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A B S T R A C T

Future power systems, in which generation will come almost entirely from variable Renewable Energy Sources
(vRES), will be characterized by weather-driven supply and flexible demand. In a simulation of the future
Dutch power system, we analyze whether there are sufficient incentives for market-driven investors to provide
a sufficient level of security of supply, considering the profit-seeking and myopic behavior of investors. We co-
simulate two agent-based models (ABM), one for generation expansion and one for the operational time scale.
The results suggest that in a system with a high share of vRES and flexibility, prices will be set predominantly
by the demand’s willingness to pay, particularly by the opportunity cost of flexible hydrogen electrolyzers. The
demand for electric heating could double the price of electricity in winter, compared to summer, and in years
with low vRES could cause shortages. Simulations with stochastic weather profiles increase the year-to-year
variability of cost recovery by more than threefold and the year-to-year price variability by more than tenfold
compared to a scenario with no weather uncertainty. Dispatchable technologies have the most volatile annual
returns due to high scarcity rents during years of low vRES production and diminished returns during years
with high vRES production. We conclude that in a highly renewable EOM, investors would not have sufficient
incentives to ensure the reliability of the system. If they invested in such a way to ensure that demand could
be met in a year with the lowest vRES yield, they would not recover their fixed costs in the majority of years.
1. Introduction

Early investment theory in power systems argued that spot pricing
could lead to optimal investment incentives and decisions [1]. How-
ever, subsequent research has emphasized that the ideal conditions of
perfectly competitive markets, including perfect information, absence
of market distortions, risk aversion, and market power, do not exist in
the power sector [2–5]. Several studies have suggested that the current
market design may not deliver the required investments to ensure a
transition to a future carbon-free power system [6–8]. In this study,
we seek to determine to what extent an Energy only Market (EoM) can
be expected to provide enough investment incentives for the market to
reach system adequacy. Specifically, we analyze investments in an EoM
and the propensity of this market design to guarantee cost recovery
for all relevant technologies. We use an Agent-Based Model (ABM) to
simulate myopic investment behavior and to evaluate the effects of
weather year variability on the long-term performance of an EoM.

∗ Corresponding author.
E-mail address: I.J.SanchezJimenez@tudelft.nl (I.S. Jimenez).

Future systems will rely on vRES and will require more demand-side
flexibility than current ones to integrate them. Due to the variability
of vRES, supply-side uncertainty increases. Recent studies have shown
that in a market dominated by resources with near-to-zero marginal
costs, the electricity price will be mostly set by carbon-free dispatchable
backup generators, storage, and demand response [9,10]. One of the
main policy challenges for electricity markets is to design market
rules that allocate resources efficiently and ensure the security of
supply while minimizing costs. Analyzing a model of a future system
can help policymakers make early adjustments to the market design,
thereby reducing regulatory uncertainty for investors. Most studies of
future systems are based on optimization models [11], which assume
perfect competition, resulting in an equilibrium mix with the lowest
system costs. However, prior research has shown that historically,
actual generation expansion has not followed cost-optimal projections.
For instance, [12] calculated a 9 to 23% discrepancy between optimal
306-2619/© 2024 Delft University of Technology. Published by Elsevi
http://creativecommons.org/licenses/by/4.0/).
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Nomenclature

Abbreviations

𝐴𝐵𝑀 Agent-based model
𝐴𝑀𝐼𝑅𝐼𝑆 Agent-based Market Model for the

Investigation of Renewable and Integrated
Energy Systems

𝐵 Baseline scenario
𝐶𝐹𝐷 Contracts for Difference
𝐶𝐹 Capacity factor
𝐶𝑅𝑀 Capacity Remuneration Mechanism
𝐶𝑂𝑉 Coefficient of Variance
𝐸𝐻 Energy yield High scenario
𝐸𝐿 Energy yield Low scenario
𝐸𝑀 Energy yield Median scenario
𝐸𝑀𝐿𝑎𝑏 Energy Modelling Laboratory
𝐸𝑁𝑆 Energy Not Served
𝐸𝑜𝑀 Energy only Market
𝐹𝐿𝐻 Full load hours
𝐺𝐴 Global ambition
𝐼𝑅𝑅 Internal Rate of Return
𝐾𝑃𝐼 Key Performance Indicator
𝐿𝐸𝑆𝑀 Long-term Energy System Models
𝐿𝑂𝐿𝐸 Loss Of Load Expectation
𝐿𝑆 Load Shedding
𝐼𝐷 Increased Demand scenario
𝑁𝑃𝑉 Net Present Value
𝑆𝑃 Stochastic Profiles scenario
𝑈𝐶𝐸𝐷 Unit Commitment and Economic Dispatch
𝑉 𝑜𝐿𝐿 Value of Lost Load
𝑣𝑅𝐸𝑆 variable Renewable Energy Sources
𝑊𝐴𝑉 𝐺 Weighted average
𝑊 𝑇𝑃 Willingness To Pay

Parameters

𝐴 Annuity
𝐶𝐴𝑃𝐸𝑋 Capital Cost
𝐹𝐶 Fixed cost
𝐶𝐹 Capacity Factor
𝐷𝑃 Downpayment
𝐷𝑅 Debt ratio
𝐸𝑅 Equity ratio
𝑖 Interest rate
𝑅𝑒𝑣 Revenues
𝜌 equity interest rate
𝑊𝐴𝐶𝐶 Weighted Average Cost of Capital
𝑇𝐶 Construction time
𝑇𝐸𝐿 Expected Lifetime
𝑉 𝐶 Variable cost
𝑉 𝑜𝐿𝐿 Value of Lost Load

projections and actual generation expansion. Optimization models can
incorporate multiple technical constraints and consider uncertainties to
find an optimal solution. In contrast, alternative methods such as ABMs
offer the possibility of investigating the impact of policies, considering
limited information and strategic decision making. In general, genera-
tion expansion models do not intend to predict future capacity, but to
2

give insights on factors that would impact the energy systems.
One of the reasons for the disparity between optimal solutions and
real markets is that investors make investments according to expected
revenues rather than making system cost-minimal decisions [13]. More-
over, lumpy investments and long lead times prevent the market from
reaching an equilibrium [14]. Furthermore, investors may face uncer-
tainty regarding competitors’ decisions and future plans, commodity
prices, technology costs, among others. As Tesfatsion [15] explains,
actors in liberalized markets trade with imperfect information, limited
foresight, and bounded rationality. Capacity expansion Agent-Based
Models (ABMs) can mimic profit-seeking energy producers with myopic
behavior and bounded rationality. Similarly, operational ABMs allow
scheduling resources with a rolling time horizon, incomplete informa-
tion, and no equilibrium. In our research, we simulate both investment
and operational decisions with ABMs that allow us to analyze an energy
system that is not necessarily in a long-run equilibrium.

We analyze a future electricity system, based in the Netherlands,
with a co-simulation of AMIRIS [16] and EMLabpy, which is derived
from EMLab [17]. EMLabpy is a long-term ABM that simulates the
investment decisions of energy producers, while AMIRIS is a short-term
ABM that simulates dispatch. EMLab, as a standalone model, cannot
represent multiple types of flexibility, while AMIRIS does not have an
investment algorithm. Hence, this co-simulation allows us to use the
strengths of both models. To reflect the flexibility of the future system
as much as necessary, we execute the model on an hourly basis, con-
sidering the flexibility of demand and weather-dependent vRES. While
there have been some investment and dispatch studies with the ABM
model PowerACE for Germany [18], this is the first study that takes into
account operational and investment decisions with bounded rationality
and that integrates multiple flexibility options (battery storage, load
shedding, and hydrogen electrolyzers), as well as model-endogenous
decommissioning. To the best of our knowledge, this is also the first
co-simulation of ABMs where the investment decisions are determined
in an iterative process with a dispatch ABM.

Future uncertainties that will arise from weather patterns and their
correlation with demand, as well as their impact on power prices and
system adequacy, are not yet well understood. To evaluate the perfor-
mance of an EoM under weather variability, multiple sequences of 40
random weather years are tested. Besides the commonly used reliability
indicators, such as loss of load and energy not supplied, we analyze
the volatility of electricity prices and market-based cost recovery, since
these may also be early indicators of resource inadequacy [9]. We
demonstrated that EoM will not be sufficient to ensure the security of
supply in future 100% vRES systems and recommend exploring options
for capacity remuneration mechanisms.

