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Abstract

I propose an implementation of the quantum private query proto-
col as described in [1] using a photon to encode a question and reflec-
tion or transmission of the photon as answer options. Each question
is represented by a photon in a transmission line with both ends re-
turning to the user, and the answer is represented by reflection or
transmission of this photon caused by the single photon transistor as
described in [2]. By solving the quantum Langevin equations for the
32 × 32-dimensional operators describing the single photon transistor
the system is analysed. This analysis shows that the user privacy is
maintained when the returning transmission lines are under the user’s
control. The probabilities for reflection and transmission are calculated
to verify the behaviour of the answering mechanism. By using pulse
trains instead of numbered lines to represent questions, the scalability
of the system could be improved.
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1 Introduction

1.1 Privacy and quantum mechanics

With the rise of the internet the last decades, privacy issues have become
a larger problem than ever before. Network providers, search engines and
other large corporations have lots of information about the users of their
services. As users, we have little options to check which information about
us is being saved. Some information seems harmless to share, other search
queries are not meant to be saved in databases for long times, although this
do not have to be an illegal act.
Some privacy problems can be solved in classical ways, but most of these so-
lutions do not offer a guarantee that the privacy of the user is in good hands.
Quantum information applications may offer new solutions for privacy prob-
lems. One of the best known applications is Quantum Key Distribution, this
proposes a way to share a security key in a safe way. With this protocol it is
possible to share information in a secure way between two parties, without
anyone being able to eavesdrop unnoticed.
In most internet privacy issues the problem is differently situated from Quan-
tum Key Distribution. One provides the internet services, let’s call him Bob,
can be at the same moment the eavesdropper. The user, Alice, wants to ob-
tain an answer to her questions, but at the same time, she wants to reveal as
little information as possible to the search engine. For Bob it is important
to share as little information as possible with the user (data privacy). This
could for example be because he wants to keep his information exclusive
or because it is expensive to send lots of data. A simple solution for Alice
would be to ask lots of questions to hide the real query in fake questions, but
this would directly interfere with the databases demand for data privacy. If
the user would ask for the entire database, her privacy would be guaranteed.
On the contrary, the data shared would be minimized if Alice would send
in only one query, the question she is honestly interested in, but this would
give her no guarantee of her privacy at all. Using classical physics it is im-
possible to solve this problem fulfilling the demands of both parties.

1.2 Quantum private queries

A quantum mechanical solution, meeting the mentioned criteria, for this
problem is proposed by [1] as Quantum Private Queries (QPQ). The QPQ-
protocol proposes a way to perform queries on a classical database with a
nonzero probability to detect if the database holder is trying to register in-
formation about the question asked. The protocol is based on the fact that
a quantum superposition will collapse when one tries to measure its state,
and the possibility to detect this collapse by the user. In section 2.1 I will
give a more thorough description of the QPQ-protocol.
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In this project I have tried to give an implementation of a performable QPQ
based on the theoretical protocol proposed in [1]. To do this the single-
photon transistor described in [2] is. With this set-up it is possible to ask
predefined numbered questions with 2 possible answers e.g. yes/no or 0/1.
This set-up, the transistor and the QPQ-protocol are described in section 2.
To get better insight in the performance of the proposed QPQ it is of impor-
tance to analyse the functionality of the transistor and the privacy problems
that follow. The transistor can be described by a system of differential equa-
tions, called quantum Langevin equations. In section 3 this section will be
solved numerically and the results will be analysed and combined with the
QPQ described in section 2. Not all the proposed steps can be fully evalu-
ated by solving the Langevin equations, but qualitative conclusions can be
made.
In the last section the conclusions of this project are presented, combined
with an outlook to further improvements, applications and implementations.
The analysis shows no problems in guaranteeing the user privacy, although
the probability to detect a cheating database holder depends strongly on
the perfection of the transmission and reflection rates of the single photon
transistor.
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2 Theoretical model

In this section we will first give an explanation of the QPQ-protocol and
after looking into the requirements of the protocol a set-up for an imple-
mentation is introduced. When this implementation is described, a more
mathematical analysis will be given of the system. This section ends with
the description of the single photon transistor and the Hamiltonian govern-
ing the time evolution is given.

2.1 QPQ-protocol

As mentioned in the introduction, QPQ offers a way to ensure data privacy
and user privacy at the same time. Using the protocol Alice can retrieve at
most 2 data-elements per query, this gives a data privacy guarantee for Bob.
Using it Alice has a non-zero probability to detect a cheating Bob. In this
section I will point out the important parts of the protocol which have to be
implemented to propose a feasible QPQ. The complete protocol is described
in [1] and the associated security analysis in [3].
A QPQ is based on two ideas:

1. Bob returns, in combination with the answer, the asked question.

2. Alice is able to send in a superposition of questions and receive a
superposition of answers and the corresponding questions.

The specific combination of these two ideas makes it possible for Alice to
check whether Bob has tried to withhold any information about her ques-
tion. The no-cloning cloning theorem [4] proves it is impossible for Bob to
determine the exact state from a single copy without destroying it.
It will be assumed that Bob is always answering with a unique answer to
every question, it is however possible for different questions to have the same
answer.
When Alice is sending in a superposition of questions |j⟩ and |k⟩ and Bob
is measuring to register which question Alice was sending in, Bob will not
always be able to send back exactly the same state he received if he is mak-
ing a measurement. If he is measuring he will most likely use a base where
the eigenstates are the questions, so he will measure |j⟩ or |k⟩, and he will
not know if he should send back the measured eigenstate or a superposition.
Alice should choose a good strategy to make it impossible for Bob to dodge
the superpositions and to be able to detect a cheating Bob.
As in the description of the protocol we will write a question as |j⟩ and
the corresponding answer as |Aj⟩. Those answers must be elements of a
classical database. The simplest version of a quantum private query uses a
rhetorical question |0⟩, this is a register in the database with an answer, e.g.
0, known to everyone. Alice will be sending separately two states to Bob,
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Figure 1: A blueprint of the QPQ protocol, where Alice performs a query
to determine the jth element of Bob’s database. Figure from [1].

one containing her true question |j⟩, one containing a superposition of the
question and the ”rhetorical” question (|0⟩+ |j⟩)/

√
2.

A QPQ will now be performed in the following manner. Alice will randomly
choose which state she sends in first: the true question or the superposi-
tion. Bob will answer this (superposition of) question(s) and sends back the
(superposition of) answer(s) with the corresponding questions. When Alice
has received the reply, she will send in the other state. Figure 1 presents
a scheme of the QPQ protocol here described. After this Alice will be in
possession of two states. If Bob is honest these are the following states:

|ψ1⟩ = |j⟩|Aj⟩ (2.1a)

|ψ2⟩ = (|j⟩|Aj⟩+ |0⟩|0⟩)/
√
2 (2.1b)

By measuring |ψ1⟩ Alice will be able to determine the answer |Aj⟩ on her
question |j⟩. Knowing the answer to |j⟩ she also knows the expected form
of |ψ2⟩. Using this she can compare the expected reply to the superposition
with the received reply. If those two turn out to be different from each other,
Alice can conclude Bob has been dishonest and is therefore not trustworthy
any more.
The probability for detecting a cheating Bob could be improved by sending
in arbitrary superpositions of |j⟩ and |0⟩ unknown to Bob. This strongly
reduces the chances for Bob to send back the right superposition. Other
improvements of the protocol are discussed in the original article [1].
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2.2 Practical implementation of a QPQ

2.2.1 Requirements on a QPQ

As we can conclude from section 2.1 a proposal for a QPQ set-up should
fulfil four general requirements to make it possible to perform a QPQ.

