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Abstract

The ‘New Space’ mentality is gaining in popularity and is at the basis of the growing size of
satellite constellations. These satellite constellations are used for technologies such as satellite
navigation and internet, but a clear framework to controlling large satellite constellations is
missing. Therefore, a new approach is developed to work efficiently with thousands of satellites
by finding a suitable model, controller and problem formulation.

A new model is developed that is linear time-invariant, fully based on physics and can
include J2 perturbations. Furthermore, it can work well for both in-plane and out-of-plane
movements. This model is paired with the lumped System-Level Synthesis control framework:
a robust control algorithm that optimises the closed-loop transfer function. Due to a modifi-
cation, the applied controller is less conservative than the original controller and faster than
other modifications. The problem formulation is rewritten to a standard quadratic problem to
significantly increase the rate at which these problems can be solved. This includes rewriting
one-norms and infinity norms, but also a new formulation for these System-Level Synthesis
problems in general.

These findings are tested in a simulation of over two hundred satellites, where the satellites
are controlled with the new model, the robust controller, the new problem formulation and
collision avoidance constraint. These collision avoidance constraints are added to ensure that
satellites keep a safe distance between themselves at all times. This includes constraints
between satellites within the same plane, but also between satellites that cross each other’s
orbit while close to each other.
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Preface

This document is the final part of my Master of Science graduation thesis, which consists
of two main parts. The first, completed in February, is a literature survey consisting of an
overview of the relevant literature that is already available. The second part, which is this
report, is the actual thesis itself. Here, the knowledge obtained during the literature survey
is then applied to the problem, along with several new contributions to extend the scientific
domain further.

The topic of this thesis, “Robust Control of Large-Scale Satellite Constellations Using
System-Level Synthesis”, covers several different subjects, such as orbital mechanics, control
theory and mathematical optimisation. Where the latter two have made an appearance during
the MSc. Systems & Control and the MSc. Robotics, orbital mechanics was a topic in which
I was a novice. I was interested in dynamics, and many hours later, I eventually developed an
understanding of orbital mechanics. The process has been challenging, but these challenges
make the results more rewarding at the same time.
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Chapter 1

Introduction

This chapter provides an introduction to the thesis work. As no assumptions are made on
the level of knowledge of the reader in the space domain, an introduction to modern space
missions is provided in Section 1-1 first, followed by a discussion of different types of multi-
spacecraft missions in Section 1-2. An overview of (the history of) satellite constellations is
provided in Section 1-3, after which the current state is discussed in Section 1-4. Problems
arising from this state are then discussed in Section 1-5. Finally, an outline for the rest of the
work and an overview of the contributions in this work are presented in Sections 1-6 and 1-7.

1-1 Introduction To Modern Space Missions

Traditionally, space missions were often carried out using a single or a handful of spacecraft.
Missions for satellite navigation, which usually contain approximately 24 to 30 satellites, were
on the larger end of multi-spacecraft missions. However, recent developments have shifted the
industry to the ‘New Space’ or ‘Space 4.0’ mentality [1], [2], which is built from three main
aspects:

1. Space privatisation. Where traditionally government-funded companies such as NASA,
ESA and Roskosmos were the main operators in space, a rising part of the space industry
is in private hands nowadays. Companies such as SpaceX, Blue Origin, Virgin Galactic
and Planet Labs are public companies with the goal to sell commercial services.

2. Satellite miniaturisation. As a continuation of the “Microspace” movement from the
1990s and early 2000s [2], the spacecraft themselves are becoming smaller, cheaper
and easier to manufacture. The interest in smaller spacecraft has led to the design of
CubeSats, which are small and lightweight cube-like satellites that have, for example,
been employed by Planet Labs [3].

3. Novel services based on space data. Combining both miniaturisation and privatisation,
it is now relatively inexpensive and fast to launch a small spacecraft into space. This
has led to many new or improved services, such as Earth observations, radio frequency
monitoring, asset tracking and sensor data collection [1]. Satellite internet has also
gained popularity, as even though it has been around for two decades, it was regarded
as an expensive and slow option with low capacity [2]. With a larger number of satellites,
it is possible to decrease the orbit’s altitude while still providing continuous services,
decreasing the latency in the network.

Master of Science Thesis F.J.P. Ballast
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1-2 Classification of Multi-Spacecraft Missions

The ‘New Space’ movement has increased the number of multi-spacecraft missions, which
fall into four categories depending on the inter-satellite distance and the required control
accuracy. This is depicted in Fig. 1-1, where four types of missions are considered: rendezvous
& docking, formation flying, constellations and swarms.

Rendezvous & docking missions entail, as the name suggests, that two (or multiple) space-
craft meet and connect with a physical connection (i.e., the docking). These missions have
been the most common in the past, of which many missions with the International Space Sta-
tion (ISS) are a clear example. The rendezvous part requires a small inter-satellite distance,
and the docking requires a high control accuracy.

Formation flying missions were among the first missions executed in space, with the cap-
sules Gemini 6A and Gemini 7 in 1965 being a prime example [4]. It is characterised by
a medium-sized inter-satellite distance and control accuracy, and usually consists of only a
handful of (possibly heterogeneous) satellites. A more modern example of a formation flying
mission is the Swedish Prisma mission, consisting of two heterogeneous satellites launched in
2010 [4].

Constellations span a global area and usually involve multiple spacecraft in one or multiple
orbits around a celestial body. Constellations can be used to make observations of that
celestial body, make measurements or create a service such as satellite internet or Global
Positioning System (GPS). The latter is one of the oldest examples of satellite navigation,
which consists of 24 satellites and has been operational for almost three decades.

Swarms are the newest type of mission and consist of several tens to several thousands of
satellites. Swarms are, as opposed to the rendezvous & docking and formation flying missions,
mostly made up of homogeneous satellites. Because swarms are relatively new and span a
wide region of different missions in Fig. 1-1, it can be hard to distinguish between a swarm
and a different type of mission. For example, a mission such as the Orbiting Low Frequency
Array (OLFAR) [5] is deemed to be a swarm by some authors [6] but considered to be a
constellation by others [7]. This mission aims at receiving radio signals from 30 kHz up to
40 MHz, and the aperture diameter of the radar array can be up to 100 km, which would be
impossible with a single spacecraft.

Swarms

Rendezvous &
Docking

Formation
Flying

Constellation

Inter-satellite distance

C
on

tro
l a

cc
ur

ac
y

Figure 1-1: Classification of different types of multi-spacecraft missions adapted from [8].
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1-3 Constellations For Satellite Internet

Of these multi-spacecraft missions, the large-scale missions with constellations and swarms
have been the most affected by the rising popularity of the ‘New Space’ mentality. Especially
those missions benefit from a larger scale and allow for the novel services discussed in Section 1-
1, such as Earth imaging, radio frequency monitoring and faster satellite internet.

Especially the latter has many companies competing, as they foresee a large commercial
market for satellite internet. However, as already briefly mentioned in Section 1-1, satellite
internet is not a new technology, and this service has been provided for over two decades.
These satellites were usually placed in a Geostationary Earth Orbit (GEO) of 36.000 km,
which leads to propagation delays of roughly 120 ms [1]. This is significantly higher than
the propagation delays for Very Low Earth Orbit (VLEO) (roughly 50-85 µs) and Low Earth
Orbit (LEO) (roughly 2 ms) satellites. This latency advantage also led to many companies
filing for LEO constellations as early as the 1990s, but these projects failed mostly due to the
expensive technology [9]. The disadvantage of these lower orbits is that more satellites are
required to provide continuous services, which was not cost-effective at that time.

Nevertheless, many companies are working on providing high-speed satellite internet now,
with SpaceX (Starlink), Amazon (Kuiper), OneWeb and Telesat among the most well-known
[9]. Satellite internet can enhance network reliability, reach unserved areas such as deserts,
oceans and forests, and scale their service to offload the terrestrial network [1]. The maritime
and aviation industries are clear examples of industries that cannot always use a ground
network.

The four previously mentioned providers of satellite internet are compared in [9]. The
planned altitude, number of planes, satellites per plane and the inclination of the constellation
are shown in Table 1-1. The inclination corresponds to the angle the orbits make with
the equatorial plane of the Earth, and most of the satellites are placed into orbits with an
inclination between 40° and 55°, as this corresponds to the most densely populated areas.

Table 1-1: Constellation characteristics of four systems [9].

Company Altitude Inclination Planes Satellites per plane Number of satellites

Telesat 1.015 km 98.98° 27 13 1.6171.325 km 50.88° 40 33

OneWeb
1.200 km 87.9° 36 49

6.3721.200 km 55° 32 72
1.200 km 40 32 72

SpaceX

540 km 53.2° 72 22

4.408
550 km 53° 72 22
560 km 97.6° 6 58
560 km 97.6° 4 43
570 km 70° 36 20

Amazon
590 km 33° 28 28

3.236610 km 42° 36 36
630 km 51.9° 34 34
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1-4 Current State of Constellation Control

Due to the commercial possibilities at stake, most companies dealing with satellite constel-
lations do not publicly share information on their approach. Although people have tried to
analyse the work of these companies, such as estimating the control accuracy of a Starlink
constellation [10], the approach of these companies remains mostly a black box. However,
several papers have been published by one company, Planet Labs, on their approach, where
algorithms have been applied and tested on real satellite constellations [3], [11]–[13].

Planet Labs is a California-based space company that designs, builds and operates large
CubeSat constellations for Earth observation. Their satellites always point towards the Earth
and continuously make images of the Earth. They use this data for commercial and humani-
tarian purposes [3].

An interesting detail of the Planet Labs satellites is that they have no propulsion system
but instead control their position using differential drag. With differential drag, satellites
decelerate by increasing their frontal area or drag coefficient and thus increasing the aerody-
namic forces acting on the satellite. Satellites can control their along-track position along the
orbit with differential drag. Differential drag control is less expensive and saves engineering
and regulatory work, but is also relatively slow, can only be used in a LEO or VLEO and
directly affects the lifetime of the satellite [11]. The latter follows from the fact that the
increased drag forces also decrease the satellite’s altitude. ‘Fuel’ optimal control is therefore
important, as the operational lifetime of a satellite can be significantly reduced with inefficient
control.

Planet Labs uses simulated annealing to control their constellation with a simple double
integrator model. They can control 88 satellites using this algorithm, although only the
angular error is controlled. The input for each satellite is either 1 (high drag) or 0 (low drag)
and is randomly sampled. The algorithm is provided in Algorithm 1:

Algorithm 1 Command generator from Planet Labs.
Input: kmax, θi,desired
Output: u

costold ←∞
for k = 0; k < kmax; k = k + 1, do

Create unew with randomly flipped command u
Predict future states θi,t under unew
Compute cost: costnew =

∑nsats
i=0

∑tfinal
t=0 (θi,t − θi,desired)2

if P (costold, costnew, k, kmax) ≥ random(0,1), then
u← unew

end if
end for

where the probability function P (costold, costnew, k, kmax) is defined as:

P (costold, costnew, k, kmax) :=


1, if costnew < costold,

exp
(

costold−costnew
t0
(

1− k
kmax

) ), if costnew > costold.
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1-5 Problem Statement

When the scale of a constellation changes from tens to thousands of satellites, a new approach
is required or desired as the original approach breaks down at the new scale. For example,
operations traditionally performed manually by skilled operators may need to be automated.
Traditionally, the number of skilled personnel was larger than that of spacecraft, resulting in
thousands of skilled operators for the constellations shown in Table 1-1 [14].

Furthermore, algorithms that work well for a handful of satellites can fall victim to the
curse of dimensionality when the number of satellites grows. Where computations might take
seconds or minutes for ten satellites, they can take hours or days for hundreds of satellites if
the algorithm scales poorly. The approach of Planet Labs in Algorithm 1 is an example of this,
as simulated annealing with randomly sampled control inputs does not scale well when the
size of the constellations grows larger. As simulated annealing is a general nonlinear optimiser
and no gradient information is used, optimisation is relatively slow. Other shortcomings of
this approach include:

• Their double integrator model [11] only controls the angular error and requires separate
controllers for the radial and out-of-plane errors. The former is coupled to the angular
errors, which are ideally controlled closely together. They provide no instructions on
how to do so in [11].

• Their model does not include, nor account for, any perturbations and is very simplistic.
This allows for large modelling errors, while at the same time, it is not possible to
guarantee that constraints are met. The space industry’s costs are still very high, and
collisions leading to space debris could compromise future missions. Therefore, a robust
control approach is desired to guarantee that (collision avoidance) constraints are met.

• They have not included any constraints in their problem. Input constraints can easily
be included by sampling u only from the feasible set, but this is not as simple for
state constraints, as the future states are only considered after sampling the new u.
If it is impossible to inversely calculate the set of possible inputs such that the states
are within their allowed bounds, the number of sampled inputs needs to be increased,
further decreasing the speed. Collision avoidance constraints can, due to the angle being
the only state variable, only take on a very simple form.

To improve upon this issues, the goal of this research is to answer the following question:

How can a large constellation of several hundreds of satellites and multiple planes
be robustly controlled while maintaining a safe distance between themselves?

where the following sub-questions are used to answer this question:

• What dynamical model best controls satellites for both in-plane and out-of-
plane movements?

• What control algorithm can be used best to control a satellite robustly?

• How can a different formulation of the optimisation problem scale up the
control algorithm?

• How can collision avoidance constraints be (robustly) formulated with this
dynamical model and control algorithm?
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1-6 Outline

This report is divided into six chapters, where chapters Chapters 2 to 5 each answer one of
the sub-questions from Section 1-5:

1. Chapter 1 provides an introduction to the problem at hand and the research done. It
provides an overview of the report in general and the contributions that are claimed to
arise from this work.

2. Chapter 2 introduces the reader to orbital mechanics and the derivations of different
dynamical models. This includes models already present in the literature but also a
new model derived in this work.

3. Chapter 3 gives an overview of the System-Level Synthesis (SLS) framework and why
it can help control a large satellite constellation. This also includes a discussion of a
robust SLS variant.

4. Chapter 4 discusses how the optimisation problem at hand can be solved in a reasonable
time, also for large constellations. This includes a comparison of different solvers and
problem formulations to reach the maximum potential of these solvers.

5. Chapter 5 shows several large-scale simulations with the results from the previous
chapters combined. As the number of satellites increases significantly in this chapter,
collision-avoidance constraints are also discussed.

6. Chapter 6 finalises the work with a conclusion of the results, a discussion of the work
and possible future work.

1-7 Contributions

This report provides the following contributions:

• A new linear time-invariant (LTI) model has been developed that works well for both
in-plane and out-of-plane manoeuvres and can easily include so-called J2 perturbations1.

• A new robust SLS variant is presented that, without any assumptions on the model
uncertainties’ structure, can guarantee satisfying constraints. Other methods can do
so as well but are either too conservative or the number of required constraints scales
exponentially with the number of possible sources of uncertainty.

• An overview is provided of the required solving time for varying constellation sizes for
varying solvers, including a GPU solver and various toolboxes.

• An extension of the previous point is provided by finding a new, sparse formulation for
the robust SLS controller that is transformed into an equivalent quadratic programme.
This formulation is significantly faster than the original formulation, especially for larger
problems.

• New collision avoidance constraints for satellites within the same plane and satellites in
different planes are constructed.

1See Chapter 2 for details on what J2 perturbations exactly are.
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Chapter 2

Orbital Mechanics

To efficiently and robustly control a satellite in its orbit around the Earth, it is common to
use a model-based approach. These models require an understanding of the relative physics of
the satellite, which is discussed in this chapter. First, the fundamentals of orbital mechanics
are discussed in Section 2-1, followed by three different models used to control the satellite
in Section 2-2: the cylindrical Hill-Clohessy-Wiltshire model, the quasi-nonsingular Relative
Orbital Elements model and the newly proposed Blend model. The differences between these
models are demonstrated in Section 2-3. Finally, conclusions are drawn in Section 2-4

2-1 Fundamentals of Orbital Mechanics

As with almost any three-dimensional problem, a good understanding of the used reference
frames is important to follow the derivations. Therefore, the most commonly used reference
frames for orbital mechanics are discussed in Section 2-1-1. These are followed by the intro-
duction of important orbital parameters in Section 2-1-2 and the usage of these parameters
in absolute models in Section 2-1-3.

2-1-1 Different Frames

Three frames often used in orbital mechanics are the Earth-Centred Inertial (ECI) frame, the
Local-Vertical-Local-Horizontal (LVLH) frame and the perifocal frame.

ECI Frame

The ECI frame is centred at the Earth, with the x-axis pointing along the vernal equinox,
the z-axis pointing to the (geometric) north pole and the y-axis completing the right-hand
coordinate system. The vernal equinox is when the Sun crosses the equator during March1,
at which point the line from the centre of the Earth to the Sun is defined as the x-axis of the
ECI frame [15]. The ECI frame is visualised in Fig. 2-1a.

LVLH Frame

The LVLH frame is centred at the spacecraft of interest. The x-axis points away from the
Earth, the z-axis is aligned with the angular momentum vector, and the y-axis completes the
right-handed coordinate system. These axes are sometimes denoted as r (radial), t (tangential)
or n (normal) instead of x, y and z, respectively. The LVLH frame is shown in Fig. 2-1b.

1For this reason, it is also called the March equinox.
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8 Orbital Mechanics

Perifocal Frame

The fundamental plane of the perifocal frame is the orbital plane, where the x-axis points
towards the perigee, the z-axis aligns with the angular momentum vector, and the y-axis
completes the right-handed coordinate system centred at the Earth. Perigee, from the Greek
words ‘peri’ (near) and ‘ge’ (Earth), is the closest point on the orbit to the Earth. Its
counterpart is called apogee, from ‘apo’ (away from), which is the point on the orbit furthest
away from the Earth. The perifocal frame2 is shown in Fig. 2-1c.

(a) ECI frame (b) LVLH frame (c) Perifocal frame

Figure 2-1: Different frames used in orbital mechanics, all from [15].

2-1-2 Orbital Parameters

As this research is focused on satellite constellations, this section discusses circular and elliptic
orbits as opposed to parabolic or hyperbolic flybys. An example of a generic elliptical orbit is
shown in Fig. 2-2, where several standard orbital parameters are denoted. First, several basic
parameters are discussed, followed by the anomalies, orbit rotations and the introduction of
orbital elements.

Basic Parameters

Two of the most critical parameters for an orbit are the semi-major axis a and the eccentricity
e, both visualised in Fig. 2-2. The first, the semi-major axis a, is the most common parameter
to denote the ellipse size. As the name implies, it is equal to half the length of the ellipse’s
major axis. The semi-major axis a plays an essential role in the angular velocity of the satellite
around the Earth, as the mean angular velocity around the orbit, also called the mean motion
n, can be computed with:

n =
√

µ

a3 , (2-1)

with µ representing the gravitational parameter of the Earth.

2Periapsis, as used in Fig. 2-1c, is the more general term for perigee, which is only used when the Earth is
in one of the focal points of the ellipse. Its counterpart is the apoapsis, both of which stem from the Greek
word ‘apsis’ (arch).
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Figure 2-2: Elliptical orbit with important orbital parameters (inspired by [15]).

The second parameter, the eccentricity e, is used to represent the shape of the ellipse. For
a circular orbit, the eccentricity is zero, whereas the eccentricity is between zero and one for
an elliptic orbit3. The eccentricity relates the semi-major axis a and the semi-minor axis b,
which is half the length of the minor axis of the ellipse, as:

b = a
√

1− e2. (2-2)

The last term on the right-hand side in Eq. (2-2) is often denoted as:

η =
√

1− e2,

to shorten the equations in the next (sub)sections.
Another distance often used in models is the semi-latus rectum p, which is the distance

from the Earth towards the ellipse parallel to b. Its form is surprisingly similar to b:

p = a(1− e2). (2-3)

Finally, an important parameter not directly visible in Fig. 2-2 is the angular momentum per
unit mass h, which is computed as:

h =
√

µa(1− e2) = a2nη.

3The eccentricity can be larger or equal to one, but only in the cases of a parabolic or hyperbolic flyby.
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10 Orbital Mechanics

Anomalies

The position of the spacecraft along the orbit is parameterised through one of three different
anomalies, all of which describe the angle relative to the line of apsides4: the line connecting
apogee and perigee. These three anomalies are:

• The true anomaly f is the angle between the line of apsides and the line from Earth to
the spacecraft. This angle is shown in Fig. 2-2.

• The eccentric anomaly E is the angle between the line of apsides and a point on a circle
with radius a, connected to the spacecraft through a line perpendicular to the line of
apsides. This angle is also visualised in Fig. 2-2.

• The mean anomaly M is the angle the true anomaly f would have had if the satellite
moved with a constant mean velocity given the time that has passed. The mean anomaly
equals the true anomaly for a circular orbit, as the velocity is constant in that case.

The mean anomaly can be calculated as:

M = M0 + n(t− t0) = E − e sin E, (2-4)

with the mean motion n as in Eq. (2-1), t0 the epoch5 and M0 the mean anomaly at epoch.
A conversion between the mean and true anomaly is also possible, but this yields a more
complex result:

M = f + 2
∞∑

n=1
(−1)n

( 1
n

+
√

1− e2
)(1−

√
1− e2

e

)n

sin nf

= f − 2e sin f +
(3

4e2 + 1
8e4

)
sin 2f − 1

3e3 sin 3f + 5
32e4 sin 4f +O(e5). (2-5)

Orbit Rotations

Given a position in a perifocal frame, the position can be expressed in the ECI frame through
three Euler angles, also shown in Fig. 2-3.

• The Right Ascension of the Ascending Node (RAAN) Ω, which is the angle between
the vernal equinox and the Line of Nodes (LON). For a non-equatorial orbit, there are
two points (called nodes) where the satellite crosses the equatorial plane: one moving in
the positive z-direction (the ascending node) and one moving in the negative z-direction
(the descending node). The line connecting these two nodes is called the LON.

• The inclination angle i, which is the angle between the equatorial and orbital plane.

• The argument of periapsis ω, which is the angle between the LON and the line of
apsides.

These Euler-angles chain together in the ZXZ order, where the first rotation (Ω) is around the
(local) Z-axis, followed by a rotation (i) around the local X-axis and finally another rotation
(ω) around the local Z-axis.

4Apsides is the plural form of ‘apsis’. For more information, see Footnote 2.
5A reference time where the states are known. A common choice is the time it passes perigee.
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2-1 Fundamentals of Orbital Mechanics 11

Figure 2-3: Visualisation of the Euler angles [15].

Orbital Elements

An important observation can now be made. The position of a satellite in the perifocal frame
can be fully described by the semi-major axis a, the eccentricity e and an anomaly. For
example, the radius of the satellite can be found using the following (nonlinear) expression:

r = a(1− e2)
1 + e cos f

. (2-6)

Furthermore, the mapping from the perifocal frame to the ECI frame can be fully described
using the Euler angles Ω, i and ω. Thus, the position of a satellite can be expressed in the ECI
frame using the so-called classical orbital elements œ: a combination of these five parameters
and an anomaly. The most common anomaly is the mean anomaly, such that the orbital
elements are defined as:

œ = {a, e, i, Ω, ω, M},

where sometimes the mean anomaly at epoch M0 is used instead, such that the position
depends on the orbital elements and the time t through the equation for the mean anomaly
as in Eq. (2-4).

Note, however, that these orbital elements are not well-defined for all orbits. For a circular
orbit, there are no apogee or perigee, for example. The lack of a line of apsides means that
the anomalies, as defined until now, lack a clear reference. A common solution is to add
the argument of periapsis to these anomalies, such that the total angle is well-defined. The
argument of latitude θ, which is the sum of the true anomaly f and the argument of periapsis
ω, is a good example of this:

θ = f + ω. (2-7)

Both the argument of latitude and the argument of periapsis are shown in Fig. 2-2 as well.
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12 Orbital Mechanics

2-1-3 General Absolute Models

Absolute models describe the motion of an orbiting body around another, usually significantly
larger body. For this thesis, these equations model the physics of a satellite in an orbit
around the Earth. First, a general set of models is presented for the two-body problem,
after which the effect of so-called J2 perturbations is presented with orbital elements and
Cartesian coordinates. The subsection ends with the effect of non-conservative perturbations
on the orbital elements.

General Two-Body Problem

For the Keplerian two-body problem, the following assumptions are made on both bodies [15]:

• The mass of the primary body is significantly larger than that of the secondary body.

• The only force acting on the two bodies is Newtonian gravity.

• Both bodies are spherical.

These assumptions produce the following equations of motion:

r̈ + µ

r3 r = 0,

where r = ∥r∥2 and r is the position of the satellite expressed in the ECI frame. This equation
often fails to provide an accurate model as the assumptions are too strict. Where the first
assumption is valid for a satellite orbiting the Earth, the latter two are in practice never met.
For example, drag, tidal, and third-body gravitational forces also affect the system, and as
the goal is to control the satellite, a control input (and thus control force) should also be
considered. Therefore, a more general formulation of the two-body problem is:

r̈ + µ

r3 r = d, (2-8)

where d denotes any perturbing force absent in the previous formulation, including a possible
control input. The problem from Eq. (2-8) can be rewritten into a formulation using the
orbital elements [15]:

œ̇ = P⊤
[

∂r
∂œ

]⊤
d,

where the Poisson matrix P⊤ is given by:

P⊤ =



0 0 0 0 0 2
na

0 0 0 0 − η
na2e

η2

na2e
0 0 0 − 1

na2η sin i
cot i
na2η

0
0 0 1

na2η sin i
0 0 0

0 η
na2e

− cot i
na2η

0 0 0
− 2

na − η2

na2e
0 0 0 0


.
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2-1 Fundamentals of Orbital Mechanics 13

If all forces in d are conservative and only position dependent with perturbing potential R,
Lagrange’s Planetary Equations (LPE) are obtained:

œ̇ = P⊤
[

∂ r
∂ œ

]⊤
d

= P⊤
[

∂ r
∂ œ

]⊤ ∂R
∂ r

= P⊤ ∂R
∂ œ . (2-9)

The requirements for this potentialR such that Eq. (2-9) holds sound strong, but they capture
one of the most important disturbances in orbital mechanics: the J2 perturbations.

J2 Perturbations With Orbital Elements

A common potential R investigated in the literature is that of zonal gravitational harmonics.
These harmonics account for the fact that the Earth is not a perfect sphere but an oblate
spheroid with a larger radius near the equator than the poles. The varying radius of the Earth
causes the gravitational field to change depending on the position in the orbit; thus, both
requirements for R (i.e., a conservative force with position-dependent potential) are met. The
potential R is of the form:

R = −µ

r

∞∑
k=2

Jk(Re

r
)kPk(sin i sin θ), (2-10)

where Re is the equatorial radius of the Earth, Jk a zonal coefficient and Pk a Legendre
polynomial of the first kind of order k, which one can express as:

Pk(x) = 1
2kk!

dk

dxk

[
(x2 − 1)k

]
.

For the Earth, the most dominant coefficient is the J2 term, being almost three orders of
magnitudes larger than the other terms. The first five terms are denoted in Table 2-1 to
provide intuition into the magnitude of these zonal coefficients. Because the J2 term is
significantly larger than its counterparts, often only the J2 term is considered, and Eq. (2-10)
is simplified to:

R = −µJ2R2
e

2r3 (3 sin2 i sin2 θ − 1). (2-11)

Table 2-1: First five zonal coefficients for the Earth.

J2 J3 J4 J5 J6
Zonal coefficient −1.08 · 10−3 2.53 · 10−6 1.61 · 10−6 2.27 · 10−7 −5.39 · 10−7
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14 Orbital Mechanics

When Eq. (2-11) is combined with the LPE of Eq. (2-9), several highly nonlinear equations
of motions are obtained. These orbital elements with their equations of motion are called
osculating orbital elements6 and represent the exact location of the satellite at any time.
However, these osculating orbital elements have two disadvantages:

1. Firstly, the osculating orbital elements result in a highly nonlinear model that is hard to
use for control purposes. Without any linearisation or approximation of the equations
of motion, only a select group of control algorithms can work with them.

2. Secondly, the osculating orbital elements oscillate even in a relatively stable orbit. The
satellite must indefinitely provide a control input to counteract these oscillations. Even
if oscillations are perfectly counteracted, they return once the control inputs are removed
as the source (i.e., the oblateness of the Earth) cannot be removed.

Therefore, using mean orbital elements for control design is standard. These mean orbital
elements are derived from Eq. (2-11) using the method of averaging [16]:

R̄ = n̄2J2R2
e

4(1− ē2)
3
2

(2− 3 sin2 ī),

such that, after combining this result with Eq. (2-9), the following differential equations are
obtained [17]:

d ā

dt
= d ē

dt
= d ī

dt
= 0,

d Ω̄
dt

= −3
2

J2R2
en̄

ā2η̄4 cos ī,

d ω̄

dt
= 3

4
J2R2

en̄

ā2η̄4 (5 cos2 ī− 1),

d M̄0
dt

= 3
4

J2R2
en̄

ā2η̄4 η̄(3 cos2 ī− 1),

where the superscript (̄·) denotes an averaged component. For simplicity of notation, the
overhead bar is dropped in future notations, and all orbital elements denote their averaged
counterpart unless explicitly mentioned otherwise.

Note that the last three derivatives are constant, as these only depend on the first three
(constant) derivatives. Therefore, these equations of motion are substantially easier than
those for the osculating orbital elements, as they are linear for a given orbit. In general, the
effect of J2 perturbations is significant, even if the initial conditions are chosen such that the
J2 perturbations are small [18].

6Note that this is not a typographical error for oscillating orbital elements, but that these are, in fact,
named osculating orbital elements. This comes from the Latin word ‘osculare’ (to kiss), as the osculating
orbital elements describe an elliptical orbit that, at that instant, ‘kisses’ (i.e., coincides with) the current
trajectory. Due to the J2 perturbations, the satellite does not exactly follow an elliptical orbit anymore;
therefore, the equations of motion of the osculating orbital elements are highly nonlinear.
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2-1 Fundamentals of Orbital Mechanics 15

J2 Perturbations With Cartesian Coordinates

It is important to note that Eq. (2-10) is not restricted to the use of orbital elements. The
term sin i sin θ is equal to the sine of the geocentric latitude, and the equation can therefore
be rewritten as:

R = −µ

r

∞∑
k=2

Jk(Re

r
)kPk(z

r
),

where z is the z-coordinate in the ECI frame. This potential can then be combined with
Eq. (2-8), which is worked out up to J6 in [19]. For brevity, the result is here denoted with
only the most significant term, J2

7:

d =


∂ R
∂ x
∂ R
∂ y
∂ R
∂ z

 = 3µR2
eJ2

2r5


x
(
5 z2

r2 − 1
)

y
(
5 z2

r2 − 1
)

z
(
5 z2

r2 − 3
)
 .

