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Abstract

Atrial fibrillation (AF) is one of the most common heart diseases.
Billions of people have suffered from it in the world. Although it can
lead to terrible complications such as stroke and heart failure, the
underlying mechanisms of it are still under-explored. Besides, there
is no so-called optimal therapy for the patients. As the disease is
progressive, it is important to detect it in an early stage. To develop
methods for understanding and detecting AF, the interpretable para-
metric model can be an option. This model can provide physiological
information at the signal level. In this case, the electrocardiogram, as
the most commonly used invasive measurement of cardiac conditions,
can be the data to model the heart structure and cardiac activities.

This thesis proposes an interpretable parametric model based on
P-waves extracted from the ECG signals. Specifically, the autore-
gressive (AR) model is implemented, which is also known as linear
predicting coding (LPC). The goal is to model the atrium and un-
derstand the function of the atrium, which can reflect on the varying
parameters in the SR and AF cases. In this context, The formant
of P-waves is modeled and estimated, which is a representation of
the atrium activities. In addition, the parameters of the model are
mapped into 2-dimension by the zero-pole plots in order to interpret
the differences between SR and AF situations. Based on the differ-
ences between parameters and formants, a parametric classifier of high
interpretability is developed to detect AF. An alternating searching
algorithm is proposed to determine the parameters of the classifier.
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Abstract

Atrial fibrillation (AF) is one of the most common heart diseases. Billions of people
have suffered from it in the world. Although it can lead to terrible complications such
as stroke and heart failure, the underlying mechanisms of it are still under-explored.
Besides, there is no so-called optimal therapy for the patients. As the disease is progres-
sive, it is important to detect it in an early stage. To develop methods for understanding
and detecting AF, the interpretable parametric model can be an option. This model
can provide physiological information at the signal level. In this case, the electrocar-
diogram, as the most commonly used invasive measurement of cardiac conditions, can
be the data to model the heart structure and cardiac activities.

This thesis proposes an interpretable parametric model based on P-waves extracted
from the ECG signals. Specifically, the autoregressive (AR) model is implemented,
which is also known as linear predicting coding (LPC). The goal is to model the atrium
and understand the function of the atrium, which can reflect on the varying parameters
in the SR and AF cases. In this context, The formant of P-waves is modeled and esti-
mated, which is a representation of the atrium activities. In addition, the parameters
of the model are mapped into 2-dimension by the zero-pole plots in order to interpret
the differences between SR and AF situations. Based on the differences between pa-
rameters and formants, a parametric classifier of high interpretability is developed to
detect AF. An alternating searching algorithm is proposed to determine the parameters
of the classifier.
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Introduction 1
Atrial Fibrillation (AF) is an abnormal heart rhythm (arrhythmia) but common in
people, especially people of old age [1]. It is characterized by rapid and irregular
beating of the heart’s atrial chambers, which is dangerous since it can increase the risk
of stroke, heart failure, and other cardiovascular diseases. It remains a critical cause of
disability and death for elderly people [2]. According to statistical data, the prevalence
of AF varies from 0.12%–0.16% of people younger than 49 years to 10%–17% of those
aged 80 years or older [3].

Although AF is a serious problem threatening individuals’ lives, its origin is not yet
completely understood. Various mechanisms contribute to the initiation of AF. In
general, these mechanisms are represented by ectopic atrial firing and atrial substrates
that are generated by dysfunctional cells that promote AF [4]. In this case, it can be
concluded that AF occurs due to atrial dysfunction, and many researchers pay efforts to
investigate AF from a cellular level. One way to do so is using invasive measurements.
However, non-invasive measuring measurements are preferred from a patient’s point of
view and the cost perspective.

The Electrocardiogram (ECG) is the most well-known noninvasive method to collect
cardiac measurements from patients. With an ECG, cardiac activities are mapped to
the recordings. Accordingly, the information cardiac activities provide can be obtained
and atrial dysfunction can be analyzed at the signal level [5]. Signal-processing mod-
els can be used to deal with the waves representing cardiac activities. To guarantee
a certain degree of interpretability of the information obtained, the signal-processing
techniques should be parametric as opposed to non-parametric blind methods like ma-
chine learning techniques.