1. Alice should be able to send questions to Bob and if she wants also
superpositions of questions. The form of the question should make it
possible for Alice to check if Bob sends back the entire question.

2. Bob should be able to answer the questions Alice sends, by sending in
a quantum state, in in a quantum mechanical way. If Alice sends in a
superposition of questions, he has to be able to reply with a superpo-
sition of the corresponding answers and questions, thus Bob has to be
able to implement his classical answers in a quantum database, which
is able to answer superpositions of questions.

3. Bob should be able to verify that Alice is retrieving at most one an-
swer per question, so that she can obtain at most two answers when
she is violating the protocol and only interested in obtaining as much
information from Bob as possible.

4. Alice must also be able to verify Bob’s honesty. Alice needs a way
to preserve Bob’s first reply, because if this is the superposition, she
will first need to know the answer to her true question, before she
can compare the expected superposition of answers with the reply she
received on her superpositions of questions. First Alice has to be able
to measure Bob’s answer to the question Alice is interested in. Then
she has to be able to determine the expected reply to her superposition
and to verify if this matches the received state.

To meet the first requirement we choose to send for each query a photon to
Bob through transmission lines. Each transmission line represents a question.
By sending a superposition through two lines, Alice will send a superposi-
tion of questions to Bob. Alice will be able to verify whether the question
returned to her, by checking if she received the photon back. The transmis-
sion lines can be numbered and this makes it possible for Bob and Alice to
agree which line represents which question. They will also have to agree on
a rhetorical question line and the corresponding answer. For simplicity we
will assume this is line 0 and the answer will be |0⟩.
By choosing a photon through a transmission line to encode the question,
it is now necessary to find a way to answer a question with a simple answer
(1/0) in a quantum mechanical way. A solution for this is offered by the
single-photon transistor as described by Neumeier et al in [2]. This circuit
makes it possible to block or enable the propagation of a photon in a trans-
mission line. Alice’s transmission line is coupled to a transmission line under
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Bob’s control, we will call this the control line. The presence of a photon
in the control line can block or enable the propagation of the photon in
Alice’s transmission line. This circuit exists of two coupled qubits, each has
a ground state and a first excited state. The most suitable option would be
two transmon qubits [5] coupled to each other. If the answer to question i is
1 Bob will send in a photon in the control line, if the answer is 0, he will not
do so. For simplicity we will assume Bob couples the qubits in such a way
that answer 0, so no control photon, will let the photon sent by Alice propa-
gate through the transmission line. Therefore answer 1 will the photon sent
by Alice. Since Alice knows the expected behaviour of the qubits she can
conclude the answer from this. For certain parameters of the transistor it
might be possible to block or transmit the photon with probability 1. This
may not always be the case, but it will still be possible to perform a QPQ.
The transistor will be described more thoroughly in section 2.4.
In Figure 2 the proposed set-up is shown. The ends of the transmission
lines have to be under Alice’s control, the part where the transmission lines
couple to the qubits, the qubits and the control photon can be controlled
by Bob. This is possible because Alice only needs to be able to check if her
superposition is maintained and to measure which answer she received.

Incoming photon

Transmitted photon

Control photon

Alice Bob

Question 1

Rhetorical question

Incoming photon

Transmitted photon

Control photon

Answer 0

Answer 1

Two qubits

Two qubits

Figure 2: A schematic design of the QPQ set-up. Both ends of the trans-
mission lines are under Alice’s control, the rest of the set-up, right of the
dotted line, can be controlled by Bob. The two qubits coupling the photon
lines are shown in the middle.

To verify if Alice is asking not more than one question per query, Bob must
be able to check if she is only sending in one photon, which would give him
no information about the location of the photon and would not influence
any possible state Alice is sending in. Another solution would be a quan-
tum mechanical device which would block the photons when more than one
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photon has been sent.
To check if Bob has not disturbed the superposition it is necessary that
Alice can maintain the superposition until she has determined the answer to
the question she is interested in. This will be possible because of the long-
lived coherence of photons. To verify if the superposition is undisturbed,
Alice will perform a measurement where the expected superposition is an
eigenstate. This will be described in more detail in the next section.

2.3 Transmission lines mathematically described

To better understand the process from Alice’s side, we will look further into
the process of determining the answer and verifying the superposition. We
will also introduce some notation to describe the transmission lines.
For the query described in the previous section, it will be necessary to have
at least 2 database elements. Since the different lines and questions are
not coupled, a database with more than 2 elements can be described as a
database with 2 database elements, where line 0 still represents the rhetorical
question and line 1 instead of line j represents the question Alice is interested
in.
The photon can be found at different places before and after the interaction
with the qubits and Bob’s control line. Before the interaction the photon
will be in the two incoming lines, after the interaction the photon can be
reflected or transmitted or when the transistor is not working perfectly, there
is a chance for the photon to be lost because it is absorbed by the qubits.
The probability for the photon to be lost is ideally small. The photon can be
in 6 states; we may write the quantum mechanical state |Ψ⟩ of the photon
as a six-dimensional vector:

|Ψ⟩ =



Incoming/reflected Q0
Transmitted Q0

Lost Q0
Incoming/reflected Q1

Transmitted Q1
Lost Q1

 (2.2)

Next section, we use a more general approach, where we describe the photon
in each line as a wave package, for now it is not necessary to take this into
account in our notation, since we only want to explain the concept. It is
useful to note that the probability for the photon to be in the incoming line
of question 1 will be |a|2 =

∫∞
t0

(p(t)dt) where p(t)dt is the probability for
the photon to be at the end of the line between t and t+ dt.
Alice will be sending in a superposition of the photon through the incoming
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lines. This superposition can be written as, with |a|2 + |b|2 = 1:

∣∣Ψin
⟩
=



a
0
0
b
0
0

 (2.3)

As stated before our Alice will be sending in the real question |ΨA⟩ with
a = 0 and b = 1 or the superposition |ΨB⟩ with a = b = 1√

2
:

∣∣Ψin
A

⟩
=



0
0
0
1
0
0

 (2.4a)
∣∣Ψin

B

⟩
=



1√
2

0
0
1√
2

0
0


(2.4b)

2.3.1 Interaction with the database

The interaction with the qubit can now be described in a simple way with
a 6 × 6 unitary matrix Sm,n, where m,n ∈ {0, 1} indicate the answer on
question 0 and 1. In appendix A it will be shown that it is possible to
determine a unitary matrix S when the behaviour is only known for the
photon is in the incoming lines. As stated earlier we will take the answer to
question 0 to be m = 0. Since the two questions are not coupled, both lines
will respond in the same way to the presence or absence of a control photon.
Combining these parts it is possible to write the resulting states as follows:

