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Abstract

The current paradigm in privacy protection in street-
view images is to detect and blur sensitive information. In
this paper, we propose a framework that is an alternative to
blurring, which automatically removes and inpaints moving
objects (e.g. pedestrians, vehicles) in street-view imagery.
We propose a novel moving object segmentation algorithm
exploiting consistencies in depth across multiple street-view
images that are later combined with the results of a seg-
mentation network. The detected moving objects are re-
moved and inpainted with information from other views, to
obtain a realistic output image such that the moving ob-
ject is not visible anymore. We evaluate our results on a
dataset of 1000 images to obtain a peak noise-to-signal
ratio (PSNR) and L1 loss of 27.2 dB and 2.5%, respec-
tively. To assess overall quality, we also report the results
of a survey conducted on 35 professionals, asked to visu-
ally inspect the images whether object removal and inpaint-
ing had taken place. The inpainting dataset will be made
publicly available for scientific benchmarking purposes at
https://research.cyclomedia.com/.

1. Introduction

In recent years, street-view services such as Google

Street View, Bing Maps Streetside, Mapillary have system-

atically collected and hosted millions of images. Although

these services are useful, they have been withdrawn or not

updated in certain countries [1, 2], due to serious privacy

concerns. The conventional way of enforcing privacy in

street-view images is by blurring sensitive information such

as faces and license plates. However, this has several draw-

backs. First, the blurring of an object like a face might

not ensure that the privacy of the person is sufficiently pro-

tected. The clothing, body structure, location and several

other aspects can lead to the identity of the person, even

Figure 1: Example of moving object segmentation (top) and

the results after inpainting (bottom). The regions that are

highlighted in orange are removed and inpainted.

if the face is hidden. Second, blurring objects creates arti-

facts that is undesirable in application when consistent view

of the infrastructure is required. For commercial purposes

such as change detection and localization of objects from

street-view imagery, blurring limits the scope of these ap-

plications.

It is therefore desirable to use a method that completely

removes the identity-related information. In this paper, we

present a method that automatically segments and replaces

moving objects from sequences of panoramic street-view

images by inserting a realistic background. Moving objects

are of primary interest because authentic information about

the background is present in the other views (we assume

that most moving objects are either vehicles or pedestrians).
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Method Input data Image matching Detection Class/No. of objects Inpainting method

Flores et al.
Grayscale,

Multi-view

Homography

computation using

SIFT & RANSAC

Leibe’s detector
(no moving object

detection, manual)

One pedestrian

per image

Homography-based

warping + Davis

compositing

Ours
RGB-D,

Multi-view

Real world positions

from GPS, IMU
with camera intrinsics

Novel deep learning

based moving object

segmentation

Any number of

objects and

classes per image

Reprojection from

multiple views +

multiview inpainting

GAN

Table 1: Comparison of the proposed vs. closest related method.

It is risky to inpaint static objects after removing them, as

they may remove important or introduce new information

from context. We do not focus on inpainting static objects

such as parked cars, standing pedestrians etc. as no authen-

tic information of the background can be derived. However,

inpainting from spatial context is viable solution for non-

commercial applications. Using a segmentation network to

detect a moving object is a challenging task, since it needs

to learn to distinguish moving from static objects. To sim-

plify this problem, we generate a prior segmentation mask,

exploiting the consistencies in depth. The proposed mov-

ing object detection algorithm, combines with results from

a standard segmentation algorithm to obtain segmentation

masks for moving objects. Finally, to achieve an authentic

completion of the removed moving objects, we use inpaint-

ing Generative Adversarial Network (GAN) that utilizes

multi-view information. While multi-view GAN has been

explored for synthesizing an image to another view [3, 4], to

the best of our knowledge, this is the first work that exploits

multi-view information for an inpainting GAN network.

2. Related Work
Privacy protection Several approaches have been pro-

posed for privacy protection in street-view imagery [5, 6,

7, 8, 9]. The most common way to hide sensitive informa-

tion is to detect the objects of interest and blur them [10].