The rest of the research is organized as follows. Section 2 discusses
the current literature around investment theory in the power system,
agent-based models, and model coupling. Section 3 presents the rel-
evant details of EMlabpy and AMIRIS and describes how these are
applied in a co-simulation. Section 4 enlarges upon the used data and
presents the case study. Section 5 shows the results from the analysis
and their implications. Finally, Section 6 concludes by summarizing the
paper’s main findings.

2. Literature review

2.1. Investment theory in power systems

According to the peak load pricing theory, in the long run, gen-
erators should recover their costs from scarcity rents [2]. A major
impediment to the completeness of an electricity market, as described
by Caramanis, Bohn, and Schweppe [1], has been the lack of fully flexi-
ble demand, which prevents the true Value of Lost Load (VoLL) during
scarcity from being reflected in the market. Furthermore, regulatory
price caps can enhance the missing money problem [3], which refers
to insufficient revenues to cover the costs incurred by the generators.
Market interventions, such as the introduction of caps on infra-marginal
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rents in response to the European energy crisis, and low participation in
long-term markets have hampered a theory ideal market-led investment
system [8]. Even if there were enough incentives, market participants
might not perceive them. This is known as the missing market problem.
Newbery explains that an EoM could work if the sources of the missing
money and the missing market were removed [19].

In contrast to the theory of optimal investments, market failures
that prevent an investment equilibrium are caused by a lack of risk
allocation mechanisms, lumpy investments, long lead times, imperfect
information, regulatory uncertainty, and uncertain interconnections,
among others [14,20]. All of these sources of myopic decision-making
lead to a preference for low capital cost projects and prioritizing
short-term profits over long-term projects as this can cause investment
cycles and threaten the system’s security of supply [17,21–25]. Under-
investment could result in large profits for generators [6] at the cost of
society. Therefore, ensuring system adequacy, i.e. sufficient installed
capacity to meet demand, can also prevent large money transfers that
occur when prices are exceptionally high for an extended period of
time [14], such as the situation that occurred in ERCOT during the 2021
Uri storm [26].

With the increase of technologies with marginal costs close to zero,
base load technologies have suffered from reduced capacity factors. It
is an open question if a decarbonized system could enable investors
to recover their investments. Lately, several authors have recognized
that as power systems shift from low capital costs and high operational
costs to systems with low operational costs and high capital costs,
capacity remuneration mechanisms might become more necessary [27].
In addition, the volatility of electricity prices from late 2021 to 2023
has reinforced the inclination towards capacity remuneration mecha-
nisms that can ensure the security of supply [28]. In a future market
with volatile supply and flexible demand, as opposed to today’s market
with volatile demand and flexible supply, capacity mechanisms can
engage the flexible demand to fulfill an important pillar of market
design, which is affordability. Flexibility, which is defined as the ability
to adjust supply and demand in response to changing conditions,
will become a critical factor in enabling a decarbonized electricity
market [6,28].

2.2. Weather uncertainty

Around 2015, many gas plants in Europe were mothballed or pre-
maturely closed as they were used less than planned. Besides carbon
prices and fuel prices, a major cause was a lower demand than antici-
pated [29]. In a future electricity system, the weather will be a major
source of uncertainty. vRES outputs can be very volatile, especially
wind generation [30], leading to years with considerably larger vRES
generation than others. Collins et al. [31] analyzed the impact of
inter-annual weather variability in a Europe-wide optimization study
and found the total generation costs variability would increase five-
fold, from 2015 to 2050. Zeyringer et al. [32] compared investment
decisions based on a single weather year against investment decisions
by considering a ten-year horizon of different weather years. They
found that optimizing for the longer time period increased the re-
quired installed capacity of flexible generators and total system costs
compared to optimizing for each weather year individually; however,
optimizing for individual weather years led to operational inadequacy
and missing decarbonization goals. Price et al. [33] also analyzed how
considering weather variability can result in distinct spatial deployment
patterns.

Under an EoM, years characterized by high production will likely
lead to lower electricity prices. If no hedging opportunities exist, in-
vestors may under-invest due to this uncertainty. This can aggravate
one of the most important difficulties, coping with extreme weather
periods when both wind and solar power generation are low or almost
3

non-existent, a phenomenon also known as Dunkelflaute [34]. a
Regarding short-term uncertainty, vRES-dominated markets might
exhibit high price volatility correlated to the availability of renewable
generation. The addition of generation capacities of specific technolo-
gies can hamper their own business case due to the generation au-
tocorrelation and price depression [35]. However, demand flexibility
might overcome this problem by becoming the price-setting instance
in contrast to the current system where prices are determined by
generators’ marginal costs, thus, improving the business case for vRES
generators [36].

2.3. Simulating investment decisions with ABMs in electricity systems

Agent-Based Models (ABM) follow a bottom-up approach to model-
ing complex systems that involves simulating the behavior of individual
actors (agents), such as generators, consumers, and other market par-
ticipants, as well as modeling their interactions. ABM allows for the
exploration of emergent phenomena that result from the interactions
between agents and the study of the effects of environmental or indi-
vidual agent behavior changes. ABMs have been used to study a wide
range of electricity market design issues. By simulating agents with
limited information, ABM allows studying generators with strategic
behavior, their strategies participating in different markets as well as
imperfect information in consumers’ participation. Operational ABMs
that solve Unit Commitment and Economic Dispatch (UCED) have been
applied to study the impact of a high share of renewable energy and
associated policies. For instance, Frey et al. [37] analyzed the risk of
downward price dynamics in the German market premium scheme if
vRES went from price takers to price setters.

Capacity expansion models, also known as Generation Expansion
Planning Models (GEPM), that use optimization techniques often mimic
a benevolent monopolistic system planner taking all decisions. Or,
seen from the energy producers’ perspective, in these types of models,
market participants have perfect information about other agents’ deci-
sions, hence enabling a long-run market equilibrium (assuming perfect
competition), where cost recovery is guaranteed.1 This assumption is
less realistic during an energy transition with an evolving capacity
mix. Furthermore, optimization models usually incorporate a constraint
for the supply to meet the demand and assign a high penalty for
not covering all demand. In contrast, ABMs allow simulating myopic
decisions where agents maximize their profits and no equilibrium is
guaranteed [38], thus allowing insufficient generation adequacy and
counteracting policies to be simulated. Furthermore, ABMs allow in-
corporating agents’ behavior and market rules, for instance in the
commissioning and decommissioning of power plants.

Previous investment ABMs have focused on questions regarding
firms’ heterogeneity, risk aversion, prospect theory in investment be-
havior [39], investment preferences [40], capacity mechanisms [41,42]
and the cross-border effects of these mechanisms [43] as well as the ef-
fect of CO2 policies [5,44]. More recent studies have included flexibility
agents, e.g. [45] considers hydrogen in an ABM with an optimization
model for the dispatch, while [46] investigates the impact of battery
expansion from prosumers. In [25], Anwar et al. present a detailed
comparison of the latest generation expansion ABM models.

Limitations of AMBs are that emergent behavior may be difficult to
interpret, and results may be sensitive to the choice of a specific agent
strategy representation. Another limitation is the model complexity.

Oftentimes, energy system models use different methods to reduce
the time series data and keep computational times feasible. Some
options are to downsample data, cluster data, take representative
hours/weeks by heuristics, or construct synthetic data [47]. Most
studies on generation consider only one weather year, some studies
make stochastic evaluations (i.e. [48]), and fewer studies consider

1 Mixed complementarity problems allow simulating profit-maximizing
gents with imperfect information but assume an equilibrium
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investments based on an hourly time series analysis. Newer methods
consider operational uncertainty with multi-horizon stochastic pro-
gramming but still rely on representative days for investment decisions
(i.e. [49]). Aggregating data can underestimate extreme values and
loose chronology, which is relevant for adequacy analysis. Several
studies have shown that reducing the scale to some hours or weeks
per year results in inaccurate results and tends to underestimate the
flexibility requirements [50]. Hoffmann et al. [51] present a summary
of models that have aggregated data. They explain that grouping
with a too low number of segments or typical days can introduce a
systematic bias and propose an algorithm that finds a trade-off between
these variables. Moreover, Helistö et al. [50] found that the impact of
simplifying operational details is less than that of simplifying temporal
representation, especially while modeling power systems with a large
volume of flexible capacity. Flexibility will be a key enabler of a de-
carbonized power system, and thus it will be more relevant to consider
hourly operational decisions to value storage and flexibility accurately.
Therefore, it is relevant to base investment decisions considering a
high temporal resolution. From the reviewed investment ABMs, only
PowerACE makes an hourly analysis for investment decisions. To avoid
losing accuracy, we also apply hourly modeling resolution in this study.