An expression for the J2 disturbance in the LVLH frame is provided in [20], although use is
made of orbital elements in their notation:

d =

dr

dt

dn

 = −3
2

J2µR2
e

r4

1− 3 sin2 i sin2 θ
sin2 i sin 2θ
sin 2i sin θ

 . (2-12)

Non-Conservative Perturbations

Where the effect of conservative forces, such as the Keplerian gravitational force and the
J2 perturbations, has now been covered, the effect of non-conservative forces on the orbital
elements has not been discussed yet. For arbitrary disturbances instead of the conservative
forces in Eq. (2-9), one can use Gauss’ Variational Equations (GVE), where:

œ̇ = ∂ œ
∂ ṙ d,

is transformed into:

d a

dt
= 2a2e sin f

h
dr + 2a2p

rh
dt,

d e

dt
= p sin f

h
dr + (p + r) cos f + re

h
dt,

d i

dt
= r cos θ

h
dn,

d Ω
dt

= r sin θ

h sin i
dn,

d ω

dt
= −p cos f

he
dr + (p + r) sin f

he
dt −

r sin θ

h tan i
dn,

d M

dt
= b(p cos f − 2re)

ahe
dr −

b(p + r) sin f

ane(1 + e cos f)dt,

(2-13)

where [dr, dt, dn] can be any disturbance in the LVLH frame.
7See Table 2-1 for the first five values.
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16 Orbital Mechanics

Although most non-conservative forces are relatively small and often ignored in models, a
crucial non-conservative force that must be considered is the control input. Eq. (2-13) can be
combined with Eqs. (2-1) to (2-3) and (2-6) to obtain the equations of motion that almost
exclusively depend on the orbital elements and the control inputs:

d a

dt
= 2e sin f

n
√

1− e2
ur + 2(1 + e cos f)

n
√

1− e2
ut,

d e

dt
=
√

1− e2 sin f

an
ur +

√
1− e2 [(2 + e cos f) cos f + e]

an(1 + e cos f) ut,

d i

dt
=
√

1− e2 cos θ

an(1 + e cos f)un,

d Ω
dt

=
√

1− e2 sin θ

an(1 + e cos f) sin i
un,

d ω

dt
= −
√

1− e2 cos f

ane
ur +

√
1− e2(2 + e cos f) sin f

ane(1 + e cos f) ut −
√

1− e2 sin θ

an(1 + e cos f) tan i
un,

d M

dt
= (1− e2) [(1 + e cos f) cos f − 2e]

ane(1 + e cos f) ur −
(1− e2)(2 + e cos f) sin f

ane(1 + e cos f) ut,

(2-14)

where [ur, ut, un] denote the control inputs as accelerations in radial, tangential and normal
directions.

2-2 Models

Two models are the most common in the literature for constellation control, namely the Hill-
Clohessy-Wiltshire model and the quasi-nonsingular Relative Orbital Elements model. These
two models are discussed in Section 2-2-1 and Section 2-2-2 respectively. A new, improved
model is proposed in Section 2-2-3.

2-2-1 Hill-Clohessy-Wiltshire Model

The Hill-Clohessy-Wiltshire (HCW) model is a classic model to describe the relative motion
of a satellite to its reference. The original model, developed independently by Hill [21] and
Clohessy and Wiltshire [22], uses rectilinear coordinates in the LVLH frame. These equations
are sometimes referred to as Hill’s equations8 or the Clohessy-Wiltshire equations, but are
denoted here as the HCW equations. Their work assumes a perfectly circular orbit around a
spherical Earth and that the spacecraft are close together. Especially the latter is problematic
for a constellation, as the (angular) separation can be large. This led to the development of
the cylindrical HCW model in [23], which is the central model of this section.

Equations of Motion

The cylindrical HCW model is derived with [r, φ, z] being the cylindrical coordinates denoting
the absolute radius, angle and height, respectively. The model uses relative coordinates, where
the variables ∆r, ∆φ, and ∆z describe the difference in coordinates between a chief and deputy

8Not to be confused with the mathematical formula for differential equations from the same author.
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2-2 Models 17

satellite. Here, the deputy spacecraft (denoted by the subscript d) is the controlled satellite,
whereas the chief spacecraft (denoted by the subscript c), is the reference for the satellite.
The relative variables are defined as:

∆r := rd − rc, ∆φ := φd − φc, ∆z := zd − zc.

Under the assumptions that ∆r and ∆z are significantly smaller than rc and that ∆φ̇ is
significantly smaller than φ̇c, the cylindrical HCW model can be obtained:

∆r̈ − 3n2
c∆r − 2rcnc∆φ̇ = ur,

∆φ̈ + 2nc

rc
∆ṙ = ut

rc
, (2-15)

∆z̈ + n2
c∆z = un,

where the derivation of this model is provided in Appendix A-1. The control inputs in radial,
tangential and normal directions are denoted by ur, ut and un, respectively. This result is
valid for angular differences of an arbitrary size [23], which makes the model very suitable for
ring constellations where all the satellites are in a single plane.

State Space Model

Converting the model from Eq. (2-15) to a state-space representation is straightforward and
yields the following result:

∆ṙ
∆φ̇
∆ż
∆r̈
∆φ̈
∆z̈


=



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2
c 0 0 0 2ncrc 0

0 0 0 −2nc
rc

0 0
0 0 −n2

c 0 0 0


︸ ︷︷ ︸

AHCW



∆r
∆φ
∆z
∆ṙ
∆φ̇
∆ż


+



0 0 0
0 0 0
0 0 0
1 0 0
0 1

rc
0

0 0 1


︸ ︷︷ ︸

BHCW

ur

ut

un

 .

The result is a LTI model with six states. AHCW and BHCW contain ten non-zero elements
out of the possible 54 entries, resulting in two relatively sparse matrices.

J2 Perturbations

This model has proven its success in earlier works [24]. However, even for almost perfectly
circular orbits, it is relatively inaccurate [25], and it is not easy to include non-keplerian forces
(e.g. J2 perturbations) in this model. For example, when looking at the J2 perturbations in
the LVLH frame in Eq. (2-12), it is possible to approximate the effect using cylindrical HCW
coordinates. For example, a first-order Taylor expansion for the radial term yields:

∆dr,J2 = −3
2

J2µR2
e

r4
d

(1− 3 sin2 id sin2 θd) +−3
2

J2µR2
e

r4
c

(1− 3 sin2 ic sin2 θc)

≈ 6J2µR2
e

r5
c

(1− 3 sin2 ic sin2 θc)∆r + 9J2µR2
e

r4
c

sin ic cos ic sin2 θc(id − ic)

+ 9J2µR2
e

r4
c

sin2 ic sin θc cos θc∆φ.
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18 Orbital Mechanics

This result, however, is only valid for small deviations from the linearisation point (rc, ic, θc),
meaning the model would no longer be valid for arbitrary angular differences. Furthermore,
the model has no direct state for the difference in the inclination, and the model would have
to be LTV to include the changing variable θc.

2-2-2 Quasi-Nonsingular Relative Orbital Elements Model

Orbital elements are possibly the most common method to model the dynamics of the satellite.
When orbital elements are used in a relative setting, they are called Relative Orbital Elements
(ROE). When using ROE, (nonlinear) combinations of the orbital elements can be used for
the states. This can be done to simplify the state-space model but also because certain
orbital elements are not always well-defined. This property, briefly discussed at the end of
Section 2-1-2, is also the reason why there are three main types of ROE:

• The singular ROE are not uniquely defined for equatorial nor circular orbits. This
occurs when an elementary set of ROE is selected, such as the individual difference
between each orbital element.

• The quasi-nonsingular ROE are uniquely defined for circular orbits but not for equatorial
orbits. This mostly means that one cannot simply select an anomaly or the argument
of periapsis as a single state, as these are not well-defined for circular orbits9.

• The nonsingular ROE are always uniquely defined. This can result in rather abstract
terms that lose their physical interpretation.

Although it is common for satellites to be placed in circular orbits, they are often placed in
orbits with an inclination of at least 30 degrees [9]. This combination of circular and non-
equatorial orbits makes the quasi-nonsingular ROE an attractive solution, which is why those
ROE are often encountered in the literature for these problems.

Equations of Motion

The quasi-nonsingular ROE with its state vector δαqns is defined as follows:

δαqns =



δa
δλ
δex

δey

δix

δiy


=



ad−ac

ac

(Md + ωd)− (Mc + ωc) + (Ωd − Ωc) cos ic

ed cos ωd − ec cos ωc

ed sin ωd − ec sin ωc

id − ic

(Ωd − Ωc) sin ic


. (2-16)

The equations of motion of the quasi-nonsingular ROE are defined by three different terms:
the effect of Keplerian dynamics δα̇Kepler

qns , the effect of control inputs δα̇Control
qns and the effect

of J2 perturbations δα̇J2
qns:

δα̇qns = δα̇Kepler
qns + δα̇Control

qns + δα̇J2
qns.

9See the end of Section 2-1-2 for why this is the case.
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These terms can, using the theory from Section 2-1, all be derived as is done in Appendix A-2.
This results in:

δα̇Kepler
qns =



0
−3

2ncδa
0
0
0
0


, δα̇Control

qns = 1
ncac



2ut

−2ur

−2 cos υd ut + sin υd ur

−2 sin υd ut − cos υd ur

cos υd un

sin υd un


, (2-17)

δα̇J2
qns = 1

8
J2R2

enc

a2
cη4

c



0
−21((3 cos2 ic − 1)ηc + 5 cos2 ic − 1) δa− 6 sin 2ic(3ηc + 5) δix

−6(5 cos2 ic − 1) δey

6(5 cos2 ic − 1) δex

0
21 sin 2ic δa + 12 sin2 ic δix


,

where υd := Md + Ωd is known as the mean argument of latitude. Usually, it is denoted as u
but altered here to prevent confusion with the control inputs.

State Space Model

The results of Eq. (2-17) can be put into an equivalent state space model. If for simplicity
the J2 perturbations are initially ignored, the following LTV model is obtained:

δα̇qns =



0 0 0 0 0 0
−3

2nc 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

AROE,Kep

δαqns + 1
ncac



0 2 0
−2 0 0

sin υd 2 cos υd 0
− cos υd 2 sin υd 0

0 0 cos υd

0 0 sin υd


︸ ︷︷ ︸

BROE

ur

ut

un

 .

It is also possible to put the equations of motion due to J2 perturbations in this format, which
results in the following matrix:

δα̇qns = γ



0 0 0 0 0 0
A10 0 0 0 −6 sin 2ic(3ηc + 5) 0
0 0 0 −6(5 cos2 ic − 1) 0 0
0 0 6(5 cos2 ic − 1) 0 0 0
0 0 0 0 0 0

21 sin 2ic 0 0 0 12 sin2 ic 0


︸ ︷︷ ︸

AROE,J2

δαqns,

with A10 and γ defined as:

A10 := −21((3 cos2 ic − 1)ηc + 5 cos2 ic − 1), γ := 1
8

J2R2
enc

a2
cη4

c

.
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The combined state matrix AROE,full is simply an addition of AROE,Kep and AROE,J2 :

AROE,full := AROE,Kep + AROE,J2 .

A general advantage of the orbital elements is that they yield more accurate results by provid-
ing more extensive ranges of validity compared to the cylindrical HCW model [25]. The model
only contains nine non-zero elements without the J2 perturbations, making it slightly more
sparse than the HCW model. However, when including the J2 perturbations, the number of
non-zero elements increases to fourteen, making it less sparse.

2-2-3 Blend Model

As will become more apparent in Section 2-3, the previously mentioned models have some
disadvantages. More specifically:

• The cylindrical HCW model works well for constellations consisting of a single plane.
As long as most of the problem is two-dimensional, the linearisation errors in the z-
direction are manageable. In reality, however, constellations are always constructed from
several planes, especially sizeable ones. The cylindrical HCW model uses a rectilinear
coordinate (z) for the out-of-plane motion, quickly losing accuracy when the distances
grow. This is the same reason why the cylindrical version is preferred over its rectilinear
counterpart, as its use of a curvilinear coordinate φ makes it significantly more accurate
for describing in-plane motion.

• It is hard to include the effect of J2 perturbations into the cylindrical HCW model.
Although it is possible, the model would lose two desired properties by becoming LTV
and only being valid close to the linearisation point.

• The cylindrical HCW model is not based on common state variables such as the orbital
elements. This makes it difficult to connect it to other results in the literature, possibly
requiring more research to obtain similar results.

• The quasi-nonsingular ROE model uses the semi-major axis a to control the size of the
ellipse. Although this is valid, a model with the radius r, similar to the cylindrical
HCW model, is preferred. This indicates the true distance to the Earth, which is more
suitable for a control objective and collision avoidance constraints.

• The quasi-nonsingular ROE is LTV, which increases the computational load when using
an optimisation-based control algorithm. Where for a LTI model a substantial part of
the optimisation problem of the previous iteration can be re-used, all constraints con-
taining the system’s dynamics have to be revised. Intending to scale the constellation’s
size, the model’s effect on the computational load is vital to consider.
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Equations

These shortcomings led to the development of the Blend model, a blend of ideas of the cylin-
drical HCW and quasi-nonsingular ROE models, where these shortcomings are all addressed.
This model uses the following state variable δβ:

δβ =



δr
δλf

δef
x

δef
y

δξx

δξy


:=



rd − rc

(fd + ωd)− (fc + ωc) + (Ωd − Ωc) cos ic

ed cos fd − ec cos fc

ed sin fd − ec sin fc

cos θd tan id
2 − cos(θd + Ωd − Ωc) tan ic

2
sin θd tan id

2 − sin(θd + Ωd − Ωc) tan ic
2


.

The derivative of this state without any J2 perturbations is as follows:

δβ̇ = nc



rcδef
y

−3
2

1
rc

δr + 1
2δef

x

−δef
y + 2

acn2
c
ut

δef
x + 1

acn2
c
ur

−δξy + 1
acn2

c(1+cos ic)un

δξx


,

the derivations of which are all presented in Appendix A-3. It is important to note that three
assumptions have been made in these derivations:

• The eccentricity is small (i.e., the orbit is near-circular). This is a common assumption
in the models used in the literature, and satellite constellations are almost exclusively
designed as circular orbits.

• The error in the inclination is small. Although this sounds like a strong assumption,
the different planes in a satellite constellation commonly have the same inclination.

• The error in the RAAN is small. Although not critical for a large constellation, this
is the most restrictive assumption. These constellations typically consist of 30 to 70
planes that differ through their RAAN, and this work will show in Section 2-3 that this
model works well with differences up to 60 degrees and can always steer a satellite to a
desired orbit.
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It is also possible to find a LTI model for the J2 perturbations:

δṙJ2 = γr
− 5

2
c (3 cos2 ic − 1)δef

y ,

δλ̇f
J2

= −7
2γ

6 cos2 ic − 2

r
9
2
c

δr − 7
2γ

6 cos2 ic − 2

r
7
2
c

δef
x,

δėf
x,J2

= −γ
3 cos2 ic − 1

r
7
2
c

δef
y ,

δėf
y,J2

= γ
3 cos2 ic − 1

r
7
2
c

δef
x,

δξ̇x,J2 = −γr
− 7

2
c (8 cos2 ic − 2)δξy,

δξ̇y,J2 = γr
− 7

2
c (8 cos2 ic − 2)δξx,

with γ defined as:
γ = 3

4J2Re
√

µ.

These derivations can all be found in Section A-3-5.

State-Space Model

Without any J2 perturbations, a sparse model is obtained:

δṙ

δλ̇f

δėf
x

δėf
y

δξ̇x

δξ̇y


= nc



0 0 0 rc 0 0
−3

2
1
rc

0 1
2 0 0 0

0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0


︸ ︷︷ ︸

ABlend,Kep



δr
δλf

δef
x

δef
y

δξx

δξy


+ 1

acnc



0 0 0
0 0 0
0 2 0
1 0 0
0 0 1

1+cos ic

0 0 0


︸ ︷︷ ︸

BBlend

ur

ut

un

 ,

with ten non-zero elements. The J2 perturbations yield the following state matrix:

δṙ

δλ̇f

δėf
x

δėf
y

δξ̇x

δξ̇y


= γr

− 9
2

c



0 0 0 r2
c R 0 0

−7
2S 0 −7

2rcS 0 0 0
0 0 0 −rcR 0 0
0 0 rcR 0 0 0
0 0 0 0 0 −rcT
0 0 0 0 rcT 0


︸ ︷︷ ︸

ABlend,J2



δr
δλf

δef
x

δef
y

δξx

δξy


,

where R, S and T are defined as:

R := 3 cos2 ic − 1, S := 6 cos2 ic − 2, T := 8 cos2 ic − 2.

Combined with ABlend,Kep, this results in a state matrix with seven non-zero elements.
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2-3 Model Comparison

To compare these different models, they are tested in three different scenarios with a simple
Model Predictive Control (MPC). The setup is explained in more detail in Section 2-3-1,
after which two short individual results are shown in Section 2-3-2 as well as the effect of J2
perturbations in Section 2-3-3. Afterwards, three scenarios are discussed. The first scenario,
Section 2-3-4, is a simple planar scenario where the constellation consists of a single plane.
In the second scenario, Section 2-3-5, the constellations consist of two nearby planes. Finally,
in Section 2-3-6, the constellation consists of six planes with a more significant separation
between the planes.

2-3-1 General Setup

Fig. 2-4 provides a simple overview of the simulation setup. A MPC controller is used to find
the control inputs after which a nonlinear model finds the new orbital elements. These then
need to be converted to the state variables through the equations in Section 2-2. The two
main components needed to obtain these results are the controller, discussed first, and the
simulation environment, which is discussed afterwards. All code for the simulation is publicly
available at https://github.com/FabianBallast/SLS_Space.

œ

Figure 2-4: Simulation setup.

Controller Setup

To control the satellites in the simulation, a basic MPC is used. Using Gurobi, the following
quadratic problem is solved in each iteration with a prediction horizon T of 20 steps:

minimize
x0, . . . , xT ,

u0, . . . , uT −1

T −1∑
t=0

[
(xt − xr)T Q (xt − xr) + uT

t R ut

]
+ (xT − xr)T QT (xT − xr)

subject to xt+1 = At xt + Bt ut, ∀t ∈ ZT −1
0 ,

xmin ≤ xt ≤ xmax, ∀t ∈ ZT
1 ,

umin ≤ ut ≤ umax, ∀t ∈ ZT −1
0 ,

where Zj
i is set of integer numbers from i up to and including j, e.g. ZT −1

0 = {0, . . . , T − 1}.
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The exact control parameters for each model are denoted in Appendix B-1, where the pa-
rameters are selected to obtain similar performance for all models. The most important state
constraint is added to the radius, which should not exceed 0.1 meters from its reference.

Simulation Setup

A vital part of the simulation is the integration of the nonlinear dynamics that represent the
true dynamics. The fourth-order Runge-Kutta (RK4) method is applied to simulate the mean
orbital elements, the details of which are explained further in Appendix C-1. An important
parameter is ∆tsim, which denotes the integration time step.

Although the simulation would ideally be performed with the true values for constants
such as the gravitational parameter (µ), these parameters are changed for two reasons:

• Firstly and most importantly, the vast range in the size of the variables makes solving
the optimisation problem much harder for computational reasons. For example, the
gravitational parameter µ is equal to 3.986 · 1014 m3 s−2. Combining this with an
orbital radius of 8000 km leads to the derivative of ṙ often being large, whereas the
effect of control inputs on θ̇ is small.

• Secondly, by changing the parameters it is also possible to speed up the simulation, as
it is possible to increase the mean motion. For the HCW model the maximum relative
angular velocity should be (significantly) smaller than the mean motion. Therefore, an
increased mean motion allows for a larger relative angular velocity.

Note that this is not uncommon, as the same approach is followed in [24]. The same parame-
ters as in [24] are used, denoted in Table 2-2 among other parameters. Parameters that change
for each scenario, such as the number of satellites, are provided at each scenario individually.

Initial positions and reference positions are selected simplistically, with most state vari-
ables being zero except for those referring to the (relative) argument of latitude. The scenario
focuses on a constellation where the satellites must reconfigure themselves to be evenly dis-
tributed. The details of the approach to select the initial and reference positions are provided
in Appendix C-2, and the concept of this scenario is visualised in Fig. 2-5.

(a) Before simulation. (b) Start of simulation. (c) End of simulation.

Figure 2-5: Overview of the scenario.
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Table 2-2: Parameters during the simulation.

Symbol Meaning Value
µ Gravitational parameter of the Earth 100 m3 s−2

Re Equatorial radius of the Earth 50 m
rc Desired orbital radius 55 m

∆tsim Simulation integration time step 1 s
∆tcon Controller sampling time 10 s

T Prediction horizon 20 steps
m Mass of the satellite 400 kg

Metrics

The different models are compared through three primary states: the relative radius δr,
the relative argument of latitude δθ and the relative RAAN δΩ. These states are selected
because they best describe the trajectory of the satellites and represent clear physical values.
To compare the results numerically, the following metric is used to quantify the control inputs
for a simulation of duration Tsim:

¯∥u∥2 := 1
Tsim

∫ Tsim

0

√
un(t)2 + ut(t)2 + uz(t)2 dt,

where, in practice, the discrete alternatives are used to compute the values. Furthermore, the
average computation time it takes to find the optimal control input for each model is denoted
by Tcomp. For a relative comparison between the different models, a normalised variant of
these two metrics is provided as well, denoted by ¯∥u∥norm

2 and T norm
comp , respectively. These

normalised metrics are divided by the smallest value across all models.

This space was intentionally left blank.
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2-3-2 Individual Results

This subsection contains two results for the HCW and Blend models. The projection issues of
the HCW model are discussed first, followed by finding the maximum out-of-plane distance
for the Blend model.

Projection Problems With The Hill-Clohessy-Wiltshire Model

The cylindrical HCW model places the origin of its coordinate system for a satellite at its
corresponding reference satellite. The in-plane coordinates of the controlled satellite are
then projected onto the orbital plane of the reference satellite, which can cause a distorted
representation of the orbit. To illustrate this, a simulation is run without a controller and
with four different RAANs. The simulation details can be found in Table 2-3.

Table 2-3: Parameters during the projection issue scenario.

Symbol Meaning Value
a Semi-major axis 55 m
e Eccentricity 0
i Inclination 45 deg
ω Argument of periapsis 0 deg
Ω RAAN {0, 15, 30, 60} deg

Nsat Number of satellites in the simulation 4 satellites

The first plot in Fig. 2-6 shows these orbits in a three-dimensional view, where all orbits are
transformed such that the orbit with an Ω of 0 degrees lies in the xy-plane. The second plot
shows the distorted orbit for the in-plane states. Where the difference is small for planes with
a similar RAAN, the circular orbit becomes elliptical for a RAAN of 60 degrees. The effect
on the out-of-plane state z is visible for all orbits with separations of several meters.

The corresponding relative radial and height states are shown in Fig. 2-7. Note how the
orbit with a Ω of 15 degrees has a maximum radial error of 1 m, which is ten times the
maximum allowed deviation in the simulations. This plot shows that the distorted orbits can
fail to meet the constraints when the actual orbit satisfies all constraints. This is an inherent
limitation of the cylindrical HCW model with out-of-plane manoeuvres.
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Figure 2-6: 3D-view of projected orbits with Hill-Clohessy-Wiltshire model.
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Figure 2-7: States of projected orbits with Hill-Clohessy-Wiltshire model.

Maximum Out-Of-Plane Distance With The Blend Model

In Section 2-2-3 an assumption is made that the distance between planes in terms of the
RAAN is not too large. To quantify this limit, it is tested to what extent this distance can
be increased before the performance degrades substantially. The parameters of this scenario
are shown in Table 2-4, where all satellites start with a reference RAAN of 180 degrees.

Table 2-4: Parameters during the maximum out-of-plane distance scenario.

Symbol Meaning Value
a Semi-major axis 55 m
e Eccentricity 0
i Inclination 45 deg
ω Argument of periapsis 0 deg
Ω RAAN {0, 15, 30, . . . , 330, 345} deg

Nsat Number of satellites in the simulation 24 satellites

The results with the Blend model for planar distances up to 60 degrees are shown in Fig. 2-8.
This includes distances of 0, 15, 30, 45 and 60 degrees in Ω in both directions. The Blend
model steers all satellites to their reference, although for larger distances, the differences
between satellites with a similar initial distance but different directions grow.

−5.0

−2.5

0.0

2.5

5.0

7.5

10.0

δθ
[d
eg
]

0 20 40 60 80 100
Time [min]

−60

−40

−20

0

20

40

60

δΩ
[d
eg
]

Figure 2-8: Results for Blend model for planar distances up to 60 degrees.
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When looking at the satellites that had a large initial distance, it can be seen in Fig. 2-9 that
the Blend model can steer all satellites to their reference. However, it is clear that, for larger
distances, the followed path is substantially different than for smaller distances and is likely
suboptimal.

In the extreme case of an initial error of 180 degrees, the distance to the reference initially
grows as the errors for both the radius and argument of latitude grow while the error for
the RAAN stays almost constant. The simulation takes almost two hours before the error
is reduced, which is done rapidly after that point. For optimal performance with the Blend
model, the maximum planar distance is therefore limited to approximately 60 degrees.
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Figure 2-9: Results for Blend model for planar distances up to 180 degrees.

2-3-3 J2 Perturbations

To show the effect of the J2 perturbations on the model and the dynamics, a simulation is
run without any control inputs. The different models, however, still try to predict the error
over time. This is done for five different models:

• The HCW model is the model discussed in Section 2-2-1.

• The ROE(J2) model is the quasi-nonsingular ROE model of Section 2-2-2 with the J2
perturbations taken into account. This is in contrast to the ROE(NO J2) model, where
the matrix AROE,J2 is ignored.

• A similar approach is followed for the Blend model, where the BLEND(J2) model is the
complete Blend model as discussed in Section 2-2-3. The BLEND(NO J2) model is the
Blend model without the ABlend,J2 matrix.

The results for these models with an initial radial offset of 0.1 m from the reference are shown
in Fig. 2-10, where the errors are computed by subtracting the predicted model states from
the true states computed by the nonlinear simulation. The following conclusions can be drawn
from this result:

• The HCW model is the least accurate and produces mainly for the angular state δθ
significant errors.
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• For both the ROE and Blend model are more accurate predictions achieved for the
angular state δθ when the J2 perturbations are included in the model. Where the ROE
model can also improve the accuracy for the out-of-plane state δΩ, the Blend model
falls short in this aspect. This is as expected, as the model for the out-of-plane states
of the Blend model, ξx and ξy, does not depend on the radial error. The model would
have become nonlinear otherwise.

• The effect of the J2 perturbations is generally small, as this simulation lasts six hours and
the maximum error is 1.4 degrees. However, for satellites with very limited propulsion
available, accurate long-term predictions can be crucial.
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Figure 2-10: Effect of including J2 perturbations in the model.

2-3-4 Planar Scenario

The planar scenario has all the satellites within one plane as defined by the parameters in
Table 2-5. To see the full simulation results for all satellites and all controllers, see Appendix F.

Table 2-5: Parameters during the planar scenario.

Symbol Meaning Value
a Semi-major axis 55 m
e Eccentricity 0
i Inclination 45 deg
ω Argument of periapsis 10 deg
Ω RAAN 20 deg

Nsat Number of satellites in the simulation 10 satellites
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The results for this scenario are plotted in Fig. 2-11 where only three of the ten satellites
are plotted to prevent visual cluttering. Where the HCW and Blend model produce almost
indistinguishable results, the quasi-nonsingular ROE shows a significant difference for δr and
δθ.

This is expected as the HCW and Blend model are closely related (see the end of Section A-
3-3) and because the quasi-nonsingular ROE is the only model of these three that contains
the semi-major axis a as a state variable instead of the radius r. This results in a controller
that makes sub-optimal use of the allowed radius. The ROE model can perform similarly in
δθ to the HCW and Blend model, but this requires a larger radius than allowed.
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Figure 2-11: Comparison of planar states of three models in a single plane.

The corresponding control inputs for these three satellites are shown in Fig. 2-12. The radial
input shows similar behaviour for the HCW and Blend model with almost constant values
before dropping to zero. The ROE model is more conservative but also shows oscillatory
behaviour. The tangential input oscillates quite heavily with the Blend model, whereas this
is significantly less for the HCW and ROE models.
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Figure 2-12: Comparison of the inputs of three models in a single plane.
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These observations for the inputs are backed by the metrics as shown in Table 2-6. Although
the ROE model moves the satellites slowly towards their reference, it uses considerably less
input than the HCW and Blend models. Not visible in the plots is the solver time Tcomp,
where the LTI models (the Blend and HCW models) outperform the LTV ROE model by a
significant margin, as these LTI models are close to four times faster than the ROE model.

Table 2-6: Metrics for single plane simulation.

Model ¯∥u∥2 [N] ¯∥u∥norm
2 [-] Tsol [s] T norm

sol [-]
Blend 0.0282 3.4443 0.0275 1.0208
HCW 0.0279 3.4124 0.0269 1.0000
ROE 0.0082 1.0000 0.1037 3.8516

2-3-5 Small Inter-Planar Scenario

In the small inter-planar scenario, two similar planes differ only in their RAAN. The exact
values of these orbits are shown in Table 2-7, where the values for the RAAN are relatively
close together.

Table 2-7: Parameters during the small inter-planar scenario.

Symbol Meaning Value
a Semi-major axis 55 m
e Eccentricity 0
i Inclination 45 deg
ω Argument of periapsis 10 deg
Ω RAAN {0, 5} deg

Nsat Number of satellites in the simulation 10 satellites

When taking a look at the primary states in Fig. 2-13, it is interesting to see the similarity
in performance for all models in the out-of-plane state δΩ, even though all three models use
entirely different state variables to model these dynamics.

Something that might be missed at first glance is the oscillation for the HCW model in the
δr state around four to five minutes into the simulation. Where previously the HCW model
had continuously tracked the Blend model almost perfectly, it shows a significant deviation
here. This also leads to a violation of the constraint for the radial limit, which is set to 0.1
m.

