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Abstract— Autonomous robots are increasingly improving at
performing navigation tasks, however they will likely fail at
some point or not perform as intended due to uncertainties
or unforeseen situations in the real world. In such scenarios,
explaining the robot’s behaviour to humans is crucial to build
trust and resolve potential issues. Recently, large language
models (LLMs) have shown great potential in analysing robot
log data, e.g., obtained in Robot Operating System (ROS), and
providing users with useful explanations. Yet, these models
often fail to consistently generate high quality answers. This
study develops an approach using parameter-efficient fine-
tuning (PEFT) to improve explanations generated by LLMs and
tailoring them towards a target audience (expert, non-expert)
and preferred lengths (short, medium, long). We collected
ROS log data from the TIAGo robot in simulation, combined
them with user questions, and corresponding answers generated
using GPT-4o to create a dataset for fine-tuning Mistral 7B
with PEFT. Furthermore, we use a panel of LLMs (GPT-
4o, Mistral-Large, Llama3-8B) as judges to evaluate these
explanations based on quality criteria and user study (N=17)
to validate these results on a group of roboticists. Our findings
show that personalisation significantly improves both the suit-
ability of explanations, with personalised answers consistently
outperforming non-personalised ones. Furthermore, tailored
explanations achieved higher clarity and user understanding.
Additionally, a single feedback loop iteration using textual
feedback from LLMs further enhanced explanation relevance
and contextual quality, demonstrating the value of iterative
improvement in explainability systems, despite minor trade-offs
in other criteria.

I. INTRODUCTION

Robots are becoming increasingly integrated into our daily
lives, making encounters with their failures more frequent.
Therefore, the importance of explainability in human-robot
interaction (HRI) becomes evident. Explainability fosters
understanding between the user and a robot, contributing
to building a trustworthy relationship between humans and
robots. One effective approach is generating explanations that
improve the user’s understanding about the behaviour of the
robot and why failures may have occurred.

Consider a simple navigation task, as shown in Figure 1,
where a TIAGo robot is instructed to move along three way-
points while avoiding obstacles. TIAGo reaches waypoints 1
and 2, but fails to reach waypoint 3 and no path is shown
towards this waypoint. Explainability systems are designed
to address such scenarios by providing clear answers to
user questions, such as: ”Why has the robot failed to reach
waypoint 3?”, and ”Why is there no feasible path?”. In this
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Fig. 1: Navigation task with three waypoints that our sim-
ulated TIAGo moves towards. However, it fails to reach
waypoint three, since there is an obstacle.

situation, a path towards waypoint 3 is not feasible because
it is located within a known obstacle.

Although the precise definition of explainability varies
in the literature [1], [2], it is widely associated with inter-
pretability and transparency [3], [4]. In the context of HRI,
explainability aims to improve the user’s understanding of
the robot through clear and truthful explanations that align
with the robot’s logic [5]. Explanations are also viewed as
answers to diverse user questions about failures, and as an
interaction between a human and a robot [6].

The typical users of explainability systems for autonomous
robots can be categorised into experts and non-experts, each
with distinct explainability needs and objectives [7]. Non-
expert users generally expect explanations for robot failures
to use accessible language that clearly justify the cause of the
failure, in order to build trust [8]. In contrast, expert users
such as researchers working on a scientific discovery will
likely be willing to dedicate more time to an explanation and
expect them to include more technical details [5]. However,
these preferences may also depend on the failure. Experts
may not always require long or detailed explanations, partic-
ularly for failures with straightforward solutions. Similarly,
non-experts may sometimes prefer longer explanations, espe-
cially when they seek a deeper understanding or a thorough
justification for a robot’s failure. Therefore, explanations
should not only align with the level of expertise of the user
[8], but also be adjustable according to the user’s desired
answer length.

Most robots operate using the open-source Robot Operat-
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ing System (ROS), which enables modular development of
robot software. ROS uses a publish-subscribe architecture,
where nodes exchange data via topics. Data flow between
nodes, especially logs generated through the /rosout topic,
provides structured, natural language messages that give in-
sights into the robot’s internal states, decisions, and failures.
These textual log messages can serve as a foundation for
explanations, as they accurately reflect the robot’s inner
workings. This textual data is already utilised by users
for debugging, though currently without the support of
an explainability system. Furthermore, the ROS framework
allows developers to apply the same code to different robots,
meaning an explainability system using ROS developed for
one robot can often be adapted to work on others with
minimal modifications. Therefore, using ROS log messages
for explainability systems enables them to provide expla-
nations grounded in readily available data that reflect the
robot’s inner workings, while ensuring compatibility for
other robots.

This study utilises ROS log messages produced by the
robot during navigation tasks to ground explanations, ensur-
ing they reflect the robot’s logic. We will enhance the logs
produced by ROS by adding custom log messages to increase
the verbosity of recorded log data.

We propose leveraging LLMs to utilise their advanced nat-
ural language processing capabilities to effectively interpret
textual data, such as ROS log messages. Additionally, they
are designed to generate explanations in natural language
for user questions with possibilities for interaction, as seen
in chatbots. These capabilities enable LLMs to provide
explanations to questions about robot behaviour based on
their ROS log messages [9], [10]. However, LLMs alone
have limitations, such as hallucinations or providing answers
in an undesired format [11]. To mitigate these limitations, we
intend to adjust the LLM’s weights by fine-tuning [12] these
models on a dataset containing examples of question-answer
pairs based on ROS log messages. Through fine-tuning on
task-specific data, the LLM provides answers that are more
accurate and better aligned with the task [12].

The fine-tuned LLM is designed to interpret new ROS
log messages and, based on this data, generate answers to
user questions. This study builds on preliminary results from
the RSS 2024 workshop on Robot Execution Failures and
Failure Management Strategies, with a focus on personalising
explanations to align better with user needs. This process,
referred to as personalisation, adapts the content and format
of responses to match the user’s expertise level and preferred
answer length. For instance, responses for expert users
focus on technical depth and precision, while answers for
non-experts prioritise clarity and accessibility. Additionally,
response length is tailored to suit user preference for concise
or detailed answers, by providing short, medium or long
answers. This categorisation is supported by prior research,
which classifies users of explainability systems into experts
and non-experts, each with distinct needs and preferences
[7], [8].

Overall, this study aims to enhance human-robot inter-

action during failures by leveraging PEFT techniques and
personalised explanations tailored to user needs. Based on
this approach, this work focuses on answering the following
research questions:

1) How does personalisation affect the suitability of ex-
planations in terms of length and alignment with target
audience expertise?

2) How does personalisation affect the quality of explana-
tions?

3) How to further improve the quality of personalised
explanations?

II. RELATED WORK

This section compares previous studies on robot explain-
ability that leverage ROS log messages.