1.1 The Main Problem

Although AF influences a large number of people, the underlying mechanism is a con-
troversial topic, which is not revealed completely. Besides, nowadays, many researchers
favor exploiting machine learning and deep learning to deal with ECG signals and over-
look the interpretation of AF initiations. Hence, to tackle the interpretable information
behind the AF and atrium, a parametric signal model is investigated, whose parame-
ters can represent atrial activities. If the SR and AF differences characterized by model
parameters are investigated, it is beneficial to analyze AF mechanisms. Among those
parametric models, the autoregressive model (AR) is used to characterize the vocal
tract in order to describe the function of voicing. Motivated by this idea, it may be
also possible to model the atrium in a similar logic. Hence, in this thesis, the parametric
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Autoregressive (AR) model is implemented to obtain the information related to atrial
activities such that differences between the SR and AF can be studied. Furthermore,
with such differences, classification can be made to detect AF occurrence. Combining
the atrium model and the classification model, the overall model can be a black box
offering results and information and easy to use for patients and doctors.

1.2 Research Objectives

As discussed above, the objective of this thesis is to construct an interpretable para-
metric model to explore the pathology of AF at the signal level.

The whole model can be divided into the below questions plus one task:

1. How to model the atrium parametrically based on P-waves?

2. How to interpret information from the parameters of proposed models?

3. How to classify the SR and AF signals in an interpretable manner based on the
information obtained from the atrium model?

4. How to determine the parameters of the proposed classifier optimally?

5. Task: To model the atrium, P-waves should be extracted from the ECG record-
ings, which needs to be done before the Question 1, 2, 3, and 4.

1.3 Outline

The thesis is organized by following the logic of the framework in Fig. 1.1: the relevant
background information, which includes the morphology of an ECG signal and mod-
eling techniques, will be given in Chapter 2. Chapter 3 will provide the work about
obtaining and then modeling the P-waves, including the preprocessing step and the
atrium modeling in Fig. 1.1. The results after pre-processing and modeling, accom-
panied by some discussion, will also be shown in this chapter. Chapter 4 will mainly
focus on interpreting the information obtained from the atrium model and parameters
related to zero-pole computation and formant estimation, i.e., interpretation block in
Fig. 1.1. The atrium information provided by the model will also be obtained in this
chapter. Results and discussion related to the interpretation will be given in this chap-
ter. In Chapter 5, the classification based on parameters and information provided
by the model will be proposed. An alternating parameter identification algorithm will
also be proposed to determine the parameters of the classifier numerically. In addition,
the results of the determination and the classification will be discussed in this part.
Finally, chapter 6 will conclude the thesis, list the model’s limitations, and present
recommendations for future work.
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Figure 1.1: The framework of the model designed.
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Background 2
This chapter aims to provide some background information related to the thesis. Pre-
liminary knowledge and models will be included. Firstly, the heart in normal condition
will be introduced in Section 2.1. Secondly, atrial fibrillation and some known mecha-
nisms will be discussed in Section. 2.2. Next, the commonly-used cardiac measurements
will be discussed in Section. 2.3. Some background knowledge related to the ECG will
also be provided in that section. Then, models used in the thesis to model the atrium
will be introduced in Section. 2.4. They are the autoregressive model and the autore-
gressive moving average model. In addition, the formant modeling of the AR model
will be introduced, which allows it to represent the atrium at the signal level. Last,
Section. 2.5 will give the problem formulation of this thesis.

2.1 Heart in Sinus Rhythm

The human heart consists of four chambers: the right atrium, the left atrium, the
right ventricle, and the left ventricle. Besides these chambers, there are muscles called
myocardium stimulating the heart to contract and drive blood circulation in the body
[6]. The chambers and pacemakers are shown in Fig .2.1. The SA node at the right
atrium’s upper back wall is the starting point of the contraction [7]. It generates
electricity rhythmically. These electric impulses come across the atrium and arrive at
the atrioventricular (AV) node. During this process, the contraction of the cardiac
muscles is stimulated by the propagation of the current. Passing the AV node, the
electricity then enters the ventricle. Similar stimulations happen in the ventricle, and
the muscles contract.