This violation is caused by the fact that the HCW model projects the current orbit onto
the plane of the reference orbit. If these orbits are the same, as in the previous subsection,
there is no error for the in-plane states. However, now that these orbits are different, the
projected radius used in the HCW model is no longer equal to the exact radius of the orbit.
This phenomenon is discussed in more detail in Section 2-3-2.
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Figure 2-13: Comparison of main states of three models in two nearby planes.

For most of the simulation, all models have a similar value for un as shown in Fig. 2-14. The
most considerable difference occurs here just before the satellite reaches the desired orbit,
where the Blend model uses the least control input.
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Figure 2-14: Comparison of the inputs of three models in two nearby planes.
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The metrics, as shown in Table 2-8, show the generally familiar results. The HCW and
Blend model have larger control inputs and require less than a fifth of the time to solve the
optimisation problems for the MPC compared to the quasi-nonsingular ROE.

Table 2-8: Metrics for two nearby planes.

Model ¯∥u∥2 [N] ¯∥u∥norm
2 [-] Tsol [s] T norm

sol [-]
Blend 0.0270 3.1864 0.0280 1.0231
HCW 0.0267 3.1548 0.0274 1.0000
ROE 0.0085 1.0000 0.1380 5.0401

2-3-6 Large Inter-Planar Scenario

Previously, the projection issues that arise when using the HCW model in multi-planar sce-
narios have been discussed. For the following scenario, the distance between the planes is
increased to 15 degrees, at which the HCW model is no longer usable. Section 2-3-2 shows
that the projection errors are more than a meter in the radial direction, which is ten times
the allowed limit.

The quasi-nonsingular ROE and the Blend model can deal with these scenarios. The
parameters for this scenario are provided in Table 2-9.

Table 2-9: Parameters during the large inter-planar scenario.

Symbol Meaning Value
a Semi-major axis 55 m
e Eccentricity 0
i Inclination 45 deg
ω Argument of periapsis 10 deg
Ω RAAN {0, 15, 30, 45, 60, 75} deg

Nsat Number of satellites in the simulation 36 satellites

This space was intentionally left blank.

Master of Science Thesis F.J.P. Ballast



34 Orbital Mechanics

The simulation results for the two models are shown in Figs. 2-15 and 2-16. The differences
between the ROE and Blend model are again visible in the radial state and the radial control
input.
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Figure 2-15: Comparison of main states of three models in six planes.
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Figure 2-16: Comparison of the inputs of three models in six planes.
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Finally, the metrics match the aforementioned differences as shown in Table 2-10. For this
larger problem, the ROE model remains three times as effective with the control inputs.
Furthermore, although the ROE model still has a larger computation time, the relative ratio
has decreased compared to the previous scenarios from 4 and 5 to 2.5.

Table 2-10: Metrics for six planes.

Model ¯∥u∥2 [N] ¯∥u∥norm
2 [-] Tsol [s] T norm

sol [-]
Blend 0.0385 3.3105 0.1350 1.0000
ROE 0.0116 1.0000 0.3276 2.4272

2-4 Conclusion

Three models have been discussed in this chapter: the cylindrical HCW model, the quasi-
nonsingular ROE model and the newly proposed Blend model. Where the HCW model works
well for in-plane trajectories, its requirement of a projection onto the reference plane decreases
the performance rapidly for out-of-plane trajectories. The ROE model works well for out-
of-plane movements but is computationally more demanding as it is LTV, and it is hard to
control the orbital radius. Despite the Blend model using more significant control inputs than
the ROE model, it is found to be the best model for these constellations because:

• It can steer satellites with any planar separation to their references, although it works
most effectively for planar separations up to 60 degrees.

• It is LTI.

• It is possible to include J2 perturbations into the model.

• It is based upon the orbital elements, which allows it to be extended using other results
in the literature.

• It can directly control the orbital radius.

To maximise the advantages of this model, it is important to use it in an appropriate model-
based control algorithm. The selection of a control algorithm is discussed next in Chapter 3.
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Chapter 3

Robust Control

The space industry has high standards regarding the performance of their missions. Space-
crafts should stay within their allocated orbits at all times despite any unforeseen distur-
bances or modelling errors. Collisions with other orbiting bodies, such as other spacecraft,
space debris or meteorites, should be avoided at all costs due to the high costs and because
the resulting space debris makes future space missions harder. Therefore, a robust control
method guaranteed to stay within its allowed space is vital for a space mission.

This chapter discusses several available control methods in Section 3-1, where it is argued
that a robust System-Level Synthesis approach is best suited here. The basics of System-Level
Synthesis are then discussed in Section 3-2, followed by the robust variant in Section 3-3.
Finally, the chapter closes with the results when using this method in Section 3-4 and the
conclusion in Section 3-5.

3-1 Robust Control Methods

There is a plethora of available control methods available that provide some robustness. To
make an initial selection, MPC is chosen as the basis of the controller. This is done for the
following reasons:

• It is intuitive to balance different objectives, such as a trade-off between fuel consump-
tion and tracking of the target.

• Although a model of the plant is required, modelling the orbital dynamics is no problem
and linear models have been used for satellites before as discussed in Section 2-2. These
models can be used to fully exploit the dynamics of the plant, which decreases the
conservatism in the robust controller.

• It is possible to include constraints into the problem, which is not possible with, for
example, (standard) Linear-Quadratic Regulator (LQR).

• MPC can easily handle multi-variable problems with coupled states. This is desired as
the in-plane states in the HCW and Blend model in Section 2-2 are coupled.

• MPC inherently provides some robustness [26].

However, a large disadvantage of MPC is its computational load, where it is required to solve
an optimisation problem online each time step. Luckily, the models described in Section 2-
2 are linear, and it is shown in Section 2-3 that a basic MPC can control satellites with
these models. This means that using a nonlinear MPC variant is unnecessary, and solving
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a quadratic problem suffices. The next chapter, Chapter 4, shows that this problem can be
scaled to hundreds or thousands of satellites and solved within a second.

Robust Model Predictive Control Methods

There are three robust MPC methods that are discussed in more detail. The first is the tube
MPC of [26]. This is the more classical approach to robust MPC, and it is also used as a
benchmark in the two papers describing the other two methods [27], [28]. With tube MPC, a
control law and a tube are jointly optimised such that the control law is guaranteed to keep
the system within the tube despite disturbances or model errors.

The second approach is the net-additive uncertainty approach of [27]. Here, the para-
metric uncertainty and additive disturbance are lumped together into a single augmented
disturbance. The maximum augmented disturbance is calculated first, after which the system
is controlled with this maximum disturbance considered. Although this can be very restric-
tive, it can have a similar region of attraction as the tube MPC while being computationally
significantly faster, especially for larger systems or for longer prediction horizons [27].

The final method is the lumped SLS method of [28]. This is the most novel method and
builds upon the relatively new SLS framework. Here, instead of directly optimising the states
and control inputs, the closed-loop transfer functions for the states and control inputs are
optimised. One of the advantages of this approach is its application of robust control with
scalable and non-conservative problem formulations. The lumped SLS method uses similar
lumped disturbances as the net-additive uncertainty approach of [27] but uses time-varying
disturbances based on the dynamics of the plant to decrease the conservativeness. The lumped
SLS method is compared to both the tube MPC and net-additive uncertainty MPC in [28],
where it outperforms both methods in terms of conservativeness and outperforms the tube
MPC with its computational speed. Due to the time-varying lumped disturbance, it is slower
than the net-additive uncertainty MPC, but this difference is relatively small.

As the lumped SLS method generally outperforms the other two methods, the method is
discussed in further detail in the following two sections. First, the basics of SLS are discussed
in Section 3-2, after which the lumped extension is covered in Section 3-3.

3-2 Nominal System-Level Synthesis

System-Level Synthesis (SLS) is a new framework that finds an optimal control input by
optimising over a closed-loop transfer function. It was originally developed to scale gracefully
for distributed systems with sparsity constraints [29], but has also been used with data-driven
[30], [31] and robust [28], [32], [33] variations.

The SLS theory includes results for both state- and output-feedback, as well as theory for
a finite and infinite horizon. As in practice, as well as for the lumped SLS, the finite horizon
state-feedback variant is the most common; this is presented next.

First, the notations and basics of SLS are presented in Section 3-2-1. Next, constraints
are added to the SLS problem in Section 3-2-2 and the complete optimisation problem is
presented in Section 3-2-3.
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3-2-1 Notations

For the SLS, the following LTV system is considered:

xt+1 = At xt + B1,t wt + B2,t ut, (3-1)

with state vector xt, control input ut and disturbance wt at time t. The evolution of these
variables is described through the signals x, u and w:

x =


x0
x1
x2
...

xT

 , u =


u0
u1
u2
...

uT

 , w =


x0
w0
w1
...

wT −1

 , K =


K0,0

K1,1 K1,0

... . . . . . .
KT,T · · · KT,1 KT,0

 ,

along with a causal LTV state-feedback controller K, such that u = Kx. Note that it is
standard in the SLS framework to put the initial state, x0, as the first entry of w. Then, if
one defines:

A :=


A0

. . .
AT −1

0

 , B2 :=


B2,0

. . .
B2,T −1

0

 , (3-2)

and the disturbance acting on the state δx:

δx := B1w =


I

B1,0
. . .

B1,T −1

w =


x0

B1,0 w0
...

B1,T −1 wT −1

 ,

the relationship between the signals according to Eq. (3-1) can be expressed as:

x = ZAx + ZB2 u + δx

= Z(A+ B2K)x + δx.

where Z is the block-downshift operator, a matrix with identity matrices along its first block
subdiagonal. Note that if the system is LTI, the matrices A, B1 and B2 repeat the same
matrix along the diagonal (except for the first entry of B1).

Using the feedback law u = Kx, the closed-loop maps from δx to x and u can be described
by:

x = (I − Z(A+ B2K))−1δx

u = K(I − Z(A+ B2K))−1δx,
(3-3)

or, when defining Φx : δx → x and Φu : δx → u, in a short form as:[
x
u

]
=
[
Φx

Φu

]
δx. (3-4)
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These mappings are, due to the required causality, constructed with a similar block-lower-
triangular form as K, as shown in Eq. (3-5). They can be seen as a matrix representation of
the convolution operator, so the elements in a particular row are numbered in reverse. When
there is no noise or disturbance (i.e. δx only contains x0 and zeros), only the first block
column of Φx and Φu is of interest. This is then denoted by Φ0

x and Φ0
u, respectively.

Φx =


Φ0,0

x

Φ1,1
x Φ1,0

x
... . . . . . .

ΦT,T
x · · · ΦT,1

x ΦT,0
x

 , Φu =


Φ0,0

u

Φ1,1
u Φ1,0

u
... . . . . . .

ΦT,T
u · · · ΦT,1

u ΦT,0
u

 (3-5)

3-2-2 The System-Level Parameterisation And System-Level Constraints

The SLS framework optimises these maps to obtain the optimal control input. To guarantee
that the maps from Eq. (3-4) follow Eq. (3-3), the System-Level Parameterisation (SLP) is
added to the optimisation problem:

[
I − ZA −ZB2

] [Φx

Φu

]
= I. (3-6)

This constraint can easily be verified to follow Eq. (3-3):

[
I − ZA −ZB2

] [ Φx

KΦx

]
= I

(I − ZA− ZB2K)Φx = I

(I − Z(A+ B2K))(I − Z(A+ B2K))−1 = I.

Recall that SLS was originally developed to add sparsity constraints to these problems. These
(or similar) constraints can be added to the SLS problem through System-Level Constraints
(SLCs), where the closed-loop responses Φx and Φu have to lie in convex sets Sx and Su,
respectively. State or input constraints can also be added by requiring the state or input to lie
in a convex set X and U for every δx in D, a convex set containing all possible disturbances.
Mathematically, these are most commonly represented as:

Φx ∈ Sx, Φu ∈ Su,

Φxδx ∈ X , Φuδx ∈ U , ∀δx ∈ D.
(3-7)

3-2-3 The System-Level Synthesis Problem

One can formulate the general optimal control problem in the SLS framework with objective
function g(Φx, Φu) as follows:

minimize
Φx, Φu

g(Φx, Φu)

subject to SLP from Eq. (3-6),
SLCs from Eq. (3-7),

F.J.P. Ballast Master of Science Thesis



3-3 Robust System-Level Synthesis 41

where the controller K can afterwards be found using1:

K = ΦuΦ−1
x .

The objective function can be used to create an H∞ or L1 infinity control problem. For
example, the H∞ optimal control problem uses the following objective function:

g(Φx, Φu) =
∥∥∥∥∥
[
Q

1
2

R
1
2

] [
Φx

Φu

]∥∥∥∥∥
2

2→2
,

where Q and R are defined as:

Q :=


Q

. . .
Q

QT

 , R :=


R

. . .
R

RT

 .

However, a common assumption is that no noise is acting on the system. This means δx is
known beforehand and has the form:

δx =
[
xT

0 0 . . . 0
]T

.

which allows for a simplification of this problem. Using Eq. (3-4) it becomes clear that only
the first block column of Φx and Φu are relevant without any noise acting on the system.
Then, by defining Φ0

x, Φ0
u and I0 as follows:

Φ0
x :=

Φ0,0
x
...

ΦT,T
x

 , Φ0
u :=

Φ0,0
u
...

ΦT,T
u

 , I0 :=


I
0
...
0

 ,

the SLS problem can be simplified to:

minimize
Φ0

x, Φ0
u

xT
0 Φ0

x
TQΦ0

xx0 + xT
0 Φ0

u
TRΦ0

ux0

subject to
[
I − ZA −ZB2

] [Φ0
x

Φ0
u

]
= I0,

Φ0
x ∈ Sx, Φ0

u ∈ Su,

Φ0
xx0 ∈ X , Φ0

ux0 ∈ U .

3-3 Robust System-Level Synthesis

To discuss the lumped SLS formulation, the classical robust SLS problem is presented first in
Section 3-3-1. This is followed by the original lumped SLS formulation in Section 3-3-2, and
an improved variant in Section 3-3-3.

1The inverse of Φx always exists, as it is a lower triangular block matrix with identity matrices on the
diagonal (see Eq. (3-3)). However, one may want to avoid computing the inverse of Φx for large systems or
large time horizons due to its size. One can then implement the controller in a feedback interconnection [29].
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3-3-1 Classical Robust System-Level Synthesis

In practice, the exact system dynamics are often unknown, and the system can be affected
by disturbances, which can lead to violations of the constraints. Assume that instead of the
true dynamics (At, B2.t), only the estimated dynamics (Ât, B̂2,t) are available. This leads to
the following dynamics:

xt+1 = Âtxt + B̂2,tut + (At − Ât)xt + (B2,,t − B̂2,t)ut + δx,t.

With the estimated dynamics (Â, B̂2) one can construct the matrices (Â, B̂2) similarly to
Eq. (3-2). The corresponding system responses (Φ̂x, Φ̂u) then satisfy the state-feedback SLP:[

I − ZÂ −ZB̂2
] [Φ̂x

Φ̂u

]
= I.

The resulting controller found from K̂ = Φ̂uΦ̂−1
x , however, is applied to the true dynamics

(A,B2). This results in the following SLP with uncertain dynamics:[
I − ZA −ZB2

] [Φ̂x

Φ̂u

]
= I + Z

[
Â − A B̂2 − B2

] [Φ̂x

Φ̂u

]
,

where the last term is defined as ∆:

∆ := Z
[
Â − A B̂2 − B2

] [Φ̂x

Φ̂u

]
.

This term has the following effect on x and u:[
x
u

]
=
[
Φ̂x

Φ̂u

]
(I + ∆)−1δx,

which is used in the more classical robust SLS problems, where the goal is to synthesise a
controller that performs well for different (and unknown) true systems dynamics (A,B2) with
model uncertainty bounds ϵA and ϵB2 :

min
Φ̂x,Φ̂u

max
A,B2

∥∥∥∥∥
[
Q

1
2 0

0 R
1
2

] [
Φ̂x

Φ̂u

]
(I + ∆)−1

∥∥∥∥∥
2

F

subject to
[
I − ZÂ −ZB̂2

] [Φ̂x

Φ̂u

]
= I,∥∥∥Â − A∥∥∥

2→2
≤ ϵA,∥∥∥B̂2 − B2

∥∥∥
2→2
≤ ϵB2 ,

where F denotes the Frobenius norm.

3-3-2 Classical Lumped System-Level Synthesis

The classical robust SLS approach becomes quasi-convex at best [34], which led to the devel-
opment of the lumped SLS variant in [28]. This method, the Classical Lumped System-Level
Synthesis (CLSLS), is presented in four parts: the lumped uncertainties, bounding these
uncertainties, tightening the constraints accordingly and then combining everything for the
CLSLS problem.
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Lumped Uncertainties

Uncertainties due to disturbances and due to model errors are grouped as one lumped uncer-
tainty ηt:

xt+1 = Âtxt + B̂2,tut + (At − Ât)xt + (B2,t − B̂2,t)ut + δx,t

= Âtxt + B̂2,tut + ηt.
(3-8)

The lumped uncertainty can also be expressed over time using signals, where it is important
to note that, as ηt is now the disturbance, Φ̂x : η → x and Φ̂u : η → u :

η = Z(A− Â)x + Z(B2 − B̂2)u + δx,

= Z
[
A− Â B2 − B̂2

] [Φ̂x

Φ̂u

]
η + δx, (3-9)

where the first entry of η is once again x0.

Lumped Uncertainty Bound

The robust problem requires bounds on ηt, ideally as tight as possible to reduce conservative-
ness. However, this is not an easy task due to its dependence on the states and inputs. To
bound the uncertainty, the lumped uncertainty can equivalently be denoted as:

ηt = σt δ̃x,t. (3-10)

where σt is a positive scalar and δ̃x,t is noise such that
∥∥∥δ̃x,t

∥∥∥
∞
≤ 1. This means σt provides

an upper bound on the infinity norm of the lumped disturbance:

∥ηt∥∞ ≤ σt

∥∥∥δ̃x,t

∥∥∥
∞

,

≤ σt.

To bind the lumped uncertainty, it first has to be related to state and input variables. How-
ever, the formulation in Eq. (3-9) depends on the lumped uncertainty as well, whose bound is
the objective to obtain in the first place. This chicken-egg problem can be removed by using
the signal equivalent of Eq. (3-10) in Eq. (3-9):

η = Z
[
A− Â B2 − B̂2

] [Φ̃x

Φ̃u

]
δ̃x + δx, (3-11)

where Φ̃x : δ̃x → x and Φ̃u : δ̃x → u are defined as:

Φ̃x := Φ̂xΣ,

Φ̃u := Φ̂uΣ,
(3-12)

and where Σ and δ̃x follow from:

Σ :=


I

σ0I
. . .

σT −1I

 , δ̃x :=


x0
δ̃x,0

...
δ̃x,T −1

 .
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When Eq. (3-11) is formulated in its scalar form for an LTI system:

η0 = (A− Â)Φ̃0,0
x x0 + (B2 − B̂2)Φ̃0,0

u x0 + δx,0,

ηt = (A− Â)(Φ̃t,t
x x0 +

t∑
i=1

Φ̃t,t−i
x δ̃x,i−1)

+ (B2 − B̂2)(Φ̃t,t
u x0 +

t∑
i=1

Φ̃t,t−i
u δ̃x,i−1) + δx,t, ∀t ∈ ZT −1

1 ,

(3-13)

it is possible to find the following upper bound on ∥ηt∥∞ using the triangle inequality and
the submultiplicative property of the infinity norm:

∥η0∥∞ ≤ ϵA

∥∥∥Φ̃0,0
x x0

∥∥∥
∞

+ ϵB2

∥∥∥Φ̃0,0
u x0

∥∥∥
∞

+ σδ ≤ σ0,

∥ηt∥∞ ≤ ϵA

(∥∥∥Φ̃t,t
x x0

∥∥∥
∞

+
t∑

i=1

∥∥∥Φ̃t,t−i
x

∥∥∥
∞→∞

)

+ ϵB2

(∥∥∥Φ̃t,t
u x0

∥∥∥
∞

+
t∑

i=1

∥∥∥Φ̃t,t−i
u

∥∥∥
∞→∞

)
+ σδ ≤ σt, ∀t ∈ ZT −1

1 .

(3-14)

where
∥∥∥A− Â

∥∥∥
∞→∞

≤ ϵA,
∥∥∥B2 − B̂2

∥∥∥
∞→∞

≤ ϵB2 and ∥δx,t∥∞ ≤ σδ, ∀t.

With the new closed-loop transfer matrices Φ̃x and Φ̃u, the SLP changes as these transfer
matrices do not map the disturbance η to the states or inputs, respectively. Where the SLP
for the lumped disturbance η with Φ̂x and Φ̂u would have the following form:[

I − ZÂ −ZB̂2
] [Φ̂x

Φ̂u

]
= I, (3-15)

the SLP with Φ̃x and Φ̃u has Σ on the right-hand side:[
I − ZÂ −ZB̂2

] [Φ̃x

Φ̃u

]
= Σ. (3-16)

Using Eq. (3-12) and Eq. (3-15), obtaining this result is trivial. Right multiplying both sides
with δ̃x also yields the signal equivalent of Eq. (3-8).

Constraint Tightening

With these bounds for the magnitude of the lumped disturbance found, the next step is to
tighten the constraint to prevent any constraint violations. The constraints are assumed to
be of the form:

HXtxt ≤ hXt ,

HXT
xT ≤ hXT

,

HUtut ≤ hUt .

Furthermore, using that:

xt = Φ̃t,t
x x0 +

t∑
i=1

Φ̃t,t
x δ̃i−1,

F.J.P. Ballast Master of Science Thesis



3-3 Robust System-Level Synthesis 45

and using Hölder’s inequality, the state constraints can be expressed as:

Hj
Xt

xt = Hj
Xt

(
Φ̃t,t

x x0 +
t∑

i=1
Φ̃t,t

x δ̃i−1

)

≤ Hj
Xt

Φ̃t,t
x x0 +

t∑
i=1

∥∥∥Hj
Xt

Φ̃t,t
x

∥∥∥
1

∥∥∥δ̃i−1
∥∥∥

∞

≤ Hj
Xt

Φ̃t,t
x x0 +

t∑
i=1

∥∥∥Hj
Xt

Φ̃t,t
x

∥∥∥
1
≤ hj

Xt
,

with j denoting the j’th constraint (i.e., row) of HXt and hXt . Furthermore, when looking at
Eq. (3-16), it can be seen that:

Φ̃t,0
x = σt−1I, ∀t ∈ ZT

1 ,

such that the tightened constraints can be rewritten as follows for each of the nXt constraints:

Hj
Xt

Φ̃t,t
x x0 +

t−1∑
i=1

∥∥∥Hj
Xt

Φ̃t,t−i
x

∥∥∥
1

+ σt−1
∥∥∥Hj

Xt

∥∥∥
1
≤ hj

Xt
, ∀j ∈ ZnXt −1

0 , ∀t ∈ ZT −1
1 . (3-17)

Following a similar procedure, similar equations are obtained for XT and Ut:

Hj
XT

Φ̃T,T
x x0 +

T −1∑
i=1

∥∥∥Hj
XT

Φ̃T,T −i
x

∥∥∥
1

+ σT −1
∥∥∥Hj

XT

∥∥∥
1
≤ hj

XT
, ∀j ∈ ZnXT

−1
0 , (3-18)

Hj
Ut

Φ̃t,t
u x0 +

t∑
i=1

∥∥∥Hj
Ut

Φ̃t,t−i
u

∥∥∥
1
≤ hj

Ut
, ∀j ∈ ZnUt −1

0 , ∀t ∈ ZT −1
0 . (3-19)

As expected, the estimated lumped uncertainty decreases the feasible region for the state
constraints.

Classical Lumped System-Level Synthesis Problem

With all these expressions combined, it is possible to formulate the CLSLS problem:

minimize
Φ̃x, Φ̃u, Σ

xT
0 Φ0

x
TQΦ0

xx0 + xT
0 Φ0

u
TRΦ0

ux0

subject to
[
I − ZÂ −ZB̂2

] [Φ̃x

Φ̃u

]
= Σ,

Lumped uncertainty bounds from Eq. (3-14),
Tightened constraints from Eqs. (3-17) to (3-19).

3-3-3 Improved Lumped System-Level Synthesis

As the CLSLS approach from [28] overapproximates the infinity-norm of the lumped distur-
bance, the worst-case scenario of the most uncertain state will also limit a possibly uncoupled
and perfectly modelled state. This shared conservativeness can limit the performance of the
controller, which is addressed with the Improved Lumped System-Level Synthesis (ILSLS).
The basics are the same as the CLSLS, but the differences between the models are discussed in
three parts: the lumped uncertainty bound, the tightened constraints and finally the problem
formulation.
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Lumped Uncertainty Bound

Instead of overapproximating the magnitude of every ηt with a single scalar σt, every state
j in ηt is individually overapproximated with its own σj

t . Thus, instead of Eq. (3-10), ηt is
approximated as:

ηt =


σ0

t
. . .

σnx−1
t

 δ̃x,t.

Σ is build out of the matrices Σt, which are both defined as:

Σ :=


I

Σ0
. . .

ΣT −1

 , Σt :=


σ0

t
. . .

σnx−1
t

 .

This formulation is not new, as it is also used in [35] and [36]. However, both of these
approaches scale poorly when the number of sources of uncertainty grows. That is, if A− Â
is taken as an example, two possible model uncertainties are provided in a small example:

A− Â =

 ϵ0
A ϵ2

A 2ϵ0
A

2ϵ1
A 5ϵ2

A ϵ2
A

ϵ1
A 7ϵ0

A 9ϵ1
A

 , A− Â =

ϵ0
A ϵ3

A ϵ6
A

ϵ1
A ϵ4

A ϵ7
A

ϵ2
A ϵ5

A ϵ8
A

 .

In the leftmost example, there are three different sources of uncertainty (i.e., ϵ0
A, ϵ1

A and
ϵ2
A). There is some underlying structure in this case, which the work in [35] and [36] uses to

robustly control a system.
In the rightmost example, however, there is no structure in the uncertainty and nine dif-

ferent sources of uncertainty are present. The number of constraints in [35] and [36] scale
exponentially with the number of sources of uncertainty, which shows that without any as-
sumptions a new formulation must be developed for larger systems.

Therefore, in this work, a formulation is provided for norm-bounded model uncertainties
for general norm-bounded disturbances. To do so, first an upper bound on the magnitude of
the lumped disturbance similar to Eq. (3-14) is found. Starting from Eq. (3-13), it is possible
to find an upper bound of the magnitude of state j. Starting with η0, this yields:∣∣∣ηj

0

∣∣∣ =
∣∣∣(Aj − Âj)Φ̃0,0

x x0 + (Bj
2 − B̂j

2)Φ̃0,0
u x0 + δx,0

∣∣∣
≤ ϵj

A

∥∥∥Φ̃0,0
x x0

∥∥∥
∞

+ ϵj
B2

∥∥∥Φ̃0,0
u x0

∥∥∥
∞

+ σj
δ ≤ σj

0, ∀j ∈ Znx−1
0 , (3-20)

where (·)j denotes the j’th row of the corresponding matrix or vector, and where ϵj
A, ϵj

B2
and

σj
δ are defined as:

ϵj
A :=

∥∥∥Aj − Âj
∥∥∥

1
, ϵj

B2
:=
∥∥∥Bj

2 − B̂j
2

∥∥∥
1

, σj
δ := max |δj

x,t|, ∀t.

Following a similar procedure, the bound for ηj
t can be found:

|ηj
t | ≤ ϵj

A

(∥∥∥Φ̃t,t
x x0

∥∥∥
∞

+
t∑

i=1

∥∥∥Φ̃t,t−i
x

∥∥∥
∞→∞

)

+ ϵj
B2

(∥∥∥Φ̃t,t
u x0

∥∥∥
∞

+
t∑

i=1

∥∥∥Φ̃t,t−i
u

∥∥∥
∞→∞

)
+ σj

δ ≤ σj
t , ∀j ∈ Znx−1

0 , ∀t ∈ ZT −1
1 .

(3-21)
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Constraint Tightening

The different parameterisation of Σ has a small effect on the tightened constraints of Xt and
XT , as Φ̃t,0

x is not equal to σt−1I, but now equal to Σt−1. For completeness, the constraints
for Ut are also provided, although these have remained the same:

Hj
Xt

Φ̃t,t
x x0 +

t−1∑
i=1

∥∥∥Hj
Xt

Φ̃t,t−i
x

∥∥∥
1

+
∥∥∥Hj

Xt
Σt−1

∥∥∥
1
≤ hj

Xt
, ∀j ∈ ZnXt −1

0 , ∀t ∈ ZT −1
1 ,

Hj
XT

Φ̃T,T
x x0 +

T −1∑
i=1

∥∥∥Hj
XT

Φ̃T,T −i
x

∥∥∥
1

+
∥∥∥Hj

XT
ΣT −1

∥∥∥
1
≤ hj

XT
, ∀j ∈ ZnXT

−1
0 , (3-22)

Hj
Ut

Φ̃t,t
u x0 +

t∑
i=1

∥∥∥Hj
Ut

Φ̃t,t−i
u

∥∥∥
1
≤ hj

Ut
, ∀j ∈ ZnUt −1

0 , ∀t ∈ ZT −1
0 .

Improved Lumped System-Level Synthesis Problem

Combing these new equations leads to the following ILSLS problem:

minimize
Φ̃x, Φ̃u, Σ

xT
0 Φ0

x
TQΦ0

xx0 + xT
0 Φ0

u
TRΦ0

ux0

subject to
[
I − ZÂ −ZB̂2

] [Φ̃x

Φ̃u

]
= Σ,

Lumped uncertainty bounds from Eqs. (3-20) and (3-21),
Tightened constraints from Eq. (3-22).

(3-23)

3-4 Controller Comparison

The results are split up into two sections. First, a simulation without disturbances shows
the effect of accounting for the model inaccuracies is tested in Section 3-4-1. Secondly, a
simulation with model uncertainties and disturbances is shown in Section 3-4-2.

3-4-1 Model Uncertainty Only

To show the effect of including these model uncertainties, a simulation is run without any
disturbances first. The control parameters for this simulation are provided in Appendix B-2,
where compared to the parameters for Section 2-3, the prediction horizon is decreased, and
the terminal cost is increased. The model uncertainties are estimated using the procedure
explained in Appendix D-1. General parameters for the scenario are provided in Table 3-1.
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48 Robust Control

Table 3-1: Parameters during the first robustness scenario.

