other environment and across all preference types. However, in
contrast to the mo-mountaincarcontinuous-v@ environment,
the mo-half-
cheetah-v5 environment exhibits the opposite behaviour in
terms of variance across seeds. Specifically, the interactive method
shows significantly higher variance, while the non-interactive
method appears more stable. For objective focus 2, one seed re-
sulted in an empty population at a certain point during training.
This likely occurred due to the population selection mechanism,
where only the best-performing individuals are retained each
generation. If, after applying the preference-based bounds, no
individuals meet the criteria, the population may be left empty.

The results indicate that the non-interactive method generally
outperforms the interactive approach. We believe this is primarily
due to the interactive method becoming trapped in local optima,
leading the algorithm to repeatedly select the same policy across
multiple generations before any potential improvement can be
made. This highlights a limitation of our evaluation setup: the ar-
tificial user consistently selects the same solution, whereas a real
user might adjust their selection strategy upon noticing a lack of
progress. Moreover, we observed that the mo-halfcheetah-v5
environment poses a significant challenge for training compared
to mo-mountaincarcontinuous-v@. Even the base PGMORL al-
gorithm struggles to generate a well-formed, continuous Pareto
front in this setting. The results for objective 1 suggest that thor-
ough policy exploration is critical in this environment. How-
ever, the interactive method with bounding the search space
significantly restricts exploration, which in turn slows the per-
formance improvement compared to the more freely exploring
non-interactive method.

5.2 Steps to Reach Threshold

For this evaluation, we compared our interactive method and the
non-interactive baseline. Each experiment is run for 3 different
target values and five different seeds. The average is reported in
the tables.

5.2.1 mo-mountaincarcontinuous-v0. For this environment, we
decided to go for a maximum of 5 million global steps before
timing out the run, and the following three threshold values:

e Target A: [-1, -1], with a focus on balanced objectives

e Target B: [-0.8, -1.2], with a focus on optimizing objective
1

e Target C: [-1.8, -0.5], with a focus on optimizing objective
2

The results of the experiment can be found in Table 1. We can see
that for target A, the non-interactive baseline performs slightly
better than the interactive method. Both modes were able to
reach the target values within the maximum allotted global steps.
For targets B and C, we see that the interactive method performs
significantly better than the non-interactive method. The inter-
active method was able to find a policy that dominates the target
policy much faster and was able to find it within 5 million global
steps, while the non-interactive method failed quite consistently.
Moreover, the standard deviation of the interactive method is rel-
atively low for target C, which means it is able to find a preferred
point fast and consistently.

We see from these results that the interactive method is able to
find policies that are more focused on one objective faster, rather
than a balanced policy placed in the middle of the Pareto front.
Our intuition is that a balanced policy is easier to find when the
exploration space is large, since you can reach it from multiple
angles. For example, a policy that performs well for x; and then
trains with a high weight for x in the following iteration(s) and
vice versa. When we are limiting the bounds for the balanced
policy, it will only improve the most when the weights are even
(@(0.5,0.5)).

However, when we are putting more weight on one objective,
the interactive method performs better since we do not waste
resources on training policies that go in a different direction
(high weight on the other objective). Therefore, the algorithm is
able to find the preferred solution much faster compared to the
non-interactive baseline.

5.2.2 mo-halfcheetah-v5. For this environment, we decided to
go for a maximum of 7.5 million global steps before timing out
the run and the following three threshold values:

e Target A: [5, -7], with a focus on balanced objectives
e Target B: [7, -20], with a focus on optimizing objective 1
e Target C: [1, -0.5], with a focus on optimizing objective 2

From the results, we can observe that the environment is more
difficult compared to the mo-mountaincarcontinuous-v@ envi-
ronment, as there are many more failed runs. For both target A
and B, the non-interactive baseline performs significantly better
compared to the interactive method. We noticed that the issue
with the interactive method in this environment is that it gets
much more easily stuck in local maxima compared to the non-
interactive method, which is also mentioned before in Subsection
5.1.2. The artificial user then selects the same policy for multiple
iterations without getting a better-performing solution. The non-
interactive has much higher exploration space, so it is possible
to reach the target thresholds from multiple angles, similarly
to what we discussed in the mo-mountaincarcontinuous-ve
results section. This is also one of the issues of the PGMORL
algorithm design mentioned by the authors Xu et al. [51], as
the algorithm can get stuck for a long period of time in local
minima/maxima in order to reach a better performance. We also
noticed that when the interactive method is able to find a solu-
tion, it does so in a similar number of global steps as the base-
line method. However, for target C, it is much easier for the
interactive method to find a dominating policy compared to the
non-interactive counterpart.

