
Web3: A Decentralized
Societal Infrastructure
for Identity, Trust, Money, and Data

J.W. Bambacht





Web3: A Decentralized Societal Infrastructure
for Identity, Trust, Money, and Data

by

J.W. Bambacht

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday February 28, 2022 at 11:00 AM.

Delft University of Technology
Ministry of the Interior and Kingdom Relations

Author Supervisors
J.W. Bambacht Dr. ir. J.A. Pouwelse, TU Delft

A. de Kok, RvIG

Student number: 4025016
Project duration: May 1, 2021 – February 28, 2022
Thesis committee: Dr. ir. J.A. Pouwelse, TU Delft, supervisor

Dr. C. Lofi, TU Delft

This thesis is confidential and cannot be made public until February 28, 2022.

An electronic version of this thesis is available at https://repository.tudelft.nl/.

https://repository.tudelft.nl/




Contents

Abstract v

I Article 0
I.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
I.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
I.3 Related Work. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
I.4 Infrastructure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
I.5 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
I.6 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
I.7 Experimental Analysis and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 13
I.8 Time Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
I.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

II Supplementary Material 21

1 Mobile Application 25
1.1 Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.2 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.3 Dialogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.4 Identity Onboarding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
1.5 Notifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.6 Phone Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.7 Screenshots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Implementation Details 35
2.1 Data Transfer Protocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1.1 Protocol Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.1.2 Transfer Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.3 Callbacks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.1.4 Scheduled Task . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.5 Main Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.1.6 Packet/Payload types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.7 Packet Listeners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.1.8 Experimental Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.1.9 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

iii





Abstract

A movement for a more transparent and decentralized Internet is globally attracting
more attention. People are becoming more privacy-aware of their online identities and
data. The Internet is constantly evolving. Web2 focused on companies that provide
services in exchange for personal user data. Web3 commits to user-centricity using
decentralization and zero-server architectures. The current digital society demands a
global change to empower citizens and take back control. Citizens are locked into big-
tech for personal data storage and their for-profit digital identity. Protection of data
has proven to be essential, especially due to increased home Internet traffic during the
COVID pandemic. Citizens do not possess their own travel documents. The Euro-
pean Commission aims to transition this governmental property towards self-sovereign
identity, introducing many new opportunities. Citizens are locked into banks with non-
portable IBAN accounts and unsustainable legacy banking infrastructures. Migration
to all-digital low-fraud infrastructures and healthier competitive ecosystems is essential.

The overall challenge is to return the power to citizens and users again. The transi-
tion to a more decentralized Internet is the first crucial step in the realization of user-
centricity. This thesis presents the first exploratory study that integrates governmental-
issued travel documents into a (decentralized) societal infrastructure. These self-sovereign
identities form the authentic base to a private and secure transfer of money and data,
and can effectively provide trust in authenticity that is currently missing in online con-
versations. A fully operational zero-server infrastructure that incorporates all our re-
quirements has been developed for Android using the P2P network overlay IPv8 (Tribler,
2021), and a personalized blockchain called TrustChain (Otte et al., 2020). It contributes
to a reformed tech and financial sector that is more efficient and effective in serving the
wider economy, and more resistant to bad behavior of all kinds. Creating such an in-
frastructure that is decentralized and anti-fragile is deemed crucial for the future.

v





I
Article



1

Web3: A Decentralized Societal Infrastructure for
Identity, Trust, Money, and Data

J.W. Bambacht and J.A. Pouwelse

Distributed Systems, Delft University of Technology
February 24, 2022

Abstract—A movement for a more transparent and decen-
tralized Internet is globally attracting more attention. People
are becoming more privacy-aware of their online identities and
data. The Internet is constantly evolving. Web2 focused on
companies that provide services in exchange for personal user
data. Web3 commits to user-centricity using decentralization and
zero-server architectures. The current digital society demands a
global change to empower citizens and take back control. Citizens
are locked into big-tech for personal data storage and their
for-profit digital identity. Protection of data has proven to be
essential, especially due to increased home Internet traffic during
the COVID pandemic. Citizens do not possess their own travel
documents. The European Commission aims to transition this
governmental property towards self-sovereign identity, introduc-
ing many new opportunities. Citizens are locked into banks with
non-portable IBAN accounts and unsustainable legacy banking
infrastructures. Migration to all-digital low-fraud infrastructures
and healthier competitive ecosystems is essential. The overall
challenge is to return the power to citizens and users again. The
transition to a more decentralized Internet is the first crucial
step in the realization of user-centricity. This thesis presents the
first exploratory study that integrates governmental-issued travel
documents into a (decentralized) societal infrastructure. These
self-sovereign identities form the authentic base to a private
and secure transfer of money and data, and can effectively
provide trust in authenticity that is currently missing in online
conversations. A fully operational zero-server infrastructure that
incorporates all our requirements has been developed for An-
droid using the P2P network overlay IPv8 [1], and a personalized
blockchain called TrustChain [2]. It contributes to a reformed
tech and financial sector that is more efficient and effective in
serving the wider economy, and more resistant to bad behavior
of all kinds. Creating such an infrastructure that is decentralized
and anti-fragile is deemed crucial for the future.

I. INTRODUCTION

The online world is dominated by big-tech monopolies.
These companies hold a relatively large amount of power
in relation to citizens. As a result, citizens have difficulty
protecting their data. The WhatsApp messaging platform is
a motivating example of market failure as it violates terms
of service over a long period [3]. An update of their terms
of service [4], providing mother company Facebook access
to more user data, initiated a migration to other platforms.
Competitors focused on privacy and openness have barriers
to market entry, no network effect, and compete against long
existent closed protocols. Citizens and small(er) competitors
[5] are powerless in this uncompetitive market.

Digitization generally weakens the privacy of citizens. The
European Union started an ongoing effort into the General
Data Protection Regulation (GDPR) [6] in 2016, targeting the
misuse of privacy-sensitive data by companies. Many compa-
nies and platforms failed to comply to personal data protection,

resulting in over 900 filed cases of GDPR complaints, with a
total value over 1.3 billion euros [7]. Due to such efforts,
citizens have become more privacy-aware of their online
data and identities [8]. Commercial entities have an incentive
to minimize spending on cybersecurity [9]. The storage of
personal data and weak security mechanisms of platforms
are both at the expense of the user. These companies often
gain revenue and value by selling user data for personalized
advertisements. Users have no other option but to rely on the
best intentions of the platform owner on their data.

In many situations, personally identifiable information of
citizens is unnecessarily exposed. Government-issued docu-
ments are often required for institutions or organizations like
banks, insurance companies, hotels, and employers, but lack
secure handling and storage. Online governmental authentica-
tion mechanisms for digital identities are widely deployed by
authorized institutions but have equal concerns. The owners of
these identities are forced to accept and transfer all personal
information. Both citizens and governments could benefit
from the use of self-sovereign identities (SSI). As a result,
citizens will be given the control over their own identities.
Furthermore, external dependencies on authentication and
storage can be eliminated. Offline identity authentication and
identity attestations in a user-centric fashion can still offer
the required identity authenticity. The possibilities of the SSI
are additionally suited to a wide range of applications. We
can profit from the self-sovereign identity within our societal
infrastructure for the enforcement of authentic trust between
identities in online conversations with the goal to reduce
phishing or impersonating attacks. Other applications may in-
clude authenticated signing of digital documents, and validated
storage of diplomas and COVID vaccination certificates.

Governments, banks, and tax offices have general insight
into the bank accounts and transactions of citizens, often
using big-tech cloud services. Not only is this a violation
of citizens’ privacy, but these banking services also have
several deficits. The transaction costs are disproportional
as debit card transactions range from e0,05 to e0,20 per
transaction [10], and even bigger numbers for external
payment services like iDEAL [11]. Cross-border payments
even have increased costs and settlements. Cash is only
applicable in offline payments and still serves as a store of
value for some. It offers respectable privacy but is (slowly)
fading away [12]. The current financial system can benefit
from the adoption of blockchain technology. Central Bank
Digital Currencies (CBDC) aims to provide a faster, more
efficient, and cheaper alternative to electronic payments. With
characteristics as privacy-awareness, pseudo-anonymity, and



2

unrestricted cross-border payments, CBDC can transform the
financial system into a sustainable and frictionless system.

This research contributes the following: (I) design of a novel
decentralized infrastructure that incorporates a self-sovereign
identity, (II) applicance of the self-sovereign identity for
identity attestations and authentic trust enforcement between
participants of communication, (III) generic transfer of money,
(IV) generic transfer of data using a custom-designed P2P data
transfer protocol.

II. PROBLEM DESCRIPTION

The goal of this study is to design a novel decentralized so-
cietal infrastructure that incorporates a self-sovereign identity
as an authentic base. We can additionally apply this identity
in a useful way to facilitate authentic trust between users, and
to privately transfer money and data with other identities. In
a centralized infrastructure, platform owners are still able to
collect metadata belonging to encrypted data. Removing these
single points of failure reduces the violation of privacy and
security of users.

The key aspect of our research is the application of citizens’
self-sovereign identities. Self-sovereign identity is character-
ized by the ten principles of Allen [13, 14], that try to
assure the users’ control within its own SSI, with a balance
between transparency, fairness, and protection. Governments
currently have ownership and control of these identities.
Various opportunities arise by moving the power back to the
user. Firstly, the user is the owner of their own identity and
can view and decide what information to share. Secondly,
as governments don’t have control anymore, less personal
data management is required, less bureaucracy, and a cost
reduction for facilitating the heavily secured infrastructure and
authentication mechanisms. Thirdly, the decrease of personal
data on central servers reduces the possibility of data breaches
and theft. And finally an opportunity arises to replace visual
identity document checks. Currently, identity documents are
exposed upon request of some authority. Not only does the
requested information become visible, but also the complete
document. By using identity attestations, authorities are able
to verify information of the identity without exposing the
actual value, e.g. age validation of a bouncer in the pub.
Communication channels lack trust in the authenticity of other
participants’ online identities. Since we have access to an
official SSI, we can even apply this information to build
trust. No social platform currently integrates government-
issued identity information in such a fashion. Generally, online
identities consist of a name, picture, phone number, or email,
that altogether contribute to confidence in the authenticity
of the other user’s identity. However, these attributes are
manually forgeable and can be impersonated. Malicious actors
try to make their fake identities look as genuine as possible to
mimic someone’s identity. Without these editable components
and with automatic acquiring of information from the SSI, we
can enforce authentic trust to other participants.

The global financial infrastructure is failing to provide real-
time cross-border payments and is dominated by monopoly

players with high profits and near-zero innovation. Financial
privacy disappeared in the last decade(s). Governments, banks,
and tax offices heavily supervise the bank accounts and
transactions of users, albeit using automatic cloud services, re-
moving the option to privately exchange money digitally. The
transfer of money comes with disproportional costs, adverse
cross-border payments in terms of speed and additional costs,
and unwanted transparency. Many of these issues can be solved
by the use of blockchain technology, and specifically Central
Bank Digital Currencies (CBDC). With (almost) zero costs,
transactions are executed between wallets anywhere in the
world in a matter of seconds. Even internal use of blockchain
for banks themselves will save about 10 billion dollars globally
[15]. Despite the openness of blockchain transactions to prac-
tically anyone, pseudo-anonymity is maintained as the identity
is not revealed.

Centralized platforms inherently lack the self-sovereignty of
data of their users. As the use of central servers is profitable
in terms of availability and synchronization, personal data
and metadata of users are stored. Although the data itself is
often encrypted, the metadata contains valuable information
(sender, recipient, time, location). WhatsApp is the most
used messaging app [16] and promises its users end-to-end
encryption. That does not withhold them to store a vast amount
of metadata. Even though these platforms make us think
that they prioritise security and privacy, not giving up their
centralized nature is the primary reason for the existence of
cyber attacks [17].

Decentralization as part of a societal infrastructure with a
self-sovereign identity introduces many new opportunities and
advantages. The user obtains a more centric position, has more
privacy, and remains in control and in possession of their own
data and identity. A self-sovereign identity can even serve a
wider range of applications such as building authentic trust
with others in online conversations. Communication no longer
includes the storage of personal metadata on servers. Gov-
ernments require less highly-secured infrastructures, which
reduces the overall costs for both governments and citizens.
The transfer of digital money between identities has major
advantages. A reformed financial system is more efficient,
faster, and optimal for cross-border payments while preserving
the privacy of citizens. In the following sections, we discuss
the related work in III, the design and implementation of the
first user- and identity-centric infrastructure is presented in
sections IV, V, and VI. Our custom-designed P2P data transfer
protocol is analyzed and evaluated in Section VII.