∣∣Ψout
A,n

⟩
= S0,n

∣∣Ψin
A

⟩
=



0
0
0
βnrefl
βntrans
βnlost

 (2.5a)

∣∣Ψout
B,n

⟩
= S0,n

∣∣Ψin
B

⟩
=

1√
2



β0refl
β0trans
β0lost
βnrefl
βntrans
βnlost

 (2.5b)
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2.3.2 Determining the answer

To determine the answer to her question (n = 0 or n = 1), Alice will have

to determine which state
∣∣∣Ψout

A,n

⟩
(n ∈ {0, 1}) was the response to her input

question. The photon cannot be in the lines corresponding to the rhetoric
question, because there is no coupling between the questions, therefore the
photon has to be in the 4th, 5th or 6th element of the answer state.
Alice has only control over the transmission lines and no control over the
lost term. Since she can only perform measurements in the lines available
to her, there is a chance she will not be able to determine the answer:

P (No answer) = P (Photon lost) = |βnlost|
2 (2.6)

Assuming Alice is going to perform some sort of measurement on the lines,
it is now possible for Alice to have a superposition of the photon in her lines
or no photon at all. It is always possible for Alice to verify if the photon
was lost, since she can check eventually if the photon is in one of her lines,
independent of the state. Since Alice has control over two lines, we can write
the state under Alice’s control as follows:

|ψn⟩ =


(
0
0

)
Chance: |βnlost|

2

cn

(
βnrefl
βntrans

)
Chance: 1− |βnlost|

2
(2.7)

where cn is a normalisation constant, making sure |⟨ψn |ψn⟩|2 = 1.
There are multiple options for Alice to determine her answer, the easiest
way would be to measure in the lines and detect if the photon was reflected
or transmitted. This is only possible if |β0trans|2 ≈ 1 and |β1refl|2 ≈ 1, since
we earlier assumed n = 0 causes transmission and n = 1 causes reflection.
This would also make the probability to have no answer close to zero.
If it is not possible to neglect β1trans, β

0
refl, β

1
lost and β0lost, there will be the

possibility to measure the wrong answer or no answer at all. Since Alice
knows which states she can expect, different strategies are possible which
can provide higher probabilities on correctly determining the answer on her
question.
Alice would expect to have the following state in her system for answer n:

|ψExpect n⟩ = cn

(
βnrefl
βntrans

)
(2.8)

By changing to a basis where |ψExpect 0⟩ is an eigenstate, with eigenvalue a,
we can determine with certainty if the answer is not n = 0. Changing to
another basis would be equal to a matrix operation on the incoming state,
which can be performed by mirrors and beam splitters in a way described
by [6]. If the answer to the question was n = 0, this would with certainty
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result in measuring the eigenvalue a, corresponding to the expected state
|ψExpect 0⟩. Now it is important to know the probability to measure this
eigenstate, when n = 1. This can be determined by taking the overlap
between the chosen eigenstate and the received state when n = 1. The
overlap of the expected state and the received state is:

|⟨ψn |ψExpect 0⟩|2 =


0 Chance: |βnlost|

2{
1 n = 0∣∣∣c1c0 (β1reflβ0refl + β1transβ

0
trans

)∣∣∣2 n = 1

}
Chance: 1− |βnlost|

2 (2.9)

The probabilities on measuring eigenvalue a are the following:

P (a|n = 0) = 1−
∣∣β0lost∣∣2 (2.10a)

P (a|n = 1) = (1− P (Photon lost|n = 1)) |⟨ψ1 |ψExpect 0⟩|2 (2.10b)

=
(
1−

∣∣β1lost∣∣2) ∣∣∣c1c0 (β1reflβ0refl + β1transβ
0
trans

)∣∣∣2 (2.10c)

From this we can conclude that the best way to distinguish the possible
answers, would be when the states corresponding to the different answers
are orthogonal. Using this method, the probability for Alice to detect the
wrong answer would be:

P (Wrong answer|not lost, n = 0) = 0 (2.11)

P (Wrong answer|not lost, n = 1) = |⟨ψ1 |ψExpect 0⟩|2 (2.12)

If Alice would measure the wrong answer, she would most likely conclude
that Bob would be cheating, so it is of importance to us that we now have an
upper boundary for the probability to detect the wrong answer and therefore
also a maximum probability that Bob is false accused:

P (False accusation) = P (Wrong answer) ≤ P (Wrong answer|n = 1)
(2.13)

2.3.3 Verifying if the superposition was correct

When Alice has determined the answer to her real question, it will be possible
for her to check if Bob was cheating. After sending in the superposition in
two lines, represented by |Ψin

B⟩, Alice will expect to receive the state:

∣∣∣Ψexpect,n
B

⟩
=

1√
2



β0refl
β0trans
β0lost
βnrefl
βntrans
βnlost


13



Alice will have no control over the channels in which the photon can be lost,
since she can only measure the lines under her control. By measuring she
will force the photon to be in her transmission lines or to be lost. Assuming
that Bob is honest, Alice will have one of the following states in her control:

|ψn⟩ =



Cn



0
0

β0lost
0
0

βnlost

 Chance: 1
2

(∣∣β0lost∣∣2 + |βnlost|
2
)



aβ0refl
aβ0trans

0
bnβ

n
refl

bnβ
n
trans

0

 Chance: 1− 1
2

(∣∣β0lost∣∣2 + |βnlost|
2
)

(2.14)

where Cn is a normalisation constant. Since the questions are still not cou-
pled, the photon still has a fifty-fifty chance to be in the lines corresponding
to question 0 or to be in the lines corresponding to question 1. This rela-
tionship is maintained by the constants a, bn > 0 such that:

a2
(∣∣β0trans∣∣2 + ∣∣β0refl∣∣2) = b2n

(
|βntrans|

2 + |βnrefl|
2
)
=

1

2

We can conclude that a = b0, since the behaviour of question 0 is equal to
question 1 when n = 0. From this we can conclude that bn can be written
as:

bn =
1√
2

1√
1−

∣∣βnlost∣∣2 (2.15)

When taking another look at equation (2.14) we can also conclude there is a
chance that Alice will not be able to conclude anything about Bob’s honesty
because the photon was lost. It will also not be possible to perform a test
when the answer to question 1 is not known, since the photon was lost when
measuring the answer. From this we can conclude that it is only possible to
perform a test when the photons have not been lost in both queries.

P (Test possible) = P (Photon A not lost)P (Photon B not lost) (2.16)

= (1− |βnlost|
2)

(
1− 1

2

(∣∣β0lost∣∣2 + |βnlost|
2
))

(2.17)

Since Alice knows the answer to the rhetoric question 0 and question 1, she
will know which state she will expect to receive and she will have to compare
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this with the state she actually received from Bob. Alice will expect to
receive:

∣∣∣ψexpected
n

⟩
=



aβ0refl
aβ0trans

0
bnβ

n
refl

bnβ
n
trans

0

 .