However, few works have explored the removal of privacy-

sensitive information from street-view imagery for privacy

protection. Flores and Belongie [6] detects and inpaints

pedestrians from another view (details in Table 1). Simi-

larly, Nodari et al. [8] also focuses on pedestrians removal.

However, they remove the pedestrian with a coarse inpaint-

ing of the background. This is followed by replacement of

the inpainted region with a pedestrian obtained from a con-

trolled and authorized dataset. Although this method en-

sures the privacy, the replaced pedestrians tend to appear

unrealistic with respect to the background.
Object detection Due to the progress in deep learning,

there have been significant improvements in object detec-

tion [11, 12, 13]. Detecting objects of interest provides a

reliable way to localize faces and license plates. Similarly,

for precise localization, semantic segmentation offers a bet-

ter alternative to bounding boxes [14, 15, 16]. Hence, we

rely on semantic segmentation approaching pixel accuracy,

as it requires fewer pixels to be replaced during inpainting.

We obtain our segmentation masks through a combination

of the proposed moving object segmentation and segmenta-

tion from a fully convolutional deep neural network.

In the recent years, LiDAR systems has become ubiq-

uitous for applications like self-driving cars and 3D scene

reconstruction. Several moving object detection methods

rely on LiDAR as it provides rich information about the

surroundings [17, 18, 19, 20]. Few approaches convert

LiDAR-based point-clouds into 3D occupancy grids or vox-

elize them [17, 18]. These are later segregated into occupied

and non-occupied building blocks. The occupied building

blocks are grouped into objects and are tracked over time

to determine moving objects [21]. Fusion of both LiDAR

and camera data has also been applied for object detec-

tion [20, 19, 21]. In this case, consistency across both im-

age and depth data (or other modalities) in several frames

are checked to distinguish static and moving objects.

Inpainting Prior works have tried to produce a realistic

inpainting by propagating known structures at the bound-

ary into the region that is to be inpainted [22]. However,

in street-view imagery, this is a challenging task especially

when it has large holes and require complex inpainting.

Therefore, few results relied on an exemplar or multi-view

based methods [23, 24]. State-of-the-art of inpainting meth-

ods adopt Generative Adversarial Networks (GANs) to pro-

duce high-quality inpainted images [25]. GANs are of-

ten applied for problems such as image inpainting [26, 27,

28], image-to-image translation [29, 30], conditional image

translation [31, 32] and super-resolution [33, 34].

Different approaches have been proposed for inpainting

images using deep neural networks. Pathak et al. proposed
one of the first methods that utilized a deep neural net-

work [26]. They applied a combination of both reconstruc-

tion and adversarial losses to improve the quality of the in-

painted images. This was improved in [27], using dilated

convolutions and an additional local discriminator. To im-

prove the quality of details in the output image, Zhao et
al. proposes to use a cascade of deep neural networks [35].

The network first inpaints with a coarse result, followed by a

deblurring-denoising network to refine the output. A multi-

stage approach for inpainting is also proposed in [28]. Yu et
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Figure 2: Overview of the proposed method to segment moving objects and inpaint them from other views. The input image

is first fed to segmentation network to produce the segmentation mask of both moving and static objects. The difference of

the convolution features of the reprojected images and input image is used to find the moving objects in the segmentation

mask. The original input image (It), moving object segmentation mask (Bh
t ) and the reprojected images with regions active

in the segmentation mask (Îrt′→t) is fed to the generator. Note that the discriminators networks are not shown for simplicity.

al. introduces an attention based inpainting layer that learns

to inpaint by copying features from context. They also in-

troduce a spatially discounted loss function in conjunction

with improved Wasserstein GAN objective function [36] to

improve the inpainting quality.

Although inpainting based on context produces plausi-

ble outputs for accurate image completion, GANs may in-

troduce information that is not present in reality. This is

undesirable, especially in commercial applications, where

objects of interest are present or accurate localization are

required. A reasonable idea here is to utilize information

from other views as a prior. Other views provide a better

alternative than inpainted information from scratch. An ex-

ample would be the case when an object of interest (e.g.

traffic-sign, bill-board) is occluded by a car or person. Af-

ter moving object detection, using a GAN to inpaint the hole

from context information would remove the object of inter-

est. However, multi-view information could alleviate this

problem as the object of interest is visible in the other views.