5.3 Quality of Final Policies

Figure 9 shows the Pareto-filtered results aggregated over three
different seeds. The figure includes the final outputs selected
by E-NAUTILUS+PGMORL for each of the three artificial user
utility functions, as well as the final outputs from our Interactive
Preference-Guided MORL approach. To improve visual clarity
in cases where solutions overlap, a small jitter is applied, for ex-
ample, the final solution selected by E-NAUTILUS for objective
x1 is the same as the one chosen for the balanced preference.
The interactive method (denoted by triangles) tends to produce
final solutions clustered around high values of objective 1 (x1),
while the non-interactive method yields more dispersed solutions
across the objective space. We hypothesize that this behaviour
arises because utility values are more easily maximized when
prioritizing x1. This is likely due to the higher reward scale associ-
ated with x; compared to x3. Additionally, since x; corresponds to
the time penalty for reaching the goal, optimizing it often results
in lower fuel consumption as well, thereby indirectly improving
x2. To test this hypothesis, we conducted a separate experiment
in which rewards were normalized before being passed to the
user utility function. The results, shown in Figure 10, display a
less concentrated spread of solutions. Notably, a few solutions
produced by the interactive method are now shifted more toward
the x; direction. Across all experiments, we observe that the
final policies are non-dominated with respect to each other. An
interesting finding is that the interactive method consistently
offers multiple similar high-quality solutions in the same region
in the final output after aggregation across seeds. When utility
normalization is applied, more preferred solutions emerge for
the artificial user.

The results for the mo-halfcheetah-v5 environment, shown

in Figure 11, differ notably from those of mo-mountaincarcontinuo-

Maximum User Utility - Balanced

— interactive =

— inter

™ ™M M am m

(a) Balanced Preference

Maximum User Utility - Focus on Objective 1

(b) Focus Objective 1

Maximum User Utility - Focus on Objective 2
active = on_interactive

global_step

(c) Focus Objective 2

Figure 7: HalfCheetah: Maximum User Utility under different preference settings

Average Population Utility - Balanced

— interactive = non_interactive

(a) Balanced Preference

Average Population Utility - Focus Objective 1

— interactive

(b) Focus Objective 1

Average Population Utility - Focus Objective 2
— interactive = non_interactive

M

(c) Focus Objective 2

Figure 8: HalfCheetah: Average Population Utility under different preference settings.

Table 1: Comparison between interactive and non-interactive method
for mo-mountaincarcontinuous-v@ environment

Targets [x1,x2] Method Avg Steps (-10°) + Std Avg Time per Run Timeouts

A: [, -1] Interactive 2,448 (+ 0,621) 0:16:56 -
B Non-Interactive 1,968 (+ 0,520) 0:14:07 -

B: [0, -12] Interactive 2,928 (+ 0,935) 0:20:31 -
R Non-Interactive No results 0:36:17 5/5

C: [-1.8,-0.5] Interactive 1,584 (+ 0,215) 0:11:28 -
R Non-Interactive 3,104 (+ 1,750) 0:23:18 2/5

Table 2: Comparison between interactive and non-interactive method
for mo-halfcheetah-v5 environment

Targets [x1,x2] Method Avg Steps (-10°) + Std Avg Time per Run Timeouts

A:[5,-7] Interactive 3,845 (+ 3,340) 0:50:04 2/5
Y Non-Interactive 1,690 (+ 0,210) 0:20:59 -

B: [7, -20] Interactive 6,230 (+ 1,958) 1:19:03 4/5
B Non-Interactive 2,652 (+ 2,152) 0:34:37 1/5

C: [1,-05] Interactive 3,072 (£ 2,839) 0:38:34 -
B Non-Interactive 6,538 (+ 2,715) 1:24:54 4/5

us-v@. These results are from the non-normalized reward exper-
iment, and we observe that the final policies are more widely
spread across the objective space for the interactive method. Inter-
estingly, as in the mountain car environment, the final solutions
selected by E-NAUTILUS for the balanced preference and for
objective x are the same policy.