2.4. Co-simulation

Energy system simulations are becoming increasingly complex,
needing higher temporal and spatial resolution, better uncertainty
representation, and incorporating policy and human behavior [52].
Instead of expanding the scope of each model, co-simulation offers the
possibility of exploiting the strengths of existing models and integrating
exogenous information from other models to keep the computational
complexity low. In a co-simulation, the independent simulators ex-
change their inputs and outputs for a given time step, and based on the
received information each simulator progresses to the next step [53].

Soft-linking, on the other hand, involves utilizing the output of
one model as the input of another model, but not necessarily in real-
time. Soft-linking may be either unidirectional or bidirectional [50].
Most unidirectional soft-linkings have been performed to assess the
operation of previously determined investment results and to incor-
porate the technical details into models with a broader scope [54].
Some studies have used unidirectional soft-linking to integrate spatially
and temporally high-resolution results, [32] optimized the location of
technologies with a power model from a less granular GEPM.

In bi-directional soft-linking, the UCED model results are iteratively
used to update parameters or add constraints to the GEPM [55]. For
example, [56] soft-link the investment optimization model (TIMES)
with an operational probabilistic model to reevaluate the capacity
credits from different technologies and to reassess the security of supply
of the future French power system. To the best of our knowledge,
there has not been a study where the investment decisions are based
iteratively on detailed dispatch results from another ABM.

Co-simulations can be facilitated by the use of workflow manage-
ment tools. One of them is the Spinetoolbox [57]. Spinetoolbox is a
graphical workflow management application that enables the coupling
of energy models with distinct scopes and spatio-temporal resolutions.
The tool manages the data flow between modules and the creation and
visualization of workflows. Several studies have already used the Spine-
toolbox to couple energy models. Among them, [58] formulates joint
day-ahead energy and balancing capacity markets clearing, and [59]
explores the interaction between long-term storage deployment and the
expansion of the transmission capacity.

3. Methodology

3.1. Co-simulation of EMLabpy and AMIRIS

In this publication, we study the suitability of an EoM in a decar-
bonized renewable energy system by co-simulating two ABMs. In the
4
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co-simulation, investment decisions are made by an ABM, EMLabpy,
based on the dispatch results from another ABM for the short-term
market, AMIRIS. In this way, myopic agent behavior with limited
information can be simulated on the operational time scale as well as
for investment decisions. AMIRIS (Agent-based Market model for the
Investigation of Renewable and Integrated energy Systems) captures
the bidding of agents in the day-ahead market, whereas EMLabpy
simulates the myopic investment decision-making process.

AMIRIS – developed by the German Aerospace Center (DLR) [16] –
allows to simulate business-oriented bidding whereby policy incentives,
e.g., for vRES support might be incorporated. In our study, AMIRIS
is applied with a rolling weekly dispatch scheduling of flexible agents
(see 3.2.4). EMLab (Electricity Modelling Laboratory) is a model that
enables the investigation of policies on generation expansion and other
policies [17]. In EMLab, investment decisions are based on the expected
returns from a simplified dispatch algorithm with a segmented load
duration curve. Although it can model storage, the demand is aggre-
gated into a segmented load curve with a limited representation of
flexibility [60]. In contrast, AMIRIS offers the representation of several
flexible technologies, such as electricity storage, electrolyzers, or heat
pumps. Hence, through co-simulating we combined the strengths of
both models.

EMLab was originally developed as a standalone model in Java. In
order to facilitate the integration with AMIRIS, EMLabpy, which was
inspired by EMLab, was developed modularly in Python. In contrast
to the original version of EMLab, no segmented load duration curve is
used anymore, but rather detailed dispatch results from AMIRIS are the
basis for evaluating investment decisions. We execute the co-simulation
of EMLabpy and AMIRIS using the Spinetoolbox.2

3.2. Workflow overview

Fig. 1 depicts an overview of the employed workflow. Fig. 14 in the
appendix shows the workflow setup in Spinetoolbox. Each module is
explained in detail in the following subsections.

Each simulation year commences with the decommissioning of
power plants. Then, the data is prepared to be read by AMIRIS. AMIRIS
then clears the market on an hourly basis. After this, the financial
performance of all power plants is calculated and saved. Subsequently,
investment decisions in EMLabpy are made based on AMIRIS’ market
results for a future year. A data preparation step exports the data for
AMIRIS to clear the market four years ahead (these will be referred to
as look-ahead years) of the simulation year currently evaluated. Previ-
ous to the yearly cycle, an initialization investment loop is executed
to account for the investment decisions made in years prior to the
simulation’s beginning year.

Spinetoolbox allows to manage multiple databases to store different
input and output data. In this workflow, the EMLabpy-database stores
the data to run all modules, while the AMIRIS database stores the
yearly dispatch and market results. The market results are used in the
financial-results module (see in appendix 15 the data workflow).

3.2.1. Initialization investment loop (in EMLabpy)
We solve a brownfield problem. If there is insufficient generation

capacity at the start of a simulation, severe shortages may occur in
the first simulated years. For this reason, an initialization investment
loop is executed to account for investment decisions made before the
simulation.

3.2.2. Decommission (in EMLabpy)
Power plants are decommissioned after their technical lifetime is

reached. This approach allows the investor-agent to have a precise
estimate of the total operational capacity.

2 The code can be accessed at: https://github.com/TradeRES/toolbox-
miris-emlab.

https://github.com/TradeRES/toolbox-amiris-emlab
https://github.com/TradeRES/toolbox-amiris-emlab
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Fig. 1. Overview of the co-simulation methodology.
3.2.3. Market preparation (in EMLabpy)
The market preparation module exports data from the workflow

database and prepares them for the simulation in AMIRIS. Power plants
that should be operational during the simulation year are scheduled.
Each power plant’s capacity, efficiency, and operational costs as well as
overarching parameters, such as fuel prices, demand profiles with their
respective Willingness To Pay (WTP), and vRES profiles are transferred
to AMIRIS inputs.

This module is also executed to simulate the future market for the
investment module 3.2.6. For the future-market preparation step, the
data for 4 years ahead is compiled. All power plants that should be
operational at the time are considered, in that way the energy producer
agent is aware of all investments made up until the current investment
iteration. In addition, potential technologies are added to the list of
future power plants.

3.2.4. Market dispatch (in AMIRIS)
AMIRIS simulates one year of dispatch in hourly resolution using the

input data provided by EMLabpy. Three distinct categories of flexibility
sources of AMIRIS are utilized, namely price-based load shedding,
energy storage, and a generic load shifting agent that is operating with
a given opportunity cost-based price cap.

Load-shedding agents are represented by demand profiles and their
maximum VoLL, which is their WTP for electricity. During periods
of scarcity, loads are curtailed in increasing order of WTPs until the
market is cleared. The scheduling decisions of storage agents are based
on an initial forecast which is calculated by intersecting the bids of
all supply-side agents (conventional and vRES as well as fixed storage
discharging) with the inflexible demand-side agents’ bids. The storage
agent bids are based on the median forecasted electricity price plus a
margin in case of discharging and minus a margin in case of charging.
The margin acts as a buffer for charging and discharging losses.

Although this strategy is robust for representing simultaneously
competing agents, these agents are unaware of the bids of other flexible
agents. Thus, the strategy yields suboptimal results with respect to the
dispatch and agent profitability. More research is required to address
this algorithmic shortcoming. The storage dispatch schedule is planned
for a rolling time horizon of one week. As the price can be affected
by its own bids, as well as other flexible agents’ bids, if the intended
storage dispatch schedule cannot be met, i.e. the storage bids cannot
be fulfilled due to price deviations, the storage trader calculates a new
schedule in the subsequent hour to account for the differing state of
charge of the storage unit.

The generic load-shifting agent is represented by three parameters:
an opportunity cost-based price cap, a monthly flexible demand, and a
maximum accepted price. In each forecasting period, the agent chooses
the lowest price hours to cover the demand which is assumed to be
5

fully flexible within that given planning period. The additional load
added by this agent may increase the price. Therefore, in the scheduling
process, price changes due to its own dispatch are taken into account.
If some demand cannot be fulfilled in the current scheduling window,
demand might be shed at first, but this unfulfilled demand is transferred
to the subsequent rolling planning window to be fulfilled at a later time.