Fernandez-Becerra et al. [14] employ conditional logic
to read messages from specified ROS topics and extract
relevant information to generate straightforward and concise
natural language explanations for a navigation task. This
method addresses two specific user questions: ”What is the
robot’s current status?” and ”Why has the robot changed
the path?”. In response to the first question, the algorithm
compares the previous goal with the current goal, and if they
differ, it returns ”Navigation to a new goal has started”. For
the second question, if the distance from the goal location
increases above a threshold and an obstacle is located within
a threshold, the algorithm prints ”I have changed the planned
path because there was an obstacle”. Although this approach
addresses two specific user questions for a navigation task,
it restricts user understanding to these predefined questions
and offers only limited context-specific explanations.

Building on the limitations of the rule-based method,
another approach [10] leverages LLMs to interpret ROS
log messages and generate explanations in response to user
questions. This allows users to ask a wider range of questions
and receive more detailed explanations about the robot’s
behaviour. This approach involves splitting Rosbag files,
containing ROS log messages, to fit the LLM’s prompt size
requirement and uses prompt engineering to guide the LLM
in generating relevant explanations. Specifically, this study
uses single-shot prompting, where the LLM is provided
with one example to generate a similar response. The key
advantage of this approach is that, by using LLMs, users
can ask any question about the robot’s behaviour, instead of
being limited to two predefined questions. Additionally, the
responses to the questions contain greater depth and more
context, which is provided by the LLMs’ natural language
processing capabilities. However, the study highlights that
generic pre-trained models often fail to interpret domain-
specific logs correctly and rely heavily on prompt design,
which often leads to inaccurate and inconsistent explanations.
To overcome these limitations, they propose investigating
fine-tuning LLMs.

Another study [13] introduces an explanation system using
an LLM with Retrieval Augmented Generation (RAG) to
interpret ROS log messages, as shown in Figure 2. Collected
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Fig. 2: Overview of the Retrieval Augmented Generation framework [13]

ROS log data is stored in a vector database. Based on the pro-
vided user question, the RAG system retrieves relevant ROS
log data to provide a broader context for LLM’s response.
The retrieval system uses similarity-based matching, such as
Maximal Marginal Relevance (MMR), to identify and rank
the most relevant logs from the database. The amount of
provided contextual data is limited by the prompt size of the
used LLM. The process involves forming a prompt for the
LLM using the user question, a predefined prompt template,
and the retrieved relevant ROS log data, which then produces
the answer to the user question. The advantage of this method
is its ability to retrieve multiple relevant examples from the
database, enabling the LLM to generate responses closely
aligned with the provided context. However, the effectiveness
of the system is constrained by the prompt size of the LLM,
which limits the number of examples that can be included,
and by the quality of the retrieval function, which may affect
the relevance of the retrieved examples.

Both studies [10], [13] build on [14], demonstrating the
potential of combining LLMs with prompt engineering and
RAG to interpret ROS log messages to provide comprehen-
sible explanations to user questions. These studies highlight
the potential of integrating LLMs for explanation generation
based on ROS log data to enhance robot explainability. While
current methods offer a solution for this problem, a promising
avenue that remains unexplored is fine-tuning.

Fine-tuning adapts existing LLMs to specific tasks, in this
case answering user questions based on provided ROS log
messages, significantly improving response quality [15]. This
method addresses previous limitations by reducing reliance
on prompt size constraints and retrieval system quality.
Fine-tuning allows the LLM to utilise an entire dataset of
ROS log messages and corresponding question-answer pairs,
bypassing prompt limits and reducing reliance on prompt
engineering. This retraining process enables the LLM to
align outputs more effectively with the context of the data
for this specific task, leading to more accurate and relevant
answers. Fine-tuning ensures that the LLM can leverage the
entire dataset for generating responses, thereby providing
richer and more precise explanations tailored to specific
queries. We will explore fine-tuning techniques to analyse
ROS log data and answer user questions.

III. METHOD

We investigate leveraging Parameter-Efficient Fine-Tuning
(PEFT) to generate explanations based on ROS log messages
and user questions. Furthermore, we personalise these ex-
planations towards the target audience and desired answer
length and evaluate them using a panel of LLM judges and
a user study. Finally, we further improve the personalised
explanations using textual feedback provided by the LLM
judges (See Figure 3).

A. Parameter-Efficient Fine-Tuning

Fine-tuning techniques enable the customisation of LLMs
for a specific task [12], in this case question answering based
on ROS log messages. Fine-tuning retrains an LLM using a
task-specific dataset to optimise performance. There are vari-
ous fine-tuning approaches. The most comprehensive is fine-
tuning, where the entire model is retrained, adjusting all its
parameters to better suit the new dataset [16]. However, this
approach is highly resource-intensive and time-consuming
and is therefore deemed infeasible for the scope of this study.

For ROS log interpretation tasks, a dataset of Rosbag files
containing ROS log messages is required for fine-tuning.
Given that such a dataset is not readily available online,
it must be collected manually, which constrains its size.
Given this constraint, we propose using Parameter-Efficient
Fine-Tuning (PEFT), a method that selectively adjusts a
small subset of the model’s parameters, such as the final
layers, adapter modules, or specific attention heads, while
leaving the majority of the model unchanged [17]. This
method leverages the existing knowledge encoded in the pre-
trained model, allowing it to adapt to new tasks with minimal
adjustments. By concentrating on key parameters, PEFT can
achieve comparable performance to full fine-tuning while
being both computationally and data efficient [18], [19].
However, PEFT can underperform on complex tasks that
require extensive parameter updates across the entire model
[20]. This targeted approach significantly reduces compu-
tational costs and the amount of fine-tuning data required
compared to full fine-tuning, which retrains the entire model.
The study by Weyssow et al. [21] demonstrates that PEFT
outperforms traditional full fine-tuning, especially in limited-
data scenarios, while offering benefits such as reduced mem-
ory and computational demands. Further research shows that
for PEFT, increasing the size of the base model has a greater
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Fig. 3: Overview of our proposed method that fine-tunes Mistral 7B with LORA, which is used to generate explanations
based on a context and user question. These explanations are personalised according to target audience and intended length.
Both personalised and original explanations are evaluated using a panel of LLM judges and a user study. A single feedback
loop is introduced to further improve explanations using textual feedback from the panel of LLMs.

impact on improving the performance than expanding the
size of the fine-tuning dataset [16], [17].

Low-Rank Adaptation (LoRA) [22] is a reparametrisation
PEFT technique that demonstrates potential in customis-
ing LLMs for targeted tasks like automated code gener-
ation, while efficiently managing computational load [21].
LoRA optimises rank decomposition matrices of dense layer
changes during adaptation while keeping pre-trained weights
frozen, achieving efficiency in storage and computation even
with low rank [22]. In addition, a study [23] evaluates
LoRA using datasets containing 1,000 examples to give an
indication of the data size required size for effective fine-
tuning. Therefore, as shown in Figure 3, we employ a large-
scale LLM with LORA to maximise its performance for the
ROS log interpretation task.