In this environment, variation between runs with different
seeds is more pronounced. We assume this is often due to whether
the algorithm’s exploration gets trapped in a local maximum or
not. When the artificial user prioritizes a single objective, we ob-
serve that E-NAUTILUS tends to have policies that dominate our
interactive MORL method on x1, while our interactive method

finds higher-performing solutions for x, and also has solutions
that are more towards the high-valued x3 region. For the bal-
anced preference, however, E-NAUTILUS+PGMORL generally
dominates the solutions produced by our interactive method.

In summary, neither method consistently dominates the other
across all scenarios. However, when the artificial user "properly”
selects solutions that closely align with their stated preferences,
the interactive method is more likely to produce outcomes that
lie within the desired region of the objective space compared
to E-NAUTILUS+PGMORL. This highlights the strength of the
interactive approach in aligning with specific user preferences.
On the other hand, as discussed in previous subsections, the

Final policy outputs - MountainCar

@ E-NAUTILUS balanced
@ ENAUTILUS x_1
@ ENAUTILUS x 2
/\ Interactive balanced
A\ Interactive x_1
/\ Interactive x_2

Objective 2 (x:)
.

.AA

A&
Aéé
A

-0

B 2 o -8
Objective 1 (x1)

Figure 9: Final Policy Outputs of MountainCar Environment

Final policy outputs - MountainCar - Normalized

A @ ENAUTILUS balanced
e A @ ENAUTILUS x_1
04 @ ENAUTILUS x 2
/\ Interactive balanced
A\ Interactive x_1
e /\ Interactive x_2
05
Q07
s
8 08
5
3
11 A

14
Objective 1 (xi)

Figure 10: Final Policy Outputs of MountainCar - Normalized

Final policy outputs - HalfCheetah

E-NAUTILUS balanced
E-NAUTILUS x_1
E-NAUTILUS X 2
Interactive balanced
Interactive x_1
Interactive x_2

>>>00®

N

Objective 2 (xz)

.|>

3 B G 7 s
Objective 1 (xi)

Figure 11: Final Policy Outputs of HalfCheetah Environment

interactive method is more prone to getting trapped in local
optima compared to the non-interactive approach, primarily due
to its more constrained exploration space, caused by the bounds,
which limit its ability to discover diverse solutions.

6 FUTURE WORK

Currently, our integration of interactivity remains relatively sim-
ple, and there is significant room for further improvements. For
instance, we have only tested linear utility functions and envi-
ronments with largely linear Pareto fronts. An interesting future
direction is to investigate whether interactive preference guid-
ance can enable the discovery of non-linear trade-off solutions,
particularly in environments that are typically unreachable using
linear scalarization approaches.

Additionally, the current PGMORL implementation supports

only two continuous objectives. Extending this to higher-dimensional

objective spaces would be valuable for understanding how well
the interactive method scales and performs in more complex
decision scenarios.

Another limitation we observed is that the algorithm tends
to become trapped in local optima, an issue that becomes more
pronounced when the search space is constrained by user prefer-
ences. To address this, future work could incorporate a dynamic
relaxation of the preference bounds, activated when the algo-
rithm detects a prolonged stagnation in policy improvement.

One aspect we were unable to investigate in this work is the
impact of human fatigue. Frequent interaction with the algorithm
over long training periods can be demanding for DMs. It would
be valuable to explore methods for reducing the frequency of
required interactions, either through predictive modeling of user
preferences or by strategically scheduling queries, in order to
minimize the cognitive load on the human user.

6.1 Incorporate Interactivity into MORL
algorithms

Our work primarily introduces a method to incorporate user in-
teractivity into MORL algorithms, guiding the search toward pre-
ferred regions of the solution space. So far, we have implemented
this by applying bounds to the evolutionary search component
of the MORL algorithm. We believe this concept is generalizable
to any MORL method that relies on population-based optimiza-
tion and individual selection. Using interactive selection for an
individual in the population allows the evolutionary method to
generate solutions that are similar to the selected solutions. For
other classes of MORL algorithms, different forms of interactiv-
ity could be explored, for example, incorporating a target point
and/or changing the reward structure, as proposed by Vamplew
et al. [44]. Many current multi-policy methods use a selection
model that typically chooses the next policy to train based on the
maximization of coverage metrics like hypervolume or diversity.
To make MORL interactive, the user should be able to intervene
during this policy selection step. However, for some algorithms,
this can be difficult since user intervention will often conflict
with the optimal policy selection algorithm, resulting in slower
convergence or reduced hypervolume efficiency. In most cases,
non-interactive methods will outperform purely interactive ones
in terms of the quality of the final solutions or training durations.