3.2.5. Financial results (in EMLabpy)
Following the market clearing, loans and down payments are regis-

tered. The equity payments are paid during the construction time (after
the permit time is concluded). The loans are paid during the lifetime
of the power plants starting from the commissioning year. Each power
plant’s spot market revenues, production, total costs, Internal Rate of
Return (IRR), and Net Present Value (NPV) are saved in a database. The
yearly costs (fixed costs, variable costs, loans, and down payments) and
revenues are totaled and stored for each single energy producer.

3.2.6. Investment decisions (in EMLabpy)
Investment decisions are based on the investors’ future expectations

which are derived from the AMIRIS future market outcomes and the
technical and financial conditions, as shown in Fig. 2. First, EMLabpy
evaluates the physical limitations of each technology. If the capacity
limits per technology, as specified in 12, have not been exceeded, the
NPV is computed for each technology as shown in algorithm 1, and the
technology with the highest positive profitability expectation is chosen
for investment (see Fig. 2).

In EMLabpy, generators’ commissioning is scheduled for the same
year for which future market expectations are calculated. However, as
investments are made iteratively no equilibrium is guaranteed. Invest-
ment decisions take into consideration previous investments but do not
account for subsequent investments; consequently, their profitability
may be lower than anticipated. Following each investment decision,
the future market is reevaluated in AMIRIS taking into account the new
investments.

To reduce run time, 1 MW of each investable technology is evalu-
ated on the future market. If the result of this 1 MW is positive, larger
capacities are installed after a technology is chosen, as specified in
the Table 11. To prevent overinvestments, as the NPV of the evalu-
ated technologies approaches zero, the tested capacity is increased for
subsequent investment iterations.
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Algorithm 1 Investment algorithm
function < calculate NPV>

ER = (1 - DR)
Debt = DR * CAPEX
DP = (CAPEX * ER) / TC
Calculate 𝐴, using (1)
for 𝑦𝑒𝑎𝑟 ∈ {0… 𝑇 C + 𝑇 EL} do

if then𝑦𝑒𝑎𝑟 < 𝑇 C
𝐶𝑎𝑠ℎ𝐹 𝑙𝑜𝑤[𝑦𝑒𝑎𝑟] = −𝐷𝑃

else
𝐶𝑎𝑠ℎ𝐹 𝑙𝑜𝑤[𝑦𝑒𝑎𝑟] = 𝑅𝑒𝑣 − 𝐹𝐶 − 𝑉 𝐶 − 𝐴

end if
end for
calculate 𝑁𝑃𝑉 using (2)

end function

3

= 𝐷𝑒𝑏𝑡
1
𝑖 (1 −

1
(1+𝑖)𝑇EL

)
(1)

𝑃𝑉 =
∑ 𝐶𝑎𝑠ℎ𝐹 𝑙𝑜𝑤𝑡

(1 + 𝜌)𝑡
(2)

.3. Model verification of the investment algorithm

The EMLabpy investment module was validated by simulating an
gent with perfect foresight and executing a scenario with fixed costs,
eather profiles, and no technical constraints. We observed that all the

echnologies in which it was invested presented positive NPVs and in-
estment cost recovery on average close to the input Weighted Average
ost of Capital (WACC) of 7%. This demonstrates that the investment
lgorithm performs as anticipated by investing in technologies and
apacities until they are no longer profitable.

. Experiment design: simulating a future decarbonized power
ystem

Using the workflow described above, we simulate a decarbonized
ower system based in the Netherlands to investigate the dynamics of a
uture power system and analyze the impact of weather uncertainty on
he market and its long-term implications. In this section, we describe
he data and the scenarios.

.1. Data

.1.1. Future weather data
Technological advancements, such as the deployment of higher

ind turbine hub heights, efficiency improvements, and longer blades
re expected to increase the full load hours of wind and solar energy.
ffshore wind farms have been and will continue to be placed further

rom the shore, being able to capture a higher wind speed spectrum.
o scale the historical Capacity Factor (CF) time series, an algorithm is
pplied to increase the full load hours per technology to future expected
apacity factors, according to IRENA [61] and IEA [62], see Table 12.
he code for the augmentation of the profiles can be found in [63]. The
istoric weather profiles are taken from the Merra2 database.4

3 A = Annuity, CAPEX = Capital Cost, FC = Fixed cost, DP = Downpayment
DR = Debt ratio, ER = Equity ratio, i = Interest rate, Rev =Revenues, 𝜌 =

equity interest rate , TC = Construction time , TEL = Expected Lifetime , VC =
Variable cost.

4 www.renewables.ninja [30,64]
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4.1.2. Load representation — weather-driven demand
We assume that household, commercial, and electric vehicle de-

mands are triggered by consumer routines (weekdays), whereas heat
pump demand is driven by the outdoor temperature. To determine
the heating demand according to the weather and its correlation with
vRES generation, we correlate the historical data for temperature with
the hourly space heat requirements for the years (2008–2016) based
on [65]. Due to the lack of data for the rest of the years (1980–2007
and 2017–2019), we perform a linear regression considering the hourly
variations in heating demand. 𝑚ℎ and 𝑛ℎ are the slope and intercept
calculated for every hour of the day. The regression for space heat
demand is performed for temperatures under 18 ◦C. 𝑆𝐻𝑅𝑡 represents
the calculated space heat demand (MW) demand at time 𝑡 and is always
a non-negative value.

𝑆𝐻𝑅𝑡 = 𝑚ℎ ⋅ 𝑇𝑡 + 𝑛ℎ (3)

We assume a fully electrified space heating demand with Air Source
Heat Pumps (ASHP) and Ground Source Heat Pumps (GSHP). Their
Coefficients Of Performance (COP) correlate with existing temperatures
from the same database [65], but without considering hour-of-the-
day differences. We considered ASHP and GSHP with radiators and
excluded high temperatures to achieve the highest correlations. The
correlation for ASHP is done with temperatures below 13 ◦C, while for
GSHP below 15 ◦C.

𝐶𝑂𝑃𝐺𝑆𝐻𝑃
𝑡 = 𝑚𝐺𝑆𝐻𝑃 ⋅ 𝑇𝑡 + 𝑛𝐺𝑆𝐻𝑃 ∀𝐶𝑂𝑃𝐺𝑆𝐻𝑃 ∈ 2.5 < 𝐶𝑂𝑃𝐺𝑆𝐻𝑃 < 6.32

(4)

𝐶𝑂𝑃𝐴𝑆𝐻𝑃
𝑡 = 𝑚𝐴𝑆𝐻𝑃 ⋅𝑇𝑡+𝑛𝐴𝑆𝐻𝑃 ∀𝐶𝑂𝑃𝐴𝑆𝐻𝑃 ∈ 1 < 𝐶𝑂𝑃𝐴𝑆𝐻𝑃 < 4.06 (5)

Finally, we obtain the electricity consumption demand for space
heating 𝑆𝐻𝐷𝑡 by considering their hourly COP and the market shares
(𝑀𝑆) of 0.6 for ASHP and 0.4 for GSHP, following [66] for households.

𝑆𝐻𝐷𝑡 = 𝑀𝑆𝐴𝑆𝐻𝑃 ⋅𝑆𝐻𝑅𝑡∕𝐶𝑂𝑃𝐴𝑆𝐻𝑃
𝑡 +𝑀𝑆𝐺𝑆𝐻𝑃 ⋅𝑆𝐻𝑅𝑡∕𝐶𝑂𝑃𝐺𝑆𝐻𝑃

𝑡 (6)

4.1.3. Flexible load representation — hydrogen, and industrial heating
demand

While the focus of our research is on electricity market design, we
make some assumptions about the composition of the future energy sys-
tem. The production and storage of hydrogen are expected to provide
an important function for periods with insufficient vRES. In Europe,
hydrogen will be primarily used to decarbonize hard-to-abate sectors
such as the industrial and transportation (e.g., maritime, aviation)
sectors [67,68]; therefore, we assumed that electrolyzer operational
costs and storage costs will be mainly borne by sectors other than the
electricity sector. As a result, we do not simulate hydrogen storage
investments or operations, as we only consider the production of green
hydrogen and its use in the power sector.