Algorithm 1 Personalise Explanations for Audience Type
and Length

Require: Context, Question, Explanation, Audience Type
("expert" or "non-expert"), Length ("short",
"medium", or "long")

Ensure: Personalised Explanation
1: user prompt ← "Rewrite the explanation
for an [Audience Type] audience with a
[Length] response. Context: " +
Context + "Question: " + Question +
"Explanation: " + Explanation

2: pers expl ← GPT4o CALL(user prompt)
3: return pers expl

B. Personalisation

After fine-tuning the LLM using LORA, we prompt the
model to generate explanations for new scenarios. These

outputs serve as the original explanations, as seen in Figure
3. To address the research questions, we actively personalise
these explanations based on two key factors: the target
audience and the desired answer length. Specifically, the
original explanations are transformed into six tailored types:

• Expert: short, medium, long
• Non-expert: short, medium, long
We personalise the explanations by leveraging GPT-4o

and designing targeted prompts to adapt the explanations
according to the audience’s expertise and preferred length.
This process employs prompting principles detailed in [24]
to ensure the outputs align with the intended objectives.
Algorithm 1 presents the pseudo code used for this approach.

C. LLM-as-a-judge

To quantify the suitability (RQ 1) and quality (RQ 2) of the
original and personalised explanations, we employ a LLM-
as-a-judge framework, depicted in Figure 3. LLM-as-a-judge
refers to the use of LLMs as automated evaluators to assess
the quality of responses, providing a scalable alternative
to traditional human evaluation [25]. The study by Zheng
et al. (2023) demonstrates that LLM-as-a-judge evaluations
achieve comparable accuracy to human judgments [25], un-
derscoring the potential of the LLM-as-a-judge framework. A
limitation of a single LLM-as-a-judge is that it is susceptible
to intra-model bias [26]. Therefore, we employ a diverse
panel of judges to correlate better with human judgements,
reduce bias, and incorporate diverse perspectives [26]. A
recent study shows that panels composed of smaller open
source models can often outperform individual larger models
in evaluation tasks, offering lower bias within the model
and more cost-effective solutions without compromising their
reliability [27]. Therefore, we selected a diverse panel of
judges from different companies and with different model
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sizes, consisting of: GPT-4o, Mistral-Large, and LLaMA3-
8B to ensure a balanced and comprehensive evaluation.

D. User Study

To validate the panel of judges’ evaluation of the quality of
original and personalised explanations, we conducted a user
study, as shown in Figure 3. The study targeted roboticists
(experts) with experience using ROS, simulating a scenario
where they encounter a robot failure. Participants were
presented with relevant ROS log messages, a related user
question, and two answers: one personalised and one non-
personalised version. To minimise the influence of answer
length on the results, we compared the expert medium
answer with the original answer, as these were most similar
in length (see Appendix I). Additionally, participants were
asked to indicate which answer they preferred with give brief
reasoning, offering qualitative insights into the effectiveness
of the personalisation.

Algorithm 2 Improving Explanation Quality Using Feed-
back from LLMs
Require: Context, Question, Explanation, Audience Type

("expert" or "non-expert"), Length ("short",
"medium", or "long"), Feedback

Ensure: Improved Explanation
1: user prompt ← "Improve the explanation
using the feedback while keeping it
tailored for an [Audience Type]
audience with a [Length] response
length. Context: " + Context +
"\nQuestion: " + Question +
"\nExplanation: " + Explanation +
"\nFeedback: " + Feedback

2: improved expl ← GPT4o CALL(user prompt)
3: return improved expl

E. Feedback loop

To address research question 3, we propose using a single
feedback loop iteration, incorporating textual feedback from
LLM judges to further enhance the quality of personalised
explanations (See Figure 3. During the evaluation, the LLM
judges not only assess the quality of the explanations, but
also provide textual feedback explaining their judgments.
This feedback loop is implemented by prompting GPT-4o
to refine the personalised explanations based on the textual
feedback provided by the LLM judges. The pseudocode for
this process is shown in Algorithm 2.

IV. EXPERIMENTAL SETUP

This section describes the processes for collecting and pre-
processing ROS log data and fine-tuning a LLM using PEFT.
It also details the evaluation of generated explanations by a
panel of LLMs and with a user study, as well as the use of
a single feedback loop to improve personalised explanations
based on LLM feedback.

A. Collecting ROS log data

Fine-tuning the LLM with PEFT requires ROS log data,
which was collected from the TIAGo robot simulation using
the PAL Robotics software stack 1. Using the autonomous
navigation functionality, we simulated a navigation task
where the TIAGo robot was instructed to move along a
series of waypoints while avoiding obstacles. Specifically,
we collected data where the robot was tasked with navigating
waypoints in five distinct scenarios:

• Scenario 1: Only known obstacles, and all paths are
feasible.

• Scenario 2: Unknown obstacle(s) in its path, yet all
paths are feasible.

• Scenario 3: Only known obstacles, yet not all paths are
feasible. (See Figure 1)

• Scenario 4: Unknown obstacle(s) in its path, and not
all paths are feasible.

• Scenario 5: No unknown obstacles, but at least one of
the paths goes out of bounds.

In these scenarios, known obstacles refer to those present
in the robot’s costmap for path planning, while unknown
obstacles are not. Unknown obstacles were manually added
to the environment after the cost map and global path
were generated to ensure the robot encountered these obsta-
cles during navigation. These scenarios were adapted from
Sobrı́n-Hidalgo et al. [13], who investigated RAG for gen-
erating explanations, to the PAL robotics environment and
enriched by including unknown obstacles and paths that go
out of bounds. To simulate real-world variability and create a
balanced dataset, waypoint positions were selected randomly
to ensure their combined global path was consistent with the
scenario. For each scenario, we collected 15 Rosbag files,
resulting in a total of 75 recorded Rosbag files containing the
ROS log messages produced by the /rosout topic. Recording
the Rosbag began simultaneously with task initialisation to
capture all log messages related to the navigation task.

B. Pre-processing data

Pre-processing involves splitting the collected ROS log
data into fine-tuning (80%) and testing (20%) sets, and gen-
erating question-answer pairs about the ROS log data. Each
Rosbag file containing ROS log data, referred to as context,
was annotated with multiple questions and corresponding
answers, creating multiple data samples for each context.

Questions were adapted from Sobrı́n-Hidalgo et al. [13]
and additional questions were proposed for this study (See
Appendix II). Ten general questions, focussing on broader
aspects of the navigation task, such as received waypoints
and planned paths, were applied to all scenarios. Additional
scenario-specific questions were applied to Scenarios 2, 3,
4, and 5 to address scenario-specific challenges, such as
handling unknown obstacles or navigating infeasible paths.

Answers were generated using GPT-4o, selected for its
state-of-the-art performance [28]. We leveraged the prompt-
ing principles outlined by Bsharat et al. [24], because they

1https://wiki.ros.org/Robots/TIAGo/Tutorials
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provide a structured and effective approach for eliciting re-
liable and consistent responses from large language models.
The full prompt is shown in Appendix III. Manual answer
generation was avoided due to time constraints and GPT-4o’s
capability to generate reliable explanations using a structured
prompt. To ensure accuracy, all answers were manually
reviewed for errors and hallucinations. This process yielded
900 labelled instances, compiled into a .json file to use as
input for PEFT.