Consider the Generalized Policy Improvement (GPI) MORL
from Alegre et al. [3]. The method allows for a sample-efficient
learning by identifying the optimal weight vector to train on
using GPI The selection method relies on what they define as
corner weights. Corner weights are weight vectors where two
or more policies share the same value when calculated using
the utility function. The corner weight with the most promising
improvement is then selected to train. If we want to extend this
algorithm to make it interactive, a suggestion is to adjust the
selection model so that the user is able to select their preferred
corner weight to train, rather than using GPI. It is important
to recognize that corner weights are to maximize hypervolume
gains; Selecting preferred corner weights might not always help
the algorithm converge towards the user’s preferred region. Since
corner weights tend to be more concentrated in areas where the
policies can be improved the most.

7 CONCLUSION

This work provides valuable insights into the novel research area
of interactive Multi-Objective Reinforcement Learning (MORL).
We argue that interactive MORL is a promising direction for
the future of reinforcement learning, especially given that many
complex real-world problems are inherently multi-objective and
often require human-in-the-loop decision-making. Incorporating
user feedback during the learning process can accelerate con-
vergence toward preferred solutions and reduce the cognitive
burden of manually selecting solutions from the final output of a
posteriori multi-policy MORL algorithms.

In this paper, we introduced the concept of Interactive Preference-

Guided MORL, where the search space of the algorithm is dynami-
cally constrained based on the user’s previously selected solution.
This bounding approach limits the exploration of the policy space
to regions of interest, thereby aligning the search more closely
with the decision-maker’s preferences. We also proposed several
evaluation strategies by adapting ideas from existing literature,
including the use of artificial user utility functions, measuring
the time required to reach a target solution, and comparing final
outputs between interactive and non-interactive methods.

Our experimental results show that using a bounded search
space leads to a greater concentration of solutions in the user’s
preferred region and allows the interactive method to find a
satisfactory solution more quickly than its non-interactive coun-
terpart. However, the constrained exploration can also make the
algorithm more susceptible to getting trapped in local optima.
This limitation suggests potential for future work on dynamically
relaxing the search bounds when stagnation is detected.

Overall, we believe our work makes a meaningful contribution
to the growing field of interactive MORL by offering both method-
ological insights and empirical evidence, laying a foundation for
further research on interactive MORL.

8 ACKNOWLEDGMENTS

I would like to thank my daily supervisor, Zuzanna Osika for the
guidance throughout my thesis period and Pradeep Murukanna-
iah for his valuable feedback on many aspects of this research.
Lastly, I would like to express my gratitude to the Delft High
Performance Computing Centre (DHPC) [15], for allowing me
to use the hardware provided to run the experiments.

A HYPERPARAMETERS

Table 3: Hyperparameters used for each environment.

Experiment Env Ref Point Origin # Parallel Envs Pop Size Warmup Evol. Iters Steps/Episode Global Steps Gamma
MountainCar mo-mountaincarcontinuous-v0 [-110, -110] [-110, -110] 4 6 10 10 1000 2.5M 0.995
Threshold MountainCar ~ mo-mountaincarcontinuous-v0 [-110,-110] [-110, -110] 4 6 10 10 1000 5M 0.995
HalfCheetah mo-halfcheetah-v5 [-100, -100] [-100, -100] 4 6 40 40 400 5M 0.99
Threshold HalfCheetah mo-halfcheetah-v5 [-100, -100] [-100, -100] 4 6 40 40 400 7.5M 0.99
Table 4: Description of hyperparameters used in all experiments.