The electricity demand to produce hydrogen is modeled as flex-
ible (limited to the available electrolyzers’ capacity). Hydrogen pro-
duction is interrupted if the electricity price exceeds 33.4 e/MWh,
which corresponds to the expected future market price of hydrogen
(45 e/MWh [69]) times the efficiency of electrolysis (74%). Thus,
hydrogen is produced when vRES production is sufficiently high and
power prices are low. We simulated a completely flexible hydrogen
production by simulating electrolysis as a load-shedding unit. As a
simplification, we consider constant hydrogen prices under the assump-
tion that in the future, there will be sufficient storage capacity and a
well-established hydrogen market. In reality, prices will vary depend-
ing on several factors, including vRES generation, the diversification
of hydrogen sources, the capacity and adaptability of electrolyzers,
the availability of hydrogen transportation, imports, storage, and the

interaction between the electricity and hydrogen markets.

http://www.renewables.ninja
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Fig. 2. The investment module can be located in the workflow overview 1.
Table 1
Summary of flexibilities in the model.
Load Characteristics Type of flexibility

Flexible consumer Percentage of total load and grouped by VoLL Load Shedder
Hydrogen Constant demand, limited by electrolyzer capacity as well as prices Load Shedder
Industrial heat load-shifting unit with an opportunity cost-based price cap Load Shifter
Heat pump Yearly demand as a function of hourly temperature Inflexible
EV scaled up to EV share in 2050 Inflexible
We model industrial heating as a price-capped load-shifting agent
(see Section 3.2.4). The yearly flexible industrial heating demand is
extracted from COMPETES, which takes as an input ENTSO-E data [69].
If electricity prices are low, industrial demand is met with electric
furnaces; otherwise, demand is shed or natural gas is used. Hence, the
price cap for the industrial demand was 48.6 Euro/MWh.

For the rest of the demand, the ENTSO-E demand time series
is scaled according to the 2050 global ambition scenario from the
TYNDP [69] (6.1 TWh EVs and 144 TWh inflexible demand). Likewise,
the electric vehicle profile load is based on 2015 but is scaled to 2050
to account for the projected fleet size. The EV profiles are modeled
using the Charging Profiles of Electric Vehicles model (ChaProEV) [70],
which uses electric vehicle parameters, user activities, and locations to
generate charging profiles. The demand for heat pumps is included, as
described in Section 4.1.2 (see Table 1).

4.1.4. Load representation — load shedding
Currently, AMIRIS has a limited capability of modeling competing

load shifter strategies. To account for a high demand response, we
model different load shedding clusters. Based on literature about load
shedding in The Netherlands and Europe [71–73], we assume that 20%
of the conventional demand has a lower VoLL than the market cap
(4,000e/MWh). This sheddable demand includes EVs and heat pumps,
but excludes industrial heating and electrolyzers demand. In summary,
we model a highly flexible system in which 51% of the loads are
sheddable (45% is the sheddable demand from electrolyzers and 6% has
7

a lower VOLL than the market price cap), 13% of the loads are shiftable
(from industrial heat), and only 35% are inflexible (see Table 2).

4.1.5. Initial power plants
The initial 2050 generation capacity mix of a stylized future Dutch

system is extracted from the results of the optimization model COM-
PETES [72]. COMPETES is an optimization model used by the Dutch
government in the country’s Energy and Climate Plans [74]. The initial
capacities and flexible resources resemble those planned in the Energy
and Climate Plans. As nuclear technology costs are highly uncertain and
its investments remain political, these tend to be centrally planned. For
this reason, nuclear capacity is set constant according to COMPETES
results. Similarly, the Electrolyzers capacity is also taken from COM-
PETES capacity of 41 GW, due to its better representation of sector
coupling. From these initial capacities, we run the EMLabpy-AMIRIS
workflow for 40 weather years with constant prices, temperature-
dependent demand profiles, and capacity factor profiles (both will be
referred to as weather profiles), achieving a stable capacity based on
ABMs, which then we use as a base for the simulations.

The optimization and the ABM models resulted in different capacity
mixes for several reasons. COMPETES makes a perfect foresight dis-
patch for a whole year, while within AMIRIS flexibility agents create
weekly schedules. AMIRIS currently has a limitation for simulating the
flexible operation of flexible sources simultaneously (see Section 3.2.4).
The operation of combined heat and power plants, Power-to-H2, gas-to-
H2, and H2 storage as well as demand side response can be optimized
within COMPETES, but not in AMIRIS. However, the largest difference
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Table 2
Load flexibilities percentage from total demand.

Load Type of flexibility Type of load shedder Load share VOLL [e/MWh]

Conventional (residential, tertiary,
transport, electrical appliances
from industry, agriculture, others)

Sheddable
High LS 3.1% 1500
Medium LS 1.55% 500
Low LS 1.55% 250

Inflexible 35.0% 4000

Hydrogen Sheddable 45.6% 4000
Industrial heating Shiftable 13.2% 4000
Table 3
Scenarios.

Scenario name Impact of weather
variability

Investments based on
extreme weather

Hydrogen price

Simulation name Baseline (B) Increasing
demand (ID)

Stochastic
profiles (SP)

Low vRES
(EL)

Median vRES
(EM)

High vRES
(EH)

High hydrogen
price (HH)

Weather profile year for
investment

Median vRES Median vRES Median vRES Low vRES Median vRES High vRES Median vRES

Number of weather years
for dispatch

1 1 40 40 40 40 40

Weather profile years for
dispatch

Median vRES Median vRES stochastic stochastic stochastic stochastic stochastic

Number of simulations 1 1 10 1 1 1 1

Demand increase no yes no no no no no

Hydrogen price 45 e/MWh 45 e/MWh 45 e/MWh 45 e/MWh 45 e/MWh 45 e/MWh 90 e/MWh
is caused by the absence of imports/exports in the ABMs. Cross-border
trade can greatly contribute to the reliability of neighboring countries
resulting in less installed capacity. We simulate the Netherlands as an
island because modeling all dimensions of power system models (space,
complexity, and time) would be too computationally intensive for the
purpose of this study.

The initial power plants are assigned evenly distributed ages to be
gradually replaced. Photovoltaic (rooftop and utility system), wind on-
shore, wind offshore, lithium batteries, biomass, and hydrogen turbines
are potential investment technologies.

4.2. Scenarios

In all simulations, investment costs, fuel, and CO2 prices are con-
stant (see Tables 9–11) present the rest of the data used in each
scenario. In all simulations, we considered one agent investor, as the
purpose is to study weather impact rather than dynamics with different
types of investors. Each simulation is executed for a simulation horizon
of 40 years. We use a combination of scenarios to study the impact
of weather variability, the impact of basing investment decisions in
different weather years, and the impact of hydrogen prices on future
system adequacy. Table 3 presents an overview of the simulations.

4.2.1. Weather impact simulations
It is our impression that energy producers tend to estimate future

cash flows by multiplying the expected energy yield times the expected
electricity prices, either for a single scenario or for a handful of elec-
tricity price estimations, as described in [75]. Price cannibalization5

can be estimated using a regression equation that represents the rela-
tionship between an increasing share of vRES and decreasing prices, as
explained in [76].

In EMLabpy, to resemble a risk-neutral agent (who considers P50 for
investments), investment decisions are based on a weather year with a
median renewable production. An alternative is to select the year in
which the market revenues are median, but these revenues are highly
dependent on the number of scarcity hours. A fixed capacity mix from

5 Market value reductions as a function of the technology’s market share.
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t

ABMs (as described in Section 4.1.5) is evaluated with 40 yearly vRES
profiles (augmented from 1980 to 2019) and the corresponding demand
profiles. The year with a median renewable energy production is 2004,
which we select as the representative year.

In the long run, dependence on weather may cause higher un-
certainties than demand growth. Both uncertainties are compared as
follows. In the Baseline scenario (B), the actual weather profiles serve
as the basis for investors’ decisions, granting them perfect foresight.
In a second benchmark scenario, the demand and weather profiles
remain constant but demand presents a stochastic Increased Demand
(ID). In this scenario, demand increases with a triangular trend, as
done in [22] (min= 0.99, max=1.03, and mode=1.02). The future
demand is estimated with simple linear regression from the last three
years.6 Finally, in the Stochastic Profiles (SP) scenario we run ten
simulations with no increase in demand, but with varying weather
profiles. Every year, the market clearing is based on randomly selected
historical weather profiles, whereas investment decisions are based on
a representative year, as shown in Fig. 3.

4.2.2. Investments based on extreme weather
To compare the effects of investors’ risk adversity, we analyze

investment decisions based on three extreme energy yield estimations.
These scenarios are a year with the Energy yield Low (EL), the Energy
yield Median (EM), and the Energy yield High (EH). In particular, 2010
was the year with the lowest production of renewable energy, while
1990 was the year with the highest production.

4.2.3. Hydrogen price
Finally, we simulate a scenario where the hydrogen price was

double than the one used in the rest of the simulations, which was based
on the ENTSO-E global ambition scenario [69].