C. Parameter-Efficient Fine-Tuning

Supervised PEFT was applied to Mistral-7B-v0.3 [29],
chosen for its open-source nature and compatibility with
Hugging Face tools, which simplifies integration for tasks
like fine-tuning. This model was selected as the best fit
based on the trade-off between model size and available
computational resources. Additionally, Mistral-7B shows su-
perior performance compared to larger Llama 2 models
and utilises improved attention mechanisms for enhanced
performance with a smaller model size [29]. The LORA
configuration from the Hugging Face PEFT package was
used, with fine-tuning performed using 8 NVIDIA H100
GPUs from Lambda Labs.

The fine-tuned model is publicly accessible on Hugging
Face: https://huggingface.co/EllaScheltinga/SFT-Mistral-7B

Algorithm 3 Evaluate Explanation for Suitability for Target
Audience and Intended Length, and Quality

Require: Context, Question, Explanation, Audience Type
("expert" or "non-expert"), Length ("short",
"medium", or "long"), Rating Scale

Ensure: Rating [1-7] and Textual Feedback
1: user prompt ← "Rate the explanation
using the rating scale. Context: " +
Context + "\nQuestion: " + Question +
"\nExplanation: " + Explanation +
"\nRating Scale: " + Rating Scale

2: evaluation ← JUDGES CALL(user prompt)
3: return evaluation

D. LLM-as-a-judge

The LLM-as-a-judge method for evaluation was employed
to assess the suitability (RQ 1) and quality (RQ 2 & 3) of
both personalised and non-personalised explanations.

The suitability for the target audience (expert or non-
expert) and length (short, medium or long) was evaluated.
The quality of explanations was evaluated based on the
following five criteria:

1) Relevance to Question: How relevant is the explanation
to the question?

2) Contextual Accuracy: How accurate is the explanation
compared to the ROS log messages?

3) Enhancement of Understanding: To what extent does
the explanation improve understanding?

4) Answer Clarity: How clear and easy to understand is
the explanation?

5) Contextual Explanation Quality: How well does the
answer provide relevant context?

The quality criteria were adapted from previous work by
Sobrı́n-Hidalgo et al. [13] and refined to focus more on
relevant contextual information, clarity, and readability.

Both suitability and quality were rated on a scale from 1
to 7. To ensure consistency, textual descriptions were added
to define each score, guiding the LLMs in their evaluations,
as advised by Hugging Face’s guidelines [30]. Algorithm
3 provides pseudo code for the prompt used to obtain
evaluations from each model.

E. User study

For the user study, we developed an online questionnaire
featuring 5 scenarios that each provided relevant ROS log
messages, a user question and two answers (personalised
and non-personalised) for the participants to evaluate. See
Appendix IV for each question-answer pair. The participants
evaluated the quality of the explanations using the same five
criteria as the panel of LLMs, with the addition of one new
criterion:

6) Perceived Reliability: How reliable and trustworthy is
the explanation?

Perceived reliability was excluded from LLM panel evalua-
tion, as this subjective criterion could not be reliably assessed
by the panel of LLMs.

The study involved 17 respondents (11 men and 6 women)
with varying levels of ROS experience, ranging from ba-
sic to proficient experience. All participants had a formal
background in robotics, including current Master’s students,
Master’s graduates, and PhD holders. This ensured that all
respondents had relevant expertise to understand the ROS
log messages and evaluate the explanations effectively.

V. RESULTS

This section presents and discusses the results for each
research question.

A. RQ 1: Suitability of Explanations

Two tests were conducted to assess how personalisation
affects suitability for the intended target audience and answer
length:

• Test 1: Compares personalised explanations with non-
personalised explanations (e.g., expert short vs. non-
personalised answers for expert suitability)

• Test 2: Compares explanations personalised for one
characteristic with those personalised for the opposite
characteristic (e.g., expert short vs. non-expert short for
expert suitability)

The objective of these tests is to evaluate whether per-
sonalisation improves suitability for the intended audience
and length. Test 1 focuses on the benefit of personalisation
compared to original explanations, while Test 2 examines
how explanations tailored for one characteristic (e.g., experts
or short) perform compared to those tailored for the opposite
(e.g., non-experts or long), keeping other factors constant.
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TABLE I: Mean Suitability Ratings for Target Audience for
Different Personalizations

Personalisation Mean Std. Dev p-value

Expert Suitability
Original 6.13 0.387 -
Expert short 6.19 0.341 0.157
Non-expert short 4.66 0.623 1.55e-72*
Expert medium 6.51 0.212 2.42e-24
Non-expert medium 3.87 0.731 1.88e-100*
Expert long 6.49 0.328 3.65e-17
Non-expert long 2.36 0.597 2.59e-146*

Non-expert Suitability
Original 4.10 0.522 -
Expert short 3.66 0.726 8.72e-73*
Non-expert short 5.52 0.435 1.14e-70
Expert medium 3.20 0.595 5.97e-115*
Non-expert medium 5.85 0.330 2.63e-90
Expert long 2.45 0.680 1.05e-132*
Non-expert long 6.12 0.251 7.52e-104

Short Suitability
Original 4.03 0.900 -
Expert short 5.89 0.517 6.86e-66
Non-expert short 5.74 0.548 5.28e-56
Expert long 1.99 0.209 2.57e-179*
Non-expert long 2.10 0.250 6.56e-179*

Medium Suitability
Original 5.65 0.480 -
Expert medium 5.70 0.468 0.167
Non-expert medium 5.68 0.362 0.447

Long Suitability
Original 5.33 0.972 -
Expert short 3.52 0.998 6.78e-181*
Non-expert short 3.30 0.847 4.09e-180*
Expert long 6.45 0.298 3.24e-33
Non-expert long 6.25 0.263 9.06e-25

Table I presents the means and standard deviations of
suitability ratings for both tests across two dimensions: target
audience (expert or non-expert) and answer length (short,
medium, or long). Statistical differences were assessed using
paired t-tests, with significant results highlighted in bold and
Test 2-specific results marked with an asterisk (*).

1) Original vs Personalised:
a) Target Audience Suitability: Personalisation signif-

icantly enhances the suitability of explanations for their
intended target audience:

• Experts: Explanations tailored for experts consis-
tently outperformed non-personalised (original) expla-
nations for expert suitability. Medium (6.51) and long
(6.49) personalised explanations were rated significantly
higher, whereas expert short (6.19) explanations per-
formed similarly to the original (6.13). This may be due
to limited opportunities for detailed tailoring in short
formats.

• Non-experts: Personalised explanations for non-experts
scored higher than the original across all lengths, with

non-expert long explanations performing best. This sug-
gests that longer explanations allow more room to adapt
content to non-expert needs.

• The original explanations showed higher suitability for
experts (6.13) than non-experts (4.10), likely reflecting
the model’s training on more expert-oriented question-
answer pairs.
b) Length Suitability: Personalisation improved suit-

ability for specific lengths:
• Short (5.89, 5.74) and long (6.45, 6.25) personalised

explanations were rated significantly higher for their
respective lengths compared to the original (short: 4.03,
long: 5.33), aligning with differences in mean word
counts shown in Appendix I.