III. RELATED WORK

Self-sovereign identity provides citizens the control of their
own identity. Citizens currently authenticate their identity
to organizations and institutions, stored on the governments
central server. DigiD1 is the primary identity authenticator
in the Netherlands and enables citizens to authenticate. Per-
sonal data is transferred from the government’s server to
the organization’s server. This requires a perfectly secure
connection and infrastructure on both sides. The citizen has

1https://www.digid.nl



3

TABLE I: Comparison with related works

P2P op
en

sou
rce

E2E
Encry

ptio
n

meta
data

req
uire

men
ts

att
rib

utes

used
for

tru
st

en
for

cem
en

t

wall
et

matu
rit

y
a

note

C
en

tr
al

iz
ed

WhatsApp [18] ✗ ✗ curve25519 ✓ phone number phone number, name,
profile picture and status ✗ high

Facebook Messenger [19] ✗ ✗ curve25519 ✓ Facebook profile Facebook profile,
name, profile picture ✗ high b

WeChat (QQ) [20] ✗ ✗ ✗ ✓ phone number phone number, name,
profile picture and ID money high

Telegram [21] ✗ ✗ MTProto ✓ phone number phone number, name, username,
profile picture and status ✗ high b

iMessage [22] ✗ ✗ NIST P-256 curve ✓ Apple profile phone number, name,
email, profile picture ✗ high

Signal Messenger [23] ✗ ✓
curve25519,
curve448 minimum c phone number phone number, name,

profile picture and status crypto high

D
ec

en
tr

al
iz

ed

Session Messenger [24] ✗ ✓
curve25519,
curve448 minimum c ✗

name,
profile picture ✗ medium d

Status.im [25] ✓ ✓ curve25519 minimum c ✗
username,
profile picture crypto high

Sylo [26] ✓ ✗ curve25519 ✓ ✗
name,
profile picture crypto high e

Berty [27] ✓ ✓ curve25519 minimum c ✗
name,
profile picture ✗ medium

Our design (Section V) ✓ ✓ curve25519 minimum c official Identity identity name and verification
status, profile picture crypto medium

athe current state of development in terms of completeness and usefulness
bE2E encryption not enabled by default
cno storage of metadata, only required for routing
dfork of Signal Messenger, onion routing for metadata anonymity, undelivered messages stored one of the distributed service nodes
eeveryone can set up node and will be rewarded in crypto token SYLO

no control over what information is shared. Additionally, these
authentication mechanisms are disproportionately expensive
and credited e0, 13 for all 545 million successful authentica-
tions in 2021 [28, 29], especially due to increase of COVID-
related authentications. Self-sovereign identities can be applied
to mobile applications that replace authentication services like
DigiD at a fraction of the cost. The first example is IRMA2,
an operational mobile platform that fetches the identity from
the governmental servers once and stores the SSI and other
personal information locally on the phone. The authentica-
tion to organizations can instead be performed offline using
the stored SSI. The user remains in control by seeing the
requested and shared information. Sovrin Network3 uses the
same methodologies but instead enables other developers to
build their own SSI application on top of their blockchain-
based ecosystem. Some situations require the option to revoke
the self-sovereign identity, for example when the identity
document is lost or stolen. Both IRMA and Sovrin apply
(centralized) authorities to revoke identities. This is a violation
of the principles of SSI as it should be an authority-free
system. The work of Chotkan [30] incorporates distributed
attestations for self-sovereign identities that includes offline
revocation. Offline verification of attestations offers increased
privacy and robustness.

As mentioned before, this paper presents a novel decentral-
ized infrastructure and incorporates a government-issued iden-
tity within a messaging platform. Many other platforms exist,

2https://irma.app
3https://sovrin.org

both centralized and decentralized, that apply at least some of
the key points of this paper. Table I portrays a (non-exhaustive)
list of significant competitors in the market. The difference
between the centralized and decentralized platforms shows a
clear clustering. All centralized platforms require a privacy-
sensitive asset and attributes that are shared with contacts
to identity and enforce trust. The decentralized platforms are
examples of Privacy by Design [31] as they try to minimize the
(centralized) storage of data and leakage of privacy-sensitive
information. Decentralized platforms have not explicit initial
requirements and the trust attributes are limited to manually
chosen names and profile pictures.

WhatsApp [18], Facebook Messenger [19], and WeChat
[20], are fully centralized platforms that store metadata of
their users. The industry-standard E2E encryption curves are
used by all platforms but Telegram [21], that uses their self-
designed protocol, and the unencrypted WeChat. WeChat,
which is monitored by the Chinese government, incorpo-
rates strong censorship and interception protocols for data
exchanged by its citizens. This degree of monitoring is not
present in other (centralized) platforms. Governments even
oblige these centralized platforms to share their stored meta-
data or apply censorship in some situations [32, 33]. Signal
Messenger [23], which is centralized but specifically designed
with privacy in mind, does not store any personal informa-
tion. However, central servers are necessary for routing and
functionalities like account recovery. Account activation is
validated using the phone number or email address of the
user. Characteristically, most of the centralized platforms don’t
provide full transparency and do not disclose the complete



4

Fig. 1: General overview of the infrastructure

structure of their platform.
Decentralized infrastructures try to realize anonymity by

minimizing the metadata in the network. Session Messenger
[24], a decentralized fork of Signal Messenger, attempts to
provide anonymity and preservation of privacy using onion
routing [34]. It makes it nearly impossible for any intermediary
(node) to derive both the sender and receiver of the message.
Onion routing is not suitable in a (fully) P2P network as peers
only know a limited number of other peers and do not (nec-
essarily) communicate with nodes. Status [25], Sylo [26], and
Berty [27] are decentralized, P2P, secure, minimize leakage of
privacy-sensitive information, and have no initial requirements.
Status is build on the Ethereum network and incorporates its
own utility network token to provide paid features to users.
Like Session Messenger, undelivered messages are stored on
nodes that obtain your IP address to deliver it later. This
characteristic contradicts the principles of privacy. Sylo is a
fully operational platform that is not protected against possible
leakage of metadata and does not provide full transparency to
its users. Berty is secure and transparent, minimizes leakage
of privacy-sensitive information in terms of metadata and
requirements, and therefore suits our requirements best, but
is currently still underdeveloped.

There are many implementations with the same design
characteristics. The idiomatic platform is decentralized, does
not require temporary storage of messages on nodes due
to its P2P nature, incorporates trusted encryption, does not
require and store metadata, and has no redundant identifi-
able requirements. Our design uniquely adds a self-sovereign
identity, providing various functionalities. To achieve higher
trustworthiness, trust enforcement attributes must not only
consists of manually forge-able components. Furthermore, the
platform must contain private and secure mechanisms for the
transfer and storage of data and digital money.

IV. INFRASTRUCTURE

The dominant problem of market-leading societal platforms
is their centralized nature. Decentralization targets many weak
spots of centralization, such as providing private and secure
storage of data in a distributed way. Even a decentralized
network allows the storage of metadata by the nodes that are
traversed on its path to the destination. Some nodes may even

sell metadata to third parties. A P2P network enables direct
communication with peers without any intermediary. As no
intermediary is able to act as a middle-man or adversary, it
serves as an extra layer of protection against malicious or
intentional behavior. The communication is only secure if the
message, or data, is encrypted.

We also require a component to store and exchange data in
a distributed manner. One of the requirements of distributed
systems is synchronization across many independent nodes.
This is difficult to realize in systems that include peers that
are not connected at all times. To enable the transfer of
(digital) money, the infrastructure requires a persistent and
decentralized storage of data that does not require continuous
synchronization for all peers. Blockchains store transactions
between two wallets in a permanent and uneditable manner.
Every transaction on the blockchain is entangled to its previous
block, making it a reliable chain of tamper-proof assets.
This form of storage is a fast, lightweight, and structured
alternative to conventional storage, albeit visible to everyone.
Every transaction can be back-traced to create a well-organized
overview, which is well suited to serve as a wallet. The
infrastructure additionally requires data transfer protocols to
exchange data. Figure 1 portrays a low-level overview of our
infrastructure.

Peers constantly observe other peers in the network. The in-
frastructure requires anonymous peer identification as it is not
desirable to spread personal information to (unknown) peers
in the network. To ensure a secure communication channel,
the principles of the CIA Triad [35] must be in place. The
objectives of a secure system include Confidentiality, Integrity,
and Availability. Confidentiality ensures that information is
only accessible to authorized parties. Digital signatures ensure
the integrity of the information by providing proof that it
originates from the sender and has not been altered by any
third party. Availability ensures that information is available to
authorized parties at any point in time. In P2P networks, only
the last principle is difficult to realize due to its dependence
on the connectivity of individual peers.

Confidentiality requires the encryption of information.
Public-key cryptography [36] is the most commonly-used
mechanism for secure communication. Confidential exchange
of messages and data additionally enables the identification



5

of peers exposing private information. Each peer has a public-
private key pair. The private key is cryptographically generated
once and only be known to the owner. The private key decrypts
the encrypted data. The public key is mathematically derived
from the private key and may be public as it is computationally
infeasible to derive the private key from the public key. The
public key provides several applications in our infrastructure.
Foremost, the public key of the intended recipient is used for
the encryption of the data. Secondly, digital signatures prove
the authenticity of data and can be verified using the public
key of the signatory/sender. And lastly, peers can be identified
and distinguished using their public key.

A. Networking Layer

Our infrastructures requires a networking layer to handle
outgoing and incoming communication with peers. A P2P
networking layer that is authenticated and privacy-aware is
IPv8 [1]. IPv8 is developed as an academic successor of
IPv4 and attempts to overcome IPv4’s weak characteristics
and growing number of problems. The objective of IPv8
is to provide communication in a zero-server infrastructure,
equal status and power within the network for everyone,
and perfect secrecy with E2E encryption. IPv8 can establish
connections to peers, even for devices connected behind NAT
or a (strong) firewall. The endpoints of the networking layer
are independent of any central infrastructure.

The aim is to minimize the exposed metadata. For this
reason, data packets can’t be broadcasted on the network, in
the hope that other peers can deliver the packet to the intended
recipient. Some P2P systems employ distributed nodes to
deliver the data in this situation. These nodes temporarily store
data and metadata until delivered. Although this addresses
the availability of information in the network, it exposes
the storage and possible leakage of metadata. The metadata
of a packet should (ideally) only contain information about
delivery, that is, the receiver’s public key or IP address.
The metadata that is not relevant for delivery should be
encrypted with the data. The risk of exposing privacy-sensitive
information in our P2P network is minimized as peers directly
communicate without serviceable nodes or peers. Peers change
connectivity status or change their network address regularly.
In these situations the peers announce their new address to
all former peers to keep the previous connections alive. Peers
also connect to random peers to broaden their network reach.
While this may sound contradictory, it does not violate their
privacy. No personal information, including the intentions and
previous communication histories, can be deduced.

IPv8 applies the concept of network overlay or community.
This enables developers to build applications on top of the
base networking layer by creating their own community. We
need several communities in our infrastructure to satisfy our
requirements. The base community includes all functionalities
related to peer connectivity, communication, data serializa-
tion, and encryption. The IPv8 networking layer combines
responsibilities from several layers of the OSI model [37].
Communities that require the storage of data, can use an
additional store that handles the interaction with a database. A

discovery community handles the discovery and connection of
(new) peers present in the same community. Every community
and peer may have a different list of connected peers. The
communication between peers in the network and commu-
nity is handled by endpoints/sockets. IPv8 provides support
for both online and offline communication using UDP and
Bluetooth endpoints. The support for offline communication
increases the reliability and applicability of the platform,
especially in areas with low network coverage.

B. Distributed Ledger

The infrastructure requires a distributed ledger that han-
dles and stores the financial transactions. The permission-
less and scalable distributed ledger TrustChain [2] is already
integrated as a community in IPv8. TrustChain is capable of
sending and receiving trusted transactions between peers. The
blockchain-based data structure is a tamper-proof immutable
chain of transactions. No central authority has control over
the transactions. Every peer implements a personalized chain
that contains only blocks related to that peer, i.e. either sent or
received by the peer. TrustChain has three basic functionalities:
transmit/receive blocks, broadcast blocks, and chain crawling.
The transmit and receive process merges both parties in one
transaction, see Figure 2. The initiator (p0) creates, signs,

Fig. 2: Transaction in the ledger

and sends the proposal block to the counterparty (p1). On
receipt of the proposal block, (p1) creates, signs, and sends
the agreement block back to p0. Both blocks are linked by the
public key of the counterparty and can be considered as half
blocks that together form a transaction. During the process, the
integrity of the received blocks is validated and both parties
add the half blocks to their chains. The transaction is complete
when both parties received and signed both half blocks, i.e.
both acknowledged and accepted its contents. The broadcast
functionality enables to transmit the block to all connected
peers. Chain crawling is the retrieval of a peer’s chain using
its public key.



6

V. DESIGN

We can divide the design of the platform into four pil-
lars: identity, trust, money, and data. These elements are
integrated within the infrastructure of Section IV to create
an ecosystem that combines these elements seamlessly. The
elements, described in the following sections, must satisfy
the requirements and functionalities that are deemed necessary
for a self-sovereign, secure, and privacy-aware communication
platform.