4.3. Key performance indicators of the results

To compare the results of the co-simulation we use the following
Key Performance Indicators (KPI) and their inter-annual variability

6 For investments made within the initialization loop, the assumption is that
he demand increases with the rate of the mode.
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Fig. 3. Stochastic profiles simulations’ workflow.
Fig. 4. Yearly installed capacity and generation by energy technology.
(coefficient of variance). The KPIs are used to assess the overall system
and performance by technology.

• Adequacy KPIs

– Energy Not Served (ENS) (MWh/year): Energy that is not
supplied due to insufficient capacity resources to meet the
inflexible demand.7

– Loss Of Load Expectation (LOLE) (hours/year): Number of
hours in which resources are insufficient to meet the de-
mand

– Hydrogen production (MWh): Power consumed by elec-
trolyzers to produce hydrogen

• Financial KPIs

– Monthly average electricity prices (e/MWh)
– Weighted averaged yearly electricity prices (e/MWh)

𝑊𝐴𝑉 𝐺𝑝𝑟𝑖𝑐𝑒𝑠𝑦 =
∑𝑡=8760

𝑡=1 𝑝𝑟𝑖𝑐𝑒𝑠𝑡 ⋅ 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑡
∑𝑡=8760

𝑡=1 𝑝𝑟𝑖𝑐𝑒𝑠𝑡
(7)

– Cost recovery (%): Yearly total market cost recovery,

𝐶𝑜𝑠𝑡𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 = 𝑅𝑒𝑣
𝐶𝑎𝑝𝐸𝑋 + 𝑉 𝐶 + 𝐹𝐶 + 𝐴

(8)

where the ideal would be for generators to recover 100% of
their investments.

5. Results and discussion

In this section, we first analyze the installed capacity and price
dynamics of a single stochastic profile simulation. Then we contrast the
adequacy and financial KPI in the three scenarios considering weather
variability (B, ID, and SP). Next, we analyze the results of simulations
in which investors base their investment decisions on extreme weather

7 Does not include the energy not served by electrolyzers.
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profiles. Following this, we analyze a simulation with higher hydrogen
prices. Finally, we draw the main policy implications of the study
presenting the main limitations of the model and future research.

5.1. Impact of weather variability

5.1.1. Installed capacity
Since the investment algorithm was based on the same weather

year throughout the whole simulation, the generation mix remained
relatively constant (see Fig. 4(a)). Investment costs for wind offshore
are expected to be 4 times larger than those of PV (Wind offshore
capital costs are 1,444 e/kW compared to PV capital costs of 350
e/kW, see Table 10), as a result, solar PV energy composed the largest
proportion of the portfolio. In contrast, offshore wind total generation
was 30% higher than solar generation, as it has a higher capacity factor
(Wind offshore capacity factor is 51%, in contrast to 16% from solar
PV).

The high proportion of flexible load (primarily from electrolyzers)
reduced the number of hours during which electricity prices were low.
For this reason, the arbitrage opportunity for lithium battery storage
was reduced and no investments were made in this technology. In
AMIRIS, the representation of multiple flexibilities is limited, and tech-
nical details, such as ramping constraints, are not considered. There-
fore, dispatchable technologies were considered more flexible than they
actually are. As a result, nuclear energy was overestimated, while the
need for rapid response technologies like batteries was underestimated.

5.1.2. Electricity price dynamics
Nowadays the price in electricity markets is mainly driven by gen-

erators’s marginal costs. In future power systems, the disparity between
the near-to-zero marginal cost of vRES and that of fuel-based technolo-
gies will continue to exist. However, electricity prices will be mostly set
by flexible demand. Hydrogen will be produced when prices are below
the hydrogen market price. Similarly, the industrial heat demand will
be satisfied when prices are below the costs of using natural gas boilers.
Fig. 5 illustrates the price duration curve for one year, with each color
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Fig. 5. Price setting technologies in year of a SP simulations.
Fig. 6. Monthly generation and consumption of a SP simulation.
representing the price-setting generator or demand. Electrolyzers and
industrial heat demand set the price most of the time.

Although we modeled a highly flexible system, there was not suffi-
cient investment in flexible resources to prevent shortages in years with
high demand and low vRES production. During the winter, heat pumps
increased demand during periods of low renewable energy production,
resulting in involuntary load-shedding despite a decrease in hydrogen
production (see Fig. 6). This occurs even though the industrial load
was totally flexible. In practice, industrial processes may not be able to
completely switch between using electricity and other fuels, nor may
they be able to shift the load for extended periods of time.

Analyzing the monthly average electricity prices, we observed a
large disparity between the winter months and the rest of the year. For
instance, in June average electricity prices were 33.9 e/MWh, whereas
in January the average went up to 71.2 e/MWh, (see Fig. 7). Extreme
average monthly prices above 150 e/MWh were repeatedly seen as a
result of a correlation of low vRES and low temperatures. This indicates
that future vRES-based power systems will require long-term storage
(both thermal and electrical), demand-side flexibility, and mechanisms
that incentivize them.

5.1.3. Adequacy KPIs
The adequacy of future systems will be vulnerable to weather

variations. While in the baseline scenario and the increasing-demand
scenarios, the average LOLE was 3 h per year, in the SP scenario,
shortages increased to an average of 6.7 h (see Table 4). This is more
than the current LOLE standard in the Netherlands, which is 4 h per
year [77]. The average LOLE in SP scenarios was almost twice the
current standard, but in the worst year, the shortages went up to 48 h.
This reveals that an EoM design might hinder the system’s adequacy as
the capacity will not be able to guarantee sufficient supply in the years
with low vRES.
10
Fig. 7. Monthly average electricity prices of stochastic-profiles simulations.

Shortages were the main cause of higher electricity prices and cost
recovery. As shown in Fig. 9, the years with the highest shortages
and ENS were also the years with the highest electricity prices and
years with the highest cost recovery. In contrast, years with high vRES
energy yield worsened the cost recovery. The yearly cost recovery of
the total system consists of market revenues and costs, including down
payments and loans. In the years when there were more power plants
under construction, down payments caused a minor decrease in cost
recovery, as shown in Fig. 8. Note that a share of loans remained
constant, which corresponds to the loans of nuclear plants that were
not decommissioned.
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Fig. 8. Total revenues and expenses in a SP simulation.
Fig. 9. KPIs in the Baseline scenario, in the ID scenario, and the SP scenario in the realized dispatch.
In scenario ID, higher demand levels required an increase in in-
stalled capacity, resulting in an increase in hydrogen production, from
147 TWh in simulation B to 158 TWh in simulation ID. However, the
inter-annual variability increased by a factor of more than 2 in the ID
simulation and by a factor of more than 5 in the SP simulation (see
Table 4).

5.1.4. Financial KPIs
The Coefficient Of Variance (COV) for the weighted-average annual

electricity prices increased from 1% under simulation B to 4% in the ID
simulation 13% in the SP simulations. The COV of monthly electricity
prices increased from 32% in simulation B to 35% in the ID simulation,
and to 48% in the SP simulations.

In the SP scenarios, the cost recovery volatility was more than
three times that of the scenario with no weather stochasticity (from
3% to 9% COV). The average cost recovery increased from 108% in
the Baseline scenario to 109% in the ID scenario and 112% in the
SP scenario. Nevertheless, the highest cost recovery in a single year
rose to 148%, reflecting the windfall profits that would occur due
to prolonged shortages. Scarcities in years with low vRES and the
resulting high electricity prices allowed producers to recover their costs
11
but caused high volatile returns and high volatile monthly average
electricity prices.

In years with low renewable yield and high electricity prices, hy-
drogen production was relatively low. The electrolysis production in
the stochastic-profiles scenario ranged between 94 and 148 TWh and
its volatility (11%) was five times that of the fix-profiles scenario (2%).
In these simulations, a fixed hydrogen price was assumed; however,
the hydrogen price will be very dependent on the H2 interconnections,
storage capacities, and the flexibility of other sectors. Furthermore,
the volatile electrolyzers’ operation would impact the price of hydro-
gen. If hydrogen resources are insufficiently diversified or intercon-
nections limited, a year with low renewable energy would result in
lower H2 production and high hydrogen prices. As hydrogen turbines
would be dispatched at a higher cost, electricity prices could rise even
further. Calculating the IRR over the entire lifetime of new power plants
(for plants that are built and decommissioned during the simulations),
H2 turbines presented the highest and most volatile returns, followed
by wind onshore, offshore, and PV (see Fig. 10). Since dispatchable
technologies were operational during most scarcity events, they gener-
ated the majority of their revenue during these instances. In contrast,
vRES did not always operate during scarcity hours and therefore did not
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Table 4
Adequacy and financial KPIs of simulations about the impact of weather variability.