Because Alice never has control over the lost terms, by measuring she will
force the third and sixth element of the state received from Bob to be zero.
The state she can perform measurements on to verify Bob’s honesty will be
called |Φ⟩.
As in the preceding section, Alice can again perform a base change to a base
where the expected state is a ground state. Physically this would mean that

when Bob is honest or seems honest, so when|Φ⟩ =
∣∣∣ψexpected

n

⟩
, Alice would

measure with certainty a photon in a predefined line. If Alice measures a
photon in a different line, this would mean Bob was sending back a state
different from the one Alice expected, so either Bob was cheating or Alice
has measured the wrong answer.
The probability for Alice to conclude that Bob is honest, based on one
measurement, will be equal to the probability she measures the photon in
the right line.

P (Bob seems honest) =
∣∣∣⟨Φ ∣∣∣ψexpected

n

⟩∣∣∣2 (2.18)

The easiest and most obvious cheating strategy for Bob when he measures a

photon in the line of question 1, would send back the state
∣∣∣Ψout

A,n

⟩
since he

does not know if he was measuring a collapsed superposition or the original
question. Then the probability for Bob to seem honest would be:

P (Bob seems honest) =
∣∣∣⟨Ψout

A,n

∣∣∣ψexpected
n

⟩∣∣∣2 = 1

2

So in only half of the cases when Bob sends in the wrong state, this will
be detected. This chance seems small, but as soon as Bob turns out to be
dishonest one time, Alice can share this information with all the other users
of Bob’s database.

2.4 Single photon transistor

As mentioned earlier the control line, with possibly Bob’s photon, and the
transmission line with Alice’s question photon are coupled by the single
photon transistor described in [2] and corresponding supplemental material.
As was done in this article we will also take the speed of light c = 1 and
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Planck’s constant ~ = 1. The coupling between the qubits makes it possible
for Bob to reflect the question photon when a control photon has been sent
in and to let it propagate in the original direction when Bob’s photon is
absent. In Figure 3 a sketch of the proposed set-up is shown.

Figure 3: Sketch of the answering mechanism with the photons sketched as
inverting pulses. Figure from [2].

The qubits are coupled such that no excitations are exchanged between the
photons, which implies the photons cannot tunnel between the two lines.
This is of importance, because Alice needs to be able to verify if she gets
the entire photon back. The energy of the qubits is determined by the
transition frequencies of the two qubits ω1 and ω2, the strength of their
mutual interaction J and the state, ground (g) or excited (e), of the qubits
which can be determined by the Pauli operators σz1 and σz2 . The states of
the qubits can be written in the form |g1e2⟩. From this we can conclude
that the Hamiltonian for the qubits can be written as:

Hqubits =
ω1

2
σz1 +

ω2

2
σz2 − Jσz1σ

z
2 (2.19)

The Hamiltonian of the transmission lines is determined by the number of
photons in the lines and their corresponding frequencies. The number of
photons traveling to the r =right in Alice’s line, l =left in Alice’s line or
b in Bob’s line can be determined by x†pxp with x ∈ {r, l, b}. x†p creates a
photon with momentum p in line and/or direction x and xp annihilates one.
This all depends on the momentum p, where negative p indicates a photon
travelling to the left and positive p to the right. The Hamiltonian of the
transmission lines can therefore be written as:

HT =

∫ ∞

−∞
dp p

(
r†prp − l†plp

)
+

∫ ∞

−∞
dp pb†pbp (2.20)

It seems that some modes have negative energies, but these will not be used.
The last part of the Hamiltonian will describe the coupling between the
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transmission lines and the qubits. The annihilation of a photon will excite
a qubit: the operator for the excitation of qubit 1 is the Pauli operator σ+1
and for qubit 2 σ+2 . When qubit i returns to the ground state, this can
be represented by the Pauli operator σ−i with i ∈ {1, 2}. When the qubit
returns to the ground state, it will create a photon in the corresponding
transmission line. For this coupling, the lifetimes τ1 and τ2 of the qubits are
of importance.

HCoupling =

∫ ∞

−∞
dp

(
σ+1 (rp + lp)√

2πτ1
+

σ+2 bp√
2πτ2

+
(r†p + l†p)σ

−
1√

2πτ1
+

b†pσ
−
2√

2πτ2

)
(2.21)

The Hamiltonian of the entire system can be written as the sum of equa-
tions (2.19), (2.20) and (2.21):

H = Hqubits +HT +HCoupling (2.22)

2.4.1 Photons

The photons can have different frequency distributions and it is therefore of
importance to choose which kind of pulse distribution the incoming photon
will have. Both photons are assumed to have a Lorentzian frequency distri-

bution αt(k) =
(√
πτt[i(ωt − k) + τ−1

t ]
)−1

. A pulse of this form describes
the frequency distribution of a photon spontaneously emitted, where the
temporal width of the pulse is τt and ωt its carrier frequency. In the time
domain this pulse can be written as

αt(t) = −
√

2

τt
e−iωtt−t/τtH(t) (2.23)

whereH(t) is the Heaviside step function. To stimulate the coupling between
the lines the carrier frequency will be chosen as ωt = ω1−2J . This frequency
is equal to the frequency of the transition of the second qubit from its ground
state to its first excited state.
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3 Calculations and Analysis

In this chapter the behaviour of the single photon transistor described by
the Langevin equations [7] will be calculated and the effects of its behaviour
on the efficiency of the QPQ implementation will be analysed. Since the
single photon transistors are not coupled (see Figure 2) it is enough to only
look into the behaviour of one transistor instead of n + 1 transistors when
Alice can ask n different questions.

3.1 Derivation of the Langevin equations

To analyse the dynamics of the photons interacting with the qubits as de-
scribed by the transistor, the Langevin equations are used. They allow for
determining the behaviour of a system, including noise operators by solving
a small set of coupled differential equations.
The Langevin equations follow from the Heisenberg equations of motion for
a time-dependent operator x:

dx

dt
=
i

~
[H,x(t)] +

∂x

∂t
(3.1)

where H is the total Hamiltonian (2.22) of the system. All the operators will
be considered time-dependent, although this will not always be explicitly
stated as x = x(t). The Langevin equations used to describe the qubits
follow from the equations of motion for σ−1 , σ

z
1 , σ

−
2 and σz2 . The lowering

operators can be written as: σ− = σx − iσy. Two useful equalities for the
σ operators acting on same qubits derived from the properties of the Pauli
matrices are:

σzσ− = −σ− (3.2a) σ−σz = σ− (3.2b)

The Langevin equations are derived in [8]. The general result for equation
(3.1) for an operator in a system where the Hamiltonian also includes the
coupling a heat bath, can be found in this paper in equation (2.12). This
result is also useful for our Hamiltonian because of the large similarities in
the Hamiltonians. In the mentioned paper [H,x(t)] is solved for HCoupling

and HT . The remaining part [x,Hqubits] will be determined in the following
for the four σ operators.
At first we will determine [σ−,Hqubits]. As stated in equation (2.19) the
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energy of the qubits without interaction is Hqubits =
ω1
2 σ

z
1 +

ω2
2 σ

z
2 − Jσz1σ

z
2 .