• For medium-length suitability, personalised (5.70, 5.68)
and original (5.65) explanations scored similarly, re-
flecting their comparable word counts.

• The original explanations exhibited some of the highest
standard deviations for short (0.900) and long (0.972)
suitability, indicating less consistent ratings compared
to personalised explanations.

2) Personalised vs Opposites:
a) Target Audience Suitability:

• Non-expert explanations were consistently rated signifi-
cantly lower for expert suitability (4.66, 3.87 and 2.36),
and expert explanations scored significantly lower for
non-expert suitability (3.66, 3.20 and 2.45) across all
lengths.

• Suitability mismatches became more pronounced as
explanation length increased, suggesting that audience
alignment is easier to distinguish in longer explanations.
b) Length Suitability:

• Long explanations rated for short suitability (1.99 and
2.10) received lower scores than short explanations rated
for long suitability (3.52 and 3.30). This indicates that
longer explanations were more clearly identifiable as
unsuitable as short.

• Short explanations rated for showed some of the highest
recorded standard deviations (0.998 and 0.847), indi-
cating less confidence from judges in their ability to
distinguish the intended length of short answers.

Overall, personalisation enhances suitability for both tar-
get audience and length. Longer explanations provide the
greatest benefits for audience alignment, while personalised
short and long explanations outperform the original in their
respective length categories. This trend is consistent with
findings by Huang et al. [27], which show that LLMs tend
to favour more verbose answers during evaluation.

B. Individual Judges Analysis

Due to the higher standard deviations observed in some
conditions during Tests 1 and 2, we investigated the mean
ratings of individual judges in more dtail to better understand
the cause of this variability. We focused specifically on
conditions with standard deviations above the median value,
using the median as a threshold to identify the top 50% most
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TABLE II: Mean Ratings for Personalisation Types Across Evaluation Criteria

Personalisation Type Crit 1: Relevance Crit 2: Contextual Crit 3: Enhancement Crit 4: Explanation Crit 5: Contextual
to Question Accuracy of Understanding Clarity Explanation Quality

Original 6.49 6.51 6.62 6.28 6.48
Expert short 6.36 6.55 6.68 6.47 6.49
Expert medium 6.27 6.75 6.88 6.55 6.84
Expert long 5.93 6.56 6.81 6.20 6.75
Expert long (improved) 6.39 6.52 6.88 6.51 6.75
Non-expert short 5.91 6.28 6.06 6.08 5.95
Non-expert short (improved) 6.27 6.34 6.41 6.40 6.24
Non-expert medium 6.26 6.45 6.53 6.40 6.43
Non-expert long 5.53 6.29 6.38 6.14 6.55
Non-expert long (improved) 6.27 6.34 6.52 6.40 6.45

variable conditions. Table VII in Appendix V presents the
means and standard deviations for each judge individually
for these conditions.

• GPT-4o: Ratings aligned most closely with the intended
purpose of the explanations. The judge consistently
rated expert explanations as highly suitable for experts,
non-expert explanations as highly suitable for non-
experts, and similarly rated explanations appropriately
for their intended length. These ratings also exhibited
lower standard deviations, suggesting greater consis-
tency and confidence. Since this model was used for
prompting and generating answers for the fine-tuned
data, its alignment with expected trends is likely in-
fluenced by this.

• Llama3-8B: Ratings aligned least with the intended
purpose with overall higher standard deviations, sug-
gesting less confidence. This could be due to the smaller
size of the model, although it added diversity to the
panel of LLMs.

• Mistral-Large: Performed better than Llama3-8B, with
lower standard deviations, but overall less than GPT-4o.

High variability in Llama3-8B’s ratings suggests it has lower
confidence in its ratings, however does introduce diversity to
the panel, which may be valuable for capturing a broader
range of perspectives. GPT-4o and Mistral-Large exhibited
lower variability overall, with GPT-4o demonstrating the
closest alignment with the intended purpose of explanations.

C. RQ 2: Quality of Explanations

Two tests were conducted to determine the effect of
personalisation on the quality of the explanation:

• Test 3: Compares the quality of personalised explana-
tions and non-personalised explanations.

• Test 4: Compares the quality of expert medium expla-
nations with non-personalised explanations.

Table II presents the mean ratings for original and per-
sonalised explanations for five criteria related to explanation
quality. Table VIII in Appendix VI shows the results of a
paired t-test, where personalised explanations are compared
with original explanations. The bold p-values signify a
significant improvement in personalised explanations. The

mean values reported in Table II that have a significant
improvement are also in bold.

1) Panel of LLMs:
• Criteria 1 (Relevance to Question): Long explanations

scored lower, possibly due to dilution of relevance with
additional details. Non-expert explanations were rated
lower than expert ones of the same length, while original
explanations scored highest, suggesting that personali-
sation may shift focus toward the target audience and
length rather than the question itself.

• Criteria 2 (Contextual Accuracy): All explanations
performed well, indicating personalisation does not
compromise accuracy, expert medium did show signif-
icant improvement.

• Criteria 3 (Enhancement of Understanding): Expert
explanations performed best, likely due to their depth
and detail.

• Criteria 4 (Explanation Clarity): Medium-length ex-
planations were rated highest for clarity, with expert
explanations outperforming non-expert ones. This could
be caused by expert explanations using jargon, making
their explanations more precise.

• Criteria 5 (Contextual Explanation Quality):
Medium and long explanations outperformed short and
original ones, with expert explanations generally scoring
higher. This indicates that longer expert explanations
provide more detailed contextual information, whereas
non-expert explanations often require additional words
to address the question itself, leaving less opportunity
to thoroughly discuss the context.

For test 4, Table III summarises the results of a Wilcoxon
Signed Rank test comparing participant ratings for each
evaluation criterion across original and personalised ex-
planations. This statistical test was selected because it is
suitable for paired, non-parametric data, such as Likert
scale responses, where the assumption of normality may not
hold. The table reports the p-values for each criterion, with
statistically significant differences highlighted in bold.

To offer a visual representation of the participant ratings,
Appendix VII includes box plots showing the distribution
of Likert scale responses for each criterion across original
and personalised explanations. These plots help illustrate the
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TABLE III: Wilcoxon Signed Rank Test Results for Original
vs Personalised Explanation Ratings

Question Criterion p-value Better Version

1

1 0.6148 Personalised
2 0.1987 Personalised
3 0.0215 Personalised
4 0.6559 Personalised
5 0.0277 Personalised
6 0.4537 Personalised

2

1 0.1573 Personalised
2 0.5271 Personalised
3 0.1317 Personalised
4 0.0017 Personalised
5 0.0511 Personalised
6 0.0129 Personalised

3

1 0.5637 Original
2 0.3951 Personalised
3 0.2795 Personalised
4 0.9521 Original
5 0.1206 Personalised
6 0.5839 Personalised

4

1 0.7055 Personalised
2 0.4487 Original
3 0.0032 Personalised
4 0.0013 Personalised
5 0.1552 Personalised
6 0.5881 Personalised

5

1 0.0067 Personalised
2 0.4142 Personalised
3 0.0044 Personalised
4 0.0009 Personalised
5 0.0240 Personalised
6 0.0049 Personalised

spread, central tendency, and variability of the ratings, further
contextualising the statistical results. Table X in Appendix
VIII presents participants’ preferences from the survey, in-
dicating whether they favoured the original explanations,
the personalised explanations, or expressed no preference
(neutral). Furthermore, Table XI in Appendix IX provides an
analysis of the semantic similarity between the original and
personalised explanations using Cosine similarity metrics.