Baseline Increasing demand Stochastic profiles

ENS MWh
mean 22,495 30,072 50,359
COV 5% 14% 119%
min 21,762 22,868 0
max 24,786 40,690 392,416

LOLE hours
mean 3.0 3.1 6.7
COV 0% 10% 113%
min 3 3 0
max 3 5 48

Yearly WAVG electricity prices e/MWh
mean 36 38 37
COV 1% 4% 13%
min 35 35 31
max 37 43 57

Monthly average electricity prices e/MWh
mean 44 46 46
COV 32% 35% 48%
min 31 31 27
max 88 113 252

Hydrogen production TWh
mean 147 158 148
COV 2% 5% 11%
min 144 145 103
max 157 173 189

Cost recovery %
mean 108 109 112
COV 3% 4% 9%
min 99 98 94
max 114 117 148
Fig. 10. IRRs of new plants under SP scenarios.

receive these scarcity rents. For this reason, the inter-annual volatility
of vRES’s profits was smaller.

As described in the previous section, the total cost recovery was
higher in the ID scenarios and even higher in the SP scenarios. Nev-
ertheless, the hydrogen turbine had remarkably high volatile returns.
In one simulation, the hydrogen turbine operational profits were neg-
ative for five consecutive years8 (see Fig. 11), and also very high in
some years. The profitability of all technologies, particularly that of
hydrogen-fueled technologies, can be even more volatile as hydrogen
price is unlikely to remain constant. This poses the question of whether
financial instruments would exist for a technology that may be un-
profitable for some consecutive years. Furthermore, the nuclear plants’
operational profits were consistently the most negative and volatile
(see Table 13). This illustrates that in a highly flexible system, where
electrolyzers with low opportunity costs largely determine prices, base
load technologies may struggle to recoup their expenses.

8 In cash flow calculations, the down payments were registered during the
building time and not considered in operational profits
12
Out of the vRES technologies, solar energy showed the lowest aver-
age profits, which is due to the cannibalization effect. The investment
algorithm frequently invested in this technology, but subsequent invest-
ments diminished their profitability. The anticipated high profits from
onshore wind would have encouraged additional onshore investments,
but its technical capacity limit (12 GW) [78] was reached. Hence, it
presented the highest returns among the vRES technologies.

5.2. Investments based on extreme weather years

Choosing the median weather year when making investment de-
cisions resembles the behavior of risk-neutral investors. In practice,
investors tend to be risk-averse and rather conservative when esti-
mating the renewable yield. We ran two additional simulations where
the realized dispatch was based on stochastic weather years, but the
investment algorithm was based on a year with an Energy yield High
(EH) vRES production (1990) and an Energy yield Low (EL) vRES
production (2010) for the investment algorithm.

In EH scenario, the installed capacity was 121 GW, i.e. 11.1%
less capacity than considering the median vRES (see Fig. 12). The re-
duced investments caused scarcities (37.8 h on average), high weighted
average electricity prices (44 e/MWh on average), and led to a high-
cost recovery (133% on average). In this case, the hydrogen turbine
generators obtained extremely high returns (see Table 6), due to the
frequent shortages. Alternatively, if investment decisions were based on
an EL year, investments added up to 150 GW, i.e. 9.9% more capacity
than with median vRES yield. The weighted average electricity prices
were lower (37.4 e/MWh on average), and market revenues were
insufficient to cover the costs (cost recovery is 98% on average). In
this scenario, only wind energy generators recovered their investments,
and the wind onshore presented the highest returns (see Table 6). The
algorithm would have invested more in this profitable technology but
the technical potential was quickly reached. The offshore wind energy
yield was the most variable among vRES technologies, so considering
a year with high renewable energy yield led to a portfolio with a
higher share of wind offshore, even if the total capacity was smaller.
Investing based on a high-vRES yield resulted in the installation of
49 GW of wind offshore, compared to 37 GW when using the median
return profile and 34 GW when using the lowest return vRES profile.



Applied Energy 360 (2024) 122695I.S. Jimenez et al.
Table 5
Investments considering extreme weather years.

Low vRES Median vRES High vRES
Installed capacity GW 151 137 122

ENS Avg [MWh] 3858 50888 286601
COV 244% 123% 87%

LOLE Avg [hours] 0.5 6.8 37.8
COV 231% 115% 80%

Yearly WAVG electricity prices Avg [e/MWh] 33.5 37.4 44.2
COV 9% 14% 22%

Monthly electricity prices Avg [e/MWh] 40.4 45.7 62.1
COV 27% 49% 79%

Hydrogen production Avg [TWh] 148 148 171
COV 11% 12% 13%

Cost recovery Avg [%] 98.6 111.8 133.4
COV 5% 10% 17%
Fig. 11. Annual operational profits per MW in the stochastic-profiles scenario.
Fig. 12. Last simulation year installed capacity in scenarios where investments were
based on extreme weather years.

Electrolyzers’ activation depended on the number of hours in which
the electricity price was less than the market price of hydrogen. In the
simulation with high-vRES, offshore wind energy share in the capacity
mix was greater, resulting in more hours with low electricity prices and
thus, more arbitrage opportunities for electrolyzers (see 5). For this
reason, hydrogen production increased in the high-VRES simulation,
even though less capacity was installed overall.
13
Table 6
Average IRR per technology with extreme weather investments.

Technology Low RES Median RES High RES
PV utility −1% 6% 13%
WTG Onshore 16% 18% 22%
Hydrogen turbine – 19% 99%
WTG Offshore 7% 8% 9%

Base Double
HH2
price

Installed capacity GW 137 172

ENS Avg [MWh] 50 888 71 214
COV 123% 93%

LOLE Avg [hours] 6.8 9.5
COV 115% 89%

Yearly weighted average
electricity prices

Avg [e/MWh] 37.4 43.4
COV 14% 16%

Monthly average
electricity prices

Avg [e/MWh] 45.7 57.1
COV 49% 42%

Hydrogen production Avg [TWh] 148 273
COV 12% 8%

Cost recovery Avg [%] 111.8 127.2
COV 10% 10%
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Fig. 13. Final Capacities of one SP and high hydrogen price simulation.

5.3. Higher hydrogen price

Finally, an additional simulation with a hydrogen price twice as
high demonstrated the double side effect of hydrogen prices. In this
analysis, we assume that the price of hydrogen remains constant,
although in reality, it will be strongly influenced by the annual vRES
production. We also considered a fixed electrolyzer capacity; however,
the installed capacity of electrolyzers will ultimately be influenced by
the hydrogen price.

On one side a higher hydrogen price incentivized more investments,
especially in wind offshore generators, which had a broader energy
generation distribution than solar energy. The technical limit of wind
offshore (70 GW) was reached in contrast to the 37 GW with lower
hydrogen price, which raised the average profitability of offshore tur-
bines from 8 to 15%. On the other side, it decreased the profitability
of hydrogen turbines, deterred investment in these technologies, and
exacerbated shortages. 10 GW of hydrogen turbines were installed, in
contrast with the lower hydrogen price simulations, where 13 GW were
installed (see Fig. 13)

Although the inter-annual volatility of shortages decreases, scarcity
hours increased on average from 6.8 to 9.5 h per year. The reliability
of a system was ultimately determined by the installation of sufficient
peak-load dispatchable technologies. More installed capacity nearly
doubled the power used by electrolyzers, to an average of 273 TWh and
decreased its inter-annual variability. Similarly, average yearly prices
also rose but their inter-annual volatility slightly increased. Finally,
the cost recovery increased, as there was more generation at higher
prices.

5.4. Policy implications

Our results show that future vRES-based energy systems with an
EoM design will be susceptible to weather volatility. The uncertainty
regarding energy supply will be larger than the current uncertainty
regarding demand levels. This can cause large shortages and high inter-
annual revenue volatility. As a result, investors can be expected to have
difficulty financing investments with high CAPEX, as there will be a
poor business case for generation and energy storage units that are only
needed in unfavorable weather years. Moreover, as Neuhoff [79] ex-
plains, uncertain returns increase financing costs, decrease investments,
and diminish consumer welfare. Therefore, the adoption of revenue-
stabilization mechanisms is necessary both for achieving security of
supply and for reducing the cost to consumers.