A. Identity

Identity is an integral part of citizens when it comes to
ownership over their self-sovereign identity. Integration of
government-issued travel documents in a self-sovereign man-
ner introduces various new opportunities. One of the major
applications is the authentication to online organizations. The
citizen controls the exchange of its own identity information to
organizations instead of the conventional online governmental
authentication that blindly transfers all available information.
Authentication can only serve its purpose if the information
within the self-sovereign identity is authentic. IRMA, the
application mentioned in Section III, achieves authenticity by
fetching the identity information from the government’s central
server once. As we desperately want to eliminate external
dependencies, this method is not suited to our system. Every
(adult) citizen is obliged to legitimate himself with a passport
or identity card upon request by the authorities. As it is
mandatory to posses such a document we can apply these
documents as an authentic base for our platform. The identity
written in the machine-readable zone (MRZ) of the document,
contains the same personal information as on the government’s
server.

The identity document onboarding process is executed in
two consecutive steps as in Figure 3. In the first step the
user must scan the text in the MRZ of the document using
the camera of the device, as in fig. 3a. A combination
of AI and check digits (embedded in the MRZ) ensure a
syntactically valid, not necessarily correct, recognition of the
identity information that is saved on the device. The second
step is extremely important as it proves the authenticity of
the document digitally. This validation step determines the
correctness of the scanned attributes. Most current documents
are equipped with a built-in biometric chip in which the
information is embedded. The NFC chip of devices enables
them to communicate with the document. The device must
steadily be placed with its back to the document until all
information has been transferred, see Figure 3b. The biometric
chip contains multiple layers of protection against for example
eavesdroppers and modification. The protection prevents the
unauthorized reading of the document using for example NFC
skimmers. The authentication requires the document number,
date of birth, and date of expiry as passwords, as obtained in
the initial step. After the connection has been established, the
biometric chip transfers all requested attributes to the device.
All stored attributes together form the self-sovereign identity
of the user. The onboarding process is deemed authentic and
secure because (I) a physical document is required and the

(a) Scan MRZ zone of document
using the camera of the phone

(b) Reading biometric chip using the
NFC chip of the phone

Fig. 3: Identity document onboarding process

attributes displayed on the card must match the content in the
biometric chip of the card, and (II) the biometric document
is widely applied for governmental purposes and international
traveling, without excessive vulnerabilities [38]. One issue that
remains is the possibility to revoke access to a self-sovereign
identity. Millions of documents get stolen or lost yearly [39],
and risk of being used by others. There is no way to recognize
and revoke access without knowledge from a central server.
The self-sovereign identity must be valid, just like physical
documents, until the expiration date of the document.

A different situation arises when the phone has no support
for the NFC chip, defectively or physically. There does not
exist an (offline) method to obtain the identity authentically
by only scanning the document. As the biometric chip per-
forms the validation of the document, a malicious actor can
forge the complete MRZ to its preference. No identity-related
functionalities can be trusted to contain truthful and authentic
information. There is no other option to either disable all
these identity-related functionalities for these devices or to be
dependent on the government’s central server to obtain the
identity.

In real-world situations, it is sometimes mandatory to show
or even make a copy of your physical identity document to
verify your identity or to serve as insurance. The authority
is not only capable of unnecessarily viewing the requested
attribute(s), but also other attributes on the document. This is
a direct violation of citizens’ privacy and can even lead to
identity theft or misuse of a person’s integrity. Citizens are
forced to trust this authority to handle and store their identity
secure and with care. Self-sovereign identities introduce the
opportunity to use verifiable claims. Verifiable claims are
claims about information that can be verified using attestations.
Chotkan [30] designed a framework that incorporates revoca-
ble verifiable claims without revealing the actual requested
piece of information using zero-knowledge proofs. To apply
variable claims in a trustworthy manner, the information from
the self-sovereign identity must, again, be authentic.



7

The focus should not only be on data in transit, but also
on data at rest. In the latter, the data is stored somewhere
without anyone currently accessing it. The data is often stored
as a file or in a database. In our case, the identity must be se-
cured significantly without risking identity theft. As mentioned
before, our design applies public-private keys for encryption.
The storage of the identity can easily be encrypted using the
private key of the user, while only allowing the application to
decrypt when absolutely required. That means that no one is
able to access the contents outside the application environment
as long as the private key is insusceptible. Biometric protection
(face recognition or fingerprint) or the use of passcodes, can
be applied as another layer of protection against unauthorized
access to sensitive data. It can also serve as confirmation for
irreversible actions like the transfer of sensitive information or
money.

B. Trust

Platforms have to deal with several types of trust. The first
natural form is trust in a system or platform. This is the case
for nontransparent centralized platforms. As a user, you want
to have faith that your personal data is handled and stored
with care. This is often one of the primary problems with
centralization. As all user data is stored on the platform’s
servers, you must have confidence that the data, including
metadata, is protected with the highest security standards,
exchanged in encrypted form, and not sold to any third parties.
If no good alternative platform exists, or because no friends
use other platforms, the user has to decide whether to continue
to use the platform and neglect the privacy-related issues,
or not use the platform anymore. Often the first choice is
selected as people value the use of the service more than their
own privacy. Decentralization (almost) completely eliminates
this trust, or distrust, as there is no central component or
authority that decides over you and your data. Also, a platform
that is open source is generally more trusted as there are
no hidden surprises due to the reviews of experts. We must
take notice that in some networks, malicious actors actively
crawl metadata in order to gain knowledge about confidential
information. Communication in P2P networks, in the form of
network packets, is directly transmitted to the network address
of the recipient, making this problem almost redundant.

In messaging and societal applications another form of trust
arises: the trust in the real identity of the other participant. The
confidence in the authenticity of the contact is determined
based on various factors like the (online) identity of the
contact, the (dis)similarity in the way they communicate,
and the discussed topics. The style of writing and difference
in for example punctuation and the use of capital letters
may also play a role in recognition. Unfortunately in most
applications, personal information can easily be forged or
stolen from people’s (real) online identities. If we again look
at Table I, most attributes for trust enforcement of centralized
platforms are forgeable. Spear phishing [40] is an cyber attack
in which individuals are targeted with the explicit use of
personal information to gain knowledge or access to (more)
sensitive information. In applications like WhatsApp, it is

possible to migrate from one phone to another. As this is a
convenient feature, it also exposes the risk that hackers can
take over your account on their phone and communicate with
your contacts instead. This has the deficit that hackers are
able to use these accounts to steal confidential information or
even request money from trusted unsuspecting contacts. These
hackers attempt to mimic as much confidential information of
the hacked person to not arouse suspicion or to simply gain
trust with their new victims. For this reason we did not include
migration in our platform (yet). Another situation arises when
the phone is stolen or lost. As we don’t have control anymore,
it is (similarily to other platforms) possible to impersonate
someone on a lost or hacked phone.

Fig. 4: Building trust using the self-sovereign identity

The challenge is to exchange the right amount of trust to
the recipient of your message without excessively exposing
private information. In the initial phase of the conversation,
especially if the users connected in some online way, trust
(or distrust) can play a major role. As valid self-sovereign
identities are incorporated in our design, we can access and
apply this authentic information. In a normal, physical first
meeting, one would introduce themselves by their (first) name,
and indirectly with facial expressions, the sound of their voice,
and the overall atmosphere. These aspects are not available in
the digital world without extra efforts. The only identifiable
information that we can exchange is a person’s name and photo
as embedded in the self-sovereign identity. These attributes can
provide the authenticity that our system requires by sending it
to the other contact. To provide proof of its authenticity, we
can include the identity verification status. The verification
status formally denotes the trustworthiness of the name and
photo, while it technically denotes the use of the biometric
and NFC chip. A different situation arises when users can’t
use the NFC chip. These users can’t be verified as a result,
and are able to choose their own name and photo to allow
them access and use of the platform. The contacts will in turn
be notified of the unverified status, implicating they should act
cautiously.

TABLE II: Trust enforcement combinations for identity name

Combination Example
I {First Name} Timothy John
II {Last Name} Berners-Lee
III {First Name} {Surname[0]} Timothy John B.L.
IV {First Name[0]} {Surname} T.J. Berners-Lee
V {First Name} {Surname} Timothy John Berners-Lee



8

Of all information in the self-sovereign identity only the
name and picture, and possibly the age and gender, are suitable
to enforce trust. The transfer of too much confidential infor-
mation can lead to malicious misuse of them or their contacts.
We should therefore limit the exchange of information. We can
compose various combinations of the given and last name that
aim to provide trust, see Table II. While combination I and
II are too general and unidentifiable, the use of the full name
in V, as identically embedded in the self-sovereign identity,
is an easy source for malicious actors to take advantage of.
The combinations III and IV include both the first and
last name in a modified form and provide a more personal
and identifiable view without exaggerating. The identity of a
person is more decisive by its last name due to its uniqueness,
and therefore combination IV fits our purpose best for the
use as the trust enforcement attribute along with the picture.
The exchange of the age and gender has been considered, but
increases the risk of impersonating.

The name and photo attributes of the peer’s identity are
sent encrypted along with every message. Upon receipt, the
system is able to detect differences with the information of
the currently stored state. Initially, the state is empty. The
recipient of the first message will be notified in a recognizable
manner that the identity of the contact has been determined.
For every other message, if at some point the state changes,
the user will receive similar notifications stating that the
information has been updated. This mechanism makes sure
the user always has knowledge of the sender’s formal identity.
It is, however, impossible to notice difference in case a phone
is stolen or accessed unauthorizedly without an alteration of
the identity. On-device authorization is desirable using for
example biometric protection. As long as biometric protection
is in place, it should be difficult to impersonate. Also, a
mechanism that requires the user to regularly verify its identity
using their physical document could help to reduce misuse.
Both options are currently not part of our initial design but
serve as improvements on authentic communication. It is
equally important to not only focus on building trust but to
preserve the privacy of the receiver as well. The platform
will never share identity information without having sent a
message or transaction first. This reduces the risk of malicious
actors purposely attempting to fetch names and photos linked
to particular public keys.

C. Money

As the need for financial privacy grows, many Web3 ap-
plications integrate the transfer of some sort of value in the
form of cryptocurrencies or NFT’s. Governments of nations
and unions are currently exploring the economic and tech-
nical feasibility of Central Bank Digital Currencies (CBDC)
[41, 42, 43, 44]. Money in the form of digital currencies
that reflect on their native currency, often also referred to as
stable coins, could provide a fast, cheap, and private exchange
between participants. Other cryptocurrencies are not suited for
this purpose as they appear to be extremely volatile, therefore
lacking the consistency for a safe store of value. CBDC has
three main characteristics: it is a digital currency, it is issued

by a central bank, and it must be universally accessible. As
these currencies will be legally recognized and backed by their
governments and central banks, their introduction and effect
on the financial system are heavily tested. If somewhere in the
future, countries decide to become cashless, these currencies
must be creditable to replace coins and banknotes. China
is already in the advanced stages of the development of its
CBDC and is testing the implementation of its digital Yuan
wallet in a second pilot [45]. The Bank of China will still
include regulation for larger transactions and seek only to
collect personal information that is legally required. Compared
to the principle of cryptocurrencies, which strives for pseudo-
anonymous transactions, China doesn’t make an effort to give
up its (financial) regulation.

Governments, banks, and tax offices shouldn’t have implicit
insights into transactions of CBDC’s. The privacy of the users
will be preserved up to a certain level. As most ledgers
and blockchains are transparent, transactions on the chain
are visible to others, and can even view or attempt to trace
back the wallet balance. Blockchain still provides pseudo-
anonymity because participants of transactions are often only
identified by a public key. No further personal information is
attached to transactions apart from the sender and recipient
and some unidentifiable transaction contents, statistics, and
possibly some other (encrypted) data. Governments will not
attempt to regulate and gain insight into these transactions be-
cause, similarly to cash, it is simply not feasible to do so. If we
compare blockchain transactions with current digital payment
solutions, it is definitely a step forward, while conventional
cash remains the most private and anonymous form of payment
and store of value. Not only would the use of CBDC’s
contribute to new innovations and direct accessibility of money
without any external dependence, it may even serve some
of the fundamental financial primitives (lending, borrowing,
liquidity).

Currently, many external services or banks provide the
functionality to create payment requests. Its creator shares a
link to all participants that redirects to the payment portal of
the service. This not only creates an additional dependency on
the use of a centralized (paid) service but also opens abusive
opportunities for malicious actors. Many fraud cases [46] using
payment requests make the service vulnerable, especially for
unsuspecting persons or the elderly. P2P digital payments
can solve this problem by eliminating the dependence on the
middle-man. The transaction or payment request is instead
directly sent to the other peer, in an online or offline fashion.
This not only makes it faster and cheaper but also offers a
more private exchange of value.