2) User Study:
• Criteria 1 (Relevance to Question): A significant

improvement was observed for question 5. However,
since personalisation was not explicitly aimed at im-
proving relevance to the question, this result aligns with
expectations and Test 3, where there was a negligible
difference.

• Criteria 2 (Contextual Accuracy): No significant
differences were observed for any questions, suggest-
ing that participants perceived contextual accuracy to
be comparable between the original and personalised
explanations. Although Test 3 did show a small im-
provement when comparing original and expert medium
results.

• Criteria 3 (Enhancement of Understanding) and 4
(Explanation Clarity): Significant improvements were
observed in three questions. These results align with
findings from Test 3, indicating that personalisation
enhances participants’ understanding and improved the
clarity of explanations—two complementary criteria
that the personalisation aimed to improve.

• Criteria 5 (Contextual Explanation Quality) and 6
(Perceived Reliability): Significant improvements were
observed in two questions. Similar trends were noted in
Test 3 for criteria 5, suggesting that personalisation can
improve context explanation quality and the perceived
reliability.

• Question 3: Participant preferences were almost evenly
split, with approximately half favouring the personalised
explanation for its additional details and context, while
the other half preferred the original explanation for its
conciseness and clarity. This highlights differences in
individual preferences between detail and simplicity in
effective communication.

• Question 5: Significant improvements were observed
across five out of six criteria, demonstrating the poten-
tial of personalisation. Participant feedback emphasised
a preference for personalised explanations due to their
improved structure, inclusion of relevant ROS logs, and
conciseness.

Overall, the results show that personalisation can signifi-
cantly improve explanation quality, as shown by consistent
positive trends across LLM (Test 3) and human responses
(Test 4). However, the benefits of personalisation are not
uniform, as individual preferences, experience with ROS and
content characteristics all influence its effectiveness.

D. RQ 3: Feedback Loop Improvement
We conduct one test to determine the effect of using a

feedback loop to improve the personalised answers:
• Test 5: Compares personalised explanations with per-

sonalised explanations that have been improved using a
feedback loop

For test 5, we identify which personalised answers score
below a mean rating of 6 for the criteria from test 3. This
included expert long (Criteria 1), non-expert short (Criteria
1 and 5), and non-expert long (Criteria 1). GPT-4o was
prompted to refine these explanations using textual feedback
from the panel of judges. The improved explanations were
re-evaluated against the same five criteria to determine the
effect on explanation quality.

Table II shows the mean ratings of the improved expert
long, non-expert short and non-expert long for the five
criteria related to explanation quality. Table VIII in Appendix
VI shows the p-values from a t-test comparing the person-
alised and improved explanations. Values showing significant
improvement are highlighted in bold in Table II.

Key results include:
• Expert Long: Relevance improved notably (5.91 to

6.39), with slight gains in clarity but minor decreases
in other criteria.
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• Non-Expert Short: Considerable improvements in rel-
evance (5.91 to 6.27) and contextual explanation quality
(5.95 to 6.24), with small trade-offs in other criteria.

• Non-Expert Long: Relevance showed clear improve-
ment (5.91 to 6.27), with minor gains in clarity and
understanding, though with a slight decline in contextual
quality.

These results indicate that feedback loops are effective
in enhancing targeted explanation quality criteria. However,
minor decreases in other criteria suggest a potential trade-off,
where improving one aspect might compromise others.

VI. CONCLUSIONS

This study demonstrates that personalisation significantly
enhances the suitability and quality of explanations for robot
failures based on ROS log messages. Personalised expla-
nations consistently outperformed non-personalised ones in
terms of suitability for both target audiences and desired
lengths, demonstrating that personalisation effectively aligns
responses with user needs. Additionally, tailored explana-
tions achieved significant improvements in quality, validated
through both LLM panel ratings and human evaluations.
Furthermore, the study shows that feedback loops can further
refine explanations, highlighting the potential of iterative
improvement processes in explainability systems. Overall,
this work underscores the potential of combining PEFT with
personalisation to bridge gaps in human-robot interaction,
offering scalable and adaptable solutions for explainability
in autonomous robotics.

VII. FUTURE WORK

Based on the findings of this study, we suggest the
following promising directions for future research:

• Expanding Personalisation Characteristics: Investi-
gate beyond expertise level and explanation length to
personalise explanations based on additional factors
such as the user’s experience with ROS, task familiarity,
emotional tone preferences, or domain-specific require-
ments. Furthermore, research into tailoring explanations
for individual users rather than predefined groups, for
instance by dynamically adapting explanations to fit
these needs.

• Enhanced Feedback Mechanisms: Explore alternative
feedback systems, such as reinforcement learning or
human-in-the-loop methods. These methods can itera-
tively improve explanations while addressing specific
criteria without compromising overall quality.

• Real-World Robot Testing: Extend testing to physical
robots operating in real-world environments. Evaluate
how personalised explanations influence user trust, un-
derstanding, and interaction in dynamic and practical
scenarios, ensuring that the system meets real-world
application needs.

• Multi-Modal Robot Data: Include more types of robot
data in the context used for fine-tuning, such as vi-
sual and auditory sensor data, to provide explanations

grounded in a richer dataset that can capture more
complexities.
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[10] M. A. González-Santamarta, L. Fernández-Becerra, D. Sobrı́n-
Hidalgo, A. M. Guerrero-Higueras, I. González, and F. J. R. Lera,
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APPENDIX

APPENDIX I
MEAN WORD COUNTS

TABLE IV: Mean Word Counts for Personalisation Types

Personalisation Type Mean Word Count

Original 125
Expert short 32.1
Expert medium 118
Expert long 344
Non-expert short 40.1
Non-expert medium 124
Non-expert long 362

APPENDIX II
QUESTIONS FOR EACH SCENARIO

TABLE V: Questions for Each Scenario

Questions for all scenarios:

Q1: How many waypoints were received?*
Q2: Which waypoints were received?*
Q3: What were the coordinates of all the waypoints the robot received?
Q4: Were all the received waypoints successfully reached?*
Q5: What was the first waypoint the robot reached?
Q6: Where was the last waypoint the robot reached?
Q7: Were all paths feasible during the navigation task?
Q8: Were there any waypoints the robot failed to reach?
Q9: Were there any obstacles the robot encountered during the
navigation task?
Q10: What is the task the robot had to perform?*

Additional questions for scenario 2 & 4:

Q11: Where was the encountered obstacle located?
Q12: How did the robot respond to detected obstacles?

Additional questions for scenario 3 & 4 & 5:

Q13: Why were one or more paths not feasible?
Q14: How did the robot deal with unfeasible path(s)?