Our main paper contributions are:

• We propose a new multi-view framework for detect-

ing and inpainting moving objects, as an alternative to

blurring in street-view imagery

• We introduce a new moving object detection algorithm

based on convolutional features that exploits depth

consistencies from a set of consecutive images.

• We train an inpainting GAN that utilizes multi-view

information to obtain authentic and plausible results.

3. Method

First, we construct a method that combines standard seg-

mentation with a novel moving object segmentation, which

segments the moving objects from a consecutive set of im-

ages that have a large baseline. The moving object is es-

timated using an ego-motion based difference of convolu-

tional features. Second, we use a multi-view inpainting

GAN to fill-in the regions that are removed from moving

object detection algorithm. The overview of the proposed

framework is shown in Fig 2.

3.1. Moving Object Segmentation
For supervised segmentation, we apply a Fully Convolu-

tional VGGNet (FC-VGGNet), due to its simplicity and the

rich features that are used for moving object segmentation.

We make slight modifications to VGGNet-16 by removing

fully-connected layers and appending bilinear upsampling

followed by convolution layer in the decoder. To create the

segmentation mask for a specific image It at time t, the de-

tection algorithm also uses the two images captured before

and after it, i.e. the RGB images at time t−2, . . . , t+2. Fi-
nally, from the LiDAR-based point cloud and the positions

of each recording, the depth images for these time steps are

created. Note that the RGB and the depth image are not

captured at the same time. Hence, the moving objects are

not at the same positions. Reprojecting the image It′ to the

position of image It is achieved using its respective depth

images Dt′ and Dt. Employing the depth images in con-

junction with recorded GPS positions leads to real-world

pixel positions �p′t′ , �pt, resulting in the defined image re-
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Figure 3: Results from features extracted from FC-VGGNet

(first) and VGGNet (second). Features from FC-VGGNet

are well-localized and have strong activations.

projection Ît′→t. Evidently, some pixels in Ît′→t cannot

be filled due to occlusions. These pixels are replaced by

the pixel values of It by comparing the distance between

the real-world points to an heuristically defined threshold ε.
This reprojection with a threshold is given by

Î ′t′→t =

{
Ît′→t if ||�pt − �p′t′ || < ε,
It otherwise.

(1)

Fig. 4 (Row 1) shows an example of reprojection for

4 neighbouring recordings of 5 consecutive images. A sim-

ple pixel-wise comparison between Î ′t′→t and It yields poor

segmentation results, due to slight variations in the posi-

tion of the car. We have empirically found that patch-

based comparison utilizing pretrained network features pro-

duce better results than conventional pixel-wise and patch-

based features. Feature extraction is often applied to gener-

ate descriptors or rich representations for applications such

as image retrieval and person reidentification [37, 38, 39].

However, here we utilize the extracted features to obtain

the moving objects. Instead of using VGG [40] or other

pretrained network features, we extract features from FC-

VGGNet that is trained to detect static objects, as it is easier

to reuse the same network for moving object segmentation.

Besides the simplicity of relying on a single network and

higher performance, this also speeds up the pipeline. High-

dimensional features F(I) ∈ R
64×256×512 are extracted

from the output of the 4th convolution block. The moving

object segmentation score is the average of the L1 norms

between each of the projected images and It, which is spec-

ified by

s
1/8
t =

1

4

∑
i∈{−2,−1,1,2}

||F(It)−F(Î ′t+i→t)||1 , (2)

where s
1/8
t is upsampled by factor of 8 to obtain a scor-

ing mask st of the original input size of 512× 2048. Exam-

ples of the outputs st is shown in Fig. 3. To generate accu-

rate segmentation masks of moving objects, FC-VGGNet is

trained on the 4 classes that includes both moving and static

objects. For each of the extracted objects from the final out-

put segmentation masks mt of FC-VGGNet, we compute

the element-wise product with the scoring mask st. We

classify an object as moving if the mean of the scores ex-

ceeds a threshold τ in the given object area A, yielding
1

n

∑
(x,y)∈A

st(x, y) ·mt(x, y) > τ, (3)

where n is the number of elements in A. The value of the

threshold τ is discussed in Section 4.2.