Our design incorporates an existing implementation of an
offline-capable euro CBDC called EuroToken [47]. It utilizes
the distributed ledger TrustChain [2] that builds upon the
technologies of the IPv8 network [1]. The EuroToken protocol
tries to offer a scalable, privacy-aware, and cheating-resistant
system for the exchange and storage of transactions. Every
block stored on the ledger contains a single transaction that
states the transfer of funds from one to another. A block is
cryptographically linked to its predecessor and therefore pre-
serving a chain of chronological and valid blocks. Transactions



9

are generally settled within seconds, independent of within-
or cross-border payments, but require the connectivity of both
parties to completely settle the transaction.

One of the aspects of a tokenized system is the acquisition
of tokens. For the system to be useful, it requires at least one
option to buy and sell these tokens. EuroToken incorporates a
central exchange portal that allows users to exchange money
on their bank account with EuroTokens, in both directions.
The user and portal included in the exchange have to an-
nounce themselves to each other using their public key and
additionally the transfer amount. The portal creates a request
to the user that is automatically handled and stored by the
protocol. Although it is not desirable to integrate centralized
components in the system, it is considered an exception for the
system to be functional. Improvements on the protocol could
include distributed portals that are managed by random peers
instead of a single entity.

After the initialization of the application, the wallet is ready
to send and receive tokens. A balance is obviously required
to send tokens. Tokens are either received by other peers or
acquired using the exchange portal. The balance of a wallet is
determined and validated using the blocks on the ledger. Our
design fully integrates and stimulates the transfer of money
between peers as it can be transferred directly from the wallet
or indirectly from within a conversation with another peer. The
integration of internal payment requests conveniently enables
peers to request tokens from other peers. A transfer request
differs from a transaction as is not formal and binding, and
only contains the amount and the public key of the requestor.

D. Data
One of the key applications of secure and private communi-

cation is the decentralized transfer of data. Data is the collec-
tive name for everything that can be expressed in the form
of human-unreadable blobs, a Binary Large Object. These
blobs can in turn be deserialized into a format that is readable
for humans, e.g. images or text documents. Messages, and
even transactions, can thus be classified as data as well. The
current implementation of IPv8 contains a basic data transfer
protocol. This protocol is able to send blobs to other peers,
containing metadata and data. The transfer of data in form
of messages and small blobs is fast but unreliable. However,
the protocol has proven to be limited in terms of performance
for larger-sized blobs. For proper use of our platform, it was
deemed necessary to design a custom data transfer protocol
that provides performance and reliable exchange of data, in a
secure and private fashion.

The designed data transfer protocol aims to provide reliable
and optimal performance for everybody in a progressive and
adaptive fashion. The protocol is fully integrated into IPv8 and
available to every community if necessary. Due to limitations,
IPv8 (currently) only allows one concurrent transfer between
two peers. The protocol is based on the principles of TFTP
[48], the Trivial File Transfer Protocol. TFTP is a simple and
connection-less data transfer protocol, with the consequence
that it is unauthenticated and no security mechanisms are
provided. The transfer of confidential data in (external) net-
works is unsafe, and therefore not recommended. Dedicated

connections with other peers cannot be established in P2P
networks due to the lack of end-to-end connectivity. The long-
existent TCP protocol is connection-oriented and much more
reliable, but is not suitable for that reason. For a connection-
less protocol, the application of the User Datagram Protocol
(UDP) [49] is an obvious choice. The question is how to
effectively integrate the unreliable UDP in the design of a
reliable data transfer protocol. For some purposes, for instance
live video streaming, the loss of single packets does not
impact the result as single video frames or pixels are simply
skipped. In the case of our platform, the loss of packets would
have the deficit of distorted and unusable data. Our protocol
must therefore keep track of unreceived packets and request
retransmission. The operation of the protocol is very basic
and only consists of four different packet types. All packets
are encrypted and in principle only decryptable to the intended
receiver. The normal operation of the protocol is portrayed in
Figure 5. The sender of the transfer first has to request to write

Fig. 5: Normal operation of the data transfer protocol

data by sending a WriteRequest payload/packet to the
receiver. With this packet, the sender additionally announces
all transfer- and data-specific details to make sure both parties
have the same understanding. The receiver confirms this
request by returning an Acknowledgement packet. This
acknowledgment triggers the sender to start the transmission
of data with Data packets. The data cannot be sent in one
piece for multiple reasons. Firstly, the maximum UDP packet
size is strictly limited to 1500 bytes due to the Maximum
Transmission Unit (MTU) of the Ethernet [50]. The IPv8
protocol additionally requires a header of approximately 177
bytes to each block for routing, identification, and security
purposes. Our Data payload header also requires identifiable
information in the form of a block number, nonce, and
some other attributes. This means that the data inside the
packet can be roughly somewhere between 1200 and 1250
bytes. Secondly, since UDP is unreliable and packets are not
guaranteed to be delivered, the transmission of the data at
once (if technically feasible) would be too much of a gamble
to arrive, especially for large blobs. The protocol is required to
split the data into small(er) pieces to fit the packets, creating
blocks. Each of the blocks has a particular size in bytes and
all blocks concatenated in the correct order represents the
data. To reliably transfer data from one to another, we have



10

to confirm the receipt of the data packets by again sending
an Acknowledgement packet. To not unnecessarily wait
for confirmation and delay the transfer, the acknowledgment
(and any other packet) must be received within a certain
interval before the previously sent packet is retransmitted. The
principle of windowing allows multiple packets to be sent at
once without requiring an acknowledgment for every single
packet. This increases the performance majorly as most of
the idle time of the sender is spent waiting for confirmation.
The window size of the transfer defines the hard limit on how
many bytes or, equivalently, the number of blocks if we take
the block size out of the equation, can be sent within every
window without intermediate acknowledging. After the last
block of the window has been received, the protocol sends an
acknowledgment to the sender. It does not necessarily mean
that all blocks within that window have been received, as
some arrive later and some will not be delivered at all. In that
acknowledgment, the receiver includes the block numbers that
have not been received (yet). The protocol could decide to only
transmit individual packets and wait for the confirmation of
receipt. This, however, has several disadvantages. Firstly, the
transfer speed is significantly decreased as additional transmit
and acknowledge stages are added, including waiting time.
Regularly UDP packets arrive late or not at all, meaning that
for a good part of the windows the unreceived blocks have to
be retransmitted, even for single unreceived blocks. Secondly,
by staying at the current window, it may occur that some of
these packets have trouble being delivered, and the transfer
may not progress further for a longer period (in terms of
transfer time). To account for these drawbacks, the protocol
will always try to progressively continue its normal operation.
This means that these unreceived blocks will piggyback with
the next transfer window in the hope to be delivered without
causing an overall delay. For every next window that passes,
the confidence in these blocks being delivered increases. If all
windows are sent, it may occur that there are some unreceived
blocks left. In this case, the protocol will remain in the transmit
phase of the last window until all blocks have been confirmed.
The transfer is considered complete, for both the sender and
receiver, after receipt of the acknowledgment (sender) and last
block (receiver).

The receiver may not be able to adhere to the write request
because either the data does not comply with the allowed
size between zero and a predefined limit, or both peers try to
start a transfer at the exact same time. In these situations an
Error packet is returned that contains the reason of refusal.
Both the sender and receiver have no other option but to
terminate the transfer. During the transfer, it regularly happens
that no response is received for sent packets. Both the sender
and receiver therefore use their own retransmit interval and
retransmit attempt count. A retransmit is scheduled if the time
between the last transmit and the allowed interval is exceeded.
We don’t want the protocol to retransmit infinitely during
disconnectivity. This is prevented using the attempt count that
only allows a maximum number of consecutive retransmits.
If after retransmission the other peer suddenly responds, the
count is reset and the protocol continues normal operation.
If the peer appears to be unresponsive, and the number of

consecutive retransmits exceeds the attempt count, the transfer
is considered timed out and will be terminated. In worst-
case scenarios, often where the connection is unreliable or
slow, the transfer of packets and confirmations may take too
much time and can timeout the transfer. These connections
could probably benefit from a lower window size as fewer
blocks have to be transmitted and confirmed within the same
time. The protocol adaptively downscales the window size of a
transfer after every timeout to give slower connections a better
chance of success. Although it is important that the protocol
is suitable for everyone in every situation, it is undesirable to
lower the performance for everyone, due to a minor number
of failures. We, therefore, chose to initially apply the optimal
transfer settings for every transfer and lower the performance
when required. The default parameters of the protocol that
provide an optimal performance are analyzed in Section VII.
An optimization to the protocol can include the application of
sliding windows for a more dynamic and optimal performance.

VI. IMPLEMENTATION

In Sections IV and V we’ve discussed the infrastructure
and design of the main components that form the basis of
our novel platform. The use of both IPv8 and TrustChain has
proven to be a valuable fit for our infrastructure. The already
existing implementations are applicable to a certain level
as they have primarily been developed to serve as separate
proofs-of-concept. These implementations additionally lack
refinement and general cooperability and applicability with the
other functionalities. In this section, the contributions to our
complete infrastructure are discussed, as well as the changes to
the existing implementations, and how they are integrated into
our platform to provide a well-designed and well-functioning
platform. The implementation is additionally concerned with
the UX and UI design of the platform. The platform has
been integrated within the TrustChain superapp4, an Android
mobile application developed in Kotlin that contains many
different small applications built on IPv8 and TrustChain. The
data transfer protocol is integrated into the IPv8 stack5 and is
available to every community.

The platform consists of five general views that are intercon-
nected using a navigation bar and direct links. The initial view,
the wallet overview, as in Figure 8b, provides a widget-like
overview of the identity, exchange, and chats components. For
each widget, there is a separate view that includes all related
aspects. The information in these widgets is carefully selected
to not overflow the user with information.

The base functionality of the designed platform is obviously
the societal component. The implementation of a simple
chat functionality is present in the form of PeerChat [51],
implemented as a community of IPv8. Its core functionality
is the exchange of text messages and photos over the P2P
network. Many more functionalities had to be implemented to
be able to match the market-leading big-tech platforms. The
ability to exchange files, locations, contacts, identity attributes,
money, and payment requests has been integrated. The chat

4https://github.com/Tribler/trustchain-superapp
5https://github.com/Tribler/kotlin-ipv8



11

is an ordered list of the communication between two peers,
and every type of message or attachment has its own view.
It is again important to not display too much information for
the attachments. Detail views display all available informa-
tion about the attachment. Users have additional access to
various convenient chat-related features to improve usability
like searching and filtering, muting, archiving, or blocking.
To reduce the receipt of unwanted spam the platform discards
communication with blocked peers. Large attachments, in par-
ticular photos and files, are exchanged using our designed data
protocol of Section V-D. All other attachments are exchanged
as single UDP packets and will be delivered using IPv8’s
default method. If the recipient of a message (or data) is
currently not connected, the message cannot be delivered.
To track the delivery status of messages, peers are required
to acknowledge its receipt. That enables the community to
periodically check if the peer is connected and retransmit
the unacknowledged messages. In a P2P network it regularly
happens that messages can’t be delivered as there is no central
or distributed component temporarily storing the message. As
a consequence, it may happen that two peers are unable to
communicate when they are never connected at the same time.

(a) Original PeerChat implementation (b) Our chat implementation [52]

Fig. 6: Difference between old and new implementation

In Figure 6 both the existing PeerChat implementation and
our implementation are displayed. Not only is our implemen-
tation equipped with much more functionalities, but the design
is also concerned about the user experience and ease of use.
We’ve placed options and functionalities behind additional
buttons, carefully selected required information to display and
provided our platform with full integration and support for
QR-codes. The use of QR-codes has many advantages. A
lot of information can be embedded in these codes without
having to worry about human errors. Inter-platform and offline
communication still enable users to exchange the embedded

information, even when disconnected from the Internet. These
codes can additionally provide direct navigation within the
platform, based on the contents of the scanned code. This
all combined improves the user experience as less time and
effort is required from the user. Example applications of the
QR-codes include offline scanning and adding public keys,
unspecified payments requests, transfer announcements to and
from the exchange portal, and creating and validating identity
attestations. Currently, all QR-codes contain unencrypted data
as it is not deemed necessary for offline communication.
However, future functionalities may for instance include the
exchange of information of the self-sovereign identity and
would require additional security. QR-codes are perfectly
suited to embed encrypted data, but requires the recipient’s
public key to be known in advance.