The contraction of the myocardium represents action potential at the cellular level [8].
It is caused by the change in membrane potential levels. There are three phases in
the action potential: depolarization, repolarization, and hyperpolarization [9]. A real
record of the action potential is shown in Fig. 2.2. When the membrane potential
reaches the threshold, a rapid change in membrane potential occurs as an action po-
tential. The membrane potential increases due to the influx of the positively charged
sodium ions (Na+) in the rising phase known as ’depolarization’. The falling phase
is called ’repolarization’. The slow decrease of the voltage after the repolarization is
’hyperpolarization’.

5



Figure 2.1: Natural pacemakers in the heart. Source: [6]

Figure 2.2: A real action potential record. Source: [9]

For the heart in the normal situation, the SA node sends the pulses continuously and
rhythmically, and the electricity propagates smoothly. In this case, the depolarization
and repolarization of cardiac muscles happen rhythmically. This kind of rhythm is
called sinus rhythm (SR).

2.2 Atrial Fibrillation

Atrial fibrillation is an abnormal heart rhythm arising in the heart, resulting in irreg-
ular beating due to the pathological change in the atrium. It can be categorized as
paroxysmal AF (lasting less than seven days) and persistent AF (lasting more than
seven days or requiring cardioversion at any time) in terms of the duration and the
recurrent nature of arrhythmic episodes [10]. However, the condition of AF is dynamic:
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paroxysmal AF may be developed into persistent if not much attention and health
care are being paid. AF induces the electricity alternation in the myocardium, and this
electricity abnormality will promote the process by triggering myocardial apoptosis and
fibrosis [11]. In this case, ’AF begets AF’.

Lots of research has been done to explore reasons for initiating AF, whereas the under-
lying mechanism of AF are not fully understood. Many researchers hold the idea that
AF is based on different various intimating mechanisms [4]. Some related explanations
are focal ectopic firing, which starts from the myocyte sleeves located in the pulmonary
veins, and the myocardial apoptosis and fibrosis [12–14]. And the previous consensus
of AF that it results from the interplay between the changes in the myocardium and
the structural remodeling induced by AF itself has been challenged by observations of
the progressive structural abnormalities occurring independently of the cardiovascular
comorbidities and persistence of AF [15]. Accordingly, the mechanisms beneath AF are
still under-explored.

Although the underlying cause of AF is not yet revealed, what is clear is that this atrial
irregular activity results in abnormal electrogram (EGM) or ECG, which are cardiac
measurements.

2.3 Measurements of Heart Activity

People have developed different categories of measurements to get information from the
heart. The two most commonly used ones are the EGM and the ECG, which will be
introduced in this section.

2.3.1 EGM

Myocardial cells generate the cardiac action potentials rhythmically. Although a unipo-
lar system is sometimes used to detect these potentials, a bipolar one is preferred in
most cases. The bipolar electrode placed on the heart is a combination of two poles
recording potentials generated by various cells in its field of measurement. Usually,
these sensors are intracardiac and placed on the atrium. In this case, the EGM only
contains the atrial information and does not includes many muscle and tissue noises
[5]. However, it also means an EGM is invasive and not applicable to most people.

2.3.2 ECG

As mentioned in Section. 2.3.1, the EGM is invasive and thus is not convenient for
patients. A non-invasive method is more practical to implement and more acceptable
for patients, favoring the ECG. The surface ECG is the most common measurement for
detecting cardiac arrhythmia, especially AF, in the clinical case. The signal is sensed
by a number of electrodes put on different locations on the body. The standard 12-
lead system, where ten electrodes placed on the body collect data from 12 different
locations, is the most preferable and can provide the most accurate information among
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all types of ECG signals [16]. Though sacrificing the accuracy and capacity of collecting
information, fewer lead systems are more convenient for patients to wear. Meanwhile,
systems with fewer leads, like the single-lead system, can also offer sufficient information
about AF [17].