3.2. Inpainting

After obtaining the segmentation masks from the mov-

ing object segmentation, we remove the detected objects.

With respect to previous approaches, our method requires

inpainting from other views that serve as a prior. Our input

images are also larger (512× 512 pixels) compared to [28]

(256 × 256) and hence we added an additional strided con-

volution layer in the generator and two discriminators. Our

inputs consist of an RGB image with holes Iht , the binary

mask with the holes Bh
t obtained from the moving object

detection and RGB images Îrt′→t that are projected from

the other views. The images Îrt′→t are obtained from re-

projection after removal of moving object from other views

(Ir denoting removed objects) in the regions where holes

are present in the binary mask Bh
t . This is shown in the

third row of the Fig. 4. The final input to the generator is a

16-channel input.

The 16-channel input is fed to the coarse network

from [28] to produce the final output. We follow a similar

approach, however, the refinement network is not used as no

performance improvement is observed. This occurs as the

input contains sufficient prior information which alleviates

the need to produce a coarse output. We also observe that

we need to train for longer period of time with a single-stage

network to reach the performance of the two-stage network.

We follow the same strategy in [32, 28] of training multi-

ple discriminators to ensure both local and global consis-

tency. Hence, the output from the network is fed to a global

and local discriminator. For training, we use the improved

WGAN objective [36] along with a spatially discounted re-

construction loss [28]. The final training objective L with

a generator G and discriminator networks Dc (where c de-

notes the context, global or local discriminator) is expressed

: L = min
G

max
Dc
Lh

WGAN-GP(G,Dc) + Ld
L1(G, It), (4)

where Lh
WGAN-GP is the WGAN adversarial loss with gra-

dient penalty applied to pixels within the holes and Ld
L1 is

the spatially discounted reconstruction loss. We follow the

same WGAN adversarial loss with gradient penalty in [28]

for our problem,

Lh
WGAN-GP

(
G,D

)
= Ex̃∼Pf

[D(x̃)]− Ex∼Pr
[D(x)]

+ λ Ex̂∼Px̂

[
(‖∇x̂D(x̂)� (1−m)‖2 − 1)2

]
,

(5)

where∇x̂D(x̂) denotes the gradient of D(x̂)with respect to

x̂ and � denotes the element-wise product. The samples x
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Figure 4: Images in the first column are the input images (It) at time t. The first row contains images Î ′t′→t for t′ ∈
{−2,−1,+1,+2} that is projected to the view point of It. Results in the second row are obtained after removal of regions

around the area of interest. Finally, the third row (Îrt′→t) is obtained after removal of moving objects from other views.

and x̃ are sampled from real and generated distributions Pr

and Pf . Pf is implicitly defined by x̃ = G([It, B
h
t , Î

r
t′→t])

where [,] denotes the concatenation operation and t′ ∈
{−2,−1, 1, 2} . The sample x̂ is an interpolated point ob-

tained from a pair of real and generated samples. The gra-

dient penalty is computed only for pixels inside the holes,

hence, a mask 1−m is multiplied with the input where the

values are 0 for missing pixels and 1 otherwise. The spatial

discounted reconstruction loss [28] Ld
L1 is simply weighted

L1 distance using a mask M and is given as

Ld
L1(G, It) = ‖M� G([It, B

h
t , Î

r
t′→t])−M� It‖1, (6)

where each value in the mask M is computed as γl (l is the

distance of the pixel to nearest known pixel). We set the gra-

dient penalty coefficient λ and the value γ to 10 and 0.99 re-

spectively as in [36, 28]. Intuitively, the Lh
WGAN-GP updates

the generator weights to learn plausible outputs whereas

Ld
L1 tries to the reconstruct the ground truth.

4. Experiments
We evaluate our method on the datasets described in the

next section. The final results are evaluated using peak

signal-to-noise ratio (PSNR), L1 loss and an image qual-

ity assessment survey.