(a) Identity implementation (b) Attestation integration

Fig. 7: Implementation of self-sovereign identity

The integration of the identity component had to be de-
signed from scratch. The identity community handles anything
related to the functionalities of the self-sovereign identity,
including its storage. Compared to other communities, the
identity community does not support communication over the
IPv8 network. There is currently no need to additionally share
information from the self-sovereign identity, as it may only
form a privacy vulnerability. To use the platform, the users are
required to onboard their identity as explained in Section V-A.
Any device with NFC support is required to verify its identity
document, as it reduces misuse and provides authenticity. An
extra layer of protection makes sure that the identity details
are not visible for eavesdroppers, see Figure 7a. Apart from
the self-sovereign identity itself, we’ve also integrated identity
attributes and identity attestations. Identity attributes contain
convenient information that serve as an unauthentic extension
to the identity. These attributes are for example a phone
number, email address, or home address. These attributes are



12

(a) Old exchange implementation (b) Our wallet overview (initial view)
containing exchange widget [52]

(c) Our exchange implementation and
transfer options

(d) Our transaction detail view
transaction [52]

Fig. 8: Screenshots of implementation

shareable with other peers and solely serve to extend the use of
the self-sovereign identity. Validation mechanisms to verify the
identity attributes’ authenticity are currently not included. The
identity attestations are incorporated in unmodified form using
the attestation community, as a result of the work of Chotkan
[30]. An example QR-code of an 18+ attestation is portrayed
in Figure 7b. Currently, only the age-related attestation types
obtain the age directly from the self-sovereign identity. Future
attestation types could embed more confidential information
from the identity as it can serve additional purposes.

(a) initial state

(b) updated state

Fig. 9: Detection in alteration of received trust attributes

The trust attributes, as explained in Section V-B, are directly
deduced from the self-sovereign identity. These attributes are
automatically added to every form of communication with
other peers. The user is unable to choose to communicate
without sending the trust attributes along, as this damages
the integrity of our platform. Changes to the state as a result
of the received trust attributes are notified in the chat as in
Figure 9. The verification status of the contact is explicitly
displayed at several different locations with the sole purpose to
draw attention and recognition, especially when unverified. A

recognizable blue check star indicates successful verification
while a red cross star, that is missing in existing platforms,
indicates an unverified peer. Both verification statuses can be
seen in Figure 8b.

Fig. 10: ’Slide-to-Transfer’ protection

An implementation to transfer digital money was already
integrated in the superapp, see Figure 8a. The eurotoken
community handles the wallet and transfer of the CBDC Eu-
rotoken [47] with other peers, while the trustchain community
handles the functionalities of the transactions in the distributed
ledger. In our platform, the wallet balance is displayed and
protected from eavesdroppers by initially hiding the balance,
see for example Figure 8b. Various options to exchange money
have been integrated as in Figure 8c. Firstly, QR-codes are
used to deposit or withdraw tokens from and to the exchange
portal. Secondly, users have the option to scan a QR-code
payment request to transfer tokens, create a direct transfer to
another contact, create and send payment requests to contacts
over the network or create an unspecified payment request
using a QR-code. The latter three are accessible from the



13

chat with the corresponding contact as well. An extra layer of
protection, in the form of a ’slide-to-transfer’ element as seen
in Figure 10, withholds the accidental exchange of tokens.
For convenience, transactions are not only visible in the list
of transactions in the exchange view, but also in chats. In
Figure 8d a detailed view of a transaction and its contents is
displayed. As payment requests are attachments and not formal
transactions, they are only included and visible in the chats.

As explained in Section V-D, our custom data transfer
protocol handles the exchange of (large) data blobs. The pro-
tocol technically contains an entry point for peers to directly
transmit data to another peer, or in some situations to be
scheduled. Scheduled transfers are periodically checked and
started if the following requirements are satisfied: (I) the peer
is connected, (II) there’s no other current transfer with the peer,
and (III) the size of the transfer does not exceed the maximum
allowed size. The protocol exploits packet listeners to be
able to directly respond to each of the received packets. The
transfer is initiated by announcing the transfer and transfer-
specific settings. As (many) other communities may employ
the protocol as well, it is convenient to annotate the destined
community. As there may be various concurrent transfers with
different peers, every transfer must contain a unique identifier
to distinguish the transfers from one another. To make sure
that both the sender and receiver are in agreement with the
transfer parameters, and additionally allow other communities
to use different parameters, these parameters are included
within the transfer announcement. The transfer announcement
and the last data packet of its window must be acknowledged.
This acknowledgment either confirms the start of the transfer
or receipt of a window of data blocks. In addition to the
latter, the current window number and lost packets must
be reported. This confirmation consecutively results in the
transmission of the next window of blocks until all blocks
have been transmitted and received. To be able to stitch all
blocks together, the protocol additionally transmits the block
number with the packet. The transfer is completed when all
blocks have been received.

To realize a quick response to the transmitted packets, the
recurrent packets must contain the minimal required informa-
tion. The transfer announcement is only transmitted once and
is therefore allowed to contain more information. As the data
and acknowledgment packets are transmitted numerous times,
we’ve made sure that no redundant information is transmitted.

(a) scheduled status (b) progress status (c) stopped status

Fig. 11: Download progress indicators in chat

To accommodate communities and users with convenient
information during and after the transfer, the protocol has
built-in support for callbacks. These callbacks enable the
execution of specific tasks after the transfer progressed to

another state. These tasks differ for each application and are
therefore outside the scope of the protocol. The sender is able
to execute specific code after the data has been successfully
sent or upon receipt of an error. The receiver has access to the
transfer progress, transfer completion, and erroneous updates.
Specifically, the former two are important to our platform.
Transfer progress updates enable the application to display
the current download status to the user, see Figure 11. For
convenience in certain situations, the user is able to stop and
restart the transfer at a later time. The transfer complete update
triggers the conversion of the raw binary data to the correct
format, creates an external file on the phone storage, and
visually embeds it in the chat. The protocol is dependent on
many parameters that may have an impact on the performance.
In Section VII these parameters are analyzed to obtain the
optimal performance during normal operation.

(a) Unit tests

(b) Code coverage

Fig. 12: Code quality

We’ve additionally analyzed the code quality of the pro-
tocol. A high code coverage is required to reduce bugs
and ensure correctness. The protocol, including all associated
methods and classes, is tested using 85 unit-tests that cover
about 77% of the code (Figure 12).

VII. EXPERIMENTAL ANALYSIS AND EVALUATION

In the previous sections, we have discussed the design and
implementation of our data transfer protocol. In this section,
an experimental analysis is performed to derive the optimal
protocol settings under normal operation. We’ve only consid-
ered normal cases in this analysis due to missing theoretical
and applied expertise. We also performed an evaluation of a
large-sized transfer with these optimal settings to prove its
contribution and applicability to our platform.

A. Experimental Analysis

To exploit the best possible performance, the designed
binary data transfer protocol requires its settings to be optimal.
We define the protocol to be optimal if (I) the transfer speed
is as high as possible, (II) the number of lost packets/blocks
(as explained in Section V-D) is as low as possible, and
(III) the number of retransmitted windows of blocks (by the
sender) and acknowledgments (by the receiver) is as low as
possible. The second constraint does not necessarily contribute
to higher transfer speeds as lost packets are embedded in the
next window of blocks. The last constraint should contribute
to higher transfer speeds because no windows of blocks have
to be retransmitted and there’s no additional idle time waiting
for an acknowledgment. The analysis is performed in ideal
situations and focuses on the general picture, i.e. aspects as
delays due to latency and packet loss are not included.



14

As mentioned before, the UDP packet size is limited due
to Ethernet constraints. As two packets with a payload of
500 bytes carry twice as much redundant information as one
packet of 1000 bytes, a transfer using a greater block size B
is preferred and should theoretically have a positive impact
on the runtime. The maximum data size of UDP packets
for IPv8 has been determined (through trial-and-error) to
be around 1241 bytes. The exact size may depend on each
peer, the chosen packet header options (encryption, signature,
public key, etc.), and the data packet metadata. To keep a
safe margin we’ve decided to allow data of at most 1200
bytes in each packet. The window size W is defined as the
number of bytes (nblocks× block size) the sender can transmit
without having to wait for an acknowledgment of receipt
from the receiver. Theoretically, a greater window size would
directly contribute to larger transfer speeds as there are less
windows of blocks to be transmitted. Also, a smaller number
of acknowledgments has to be sent and received, reducing the
overall idle time of both participants. Greater window sizes
also increase the existence of late or lost blocks, specifically
in imperfect or congested networks, with an increased number
of retransmissions of windows of blocks as a result. The
importance of this analysis is to find the best trade-off between
a great window size and low delay due to lost packets.

The other parameters do not directly impact the
performance, apart from the block and window size.
The retransmit interval may affect the performance when it
is either too tight or loose, but it will only play a role in a
small part of the cases. A tight interval can force windows
of blocks or acknowledgments to be retransmitted while
they are still in transit and may arrive shortly after. For a
loosely set interval, the protocol may unnecessarily have to
wait for a window or acknowledgment. The transfer timeout
interval is less critical and will only affect the performance
when a window or acknowledgment has abused all retransmit
attempts. The retransmit attempt count likewise has little
influence on the performance.

Experimental Setup: The experimental setup is equipped
with two phones, a Xiaomi Redmi 9T with Android 10 and a
Huawei P20 Lite with Android 9, both 4GB RAM. The phones
have installed the same version of the app and are connected to
the same WiFi-6 mesh network (NETGEAR Orbi RBK753).
To obtain more accurate results, each experiment is executed
five times. Also, to verify the independence of the file size on
the transfer, the experiment is executed for multiple file sizes.
Each important step of the protocol is captured in a log to be
processed in Python. An automatic Kotlin script makes sure
that every combination of parameters and the five iterations
are executed consecutively. Table III gives an overview of the
analyzed parameter values. The maximum parameter settings
are windows of 128 blocks of 1200 bytes each, equivalent to
150kB of unacknowledged data that is the fundamental limit to
the data transfer performance. With a certain unknown latency
this results in an exact transfer speed limit. As no a packet
loss and latency emulation has been performed, we cannot
determine this theoretical limit.

TABLE III: Parameters that are being tested for optimal
execution. The number of iterations have only been used for
consistency. In total 56 combinations of parameters have been
executed 5 times.

Parameter Values
Block size (B) 600, 700, 800, 900, 1000, 1100, 1200 [bytes]
Window size (W ) 16, 32, 48, 64, 80, 96, 112, 128 [blocks]
Iteration 0, 1, 2, 3, 4 [-]

Experimental Results: The optimality of the performance of
the protocol can be determined in combination with the before
mentioned requirements.
The results of the first requirement, the transfer speed of the
protocol, is displayed in Figure 13a. We can clearly see the
effect of the variation of the block and window size. Higher
block sizes increases the transfer speed. The window size
follows a parabolic curve and the transfer speed is optimal
for a window size W = 80 and W = 96 blocks. We cannot
yet determine the optimal value for the window size as these
values are very similar and are less pronounced than the block
size. To decide on the optimal sizes, we have to include the
requirements as well.

The results for the second requirement, the number of lost
packets/blocks during a transfer, is visualized in the plots
of Figure 13b. The block size shows a slightly decreasing
pattern and overall contains the lowest number of lost packets
for greater block sizes. There is no consensus on the block
size within each window size, as there are small deviations
and not consistently decreasing or increasing. The trendline,
a combined average of all block sizes within each window,
shows a minimum for the same window sizes as of the first
requirement, but slightly favors W = 96 blocks. For window
sizes greater than W = 96 blocks the number of lost packets
again increases. The protocol is behaving more unreliable as
more lost blocks have to be added to the next window. Every
lost block will cause a marginal decrease of the transfer speed
as more blocks have to be delivered in the next window. The
aim remains to reduce these lost blocks as much as possible.
Especially for more unreliable connections, the impact of
lost blocks may become more pronounced as the transfer
progresses further.

The last requirement, the number of retransmitted windows
of blocks and the number of retransmitted acknowledgments,
are entangled as it takes both the sender and receiver in the
equation for the same transfers. In Figure 13c and 13d the
results for the sender and receiver are visualized, respectively.
Both diagrams show the same pattern. The optimal block size
again shows no notable preference within each window size.
The results for the window sizes are a strong indicator that we
don’t want them to be oversized. The number of retransmitted
windows and acknowledgments is of neglectable proportion
for a window size less than W = 112 blocks, or even W = 96
blocks if we would be really strict. As the protocol has to
wait for a full interval for every retransmission, it has a big
impact on the overall performance. It is crucial to reduce the
number of retransmissions to an absolute minimum. For the
largest three window sizes, a small experiment was executed



15

(a) (b)

(c) (d)

Fig. 13: The results of all executed tests for each variable window and block size, averaged over five iterations.

that verified if the large increase of retransmissions were the
result of a too tightly set retransmit interval. The interval
was increased majorly, just for verification purposes, and
solely served for additional analysis of the third requirement,
without including the results of the other requirements. The
results showed that the number of retransmissions slightly
improved, but the pattern was equally in place. It was deemed
unnecessary to investigate it further.