Parameter Description

env MO-Gym ID of the multi-objective environment used

ref_point Reference point in the objective space

origin Origin point in the objective space during evaluation (usually same as ref_point)

parallel_envs Number of parallel environments for experience collection

pop_size Number of agent-weight combinations that are trained during each generation

warmup_iterations
evolutionary_iterations
steps_per_episode
global_steps

gamma

Initial warm-up iterations to get the policies out of low-performance region
Number of training iterations for each generation

Maximum number of environment steps per episode

Total number of environment steps used for training

Discount factor used in return calculation

The rest of the hyperparameters are the default PGMORL hyperparameters, which can be found in our code on GitHub?. The random seeds we used for our experiments in Section 5.1
and 5.3 are 1, 42, and 100. For the threshold experiments in Section 5.2, we used 5 different seeds, which are 1, 7, 10, 42, and 100.

Zhttps://github.com/Henweiz/interactive_ MORL

REFERENCES

(1]

[2

[

(5]

(6]

(7]

(8]

(]

[10

[11

[12

[13

[14]

(15

[16]

[17

[18]

[19

[20]

[21]

[22]

[23

[24]

[25

[26

Axel Abels, Diederik Roijers, Tom Lenaerts, Ann Nowé, and Denis Steck-
elmacher. 2019. Dynamic weights in multi-objective deep reinforcement
learning. In International conference on machine learning. PMLR, 11-20.
Bekir Afsar, Kaisa Miettinen, and Francisco Ruiz. 2021. Assessing the perfor-
mance of interactive multiobjective optimization methods: A survey. ACM
Computing Surveys (CSUR) 54, 4 (2021), 1-27.

Lucas N Alegre, Ana LC Bazzan, Diederik M Roijers, Ann Nowé, and Bruno C
da Silva. 2023. Sample-efficient multi-objective learning via generalized policy
improvement prioritization. arXiv preprint arXiv:2301.07784 (2023).

R_ Benayoun,] De Montgolfier, Jo Tergny, and O Laritchev. 1971. Linear
programming with multiple objective functions: Step method (STEM). Mathe-
matical programming 1, 1 (1971), 366-375.

Jirgen Branke. 2008. Consideration of partial user preferences in evolution-
ary multiobjective optimization. Multiobjective optimization: Interactive and
evolutionary approaches (2008), 157-178.

Jurgen Branke and Kalyanmoy Deb. 2005. Integrating user preferences into
evolutionary multi-objective optimization. In Knowledge incorporation in
evolutionary computation. Springer, 461-477.

Jirgen Branke, S Greco, R Stowinski, and P Zielniewicz. 2010. Interactive
evolutionary multiobjective optimization driven by robust ordinal regression.
Bulletin of the Polish Academy of Sciences: Technical Sciences 3 (2010).

Jurgen Branke, Salvatore Greco, Roman Stowinski, and Piotr Zielniewicz.
2014. Learning value functions in interactive evolutionary multiobjective
optimization. IEEE Transactions on Evolutionary Computation 19, 1 (2014),
88-102.

John Telfer Buchanan. 1997. A naive approach for solving MCDM problems:
The GUESS method. Journal of the Operational Research Society 48, 2 (1997),
202-206.

Vira Chankong and Yacov Y Haimes. 2008. Multiobjective decision making:
theory and methodology. Courier Dover Publications.

Kalyanmoy Deb and Abhay Kumar. 2007. Light beam search based multi-
objective optimization using evolutionary algorithms. In 2007 IEEE congress
on evolutionary computation. IEEE, 2125-2132.

Kalyanmoy Deb and Kaisa Miettinen. 2009. Nadir point estimation using
evolutionary approaches: better accuracy and computational speed through
focused search. In Multiple Criteria Decision Making for Sustainable Energy
and Transportation Systems: Proceedings of the 19th International Conference on
Multiple Criteria Decision Making, Auckland, New Zealand, 7th-12th January
2008. Springer, 339-354.

Kalyanmoy Deb, Karthik Sindhya, and Jussi Hakanen. 2016. Multi-objective
optimization. CRC Press, 161-200.

Kalyanmoy Deb, Ankur Sinha, Pekka J Korhonen, and Jyrki Wallenius. 2010.
An interactive evolutionary multiobjective optimization method based on
progressively approximated value functions. IEEE Transactions on Evolutionary
Computation 14, 5 (2010), 723-739.