[σ−1 ,Hqubits] =
[
σ−1 ,

ω1

2
σz1 +

ω2

2
σz2 − Jσz1σ

z
2

]
(3.3a)

=
ω1

2

[
σ−1 , σ

z
1

]
+
ω2

2

[
σ−1 , σ

z
2

]
− J

[
σ−1 , σ

z
1σ

z
2

]
(3.3b)

=
ω1

2

(
σ−1 σ

z
1 − σz1σ

−
1

)
− Jσz2

(
σ−1 σ

z
1 − σz1σ

−
1

)
(3.3c)

=
ω1

2

(
2σ−1

)
− Jσz2

(
2σ−1

)
(3.3d)

= ω1σ
−
1 − 2Jσ−1 σ

z
2 (3.3e)

In this derivation it has been used that the σ operators acting on different
qubits commute. The result for σ−2 is similar.

[σ−2 , Hqubits] = ω2σ
−
2 − 2Jσ−2 σ

z
1 (3.4)

The results for σz1 and σz2 are even simplere since Hqubits and the σz opera-
tors commute, the derivation is trivial:

[σzi ,Hqubits] =0 (3.5)

The input field of the operators describing the first qubit is given by ain =
(rin + lin)/

√
2: this is the mode for an incoming photon pulse presented at

qubit 1. The input field of the operators describing the second qubit is
given by bin: the incoming control photon pulse. Dissipative processes are
described by the qubit relaxation rate γr and the pure dephasing time γϕ.
The noise operators associated to the relaxation are cin for qubit 1 and din
for qubit 2 and c̃in and d̃in are the noise operators for the pure dephasing of
qubit 1 and 2 respectively. Having defined this, it is possible to determine
the full Langevin equations. One obtains:

σ̇−1 =− iω1σ
−
1 − 2iJσz2σ

−
1 −

(
1

τ1
+
γr
2

+ γϕ

)
σ−1

+ i

√
2

τ1
σz1ain + i

√
γrσ

z
1cin − i

√
2γϕ

(
σ−1 c̃in + c̃†inσ

−
1

) (3.6a)

σ̇z1 =−
(

2

τ1
+ γr

)
(σz1 + 1) + 2i

√
2

τ1

(
a†inσ

−
1 − σ+1 ain

)
+ 2i

√
γr

(
c†inσ

−
1 − σ+1 cin

) (3.6b)

σ̇−2 =− iω2σ
−
2 − 2iJσz1σ

−
2 −

(
1

τ2
+
γr
2

+ γϕ

)
σ−2

+ i

√
2

τ2
σz2bin + i

√
γrσ

z
2din − i

√
2γϕ

(
σ−2 d̃in + d̃†inσ

−
2

) (3.6c)
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σ̇z2 =−
(

2

τ2
+ γr

)
(σz2 + 1) + 2i

√
2

τ2

(
b†inσ

−
2 − σ+2 bin

)
+ 2i

√
γr

(
d†inσ

−
2 − σ+2 din

)
,

(3.6d)

where 1 is the identity operator. The first two terms of the σ− operators
derive from the qubit Hamiltonian. In the calculations in section 3.5 we will
assume that there is no noise. This reduces the Langevin equations to the
following system:

σ̇−1 = −
(
iω1 +

1

τ1

)
σ−1 − 2iJσz2σ

−
1 + i

√
2

τ1
σz1ain (3.7a)

σ̇z1 = − 2

τ1
(σz1 + 1) + 2i

√
2

τ1

(
a†inσ

−
1 − σ+1 ain

)
(3.7b)

σ̇−2 = −
(
iω2 +

1

τ2

)
σ−2 − 2iJσz1σ

−
2 + i

√
2

τ2
σz2bin (3.7c)

σ̇z2 = − 2

τ2
(σz2 + 1) + 2i

√
2

τ2

(
b†inσ

−
2 − σ+2 bin

)
(3.7d)

The output fields can be determined by the input-output relations as also
described in [8]:

rout(t) = rin(t)− i

√
1

τ1
σ−1 (t) (3.8a)

lout(t) = lin(t)− i

√
1

τ1
σ−1 (t) (3.8b)

bout(t) = bin(t)− i

√
2

τ2
σ−2 (t) (3.8c)

The solution is unique if one knows the initial state of σ−1 , σ−2 , σ
z
1 and σz2

at t0 and the time-dependent input-states rin, lin and bin for t ≤ t0.

3.2 Usage of the Langevin equations

The in the previous section explained Langevin equations describe the qubits
by the system operators in time. When their values in time are known, it
will be possible to determine the behaviour of the other important parts of
the system in time, including the output fields. All the operators will have to
work on an input state |ψin⟩ and the time-dependent result of measurement
x on state |ψin⟩ will be given by x|ψin⟩.
The states of the qubits at any moment can be determined using the σz

operators. The eigenvalues of the σz operators are ±1, with −1 indicating
the ground state. The eigenstates of (1− σz1)/2 and (1+ σz1)/2 will still be
the excited and the ground state, but since the eigenvalues are between 0
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and 1 it is now possible to determine probabilities using these operators:

P (g1g2)(t) =
(1− σz1)(1− σz2)

4
(3.9a)

P (e1g2)(t) =
(1+ σz1)(1− σz2)

4
(3.9b)

P (g1e2)(t) =
(1− σz1)(1+ σz2)

4
(3.9c)

P (e1e2)(t) =
(1+ σz1)(1+ σz2)

4
(3.9d)

From these expressions the following expression follows:

P (g1g2)(t) + P (e1g2)(t) + P (g1e2)(t) + P (e1e2)(t) = 1

this shows that these four states are the only states the qubits can be in.

As already sketched in Figure 3 we will consider Alice to be sending in
photons from the left to the right, so a transmitted photon will be measured
in mode r by the rout operator and a reflected photon will be measured in
mode l by the lout operator. The time-dependent probability density for the
photon to be reflected or transmitted, depending on the input state, will be:

prefl(t) = ⟨ψin|r†out(t)rout(t)|ψin⟩ (3.10a)

ptrans(t) = ⟨ψin|l†out(t)lout(t)|ψin⟩ (3.10b)

These expressions only give the probability densities. The total probability
for the photon to be reflected or transmitted can be calculated by integrating
these expressions.

P (refl) =

∫ ∞

0
prefl(t)dt (3.11)

P (trans) =

∫ ∞

0
ptrans(t)dt (3.12)

The time-dependent probability density for the control photon to be return-
ing to Bob can be calculated as:

pcontrol(t) = ⟨ψin|b†out(t)bout(t)|ψin⟩ (3.13)

3.3 Numerically solving the Langevin equations

We have solved the differential equations as described by equations (3.7)
by numerical integration using the Runge-Kutta 4 method. The non-trivial
steps will be addressed in this section.
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Describing the Hilbert space When solving the Langevin equations it

is assumed that the qubits can only be in their ground state

(
0
1

)
or the

first excited state

(
1
0

)
. The state of the qubit can be determined using the

σz1 and σz2 operators. The second assumption is that there can be at most
1 photon present in each direction or line. The lines are represented by the
operators r, l and b. When one photon is present this will be represented

by

(
1
0

)
; the orthogonal state

(
0
1

)
represents no photon.