We must take into account that the experiments have been
performed under somewhat optimal circumstances: phones
only running system services and the platform itself, and both
connected to the same local WiFi network. From this, we could
argue that for worsened conditions, the transfer speed and the
number of lost packets and retransmissions would logically

increase. We can combine and summarize our findings based
on the results of the experiments and analysis. The perfor-
mance of the transfer speed (continuously) increases with
greater block sizes, with the optimal block size of B = 1200
bytes. For the other requirements, the difference in block size
was less definite. The transfer speed found an inconclusive
optimal for window sizes of W = {80, 96} blocks. The
second requirement showed similar results, although slightly
in favor of the latter. Both types of retransmissions for the
third requirement indicated an increase of retransmissions for
greater window sizes, specifically above W = 80 blocks.
To obtain the optimal performance, in combination with the
minimal number of lost blocks and retransmissions, we can
conclude that a window size of W = 80 blocks is optimal



16

Fig. 14: Evaluation of the performance of a transfer of 250MB using the optimal window size of 96kB, executed 10 times.

under normal operation. The optimal window size based on our
findings is thus W = 96000 bytes or 96kB. We’ve deduced
these optimal parameters for ideal situations, and therefore
does not include lateness and loss of blocks.

We’ve additionally executed the same experiments using
multiple file sizes to verify its independence on the per-
formance. All results are similar and seem to indicate that
the file size is independent on the performance. We’ve also
concluded that an increase of the retransmit interval does not
necessarily give a significant overall reduction of the number
of retransmissions, and therefore not contributes to better
performance.

B. Performance Evaluation

Now that we’ve determined the optimal parameters for the
protocol, we want to see how it performs in the wild for a
large-sized transfer of 250MB. This enables us to evaluate
the performance more consistently over a longer period of
(transfer) time. In most cases, phones are not connected to
the same local WiFi network. We have to consider three
commonly-used situations (I) WiFi to WiFi, (II) WiFi to
4G+, and (III) 4G+ to 4G+. For the connections of 4G+, we
use the telecom providers Vodafone and KPN on the same
phones as before. Our evaluation includes the same aspects
as the experimental analysis. Instead of finding the optimal
parameters, we this time evaluate the applicability and the
difference between the three situations. Each experiment is
executed 10 times to obtain more consistent results. We expect
the first situation to offer the highest transfer speed and least
number of lost packets and retransmissions as the packets are
only exchanged within the local network.

The performance results for each of the connection types
are portrayed in Figure 14. The transfer speed shows a clear
division in performance, in favor of the inter-WiFi transfer of
about 260kB/s. The transfer speeds for the two situations using
a mobile connection have very similar speeds of about 213kB/s
and 210kB/s. It’s a good indication that there is no extreme
performance difference between an exchange using one WiFi-
connected device and a complete mobile network exchange.
The transfer speed of the inter-WiFi transfer is executed on a
local network and therefore sketches a slightly biased image.
The transfer speed of an exchange between two non-local
WiFi networks would theoretically be lower, and possibly be
more similar to the other situations. However, we do notice
a bigger spread in terms of lower speeds for the complete
mobile network exchange. If we look at the absolute speed, we
must conclude that our protocol is nowhere near the download
speeds of current network infrastructures. The exact reason is
unknown, but it is expected to be some limitation in IPv8 and
possibly sub-optimal UDP socket buffering.

The number of lost packets contradicts our expectation.
The number of lost packets is on average larger for an inter-
WiFi transfer in comparison with the other two situations. In
absolute numbers though, we can conclude that the total loss
of about 50 packets in a transfer of over 200.000 packets,
equivalent to one lost packet within every fifty windows, is ne-
glectable. This number would be much higher for sub-optimal
connections. No retransmission of windows of blocks were
encountered, and therefore left out of the figure. The number of
retransmissions of acknowledgments are very equivalent for all
three situations, and only allows one acknowledgment retrans-
mission per transfer on average as result of unresponsiveness.



17

From these results we can conclude that our protocol
has been performing at the top of its abilities in normal
operation. The absolute transfer speed is disappointing. During
the experiments, it was noticed that larger-sized transfers ex-
perienced memory allocation issues on the phones. Currently,
the protocol stores the sent and received data in memory for
reconstruction purposes. The current maximum file size has
therefore been limited to 250MB, but can differ from phone
to phone.

VIII. TIME MANAGEMENT

The research, design, implementation, analysis, and doc-
umentation have been an effort of one person in roughly
nine full-time months. The research phase required about
two months to study the literature and existing platforms,
including the basics and characteristics of IPv8, TrustChain,
and other components. The design and implementation phase
were entangled as the scope of the research widened several
times along the way. You could say that it was a repeating
process of invent-design-implement for most of the features.
An initial layout of the application was designed and im-
plemented to provide a basic platform that slowly evolved
to its final state. This included familiarizing the style and
coding within the Trustchain superapp and the Kotlin
language. The design and implementation of features were not
only concerned with the features themself, but also the UX
and UI design of the platform. In total, about six months have
been allocated to the design, implementation, and analysis of
the platform. The data transfer protocol is the only component
that has additionally been analyzed as part of experimental
analysis and evaluation. Of these six months, about one month
of work was required to optimize and analyze the data transfer
protocol. The last month, and also some time earlier in the
process, was dedicated to documenting and finalizing this
paper.

IX. CONCLUSION

Ownership and exchange of sensitive or private information
has never been a more relevant topic, also due to the COVID
pandemic. This paper has presented a novel Web3 platform
for identity, trust, money, and data. Decentralization partially
solves the lack of self-sovereignty for identity, money, and data
in the current online world. We performed the first exploratory
study that shows the viability of the integration of a self-
sovereign identity in a social platform in a useful, secure, and
private fashion. The application of self-sovereign identities has
additionally shown to be effective in providing trust to peers in
the P2P network. Governments may change their mind about
their identity management systems in the near future. Many
centralized tasks can be replaced, providing their citizens
more power and ownership over their data, while retaining
authenticity and majorly reducing costs. Central banks have
started designing Central Bank Digital Currencies globally.
Our platform incorporates the exchange of digital money in a
private and informal way, similar to what cash once was. Data
and personal information has been owned and managed by big-
tech companies for far too long. The centralized structure is

the core of the problem in online communication. Our P2P
data transfer protocol enables peers to securely and privately
exchange messages and data while reducing the leakage of
metadata to a minimum.

Unfortunately, we cannot neglect some major disadvantages
in our platform as well. Firstly, the availability and connec-
tivity of peers remain an open issue as it introduces lateness
in the delivery of messages and data. People are currently not
used to lateness in existing platforms which use central servers
or nodes. Secondly, peers in a fully P2P network must keep
themselves online by constantly discovering and connecting
to peers with the consequence of draining the phone’s battery.
Improvements could be made, but it will always remain a weak
spot of P2P systems. Finally, the implementation of the CBDC
EuroToken is dependent on central components and not yet
reliable enough.

Overall, we conclude that we’ve designed a well-functioning
platform that incorporates all aspects of our research in a
valuable, private, and secure manner. There is still a lot to
discover and we’re curious to see what direction big-tech
companies, governments, and banks will pursue in the near
future.

REFERENCES

[1] Tribler. Ipv8 documentation. 2021. URL https://py-
ipv8.readthedocs.io/_/downloads/en/latest/pdf/.

[2] Pim Otte, Martijn de Vos, and Johan Pouwelse.
Trustchain: A sybil-resistant scalable blockchain.
Future Generation Computer Systems, 107:
770–780, 2020. ISSN 0167-739X. doi:
https://doi.org/10.1016/j.future.2017.08.048. URL
https://www.sciencedirect.com/science/article/pii/
S0167739X17318988.

[3] Nicolo Zingales. Between a rock and two hard places:
Whatsapp at the crossroad of competition, data protection
and consumer law. Computer Law & Security Review,
33(4):553–558, 2017.

[4] The Guardian. Whatsapp loses millions of
users after terms update. [Online] Available:
https://www.theguardian.com/technology/2021/jan/
24/whatsapp-loses-millions-of-users-after-terms-update,
2021.

[5] "Wall Street Journal". Big tech braces for
a wave of regulation. [Online] Available:
https://www.wsj.com/articles/big-tech-braces-for-
wave-of-regulation-11642131732, 2022.

[6] Official Journal of the European Union. Regulation
(eu) 2016/679 of the european parliament and of
the council on the protection of natural persons with
regard to the processing of personal data and on the
free movement of such data, and repealing directive
95/46/ec (general data protection regulation). [Online]
Available: https://eur-lex.europa.eu/legal-content/EN/
TXT/PDF/?uri=CELEX:32016R0679&from=EN, 2016.

[7] Gdpr enforcement tracker. [Online] Available: https://
www.enforcementtracker.com.

[8] Aikaterini Soumelidou and Aggeliki Tsohou. Towards
the creation of a profile of the information privacy aware



18

user through a systematic literature review of information
privacy awareness. Telematics and Informatics, 61:
101592, 2021.

[9] ZDNet. The biggest data breaches, hacks of 2021.
[Online] Available: https://www.zdnet.com/article/the-
biggest-data-breaches-of-2021/, Dec 2021.

[10] PinDirect. Wat kost een pintransactie? [On-
line] Available: https://pindirect.nl/kennisbank/uw-eigen-
pinautomaat/wat-kost-een-pintransactie/, 2020.

[11] ZakelijkBankieren.nl. Vergelijk ideal kosten
per aanbieder in nl. [Online] Available:
https://www.zakelijkbankieren.nl/kosten-ideal/, 2021.

[12] Dutch Payments Association. Facts and figures on the
dutch payment system in 2020. [Online] Available: https:
//factsheet.betaalvereniging.nl/en/, 2020.

[13] Christopher Allen. The path to self-sovereign identity.
[Online] Available: http://www.lifewithalacrity.com/
2016/04/the-path-to-self-soverereign-identity.html,
2016.

[14] Quinten Stokkink and Johan Pouwelse. Deployment
of a blockchain-based self-sovereign identity. In 2018
IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communica-
tions (GreenCom) and IEEE Cyber, Physical and Social
Computing (CPSCom) and IEEE Smart Data (Smart-
Data), pages 1336–1342, 2018.

[15] "Computer Weekly". "blockchain technology
will help banks will cut cross-border payment
costs by $10bn in 2030". [Online] Available:
https://www.computerweekly.com/news/252509262/
Blockchain-technology-will-help-banks-will-cut-cross-
border-payment-costs-by-10bn-in-2030, 2021.

[16] Statista. Most popular global mobile messenger
apps as of october 2021, based on number
of monthly active users. [Online] Available:
https://www.statista.com/statistics/258749/most-popular-
global-mobile-messenger-apps/, 2021.

[17] Roman Zaikin and Oded Vanunu. Reverse engineering
whatsapp encryption for chat manipulation and more.
[Online] Available: , August 3-8, 2019.

[18] WhatsApp. Whatsapp encryption overview.
technical white paper. Nov 2021. URL
http://www.cdn.whatsapp.net/security/WhatsApp-
Security-Whitepaper.pdf.

[19] FaceBook Inc. Messenger secret conversations.
technical whitepaper. May 2017. URL https:
//about.fb.com/wp-content/uploads/2016/07/messenger-
secret-conversations-technical-whitepaper.pdf.

[20] WeChat. Wechat - free messaging and calling app.
"[Online] Available: https://weixin.qq.com", Jan 2022.

[21] Telegram. Telegram messenger. "[Online] Available:
https://telegram.org", Jan 2022.

[22] Apple. imessage security overview. "[Online]
Available: https://support.apple.com/en-au/guide/
security/secd9764312f/web", May 2021.

[23] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling,
Luke Garratt, and Douglas Stebila. A formal security
analysis of the signal messaging protocol. In 2017 IEEE

European Symposium on Security and Privacy (EuroS P),
pages 451–466, 2017. doi: 10.1109/EuroSP.2017.27.

[24] Kee Jefferys, Maxim Shishmarev, and Simon Harman.
Session: A model for end-to-end encrypted conversations
with minimal metadata leakage. CoRR, abs/2002.04609,
2020. URL https://arxiv.org/abs/2002.04609.

[25] Status. The status network. a strategy towards mass
adoption of ethereum. June 2017. URL https://status.im/
whitepaper.pdf.

[26] Felix Schlitter, John Carlo San Pedro, Paul Freeman, and
Callum Lowcay. Sylo protocol: Secure group messag-
ing. 2020. URL https://www.sylo.io/whitepaper/sylo-
protocol.pdf.

[27] Berty. Berty protocol. "[Online] Available: https://
berty.tech/docs/protocol/", Oct 2020.

[28] Logius. Tarieven 2022 voor digid, digid machtigen en
mijnoverheid. [Online] Available: https://logius.nl/onze-
organisatie/zakendoen-met-logius/doorbelasting, 2021.

[29] Logius. Lack. [Online] Available: https://logius.nl/
actueel/gebruik-digid-de-lift, 2022.

[30] R. Chotkan. Industry-grade self-sovereign identity, on the
realisation of a fully distributed self-sovereign identity
architecture. Master’s thesis, Delft University of Tech-
nology, 2021.

[31] Ann Cavoukian. Privacy by design: The 7 foundational
principles. May 2010.