Delft High Performance Computing Centre (DHPC). 2024. DelftBlue Super-
computer (Phase 2). https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2.
Florian Felten, Lucas N. Alegre, Ann Nowé, Ana L. C. Bazzan, El Ghazali
Talbi, Grégoire Danoy, and Bruno Castro da Silva. 2023. A Toolkit for Reliable
Benchmarking and Research in Multi-Objective Reinforcement Learning. In
Proceedings of the 37th Conference on Neural Information Processing Systems
(NeurIPS 2023).

Florian Felten, El-Ghazali Talbi, and Grégoire Danoy. 2024. Multi-Objective Re-
inforcement Learning based on Decomposition: A taxonomy and framework.
Journal of Artificial Intelligence Research 79 (2024), 679-723.

Arthur M Geoffrion, James S Dyer, and A Feinberg. 1972. An interactive
approach for multi-criterion optimization, with an application to the operation
of an academic department. Management science 19, 4-part-1 (1972), 357-368.
Dunwei Gong, Xinfang Ji, Jing Sun, and Xiaoyan Sun. 2014. Interactive
evolutionary algorithms with decision-maker s preferences for solving interval
multi-objective optimization problems. Neurocomputing 137 (2014), 241-251.
Conor F Hayes, Roxana Ridulescu, Eugenio Bargiacchi, Johan Kéllstrom,
Matthew Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M Zint-
graf, Richard Dazeley, and Fredrik Heintz. 2022. A practical guide to multi-
objective reinforcement learning and planning. Autonomous Agents and Multi-
Agent Systems 36, 1 (2022), 26.

Sandra Huber, Martin Josef Geiger, and Marc Sevaux. 2015. Simulation of
preference information in an interactive reference point-based method for
the bi-objective inventory routing problem. Journal of Multi-Criteria Decision
Analysis 22, 1-2 (2015), 17-35.

Andrzej Jaszkiewicz and Jiirgen Branke. 2008. Interactive multiobjective evolu-
tionary algorithms. In Multiobjective Optimization: Interactive and Evolutionary
Approaches. Springer, 179-193.

Mariano Luque, Francisco Ruiz, and Kaisa Miettinen. 2011. Global formulation
for interactive multiobjective optimization. Or Spectrum 33 (2011), 27-48.
Kaisa Miettinen. 1999. Nonlinear multiobjective optimization. Vol. 12. Springer
Science Business Media.

Kaisa Miettinen, Petri Eskelinen, Francisco Ruiz, and Mariano Luque. 2010.
NAUTILUS method: An interactive technique in multiobjective optimization
based on the nadir point. European Journal of Operational Research 206, 2
(2010), 426-434.

Kaisa Miettinen, Jussi Hakanen, and Dmitry Podkopaev. 2016. Interactive
nonlinear multiobjective optimization methods. Multiple criteria decision

[27]

[28]

[29]

[30]
[31]

[32

(33]

[34

[35]

[36]

[37]

[38]

[39]

[40

[41]

[42

[43]

[44]

[45]

[46

[47]

(48]

[49]

[50]

[51]

[52]

analysis: State of the art surveys (2016), 927-976.

Kaisa Miettinen and Marko M Mékela. 2006. Synchronous approach in inter-
active multiobjective optimization. European Journal of Operational Research
170, 3 (2006), 909-922.

Kaisa Miettinen and Marko M Mikela. 2002. On scalarizing functions in
multiobjective optimization. OR spectrum 24 (2002), 193-213.

Kaisa Miettinen, Francisco Ruiz, and Andrzej P Wierzbicki. 2008. Introduc-
tion to multiobjective optimization: interactive approaches. In Multiobjective
optimization: interactive and evolutionary approaches. Springer, 27-57.
Andrew William Moore. 1990. Efficient Memory-based Learning for Robot
Control. Technical Report. University of Cambridge.

Simone Parisi, Matteo Pirotta, and Jan Peters. 2017. Manifold-based multi-
objective policy search with sample reuse. Neurocomputing 263 (2017), 3-14.
Roxana Radulescu, Patrick Mannion, Diederik M Roijers, and Ann Nowé.
2020. Multi-objective multi-agent decision making: a utility-based analysis
and survey. Autonomous Agents and Multi-Agent Systems 34, 1 (2020), 10.
Mathieu Reymond, Eugenio Bargiacchi, and Ann Nowé. 2022. Pareto condi-
tioned networks. arXiv preprint arXiv:2204.05036 (2022).