Regarding hydrogen production and system integration, Mikovits
et al. [80] modeled a system where the wind power capacity covers
on average the power demand for electrolyzers and found that a large
capacity of wind turbines and electrolyzers can decrease the need
14
for backup capacity. We found that the installed capacity of offshore
energy will depend on the hydrogen price, and a larger share of wind
offshore increases hydrogen production. However, we observed that the
volume of dispatchable generation capacity ultimately determined the
number of shortages.

Finally, a future market design should incentivize sufficient invest-
ment but also limit earnings in the case of prolonged high prices, as
consumers suffer as much from the high prices during a prolonged
shortage period as from the outages themselves. We observed that
price spikes and adequacy requirements predominantly occur during
cold months when heating needs arise. The significant monthly and
inter-annual price variations due to weather volatility present another
important challenge of the energy transition, which is consumer price
protection. Highly volatile monthly electricity prices also highlight the
need to ensure sufficient seasonal storage, demand flexibility, and en-
ergy system integration with energy vectors such as hydrogen. Market
design can facilitate the investment of technologies with high capacity
factors through CRMs. However, as [81] recognized, the estimate of the
contribution of each technology to peak load, the estimate of values of
lost load, the probability of peak load, and the probability of generation
availability are becoming increasingly challenging.

5.5. Model limitations

In a future system, cross-border transmission can greatly influ-
ence the capacity that is required to meet adequacy standards, as
imports can mitigate scarcity events. Astier et al. [81] demonstrate
that reliability standards can lead to socially optimal results only if
adequacy assessment assumptions are coordinated between neighbor-
ing countries. Ignoring cross-border trade can lead to overestimating
electricity prices ([78] quantifies this effect to up to 40%), but it is
uncertain to what extent countries are willing to rely on neighboring
power supplies to ensure adequacy. However, in our co-simulation of
two ABMs, modeling multiple European countries would have been
computationally infeasible. Therefore, we did not consider internal or
cross-border transmission constraints. Furthermore, the model does not
consider sector coupling, resulting in a capacity mix different from the
optimization results.

Finally, it is worth mentioning two additional factors not analyzed
in this study that could further compromise the reliability of the system.
Nowadays, a minority of outages are caused by insufficient installed
capacity, while distribution and transmission inefficiencies and the
correlation of extreme weather events with infrastructure failures have
been the main reasons for the most serious shortages [26]. Further-
more, extreme weather events are expected to intensify due to climate
change effects. With fatter distribution tails, building sufficient backup
capacities will also be more relevant.

5.6. Lessons from co-simulating

Co-simulating can be time-intensive, as it requires careful coordi-
nation and data management among the involved models. However,
it also allows the utilization of a subset of the data in each module
as needed. As portions of the problem are divided, this can keep
the computation size manageable for simulations spanning multiple
decades. Moreover, developing models in a modular manner can allow
reusability and parallel model development. The ABMs applied here are
built in a way to allow coupling with other models.9

9 In EMLabpy all parameters and inputs are modifiable in a spreadsheet
format
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5.7. Future work

In this analysis, we used a fixed weather year for the investment
decisions and fixed fuel prices. Future research will focus on the
transition pathway, where investors do not have complete certainty on
the decommissions, fuel prices, and most importantly the CO2 price.
Further, transition scenarios towards 2050 incorporating policy inter-
ventions such as capacity remuneration mechanisms and renewable
energy support will be investigated.

6. Conclusions

We presented a co-simulation of an agent-based model of myopic,
profit-seeking investors with an operational ABM that simulates the
power market on an hourly basis. With this model set-up, we simulated
model-endogenous investments in a future, zero-carbon energy system,
while considering the variability of renewable energy as well as energy
storage and demand flexibility, in order to assess system adequacy in
such a system. We performed our analyses for an energy-only market,
i.e. a market in which the price of energy drives investment.

We found that in a market based on vRES, the price will be set
predominantly by the flexibility of demand, in particular electrolyzers’
demand. The production of hydrogen can keep electricity prices above
zero and lower than the market price of hydrogen. Despite this flexibil-
ity, the high demand caused by heat pumps during the winter months
led to prices that were twice as high as in the summer. In years with
low vRES production, power shortages occurred, primarily in winter.
For this reason, dispatchable technologies, including long-term storage
and thermal storage will become increasingly important to ensure
reliability. In our simulations, dispatchable technologies had the most
volatile financial returns, confirming the intuition that investing in
these technologies is becoming riskier. These dispatchable technologies
will be crucial to meet demand, but the business case for providing
the marginal facilities, the ones that only are needed in unfavorable
weather years, is poor.

The energy sector is currently confronted with uncertainty regard-
ing future fuel prices, technology costs, energy demand, system flexi-
bility, policy interventions, and the introduction of new technologies,
among others. Even if we simulated a steady-state scenario for a fully
decarbonized energy system in which demand, fuel prices, and the CO2
rice were stable, investment cost recovery would remain uncertain due
o the large impact of inter-annual weather variability. We compare
he impact of weather uncertainty with the uncertainty from stochastic
emand growth and observe that even in a very flexible system, short-
ges are higher in scenarios with weather variability. In our simula-
ions, the inter-annual variability of cost recovery increased more than
hree-fold, and annual variability of weighted-average electricity prices
ore than ten-fold, in comparison with a scenario without weather
ncertainty.

An interesting finding was the impact of the weather year that
nvestors use for deciding upon new generation capacity. We demon-
trated that if investors based their investments on a weather year
ith very low vRES, thereby ensuring the reliability of the system

or the worst weather years, they would be unable to recover their
nvestments. On the other hand, if they would base their investment
ecisions on a more optimistic vRES yield, they would invest less and
eceive excessive returns, but this would come at the cost of lower
ystem reliability and higher electricity prices. We conclude that in a
ystem with intermittent supply, investors have insufficient incentive
o ensure reliability, and therefore a capacity remuneration mechanism
ill be needed to ensure enough backup capacities. In future studies,
e will investigate the performance of capacity mechanisms, as well as

he performance of CRMs in the course of the power systems transition
15

o a vRES-based system.
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Appendix

The conceptual and data workflow are shown in Figs. 14 and 15.
See Tables 9–14.

Table 9
Fuel prices at year 2050 Global ambition. H2
price is the renewable H2 imports price in
[69,82].
Fuel Price
CO2 [e/ton] 168
Natural gas [e/MWh] 14.65
Hydrogen [e/MWh] 45.1
Biomass [e/MWh] 35
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Fig. 14. Workflow in Spinetoolbox.
Fig. 15. Data workflow.
Table 10
Technology costs at year 2050 [69,82].

Investment costs [e/MW] Variable costs [e/MWh] Fixed costs [e/MW/year ] Efficiency [%]
Lithium ion battery e 1,020,000 1.8 800 0.90
WTG offshore e 1,444,000 3 24 700
PV utility systems e 350,000 0 7600
PV residential e 688,000 0 11 000
WTG onshore e 1,127,000 1.35 12 900
Biomass CHP e 2,040,000 1.9 50 000 0.31
Hydrogen turbine e 435,000 1.5 8700 0.40
Nuclear e 6,000,000 4 100 000 0.29
Table 11
Technology data.
Technology Realistic capacity [MW] Permit time [y] Construction time [y] Lifetime [y]
Lithium ion battery 100 0 1 20
WTG offshore 500 1 2 30
PV utility systems 350 1 1 25
PV residential 300 1 1 25
WTG onshore 250 1 1 25
Biomass 300 1 3 30
Hydrogen turbine 500 2 2 30
Nuclear 1000 2 5 45
16
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Table 12
Capacity factors and technology potential for vRES [61,78,83,84].

Min capacity factors Max capacity factors Technology potential
[%] [%] [GW]

WTG onshore 32 58 12 000
WTG offshore 43 60 70 000
PV residential 15 18 26 964
PV utility systems 15 18 82 099
Biofuel 12 040
Table 13
Operational profits per MW by technology.
Scenario Fix-profiles Increasing-demand Stochastic-profiles
Technology �̄� 𝜎 �̄� 𝜎 �̄� 𝜎
Nuclear −118,376 5970 −99,443 15,668 −102,579 70,160
PV utility 9,013 449 9173 978 9,076 2810
WTG Offshore 35,619 2,752 35,938 3,999 38,284 6,092
WTG Onshore 53,705 1,828 55,214 3,897 57,049 10,267
Hydrogen turbine 368 4,647 5,907 9,730 20,527 48,219
Table 14
Yearly average IRR per technology.

�̄� stochastic-profiles High hydrogen price
PV utility 7% 4%
WTG Onshore 17% 22%
Hydrogen turbine 15% –
WTG Offshore 8% 15%
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