[32] Tweakers. Belgische overheid verplicht chatapps zoals
whatsapp metadata op te slaan. [Online] Available:
https://tweakers.net/nieuws/183702/belgische-overheid-
verplicht-chatapps-zoals-whatsapp-metadata-op-te-
slaan.html, 2021.

[33] RollingStone. Fbi document says the feds can
get your whatsapp data — in real time. [Online]
Available: https://www.rollingstone.com/politics/
politics-features/whatsapp-imessage-facebook-apple-
fbi-privacy-1261816/, 2021.

[34] M.G. Reed, P.F. Syverson, and D.M. Goldschlag. Anony-
mous connections and onion routing. IEEE Journal on
Selected Areas in Communications, 16(4):482–494, 1998.
doi: 10.1109/49.668972.

[35] Wikipedia. Information security. "[Online] Available:
https://en.wikipedia.org/wiki/Information_security",
2022.

[36] Whitfield Diffie and Martin E. Hellman. New directions
in cryptography. Nov 1976. URL https://ee.stanford.edu/
~hellman/publications/24.pdf.

[37] International Telecommunication Union (ITU). Data
networks and open system communications. open
systems interconnection - model and notation. July 1994.
URL https://www.itu.int/rec/dologin_pub.asp?lang=
e&id=T-REC-X.200-199407-I!!PDF-E&type=items.

[38] Keesing Technologies. Security vulnerabilities
associated with e-passports. [Online] Available: https:
//platform.keesingtechnologies.com/e-passport-security/,
Feb 2020.

[39] Fortunly. 20 worrying identity theft statistics for
2022. [Online] Available: https://fortunly.com/statistics/
identity-theft-statistics/, Feb 2022.



19

[40] Europol EC3. Spear phishing, a law enforcement
and cross-industry perspective. Nov 2019.
URL https://www.europol.europa.eu/sites/
default/files/documents/report_on_phishing_-
_a_law_enforcement_perspective.pdf.

[41] BOARD OF GOVERNORS OF THE FEDERAL RE-
SERVE SYSTEM. Money and payments: The u.s.
dollar in the age of digital transformation. Jan
2022. URL https://www.federalreserve.gov/publications/
files/money-and-payments-20220120.pdf.

[42] European Central Bank (ECB). Central bank digital cur-
rency: functional scope, pricing and controls. 286, Dec
2021. URL https://www.ecb.europa.eu/pub/pdf/scpops/
ecb.op286~9d472374ea.en.pdf.

[43] Bank of England. Central bank digital currency,
opportunities, challenges and design. Mar 2020. URL
https://www.bankofengland.co.uk/-/media/boe/files/
paper/2020/central-bank-digital-currency-opportunities-
challenges-and-design.pdf.

[44] Working Group on E-CNY Research and Develop-
ment of the People’s Bank of China. Progress
of research & development of e-cny in china.
July 2021. URL http://www.pbc.gov.cn/en/3688110/
3688172/4157443/4293696/2021071614584691871.pdf.

[45] Reuters. China central bank launches digital yuan
wallet apps for android, ios. [Online] Available:
https://www.reuters.com/markets/currencies/china-
cbank-launches-digital-yuan-wallet-apps-android-ios-
2022-01-04/, Jan 2022.

[46] Het Parool. Vier amsterdammers vast voor
‘tikkiefraude’ honderden mensen. "[Online] Available:
https://www.parool.nl/amsterdam/vier-amsterdammers-
vast-voor-tikkiefraude-honderden-mensen~b33baf1a",
Nov 2020.

[47] R.W. Blokzijl. A central bank digital currency (cbdc)
with offline transfers. Master’s thesis, Delft University
of Technology, 2021.

[48] Network Working Group. The tftp protocol (revision 2).
June 1981. URL https://www.rfc-editor.org/rfc/pdfrfc/
rfc783.txt.pdf.

[49] J. Postel. User datagram protocol. Aug 1980. URL
https://www.rfc-editor.org/rfc/pdfrfc/rfc768.txt.pdf.

[50] Andrew S. Tanenbaum and David Wetherall. Computer
networks, 5th Edition. 2011.

[51] M. Skála. Technology stack for decentralized mobile
services. Master’s thesis, Delft University of Technology,
2020.

[52] Paul Clarke. Wikimedia commons, the free media reposi-
tory. [Online] Available: https://commons.wikimedia.org/
wiki/File:Sir_Tim_Berners-Lee_(cropped).jpg, Sep
2014.





II
Supplementary Material

21





Supplementary Material to ”Web3: A
Decentralized Societal Infrastructure for

Identity, Trust, Money, and Data”





1
Mobile Application

This chapter serves as a more detailed view of our mobile platform. The platform has
been implemented as an Android application developed in Kotlin in a user-centered
design. We’ve aimed to keep the platform as simple and consistent as possible. This
includes a reduced amount of displayed information, consistent design, similar usage
of buttons and functionalities throughout the complete platform, and giving the user
(some) control over the behavior of the platform. The platform makes use of specific
views that each contain different information. The use of a bottom navigation bar
enables easy navigation between the views.

1.1. Views
The following views have been implemented in the platform (Figures 1.1 and 1.2).

Wallet overview contains widgets for identity, exchange, and conversations, as in Fig-
ure 1.1a. As it serves as a general overview, we only want to include the absolute
necessary information. The identity widget contains the users’ official name, pro-
file picture, public key abbreviation, connection status, and a button to show the
public key in a QR code. The exchange widget contains the wallet balance and
a button that displays the options to transfer money. The balance is initially
protected against eavesdroppers and can be toggled by clicking it. The contacts
widget contains the three most recent chats including the last message and con-
nection and verification status of the contact and can be opened by clicking it.

Identity view contains everything related to the self-sovereign identity, see Figures 1.1b
and 1.1c. Sensitive identity information is initially hidden and protected with
placeholder asterisks. By expanding and clicking the eye icon all information
is displayed. Future upgrades could require biometric protection to toggle the
details. The identity attributes and identity attestations are placed below the
identity card, and only show either one of them at the same time. Additional
options are accessible by clicking the required icons or buttons.

QR-code controller opens the camera and enables QR-codes scanning, see Figure 1.1d.
Upon a successful scan, the platform will automatically navigate or display the
destined view. This enables the user to efficiently execute certain tasks while
minimizing efforts and human errors.

25



26 1. Mobile Application

Exchange view contains the wallet balance and the list of transactions as in Figure
1.1e. Only basic information about each transaction is displayed. The user can
click the transaction to show a detailed overview of the complete transaction, as
in Figure 1.3f. The wallet balance is initially protected against eavesdroppers.
The view also contains buttons for validating the balance, updating the list of
transactions, and displaying the various options to transfer money.

Contacts view contains the address book of contacts and list of recent chats as in
Figure 1.1f. The user has the ability to search a contact in the address book or
chats, add a contact, or view the archived or blocked chats (Figures 1.2b and 1.2c).
By clicking the contact or chat-preview the platform navigates to the corresponding
chat.

Chat view contains the chat with a contact or peer, see Figure 1.2d. This view contains
a list of all communication between both parties, ordered with the most recent at
the bottom. Every message or attachment type has a preview with some informa-
tion. If available, the user can click on the attachment to display the attachment
in more detail. Apart from the message typing field, the view also has buttons for
showing the chat/contact options (Figure 1.5e), showing the list of attachments
(Figure 1.5f), and sending the message or attachment.

1.2. Settings
To give the user a bit more control over the platform we’ve also included a settings view,
as in Figure 1.2e. The user can adjust the theme of the layout to its preference or the
time of the day. The user can decide between the day, night, and system default theme.
The user has the option to change the use of notifications by clicking the corresponding
button that navigates to the system settings for adjustment. The user is also able to
replace or remove its identity.

1.3. Dialogs
In the application, we extensively use dialogs to display additional information in an effi-
cient manner. It is in most cases unnecessary to directly display all available information
for a particular item. These dialogs are small views that slide in from the bottom and
float over the parent view using an opaque grey background. The dialogs can easily be
dismissed by either swiping down or clicking the opaque grey background. All dialogs
that are implemented in the platform are visualized in Figures 1.3 to 1.6.

1.4. Identity Onboarding
The identity onboarding process consists of three consecutive steps, as displayed in
Figure 1.7. In the initial view, for each of the next steps, a small description is provided.
In addition to the description of the second step, the reading of the document, the
device support status for the NFC chip is displayed. If the device doesn’t support the
NFC chip, this step will be skipped with the downside of an unverified identity. If the
device has support but hasn’t currently enabled the NFC chip, a button is displayed to
navigate to the settings of the device to enable it. In that case, the importing process

26



1.5. Notifications 27

cannot start until the NFC chip is enabled. In the document type view the user must
decide which type of identity document he wants to use. The scan document view uses
the device camera to scan the MRZ-zone of the document. After all details are scanned
and appear to be technically valid, the process continues to the reading view. In the
reading view, the user has to place its device on top of the document and hold it steady
as long as the device is reading the document. After the document has been successfully
read, the user can proceed to the last view. The confirm view displays a summary of
the imported identity. The user must complete the onboarding process by confirming
the identity. The application can only be used after an identity is imported.

1.5. Notifications
The platform supports notifications for displaying relevant information about a received
message, attachment, or transaction. The notifications contain information about the
sender’s name, profile picture, and message or transaction contents. By clicking the
notification the app will open and/or navigate to the corresponding view.

1.6. Phone Permissions
The application requires the user to authorize permissions for the use of the camera for
the identity onboarding process and Bluetooth for offline communication using IPv8.
The location and write/read storage permissions are not required but advised to utilize
all available functionalities.

1.7. Screenshots

27



28 1. Mobile Application

(a) Wallet Overview (b) Identity View Collapsed (c) Identity View Expanded

(d) QR-code Scanner View (e) Exchange View (f) Contacts View

Figure 1.1: Main views of the platform (1)

28



1.7. Screenshots 29

(a) Contacts View Search (b) Contacts Archived View (c) Contacts Blocked View

(d) Chat View (e) Settings View

Figure 1.2: Main views of the platform (2)

29



30 1. Mobile Application

(a) Dialog Exchange Options (b) Dialog Exchange Portal Buy (c) Dialog Exchange Portal Sell

(d) Dialog Exchange Transfer (e) Dialog Exchange Request (f) Dialog Exchange Transaction

Figure 1.3: Dialogs used in platform (1)

30



1.7. Screenshots 31

(a) Dialog Identity Options (b) Dialog Attestation Request (c) Dialog Attestation Confirm
Request

(d) Dialog Attestation QR-code (e) Dialog Attestation Verify (f) Dialog Attestation Verify
Succeed

Figure 1.4: Dialogs used in platform (2)

31



32 1. Mobile Application

(a) Dialog Identity Attribute
Options

(b) Dialog My Public Key (c) Dialog Add Contact

(d) Dialog View Contact (e) Dialog Chat Options (f) Dialog Chat Attachments

Figure 1.5: Dialogs used in platform (3)

32



1.7. Screenshots 33

(a) Dialog Chat Media (b) Dialog Chat Location (c) Dialog Share Contact

(d) Dialog Share Identity
Attribute

Figure 1.6: Dialogs used in platform (4)

33



34 1. Mobile Application

(a) Start View (b) Document Type View (c) Document Scan View

(d) Reading View (e) Reading Finished View (f) Identity Confirm View

Figure 1.7: Identity onboarding views from start to end

34



2
Implementation Details

2.1. Data Transfer Protocol
This section mainly serves as a technical documentation of the protocol. The data trans-
fer protocol is specifically designed for use in the P2P network IPv81. In this section, we
briefly discuss the main components, as well as its integration in the protocol itself. The
non-exhaustive flow diagram of the designed data transfer protocol is displayed in Figure
2.1. The settings of the protocol are set upon initialization, as defined in the commu-
nity, or to default otherwise. The protocol requires the data to be in binary form. The
process of converting the data to/from binary form, serialization, and deserialization,
is the responsibility of the base community and not the protocol. The protocol can be
found in the kotlin-ipv8 repository2.

2.1.1. Protocol Settings
Some of the settings are optimized to ensure maximum performance of the protocol.
Other settings are only used to enable specific options. The list below contains all used
parameters, including their default value either derived from the experimental analysis
or through our findings and estimations.

blockSize (1200) the size (bytes) of the blocks

windowSize (80) the number of blocks in one window

binarySizeLimit (250MB) the total allowed data size (bytes)

retransmitEnabled (true) enables/disables retranmission of packets

retransmitInterval (3000) the allowed interval (msec) before retranmission

retransmitAttemptCount (3) the allowed numbers of retransmits before timing out

scheduledSendInterval (5000) the interval (msec) before checking scheduled transfers
again

1https://github.com/Tribler/kotlin-ipv8/
2https://github.com/Tribler/kotlin-ipv8/tree/master/ipv8/src/main/java/nl/tudelft/ipv8/messaging/
eva

35

https://github.com/Tribler/kotlin-ipv8/
https://github.com/Tribler/kotlin-ipv8/tree/master/ipv8/src/main/java/nl/tudelft/ipv8/messaging/eva
https://github.com/Tribler/kotlin-ipv8/tree/master/ipv8/src/main/java/nl/tudelft/ipv8/messaging/eva


36 2. Implementation Details

scheduledTasksCheckInterval (1000) the interval (msec) before checking scheduled
tasks again

terminateByTimeoutEnabled (true) enables/disables the use of timeouts

timeoutInterval (12000) the allowed interval (msec) before the transfer timeouts

reduceWindowAfterTimeout (16) the number of blocks that reduce the window size
after a timeout

loggingEnabled (false) enables/disables logging for debugging

2.1.2. Transfer Sets
To keep track of transfers and other functionalities, the protocol uses sets. Every set
starts empty on initialization. During execution, some of these sets will be filled and/or
emptied (again). The list below contains the sets that are deemed necessary.