The operators acting on the different subsystems can be expanded to this
Hilbert space using Kronecker products and (2× 2) identity matrices. The
following order of subsystems will be assumed: σz1 ⊗ σz2 ⊗ r ⊗ l ⊗ b. The
combination of these states makes up a 25 = 32 dimensional Hilbert space.
The state of the system can now be written as a 32-dimensional vector,
where each state can be formed by multiplying the states in the subsystems
through Kronecker products. The state with the first qubit excited and a
photon propagating to the left would be written as:

|Ψin⟩ = σ+1 l|0⟩ =
(
1
0

)
⊗
(
0
1

)
⊗
(
0
1

)
⊗
(
1
0

)
⊗
(
0
1

)

This results in a 32-dimensional vector with a one at the 14th place.

Initial values σ operators The starting values at t0 of the 4 operators
will be taken as their normal Pauli matrices values expanded to the 32-
dimensional space. An n-dimensional identity matrix will be written as 1n.
The starting values can be written as:

σ−1 (t0) =

[
0 0
1 0

]
⊗ 116 (3.14a)

σz1(t0) =

[
1 0
0 −1

]
⊗ 116 (3.14b)

σ−2 (t0) = 12 ⊗
[
0 0
1 0

]
⊗ 18 (3.14c)

σz2(t0) = 12 ⊗
[
1 0
0 −1

]
⊗ 18 (3.14d)

Input fields The operators ain and bin in the Langevin equations describe
the input fields for the transmission lines. If the input state contains a
photon in a certain subsystem, the corresponding operator will have to react
on this and create the energy in the system of a photon with a pulse as
described by equation (2.23). To only have this behaviour of the operator
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when a photon is sent in, the operator in the subsystem will need to have

the form

[
0 0
1 0

]
. Therefore the input field operators will be written as:

rin(t) =αt(t) · 14 ⊗
[
0 0
1 0

]
⊗ 14 (3.15a)

lin(t) =αt(t) · 18 ⊗
[
0 0
1 0

]
⊗ 12 (3.15b)

bin(t) =αc(t) · 116 ⊗
[
0 0
1 0

]
(3.15c)

ain(t) =
rin(t) + lin(t)

2
(3.15d)

In these equations αt(t) is the pulse describing the photon in Alice’s trans-
mission line and αc(t) is the pulse describing the control photon. To be able
to solve the equations it is important that these pulses are normalised and
thus containing only 1 photon:∫ ∞

t0

|αc(t)|dt
∫ ∞

t0

|αt(t)|dt = 1

Having described all these steps to implement the Langevin equations numer-
ically, it will be possible to solve for the time-dependent (32× 32) operators.
In this case Runge-Kutta 4 has been used to solve the differential equations
numerically. To get useful results, it will be necessary to choose the right
parameter values.

3.4 Choosing parameter values

To analyse the behaviour of the transistor as described by the Langevin
equations, it is of importance to find useful values for the parameters. Since
we are looking for optimal solutions, no noise will be considered and there-
fore γr = γϕ = 0. The parameters left to optimize over are ω1, τ1, ω2 and
τ2 which can be found in the Langevin equations and also the shape of the
pulses is of importance, which is determined by τt and τc. A last parameter
to influence the behaviour of the system is the delay time δt of the control
photon compared to Alice’s photon.
To make the parameters easier to analyse, it is possible to set one parame-
ter fixed and scale the other parameters to this parameter. We will choose
ω1 = 1. This leaves us with 6 parameters to be chosen. The most important
parts of the systems to look into are the probabilities for the photon to be
reflected or transmitted with different input states and to keep the proba-
bilities for the photon being lost as small as possible.
Since there are 6 parameters to optimize and there are multiple parts of the
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system to be optimized, it is hard to find the optimal values for the parame-
ters. In [2] two requirements on the parameters are mentioned to reach the
ideal behaviour of the transistor. The reflection probability would approach
unity when:

τt ≫ τ1 (3.16)

The transmission probability approaches unity when:

J > τ−1
1 + τ−1

t (3.17)

The optimal solutions mentioned in the article are not implementable in the
method described in the previous section to numerical solve the Langevin
equations. The differences in order of magnitude are so large that it would
be necessary to take very small time steps over a long time, which would
take excessively long.
By manual varying the parameters and looking at the outcomes, parameters
have been found which would give a good example of the desired behaviour
of the single photon transistor. The found parameter values have been listed
in Table 1.

Table 1: The parameter values found for which the system has the required
and in this section described behaviour. A typical value for ω1 = 1 GHz

Parameter ω1 ω2 J−1 τ1 τ2 τt τc δt γr γϕ

Value 1 ω1
3
ω1

30
ω1

250
ω1

250
ω1

250
ω1

20
ω1

0 0

To understand the behaviour of the system it is of importance to investigate
the effects when only Alice sends in a photon or both Alice and Bob send
in a photon. In Table 2 the probabilities for reflection and transmission
are shown. The probability to have the expected behaviour, where 0 as
answer implies transmission and 1 as answer implies reflection, would thus
be around 0.9. The probability for the photons to be lost is 0 in this case,
which is as expected since the relaxation and dissipation are neglected.

Table 2: Probabilities for Alice’s photon to be reflected or transmitted de-
pending on the presence of the control photon.

P (transmission|no control photon) 0.107

P (transmission|control photon) 0.913

P (reflection|no control photon) 0.893

P (reflection|control photon) 0.087
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3.5 Results

Alice and Bob both send in a photon In Figure 4 the results are
shown when both Bob and Alice send in a photon with the parameters as
described in Table 1. When looking at the output fields of the photons, they
turn out to be less smooth and more oscillating than the input fields, but
they still have the same overall shape. A small part of Alice’s photon is
reflected instead of transmitted and this seems to happen at the moment
when the first qubit is excited. It is interesting to see that the first qubit
is in the ground state the rest of the time with almost unit probability and
the probability to find the qubit in the excited state is at most 0.2.

Only Alice sends in a photon In Figure 5 the behaviour of the transis-
tor is shown when no control photon is sent in. In this case it is clear that
the photon will most likely be reflected, although the peak of the incoming
photon cannot be fully reflected. Also in this case the probability for a qubit
to be excited stays under 0.2. The second qubit is not excited at all, which
is understandable, since the first photon cannot excite the second qubit.

Now the general behaviour of the system has been examined, it is neces-
sary to evaluate how this affects Alice’s privacy. Since the qubits are never
fully excited it is not possible for Bob to perform a measurement on the qubit
to detect if a question was sent without forcing the qubit into an eigenstate
which was not the original state.