Symbol Meaning Value
a Semi-major axis 55 m
e Eccentricity 0
i Inclination 45 deg
ω Argument of periapsis 0 deg
Ω RAAN 0 deg

Nsat Number of satellites in the simulation 1 satellite

The results for the main states are shown in Fig. 3-1. Two things stand out with these results:

• The ILSLS formulation is significantly less conservative than the CLSLS formulation.
Where the new formulation closely tracks the nominal SLS formulation, the original
formulation limits the radial error to guarantee staying within bounds.

• The differences for the angular state δθ and the out-of-plane state δΩ are significantly
smaller. Especially for the latter, almost no differences are visible, which is also visible
when different models were compared in Section 2-3-5.
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Figure 3-1: Main states for robust scenario without disturbances.

To better see the effect of the lumped SLS controller, a close-up view of the radial error is
shown in Fig. 3-2. It is clear that the nominal SLS controller exceeds the limit of 0.1 m, not
only during the initial overshoot but also afterwards. The controller is aware of this error
during the simulation and tries to make a small correction to steer the satellite back to within
the feasible region. However, because of the model inaccuracies, it fails to do so correctly.

The ILSLS formulation does properly stay within the required bounds. As the satellite
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approaches the reference and thus decreases the state variables, the ILSLS controller comes
closer to the allowed limit. Similar behaviour is visible for the CLSLS controller in Fig. 3-1.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time [min]

0.0985

0.0990

0.0995

0.1000

0.1005

δr
[m

]

SLS
ILSLS

Figure 3-2: Close-up of radial state for robust scenario without disturbances.

The control inputs are visible in Fig. 3-3. The control inputs for most controllers are similar,
although the nominal SLS controller uses less control input for ur. The CLSLS controller
differs from the other controllers at the start for ut as well.
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Figure 3-3: Control inputs for robust scenario without disturbances.

Upon closer inspection, it can seem weird that the new lumped SLS formulation in Fig. 3-1
is the first controller to decrease the state errors to zero. Usually, the conservativeness of
a robust controller causes it to slow down compared to its non-robust counterpart, which
is visible for the CLSLS controller, for example. However, in this particular scenario, by
slightly decreasing the radial state δr, the controller can decrease its angular velocity further
and therefore decrease δθ faster. Recall the equations of motion for the in-plane states from
Section 2-2-3: 

δṙ

δλ̇f

δėf
x

δėf
y

 = nc


rcδef

y

−3
2

1
rc

δr + 1
2δef

x

−δef
y + 2

acn2
c
ut

δef
x + 1

acn2
c
ur

 .
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As the controller is nearing its radial limit, it has to guarantee a non-positive δṙ, and thus a
non-positive δef

y . This can be done through the control input ur and the state variable δef
x.

The first large difference in the control inputs between SLS and ILSLS can be seen for the
tangential input ut at the fourth time step, where the lumped SLS takes a more conservative
approach. This is required as due to the constraint tightening, the path and inputs planned
by the nominal SLS controller are no longer possible, see Fig. 3-4.

In the following iterations, the nominal SLS controller provides larger control inputs for
ut (see Fig. 3-3), whereas the robust SLS controller, due to the forced change, stabilises at
a lower value for δef

x as shown in Fig. 3-5. Both approaches decrease δṙ, but the latter also
decreases δλ̇f further. This causes the lumped SLS controller to move faster than the nominal
one.

However, if δr would decrease too much, this would increase λ̇f again. This is why the
CLSLS controller is slower, even though it can be seen in Fig. 3-5 that its value for δef

x is
lower than the nominal controller several minutes.
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Figure 3-4: Comparison of inputs for both the nominal and robust controller at fourth iteration.
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Figure 3-5: Comparison of state δef
x for robustness scenario.

Finally, it is important to address the metrics discussed in Section 2-3-1. These are shown in
Table 3-2, where a large difference is seen for the computation times. The lumped controllers
are more than 400 times slower than the nominal SLS controller. This can be explained by the
different norms required for the lumped SLS formulation, which means standard quadratic
solvers alone cannot be used anymore by Gurobi. For this small simulation with only a single
satellite, the ILSLS controller is not slower than the CLSLS controller.

Table 3-2: Metrics during robust scenario without disturbances.

Model ¯∥u∥2 [N] ¯∥u∥norm
2 [-] Tsol [s] T norm

sol [-]
SLS 0.1227 1.0000 0.0015 1.0000

CLSLS 0.1253 1.0211 0.6299 424.4849
ILSLS 0.1231 1.0031 0.6265 422.2021
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3-4-2 Model Uncertainty And Disturbance

Disturbances are added to the simulation with the procedure explained in Appendix D-2,
where the effect on the state variables is estimated as well. With these disturbances added to
the simulation, the differences between the different methods become increasingly apparent.
When looking at Fig. 3-6 for example, the nominal SLS method moves towards the given
radial limit and, due to model uncertainties and the disturbances, exceeds this limit several
times.

The CLSLS problem accounts for the disturbances but has no way of distinguishing be-
tween a small disturbance on one state or a significant disturbance on another. Therefore, it
assumed a large disturbance on all states, causing it to be incredibly conservative.

The ILSLS formulation is more conservative than the nominal SLS method, as it steers
clear from the provided limit of 0.1 m. However, it is significantly less conservative than the
original formulation and manages to once more arrive at the reference first.
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Figure 3-6: Main states for robust scenario with disturbances.

When looking at the control inputs in Fig. 3-7, it is clear that the CLSLS controller is the
most conservative of the three. It reaches the maximum input value once for none of the three
inputs. The newly proposed lumped SLS controller provides a constant maximum input for
the radial input but shows very oscillatory behaviour for the tangential input.
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Figure 3-7: Control inputs for robust scenario with disturbances.

The metrics tell the same story as the figures above, and the computation time for the lumped
SLS controllers is once more significantly higher than for the original SLS controller as shown
in Table 3-3.

Table 3-3: Metrics during robust scenario with disturbances.

Model ¯∥u∥2 [N] ¯∥u∥norm
2 [-] Tsol [s] T norm

sol [-]
SLS 0.1300 3.0896 0.0015 1.0000

CLSLS 0.0421 1.0000 0.5796 390.6032
ILSLS 0.1329 3.1592 0.6143 413.9882

3-5 Conclusions

The goal of this chapter was to find a scalable, robust control method that can be used to
move towards a given reference while being guaranteed to satisfy its constraints. Because of
its promising computational speed and low conservativeness, the lumped SLS method of [28]
was chosen.

This method is able to guarantee that the constraints are met. Still, due to the different
scales of different variables and their uncertainties, this method is too conservative for the
problem at hand. To solve this issue, a modification also used in [35] and [36] was applied,
where the lumped uncertainty for each state variable individually is calculated. These existing
methods require many constraints to model an unknown norm-bounded uncertainty, which is
the reason a new formulation was developed.

This formulation has been shown to be considerably less conservative than the original
lumped SLS formulation from [28]. Still, unlike the nominal SLS model, it is able to stay
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within the provided bounds at all times. It is significantly slower than nominal SLS, however,
which is why, in the next chapter, the goal is to increase the computational speed of the
algorithm.
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Chapter 4

Optimisation

Implementing an efficient optimisation routine is a critical step in making the control approach
scalable. This chapter discusses different formulations to optimise the time it takes several
solvers to find the optimal solution. First the nominal SLS problem is analysed in Section 4-
1, after which the robust SLS problem is improved in Section 4-2. These new problem
formulations are tested for various solvers in Section 4-3, after which conclusions are drawn
in Section 4-4.

4-1 Nominal System-Level Synthesis Variations

The goal is to implement a scalable robust SLS algorithm such that a large constellation can
safely be controlled. However, as the optimisation problem as posed in Eq. (3-23) is complex,
the optimisation problem is sped up through three separate steps:

1. The nominal SLS problem uses the matrices Φ0
x and Φ0

u as decision variables and is
shortly presented in Section 4-1-1. However, not every solver can deal with matrix
decision variables, and if they do, their selected algorithms might not be as efficient as
those for vector decision variables. Therefore, the nominal SLS problem is transformed
into a standard quadratic problem with vectors as decision variables in Section 4-1-2.

2. The decision variables Φ0
x and Φ0

u are often sparse, which means a significant number
of entries of these matrices are zero. These entries can be left out of the optimisation
problem, as they do not affect multiplications, divisions, additions and subtractions1.
The sparse SLS formulation is derived in Section 4-1-3.

3. The robust SLS problem contains one-norms and infinity-norms that a standard quadratic
problem cannot cope with. However, as shown in Section 4-2, it is possible to find an
equivalent formulation that does fit the standard quadratic problem format.

4-1-1 Dense System-Level Synthesis

The standard and dense SLS problem optimises over the matrix variables Φ0
x and Φ0

u. This
problem formulation was derived in Section 3-2-2, although the constraints are slightly altered.
The sparsity constraints for Sx and Su are removed for the dense problem, and the state and

1All zero entries should, whether the matrix is sparse or dense, never occur as the sole denominator in a
fraction, of course. Division, therefore, is no problem as long as the original problem was well-posed.
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input constraints are defined as:

xmin ≤Φ0
xx0 ≤ xmax,

umin ≤Φ0
ux0 ≤ umax.

This results in the following SLS problem:

minimize
Φ0

x, Φ0
u

xT
0 Φ0

x
TQΦ0

xx0 + xT
0 Φ0

u
TRΦ0

ux0

subject to
[
I − ZA −ZB2

] [Φ0
x

Φ0
u

]
= I0,

xmin ≤ Φ0
xx0 ≤ xmax,

umin ≤ Φ0
ux0 ≤ umax.

(4-1)

4-1-2 Transformed System-Level Synthesis

Not all solvers can deal with the required matrix decision variables from Eq. (4-1). To solve
this problem, a transformed SLS problem is constructed where first, a vector version of the
matrix variables must be defined. The different entries of, for example, Φi,j

x are labelled as
follows, given that the total state size is nx:

Φi,j
x =



φx,i,j
0 φx,i,j

nx
· · · φx,i,j

(nx−2)nx
φx,i,j

(nx−1)nx

φx,i,j
1 φx,i,j

nx+1 · · · φx,i,j
(nx−2)nx+1 φx,i,j

(nx−1)nx+1
...

... · · ·
...

...
φx,i,j

nx−2 φx,i,j
2nx−2 · · · φx,i,j

(nx−2)nx−2 φx,i,j
n2

x−2
φx,i,j

nx−1 φx,i,j
2nx−1 · · · φx,i,j

(nx−2)nx−1 φx,i,j
n2

x−1


, (4-2)

of which the corresponding vector form is denoted by φi,j
x :

φi,j
x :=

[
φx,i,j

0 φx,i,j
1 . . . φx,i,j

n2
x−2 φx,i,j

n2
x−1

]T
.

The vector φ0
x (and similarly for φ0

u) contains all these φi,j
x and can be seen as the vector

equivalent of Φ0
x:

φ0
x =

[
φ0,0

x
T

φ1,1
x

T
. . . φT −1,T −1

x
T

φT,T
x

T
]T

.

By defining Kx and Ku as follows:

Kx := IT +1 ⊗ (xT
0 ⊗ Inx), Ku := IT +1 ⊗ (xT

0 ⊗ Inu),

and Aφ, Bφ
2 and Iφ as:

Aφ :=


Inx ⊗ A

. . .
Inx ⊗ A

0

 , Bφ
2 :=


Inx ⊗ B2

. . .
Inx ⊗ B2

0

 , Iφ :=


Iflat

nx

0
...
0

 ,
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where Iflat
nx

denotes a flattened identity matrix, the transformed SLS problem formulation can
be constructed:

minimize
φ0

x, φ0
u

φ0
x

TQφ φ0
x + φ0

u
TRφ φ0

u

subject to
[
I − ZAφ −ZBφ

2

] [φ0
x

φ0
u

]
= Iφ,

xmin ≤ Kxφ0
x ≤ xmax,

umin ≤ Kuφ0
u ≤ umax,

(4-3)

where Qφ and Rφ are defined as:

Qφ := KT
xQKx, Rφ := KT

uRKu.

The derivation of this equivalent formulation is provided in Appendix E-1. Afterwards, ob-
taining Φ0

x and Φ0
u following Eq. (4-2) is straightforward.

4-1-3 Sparse System-Level Synthesis

The construction of the transformed SLS problem in Section 4-1-2 has an extra benefit, namely
that it is now straightforward to optimise sparse matrix variables Φ0

x and Φ0
u. All entries of

these matrices that either mathematically must be zero or, because the closed-loop transfer
matrix is designed as such, can be left out in the transformed problem. Sparse closed-loop
transfer matrices are obtained after the results are reconstructed from the closed-loop transfer
matrices.

First the three different levels of sparsity are discussed, after which the corresponding
indices are denoted. The new sparse problem formulation is presented last.

Levels of Sparsity

The sparsity in the closed-loop transfer matrices is present at three different levels: a micro,
meso and macro level. The micro-level sparsity determines the coupling between different
states. For the Blend model, a division is made between in-plane and out-of-plane states. For
each satellite s, this structure for Φi,j

x and Φi,j
u is as follows:

Φi,j
x,s =



φx,i,j
0 φx,i,j

4 φx,i,j
8 φx,i,j

12
φx,i,j

1 φx,i,j
5 φx,i,j

9 φx,i,j
13

φx,i,j
2 φx,i,j

6 φx,i,j
10 φx,i,j

14
φx,i,j

3 φx,i,j
7 φx,i,j

11 φx,i,j
15

φx,i,j
16 φx,i,j

18
φx,i,j

17 φx,i,j
19



Φi,j
u,s =

φu,i,j
0 φu,i,j

2 φu,i,j
4 φu,i,j

6
φu,i,j

1 φu,i,j
3 φu,i,j

5 φu,i,j
7

φu,i,j
8 φu,i,j

9

 .

The meso-level sparsity provides the structure with respect to other satellites. Here, the
simplest form is chosen, where each satellite finds its new state and inputs exclusively from
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its own previous state.

Φi,j
x =


Φi,j

x,0
. . .

Φi,j
x,Nsat

− 1

 , Φi,j
u =


Φi,j

u,0
. . .

Φi,j
u,Nsat

− 1

 .

The macro-level sparsity provides the structure with respect to time. As the controller must
be causal, this requires a block-lower-triangular matrix as shown in Eq. (3-5). This form is
repeated here for convenience:

Φx =


Φ0,0

x

Φ1,1
x Φ1,0

x
... . . . . . .

ΦT,T
x · · · ΦT,1

x ΦT,0
x

 , Φu =


Φ0,0

u

Φ1,1
u Φ1,0

u
... . . . . . .

ΦT,T
u · · · ΦT,1

u ΦT,0
u

 .

Sparsity Indices

The resulting sparsity requires a selection in the rows and columns of the various matrices
in Eq. (4-3). This can be done with ix

sp, which is a list with all the non-zero indices of Φx

compared to its dense form Φdense
x . Its counterpart for Φu is denoted by iu

sp. Thus, if Φx has
the following structure with the indices of Φdense

x labelled as follows:

Φdense
x =

0 3 6
1 4 7
2 5 8

 , Φx =

∗ ∗
∗

∗ ∗

 ,

then ix
sp is defined as [0, 2, 4, 5, 6].

Sparse System-Level Synthesis

The optimisation problem is shown in Eq. (4-4), with these sparsity indices used to select the
rows and columns corresponding to the sparsity structure:

minimize
φ0

x, φ0
u

φ0
x

TQφ[ix
sp, ix

sp] φ0
x + φ0

u
TRφ[iu

sp, iu
sp] φ0

u

subject to
[
(I − ZAφ)[ix

sp, ix
sp] −(ZBφ

2 )[ix
sp, iu

sp]
] [φ0

x

φ0
u

]
= Iφ[ix

sp],

xmin ≤ Kx[:, ix
sp]φ0

x ≤ xmax,

umin ≤ Ku[:, iu
sp]φ0

u ≤ umax.

(4-4)

4-2 Robust System-Level Synthesis

With the work from the previous sections, it should now be possible to optimise the robust SLS
problem significantly faster. However, the main bottleneck remains the nonlinear functions
that appear in the constraints of a lumped SLS formulation. Therefore, an equivalent problem
is constructed with a lower computational load.
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First, the SLP is rewritten in Section 4-2-1, after which the lumped uncertainty is bounded
in Section 4-2-2 and the constraints are tightened accordingly in Section 4-2-3. Finally, the
resulting optimisation problem is shown in Section 4-2-4.

4-2-1 Robust Dynamic Constraints

The sparse form of the transformed, robust SLP is derived in Section E-2-2, and is equal to:

[
(I − ZAφ)[ix

sp,t, ix
sp,t] −B

φ
2 [ix

sp,t, iu
sp,t]

] [φ̃t
x

φ̃t
u

]
= Iφ

t [ix
sp,t], ∀t ∈ ZT

0 , (4-5)

where φ̃t
x, φ̃t

u and Iφ
t are defined as:

φ̃t
x :=

 φ̃t+1,1
x
...

φ̃T,T −t
x

 , φ̃t
u :=

 φ̃t,0
u
...

φ̃T −1,T −t−1
u

 , Iφ
0 := Aφ


Iflat

nx

0
...
0

 , Iφ
t := Aφ


Σflat

t−1
0
...
0

 , ∀t ∈ ZT
1 .

Here, φ̃t
x and φ̃t

u represent the t’th block column of Φx and Φu, respectively. Note that the
indices for the entries of φ̃t

x are one higher than before, as the values for Φ̃t,0
x are known

beforehand (i.e., Σt−1) and have been moved into Iφ
t as Σt−1.

4-2-2 Lumped Uncertainty Bounds

The lumped uncertainty bounds are given in Eqs. (3-20) and (3-21):∣∣∣ηj
0

∣∣∣ ≤ ϵj
A

∥∥∥Φ̃0,0
x x0

∥∥∥
∞

+ ϵj
B2

∥∥∥Φ̃0,0
u x0

∥∥∥
∞

+ σj
δ ≤ σj

0, ∀j ∈ Znx−1
0 ,

|ηj
t | ≤ ϵj

A

(∥∥∥Φ̃t,t
x x0

∥∥∥
∞

+
t∑

i=1

∥∥∥Φ̃t,t−i
x

∥∥∥
∞→∞

)

+ ϵj
B2

(∥∥∥Φ̃t,t
u x0

∥∥∥
∞

+
t∑

i=1

∥∥∥Φ̃t,t−i
u

∥∥∥
∞→∞

)
+ σj

δ ≤ σj
t , ∀j ∈ Znx−1

0 , ∀t ∈ ZT −1
1 ,

and can, as shown in Section E-2-3, equivalently be represented as:

ϵj
Axmax

0 + ej
B2

umax
0 + σj

δ ≤ σj
0, ∀j ∈ Znx−1

0 ,

ϵj
A (xmax

1 + σmax
0 ) + ej

B2

(
umax

1 + φ̃1,0
u,max

)
+ σj

δ ≤ σj
1, ∀j ∈ Znx−1

0 ,

ϵj
A

(
xmax

t +
t−1∑
i=1

φ̃t,t−i
x,max + σmax

t−1

)

+ ϵj
B2

(
umax

t +
t∑

i=1
φ̃t,t−i

u,max

)
+ σj

δ ≤ σj
t , ∀j ∈ Znx−1

0 , ∀t ∈ ZT −1
2 .

(4-6)

The dummy variables, all with either the subscript or superscript ‘max’, must be minimised
and require several constraints for this alternative representation to hold. For xmax

t and umax
t ,
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these constraints have the following form:

x+
t,i + x−

t,i ≤ xmax
t ∀i ∈ Znx−1

0 ,

x+
t − x−

t = Kx[:, ix
sp,t]φ̃t,t,

x+
t ≥ 0, x−

t ≥ 0.

For φ̃t,t−i
x,max and φ̃t,t−i

u,max, these take the form of:

N j
x[:, ix

sp,t](φ̃t,t−i,+
x + φ̃t,t−i,−

x ) ≤ φ̃t,t−i
x,max ∀j ∈ Znx−1

0 ,

φ̃t,t−i,+
x − φ̃t,t−i,−

x = φ̃t,t−i
x , (4-7)

φ̃t,t−i,+
x ≥ 0, φ̃t,t−i,−

x ≥ 0, (4-8)

where N j
x is defined as:

N j
x := 1T

nx
⊗ eT

j .

The maximum uncertainty σmax
t simply requires:

σi
t−1 ≤ σmax

t−1 , ∀i ∈ Znx−1
0 .

4-2-3 Constraint Tightening

The tightened constraints are shown in Eq. (3-22), and denoted below once more for conve-
nience:

Hj
Xt

Φ̃t,t
x x0 +

t−1∑
i=1

∥∥∥Hj
Xt

Φ̃t,t−i
x

∥∥∥
1

+
∥∥∥Hj

Xt
Σt−1

∥∥∥
1
≤ hj

Xt
, ∀j ∈ ZnXt −1

0 , ∀t ∈ ZT −1
1 ,

Hj
XT

Φ̃T,T
x x0 +

T −1∑
i=1

∥∥∥Hj
XT

Φ̃T,T −i
x

∥∥∥
1

+
∥∥∥Hj

XT
ΣT −1

∥∥∥
1
≤ hj

XT
, ∀j ∈ ZnXT

0 ,

Hj
Ut

Φ̃t,t
u x0 +

t∑
i=1

∥∥∥Hj
Ut

Φ̃t,t−i
u

∥∥∥
1
≤ hj

Ut
, ∀j ∈ ZnUt −1

0 , ∀t ∈ ZT −1
0 ,

where the one-norms must be replaced to solve the problem using a standard quadratic solver.
As shown in Section E-2-4, these constraints can be replaced by:

Hj
Xt

Kx[:, ix
sp,t]φ̃t,t

x

+
t−1∑
i=1

N
mx

j
x [:, ix

sp,t](φ̃t,t−i,+
x + φ̃t,t−i,−

x ) + σ
mx

j

t−1 ≤ hj
Xt

, ∀j ∈ ZnXt −1
0 , ∀t ∈ ZT −1

1 ,

Hj
XT

Kx[:, ix
sp,t]φ̃T,T

x (4-9)

+
T −1∑
i=1

N
mx

j
x [:, ix

sp,t](φ̃T,T −i,+
x + φ̃T,T −i,−

x ) + σ
mx

j

T −1 ≤ hj
XT

, ∀j ∈ ZnXT
−1

0 ,

Hj
Ut

Ku[:, iu
sp,t]φ̃t,t

u +
t∑

i=1
N

mu
j

u [:, iu
sp,t](φ̃t,t−i,+

u + φ̃t,t−i,−
u ) ≤ hj

Ut
, ∀j ∈ ZnUt −1

0 , ∀t ∈ ZT −1
0 ,
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where mx
j and mu

j are defined with the modulo operation as:

mx
j := j mod nx,

mu
j := j mod nu,

and under the following three conditions:

1. The dummy variables (i.e., terms with the superscripts + or −) are minimised.

2. The same constraints for these dummy variables as in Eqs. (4-7) and (4-8) are added to
the optimisation problem.

3. The state (and similarly for the input constraints) are of the form xmin ≤ xt ≤ xmax.

4-2-4 Robust System-Level Synthesis Problem

It is possible to combine the results from the previous sections as follows:

minimize
φt

x, φt
u, Σ

φ0
x

TQφ[ix
sp, ix

sp] φ0
x + φ0

u
TRφ[iu

sp, iu
sp] φ0

u

subject to Dynamical constraints from Eq. (4-5),
Lumped uncertainty bounds from Eq. (4-6),
Tightened constraints from Eq. (4-9).

(4-10)

Where previously there were terms representing the one-norm, the infinity-norm or the upper
bound on the lumped disturbance in the objective function, these are now absent. These can
safely be left out because:

• By not actively minimising these variables, a larger value for these norms or disturbance
estimations may be obtained. This represents a larger uncertainty in the model through
Eq. (4-6).

• However, if this extra uncertainty forces the controller to follow a different path, this
must come at the cost of a larger objective value. If this would not be the case, the
controller would have taken that path with less uncertainty before.

• Therefore, the optimisation problem will actively minimise the norms and estimated
disturbances to achieve the best possible path unless these norms and disturbances do
not result in a larger objective value.

To show this is indeed correct, Fig. 4-1 shows the results for the exact formulation used before
in Eq. (3-23) and the quadratic program formulation from Eq. (4-10).
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Figure 4-1: Comparison of exact and quadratic variant of lumped System-Level Synthesis.

4-3 Problem Formulation And Solver Comparison

These different problem formulations are tested for various solvers to find the combination
that allows for the largest constellation. To do this, several solvers are discussed in Section 4-
3-1 and afterwards an initial selection is made with a regular MPC problem in Section 4-3-2.
The most promising solvers are then tested on the nominal SLS problems in Section 4-3-3
and the robust SLS problem in Section 4-3-4.

4-3-1 Solver Selection

There are many solvers available to find the optimal solution to this problem, of which the
following five are selected to test their performance:

• quadprog. This is the standard solver for quadratic problems in Matlab, but versions
exist as well for other languages such as Python and R. quadprog can be used both
with sparse and dense matrices, which makes it a suitable choice to show how that can
affect the results.

• Gurobi. This commercial solver (with academic licenses) can solve a large set of opti-
misation problems and is generally one of the fastest solvers available. The performance
and its applicability to many different types of problems leads companies such as Google,
Amazon and Apple to use Gurobi. This solver is added to compare the results with the
industry standard.

• OSQP [37]. This is a state-of-the-art solver for quadratic problems and has quickly
gained popularity with interfaces in Python, Matlab, C, R and Julia. This solver
has outperformed Gurobi for certain problems. It is added to give an insight into the
state-of-the-art performance of quadratic problem solvers.
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• cuOSQP [38]. This GPU-variant of OSQP has shown improved performance for large
problems. It is the only solver in this list that utilises a GPU and one of the few that
does so in general, as most optimisation problems are still solved using CPUs. This
solver provides insight into the growing group of GPU solvers.

• CVX. Although CVX is merely a problem parser and it uses other solvers (such as Gurobi
and OSQP), it is included in the comparison as it is commonly used in the academic
world. For example, both the SLS toolboxes in Matlab and Python use CVX to find
their answer. Its use in the comparison is two-fold: it provides an overview of the loss
in speed when using such as sparser and also gives an overview into the speed of the
toolboxes.

These solvers are tested on problems with Blend model and the parameters from Section B-
1-3. Converging parameters differ for each solver but are set such that the absolute and
relative tolerance is 10−3. All simulations are run with an Intel i7-7700HQ CPU and, where
appropriate, an NVidia GeForce RTX 3090 GPU.

4-3-2 Standard Model Predictive Control Problems

Although eventually the robust SLS algorithm is used to control the satellites, the first com-
parison between the solvers is with a basic MPC formulation. This MPC problem is added
for two reasons:

1. It provides a first overview of the different solvers, such that solvers that are significantly
slower can be discarded early.

2. It allows for a comparison in terms of speed between a nominal SLS formulation and a
MPC formulation.

An MPC problem is often a quadratic problem of the following form:

minimize
x0, . . . , xT ,

u0, . . . , uT −1

T −1∑
t=0

[
xT

t Q xt + uT
t R ut

]
+ xT

T QT xT

subject to xt+1 = At xt + Bt ut, ∀t ∈ ZT −1
0 ,

xmin ≤ xt ≤ xmax, ∀t ∈ ZT
1 ,

umin ≤ ut ≤ umax, ∀t ∈ ZT −1
0 .

(4-11)

Note how this MPC formulation controls the state variables xt to zero, as no explicit reference
value is given. For linear systems, it is possible to find an equivalent formulation where this
reference is explicitly provided:

minimize
x0, . . . , xT ,

u0, . . . , uT −1

T −1∑
t=0

[
(xt − xr)T Q (xt − xr) + uT

t R ut

]
+ (xT − xr)T QT (xT − xr)

subject to xt+1 = At xt + Bt ut, ∀t ∈ ZT −1
0 ,

xmin ≤ xt ≤ xmax, ∀t ∈ ZT
1 ,

umin ≤ ut ≤ umax, ∀t ∈ ZT −1
0 .

(4-12)
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For the OSQP and cuOSQP solvers, it is found that solving Eq. (4-12) increased the convergence
rate of the solver significantly compared to Eq. (4-11).

The average computation time to solve Eq. (4-11) or Eq. (4-12) for the various solvers
are shown in Fig. 4-2. There are a few important observations that can be drawn from these
results:

• The quadprog solver, which is the only dense solver, scales with O(n3). With a com-
putation time of one second for six satellites, it would take approximately 11.5 hours to
find the solution for 600 satellites.

• The bulk of the solvers, namely Gurobi, OSQP and CVX, scale with O(n). OSQP out-
performs Gurobi in terms of speed both through CVX and by using them directly. The
results for Gurobi are more predictable due to the lower variance.

• The results for cuOSQP show different behaviour compared to the CPU solvers, especially
for the smaller problems. For the larger problems, the results scale once more with O(n).
The odd behaviour for smaller problems is likely caused by the GPU’s inability to use
its parallel abilities fully. A similar result can be found in [38].
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Figure 4-2: Required solver time for a basic Model Predictive Control problem.

As the quadprog solver scales poorly and is already the slowest solver, it is not used for the
SLS problems. Furthermore, because the CVX parser is ten times slower than when using the
solvers directly, that solver too is not used for the SLS problems.

4-3-3 Nominal System-Level Synthesis Problems

Three formulations for the nominal SLS problem have been presented in Section 4-1. A com-
parison between these three different formulations is provided first, after which the Gurobi,
OSQP and cuOSQP solvers are compared to each other and a benchmark solver to find the best
nominal SLS solver.
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Problem Formulation Comparison

Three nominal SLS problem formulations are discussed in Section 4-1: the default, dense
variant with matrix decision variables, the dense vector variant and its sparse counterpart.
To show the effect of these changes, Gurobi is used to solve all three problem formulations
as this is the only solver2 that can handle matrix variables.

The results with Gurobi are shown in Fig. 4-3. The original, dense matrix formulation
requires the most computation time. Transforming the problem such that it uses vectors as
decision variables approximately halves the required computation time. The computation
time of both problems scales with the size of the matrices Φ0

x and Φ0
u, thus with O(n2).

The sparse variant is significantly faster. For small problems, the sparse problem formu-
lation is roughly five times faster than the transformed formulation and ten times faster than
the original formulation. However, as the number of decision variables now scales linearly with
the number of satellites, the computation time of the sparse problem formulation scales with
O(n) and the difference between the dense and sparse formulation grows for larger problems.
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Figure 4-3: Computation time for different nominal problem formulations with Gurobi.