Scheduled set contains the currently scheduled transfers, outgoing for the sender and
incoming for the receiver. For each peer, a queue is maintained that orders the
transfers by time

Incoming set contains the currently active incoming transfers per peer

Outgoing set contains the currently active outgoing transfers per peer

Transferred sets contain the finished transfers per peer, separated by outgoing and
incoming

Stopped set contains the incoming transfers that have been manually stopped

Timed Out set contains the number of time outs for each transfer

Scheduled Tasks set contains the tasks that are scheduled to be executed at a specific
time

2.1.3. Callbacks
Callbacks are pieces of executable code that are executed after the occurrence of specific
events and enable the initiator of the protocol to execute code that is not part of the
protocol itself. An example is the post-processing of data after a successful exchange.
The protocol provides support for four callbacks:

onReceiveProgressCallback enables the recipient of the transfer to keep track of
the download progress of the transfer. The transfer progress states are scheduled,
initializing, downloading, stopped, finished, and unknown

onReceiveCompleteCallback enables the recipient of the transfer to perform actions
after the download has completed

onSendCompleteCallback enables the sender of the transfer to perform actions after
the upload has completed

onErrorCallback enables both the sender and recipient of the transfer to perform ac-
tions upon the occurrence of an error

36



2.1. Data Transfer Protocol 37

2.1.4. Scheduled Task
During the transfer, the protocol is required to execute tasks at specific times. If enabled,
the protocol is able to schedule transfer timeouts, and retransmission of windows and
acknowledgments. These tasks are scheduled to be executed after the allowed sched-
uledTasksCheckInterval has expired. Scheduled tasks are added to the priority
queue of scheduled tasks containing the corresponding executable code and the time of
execution. The protocol checks every second to find tasks that require execution, based
on the defined time.

2.1.5. Main Methods
Send Scheduled
The sendScheduled method checks if there are transfers able to start. It is executed
periodically with the scheduledSendInterval parameter. Transfers in the sched-
uled set are grouped by recipient and maintains a queue of scheduled transfers for each
recipient. The transfer can start if the following requirements are satisfied, as also can
be seen in Figure 2.1. Firstly, the peer must be connected and idle, meaning there is
no other transfer currently active. Secondly, the data size must not exceed the allowed
maximum size of binarySizeLimit.

Send Binary
The sendBinary method acts as an entry point for communities to send or schedule a
transfer to another peer. Some additional information is required to start the transfer.
Apart from the recipient, knowledge about the community for which the transfer is
destined, the data, and an identifier that uniquely defines the data are required. The
transfer can be directly started if the same requirements as in the Send Scheduled
methods are satisfies. If not, the transfers are scheduled to be started at a later time.

Transmit Data
During the transfer, the protocol determines the blocks for the next window. This is
a combination of the blocks from the next window and possibly some lost blocks. The
transmitData method simply creates a data packet for each block and transmits it
over the community endpoint.

Send Acknowledgement
The recipient is required to confirm receipt of packets or windows of packets. If dur-
ing data transmission, some blocks appear to be lost, the protocol embeds these block
numbers in the acknowledgment. The sendAcknowledgement method creates an
acknowledgment packet and transmits it back to the sender. It also schedules a task to
terminate the transfer and to resend the acknowledgement if no response returns within
the timeoutInterval and retransmitInterval, respectively.

Terminate
A transfer, outgoing or incoming, is terminated by removing the binary data from mem-
ory and removing it from the corresponding outgoing or incoming set. If the transfer
is timed out, the protocol adaptively lowers the window size by reduceWindowAfter-
Timeout to provide the transfer confidence to succeed in the next attempt. This does
have a decreases the transfer speed as fewer blocks are sent in one window, requiring
more windows and more waiting time.

37



38 2. Implementation Details

2.1.6. Packet/Payload types
Each payload serves a different purpose and contains different information.

WriteRequest packet serves as an announcement of a new transfer and announces the
transfer-specific settings. The payload contains:

• info: community identifier, to which community the transfer belongs
• id: unique identifier of data
• nonce: unique identifier of transfer
• dataSize: size of the binary data
• blockCount: number of blocks in transfer
• blockSize: size of the blocks in bytes
• windowSize: number of blocks in one window

Acknowledgement packet serves as confirmation of a received WriteRequest or
Data packet. The payload contains:

• nonce: unique identifier of transfer
• ackWindow: received window number
• unAckedBlocks: block numbers of unreceived blocks

Data packet serves as container of the binary data, splitted in blocks. The payload
contains:

• blockNumber: receive block number
• nonce: unique identifier of transfer
• data: the data embedded in this block

Error packet serves as announcement for occurrence of an error. The payload contains:
• info: community identifier, to which community the transfer belongs
• message: explanation of the error

2.1.7. Packet Listeners
To be able to handle incoming packets efficiently, the protocol applies the concept of
listeners. A listener is a function that waits for the occurrence of a specific event, in this
case, the receipt of a packet. These listeners are called from the main IPv8 community
as it handles all incoming communication with other peers. Since we’ve incorporated
four packet types in our protocol, there are also four listeners attached to our protocol.
The process of each listener is displayed in an understandable manner in Figure 2.1.

onWriteRequest
This listener belongs to the recipient of the transfer only and is triggered upon receipt of
a WriteRequest packet. Upon receipt it first checks if (I) the transfer is not already
incoming, meaning this announcement has been retransmitted, (II) the transfer has not
already been transferred, and (III) the transfer is currently stopped. Additionally, the
size of the transfer is validated to be within defined boundaries. If all those requirements
are satisfied, the transfer is accepted by sending an Acknowledgment packet back to
the sender of the transfer and placing the transfer in the set of incoming transfers, in-
cluding its transfer-specific settings embedded in the packet. The receiver also schedules
the retransmission of the acknowledge and schedules the termination. If a data packet
arrives (within the allowed intervals), both scheduled tasks are discarded.

38



2.1. Data Transfer Protocol 39

onAcknowledgement
This listener belongs to the sender of the transfer only and is triggered upon receipt of
an Acknowledgement packet. The receipt of this packet confirms the receipt of either
a WriteRequest or Data packet. First it has to be determined to which transfer this
acknowledgment belongs. Using the outgoing set of the peer and the transfer nonce
in the payload, the correct transfer is identified. If it is a confirmation of receipt on
the previously sent WriteRequest, it starts by sending the first window of blocks and
increasing the window number by one. If it is a confirmation on a window of blocks, the
next window of blocks is determined, including the unreceived blocks that are announced
in this acknowledgment. The window number is increased by one and transmitted to the
peer. If it was a confirmation on the last window of blocks, and there are no unreceived
blocks, indicating that all blocks have been received, the transfer is finished, terminated,
and added to the transferred set. There is no further communication required as
the recipient received all blocks and terminates as well. The protocol always tries to
progressively continue to the next window, even if there are unreceived blocks. The
protocol only remains in the same window when the window of blocks haven’t been
received or acknowledged.

onData
This listener belongs to the recipient of the transfer only and is triggered upon receipt
of a Data packet. The transfer is located in the incoming set, with the corresponding
peer and nonce. By means of the block number, the data in the block is inserted to
the correct location/place in the total data file. Even blocks that arrive in a different
order are able to insert their data to the total data file. After the last block has been
received, an acknowledgment is sent, the incoming transfer is finished, added to the
transferred, and terminated. The corresponding callback function is executed that
converts the raw binary data to a file of the correct format. The data temporarily stored
in memory is cleared. If there are still unreceived blocks left, and this block appears to
be the last block of its window, the protocol only sends acknowledgment. If the block is
not the last block of the window, the protocol does not send an acknowledgment.

onError
This listener belongs to both sender and recipient of the transfer and is triggered upon
receipt of a Error packet. Upon receipt, the error (message) is notified to the protocol
and the corresponding transfer is terminated.

39



40 2. Implementation Details

Figure 2.1: Flow diagram of data transfer protocol

40



2.1. Data Transfer Protocol 41

2.1.8. Experimental Analysis
The purpose of the experimental analysis is to find the optimal settings under normal
operation in terms of performance. We define the protocol to be optimal if (I) the
transfer speed is as high as possible, (II) the number of lost packets/blocks is as low
as possible, and (III) the number of retransmitted windows of blocks (by the sender)
and acknowledgments (by the receiver) is as low as possible. By varying each parameter
while keeping the other parameters constant, we can observe the effect of the parameter
on the performance. The block size is varied in steps of 100 bytes, ranging from 600
to 1200 bytes. The window size is varied in steps of 16 blocks, ranging from 16 to 128
blocks. Every combination of parameters is executed precisely five times for two file
sizes. Figure 2.2 contains the results of all executed tests. No latency and package loss
emulation has been performed. The obtained parameters provide optimal performance
under normal operation of the protocol. The optimal block size is 1200 bytes and the
optimal window size is 80 blocks, equivalent to 96000 bytes or 96kB (decimal). The
file size appears to be independent of the performance of the protocol. No latency or
packets loss emulation is executed. The optimal parameters are analyzed under normal
operation only.

2.1.9. Performance Evaluation
In the experimental analysis, we’ve only tested relatively small files. For the evaluation
of the performance, using the optimal parameters, we transfer a large file of 250MB and
evaluate the performance using the same indicators as in the experimental analysis. The
exchange of the files in the experimental analysis was executed within the same (local)
WiFi environment. As this is not the case in most situations, we, therefore, evaluate
three different scenarios: WiFi to WiFi, 4G+ to WiFi, and 4G+ to 4G+. For the inter-
WiFi exchange, the devices are connected to the same local network. The devices with
4G+ use the network of telecom providers Vodafone and KPN. The transfer of each file
is executed 10 times for each situation. Figure 2.3 contains the results of the evaluation
of the performance and delays. As there were no window retransmissions it was left out
of the figure.

41



42 2. Implementation Details

(a) Transfer speed analysis (b) Packet loss analysis

(c) Window retransmission analysis (d) Acknowledgment retransmission analysis

Figure 2.2: The results of all executed tests for each variable window and block size, averaged over five
iterations.

42



2.1. Data Transfer Protocol 43

Figure 2.3: Evaluation of the performance of a transfer of 250MB using the optimal window size of
96kB, executed 10 times.

43





Bibliography

Clarke, P. (2014). Wikimedia commons, the free media repository. https://commons.
wikimedia.org/wiki/File:Sir_Tim_Berners-Lee_(cropped).jpg

Otte, P., de Vos, M., & Pouwelse, J. (2020). Trustchain: A sybil-resistant scalable
blockchain. Future Generation Computer Systems, 107, 770–780. https://doi .
org/https://doi.org/10.1016/j.future.2017.08.048

Rost9. (2020). Depositphotos. https://nl.depositphotos.com/serie/208667760.html
Tribler. (2021). Ipv8 documentation. https://py-ipv8.readthedocs.io/_/downloads/en/

latest/pdf/

45

https://commons.wikimedia.org/wiki/File:Sir_Tim_Berners-Lee_(cropped).jpg
https://commons.wikimedia.org/wiki/File:Sir_Tim_Berners-Lee_(cropped).jpg
https://doi.org/https://doi.org/10.1016/j.future.2017.08.048
https://doi.org/https://doi.org/10.1016/j.future.2017.08.048
https://nl.depositphotos.com/serie/208667760.html
https://py-ipv8.readthedocs.io/_/downloads/en/latest/pdf/
https://py-ipv8.readthedocs.io/_/downloads/en/latest/pdf/

	Abstract
	Article
	Introduction
	Problem Description
	Related Work
	Infrastructure
	Design
	Implementation
	Experimental Analysis and Evaluation
	Time Management
	Conclusion

	Supplementary Material
	Mobile Application
	Views
	Settings
	Dialogs
	Identity Onboarding
	Notifications
	Phone Permissions
	Screenshots

	Implementation Details
	Data Transfer Protocol
	Protocol Settings
	Transfer Sets
	Callbacks
	Scheduled Task
	Main Methods
	Packet/Payload types
	Packet Listeners
	Experimental Analysis
	Performance Evaluation