The returning control photon To further examine for cheating options
for Bob, it would be necessary to look into the information he can get out
of the photon that is returned to him. In each possible case the photon
returns completely to Bob. In Figure 6 the probability density of the con-
trol photon returned to him is shown for the input states ab|0⟩, b|0⟩ and(
(ab+ b) /

√
2
)
|0⟩. It might be hard to see in the figure that the part of the

distributions before t = 0 are exactly the same. This seems to be caused by
the delay between the pulses to optimise the reflection and transmission prob-
abilities. After this time the returning pulses differ from each other: when
no question photon has been sent in, the returning pulse is the smoothest,
when a question photon has been sent in, the vibrations in the returning
pulse are the largest. When Bob would simply measure for a photon at a
certain time, it would give him no information about Alice’s choice sending
in a question or not.
To gain information from the returning pulse it would be an option for Bob,
to use the same strategy as Alice is using to check if the superposition is
maintained. Bob would then measure in a base where the pulse when a
question photon was sent, is an eigenstate. This would make it possible for
Bob to check if a question has been asked. But when Alice has sent in a
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superposition a photon and vacuum, Bob will measure on a superposition of
this eigenstate and the state when no question has been asked. This super-
position cannot be an eigenstate of the measurement he is performing, since
it has an overlap not equal to zero with an eigenstate. If Bob would use
the superposition as eigenstate, the same problem would arise when Alice
sends in a normal photon. We can now conclude that it is not possible for
Bob to stay undetected since Bob’s photon is still entangled with Alice’s
photon. Therefore his measurement will chance Alice’s photon, which Alice
can detect.
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Probability densities for photon in transmission or control line
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(a) The probability densities based on the input (rin, lin, bin) and
output fields (rout, lout, bout) for the photons to be in Alice’s trans-
mission line travelling to the left (l) or right (r) or for being in
Bobs control line (b)

Probabilities for qubit to be in which state
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(b) The probabilities for the qubits to be both in the ground state,
qubit 1 in the excited state and qubit 2 in the ground state, qubit 1
in the ground state and qubit 2 in the excited state or both excited.

Figure 4: The behaviour of the transistor described by the probability den-
sities of the in- and output fields of the photons and probabilities for the
qubits to be in the ground and excited states when Alice and Bob both send
in a photon with the parameters from Table 1.
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Probability densities for photon in transmission or control line
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(a) The probability densities based on the input (rin, lin, bin) and
output fields (rout, lout, bout) for the photons to be in Alice’s trans-
mission line travelling to the left (l) or right (r) or for being in
Bobs control line (b).
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(b) The probabilities for the qubits to be: both in the ground state,
qubit 1 in the excited state and qubit 2 in the ground state, qubit 1
in the ground state and qubit 2 in the excited state or both excited.

Figure 5: The behaviour of the transistor described by the probability den-
sities of the in- and output fields of the photons and probabilities for the
qubits to be in the ground and excited states when only Alice sends in a
photon with the parameters from Table 1.
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Returning control photon
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Figure 6: The probability densities when
1) a question has been sent in
2) a superposition of question and no question has been sent in
3) no question has been sent in.
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3.6 Discussion of the results

As it has been shown in the above sections, it would be possible to perform
a QPQ using the set-up as described in section 2.2. Using pulse widths and
interaction strengths in a range from 1 to 250 times 1/ω1, where ω1 is the
frequency of the photons, it will be possible to have reflection or transmission
probabilities above 0.89, depending on the presence of the control photon.
This makes it possible to perform a QPQ with a reasonable probability for
Alice to detect the right answer and at the same time to catch a cheating
Bob.

Heisenberg picture Qualitatively the system seems to behave as wanted.
It is however not possible to give quantitative evaluations of the probabil-
ities mentioned in section 2.3 with the obtained results. To make more
quantitative statements it is necessary to know more about the system. The
behaviour of the system is concealed in the solved, time-dependent opera-
tors. They give a description of quantum mechanics known as the Heisenberg
picture, which makes it difficult to determine the overlaps as described in
section 2.3. This is because not the state of the system at a certain time
is calculated, but the time evolution of an operator. This time-dependent
operator makes it possible to know the state of the system when a certain
type of measurement has been performed. When the expected behaviour of
the system would be known in the Schrödinger picture, where the states are
changing in time as described by the Schrödinger equation, it is possible to
expand the procedure described in section 2.3 to a procedure taking time-
dependency into account.
To get a description of the dynamics of the system in the Schrödinger picture,
it would be necessary to solve the Schrödinger equation in a more direct way,
not using the Langevin equations. The advantage of the quantum Langevin
equations is the way it makes it possible to take noise and dephasing into
account as in classical statistical physics, although this has not been done
in this project.

Numerical integration method The chosen parameters show a case
where the system behaves such that it would be possible to perform a QPQ
as described in section 2.2. It was not possible to perform simulations with
parameters with large differences in the order of magnitude. To be able
to simulate these order differences, it is needed to use more sophisticated
methods for solving the set of differential equations than the Runge-Kutta
method. If another method would need less calculations, it could be possi-
ble to optimize the parameter values in a more structured way. This could
make it possible to achieve higher probabilities on catching a cheating Bob.
Bob will have to implement these parameters, but if Alice is able to calculate
the expected states, she is also able to check if Bob is using these parameters.
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A remaining problem for Bob would be to be able to check if Alice is send-
ing in at most one question. The behaviour of the transistor does not offer
any solutions for this, so this will have to be fixed in a different way. This
could be a measurement which measures the total number of photons in the
transmission lines, without measuring the exact line the photon is in, or a
quantum device which blocks a second photon in one of the lines.
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4 Conclusions and prospects

The solutions to the Langevin equations presented in the above section for
the chosen parameter values give an impression of the behaviour of the QPQ-
system. The transistor behaves in such a way that it would not be possible
for Bob to retrieve information about the question Alice is sending in, with-
out being detected. The set-up in this project developed and proposed
makes it thus possible to perform a quantum private query as described in
[1]. Even when Alice uses the simplest method to determine the answer on
her question, the probability to measure the right answer is above 0.89.

The probability for Alice to detect a cheating Bob depends on the prob-
abilities for the photon to get lost and the probability to detect the wrong
answer. The better the transistor is behaving, the lower these probabilities
will be. To improve the results of the query it is of importance to choose
the optimal parameters, for this it will be necessary to solve the Langevin
equations in a more sophisticated way. This should be possible looking at
the results from [2].

Scaling to more questions The set-up with only the rhetorical question
and one real question with a yes or no answer is easy to expand to a system
with more than one real question. The number of transmission lines would
scale linear with the number of questions. It will however not be difficult
for Alice to control these lines, since for each question at most two sets of
transmission lines and their corresponding database elements are of inter-
est. For Bob it should be easy to time the control photons to arrive at the
transistor at the right moment. The problem will however be to control the
larger number of qubits.
Another possibility to scale the system is the option of a pulse train of
control photons and gaps arriving right after each other, giving the qubits
enough time to return to their ground states. This time between the pulses
is necessary to be able to predict the behaviour of the system for each pulse.
Alice could time her photon to arrive at a certain time, which corresponds
to one of Bob’s pulses and thus the answer to her question. It would also be
possible for Alice to send in a timed superposition of the question photon.
If Bob is providing two times the same pulse train, Alice will be able to per-
form a QPQ with many questions without the need of scaling the number
of transistors and therefore the number of qubits. It should be possible for
Bob to check that Alice sends in only one photon, possibly in a superpo-
sition. To make this possible it might be required that he has control at
a specific moment over the entire pulse train, containing Alice’s question
photon, which could create privacy problems for Alice.
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Scaling to more complex answers Instead of limiting Alice to send in
only one photon, Bob could allow Alice to send in multiple photons timed
after each other to one transistor. Taking, for example, 8 input photons,
would make it possible for Bob to answer this pulse in 28 different ways.
Alice would now retrieve a byte as answer instead of a bit. Alice would in
this case still be able to send in 8 times a superposition of questions, which
would improve her options of detecting a cheating Bob, although it might be
possible for Bob to exploit this change of the set-up since Alice’s behaviour
is more predictable.
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A Determining the scattering matrix