An example of a SR ECG signal in one period is shown in Fig. 2.3. On the ECG,
the P wave representing the atrial depolarization is the first wave right before the QRS
wave. Next to the P wave, the QRS wave with the highest amplitude takes the most
prominent position in an ECG period. It indicates ventricular depolarization. After
the QRS wave, the T wave appears indicating the ventricular repolarization. For a SR
signal, an interval between two successive R peaks called a RR interval is regular since
the rhythmical electricity passes the heart without any interference.

Figure 2.3: Waveform of a standard ECG signal. Source: [18].

As for the AF signal, there are three characteristics:

• irregular RR intervals,

• the presence of fibrillatory waves (f-waves) due to the undulating atrial activity,
and

• the absence of repeating P waves.

An example of the ECG signal in AF is shown in Fig. 2.4, where the blue dots mark the
R peaks for better elaboration. It can be observed that f-waves replace the P waves.
In addition, the RR intervals become irregular, because the electricity conduction gets
disturbed. However, one thing to be noted is that a healthy heart can also perform
slight RR irregularity due to respiratory sinus arrhythmia (RSA), a natural heart rate
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variability in synchrony with respiration [19]. It manifests itself as a shorter R-R interval
during inspiration and a longer RR interval during expiration [20].

Figure 2.4: Waveform of an AF ECG signal from a real patient. The blue dots mark R peaks.

Since multiple waves exist in a single beat of an ECG of recording, the spectrum of ECG
consists of various frequency components. A typical short-term ECG power spectral
density (PSD) is shown in Fig. 2.5. These peaks in the figure correspond to different
waves [21]:

• The peak at 1 Hz represents the heart rate (60bpm)

• The peak at 4 Hz corresponds to the T-wave

• The peak at 7 Hz means the frequency of P-wave.

• The peak at 10 Hz represents the QRS complex.

Although these particular numbers vary across patients, leads, and body conditions,
the order of them does not change. Since AF happens in the atrium, P-waves are more
important in this sense. P-waves have a narrow frequency band ranging from 0 Hz to
15 Hz [22].

Figure 2.5: A typical PSD of ECG. Source: [21]
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2.4 AR & ARMA Modeling

To obtain interpretable information from the heart, one option is to implement para-
metric models to model the ECG signal or the components of the ECG signal. This
section will discuss two types of parametric models that are powerful in dealing with
time series: the AR model and the ARMA model. The definition and basic equations
will be given. The relationship between the AR model and the linear prediction coding
will be discussed following the conception of the AR model, which makes it possible
for the AR model to extract the formant. At the end of the section, the applications
of the AR model in ECG will be discussed.

2.4.1 Basic Concept of AR model

The AR model is a commonly-used model in dealing with time series. It holds the
assumption that the target process is a so-called autoregressive process, meaning that
the present sample in a series can be predicted by the weighted sum of previous samples
with an uncorrelated Gaussian distributed error. Due to this special property, this
model has been used in multiple domains like signal processing, econometrics prediction,
and statistics [23]. In the signal processing domain, it plays a crucial role in biomedical
signal processing, speech signal processing, and signal encoding [24]. The literature on
the AR model on the ECG signal will be discussed in Section. 2.4.4. In the speech
signal processing domain, it is used as the linear predictor estimating the values of each
sample by using previous samples and is known as the linear prediction model. The
equation of the model is expressed as

xt =

p∑
i=1

aixt−i + ϵt, (2.1)

where p is the order of AR model, ai is the parameter called coefficient, and ϵt is
white noise. The interpretability means human can easily understand the information
and explanation provided by the model. As for the AR model, AR parameters can
be interpreted in some manners and allow the information of the input process to be
understood easily. Hence, the AR model is a parametric model and interpretable. By
using the lag operator to represent the lag, the equation can be rewritten as

xt =

p∑
i=1

aiL
ixt + ϵt, (2.2)

and this can be further written as the below equation by shifting the summation to the
left side, where a0 = 1.

p∑
i=0

aiL
ixt = ϵt. (2.3)

In this case, an AR model can be considered as an output of a linear infinite impulse
filter with white noises as the input since ϵt is white noise. In addition, Eq. 2.4 gives
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the frequency domain description,

A(z)Xz = εz. (2.4)

where A(z) is specified by

A(z) = (1 + a1z
−1 + a2z

−2 + · · ·+ apz
−p) (2.5)

In this case, the AR coefficients compose a filter A(z) where the input is the time series
and the output is the white noise. Since the input process is correlated and the output
white noise is uncorrelated, it is easy to understand that this model has the capability
of decorrelating. This is why it is implemented in the thesis: to exploit its decorrelation
property, the P-waves can be modeled as a pulse train activating the atrium.