4.1. Datasets

The datasets consists of several high-resolution panora-

mas and depth maps derived from LiDAR point clouds.

Each of the high-resolution panoramas is obtained from a

five-camera system that has its focal point on a single line

parallel to the driving direction. The cameras are config-

ured such that the camera centers are on the same loca-

tion, in order to be able to construct a 360° panorama. The

parallax-free 360° panoramic images are taken at every 5-

meters and have a resolution of 100-megapixels. The im-

ages are well calibrated using multiple sensors (GPS, IMU)

and have a relative positioning error less than 2 centimeters

between consecutive images. The LiDAR scanner is a Velo-

dyne HDL-32E with 32 planes, which is tilted backwards

to maximize the density of the measurement. The RGB and

LiDAR are recorded together and they are matched using

pose graph optimization from several constraints such as

IMU, GPS. The point cloud from the LiDAR is meshed and

projected to a plane to obtain a depth map.

The segmentation dataset consists of 4,000 images of

512 × 512 pixels, 360° panoramas along with their depth

maps. The dataset is divided into 70% for training and

30% for testing. Our internal dataset consists of 96 classes

of objects out of which 22 are selected for training. The

22 classes are broadly segregated into 4 classes as record-

ing vehicle, pedestrians, two-wheelers and motorized ve-

hicles. The inpainting dataset contains of 8,000 images

where 1,000 are used for testing. The holes for inpainting

have varying sizes (128 × 128 to 384 × 384 pixels) that

are placed randomly at different parts of the image. The

inpainting dataset will be made publicly available.
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4.2. Moving-Object Segmentation

We first train FC-VGGNet on our internal dataset across

the pre-mentioned 4 sub-classes described in Section 4.1.

Due to high class imbalances (recording vehicle (5.3%),

pedestrians (0.05%), two-wheelers (0.09%) and motorized

vehicle (3.2%), other objects (91.4%)), the losses are re-

weighted inversely proportional to the percent of pixels of

each class. We observe the best performance at 160 epochs

to obtain a mean IoU of 0.583.

Since large public datasets of moving objects with

ground truth are not available, we resort to manual eval-

uation of the segmentation results. To evaluate the per-

formance of the moving object detection, we select every

moving object in 30 random images. We measure the clas-

sification accuracy of these extracted moving objects across

different layer blocks of FC-VGGNet to determine the best

performing layer block. From Fig. 5, we can conclude that

extracting features F(It) from convolution layers of the de-

coder (Layers 6-10) of FC-VGGNet leads to worse classi-

fication results than using the convolution layers of the en-

coder (Layers 1-5). The best results are obtained when the

outputs are extracted from the fourth convolution layer. We

also conducted experiments with a VGG-16, pretrained on

ImageNet dataset. We have found that the best results are

extracted from the eighth convolution layer, which produces

an output of size 28 × 28 × 512. However, on qualitative

analysis, we have found that the features from the encoder

layers of FC-VGGNet offer much better performance than

VGG features. This is visualized in Fig. 3. The activations

are stronger (higher intensities) for moving objects and have

lower false positives. This is expected as FC-VGGNet is

trained on the same data source as used for testing, whereas

VGG is trained on ImageNet.

It is interesting to observe that features from the shal-

lower layers (earlier layers) of FC-VGGNet perform much

better than deeper layers (later layers) for moving object de-

tection. This is due to features adapting to the final segmen-

tation mask as the network grows deeper. As we compute

the L1 loss between F(It) and F(Î ′t+i→t) at deeper layers,

the moving object segmentation is more close to the differ-

ence between the segmentation outputs of It and Î
′
t+i→t (ef-

fectively removing overlapping regions), resulting in poor

performance. The threshold τ to decide whether an object

is moving (as in Eq. (3)), is empirically determined. Sur-

prisingly, the threshold τ has minimal impact on the perfor-

mance. The mean IoU varies slightly, between 0.76 − 0.8
for τ ∈ [0.1, 0.9]. For all the experiments, we set τ to 0.7.

4.3. Inpainting

Initially, we train the inpainting network proposed by

Yu et al. [28]. However, we do not use the refinement net-

work as we do not observe any performance improvements.