Table 4-1 shows the required computation time for four different satellite constellations. All
times denoted with ∗ were extrapolated, and those values should be considered as an approx-
imation. However, they give a clear indication of the scale at larger constellations, where the
sparse SLS variant can solve problems in seconds that take the other two variants hours.

Table 4-1: Computation time for various constellation sizes with Gurobi.

Formulation 3 satellites 10 satellites 100 satellites 1000 satellites
Standard 0.0673 s 0.6920 s 78.40∗ s 9184∗ s

Transformed 0.0373 s 0.3945 s 58.55∗ s 8393∗ s
Sparse 0.0075 s 0.0211 s 0.2422 s 3.383∗ s

2The only solver out of the remaining three: Gurobi, OSQP and cuOSQP.
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Solver Comparison

The fastest solvers for a simple MPC problem are, as shown in Section 4-3-2, the OSQP
and cuOSQP solvers. The sparse formulation that proved to be significantly faster than the
standard SLS formulation is implemented for these two solvers, and compared with a Python
toolbox for SLS [39] and with Gurobi.

The results are shown in Fig. 4-4, where the OSQP solver outperforms the other solvers
up to one thousand satellites. The cuOSQP solver is relatively slow for smaller problems
but becomes increasingly effective when the problem size grows. The toolbox, used as a
benchmark, is orders of magnitude slower, especially when the number of satellites increases
as it scales with O(n2), similarly to the standard formulation as seen in Fig. 4-3.
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Figure 4-4: Computation time for different solvers with the sparse problem formulation.

Table 4-2 provides several quantitative values to compare these solvers, where similarly to
Table 4-1 the ∗ denotes an extrapolated value. The OSQP solver is consistently approximately
five times faster than Gurobi and consistently faster than cuOSQP, although that margin
decreases. For even larger problems, it is possible that cuOSQP outperforms OSQP, similarly to
what is seen in Fig. 4-2. The toolbox is approximately three times slower than the standard
SLS implementation in Gurobi from Table 4-1, and it is estimated that it would take the
toolbox nearly ten hours to find the solution for a thousand satellites.

Table 4-2: Computation time for various constellation sizes and various solvers.

Formulation 3 satellites 10 satellites 100 satellites 1000 satellites
Gurobi 0.0075 s 0.0211 s 0.2422 s 3.383∗ s
OSQP 0.0014 s 0.0039 s 0.0455 s 0.6882 s

cuOSQP 0.0357 s 0.0635 s 0.1586 s 1.1018 s
Toolbox 0.1562 s 1.985 s 270.0∗ s 35606∗ s
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4-3-4 Robust System-Level Synthesis Problems

The robust SLS problem from Eq. (4-10) is implemented in Gurobi, OSQP and cuOSQP. Where
OSQP performed well for the previous problem, it was unable to converge for this problem
with sufficient accuracy to be comparable to the other solvers. Therefore, no results for OSQP
are visible in Fig. 4-5. The four solvers that are visible are:

1. The Gurobi implementation of Eq. (4-10) named Gurobi QP.

2. The Gurobi implementation of the nonlinear robust ILSLS problem from Eq. (3-23).
This version is named Gurobi NL.

3. The cuOSQP version of Eq. (4-10) named cuOSQP.

4. The CLSLS implementation from [28] denoted by CLSLS. This is a numerically slightly
simpler problem than the ILSLS problems the other solvers try to solve, as there are
fewer decision variables3.

The results are shown in Fig. 4-5, where the Gurobi QP version outperforms all other solvers.
The nonlinear variant Gurobi NL is on average approximately ten times faster than the CLSLS
problem. The GPU implementation of cuOSQP requires larger problems before it can fully
make use of its parallel computations. For larger problems, however, similar problems to the
OSQP solver are encountered, and no reliable results are obtained. Therefore, these results are
limited to fourteen satellites.
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Figure 4-5: Computation time for various solvers for a robust problem formulation.

Table 4-3 shows the obtained and estimated (denoted with ∗) computation times for the four
solvers. Gurobi QP is estimated to be five thousand times faster for 100 satellites than the
nonlinear variant Gurobi NL and outperforms the CLSLS solver with an even greater margin.
cuOSQP is not extended to 100 satellites as the solver was unable to produce accurate results
for larger problems.

3See Section 3-3 for a more detailed explanation.
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Table 4-3: Computation time for various solvers for a robust problem.

Formulation 1 satellite 10 satellites 100 satellites
Gurobi QP 0.0554 s 0.3468 s 6.879 s
Gurobi NL 0.6862 s 76.89 s 32024∗ s

cuOSQP 129.7 s 160.4 s -
CLSLS 3.6848 s 839.7 s 220360∗ s

4-4 Conclusions

To scale the problem to hundreds or thousands of satellites, it is important to select an
appropriate solver and formulate the problem accordingly. For a standard MPC problem,
state-of-the-art solvers such as OSQP and cuOSQP are shown to be faster than commercial
solvers such as Gurobi or their parsed versions from CVXPY. These state-of-the-art solvers can
find the optimal solution for thousands (OSQP) to hundred thousands (cuOSQP) of satellites
within a second.

However, this relatively basic formulation does not account for model uncertainties or
disturbances. When including those with the SLS framework, three steps are taken to speed
up the computations:

• The model is transformed from a matrix problem to a standard quadratic problem.

• A sparse optimisation problem is constructed, where optimisation variables that must
be zero are removed.

• Nonlinear elements such as the infinity and one-norms are rewritten to obtain a quadratic
problem.

By combining all these elements, the optimisation problem can outperform the available
toolbox significantly by using Gurobi. For a problem of 100 satellites, this new approach can
solve the problem in seconds where it takes the toolbox days.

With the scale of the problems increasing, it is important to check for collisions between
satellites. This is discussed in the next chapter.
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Chapter 5

Large-Scale Simulation

The previous chapters have discussed a novel dynamical model, a novel control algorithm
and an optimisation formulation to reduce the computation time for the solvers. This is all
done to answer the research question, where the goal is to control a large-scale constellation
robustly. These different results are combined here to show that it is indeed possible to do
so.

First, the assignment problem is discussed in Section 5-1, which is followed by the collision
avoidance constraints that are added in Section 5-2. The results are shown in Section 5-3,
followed by the respective conclusions in Section 5-4.

5-1 Assignment Problem

The scenario of the large simulation is as follows:

• Before the start of the simulation, there were a total of 240 satellites divided over fifteen
evenly-spaced planes, equalling sixteen satellites per plane.

• Fifteen of these satellites are randomly selected and drop out. This can be because of
maintenance, collisions or because these satellites are now used in another constellation.

• The remaining 225 satellites have to reconfigure themselves such that fifteen satellites
are spaced out around the orbit in each plane.

The remaining satellites can, once they have a target plane and argument of latitude, move
to this position using the dynamical model and control method as discussed in Chapters 2
and 3. However, finding the optimal target position for each satellite constitutes an assignment
problem, where given the start locations, a set of target locations must be reached.

The assignment problem is solved using the so-called Hungarian or (Kuhn-)Munkres al-
gorithm, as this algorithm can find the optimal solution in polynomial time. The algorithm
is optimal in the sense that it minimises a given objective function, where the cost represents
the distance from the starting to the final position. The objective function JHung for the
Hungarian algorithm is defined as:

JHung(θ0, Ω0, θf , Ωf ) := fdist(θf − θ0)2 + fdist(Ωf − Ω0)2 + fdir(θf − θ0, Ωf − Ω0),

where the superscripts (·)0 and (·)f denote the values at the start and end respectively, where
fdist(x) denotes the distance on a circle:

fdist(x) := min (|x|, 2π − |x|) ,
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and where fdir(x, y) provides an extra penalty if x and y have the same sign while both being
expressed in the range [−π, π]:

fdir(x, y) =
{

0, if x · y ≤ 0,

x · y, if x · y > 0.

The reasoning for this objective function is threefold:

• The basis of the objective function is provided through fdist, which minimises the re-
quired distance to travel.

• The function fdist is squared to encourage smaller movements. Rather than a single
satellite moving twenty degrees between different planes, two satellites moving ten de-
grees each would be preferred as this is faster and spreads the (fuel) load.

• The function fdir is added to help with the in-plane collision constraints discussed in
Section 5-2-1. This function favours trajectories that result in a smaller initial δλf ,
decreasing the relative changes in λf between satellites.

The result obtained with the Hungarian algorithm and this cost function is shown in Fig. 5-1,
where all satellites move to their desired position while satisfying the desired behaviour as
explained above.
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Figure 5-1: Result of assignment problem with the Hungarian algorithm.

5-2 Collision Avoidance Constraints

The collision avoidance constraints are divided into two different parts. The first part, dis-
cussed in Section 5-2-1, discusses the constraints to prevent collisions between satellites within
the same plane. The second part, presented in Section 5-2-2, deals with preventing collisions
between satellites in different planes.

5-2-1 In-Plane Collision Avoidance Constraints

The in-plane collision avoidance constraint primarily aims to prevent collisions between satel-
lites in the same plane. This means preventing two different satellites in the same plane (i.e.,
the same Ω) from having the same argument of latitude (i.e., the same θ). Although these
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parameters are not separately part of the state of the Blend model (see Section 2-2-3), they
are present in the variable δλf , which as a reminder, is defined as follows for satellite k with
a chief (or reference) satellite c:

δλf
k = θd,k − θc,k + cos ic,k(Ωd,k − Ωc,k)

= θd,k + cos ic,kΩd,k − (θc,k + cos ic,kΩc,k)

= λf
k − λf

ref,k, (5-1)

with λf
k and λf

ref,k defined as:

λf
k := θd,k + cos ic,kΩd,k,

λf
ref,k := θc,k + cos ic,kΩc,k.

Satellites that collide because they are in the same plane with the same argument of latitude
have the same λf . Therefore, a simple constraint can be constructed to prevent a collision
between two satellites m and n:

λf
m − λf

n ≥ λf
min, (5-2)

where λf
min is the minimal difference between two satellites. This must always be a positive

number to prevent any collisions, but it can also deliberately be set relatively high to force
the satellites to space out during the reconfiguration and, therefore, keep better coverage of
the Earth.

Note that a violation of this constraint does not guarantee a collision, i.e. two satellites
with the same λf do not necessarily collide as they can be in different planes. The conserva-
tiveness of this constraint does not have to be a problem, as is demonstrated in Section 5-3.

Nominal and Robust Constraint

Before that can be done, however, the constraint has to be written into a formulation usable
for both the nominal and the robust controller. For the nominal case, this can be done by
simply combining Eqs. (5-1) and (5-2):

δλf
m − δλf

n ≥ λf
min − δλf

ref,m + δλf
ref,n, (5-3)

where the state variables δλf
k are all on the left-hand side, and all constants are on the

right-hand side. For the robust controller, the constraint takes the form from Eq. (3-22):

Hj
Xt

Φ̃t,t
x x0 +

t−1∑
i=1

∥∥∥Hj
Xt

Φ̃t,t−i
x

∥∥∥
1

+
∥∥∥Hj

Xt
Σt−1

∥∥∥
1
≤ hj

Xt
, ∀j ∈ ZnXt −1

0 , ∀t ∈ ZT −1
1 ,

which, after accounting for flipping the ‘greater than’ symbol in Eq. (5-3), has the following
HXt and hXt :

HXt = en − em, hXt = −λf
min + δλf

ref,m − δλf
ref,n.

Using the same simplification steps as discussed in Section E-2-4, the constraints can be
simplified to:

(emx
n
−emx

m
)Φ̃t,t

x x0+
t−1∑
i=1

(∥∥∥Φ̃t,t−i,mx
m

x

∥∥∥
1

+
∥∥∥Φ̃t,t−i,mx

n
x

∥∥∥
1

)
+σ

mx
m

t−1 +σ
mx

n
t−1 ≤ −λf

min+δλf
ref,m−δλf

ref,n,

where the uncertainty of both satellites is now combined. How to simplify the norms is also
discussed in Section E-2-4.
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Constraint Selection

Finally, a selection has to be made between which satellites this constraint has to be applied.
The constraints are applied between all neighbours within the same plane to ensure that
collisions are prevented during the entire reconfiguration. This holds both for neighbours at
the start and end of the simulation. More mathematically, this means that:

(i, j) ∈ Cstart | Ω0
j − Ω0

i = 0 ∧ θ0
j − θ0

i = θ0
sep,

(i, j) ∈ Cend | Ωf
j − Ωf

i = 0 ∧ θf
j − θf

i = θf
sep,

(i, j) ∈ Ctotal | (i, j) ∈ Cstart ∨ (i, j) ∈ Cend,

with Ctotal representing the tuples of satellites for which the constraint should hold, Cstart
and Cend the set based on the starting and end positions respectively and θsep the angular
separation between two adjacent satellites.

To clarify this further, Fig. 5-2 shows an example of a reconfiguration problem with
initially six satellites. Two of these satellites (satellites 1 and 5) have dropped out, and the
remaining four satellites have to reconfigure into a formation again. The dashed lines denote
the values for which λi is constant, where λi is the current λ value of satellite i.

For Figs. 5-2a and 5-2b, the following Cstart and Cend are obtained:

Cstart = {(2, 0), (4, 2), (0, 4)}, Cend = {(4, 0), (0, 4), (3, 2), (2, 3)},

where (0, 4) and (2, 3 are special cases, as the orbit loops back after 2π, and thus these
satellites are also adjacent. Furthermore, it should be noted that in a larger scenario, it
would never occur that both (i, j) and (j, i) are present in the set. Finally, the combined set
then equals:

Ctotal = {(2, 0), (4, 2), (0, 4), (3, 2), (2, 3)}.

(a) Starting position. (b) Reconfiguration.

Figure 5-2: Example of in-plane constraints during reconfiguration.

When looking at Fig. 5-2b, it is clear that the constraints between these satellites are never
violated, as the contour lines with a constant λ never cross for these satellites. Note that
the line for λ4 crosses the line for λ3, but as these satellites never share a plane, there is no
constraint between these two.
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5-2 Collision Avoidance Constraints 73

Finally, note the importance of the directional cost for the assignment problem discussed in
Section 5-1. Because satellite 2 moves almost along a line of constant λ, the constraint is
always satisfied. A similar configuration could be achieved by moving satellite 4 to the empty
spot (by looping back through 2π), but in that case, λ4 crosses with λ0.

5-2-2 Out-Of-Plane Collision Avoidance Constraints

Where initially the in-plane collision avoidance constraints of Section 5-2-1 might seem enough,
the different orbits all cross each other at two points as any two unique circles on a sphere do.
With the number of planes rising for a large constellation, so does the number of intersections
between these planes. This increases the chance of two satellites in different planes colliding,
which is prevented through the out-of-plane collision avoidance constraints. This is visualised
in Fig. 5-3, where the number of orbits and the number of collision points, marked in red,
increase.
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Figure 5-3: Example of orbits with collision points.

Firstly, the arguments of latitude for which a collision occurs are derived. This is followed
by the general constraint formulation, after which the nominal and robust constraints are
presented. Finally, the satellites for which this constraint holds are discussed.

Angle of Collision

To formulate a constraint, it is important to find the respective arguments of latitude for
when the satellites would collide first. To find these values, consider two planes with Ω1 and
Ω2 as the RAAN for each plane and both with inclination i. The unit vectors n1 and n2
normal to the orbital planes can easily be found in the ECI frame:

n1 =

cos Ω1 − sin Ω1 0
sin Ω1 cos Ω1 0

0 0 1


1 0 0

0 cos i − sin i
0 sin i cos i


0

0
1

 =

 sin Ω1 sin i
− cos Ω1 sin i

cos i

 ,

n2 =

cos Ω2 − sin Ω2 0
sin Ω2 cos Ω2 0

0 0 1


1 0 0

0 cos i − sin i
0 sin i cos i


0

0
1

 =

 sin Ω2 sin i
− cos Ω2 sin i

cos i

 ,
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which, when applying the cross product, yields the unit vector ncoll along which the planes
intersect:

ncoll = n2 × n1 =

(cos Ω1 − cos Ω2) sin i cos i
(sin Ω1 − sin Ω2) sin i cos i

sin2 i sin (Ω1 − Ω2)

 .

When expressing this unit vector in the corresponding orbital frames:

n1
coll =

1 0 0
0 cos i sin i
0 − sin i cos i


 cos Ω1 sin Ω1 0
− sin Ω1 cos Ω1 0

0 0 1

ncoll =

(1− cos (Ω1 − Ω2)) sin i cos i
sin i sin (Ω1 − Ω2)

0

 ,

n2
coll =

1 0 0
0 cos i sin i
0 − sin i cos i


 cos Ω2 sin Ω2 0
− sin Ω2 cos Ω2 0

0 0 1

ncoll =

(cos (Ω1 − Ω2)− 1) sin i cos i
sin i sin (Ω1 − Ω2)

0

 ,

the arguments of latitude can be found accordingly:

θ1
coll = arctan

( sin (Ω1 − Ω2)
(1− cos (Ω1 − Ω2)) cos i

)
+ k · π,

θ2
coll = arctan

( sin (Ω1 − Ω2)
(cos (Ω1 − Ω2)− 1) cos i

)
+ k · π.

Nominal And Robust Constraint

The constraint has to prevent any two satellites in different planes from reaching θcoll while
having the same radius. The radial part is important, as two circular orbits only intersect if
they have the same radius. Mathematically, this can be represented as:

|r2 − r1|+ αw|θ2 − θ1 − θ2
coll + θ1

coll| ≥ rmin, (5-4)

where αw is a constant parameter that weighs the importance of the two terms, and where
rmin is the minimal radial distance between two satellites at a crossing.

Before it can be applied, it has to be rewritten into a formulation with the state variables.
As all satellites have the same radial reference, the first term is simply equal to |δr2 − δr1|.
The second term can, using Eq. (5-1), be simplified such that the entire constraint is equal
to:

|δr2 − δr1|+ αw|δλf
2 − δλf

1 + λf
ref,2 − λf

ref,1 − cos i(Ω2 − Ω1)− θ2
coll + θ1

coll| ≥ rmin. (5-5)

Two problems remain with this current formulation: the absolute values and the dependence
on Ω. Firstly, the absolute values must be rewritten to fit the desired quadratic program
formulation. It is possible to use the same approach as in Section 4-2 with dummy variables.
However, this can be difficult as these dummy variables need to be minimised while the nature
of the constraint is to maximise these dummy variables such that the constraint is met. An
extra cost can be added to force this, which can be hard to tune and lead to a suboptimal
result.

Furthermore, the required number of constraints quickly grows when increasing the num-
ber of planes, meaning a significant number of constraint variables must be added and the
computational load increases. Instead, two different approaches are implemented:
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• A satellite that decreases its angular velocity and, therefore, decreases its relative λf

with respect to its reference does so by increasing its radius. Furthermore, the radius
shows little to no overshoot in previous simulations when decreasing to zero. Therefore,
the sign of δr2 − δr1 can be predicted beforehand:

rsign(λf,0
2 , λf,0

1 ) =
{

1, if λf,0
2 ≥ λf,0

1 ,

−1, if λf,0
2 < λf,0

1 ,

such that the absolute value can be computed as:

|δr2 − δr1| = rsign(λf,0
2 , λf,0

1 ) · (δr2 − δr1).

• This approach cannot be followed for the angular term in Eq. (5-5), as during the
manoeuvre this sign switches. However, the argument of latitude moves with an almost
constant velocity to its reference and is, therefore, easy to predict. Therefore, the
following absolute value:

|δλf
2 − δλf

1 − λf
coll|,

where λf
coll is defined as:

λf
coll := θ2

coll − θ1
coll + cos i(Ω2 − Ω1)− λf

ref,2 + λf
ref,1,

is approximately equal to the following:

δλf
2 − δλf

1 − λf
coll + λf

abs,

where λf
abs is defined as follows, using the resulting value of δλf

2 − δλf
1 − λf

coll from the
previous MPC iteration:

λf
abs :=

{
0, if δλf

2 − δλf
1 − λf

coll ≥ 0,

−2(δλf
2 − δλf

1 − λf
coll), if δλf

2 − δλf
1 − λf

coll < 0.

Secondly, the constraint makes both explicitly and implicitly (through θcoll) use of Ω, which
is not available as one of the state variables. However, one can use ξx and ξy as defined in
Section 2-2-3:

ξx = cos θd tan id

2 − cos(θd + Ωd − Ωc) tan ic

2 ,

ξy = sin θd tan id

2 − sin(θd + Ωd − Ωc) tan ic

2 .

Assuming that the inclination does not change and using the trigonometric sum identities,
this can be rewritten as:

ξx = (cos θd − cos θd cos(Ωd − Ωc)− sin θd sin(Ωd − Ωc)) tan ic

2 ,

ξy = (sin θd − sin θd cos(Ωd − Ωc) + cos θd sin(Ωd − Ωc)) tan ic

2 ,

which, after careful working out, yields the following relationship:

ξ2
x + ξ2

y = (2− 2 cos(Ωd − Ωc)) tan ic

2 .
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Finding the corresponding Ωd then is simple, although one has to account for the sign of
Ωd−Ωc as arccos only returns values in the range [0, π]. This is done by looking at the initial
value of Ω0

d−Ω0
c , as Ωd is monotonically steered towards Ωc as shown in Chapter 2. Therefore,

Ωd is found as:

Ωd =


arccos

(
1− ξ2

x+ξ2
y

2 tan ic
2

)
+ Ωc, if Ω0

d − Ω0
c ≥ 0,

− arccos
(

1− ξ2
x+ξ2

y

2 tan ic
2

)
+ Ωc, if Ω0

d − Ω0
c < 0.

As this result is nonlinear, it cannot directly be applied in the constraint. Therefore, the
state vector from the previous MPC iteration is used to compute Ωd. These changes lead to
the following nominal constraint:

rsign(λf,0
2 , λf,0

1 ) · (δr2 − δr1) + αw(δλf
2 − δλf

1 − λf
coll + λf

abs) ≥ rmin. (5-6)

Rewriting this constraint into the robust variant follows the same steps as the in-plane collision
constraint in Section 5-2-1.

Constraint Selection

The constellation is set up such that the constraints are inactive at the start and end of the
simulation. Satellite pairs that start with a positive value of the angular part of the collision
avoidance constraint, i.e.:

δλf
2 − δλf

1 − λf
coll > 0,

and which also end with a negative value of this constraint, have a constraint added for
this pair. The same statement holds for the opposite, where satellites start with a negative
value for the equation above and where it is positive at the end. Mathematically, this can be
expressed as:

(i, j) ∈ Cpos
start | δλf

2(0)− δλf
1(0)− λf

coll > 0,

(i, j) ∈ Cneg
start | δλf

2(0)− δλf
1(0)− λf

coll < 0,

(i, j) ∈ Cpos
end | δλf

ref,2 − δλf
ref,1 − λf

coll > 0,

(i, j) ∈ Cneg
end | δλf

ref,2 − δλf
ref,1 − λf

coll < 0,

(i, j) ∈ Ctotal | ((i, j) ∈ Cpos
start ∧ (i, j) ∈ Cneg

end) ∨ ((i, j) ∈ Cneg
start ∧ (i, j) ∈ Cpos

end)

5-3 Large-Scale Simulation

To get a clear overview of the effect of the constraints, disturbances and different controllers,
the simulation is run for four different setups:

• A simulation with a nominal controller without disturbances or collision avoidance con-
straints.

• A simulation with a nominal controller without any disturbances but with collision
avoidance constraints.
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• A simulation with a nominal controller with disturbances and collision avoidance con-
straints.

• A simulation with a robust controller with disturbances and collision avoidance con-
straints.

These scenarios become increasingly more difficult but more realistic at the same time as well.
The results for the large-scale simulation are divided into three different sections. First, an
overview of the reconfiguration procedure is provided in Section 5-3-1, after which the in-plane
and out-of-plane constraints are analysed in Section 5-3-2 and Section 5-3-3, respectively.

5-3-1 Reconfiguration

Fig. 5-4 shows an overview of the movements of all 225 satellites in the simulation, similar to
the planned path shown in Fig. 5-1. This figure corresponds to the data of the robust controller
with disturbances and collision avoidance constraints, but all setups produce almost identical
results from this view. Due to the disturbance, very small errors are visible when zooming
in, but the general view is always visually identical to Fig. 5-4.

Firstly, it is important to note that all values for θ are plotted in the range (−180, 180]
degrees, whereas the values for Ω are plotted in the range [0, 360) degrees. This causes the
jumps in the plot and the lines that do not directly seem to have a starting or ending location
specified.

Secondly, the satellites do not always move in a straight line to their final position because
they first tend to decrease their value for δλf , and afterwards direct δξx and δξy to zero. Those
satellites follow the contour lines for a constant λf as drawn in Fig. 5-2.
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Figure 5-4: Reconfiguration overview of large-scale simulation.
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5-3-2 In-Plane Collision Avoidance

The value of the left-hand side of the in-plane collision avoidance constraint of Eq. (5-2) is
plotted in Fig. 5-5 for all tuples in Ctotal as defined in Section 5-2-1. The red dashed line
denotes the minimum value of that constraint, which is set to five degrees. As the differences
close to the constraint are difficult to see at this scale, Fig. 5-6 shows the area around the
constraint. Both these plots show the result for the robust controller, but all controllers show
a similar result. The main difference is that the simulations without the disturbances show
smooth lines with less oscillations, but the values remain largely the same.

The large values of specifically one constraint may initially seem an error. As this con-
straint is only applied between neighbours, the difference between the values for λf does not
seem to be able to be more than 100 degrees at all times. However, this is a special case where
the plane with an Ω of 216 degrees at the start misses four satellites in a row, see Fig. 5-1.
This results in two ’neighbours’ that are relatively far apart.

Finally, it should be noted that the constraint is not active in this scenario, at least not
without considering the uncertainty. It is possible that the robust controller was required to
find a different solution because, due to uncertainty in the model, it could not guarantee the
constraint at the start or end of the simulation. Because the initial value of the constraint
is relatively low, it is not possible to increase the minimum value of the constraint in this
scenario either.
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Figure 5-5: Full overview of in-plane collision avoidance constraint values.
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Figure 5-6: Overview of in-plane collision avoidance constraint values around the minimal value.

5-3-3 Out-Of-Plane Collision Avoidance

The left-hand side of the out-of-plane collision avoidance constraint from Eq. (5-4) is shown
for all possible crossings in Fig. 5-7 for the simulation where the constraint is not enforced.
As the critical constraint value details are hard to see, Fig. 5-8 provides a closer overview. It
is clear that several satellites are violating the constraint, some even reaching a distance of
zero meters and, thus, a collision.
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Figure 5-7: Out-of-plane collision avoidance constraint without enforcement.
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Figure 5-8: Out-of-plane collision avoidance constraint around limit without enforcement.

This can be compared to Fig. 5-9, where there are no disturbances in the simulation but the
nominal controller now enforces the constraint. Despite reformulating the problem such that
the absolute values are removed in the formulation for the controller, the controller can enforce
the constraint very accurately. The values shown for all collision avoidance constraints are
calculated using the exact equations (i.e., Eq. (5-4)) and not the approximated values used
by the controllers (i.e., Eq. (5-6)).
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Figure 5-9: Out-of-plane collision constraint for nominal controller without disturbances.

The distance between the satellites is larger because the controller forces the radial states
away from zero. This can be seen by comparing Fig. 5-10, where all radial states move
directly to zero, with Fig. 5-11, where a radial offset is forced to guarantee that the satellites
do not collide. At the end of the simulation, all satellites have reached their desired radius.
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Figure 5-10: Radial state for nominal controller without collision constraint.
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Figure 5-11: Radial state for nominal controller with collision constraint.

The nominal controller works well without any disturbances. However, once these are added,
the controller violates the constraints again as shown in Fig. 5-12. Therefore, a robust con-
troller is used to guarantee that the constraints are always met, and these results are shown
in Fig. 5-13. The difference with the nominal controller is clear, as the robust controller stays
clear from the critical constraint value and never violates the constraint.
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Figure 5-12: Out-of-plane collision avoidance constraint for nominal controller with disturbances.
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Figure 5-13: Out-of-plane collision avoidance constraint for robust controller.

5-4 Conclusions

The goal of this chapter was to show that the results from the previous chapters can be
combined to control a large-scale constellation robustly while at the same time providing
collision avoidance constraints to guarantee a safe distance between the satellites.

The simple assignment algorithm based on the Hungarian algorithm proved to work suf-
ficiently, where through a simple cost function, the satellites were given a reference position
that was efficient to reach and worked well together with the in-plane collision avoidance
constraint.

The in-plane collision avoidance constraint is simple but can work well even for satellites
that do not start within the same plane. The constraint can be used to space the satellites
out during the reconfiguration if desired, but the starting and ending positions can limit this
as these inherently limit the maximum value of this constraint.
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The out-of-plane collision avoidance constraint is more difficult, but with several tricks can
be rewritten into a simple linear constraint. The simulations show that the satellites keep a
larger distance between themselves by increasing their radial difference and that even with
disturbances, the robust controller can guarantee a safe distance.

With the large-scale simulation working, it is now possible to answer the research question
and conclude the work in Chapter 6.
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Chapter 6

Conclusion

This work is concluded by two different parts. First, the research questions stated in Chapter 1
are answered in Section 6-1. Afterwards, possible directions for future work are discussed in
Section 6-2.

6-1 Research Questions

First, the sub-questions are answered in Section 6-1-1. The answers to the sub-questions lead
to the answer of the main research question in Section 6-1-2.

6-1-1 Sub-Questions

What dynamical model best controls satellites for both in-plane and out-of-plane
movements?

Due to the scale of the problem, a LTI model is preferred, as well as a model that can work
well for both in-plane and out-of-plane movements. Furthermore, having the radius as a state
is beneficial for the cost function and the collision avoidance constraint, and the possibility
to add different perturbations, such as J2 perturbation, can add to the model’s accuracy.

As no such model was readily available in the literature, a new model was developed that
meets all these constraints. This new model has been shown to work well in various scenarios
and has taken inspiration from the cylindrical HCW model and the quasi-nonsingular ROE
model. The state variables are substantially different, however.

What control algorithm can be used best to control a satellite robustly?