The questions indicated with a * are from the work by Sobrı́n-Hidalgo et al. [13].

APPENDIX III
PROMPT USED FOR ANSWER GENERATION

{"role": "system", "content": "###Instruction### You are an explainability AI
specialised in analyzing and interpreting ROS log messages for autonomous
robots. Your task is to provide clear, concise and factual explanations
based on the logs generated during robot operations. Focus on delivering
precise answers to the user’s questions."}

{"role": "user", "content": "###Context### Based on the following ROS log
messages: [insert ROS log messages]. ###Question### [insert question]"}}
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APPENDIX IV
SCENARIOS USED IN QUESTIONNAIRE

TABLE VI: Scenarios with Questions and Corresponding Answers

Original Answer Expert Medium Answer

1. Which waypoints were received?

Based on the ROS log messages, the robot received the fol-
lowing waypoints: 1. Waypoint 1: x=1.5, y=-3.0 2. Waypoint
2: x=4.0, y=-7.0 3. Waypoint 3: x=2.0, y=-10.0 The robot
successfully navigated to waypoints 1 and 2 but failed to reach
waypoint 3. The log messages indicate that the robot attempted
to navigate to waypoint 3 but failed to get a valid plan, leading
to the execution of recovery behaviors and ultimately an abort
of the mission.

The robot received the following waypoints:
1) Waypoint 1: x = 1.5, y = −3.0
2) Waypoint 2: x = 4.0, y = −7.0
3) Waypoint 3: x = 2.0, y = −10.0

The robot successfully navigated to waypoints 1 and 2,
transitioning through the standard ROS action states from
WAITING FOR GOAL ACK to ACTIVE, and finally to DONE
after reaching each goal. However, at waypoint 3, the robot
encountered planning failures. Despite executing recovery be-
haviors, including clearing costmaps and initiating a rotate
recovery, it was unable to generate a valid path, resulting in
mission abort. This suggests potential issues with the local or
global costmap configurations or environmental obstacles that
were not accounted for.

2. Were all the received waypoints successfully reached?

Based on the ROS log messages, the following conclusions can
be drawn: 1. Waypoint 1: - The robot attempted to navigate
to waypoint 1 with coordinates ( x=2.0, y=1.0 ). - The robot
failed to get a valid plan and executed recovery behaviors,
but ultimately aborted the mission due to the inability to find
a valid plan. - The log indicates that the robot did not reach
waypoint 1. 2. Waypoint 2: - The robot successfully navigated
to waypoint 2 with coordinates ( x=-3.0, y=-5.5 ). - The robot
reached waypoint 2 without any issues. 3. Waypoint 3: - The
robot successfully navigated to waypoint 3 with coordinates (
x=-3.5, y=-12.0). - The robot reached waypoint 3 without any
issues. Therefore, out of the three waypoints, only waypoint 2
and waypoint 3 were successfully reached. Waypoint 1 was not
reached due to the failure to generate a valid plan. In summary,
the robot successfully reached waypoints 2 and 3 but failed to
reach waypoint 1.

Based on the ROS log analysis, the robot’s waypoint naviga-
tion yielded mixed results:

1) Waypoint 1: The robot initiated navigation to coordinates
(x = 2.0, y = 1.0) but encountered planning failures.
Despite executing recovery behaviors, including costmap
clearing and rotation, it was unable to generate a valid
trajectory and aborted the mission.

2) Waypoint 2: Successfully navigated to coordinates (x =
−3.0, y = −5.5) with no reported issues, indicating
effective path planning and execution.

3) Waypoint 3: The robot reached coordinates (x =
−3.5, y = −12.0) without complications, confirming
successful navigation.

In conclusion, the robot successfully reached waypoints 2 and
3 but failed at waypoint 1 due to persistent planning issues
despite recovery attempts.

3. Where was the last waypoint the robot reached?

The last waypoint the robot reached was waypoint 1, with
coordinates x = -3.0 and y = 0.5. This is indicated by the
log message ”Reached waypoint 1”. The robot successfully
navigated to this waypoint but failed to reach waypoint 2 due
to the goal being off the global costmap. Here is the relevant
log entry: Reached waypoint 1. This confirms that the
robot successfully navigated to waypoint 1 but failed to reach
waypoint 2. In summary, the robot reached waypoint 1 but
failed to reach waypoint 2.

The robot’s last successfully reached waypoint was waypoint
1, located at coordinates x = -3.0 and y = 0.5. This is
confirmed by the log entry ”Reached waypoint 1.” The sub-
sequent attempt to navigate to waypoint 2 failed due to the
goal being off the global costmap, which led to unsuccessful
planning and recovery attempts. The system logs indicate that
despite clearing costmaps and initiating recovery behaviors,
the navigation to waypoint 2 was aborted. This highlights a
common issue in autonomous navigation where the planner
cannot generate a valid path due to environmental constraints
or map inaccuracies.

4. Were there any obstacles the robot encountered?
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Yes, the robot encountered obstacles during the navigation
task. Specifically, the log mentions a new obstacle detected
at position (1.5, -3.5). This led to the robot failing to get
a plan and replanning its path multiple times. The log also
indicates that the robot was nearing the obstacle and had to
replan its path. Despite these issues, the robot successfully
reached waypoints 2 and 3. Here are the relevant log entries:
1. ”New obstacle detected at position (1.5, -3.5)” 2. ”Failed to
get a plan.” 3. ”Robot is nearing the obstacle. Path is being
replanned.” 4. ”TebLocalPlannerROS: trajectory is not feasible.
Resetting planner...” 5. ”Failed to get a plan.” 6. ”Clearing
both costmaps outside a square (3.00m) large centered on the
robot.” 7. ”Clearing both costmaps outside a square (1.50m)
large centered on the robot.” 8. ”Robot is nearing the obstacle.
Path is being replanned.” 9. ”Failed to reach waypoint 1” These
entries indicate that the robot encountered an obstacle, which
caused it to fail to generate a plan and replan its path. The
robot eventually cleared its costmaps and continued navigating,
but it failed to reach waypoint 1. However, it successfully
reached waypoints 2 and 3. In summary, the robot encountered
an obstacle at position (1.5, -3.5), which led to navigation
issues and replanning attempts. Despite these obstacles, the
robot successfully reached waypoints 2 and 3.

Yes, the robot encountered obstacles during the navigation
task. The logs indicate a new obstacle detected at position
(1.5, -3.5), which triggered multiple path replanning attempts.
Initially, the robot failed to generate a feasible trajectory,
as indicated by the ”Failed to get a plan” and ”TebLo-
calPlannerROS: trajectory is not feasible” entries. The system
responded by resetting the planner and clearing costmaps, first
within a 3.00m and then a 1.50m radius, to manage the local
environment more effectively. Despite these interventions, the
robot was unable to reach waypoint 1. However, it success-
fully navigated to waypoints 2 and 3 after overcoming the
initial obstacle-related challenges. This sequence highlights the
robot’s adaptive navigation capabilities in response to dynamic
environmental changes.