Diederik M Roijers, Denis Steckelmacher, and Ann Nowé. 2018. Multi-objective
reinforcement learning for the expected utility of the return. In Proceedings of
the Adaptive and Learning Agents workshop at FAIM, Vol. 2018.

Diederik M Roijers, Peter Vamplew, Shimon Whiteson, and Richard Dazeley.
2013. A survey of multi-objective sequential decision-making. Journal of
Artificial Intelligence Research 48 (2013), 67-113.

Diederik M Roijers, Luisa M Zintgraf, and Ann Nowé. 2017. Interactive
thompson sampling for multi-objective multi-armed bandits. In International
conference on algorithmic decision theory. Springer, 18-34.

Ana B Ruiz, Karthik Sindhya, Kaisa Miettinen, Francisco Ruiz, and Mariano
Luque. 2015. E-NAUTILUS: A decision support system for complex multiob-
jective optimization problems based on the NAUTILUS method. European
Journal of Operational Research 246, 1 (2015), 218-231.

Francisco Ruiz, Mariano Luque, and Kaisa Miettinen. 2012. Improving the
computational efficiency in a global formulation (GLIDE) for interactive mul-
tiobjective optimization. Annals of Operations Research 197 (2012), 47-70.
Lamjed Ben Said, Slim Bechikh, and Khaled Ghédira. 2010. The r-dominance:
a new dominance relation for interactive evolutionary multicriteria decision
making. IEEE transactions on Evolutionary Computation 14, 5 (2010), 801-818.
Ralph E Steuer and Eng-Ung Choo. 1983. An interactive weighted Tchebycheff
procedure for multiple objective programming. Mathematical programming
26 (1983), 326-344.

Richard S Sutton, Andrew G Barto, et al. 1998. Reinforcement learning: An
introduction. Vol. 1. MIT press Cambridge.

Hideyuki Takagi. 2001. Interactive evolutionary computation: Fusion of the
capabilities of EC optimization and human evaluation. Proc. IEEE 89, 9 (2001),
1275-1296.

Tetsuzo Tanino. 1993. An interactive multicriteria decision making method
by using a genetic algorithm. In Proc. of International Conference on System
Science & System Engineering. 381-386.

Peter Vamplew, Rustam Issabekov, Richard Dazeley, Cameron Foale, Adam
Berry, Tim Moore, and Douglas Creighton. 2017. Steering approaches to
Pareto-optimal multiobjective reinforcement learning. Neurocomputing 263
(2017), 26-38.

Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. 2013. Scalarized
multi-objective reinforcement learning: Novel design techniques. In 2013 IEEE
symposium on adaptive dynamic programming and reinforcement learning
(ADPRL). IEEE, 191-199.

Tobias Wagner and Heike Trautmann. 2010. Integration of preferences in
hypervolume-based multiobjective evolutionary algorithms by means of desir-
ability functions. IEEE Transactions on Evolutionary Computation 14, 5 (2010),
688-701.

Hongze Wang. 2024. Multi-objective reinforcement learning based on nonlin-
ear scalarization and long-short-term optimization. Robotic Intelligence and
Automation 44, 3 (2024), 475-487.

Pawel Wawrzynski. 2009. A cat-like robot real-time learning to run. In Inter-
national Conference on Adaptive and Natural Computing Algorithms. Springer,
380-390.

Andrzej P Wierzbicki. 1980. The use of reference objectives in multiobjective
optimization. In Multiple criteria decision making theory and application: Pro-
ceedings of the third conference Hagen/Kénigswinter, West Germany, August
20-24, 1979. Springer, 468-486.

Xi Xiong, Jianqiang Wang, Fang Zhang, and Keqiang Li. 2016. Combining
deep reinforcement learning and safety based control for autonomous driving.
arXiv preprint arXiv:1612.00147 (2016).

Jie Xu, Yunsheng Tian, Pingchuan Ma, Daniela Rus, Shinjiro Sueda, and Woj-
ciech Matusik. 2020. Prediction-guided multi-objective reinforcement learning
for continuous robot control. In International conference on machine learning.
PMLR, 10607-10616.

Stanley Zionts and Jyrki Wallenius. 1976. An interactive programming method
for solving the multiple criteria problem. Management science 22, 6 (1976),
652-663.

https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase2