There are many possible robust control algorithms, but a method that stood out was the
lumped SLS control method as outperformed tube MPC in, for example, both speed and con-
servatism. Where SLS optimises closed-loop transfer functions, the lumped refers to the fact
that both model uncertainties and disturbances are lumped together as a single disturbance.

The original lumped SLS formulation could sometimes be too conservative, which is the
reason a modification is proposed to reduce this. This modification has been proposed before,
but not without any assumptions on the structure of the model uncertainty and without the
number of constraints scaling exponentially in those cases. The modification has been shown
to guarantee meeting all constraints successfully.
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How can a different formulation of the optimisation problem scale up the control
algorithm?

The robust SLS formulation used nonlinear constraints containing the one-norm and the
infinity-norm. For larger problems, this slows down the speed of the problem significantly.
Using several dummy variables, it is possible to rewrite these constraints linearly. Normally,
an extra cost must be added to ensure these slack variables find the correct values. However,
as they represent the uncertainty in the model, an inherent force decreases these dummy
variables until they have the correct value.

Furthermore, a significant part of the closed-loop transfer function is known to be zero
beforehand. Another significant speed increase is obtained by removing these values from the
optimisation problem and by reformulating the problem to a standard quadratic problem.
The fastest solver for the robust problem is Gurobi.

How can collision avoidance constraints be (robustly) formulated with this dynam-
ical model and control algorithm?

Two types of collision avoidance constraints are added. The first deals with in-plane collisions,
which is a relatively easy constraint. Although no direct state represents the argument of
latitude, the state λf represents a combination of the argument of latitude and the RAAN,
which allows it to work for satellites that do not start in the same plane.

The second constraint deals with the satellites within different planes. These satellites can
still collide because they are both in orbits on the same sphere and therefore, these orbits have
to intersect each other at two points. The constraint combines radial and angular distances
to guarantee a safe crossing.

6-1-2 Main Research Question

The main research question was as follows:

How can a large constellation of several hundreds of satellites and multiple planes
be robustly controlled while maintaining a safe distance between themselves?

The answer combines the use of the newly developed model with lumped SLS as the control
algorithm, using the modification from this work to reduce conservatism. To allow for the
large scale, the optimisation problem rewrites the nonlinear constraints as linear ones and
uses a sparse vector variant. Both in-plane and out-of-plane collision avoidance constraints
can be used to guarantee a safe distance between the satellites.

6-2 Future Work

Naturally, there a many possibilities to extend upon this work in future work:

• The new model can be extended to allow for more types of disturbances to be included
in the model, such as drag forces.

• Especially the effect of the eccentricity of the orbit could be analysed further. It might
be possible to create a variant of the Blend model that is also valid for more eccentric
orbits, similar to the Lawden-Tschauner-Hempel (LTH) models.
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• The modification for the lumped SLS method can be extended to polytopic disturbances.

• The sources of uncertainty from the modelling errors, such as the assumption that the
orbit is circular, could be used to find structure in the modelling errors and thus reduce
the conservatism of the robust controller.

• The use of a GPU to solve large problems faster could be investigated in more detail.
The use of cuOSQP seemed promising due to the high speed for most problems, but it
failed to outperform the other solvers for the final SLS problem. A different factorisation
could help.

• Similarly, the use of OSQP could be investigated further. The solver produces promis-
ing results for nominal SLS problems but fails to find accurate results for the robust
problems.

• Finally, one could work on a receding horizon implementation by formally providing
recursive feasibility and stability with the new robust MPC.
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Appendix A
Model Derivations

This appendix contains several model derivations, such as those of the cylindrical HCW model
in Appendix A-1, the quasi-nonsingular ROE model in Appendix A-2 and the Blend model
in Appendix A-3.

A-1 Hill-Clohessy-Wiltshire Model

Starting from Eq. (2-8) with only the control inputs as disturbances, the problem can be
transformed into the cylindrical coordinates [r, φ, z]:

r̈ − rφ̇2 + n2r = ur,

rφ̈ + 2ṙφ̇ = ut, (A-1)
z̈ + n2z = un,

where
n =

√
µ

(r2 + z2)
3
2

.

The control inputs [ur, ut, un] are accelerations in the radial, tangential and normal directions,
respectively. When the reference orbit is circular with an orbital radius of rc and given that
zc = żc = z̈c = 0 and φ̇c = nc, a relative model can be obtained:

∆r̈ = r̈d − r̈c

= rdφ̇2
d − n2

drd + ur,d − rcφ̇
2
c + n2

crc

= (rc + ∆r)(nc + ∆φ̇)2 − µ(rc + ∆r)
((rc + ∆r)2 + (∆z)2)

3
2

+ ur,

∆φ̈ = φ̈d − φ̈c

= −2 ṙd

rd
φ̇d + ut,d

rc
+ 2 ṙc

rc
φ̇c

= −2∆ṙ(nc + ∆φ̇)
rc + ∆r

+ ut

rc
,

∆z̈ = z̈d − z̈c

= −n2
dzd + un + n2

czc

= − µ∆z

((rc + ∆r)2 + (∆z)2)
3
2

+ un.

(A-2)
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Assuming ∆r, ∆z ≪ rc and ∆φ̇≪ φ̇c, Eq. (A-2) yields after linearisation through a first-order
Taylor expansion:

∆r̈ − 3n2
c∆r − 2rcnc∆φ̇ = ur,

∆φ̈ + 2nc

rc
∆ṙ = ut

rc
,

∆z̈ + n2
c∆z = un.

A-2 Quasi-Nonsingular Relative Orbital Elements Model

There are three different contributions to the quasi-nonsingular ROE model: Keplerian forces
(Section A-2-1), J2 perturbations (Section A-2-2) and control inputs (Section A-2-3).

A-2-1 Keplerian Dynamics

In the case of perfect Keplerian dynamics, the derivative of all orbital elements is zero, except
for M , where Ṁ = n =

√
µ
a3 . Linearising this through a first-order Taylor expansion around

Ṁc yields the following result for Ṁd:

Ṁd =
√

µ

a3
d

≈
√

µ

a3
c

− 3
2

√
µ

a3
c

ad − ac

ac
,

or in a relative form:

δλ̇ = Ṁd − Ṁc

≈
√

µ

a3
c

− 3
2

√
µ

a3
c

ad − ac

ac
−
√

µ

a3
c

= −3
2ncδa.

A-2-2 J2 Perturbations

In [40] the authors use the same state vector as in Eq. (2-16), and they are able to directly
derive the effect of J2 perturbations on this model:

δλ̇ = −21
4 β((3 cos2 i− 1)η + 5 cos2 i− 1) δa− 3

2β sin 2i(3η + 5) δix,

δėx = −3
2β(5 cos2 i− 1) δey,

δėy = 3
2β(5 cos2 i− 1) δex,

δi̇y = 21
4 β sin 2i δa + 3β sin2 i δix,

where

β = 1
2

J2R2
en

a2η4 .
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A-2-3 Control Inputs

The effect of the control inputs as provided in Eq. (2-14) is on the orbital elements themselves,
where the state vector in Eq. (2-16) contains nonlinear combinations of these elements. The
effect of the control inputs on some of these states is provided in [41]:

d a

dt
= 2a

ut

na
,

d M + ω

dt
= −2 ur

na
− sin(M + ω)

tan i

un

na
,

d ex

dt
= −2 cos(M + ω) ut

na
+ sin(M + ω) ur

na
,

d ey

dt
= −2 sin(M + ω) ut

na
− cos(M + ω) ur

na
,

d i

dt
= cos(M + ω)un

na
,

d Ω
dt

= sin(M + ω)
sin i

un

na
,

such that effect of the control inputs for all states in Eq. (2-16) can be found using these
equations by simple additions and multiplications:

δȧ = 2 ut

na
,

δλ̇ = −2 ur

na
,

δėx = −2 cos(M + ω) ut

na
+ sin(M + ω) ur

na
,

δėy = −2 sin(M + ω) ut

na
− cos(M + ω) ur

na
,

δi̇x = cos(M + ω)un

na
,

δi̇y = sin(M + ω)un

na
.

A-3 Blend Model

The derivation of the Blend model is divided into five parts. First, the derivative for the
angular state δλf is given in Section A-3-1, followed by the derivatives for the radial state δr
(Section A-3-2), for the eccentric states δef

x and δef
y (Section A-3-3) and for the out-of-plane

states δξx and δξy (Section A-3-4). The section ends with the extension of the model to
include J2 perturbations in Section A-3-5.

A-3-1 Angular State

The angular state of the model has to keep in mind that, as briefly discussed at the end of
Section 2-1-2, not all orbital parameters are well-defined for circular orbits. More specifically,
all three anomalies and the argument of periapsis are not well-defined due to the lack of a
line of apsides.
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However, a simple workaround is to add the argument of periapsis to one of these anomalies,
as this produces a valid result. As the goal is to find a model that can be used for collision
avoidance constraints, ideally, the argument of latitude as defined in Eq. (2-7) is used for the
angular state as this represents the actual angle, as opposed to a fictitious angle with the
mean argument of latitude that is used for the quasi-singular ROE. However, as will become
apparent later, simply using the argument of latitude as a state variable results in a LTV
system. Therefore, the angular state variable λf for a single satellite is defined as:

λf := f + ω + Ω cos i = θ + Ω cos i.

Finding the derivative of the second term is often simple, as it is assumed that the inclination
of the chief satellite is close to the inclination of the deputy satellite and remains (almost)
constant. This means that the derivative, using Eq. (2-14), is simply equal to:

d Ω cos i

dt
≈ Ω̇ cos i =

√
1− e2 sin θ

an(1 + e cos f) tan i
un. (A-3)

Finding the derivative of θ can be tricky if done incorrectly. Two approaches are presented
here: a naive and a preferred approach. The relative model follows this as a result.

Naive approach

As it is assumed that the eccentricity is small, a glance at Eq. (2-5) seems to suggest that the
true anomaly is simply equal to the mean anomaly, and therefore, the derivatives are equal
as well:

f + ω ≈M + ω =⇒ ḟ + ω̇ ≈ Ṁ + ω̇.

This would result in an angular state that is close to the ROE state, and its derivative can
be found using Eq. (2-14):

Ṁ + ω̇ = n + (1− e2) [(1 + e cos f) cos f − 2e]
ane(1 + e cos f) ur −

(1− e2)(2 + e cos f) sin f

ane(1 + e cos f) ut

−
√

1− e2 cos f

ane
ur +

√
1− e2(2 + e cos f) sin f

ane(1 + e cos f) ut −
√

1− e2 sin θ

an(1 + e cos f) tan i
un

= n +

(
(1− e2)−

√
1− e2

)
(1 + e cos f) cos f − 2e(1− e2)

ane(1 + e cos f) ur

+

(√
1− e2 − (1− e2)

)
(2 + e cos f) sin f

ane(1 + e cos f) ut −
√

1− e2 sin θ

an(1 + e cos f) tan i
un.

Note how the terms before ur and ut cause problems when the eccentricity tends to zero,
resulting in dividing by zero. Using l’Hôpital’s rule, however, it is possible to find the limit
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for the eccentricity approaching zero:

lim
e→0

(
(1− e2)−

√
1− e2

)
(1 + e cos f) cos f − 2e(1− e2)

ane(1 + e cos f)

= lim
e→0

∂
∂ e

[(
(1− e2)−

√
1− e2

)
(1 + e cos f) cos f − 2e(1− e2)

]
∂

∂ e [ane(1 + e cos f)]

= lim
e→0

(
−2e + e√

1−e2

)
(1 + e cos f) cos f +

(
(1− e2)−

√
1− e2

)
cos2 f − 2(1− e2) + 4e2

an(1 + e cos f) + ane cos f

=−2
an

,

lim
e→0

(√
1− e2 − (1− e2)

)
(2 + e cos f) sin f

ane(1 + e cos f)

= lim
e→0

∂
∂ e

[(√
1− e2 − (1− e2)

)
(2 + e cos f) sin f

]
∂

∂ e [ane(1 + e cos f)]

= lim
e→0

(
− e√

1−e2 + 2e
)

(2 + e cos f) cos f +
(√

1− e2 − (1− e2)
)

sin f cos f

an(1 + e cos f) + ane cos f

=0.

Thus, with the naive approach, the derivative of the angular state for orbits with a small
eccentricity can be found by combining this result with Eq. (A-3), which yields:

λ̇f ≈ Ṁ + ω̇ + Ω̇ cos i

= n− 2
an

ur −
sin θ

tan i
un + sin θ

tan i
un

= n− 2
an

ur. (A-4)

Note that this approach essentially equals the state variable used for the quasi-nonsingular
ROE. If one would create a relative model out of Eq. (A-4), the same terms as in Appendix A-2
would appear.

Preferred Approach

When working with these small eccentricities, it is best to make the assumptions as late as
possible in the derivations. For example, when the argument of latitude is computed with
the actual derivative of the true anomaly:

ḟ = h

r2 + p

he
cos fur −

p + r

he
sin f ut

= n(1 + e cos f)2

(1− e2)
3
2

+
√

1− e2 cos f

ane
ur −

√
1− e2(2 + e cos f) sin f

ane(1 + e cos f) ut, (A-5)
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the effect of the radial input, which has a large impact in the naive approach, completely
vanishes:

θ̇ = ḟ + ω̇

= n(1 + e cos f)2

(1− e2)
3
2

+
√

1− e2 cos f

ane
ur −

√
1− e2(2 + e cos f) sin f

ane(1 + e cos f) ut

−
√

1− e2 cos f

ane
ur +

√
1− e2(2 + e cos f) sin f

ane(1 + e cos f) ut −
√

1− e2 sin θ

an(1 + e cos f) tan i
un

= n(1 + e cos f)2

(1− e2)
3
2
−

√
1− e2 sin θ

an(1 + e cos f) tan i
un

=

√
µ(1 + e cos f)

r3︸ ︷︷ ︸
θ̇f

+ −
√

1− e2 sin θ

an(1 + e cos f) tan i
un︸ ︷︷ ︸

θ̇ω

. (A-6)

The derivative of λf is then equal to:

λ̇f = ḟ + ω̇ + Ω̇ cos i

=

√
µ(1 + e cos f)

r3 −
√

1− e2 sin θ

an(1 + e cos f) tan i
un +

√
1− e2 sin θ

an(1 + e cos f) tan i
un

=

√
µ(1 + e cos f)

r3 , (A-7)

for which no assumptions on the eccentricity have been made yet. Also, note the importance
of Ω̇ cos i, as it cancels the LTV term from θ̇.

Final Relative Result

When computing the relative states with respect to the reference satellite, a critical trick is
used to increase the accuracy of the solution. Where normally the nonlinear equations are
linearised through a first-order Taylor expansion around the chief satellite (i.e., around rc, ec

and fc), the nonlinear equations are here linearised around rc, ec and fd
1. As the reference

satellite is in a circular orbit, its (second) derivatives are independent of the true anomaly
and thus, no difference is obtained this way.

This new linearisation point does give an important advantage. For example, when com-

1This can be interpreted around linearising around a virtual satellite on the reference orbit, but with the
same true anomaly as the actual satellite.
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puting the relative angular state from A-7:

δλ̇f = λ̇f
d − λ̇f

c

=
√

µ(1 + ed cos fd)
r3

d

−
√

µ(1 + ec cos fc)
r3

c

≈ −3
2

√
µ(1 + ec cos fd)

r3
c

rd − rc

rc
+ 1

2

√
µ(1 + ec cos fd)

r3
c

cos fd

1 + ec cos fd
(ed − ec)

= −3
2

nc

rc
(rd − rc) + 1

2nced cos fd

= −3
2

nc

rc
δr + 1

2ncδef
x, (A-8)

where the last line holds because the reference orbit is assumed to be perfectly circular and
where ef

x is defined as:
ef

x := e cos f.

As ec cos fc is always zero, δef
x is equal toed cos fd.

A-3-2 Radial State

The derivative of the radius, as defined in Eq. (2-6), can easily be obtained:

ṙ = (1− e2)
1 + e cos f

ȧ−
(

2ae

1 + e cos f
+ a(1− e2) cos f

(1 + e cos f)2

)
ė + ae(1− e2) sin f

(1 + e cos f)2 ḟ , (A-9)

which can be combined with the results from Eqs. (A-5) and (2-14) to obtain the result in
terms of the control inputs:

ṙ = (1− e2)
1 + e cos f

( 2e sin f

n
√

1− e2
ur + 2(1 + e cos f)

n
√

1− e2
ut

)
−
(

2ae

1 + e cos f
+ a(1− e2) cos f

(1 + e cos f)2

)(√
1− e2 sin f

an
ur +

√
1− e2 [(2 + e cos f) cos f + e]

an(1 + e cos f) ut

)

+ ae(1− e2) sin f

(1 + e cos f)2

(
n(1 + e cos f)2

(1− e2)
3
2

+
√

1− e2 cos f

ane
ur −

√
1− e2(2 + e cos f) sin f

ane(1 + e cos f) ut

)

= 2e
√

1− e2 sin f

n(1 + e cos f) ur + 2
√

1− e2

n
ut

−
(

2e
√

1− e2 sin f

n(1 + e cos f) + (1− e2)
3
2 cos f sin f

n(1 + e cos f)2

)
ur

−
(

2e
√

1− e2 [(2 + e cos f) cos f + e]
n(1 + e cos f)2 + (1− e2)

3
2
[
(2 + e cos f) cos2 f + e cos f

]
n(1 + e cos f)3

)
ut

+ ane sin f√
1− e2

+ (1− e2)
3
2 sin f cos f

n(1 + e cos f)2 ur −
(1− e2)

3
2 (2 + e cos f) sin2 f

n(1 + e cos f)3 ut.
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While all terms for ur cancel each other out, this is not directly obvious for ut. However,
currently left with:

ṙ = ane sin f√
1− e2

+ 2
(√

1− e2

n
− (1− e2)

3
2 + e

√
1− e2 [(2 + e cos f) cos f + e]
n(1 + e cos f)2

)
ut,

it is possible to rewrite the numerator of the second term slightly:

e [(2 + e cos f) cos f + e] = (2 + e cos f)e cos f + e2

= (2 + e cos f)e cos f + 1− (1− e2)
= 1 + 2e cos f + e2 cos2 f − (1− e2)
= (1 + e cos f)2 − (1− e2),

such that the following result is obtained:

ṙ = ane sin f√
1− e2

+ 2
(√

1− e2

n
− (1− e2)

3
2 +
√

1− e2 [(1 + e cos f)2 − (1− e2)
]

n(1 + e cos f)2

)
ut

= ane sin f√
1− e2

=
√

µ

a(1− e2)e sin f. (A-10)

This result is surprisingly simple after all the terms have been cancelled out. A few conclusions
can already be drawn from this result. Firstly, unlike for the orbital elements with which the
derivation started, the first-order derivative of the radius is not affected by the control inputs.
This means that a second state is required to control the radius. Secondly, as expected, ṙ is
zero for perfectly circular orbits. The relative derivative is therefore easy to find, as ṙc is zero:

δṙ = ṙd − ṙc

=
√

µ

ad(1− e2
d)

ed sin fd

=
√

µ(1 + ed cos fd)
rd

ed sin fd

≈

√
µ(1 + ec cos fc)

rc
ec sin fd −

1
2

√
µ(1 + ec cos fd)

rc
ec sin fd

rd − rc

rc

+

1
2

√
µ(1 + ec cos fd)

rc

ec sin fd

1 + ec cos fd
+
√

µ(1 + ec cos fd)
rc

sin fd

 (ed − ec)

=
√

µ(1 + ec cos fd)
rc

ed sin fd

= ncrcδef
y . (A-11)

Here, the last line only holds because it is assumed that the reference orbit is perfectly circular
and where ef

y is defined as:
ef

y := e sin f.

As ec sin fc is always zero, δef
y equals ed sin fd.

F.J.P. Ballast Master of Science Thesis



A-3 Blend Model 95

A-3-3 Eccentric States

The differential equations for the eccentric states are first derived, but several assumptions are
made in the process. Next, the results are compared with the second derivatives to check if the
errors in assumptions made in this and previous subsections do not compound. Finally, the
results of the in-plane equations of motions are compared with the cylindrical HCW model.

Differentiation of Eccentric States

The two eccentric states, δef
x and δef

y , are added as states because they appear in Eqs. (A-8)
and (A-11) for δλ̇f and δṙ, respectively. This also requires finding their derivatives, where
the derivative of ef

x is as follows:

ėf
x = ė cos f − eḟ sin f

=
√

1− e2 sin f cos f

an
ur +

√
1− e2 [(2 + e cos f) cos2 f + e cos f

]
an(1 + e cos f) ut

− ne(1 + e cos f)2 sin f

(1− e2)
3
2

−
√

1− e2 sin f cos f

an
ur +

√
1− e2(2 + e cos f) sin2 f

a(1 + e cos f) ut

= 2
√

1− e2

an
ut −

n(1 + e cos f)2

(1− e2)
3
2

e sin f, (A-12)

which, under the assumption that e is small, can be simplified to:

ėf
x ≈

2
an

ut − nef
y .

The derivative of ef
y follows a similar procedure:

ėf
y = ė sin f + eḟ cos f

=
√

1− e2 sin2 f

an
ur +

√
1− e2 [(2 + e cos f) sin f cos f + e sin f ]

an(1 + e cos f) ut

+ ne(1 + e cos f)2 cos f

(1− e2)
3
2

+
√

1− e2 cos2 f

an
ur −

√
1− e2(2 + e cos f) sin f cos f

an(1 + e cos f) ut

=
√

1− e2

an
ur +

√
1− e2e sin f

an(1 + e cos f)ut + na2√1− e2

r2 e cos f, (A-13)

although here an extra term is obtained. However, if again assuming that the eccentricity is
small, this can be simplified to:

ėf
y ≈

1
an

ur + nef
x.

The relative dynamics of these states are relatively straightforward, as ec is zero and thus
δėf

x = ėf
x,d and δėf

y = ėf
y,d. However, as a further simplification, in the following equations,

it is assumed that the semi-major axes are roughly equal, and thus both ad and nd are
approximately equal to ac and nc:

δėf
x = ėf

x,d = 2
acnc

ut − ncδef
y

δėf
y = ėf

y,d = 1
acnc

ur + ncδef
x.

(A-14)
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Comparison With Second Derivatives

The eccentric states are used to compute the derivatives for the radial and angular states, but
both during the derivations of those equations (i.e., Eqs. (A-8) and (A-11)) and during the
derivations of the differential equations for the eccentric states (i.e., Eq. (A-14)) assumptions
were made. To check if the errors due to these assumptions do not compound, the second
derivative of the radial and angular states are compared with the results from Eq. (A-14).

First, the second derivative of r is analysed. Therefore, the partial derivatives of Eq. (A-
10) with respect to a, e and f are multiplied with their derivatives:

r̈ = −1
2

√
µ

a3(1− e2)e sin fȧ +
(

e2

1− e2 + 1
)√

µ

a(1− e2) sin fė +
√

µ

a(1− e2)e cos fḟ ,

where the second term can be simplified, as e2

1−e2 + 1 is equal to 1
1−e2 , which can be moved

into the square root. This result can be combined with Eq. (2-14) to find the effect of the
control inputs:

r̈ = −1
2

√
µ

a3(1− e2)e sin fȧ +
√

µ

a(1− e2)3 sin fė +
√

µ

a(1− e2)e cos fḟ

= −1
2

n√
1− e2

e sin fȧ + na

(1− e2)
3
2

sin fė + na√
1− e2

e cos fḟ

= −1
2

n√
1− e2

e sin f

( 2e sin f

n
√

1− e2
ur + 2(1 + e cos f)

n
√

1− e2
ut

)
+ na

(1− e2)
3
2

sin f

(√
1− e2 sin f

an
ur +

√
1− e2 [(2 + e cos f) cos f + e]

an(1 + e cos f) ut

)

+ na√
1− e2

e cos f

(
n(1 + e cos f)2

(1− e2)
3
2

+
√

1− e2 cos f

ane
ur −

√
1− e2(2 + e cos f) sin f

ane(1 + e cos f) ut

)

= n2a(1 + e cos f)2e cos f

(1− e2)2 +
(
−e2 sin2 f

1− e2 + sin2 f

1− e2 + cos2 f

)
ur

+
(
−(1 + e cos f)e sin f

1− e2 + [(2 + e cos f) cos f + e] sin f

(1− e2)(1 + e cos f) − (2 + e cos f) sin f cos f

1 + e cos f

)
ut.

Where the terms in front of ur can easily be simplified to one, the result of the terms in front
of ut is less obvious. Working out these terms carefully, however, one obtains that this term
completely vanishes:

r̈(ut) = −(1 + e cos f)e sin f

1− e2 + [(2 + e cos f) cos f + e] sin f

(1− e2)(1 + e cos f) − (2 + e cos f) sin f cos f

1 + e cos f

= [(2 + e cos f) cos f + e] sin f − (1 + e cos f)2e sin f − (1− e2)(2 + e cos f) sin f cos f

(1− e2)(1 + e cos f)

= (2 + e cos f) sin f cos f − (2 + e cos f)e2 sin f cos f − (1− e2)(2 + e cos f) sin f cos f

(1− e2)(1 + e cos f)
= 0,
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such that the radial acceleration is as follows:

r̈ = n2a(1 + e cos f)2e cos f

(1− e2)2 + ur

= µ(1 + e cos f)2e cos f

a2(1− e2)2 + ur

= µ

r2 e cos f + ur. (A-15)

Once again, a surprisingly easy result is obtained which adheres to the intuition one might
have: it is zero for perfectly circular orbits and can be changed with the radial control input2.

Utilising this result, the relative radial acceleration can be approximated as:

δr̈ = r̈d − r̈c

= µ

r2
d

ed cos fd + ur

≈ µ

r2
c

ec cos fd − 2 µ

r2
c

ec cos fd

rc
(rd − rc) + µ

r2
c

cos fd(ed − ec) + ur

= µ

r2
c

δef
x + ur,

which allows for the link between Eq. (A-11) and Eq. (A-14):

δṙ = ncrcδef
y ∧ δėf

y = 1
acnc

ur + ncδef
x =⇒ δr̈ = ncrc

( 1
acnc

ur + ncδef
x

)
= µ

r2
c

δef
x + ur.

Thus, computing the radial acceleration directly yields the same result as combining the
obtained formulas for δr and δef

y .
The second derivative of λf is found through the multiplication of its partial derivatives

with respect to r, e and f and their derivatives, where ṙ is obtained from Eq. (A-10) and the

2The control inputs are, as mentioned before, control accelerations instead of control forces. These could
easily be swapped by dividing the control input by the satellite’s mass.
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others from Eq. (2-14):

λ̈f = −11
2

λ̇f

r
ṙ + 1

2
λ̇f

1 + e cos f
cos fė− 1

2
λ̇f

1 + e cos f
e sin fḟ

= −11
2

λ̇f

r

√
µ

a(1− e2)e sin f

+ 1
2

λ̇f

1 + e cos f
cos f

(√
1− e2 sin f

an
ur +

√
1− e2 [(2 + e cos f) cos f + e]

an(1 + e cos f) ut

)

− 1
2

λ̇f

1 + e cos f
e sin f

(
θ̇f +

√
1− e2 cos f

ane
ur −

√
1− e2(2 + e cos f) sin f

ane(1 + e cos f) ut

)

= −2 (λ̇f )2

1 + e cos f
e sin f

+ 1
2

(
λ̇f
√

1− e2 sin f cos f

an(1 + e cos f) − θ̇f
√

1− e2 sin f cos f

an(1 + e cos f)

)
ur

+ 1
2

(
λ̇f
√

1− e2 [(2 + e cos f) cos f + e] cos f

an(1 + e cos f)2 + λ̇f
√

1− e2(2 + e cos f) sin2 f

an(1 + e cos f)2

)
ut.

The term for ut requires some work but yields a simple result once simplified:

λ̈f (ut) = 1
2

(
λ̇f
√

1− e2 [(2 + e cos f) cos f + e] cos f

an(1 + e cos f)2 + λ̇f
√

1− e2(2 + e cos f) sin2 f

an(1 + e cos f)2

)

= 1
2

λ̇f
√

1− e2 [(2 + e cos f) + e cos f ]
an(1 + e cos f)2

= λ̇f
√

1− e2

an(1 + e cos f)

=
√

a(1− e2)
r3(1 + e cos f)

= 1
r

,

such that the final result is equal to:

λ̈f = −2 µ

r3 e sin f + ut

r
. (A-16)

A sanity check confirms that this result can be correct, as the second derivative is zero for
the reference orbit, and the control acceleration has to be divided by the current radius to
obtain the angular acceleration. Using this result, the relative angular acceleration is equal
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to:

δλ̈f = λ̈f
d − λ̈f

c

= −2 µ

r3
d

ed sin fd + ut

rd

≈ −2 µ

r3
c

ec sin fd + 6 µ

r3
c

ec sin fd

rc
(rd − rc)− 2 µ

r3
c

sin fd(ed − ec) + ut

rc

= −2 µ

r3
c

δef
y + ut

rc
,

which confirms that the approximation for δėf
x is accurate:

δλ̇f = −3
2

nc

rc
δr + 1

2ncδef
x ∧ δėf

x = 2
acnc

ut − ncδef
y =⇒ δλ̈f = −3

2
nc

rc
(ncrcδef

y)

+ 1
2nc(

2
acnc

ut − ncδef
y)

= −2 µ

r3
c

δef
y + ut

rc
.

Comparison With Hill-Clohessy-Wiltshire Model

It is possible to link these results to the absolute HCW model from Eq. (A-1). For the in-plane
equations of motions, those results can be rewritten as:

r̈ = rφ̇2 − n2r + ur, (A-17)

φ̈ = −2 ṙ

r
φ̇ + ut

r
, (A-18)

and recall the results for λ̇f and ṙ from Eqs. (A-6) and (A-10):

λ̇f =

√
µ(1 + e cos f)

r3

ṙ =
√

µ

a(1− e2)e sin f.

Using λ̇f instead of φ̇ in Eq. (A-17), one obtains for r̈:

r̈ = µ(1 + e cos f)
r2 − µ

r2 + ur

= µ

r2 e cos f + ur,

where similar to the derivation in [23] a perfectly circular orbit is assumed, therefore r being
equal to a. This result is equal to that obtained in Eq. (A-15).