As input we supply 16 channels, 5 RGB images and a bi-
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Figure 5: Classification accuracy of extracted objects from

moving object segmentation results as moving/non-moving

from different layer blocks of FC-VGGNet.

nary mask. However, no real ground truth is present for an

input image, i.e. we do not have an image taken at the exact

same location without that moving object being there. Re-

projected images could serve as ground truth, but have ar-

tifacts and a lower visual quality. Therefore, we randomly

remove regions from the images (excluding regions of sky

and recording vehicle) to generate ground truth. Instead of

randomly selecting shapes for inpainting, the removed re-

gions have the shapes of moving objects (obtained from

moving object segmentation). The shapes of moving ob-

jects are randomly re-sized to different scales so as to learn

to inpaint objects of different sizes.

To provide an implicit attention for the inpainting GAN,

instead of feeding in the complete reprojected images, we

select only pixels from the non-empty regions of the binary

mask from the other views. However, simply feeding in

selected regions from other views have a drawback, since

a moving object that is partially visible in other views, is

also projected to the non-empty region. This is undesirable

as it causes the inpainting network to learn unwanted mov-

ing objects from other views. Therefore, the moving ob-

jects from other views are removed prior to projecting pixels

from other views. Therefore, the final input for the genera-

tor is [It, B
h
t , Î

r
t′→t], where [a, b] denotes the concatenation

operation of b after a. Optimization is performed using the

Adam optimizer [41] with a batch size of 8 for both the

discriminators and the generator. The learning rate is set

to 10−5 and is trained for 200 epochs. The discriminator-

to-generator training ratio is set to 2. The inpainted results

after moving object segmentation are shown in Fig. 6.

Evaluation Evaluation metrics such as Inception score

(IS) [42], MS-SSIM [43] and Birthday Paradox Test [44]

for evaluating GAN models are not suitable for inpainting

as inpainting focuses on filling in background rather than its

capacity to generate diverse samples. In the case of Fréchet

Inception Distance (FID) [45] and IS [42], a deep network

is trained such that it is invariant to image transformations

and artifacts making it unsuitable for image inpainting task

as these metrics have low sensitivities to distortions.
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Figure 6: Inpainted results after removing objects obtained from moving object segmentation (bottom row). Input images are

shown in the top row. Inpainting in the second and third column have a slight ghosting effect. Participants have an average

confidence of 20%, 62.9% and 80% (column 1-3) that it is an inpainted image.

For evaluation, we use both PSNR and L1 loss compar-

ing the ground-truth image against the inpainted image on a

test set of 1000 images. In our case, these metrics are suit-

able as they measure the reconstruction quality from other

views rather the plausibility or diversity of the inpainted

content. However, applying reconstruction losses as a eval-

uation metric favors multi-view based inpainting. As we

use multi-view information for inpainting, it is obvious that

the results can be improved significantly making it difficult

for a fair comparison. Nevertheless, we report the results

in PSNR and L1 losses on the validation set. We obtain a

PSNR and L1 loss of 27.2 dB and 2.5% respectively.

As a final experiment to assess overall quality, we have

conducted a survey with 35 professionals within the do-

main. We have asked the participants to perform a strict

quality check on 30 randomly sampled image tiles out of

which 15 of them are inpainted after moving object de-

tection. The number of tiles in which a moving object is

removed is not revealed to the participants. Each partic-

ipant is asked to observe an image tile for approximately

10 seconds and then determine if a moving object has been

removed from the tile. Participants are also informed to

pay close attention to misplaced shadows, blurry areas and

other artifacts. The results of the survey is shown in Fig. 7.

In total of 1050 responses were collected from 35 par-

ticipants, 333 (31.7%) responses identified the true posi-

tives (inpainted images identified correctly as inpainted),

192 (18.3%) as false negatives (inpainted images not recog-

nized as inpainted), 398 (37.9%) as true negatives (not in-

painted and identified as not inpainted) and 127 (12.1%) as

false positives (not inpainted but recognized as inpainted).