The goal is to find the scattering matrix S which describes the way an
incoming state is reflected by the two-question database. This result can be
used in section 2.3. We know the scattering matrix has the form:

Stot =


r11 t12 t13 t14 t15 t16
t21 r22 t23 t24 t25 t26
t31 t32 r33 . . .
...
t61 t62 t63 t64 t65 r66

 (A.1)

The matrix element tij denotes the transmission amplitude from channel j to
channel i. The matrix (A.1) must be unitary (to ensure particle conservation
- no particles get lost during scattering):

SS† = I (A.2)

As described in section 2.2 there is no coupling between lines 1-3 and 4-6.
Since there is no coupling between these sets of lines, all elements coupling
these two parts of the system will be zero. Also the way of scattering will
be dependent on the answers, which will be denoted by n,m ∈ {0, 1}:

Sm,n =



rm11 tm12 tm13

tm21 rm22 tm23 0
tm31 tm32 rm33

rn44 tn45 tn46

0 tn54 rn55 tn56
tn64 tn65 rn66


(A.3)

S† will look similar, so when considering the unitarity requirement in equa-
tion A.2, it is only necessary to look at one of the two blocks. So let’s
take

Sm =

 rm11 tm12 tm13
tm21 rm22 tm23
tm31 tm32 rm33

 (A.4)

Requirements Since scattering matrices are almost always Hermitian,
this is also, independent of the answer, assumed here:

S =

 r11 t21 t31
t21 r22 t32
t31 t32 r33

 (A.5)
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With z̄ the complex conjugate of z. Now it is time to use the unitarity
requirement: StotS

†
tot = I. This gives:

SS† =

 r11 t21 t31
t21 r22 t32
t31 t32 r33

 r11 t21 t31
t21 r22 t32
t31 t32 r33

 =

 1 0 0
0 1 0
0 0 1

 (A.6)

When this multiplication is done, several new relations between r22, r33 and
t32 are derived:

a11 = |r11|2 + |t21|2 + |t31|2 = 1 (A.7a)

a12 = t21(r11 + r22) + t32t31 = 0 (A.7b)

a13 = t31(r11 + r33) + t21t32 = 0 (A.7c)

a21 = a∗12 = 0 (A.7d)

a22 = |r22|2 + |t21|2 + |t32|2 = 1 (A.7e)

a23 = t32(r22 + r33) + t21t31 = 0 (A.7f)

a31 = a∗13 = 0 (A.7g)

a32 = a∗23 = 0 (A.7h)

a33 = |r33|2 + |t31|2 + |t32|2 = 1 (A.7i)

The coefficients r11, t21 and t31 describe the coefficients for a photon in-
coming in the first line to be transmitted, reflected or to get lost. These
coefficients are considered to be known here, because they describe the be-
haviour of the system. Because we know the coefficients r11, t21 and t31,
(A.7a) is not that interesting. Also (A.7d), (A.7g) and (A.7h) do not give
any new information because they are fulfilled when (A.7b), (A.7g) and
(A.7f) respectively are fulfilled. This results in the following set of equations
for r22, r33 and t32:

a12 = t21(r11 + r22) + t32t31 = 0 (A.8a)

a13 = t31(r11 + r33) + t21t32 = 0 (A.8b)

a22 = |r22|2 + |t21|2 + |t32|2 = 1 (A.8c)

a23 = t32(r22 + r33) + t21t31 = 0 (A.8d)

a33 = |r33|2 + |t31|2 + |t32|2 = 1 (A.8e)

Derivation Now it is possible to use (A.8a) to write r22 (or more useful
r22) explicit and to do the same for r33 using (A.8b). This gives:

r22 = − t32t31
t21

− r11 (A.9a)

r33 = − t21t32
t31

− r11 (A.9b)
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These expressions can be used in (A.8d);

t32

(
− t32t31

t21
− r11 −

t21t32
t31

− r11

)
+ t21t31 = 0

This results in(
t32
)2( t31

t21
+
t21
t31

)
+ t32 (r11 + r11)− t21t31 = 0 (A.10)

Equation A.10 is just a quadratic equation for t32, so the abc-formula can
be used. Finally this results in:

t32 =

− (r11 + r11)±
√

(r11 + r11)
2 + 4

(
t31
t21

+ t21
t31

)
t21t31

2
(
t31
t21

+ t21
t31

)
This can be simplified to:

t32 =

−2Re (r11)±
√

4Re (r11)
2 + 4

(
t31
t21

+ t21
t31

)
t21t31

2
(
t31
t21

+ t21
t31

)

t32 =
−Re (r11)±

√
Re (r11)

2 + |t31|2 + |t21|2(
t31
t21

+ t21
t31

) (A.11)

Notice that the numerator only exists of real parts, so it is real. The de-
nominator is a complex number, so the result is still complex. This can be
further simplified using:

t31
t21

+
t21
t31

=
|t31|2 + |t21|2

t21t31

And equation (A.7a) can be used combined with |r11|2 = Re(r11)
2+Im(r11)

2

which gives:

Re (r11)
2 + |t31|2 + |t21|2 = 1− Im (r11)

2 (A.12a)

or
|t31|2 + |t21|2 = 1− |r11|2 (A.12b)

So the result is

t32 = t21t31
−Re (r11)±

√
1− Im (r11)

2

1− |r11|2
(A.13)
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We will now search further for the expressions for r22 and r33. To find r22
and r33 equation (A.9a) and (A.9b) can be used:

r22 = − t32t31
t21

− r11

r22 = −
t21t31

−Re(r11)±
√

1−Im(r11)
2

1−|r11|2
t31

t21
− r11

r22 = |t31|2
Re (r11)∓

√
1− Im (r11)

2

1− |r11|2
− r11 (A.14)

And in the same way we find

r33 = − t21t32
t31

− r11

r33 = −
t21t21t31

−Re(r11)±
√

1−Im(r11)
2

1−|r11|2

t31
− r11

r33 = |t21|2
Re (r11)∓

√
1− Im (r11)

2

1− |r11|2
− r11 (A.15)

r33 = |t21|2
Re (r11)∓

√
1− Im (r11)

2

1− |r11|2
− r11 (A.16)

The ± for t32 can be chosen, since there are no requirements violated by the
choice of + or -.

Expressions Combining the expressions for the coefficients rm11, t
m
21 and

tm31 with (A.13), (A.14) and (A.16) this results in a 3 × 3 scattering matrix
which depends on the answer m:

Sm =

 rm11 tm21 tm31
tm21 rm22 tm32
tm31 tm32 rm33

 (A.17)

This results in a final 6× 6 scattering matrix for a system with two possible
questions and answers:

Sm,n =


Sm 0

0 Sn


(A.18)
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