The same can be shown for φ̈ in Eq. (A-18):

φ̈ = −2e sin f

r

√
µ2(1 + e cos f)

a(1− e2)r3 + ut

r

= −2 µ

r3 e sin f + ut

r
,

which is equal to the result obtained in Eq. (A-16).
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A-3-4 Out-Of-Plane States

The easiest variables to control the out-of-plane motion are simply id−ic and Ωd−Ωc directly,
where it is common to multiply Ωd−Ωc with sin ic such as in the ROE model in Eq. (2-16) to
slightly simplify the results. This, however, results in a LTV model as the B matrix depends
on either θ or υ. By choosing a different state variable, it is possible to create a LTI model.

One possible option is provided in [42], where they use the so-called equinoctial variables.
Although the details of the equinoctial variables are not important, three variables are used
for the out-of-plane control and are therefore relevant:

Γ1 := θ + Ω,

Γ2 := cos Ω tan i

2 ,

Γ3 := sin Ω tan i

2 .

They define two relative states, δξx and δξy, which make use of a reflection matrix with angle
Γ1,d: [

δξx

δξy

]
=
[
cos Γ1,d sin Γ1,d

sin Γ1,d − cos Γ1,d

] [
Γ2,d − Γ2,c

Γ3,d − Γ3,c

]

=
[
cos Γ1,d sin Γ1,d

sin Γ1,d − cos Γ1,d

] [
Γ2,d

Γ3,d

]
−
[
cos Γ1,d sin Γ1,d

sin Γ1,d − cos Γ1,d

] [
Γ2,c

Γ3,c

]
.

Working out the first term yields:[
cos Γ1,d sin Γ1,d

sin Γ1,d − cos Γ1,d

] [
Γ2,d

Γ3,d

]
=
[
cos(θd + Ωd) cos Ωd tan id

2 + sin(θd + Ωd) sin Ωd tan id
2

sin(θd + Ωd) cos Ωd tan id
2 − cos(θd + Ωd) sin Ωd tan id

2

]
,

which, using the following four trigonometric identities:

cos α cos β = 1
2(cos(α− β) + cos(α + β)),

sin α sin β = 1
2(cos(α− β)− cos(α + β)),

sin α cos β = 1
2(sin(α + β) + sin(α− β)),

cos α sin β = 1
2(sin(α + β)− sin(α− β)),

can be rewritten to:[
cos Γ1,d sin Γ1,d

sin Γ1,d − cos Γ1,d

] [
Γ2,d

Γ3,d

]
= 1

2 tan id

2

[
cos θd + cos(θd + 2Ωd) + cos θd − cos(θd + 2Ωd)
sin(θd + 2Ωd) + sin θd − sin(θd + 2Ωd) + sin θd

]

= tan id

2

[
cos θd

sin θd

]
.

A similar approach can be followed for the second term, where not as many terms cancel out:[
cos Γ1,d sin Γ1,d

sin Γ1,d − cos Γ1,d

] [
Γ2,c

Γ3,c

]
=
[
cos(θd + Ωd) cos Ωc tan ic

2 + sin(θd + Ωd) sin Ωc tan ic
2

sin(θd + Ωd) cos Ωc tan ic
2 − cos(θd + Ωd) sin Ωc tan ic

2

]

= tan ic

2

[
cos(θd + Ωd − Ωc)
sin(θd + Ωd − Ωc)

]
,
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such that the results for δξx and δξy can be obtained:

δξx = cos θd tan id

2 − cos(θd + Ωd − Ωc) tan ic

2
δξy = sin θd tan id

2 − sin(θd + Ωd − Ωc) tan ic

2 .

These terms look rather peculiar, but their function quickly becomes clear when looking
at their derivatives. Without any assumptions, the derivative of ξx remains complex and
nonlinear:

δξ̇x = d

dt

[
cos θd tan id

2 − cos(θd + Ωd − Ωc) tan ic

2

]
= −θ̇d sin θd tan id

2 + θ̇d sin(θd + Ωd − Ωc) tan ic

2 + 1
2

cos θd

cos2 id
2

d id

dt
+ Ω̇d sin(θd + Ωd − Ωc) tan ic

2

= −θ̇d δξy + 1
2

√
1− e2

d cos2 θd

adnd(1 + ed cos fd) cos2 id
2

un +
√

1− e2 sin θd sin(θd + Ωd − Ωc) tan ic
2

adnd(1 + ed cos fd) sin id
un.

However, if it is assumed that Ωd − Ωc and id − ic are both relatively small, the following
trigonometric identities can be used:

cos2 α

2 = 1
2(1 + cos α),

tan α

2 = sin α

1 + cos α
,

to find the following approximation of δξ̇x:

δξ̇x = −θ̇d δξy +

√
1− e2

d cos2 θdun

adnd(1 + ed cos fd)(1 + cos id) +
√

1− e2 sin θd sin(θd + Ωd − Ωc) sin icun

adnd(1 + ed cos fd) sin id(1 + cos ic)

≈ −θ̇d δξy +

√
1− e2

d cos2 θdun

adnd(1 + ed cos fd)(1 + cos id) +
√

1− e2 sin2 θdun

adnd(1 + ed cos fd)(1 + cos id)

= −θ̇d δξy +

√
1− e2

d

adnd(1 + ed cos fd)(1 + cos id)un.

This result is still nonlinear and time-varying, but when assuming a circular orbit and that
θ̇d ≈ nd, nd ≈ nc and ad ≈ ac, the LTI form is obtained:

δξ̇x = −nc δξy + 1
acnc(1 + cos ic)

un.

Following the same steps, the derivative of δξy can be obtained:

δξ̇y = d

dt

[
sin θd tan id

2 − sin(θd + Ωd − Ωc) tan ic

2

]
= θ̇d cos θd tan id

2 − θ̇d cos(θd + Ωd − Ωc) tan ic

2 + 1
2

sin θd

cos2 id
2

d i

dt
+ Ω̇d cos(θd + Ωd − Ωc) tan ic

2

= θ̇dδξx + 1
2

√
1− e2

d sin θd cos θd

adnd(1 + ed cos fd) cos2 id
2

un +
√

1− e2 sin θd cos(θd + Ωd − Ωc) tan ic
2

adnd(1 + ed cos fd) sin id
un

≈ nc δξx.
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A-3-5 J2 Perturbations With Blend Model

To add the effect of J2 perturbations to the model, first some basic equations are presented.
This is followed by the derivation of the effect of J2 perturbations on the different states,
similar to the structure as before. First, the radial state is presented, followed by the angular
state, the eccentric states and finally the out-of-plane states.

Basic Equations

Terms to correct for J2 perturbations for mean orbital elements are almost exclusively given
for Ṁ , ω̇ and Ω̇. However, as the goal is to use the argument of latitude and it was shown
before that there can be a large difference between ḟ + ω̇ and Ṁ + ω̇ (see Section A-3-1), this
poses a challenge at first. Luckily, upon closer inspection, the problem resolves itself. Recall
from Eq. (2-5), that, when disregarding all terms of O(e2) or smaller:

M = f − 2e sin f,

which, after differentiating, yields:

Ṁ = ḟ − 2ė sin f − 2eḟ cos f

= ḟ − 2
(√

1− e2 sin2 f

an
ur +

√
1− e2 [(2 + e cos f) sin f cos f + e sin f ]

an(1 + e cos f) ut

)

− 2
(

ne(1 + e cos f)2 cos f

(1− e2)
3
2

+
√

1− e2 cos2 f

an
ur −

√
1− e2(2 + e cos f) sin f cos f

an(1 + e cos f) ut

)

≈ ḟ − 2
an

ur.

Note that this is also the difference obtained between Eq. (A-4) and Eq. (A-6) when the
eccentricity is set to zero in the latter, and that this difference comes from the control inputs
as opposed to the Keplerian gravitational forces. Then, if Ṁ would be split into three parts:
Keplerian forces, J2 perturbations and control inputs:

ṀKepler + ṀJ2 + ṀControl = ḟKepler + ḟJ2 + ḟControl −
2

an
ur,

combined with:

ṀControl = ḟControl −
2

an
ur,

ṀKepler = ḟKepler = n,

allows for the following conclusion:
ṀJ2 = ḟJ2 .

Thus, it can be assumed that the effect of the J2 perturbations on the true anomaly is equal
to that of the effect on the mean anomaly. This makes it relatively easy to add corrections for
J2 perturbations to the model. To do so, firstly a group of constant parameters are denoted
by γ:

γ := 3
4J2R2

e

√
µ,
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such that the J2 perturbations can now be expressed as: ḟJ2

ω̇J2

Ω̇J2

 = γ

a
7
2 (1− e2)2

η(3 cos2 i− 1)
5 cos2 i− 1
−2 cos i

 = γ(1− e2)
3
2

r
7
2 (1 + e cos f)

7
2

η(3 cos2 i− 1)
5 cos2 i− 1
−2 cos i

 . (A-19)

Radial State

When looking at the effect of J2 perturbations on δr, note how in Eq. (A-9) only the last
term is affected by the J2 perturbations. That means that:

ṙJ2 = ae(1− e2) sin f

(1 + e cos f)2 ḟJ2

= ae(1− e2) sin f

(1 + e cos f)2
γ(1− e2)

3
2

r
7
2 (1 + e cos f)

7
2

η(3 cos2 i− 1)

= γ
e(1− e2)2 sin f

(1 + e cos f)
9
2 r

5
2

(3 cos2 i− 1).

The relative dynamics are found with a first-order Taylor expansion around (rc, ec, fd, ic),
which has the following property:

ṙJ2,Taylor = γ
ec(1− e2

c)3 sin fd

(1 + ec cos fd)
9
2 r

5
2
c

(3 cos2 ic − 1)

= ṙJ2,c,

because ec is assumed to be zero. The Taylor expansion then yields:

δṙJ2 = ṙJ2,d − ṙJ2,c

≈ ṙJ2,Taylor −
5
2 ṙJ2,Taylor

rd − rc

rc
+
( 1

ec
− 6 ec

1− e2
c

− 9
2

cos fd

1 + ec cos fd

)
ṙJ2,Taylor(ed − ec)

+ 6 cos ic sin ic

3 cos2 i− 1 ṙJ2,Taylor(id − ic)− ṙJ2,c

= γ r
− 5

2
c (3 cos2 ic − 1)δef

y ,

where almost all terms drop out in the last step as ec is zero.

Angular State

The angular state λf is a summation of f , ω and Ω cos i as seen in Eq. (A-7). These terms
can individually be analysed to find the total effect of them combined.

Firstly the effect of J2 perturbations on the true anomaly is analysed. Through a first-
order Taylor expansion around (rc, ec, fd, ic), the following term is obtained:

ḟJ2,Taylor = γ(1− e2
c)2

r
7
2
c (1 + ec cos fd)

7
2

(3 cos2 ic − 1),
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which is again equal to ḟJ2,c as ec is zero. Then the relative dynamics can be found:

δḟJ2 = ḟJ2,d − ḟJ2,c

= γ(1− e2
d)2

r
7
2
d (1 + ed cos fd)

7
2

(3 cos2 id − 1)− ḟJ2,c

≈ ḟJ2,Taylor −
7
2

ḟJ2,Taylor
rc

(rd − rc)−
(

4 ec

1− e2
c

+ 7
2

cos fd

1 + ec cos fd

)
ḟJ2,Taylor(ed − ec)

− 6sin ic cos icḟJ2,c
3 cos2 ic − 1 (id − ic)− ḟJ2,c

= −7
2

ḟJ2,c
rc

δr − 7
2 ḟJ2,cδef

x − 6sin ic cos icḟJ2,Taylor
3 cos2 ic − 1 (id − ic)

= −7
2γ

3 cos2 ic − 1

r
9
2
c

δr − 7
2γ

3 cos2 ic − 1

r
7
2
c

δef
x. (A-20)

Here, the last term can be discarded in the second-to-last line as it is assumed that the
inclinations are close to each other.

A similar process can be followed for the argument of periapsis, where the linearisation
yields the following term:

ω̇J2,Taylor = γ(1− e2
c)

3
2

r
7
2
c (1 + ec cos fd)

7
2

(5 cos2 ic − 1).

This yields the following formula for the satellite after a Taylor expansion again around
(rc, ec, fd, ic):

δω̇J2 = ω̇J2,d − ω̇J2,c

= γ(1− e2
d)

3
2

r
7
2
d (1 + ed cos fd)

7
2

(5 cos2 id − 1)− ω̇J2,c

≈ ω̇J2,Taylor −
7
2

ω̇J2,Taylor
rc

(rd − rc)−
(3ec ω̇J2,Taylor

1− e2
c

+ 7
2

ω̇J2,Taylor cos fd

1 + ec cos fd

)
(ed − ec)

− 10sin ic cos icω̇J2,Taylor
5 cos2 ic − 1 (id − ic)− ω̇J2,c

= −7
2

ω̇J2,c
rc

δr − 7
2 ω̇J2,Taylorδef

x − 10sin ic cos icω̇J2,Taylor
5 cos2 ic − 1 (id − ic)

= −7
2γ

5 cos2 ic − 1

r
9
2
c

δr − 7
2γ

5 cos2 ic − 1

r
7
2
c

δef
x. (A-21)

Finally, the same procedure can be followed for the RAAN:

Ω̇J2,Taylor = −2 γ(1− e2
c)

3
2

r
7
2
c (1 + ec cos fd)

7
2

cos ic,
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with the following result after the first-order Taylor expansion:

δΩ̇J2 = Ω̇J2,d − Ω̇J2,c

− 2 γ(1− e2
d)

3
2

r
7
2
d (1 + ed cos fd)

7
2

cos id − Ω̇J2,c

≈ Ω̇J2,Taylor −
7
2

Ω̇J2,Taylor
rc

(rd − rc)−
(

3ecΩ̇J2,Taylor
1− e2

c

+ 7
2

Ω̇J2,Taylor cos fd

1 + ec cos fd

)
(ed − ec)

− tan icΩ̇J2,Taylor(id − ic)− Ω̇J2,c

= −7
2

Ω̇J2,Taylor
rc

δr − 7
2Ω̇J2,Taylorδef

x − tan icΩ̇J2,c(id − ic)

= 7γ r
− 9

2
c cos icδr + 7γ r

− 7
2

c cos icδef
x. (A-22)

Using the following relationship:

δλ̇f = λ̇f
d − λ̇f

c

= ḟd − ḟc + ω̇d − ω̇c +
(
Ω̇d − Ω̇c

)
cos ic

= δḟ + δω̇ + δΩ cos ic,

and using Eqs. (A-20) to (A-22), the effect of J2 perturbation on λ̇f can be found:

δλ̇f
J2

= δḟJ2 + δω̇J2 + δΩJ2 cos ic

= −7
2γ

6 cos2 ic − 2

r
9
2
c

δr − 7
2γ

6 cos2 ic − 2

r
7
2
c

δef
x.

Eccentric States

The eccentric states δef
x and δef

y are influenced by J2 perturbations through their dependence
on the true anomaly, which when analysing the derivatives yields:

ėf
x,J2

= ėJ2 cos f − eḟJ2 sin f = eḟJ2 sin f,

ėf
y,J2

= ėJ2 sin f + eḟJ2 cos f = eḟJ2 cos f.

Similarly to before, two terms around which the Taylor expansion will be done are defined:

ėf
x,J2,Taylor = −γ ec sin fd

(1− e2
c)2(3 cos2 ic − 1)

r
7
2
c (1 + ec cos fd)

7
2

,

ėf
y,J2,Taylor = γ ec cos fd

(1− e2
c)2(3 cos2 ic − 1)

r
7
2
c (1 + ec cos fd)

7
2

.

The first eccentric state δef
x, when analysing the relative dynamics with a Taylor expansion,
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yields:

δėf
x,J2

= −γ ed sin fd
(1− e2

d)2(3 cos2 id − 1)

r
7
2
d (1 + ed cos fd)

7
2

+ γ ec sin fc
(1− e2

c)2(3 cos2 ic − 1)

r
7
2
c (1 + ec cos fc)

7
2

≈ ėf
x,J2,Taylor −

7
2

ėf
x,J2,Taylor

rc
(rd − rc)− 6

sin ic cos ic ėf
x,J2,Taylor

3 cos2 ic − 1 (id − ic)

+
( 1

ec
− 4 ec

1− e2
c

− 7
2

cos fd

1 + ec cos fd

)
ėf

x,J2,Taylor(ed − ec)− ėf
x,J2,c

= −γ sin fd
(1− e2

c)2(3 cos2 ic − 1)

r
7
2
c (1 + ec cos fd)

7
2

(ed − ec)

= −γ
3 cos2 ic − 1

r
7
2
c

δef
y .

A similar derivation gives the result for δef
y :

δėf
y,J2

= γ ed cos fd
(1− e2

d)2(3 cos2 id − 1)

r
7
2
d (1 + ed cos fd)

7
2

− γ ec cos fc
(1− e2

c)2(3 cos2 ic − 1)

r
7
2
c (1 + ec cos fc)

7
2

≈ ėf
y,J2,Taylor −

7
2

ėf
y,J2,Taylor

rc
(rd − rc)− 6

sin ic cos ic ėf
y,J2,Taylor

3 cos2 ic − 1 (id − ic)

+
( 1

ec
− 4 ec

1− e2
c

− 7
2

cos fd

1 + ec cos fd

)
ėf

y,J2,Taylor(ed − ec)− ėf
y,J2,c

= γ cos fd
(1− e2

c)2(3 cos2 ic − 1)

r
7
2
c (1 + ec cos fd)

7
2

(ed − ec)

= γ
3 cos2 ic − 1

r
7
2
c

δef
x.

Out-Of-Plane States

The derivation for the out-of-plane states δξx and δξy is complex. Recall for example the
derivative from Section A-3-4:

δξ̇x,J2 = d

dt

[
cos θd tan id

2 − cos(θd + Ωd − Ωc) tan ic

2

]
J2

= −θ̇J2,d δξy + 1
2

cos θd

cos2 id
2

[
d id

dt

]
J2

+ Ω̇J2,d sin(θd + Ωd − Ωc) tan ic

2 ,

which shows that J2 perturbations will have an effect on both the first and third terms (as
d i
dt is unaffected). The first term can be approximated as:

θ̇J2,dδξy ≈ θ̇J2,cδξy

= (ḟJ2,c + ω̇J2,c)δξy

= γr
− 7

2
c (8 cos2 ic − 2)δξy,
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which is the desired LTI result. This is not the case for the third term, however:

Ω̇J2,d sin(θd + Ωd − Ωc) tan ic

2 ≈ Ω̇J2,c sin(θd + Ωd − Ωc) tan ic

2
= −2γr

− 7
2

c cos ic sin(θd + Ωd − Ωc) tan ic

2
≈ −2γr

− 7
2

c cos ic sin θd tan ic

2 ,

which will always be time-varying due to the dependency on the argument of latitude. How-
ever, because the other terms are almost constant, the average of this term is zero and leaving
this term out therefore produces no long-term errors. Thus, the total effect of J2 perturbations
on δξx can be modelled as:

δξ̇x,J2 = −γr
− 7

2
c (8 cos2 ic − 2)δξy.

The approach for δξy is comparable:

δξ̇y,J2 = d

dt

[
sin θd tan id

2 − sin(θd + Ωd − Ωc) tan ic

2

]
= θ̇J2,dδξx + 1

2
sin θd

cos2 id
2

[
d id

dt

]
J2

+ Ω̇J2,d cos(θd + Ωd − Ωc) tan ic

2

≈ θ̇J2,cδξx + Ω̇J2,c cos θd tan ic

2
≈ γr

− 7
2

c (8 cos2 ic − 2)δξx.
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Appendix B

Control Parameters

A MPC controls the satellites in the different simulations. The following quadratic problem
is solved in each iteration:

minimize
x0, . . . , xT ,

u0, . . . , uT −1

T −1∑
t=0

[
(xt − xr)T Q (xt − xr) + uT

t R ut

]
+ (xT − xr)T QT (xT − xr)

subject to xt+1 = At xt + Bt ut ∀t ∈ ZT −1
0 ,

xmin ≤ xt ≤ xmax ∀t ∈ ZT
1 ,

umin ≤ ut ≤ umax ∀t ∈ ZT −1
0 .

where the exact parameters can differ between different simulations and for different models.
The parameters for the results from Chapter 2 are provided in Appendix B-1, after which the
parameters from Chapter 3 are provided in Appendix B-2.

B-1 Model Comparisons

The different parameters used for the HCW, the ROE and the Blend model are shown in
Sections B-1-1 to B-1-3, respectively.

B-1-1 Cylindrical Hill-Clohessy-Wiltshire Parameters

The control parameters used for the HCW model during the model comparisons are shown
in Table B-1.

Table B-1: Control parameters for Hill-Clohessy-Wiltshire model during model comparisons.

Parameter Description Value
Q State cost diag(25, 2500, 10−4, 2500, 104, 10−4)

QT Terminal state cost Q
R Input cost diag(10−4, 10−4, 10−4)

xmax Maximum state values
[
0.1 10 4 0.1 1

10nc 0.1
]T

xmin Minimum state values −xmax

umax Maximum input values
[
0.1 0.1 0.1

]T
umin Minimum input values −umax

T Prediction horizon 20
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B-1-2 Quasi-Nonsingular Relative Orbital Elements Parameters

The control parameters used for the ROE model during the model comparisons are shown in
Table B-2.

Table B-2: Control parameters for Relative Orbital Elements model during model comparisons.

Parameter Description Value
Q State cost diag(25r2

c , 2500, 4 · 104, 4 · 104, 225, 225)
QT Terminal state cost Q
R Input cost diag(10−4, 10−4, 10−4)

xmax Maximum state values
[

0.1
rc

100 0.002 0.002 0.05 1
]T

xmin Minimum state values −xmax

umax Maximum input values
[
0.1 0.1 0.1

]T
umin Minimum input values −umax

T Prediction horizon 20

B-1-3 Blend Parameters

The control parameters used for the Blend model during the model comparisons are shown
in Table B-3. The values are chosen for these parameters and for the quasi-nonsingular ROE
parameters in Section B-1-2 to obtain similar performance for all three models. This leads
to the odd terms with nc and rc, where, for example, the equivalence between the HCW and
the Blend model is used for the in-plane states1.

Table B-3: Control parameters for Blend model during model comparisons.

Parameter Description Value
Q State cost diag(25, 2500, 1

4n2
c 104, n2

cr2
c 2500, 100, 100)

QT Terminal state cost Q
R Input cost diag(10−4, 10−4, 10−4)

xmax Maximum state values
[
0.1 10 0.02 1

100 nc rc
1 1

]T
xmin Minimum state values −xmax

umax Maximum input values
[
0.1 0.1 0.1

]T
umin Minimum input values −umax

T Prediction horizon 20

1See the end of Section A-3-3 for this proof.
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B-2 System-Level Synthesis

For the SLS simulations, the Blend model is used with the parameters from Table B-4. This
includes two noteworthy differences compared to Table B-3, as the prediction horizon is
decreased for computational purposes and the terminal cost increased to account for the loss
of long-term state costs.

Table B-4: Control parameters for Blend model in System-Level Synthesis results.

Parameter Description Value
Q State cost diag(25, 2500, 1

4n2
c 104, n2

cr2
c 2500, 100, 100)

QT Terminal state cost 5Q
R Input cost diag(10−4, 10−4, 10−4)

xmax Maximum state values
[
0.1 10 0.02 1

100 nc rc
1 1

]T
xmin Minimum state values −xmax

umax Maximum input values
[
0.1 0.1 0.1

]T
umin Minimum input values −umax

T Prediction horizon 6
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Appendix C

Simulation Setup

A vital part of the simulation is the integration setup that simulates the true, nonlinear
dynamics of the satellite. This setup is covert in Appendix C-1, after which the selection for
initial positions and reference states is discussed in Appendix C-2.

C-1 Integration Setup

The basis of the simulation is a mean orbital elements simulation. Because the initial and
reference states are in a perfectly circular orbit, it is impossible to use Eq. (2-14) directly, as
the derivatives for M and ω are not well defined for those states. Instead, the simulation is
performed with the following state:

xsim =
[
r θ e cos f e sin f i Ω

]T
,

with the following first derivative:

ẋsim = f(xsim, t) =



√
µ(1+e cos f)

r e sin f + re sin f
1+e cos f ḟJ2√

µ(1+e cos f)
r3 −

√
1−e2 sin(θ)

an(1+e cos f) tan iun(t) + ω̇J2 + ḟJ2

−n(1 + e cos f)2 e sin f

(1−e2)
3
2

+ 2
√

1−e2

an ut(t)− e sin fḟJ2

na2√
1−e2

r2 e cos f +
√

1−e2

an ur(t) +
√

1−e2e sin f
an(1+e cos f)ut(t) + e cos fḟJ2√

1−e2 cos θ
an(1+e cos f)un(t)

√
1−e2 sin θ

an(1+e cos f) sin iun(t) + Ω̇J2


,

which is constructed with help from Eqs. (A-6), (A-10), (A-12), (A-13), (A-19) and (2-14).
The differential equations are integrated using the fourth-order Runge-Kutta (RK4) method,
which follows the following update steps:

xsim,k+1 = xsim,k + ∆tsim
6 (k1 + 2k2 + 2k3 + k4),

tk+1 = tk + ∆tsim,

where k1, k2, k3 and k4 are defined as:

k1 := f(xsim,k, tk),

k2 := f(xsim,k + ∆tsim
2 k1, tk + ∆tsim

2 ),

k3 := f(xsim,k + ∆tsim
2 k2, tk + ∆tsim

2 ),

k4 := f(xsim,k + ∆tsim k3, tk + ∆tsim).
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In these equations, ∆tsim denoted the integration time step.

C-2 Selecting Initial and Reference States

The scenarios all represent the situation where several satellites drop out of the constellation,
after which the remaining satellites have to redistribute themselves evenly. This means most
initial and reference states are zero, except those corresponding to the argument of latitude.
Given the number of satellites after the dropout to be Nsat, the number of satellites that drop
out is equal to:

Ndrop =
⌈

Nsat
10

⌉
.

The number of satellites before the dropout is thus equal to:

Nbefore = Ndrop + Nsat,

such that the initial starting angles of these satellites (for simplicity, denoted for a single-plane
scenario) are equal to:

θbefore = {0,
2π

Nbefore
, 2 · 2π

Nbefore
, . . . , (Nbefore − 1) · 2π

Nbefore
}.

Of these Nbefore angles, Nsat angles are sampled without replacement to obtain the initial
arguments of latitude at the start of the simulation.

The reference position for each satellite follows a similar pattern, where one starts with:

θend = {0,
2π

Nsat
, 2 · 2π

Nsat
, . . . , (Nsat − 1) · 2π

Nsat
}.

However, to shorten the simulation time and divide the required workload among all satellites,
the reference arguments of latitude are selected such that the mean initial error over all
satellites is zero. That is, given a mean initial error θ̄err:

θ̄err = 1
Nsat

Nsat∑
i=1

θi
end − θi

before,

the reference states are given as:

θref = {−θ̄err,
2π

Nsat
− θ̄err, 2 · 2π

Nsat
− θ̄err, . . . , (Nsat − 1) · 2π

Nsat
− θ̄err}.
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Appendix D

Estimating Uncertainties

D-1 Estimating Model Errors

Before the performance of the different SLS methods can be tested, the model inaccuracies
must be determined. For both methods, this requires an estimation of:

ϵj
A :=

∥∥∥Aj − Âj
∥∥∥

1
, ϵj

B2
:=
∥∥∥Bj

2 − B̂j
2

∥∥∥
1

, ∀j ∈ Znx−1
0 ,

as for the simple approach it holds by definition of ∥(·)∥∞→∞ that:∥∥∥A− Â
∥∥∥

∞→∞
= max{

∥∥∥A0 − Â0
∥∥∥

1
, . . . ,

∥∥∥Anx−1 − Ânx−1
∥∥∥

1
},

and similarly for
∥∥∥B2 − B̂2

∥∥∥
∞→∞

. To find these estimations, the following steps are followed:

• Firstly, a set of states for the Blend model from Section 2-2-3 and corresponding orbital
elements is generated that approximates the entirety of the feasible region with the state
and input constraints. As converting Blend states to orbital elements is difficult, this
is done by sampling 106 points in the orbital elements space, converting them to the
blend states and then discarding any infeasible points.

• For all the feasible states, the next state is estimated both with the linear model from
Section 2-2-3, as well as with the nonlinear model from Section 2-3-1. The simulation
with the latter is considered the true dynamics, and it uses a smaller timestep than the
sampling time of the controller.

• With the state from the model x̂t+1, the state from the nonlinear simulation xt+1 and
the initial state xt, it is possible to estimate the model uncertainty for A as:∥∥∥Aj − Âj

∥∥∥
1
≈
|xj

t+1 − x̂j
t+1|

∥xt∥∞
.

By taking the largest estimated model uncertainty, the worst-case model uncertainty
inside the feasible region is obtained.

• For the input matrix B2, a similar approach is followed, but the effect of the state
dynamics itself has to be cancelled out to fully account for the error in B2. Therefore,
given the input ut, the state with this input xinput

t+1 and the state without input xno
t+1,

the uncertainty can be approximated as:∥∥∥Bj
2 − B̂j

2

∥∥∥
1
≈
|xinput,j

t+1 − xno,j
t+1 − B̂j

2ut|
∥ut∥∞

.
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Once again, the largest value over all tested inputs and states is taken as the estimated
model uncertainty.

Following these steps for same setup as in Section 2-3-1, the following model uncertainties are
obtained:∥∥∥A0 − Â0

∥∥∥
1

= 2.0 · 10−3,
∥∥∥A1 − Â1

∥∥∥
1

= 2.1 · 10−3,
∥∥∥A2 − Â2

∥∥∥
1

= 2.9 · 10−5,∥∥∥A3 − Â3
∥∥∥

1
= 5.0 · 10−5,

∥∥∥A4 − Â4
∥∥∥

1
= 1.5 · 10−3,

∥∥∥A5 − Â5
∥∥∥

1
= 8.6 · 10−4,∥∥∥B0

2 − B̂0
2

∥∥∥
1

= 3.1 · 10−4,
∥∥∥B1

2 − B̂1
2

∥∥∥
1

= 2.3 · 10−3,
∥∥∥B2

2 − B̂2
2

∥∥∥
1

= 8.1 · 10−5,∥∥∥B3
2 − B̂3

2

∥∥∥
1

= 1.3 · 10−4,
∥∥∥B4

2 − B̂4
2

∥∥∥
1

= 6.0 · 10−4,
∥∥∥B5

2 − B̂5
2

∥∥∥
1

= 9.1 · 10−4,∥∥∥A− Â
∥∥∥

∞→∞
= 2.1 · 10−3,

∥∥∥B2 − B̂2
∥∥∥

∞→∞
= 2.3 · 10−3.