5. What is the task the robot had to perform?

Based on the ROS log messages, the robot’s task was to
navigate to a series of waypoints. The robot received goals
to move to specific coordinates (x, y) and attempted to reach
these waypoints. The log messages indicate the following:
1. Waypoint 1: The robot was sent to coordinates (x=5.5,
y=0.0). The goal was off the global costmap, and the robot
failed to find a valid plan, resulting in an abort. 2. Waypoint
2: The robot was sent to coordinates (x=3.0, y=-7.0). The
goal was reached successfully. 3. Waypoint 3: The robot was
sent to coordinates (x=-2.5, y=0.0). The goal was reached
successfully. In summary, the robot’s task was to navigate to a
sequence of waypoints, and it successfully reached waypoints 2
and 3 but failed to reach waypoint 1. Here is a summary of the
tasks: 1. Waypoint 1: Navigate to (x=5.5, y=0.0). Failed due to
planning issues. 2. Waypoint 2: Navigate to (x=3.0, y=-7.0).
Successfully reached. 3. Waypoint 3: Navigate to (x=-2.5,
y=0.0). Successfully reached. The robot’s primary task was to
navigate to these waypoints, and it successfully completed two
of the three goals.

Based on the ROS log messages, the robot’s task was waypoint
navigation using the move base action server. It was tasked
with reaching specific coordinates in a sequence. Here’s a
breakdown of the task execution:

1) Waypoint 1: The robot attempted to navigate to (x=5.5,
y=0.0). However, the goal was outside the global costmap
boundaries, leading to planning failures despite recovery
behaviors. The task was aborted as no valid path could
be generated.

2) Waypoint 2: Successfully navigated to (x=3.0, y=-7.0).
The transition from WAITING FOR GOAL ACK to AC-
TIVE and then to DONE indicates successful goal exe-
cution and completion.

3) Waypoint 3: Successfully reached (x=-2.5, y=0.0). Sim-
ilar to waypoint 2, the robot transitioned through the
expected states, confirming successful navigation.

The robot’s primary task was to autonomously navigate
through these waypoints, demonstrating effective use of the
navigation stack for waypoints 2 and 3, while encountering
a critical planning issue with waypoint 1 due to costmap
constraints.
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APPENDIX V
INDIVIDUAL JUDGE RATINGS

TABLE VII: Mean Suitability Ratings for Target Audience for Different Personalizations

Personalisation Panel Mean Std. Dev GPT-4o Mistral-Large Llama3-8B

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Expert Suitability
Non-expert short 4.66 0.623 2.66 0.791 4.93 1.02 6.38 0.717
Non-expert medium 3.87 0.731 2.17 0.428 3.53 1.06 5.91 1.35
Non-expert long 2.36 0.597 1.92 0.268 2.18 0.441 2.99 1.50

Non-expert Suitability
Original 4.10 0.522 3.29 0.758 3.67 0.893 5.37 0.589
Expert short 3.66 0.726 2.83 0.601 3.56 0.944 4.59 1.17
Expert medium 3.20 0.595 2.39 0.489 2.94 0.507 4.28 1.24
Expert long 2.45 0.680 1.19 0.376 2.28 0.517 3.18 1.51

Short Suitability
Original 4.03 0.900 3.59 1.21 3.49 1.01 5.01 1.48
Expert short 5.89 0.517 6.24 0.498 5.89 0.428 5.54 1.1
Non-expert short 5.74 0.548 6.03 0.488 5.61 0.645 5.57 1.02

Long Suitability
Original 5.33 0.972 5.00 1.35 5.82 0.687 5.17 1.35
Expert short 3.52 0.998 1.87 0.440 4.55 1.37 4.16 1.86
Non-expert short 3.30 0.847 1.98 0.408 4.61 1.19 3.33 1.46

APPENDIX VI
SIGNIFICANCE PAIRED T-TEST TEST 3

TABLE VIII: Mean Ratings and p-values for Personalisation Types Across Evaluation Criteria

Personalisation Type Crit 1: Relevance Crit 2: Accuracy Crit 3: Enhancement Crit 4: Explanation Crit 5: Contextual
to Question Accuracy of Understanding Clarity Explanation Quality

Mean p-value Mean p-value Mean p-value Mean p-value Mean p-value

Original 6.49 - 6.51 - 6.62 - 6.28 - 6.48 -
Expert short 6.36 1.12e-02 6.55 0.361 6.68 0.256 6.45 2.33e-04 6.49 0.741
Expert medium 6.27 1.66e-05 6.75 1.69e-07 6.88 1.51e-07 6.55 8.83e-08 6.84 3.79e-17
Expert long 5.93 5.51e-12 6.56 0.244 6.81 1.77e-04 6.20 0.152 6.75 9.48e-10
Expert long (improved) 6.39 6.31e-12* 6.52 0.231* 6.88 4.64e-03* 6.51 3.79e-13* 6.75 0.976*
Non-expert short 5.91 1.48e-17 6.28 6.06e-06 6.06 1.12e-20 6.08 9.20e-04 5.95 9.73e-23
Non-expert short (improved) 6.27 2.53e-11* 6.34 0.158* 6.41 1.57e-15* 6.40 1.24e-13* 6.24 7.22e-12*
Non-expert medium 6.26 5.90e-06 6.45 0.125 6.53 6.46e-02 6.40 2.32e-02 6.43 0.225
Non-expert long 5.53 3.31e-26 6.29 1.09e-06 6.38 4.38e-06 6.14 1.20e-02 6.55 6.69e-02
Non-expert long (improved) 6.27 1.31e-17* 6.34 0.114* 6.52 2.42e-05* 6.40 5.03e-10* 6.45 1.25e-04*
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APPENDIX VII
BOX PLOTS

Criteria number Criteria name

1 Relevance to question
2 Contextual accuracy
3 Enhancement of understaning
4 Answer clarity
5 Contextual explanation quality
6 Perceived reliability

TABLE IX: Overview of criteria for box plots

(a) Ratings per criteria for the original answer for question 1 (b) Ratings per criteria for the personalised answer for question 1

(c) Ratings per criteria for the original answer for question 2 (d) Ratings per criteria for the personalised answer for question 2

(e) Ratings per criteria for the original answer for question 3 (f) Ratings per criteria for the personalised answer for question 3
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(a) Ratings per criteria for the original answer for question 4 (b) Ratings per criteria for the personalised answer for question 4

(c) Ratings per criteria for the original answer for question 5 (d) Ratings per criteria for the personalised answer for question 5

APPENDIX VIII
USER PREFERENCES FROM QUESTIONNAIRE

Preferences % prefer

Question Original Personalised Neutral personalised explanation

1 5 12 0 70.1%
2 2 13 2 76.5%
3 8 7 2 41.2%
4 4 12 1 70.1%
5 1 16 0 94.1%

TABLE X: Preferences of explanations of questionnaire respondents per question

APPENDIX IX
COSINE SIMILARITY RESULTS

Question Cosine Similarity

1 0.6395
2 0.6878
3 0.6847
4 0.7358
5 0.7814

TABLE XI: Cosine similarity results for the provided question pairs.
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