Note that combination of true positives and false negatives

are disjoint from the combination true negatives and false

positives. The participants have an average confidence of

63.4%± 23.8% that a moving object(s) was inpainted in the

images where objects were removed (average of responses

in blue line of Fig. 7). However, it is interesting to note that

in cases when no object is removed, they have a confidence

of 24.2% ± 13.5% stating that an object(s) is removed and

inpainted (average of responses in orange line of Fig. 7).

Clearly, in most cases with meticulous observation, par-

ticipants are able to discern if an object is removed. How-

ever, we also observe high deviation in the responses of

images where objects are removed and hence we inspect

images that have poor scores (high confidence from partici-

pants stating that it is inpainted). Few of the worst perform-

ing results (confidence higher than 90% on the blue line of

Fig. 7) are shown in Fig. 8. We have found that the worst re-

sults (Image 7, Image 10 with average confidence of 94.3%,

97.1%) have the strongest artifacts. However, in the other
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Figure 7: The average confidence per image of survey par-

ticipants indicating if an image has an inpainted region. The

blue line is for images that have objects removed and orange

for unaltered images.

cases (average confidence of 82.9%, 85.7% and 82.9%), we

note that minuscule errors such as slight variations in edges,

lighting conditions, shadows, etc. are the reasons why par-

ticipants are able to distinguish the inpainted examples. Al-

though the poor cases are reported with high confidence, we

believe that such artifacts would be hardly noticed in reality

if not explicitly searched. Despite these cases, this frame-

work ensures complete privacy, alleviates blurring artifacts

and removes occluded regions which is beneficial for com-

mercial purposes.

5. Discussion
Although the proposed framework is a good alternative

to blurring, it is by no means perfect. The moving object

segmentation algorithm invokes a few challenges. Since

the moving object detection is class agnostic, there are false

positives from certain objects such as traffic signs and light

poles. The comparison between features from different

viewpoints of a traffic sign (front and back) leads to false

positives. Similarly, poles might be detected as moving

since small camera position errors lead to a minor mismatch

of depth pixels during reprojection. However, we are able

to suppress these false positives by combining the outputs

from FC-VGGNet. Even for a wide range of τ values [0.1

- 0.9], mIoU varies only by 4% ensuring the reliability and

robustness of the method. The proposed method may fail

when there is an overlap of moving and static objects. For

example, a car driving in front of parked vehicles can results

in all objects classified as moving or non-moving. However,

this can be mitigated by applying instance segmentation.

Limitations Poor results occur in a few cases when a driv-

ing vehicle is in the same lane as the recording vehicle

(Fig. 8, row 3). The moving object completely occludes

all the views making it difficult for multi-view inpainting.

Figure 8: Worst performing results from the survey (high

confidence that object is removed). Rows 1-3 with average

confidence of 82.9%, 94.3% and 97.1% respectively.

In such a scenario inpainting based on context would be

an alternative, however, this does not guarantee a genuine

completion of the image. In non-commercial application,

this is still a viable solution. Even though few inpainting ar-

tifacts such as shadows, slightly displaced edges are visible,

we argue that they are still a better alternative to blurring as

it ensures complete privacy and far less noticeable artifacts

(Fig. 6, column 3 and Fig. 8, row 1). As the method does

not explicitly target shadow, this too may reveal privacy-

sensitive information in rare cases.

6. Conclusion
We presented a framework that is an alternative for blur-

ring in the context of privacy protection in street-view im-

ages. The proposed framework comprises of novel con-

volutional feature based moving object detection algorithm

that is coupled with a multi-view inpainting GAN to de-

tect, remove and inpaint moving objects. We demonstrated

through the multi-view inpainting GAN that legitimate in-

formation of the removed regions can be learned which is

challenging for a standard context based inpainting GAN.

We also evaluated overall quality by means of a user ques-

tionnaire. Despite the discussed challenges, the inpainting

results of the proposed method are often hard to notice and

ensures complete privacy. Moreover, the proposed approach

mitigates blurring artifacts and removes occluded regions

which are beneficial for commercial applications. Although

most of the current solutions rely on blurring, we believe

that the future of privacy protection lies in the direction of

the proposed framework.
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