D-2 Estimating Disturbances

The robust SLS formulations can also deal with disturbances. To add these to the simulation,
the following steps are followed:

• For each simulation step, a random disturbance δx,k
i.i.d.∼ U(δmin, δmax) is sampled. Here,

δx,k, δmin and δmax all lie in Rnx , with nx being the state size. This changes the RK4
equations from Appendix C-1 as follows:

xsim,k+1 = f(xsim,k, δx,k) := xsim,k + ∆tsim
6 (k1 + 2k2 + 2k3 + k4) + ∆tsimδx,k.

• These disturbances are now added to the simulations states, which, as discussed in
Appendix C-1 are different than the Blend states. The conversion from xsim to xBlend
can be denoted as:

xBlend,k+1 = g(xsim,k+1)
= g(f(xsim,k, δx,k)),

such that the disturbance on the blend states can be identified as:

δBlend
x,k = g(f(xsim,k, δx,k))− g(f(xsim,k, 0)).

• For the same states as when determining the model uncertainty in Appendix D-1, both
δmin and δmax are applied to find the upper bound in the disturbance for each state j:

σj
δ := max

(
|δBlend,j

x,k | ∀xsim ∈ Xfeas, ∀ δx,k ∈ {δmin, δmax}
)

.

• For δmax = −δmin =
[
10−4, 10−4, 10−5, 10−5, 10−4, 10−4

]T
, the following upper bounds

are obtained:

σ0
δ = 0.0016, σ1

δ = 0.0017, σ2
δ = 0.00011, σ3

δ = 0.00011,

σ4
δ = 0.00093, σ5

δ = 0.00088, σδ = max
(
σ0

δ , σ1
δ , σ2

δ , σ3
δ , σ4

δ , σ5
δ

)
= 0.0017.
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Appendix E

Optimsation Problem
Reformulation

This appendix contains two parts. In the first, Appendix E-1, the standard SLS problem
is transformed into a basic quadratic problem, where the focus lies on transforming the
problem from using a matrix decision variable to a vector. In the second, Appendix E-2, the
robust lumped SLS formulation is also transformed into a basic quadratic program, where
the nonlinear constraints are rewritten into equivalent linear constraints.

E-1 Transformed System-Level Synthesis Problem

The original SLS problem is presented in Eq. (4-1):

minimize
Φ0

x, Φ0
u

xT
0 Φ0

x
TQΦ0

xx0 + xT
0 Φ0

u
TRΦ0

ux0

subject to
[
I − ZA −ZB2

] [Φ0
x

Φ0
u

]
= I0,

xmin ≤ Φ0
xx0 ≤ xmax,

umin ≤ Φ0
ux0 ≤ umax.

Φ0
x and Φ0

u are matrix variables, and therefore, this problem cannot be solved by standard
solvers for quadratic programming.

Furthermore, note that Eq. (4-1) contains essentially two different matrix multiplications
with Φx and Φu, namely those with the initial state x0 and those for the SLP. These
two types are dealt with independently in Sections E-1-2 and E-1-3, after first denoting and
refreshing the notations in Section E-1-1. The resulting transformed problem is then presented
in Section E-1-4.

E-1-1 Notations

First, recall that the first block column contains the following matrices:

Φ0
x =


Φ0,0

x

Φ1,1
x
...

ΦT −1,T −1
x

ΦT,T
x

 , Φ0
u =


Φ0,0

u

Φ1,1
u
...

ΦT −1,T −1
u

ΦT,T
u

 .
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Then, when the different entries of, for example, Φi,j
x are labelled as follows, given that the

total state size is nx:

Φi,j
x =



φx,i,j
0 φx,i,j

nx
· · · φx,i,j

(nx−2)nx
φx,i,j

(nx−1)nx

φx,i,j
1 φx,i,j

nx+1 · · · φx,i,j
(nx−2)nx+1 φx,i,j

(nx−1)nx+1
...

... · · ·
...

...
φx,i,j

nx−2 φx,i,j
2nx−2 · · · φx,i,j

(nx−2)nx−2 φx,i,j
n2

x−2
φx,i,j

nx−1 φx,i,j
2nx−1 · · · φx,i,j

(nx−2)nx−1 φx,i,j
n2

x−1


,

the vector form of which is denoted by φi,j
x defined as:

φi,j
x :=

[
φx,i,j

0 φx,i,j
1 . . . φx,i,j

n2
x−2 φx,i,j

n2
x−1

]T
.

The vector φ0
x (and similarly for φ0

u) contains all these φi,j
x :

φ0
x =

[
φ0,0

x
T

φ1,1
x

T
. . . φT −1,T −1

x
T

φT,T
x

T
]T

.

E-1-2 States and Inputs for System-Level Synthesis

States and inputs are represented in the SLS formulation (without disturbances) as follows:

x = Φ0
xx0 =


Φ0,0

x

Φ1,1
x
...

ΦT −1,T −1
x

ΦT,T
x

x0, u = Φ0
ux0 =


Φ0,0

u

Φ1,1
u
...

ΦT −1,T −1
u

ΦT,T
u

x0,

which comes back both in the objective function as well as in the constraints. The individual
multiplications between Φi,j

x and x0 can be rewritten as follows:

Φi,j
x x0 =



φx,i,j
0 φx,i,j

nx
· · · φx,i,j

(nx−2)nx
φx,i,j

(nx−1)nx

φx,i,j
1 φx,i,j

nx+1 · · · φx,i,j
(nx−2)nx+1 φx,i,j

(nx−1)nx+1
...

... · · ·
...

...
φx,i,j

nx−2 φx,i,j
2nx−2 · · · φx,i,j

(nx−2)nx−2 φx,i,j
n2

x−2
φx,i,j

nx−1 φx,i,j
2nx−1 · · · φx,i,j

(nx−2)nx−1 φx,i,j
n2

x−1




x0

0
x1

0
...

xnx−2
0

xnx−1
0



=



∑nx−1
n=0 φx,i,j

n·nxxn
0∑nx−1

n=0 φx,i,j
n·nx+1xn

0
...∑nx−1

n=0 φx,i,j
(n+1)nx−2xn

0∑nx−1
n=0 φx,i,j

(n+1)nx−1xn
0


= (xT

0 ⊗ Inx)︸ ︷︷ ︸
Kx

φi,j
x ,
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where following the same steps, Φi,j
u x0 has the following equivalent form:

Φi,j
u x0 = (xT

0 ⊗ Inu)︸ ︷︷ ︸
Ku

φi,j
u .

However, the original problem in Eq. (4-1) contains the terms Φ0
xx0 and Φ0

ux0, and thus this
expression needs to be expanded. This is easily done for Φ0

xx0:

Φ0
xx0 =


Φ0,0

x

Φ1,1
x
...

ΦT −1,T −1
x

ΦT,T
x

x0

=


Kx

Kx

. . .
Kx

Kx




φ0,0

x

φ1,1
x
...

φT −1,T −1
x

φT,T
x


= Kxφ0

x,

and where Φ0
ux0 yields a similar equivalent form:

Φ0
ux0 =


Φ0,0

u

Φ1,1
u
...

ΦT −1,T −1
u

ΦT,T
u

x0

=


Ku

Ku

. . .
Ku

Ku




φ0,0

u

φ1,1
u
...

φT −1,T −1
u

φT,T
u


= Kuφ0

u.

E-1-3 Rewriting the System-Level Parameterisation

The SLP also has to be rewritten. This constraint is originally posed in the following form:

[
I − ZA −ZB2

] [Φ0
x

Φ0
u

]
= I0,

and essentially combines the following two constraints:

Φ0,0
x = Inx ,

Φt+1,t+1
x = AΦt,t

x + B2Φt,t
u ∀t ∈ ZT −1

0 .
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The first constraint can easily be transformed, as it requires flattening the identity matrix
into Iflat

nx
:

Φ0,0
x = Inx ⇔ φ0,0

x = Iflat
nx

.

A small toy example quickly shows the pattern that occurs when transforming the second
constraint to φx and φu:

Φt+1,t+1
x = AΦt,t

x + B2Φt,t
u ,[

φx,t+1,t+1
0 φx,t+1,t+1

2
φx,t+1,t+1

1 φx,t+1,t+1
3

]
=
[
A00 A01
A10 A11

] [
φx,t,t

0 φx,t,t
2

φx,t,t
1 φx,t,t

3

]
+
[
B00 B01 B02
B10 B11 B12

]φu,t,t
0 φu,t,t

3
φu,t,t

1 φu,t,t
4

φu,t,t
2 φu,t,t

5

 ,


φx,t+1,t+1

0
φx,t+1,t+1

1
φx,t+1,t+1

2
φx,t+1,t+1

3

 = (I2 ⊗ A)


φx,t,t

0
φx,t,t

1
φx,t,t

2
φx,t,t

3

+ (I2 ⊗ B2)



φu,t,t
0

φu,t,t
1

φu,t,t
2

φu,t,t
3

φu,t,t
4

φu,t,t
5


,

such that, in general, it holds that:

φt+1,t+1
x = (Inx ⊗ A)φt,t

x + (Inx ⊗ B2)φt,t
u .

For simplicity of notation, this is rewritten as:

φt+1,t+1
x = Aφφt,t

x + Bφ
2 φt,t

u ,

with Aφ and Bφ
2 defined as:

Aφ := Inx ⊗ A, Bφ
2 := Inx ⊗ B2.

The second constraint can thus equivalently be posed as follows ∀t ∈ ZT −1
0 :

Φt+1,t+1
x = AΦt,t

x + B2Φt,t
u ⇔ φt+1,t+1

x = Aφφt,t
x + Bφ

2 φt,t
u .

By defining Aφ, Bφ
2 and Iφ as follows:

Aφ :=


Aφ

. . .
Aφ

0

 , Bφ
2 :=


Bφ

2
. . .

Bφ
2

0

 , Iφ :=


Iflat

nx

0
...
0

 ,

the two transformed constraints can be combined to obtain a similar SLP as before:

[
I − ZAφ −ZBφ

2

] [φ0
x

φ0
u

]
= Iφ.
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E-1-4 Transformed System-Level Synthesis Problem

Combining the results from Sections E-1-2 and E-1-3, the following problem is equivalent to
the original SLS problem:

minimize
φ0

x, φ0
u

φ0
x

TQφ φ0
x + φ0

u
TRφ φ0

u

subject to
[
I − ZAφ −ZBφ

2

] [φ0
x

φ0
u

]
= Iφ,

xmin ≤ Kxφ0
x ≤ xmax,

umin ≤ Kuφ0
u ≤ umax,

where Qφ and Rφ are defined as:

Qφ := KT
xQKx, Rφ := KT

uRKu.

E-2 Robust System-Level Synthesis Problem

To work around this problem, first, a possible reformulation of infinity and 1-norms is provided
in Section E-2-1. This is followed by the simplification of the constraints for the dynamical
constraints (Section E-2-2), the lumped uncertainty bounds (Section E-2-3) and the constraint
tightening (Section E-2-4).

E-2-1 Simplification of Norms

Firstly, recall the equation for the upper bound on the lumped uncertainty from Eq. (3-21):

|ηj
t | ≤ ϵj

A

(∥∥∥Φ̃t,t
x x0

∥∥∥
∞

+
t∑

i=1

∥∥∥Φ̃t,t−i
x

∥∥∥
∞→∞

)

+ ϵj
B2

(∥∥∥Φ̃t,t
u x0

∥∥∥
∞

+
t∑

i=1

∥∥∥Φ̃t,t−i
u

∥∥∥
∞→∞

)
+ σj

δ ≤ σj
t , ∀j ∈ Znx−1

0 , ∀t ∈ ZT −1
1 .

The infinity norms make it impossible to model this exact problem in, for example, OSQP,
and slow solvers such as Gurobi down. However, it is possible to convert this equation to a
standard quadratic problem using extra variables.

Secondly, recall that the infinity-norm and one-norm are defined as follows for a vector
x ∈ RN and matrix A ∈ RN×M :

x :=

x1
...

xN

 , A :=

A1

...
AN

 =

A1
1 . . . A1

M
...

AN
1 . . . AN

M

 ,

∥x∥∞ := max(|x1|, . . . , |xN |), ∥x∥1 :=
N∑

i=1
|xi|,

∥A∥∞→∞ :=

∥∥∥∥∥∥∥∥

∥∥A1∥∥

1...∥∥∥AN
∥∥∥

1


∥∥∥∥∥∥∥∥

∞

= max
(∥∥∥A1

∥∥∥
1

, . . . ,
∥∥∥AN

∥∥∥
1

)
.
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122 Optimsation Problem Reformulation

For both the one-norm and the infinity-norm, it is required to find the absolute values of the
vector or matrix. By splitting a variable xt up into a positive and negative part, it is possible
to find the absolute value in a quadratic (or linear) program:

|xi| = minimize
x+

i , x−
i

x+
i + x−

i

subject to xt = x+
t − x−

t ,

x+
i ≥ 0, x−

i ≥ 0.

The extensions to the one-norm and infinity-norm can then easily be made:

∥x∥1 = minimize
x+, x−

N∑
i=1

x+
i + x−

i

subject to x = x+ − x−,

x+ ≥ 0, x− ≥ 0.

∥x∥∞ = minimize
x+, x−, xmax

xmax

subject to x+
i + x−

i ≤ xmax ∀i,
x = x+ − x−,

x+ ≥ 0, x− ≥ 0.

E-2-2 Dynamics Constraints

The SLP from Eq. (3-16) is once more denoted below for convenience:

[
I − ZÂ −ZB̂2

] [Φ̃x

Φ̃u

]
= Σ,

with Σ equal to:

Σ =


I

Σ0
. . .

ΣT −1

 , Σt =


σ0

t
. . .

σnx−1
t

 .

Although this constraint contains no norms, it is possible to simplify it slightly nonetheless.
Firstly, the diagonal elements of Φ̃x are equal to:

Φ̃0,0
x = I, Φ̃t,0

x = Σt−1, ∀t ∈ ZT
1 .

Therefore, the dynamical constraint for Φ̃1,1
x can be rewritten as:

Φ̃1,1
x − ÂΦ̃0,0

x − B̂2Φ̃0,0
u = 0⇔ Φ̃1,1

x − B̂2Φ̃0,0
u = A.

The same approach can be followed for the other diagonal block matrices of Φ̃x, where instead
of an identity matrix, the corresponding matrix Σt−1 is used:

Φ̃t+1,1
x − B̂2Φ̃t,0

u = ÂΣt−1, ∀t ∈ ZT
1 .

For all other matrices, the equations remain the same:

Φ̃i+1,j+1
x − ÂΦ̃i,j

x − B̂2Φ̃i,j
u = 0, ∀i ∈ ZT

1 , ∀j ∈ Zi
1.
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The transformed forms of these equations, following the same steps as in Appendix E-1, are
then as follows:

φ̃1,1
x − B̂φ

2 φ̃0,0
u = AφIflat

nx ,

φ̃t+1,1
x − B̂φ

2 φ̃t,0
u = AφΣflat

t−1, ∀t ∈ ZT
1 ,

φ̃i+1,j+1
x − Âφφ̃i,j

x − B̂φ
2 φ̃i,j

u = 0, ∀i ∈ ZT
1 , ∀j ∈ Zi

1,

which can equivalently be presented in the common SLP form:

[
I − ZAφ −Bφ

2

] [φ̃t
x

φ̃t
u

]
= Iφ

t , ∀t ∈ ZT
0 ,

with φ̃t
x, φ̃t

u and Iφ
t defined as:

φ̃t
x :=

 φ̃t+1,1
x
...

φ̃T,T −t
x

 , φ̃t
u :=

 φ̃t,0
u
...

φ̃T −1,T −t−1
u

 ,

Iφ
0 := Aφ


Iflat

nx

0
...
0

 , Iφ
t := Aφ


Σflat

t−1
0
...
0

 , ∀t ∈ ZT
1 .

Note that the indices for the entries of φ̃t
x are one higher than before, as the values for Φ̃t,0

x

are known beforehand and have been moved into Iφ
t . As the input at the terminal time step

has no effect on the states, the last term from φ̃t
u can be removed such that φ̃t

x and φ̃t
u

correspond to the same number of time steps. However, because φ̃t
x is shifted, the matrix Z

is dropped in the SLP for φ̃t
u.

The sparse form of this SLP is easily found with the same procedure as in Section 4-1-3:

[
(I − ZAφ)[ix

sp,t, ix
sp,t] −B

φ
2 [ix

sp,t, iu
sp,t]

] [φ̃t
x

φ̃t
u

]
= Iφ

t [ix
sp,t], ∀t ∈ ZT

0 ,

with ix
sp,t and iu

sp,t corresponding to the non-zero elements of φ̃t
x and φ̃t

u.

E-2-3 Lumped Uncertainty Bound

The lumped uncertainty bound are given in Eqs. (3-20) and (3-21):∣∣∣ηj
0

∣∣∣ ≤ ϵj
A

∥∥∥Φ̃0,0
x x0

∥∥∥
∞

+ ϵj
B2

∥∥∥Φ̃0,0
u x0

∥∥∥
∞

+ σj
δ ≤ σj

0, ∀j ∈ Znx−1
0 ,

|ηj
t | ≤ ϵj

A

(∥∥∥Φ̃t,t
x x0

∥∥∥
∞

+
t∑

i=1

∥∥∥Φ̃t,t−i
x

∥∥∥
∞→∞

)

+ ϵj
B2

(∥∥∥Φ̃t,t
u x0

∥∥∥
∞

+
t∑

i=1

∥∥∥Φ̃t,t−i
u

∥∥∥
∞→∞

)
+ σj

δ ≤ σj
t , ∀j ∈ Znx−1

0 , ∀t ∈ ZT −1
1 ,
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and requires the simplification of the infinity-norms before it can be used in a standard
quadratic problem. Firstly, recall with help from Appendix E-1 that Φ̃t,t

x x0 and Φ̃t,t
u x0 are

equal to:

xt = Φ̃t,t
x x0 = Kxφ̃t,t

x , ut = Φ̃t,t
u x0 = Kuφ̃t,t

u .

Then, the simplified version of these infinity-norms can be found using the theory from Sec-
tion E-2-1:

∥∥∥Φ̃t,t
x x0

∥∥∥
∞

= minimize
x+

t , x−
t , xmax

t

xmax
t

subject to x+
t,i + x−

t,i ≤ xmax
t , ∀i ∈ Znx−1

0 ,

Kxφ̃t,t = x+
t − x−

t ,

x+
t ≥ 0, x−

t ≥ 0.

(E-1)

where the result for Φ̃t,t
u x0 is analogous to the result presented above.

With Φ̃t,t−i,j
x denoting the j’th row of Φ̃t,t−i

x and ej the j’th standard basis, its one-norm
is equal to: ∥∥∥Φ̃t,t−i,j

x

∥∥∥
1

= 1T
nx
⊗ eT

j︸ ︷︷ ︸
Nj

x

∣∣∣φ̃t,t−i
x

∣∣∣ . (E-2)

This allows for the computation of
∥∥∥Φ̃t,t−i

x

∥∥∥
∞→∞

, where simply the maximum one-norm has
to be selected:

∥∥∥Φ̃t,t−i
x

∥∥∥
∞→∞

= minimize
φ̃t,t−i,+

x , φ̃t,t−i,−
x ,

φ̃t,t−i
x,max

φ̃t,t−i
x,max

subject to N j
x(φ̃t,t−i,+

x + φ̃t,t−i,−
x ) ≤ φ̃t,t−i

x,max, ∀j ∈ Znx−1
0 ,

φ̃t,t−i
x = φ̃t,t−i,+

x − φ̃t,t−i,−
x ,

φ̃t,t−i,+
x ≥ 0, φ̃t,t−i,−

x ≥ 0.

(E-3)

A similar formulation can be derived for the infinity-norm of Φ̃t,t−i
u . This is in contrast to

Φ̃t,0
x , as these matrices were removed from the dynamical constraint in Section E-2-2. Luckily,

it is fairly straightforward to see that:

∥∥∥Φ̃t,0
x

∥∥∥
∞→∞

= ∥Σt−1∥∞→∞ minimize
σmax

t−1
σmax

t−1

subject to σi
t−1 ≤ σmax

t−1 , ∀i ∈ Znx−1
0

(E-4)

as σi
t−1 is guaranteed to be larger or equal to zero and as Σt−1 is a diagonal matrix, making its

diagonal elements equal to the one-norm of its row. Combining all these results, it is possible
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to find the equivalent formulation of the lumped uncertainty bound:

ϵj
Axmax

0 + ej
B2

umax
0 + σj

δ ≤ σj
0, ∀j ∈ Znx−1

0 ,

ϵj
A (xmax

1 + σmax
0 ) + ej

B2

(
umax

1 + φ̃1,0
u,max

)
+ σj

δ ≤ σj
1, ∀j ∈ Znx−1

0 ,

ϵj
A

(
xmax

t +
t−1∑
i=1

φ̃t,t−i
x,max + σmax

t−1

)

+ ϵj
B2

(
umax

t +
t∑

i=1
φ̃t,t−i

u,max

)
+ σj

δ ≤ σj
t , ∀j ∈ Znx−1

0 , ∀t ∈ ZT −1
2 ,

(E-5)

where σj
t must be minimised to find the correct solution:

minimize σj
t

subject to Constraints for xmax
t and umax

t following Eq. (E-1),
Constraints for φ̃t,t−i

x,max and φ̃t,t−i
u,max following Eq. (E-3),

Constraints for σmax
t−1 following Eq. (E-4),

Lumped uncertainty bound from Eq. (E-5).

E-2-4 Constraint Tightening

The ILSLS tightened constraints are shown in Eq. (3-22):

Hj
Xt

Φ̃t,t
x x0 +

t−1∑
i=1

∥∥∥Hj
Xt

Φ̃t,t−i
x

∥∥∥
1

+
∥∥∥Hj

Xt
Σt−1

∥∥∥
1
≤ hj

Xt
, ∀j ∈ ZnXt −1

0 , ∀t ∈ ZT −1
1 ,

Hj
XT

Φ̃T,T
x x0 +

T −1∑
i=1

∥∥∥Hj
XT

Φ̃T,T −i
x

∥∥∥
1

+
∥∥∥Hj

XT
ΣT −1

∥∥∥
1
≤ hj

XT
, ∀j ∈ ZnXT

0 ,

Hj
Ut

Φ̃t,t
u x0 +

t∑
i=1

∥∥∥Hj
Ut

Φ̃t,t−i
u

∥∥∥
1
≤ hj

Ut
, ∀j ∈ ZnUt −1

0 , ∀t ∈ ZT −1
0 ,

such that it holds that:

HXtxt ≤ hXt , HXT
xT ≤ hXT

HUtut ≤ hUt .

The state and input constraints limit these such that xmin ≤ xt ≤ xmax and umin ≤ ut ≤ umax.
This means that HXt , HXT

and HUt , along with hXt , hXT
and hUt are set up as:[

−Inx

Inx

]
xt ≤

[
−xmin
xmax

]
,

[
−Inx

Inx

]
xT ≤

[
−xmin
xmax

]
,

[
−Inu

Inu

]
ut ≤

[
−umin
umax

]
.

Hj
Xt

(and similar for Hj
XT

and Hj
Ut

) is closely connected to the standard basis ej :

Hj
Xt

=

−emx
j
, if j < nx,

emx
j

if j ≥ nx,
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where mx
j uses the modulo operator and is defined as:

mx
j := j mod nx.

Using this, the one norms simplify:∥∥∥Hj
Xt

Φ̃t,t−i
x

∥∥∥
1

=
∥∥∥emx

j
Φ̃t,t−i

x

∥∥∥
1
∨
∥∥∥Hj

Xt
Φ̃t,t−i

x

∥∥∥
1

=
∥∥∥−emx

j
Φ̃t,t−i

x

∥∥∥
1∥∥∥Hj

Xt
Φ̃t,t−i

x

∥∥∥
1

=
∥∥∥∥Φ̃t,t−i,mx

j
x

∥∥∥∥
1
∨
∥∥∥Hj

Xt
Φ̃t,t−i

x

∥∥∥
1

=
∥∥∥∥−Φ̃

t,t−i,mx
j

x

∥∥∥∥
1∥∥∥Hj

Xt
Φ̃t,t−i

x

∥∥∥
1

=
∥∥∥∥Φ̃t,t−i,mx

j
x

∥∥∥∥
1

,

where
∥∥∥∥Φ̃t,t−i,mx

j
x

∥∥∥∥
1

was already simplified in Eq. (E-2). Thus, for the states this yields the
following constraints for each row j of HXt :

minimize N
mx

j
x

t−1∑
i=1

(φ̃t,t−i,+
x + φ̃t,t−i,−

x )

subject to Hj
Xt

Kxφ̃t,t
x +

t−1∑
i=1

N
mx

j
x (φ̃t,t−i,+

x + φ̃t,t−i,−
x ) + σ

mx
j

t−1 ≤ hj
Xt

, ∀t ∈ ZT −1
1 ,

φ̃t,t−i
x = φ̃t,t−i,+

x − φ̃t,t−i,−
x , ∀i ∈ Zt−1

1 , ∀t ∈ ZT −1
1 ,

φ̃t,t−i,+
x ≥ 0, φ̃t,t−i,−

x ≥ 0, ∀i ∈ Zt−1
1 , ∀t ∈ ZT −1

1 ,

with the results for HXT
and HUt being elementary variants of these equations. The latter

differs the most, as Φ̃t,0
u cannot be replaced by Σt−1:

minimize N
mu

j
u

t∑
i=1

(φ̃t,t−i,+
u + φ̃t,t−i,−

u )

subject to Hj
Ut

Kuφ̃t,t
u +

t∑
i=1

N
mu

j
u (φ̃t,t−i,+

u + φ̃t,t−i,−
u ) ≤ hj

Ut
, ∀t ∈ ZT −1

0 ,

φ̃t,t−i
u = φ̃t,t−i,+

u − φ̃t,t−i,−
u , ∀i ∈ Zt

1, ∀t ∈ ZT −1
0 ,

φ̃t,t−i,+
u ≥ 0, φ̃t,t−i,−

u ≥ 0, ∀i ∈ Zt
1, ∀t ∈ ZT −1

0 .
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Appendix F

Extensive Simulation Results

This chapter extends the results from simulations in Sections 2-3, 3-4 and 5-3. All controller
states and inputs are fully provided for each simulation.
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F-1 Model Comparison With Planar Simulation

F-1-1 Hill-Clohessy-Wiltshire Model
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Figure F-1: States for Hill-Clohessy-Wiltshire model in planar scenario with J2 perturbations.
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Figure F-2: Inputs for Hill-Clohessy-Wiltshire model in planar scenario with J2 perturbations.
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F-1-2 Relative Orbital Elements Model
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Figure F-3: States for Relative Orbital Elements model in planar scenario with J2 perturbations.
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Figure F-4: Inputs for Relative Orbital Elements model in planar scenario with J2 perturbations.
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F-1-3 Blend Model
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Figure F-5: States for Blend model in planar scenario with J2 perturbations.
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Figure F-6: Inputs for Blend model in planar scenario with J2 perturbations.
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F-2 Model Comparison With Small Inter-Planar Simulation

F-2-1 Hill-Clohessy-Wiltshire Model
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Figure F-7: States for Hill-Clohessy-Wiltshire model in small inter-planar scenario.
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Figure F-8: Inputs for Hill-Clohessy-Wiltshire model in small inter-planar scenario.
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F-2-2 Relative Orbital Elements Model
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Figure F-9: States for Relative Orbital Elements model in small inter-planar scenario.
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Figure F-10: Inputs for Relative Orbital Elements model in small inter-planar scenario.
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F-2-3 Blend Model
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Figure F-11: States for Blend model in small inter-planar scenario.
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Figure F-12: Inputs for Blend model in small inter-planar scenario.
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F-3 Model Comparison With Large Inter-Planar Simulation

F-3-1 Relative Orbital Elements Model
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Figure F-13: States for Relative Orbital Elements model in large inter-planar scenario.
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Figure F-14: Inputs for Relative Orbital Elements model in large inter-planar scenario.
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F-3-2 Blend Model
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Figure F-15: States for Blend model in large inter-planar scenario.
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Figure F-16: Inputs for Blend model in large inter-planar scenario.
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F-4 Robust SLS Comparison With Model Uncertainty Only

F-4-1 Nominal System-Level Synthesis
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Figure F-17: States for nominal controller model with model uncertainty only.
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Figure F-18: Inputs for nominal controller model with model uncertainty only.
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F-4-2 Classical Lumped System-Level Synthesis
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Figure F-19: States for CLSLS controller model with model uncertainty only.
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Figure F-20: Inputs for CLSLS controller model with model uncertainty only.
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F-4-3 Improved Lumped System-Level Synthesis
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Figure F-21: States for ILSLS controller model with model uncertainty only.
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Figure F-22: Inputs for ILSLS controller model with model uncertainty only.
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F-5 Robust SLS Comparison With Disturbances

F-5-1 Nominal System-Level Synthesis
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Figure F-23: States for nominal controller model with disturbances.
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Figure F-24: Inputs for nominal controller model with disturbances.
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F-5-2 Classical Lumped System-Level Synthesis
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Figure F-25: States for CLSLS controller model with disturbances.
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Figure F-26: Inputs for CLSLS controller model with disturbances.
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F-5-3 Improved Lumped System-Level Synthesis
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Figure F-27: States for ILSLS controller model with disturbances.
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Figure F-28: Inputs for ILSLS controller model with disturbances.

Master of Science Thesis F.J.P. Ballast



142 Extensive Simulation Results

F-6 Large Simulations

F-6-1 Nominal Controller Without Constraints And Disturbance
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Figure F-29: States for nominal controller without constraints and disturbance.
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Figure F-30: Inputs for nominal controller without constraints and disturbance.
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F-6-2 Nominal Controller With Constraints And Without Disturbance
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Figure F-31: States for nominal controller with constraints and without disturbance.
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Figure F-32: Inputs for nominal controller with constraints and without disturbance.
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F-6-3 Nominal Controller With Constraints And Disturbance
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Figure F-33: States for nominal controller with constraints and disturbance.
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Figure F-34: Inputs for nominal controller with constraints and disturbance.
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F-6-4 Robust Controller With Constraints And Disturbance
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Figure F-35: States for robust controller with constraints and disturbance.
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Figure F-36: Inputs for robust controller with constraints and disturbance.
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