Since the AR model is parametric, the way to compute the coefficients is pretty im-
portant. The simplest way to achieve that is to minimize the minimum squared error
(MSE):

a = argminE[(xt − a0 − a1xt−1 − · · · − apxt−p)]
2

a = [a0, a1, . . . , ap]
T

a0 = (1− a1 − · · · − ap)µ.

(2.6)

However, the MSE method is not robust since it may lead to the wrong source signal
because the minimum value might correspond to another source signal [25]. In real
cases, there are other methods used to reach these coefficients, which are more stable
and will be introduced in the following Chapters.

2.4.2 AR Model and Linear Prediction Coding

The AR model belongs to linear prediction coding (LPC) in the speech signal domain
[26]. LPC is one of the most powerful and parametric speech analysis methods [27, 28].
Its application in speech signal processing provides the intuition of this thesis, which
will be introduced in this section. It is used to model the human speech production
system. The idea is expressed in Fig. 2.6.

Figure 2.6: The diagram of the LPC filter applied on speech processing.

The voiced signal and unvoiced signal compose the excitation signal, where the voiced
signal is an impulse train. The time-varying filter is LPC, representing the combination
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of spectral contributions by the glottal flow, the voice tract, and the radiation of lips.
The system function of it is given by

H(z) =
S(z)

X(z)
=

G(1−
∑M

j=1 bjz
−1)

1−
∑N

i=1 aiz
−i

, (2.7)

where G is the gain. If the order of the denominator is high enough, this state system
function can be approximated by an all-pole filter [26],

H(z) =
G

A(z)
=

G

1−
∑p

i=1 aiz
−i
, (2.8)

and the temporal expression is

sn = Gxn +

p∑
j=1

ajsn−j. (2.9)

Therefore, it becomes the AR model. It can be understood that the AR model is a
special case of the LPC.

The LPC, or the AR model, is often used to model the vocal tract characterized by reso-
nances. These resonances give rise to the formants in the frequency spectrum: behaving
as some peaks in the spectrum [29]. In fact, a formant represents the concentration of
the energy around a specific resonance frequency in the speech signal. In other words,
the LPC or AR model can tell the information about the vocal resonance property.
Therefore, the parameters from this parametric model are of spectral interpretability
related to the vocal tract.

2.4.3 ARMA model

The autoregressive moving average (ARMA) model is another well-known method to
investigate the time series in the statistical sense. With the prerequisite that the input
process is stationary, the ARMA model consists of an AR term and a moving average
term [30]. Compared to the AR model, the moving average term is introduced to model
the error term as a linear combination of values of the present and past errors. The
ARMA model is written as ARMA(p, q) and the formula is expressed as

xt =

p∑
i=1

aixt−i +

q∑
j=1

bjϵt−j + ϵt, (2.10)

where p is the order of the AR term, q is the order of the moving average term, and ϵi is
the error term following identical independent and identically distributed white noise.

The advantage of the ARMAmodel is it can achieve the same decorrelation performance
as the AR model but uses fewer orders. That is, it can replace the AR model by using
fewer poles and introducing some zeros. In this case, the ARMA model can be a more
parsimonious choice when dealing with some underlying process. The disadvantage of
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it is the longer length requirement for the input. In principle, the AR model at least
needs a series with the length of p. However, the ARMA model requires at least pq
observations to do backcasting and p + q + 1 samples to compute the initial guess.
Hence, the least length of the process required by ARMA model is max(p+ q + 1, pq)
Besides, the choice of q is critical because the ARMA model is not invertibe in some
cases.

As mentioned above, the prior condition that the ARMA model holds is that the
process is stationary. In the case where the input process is not stationary, the series
should be differentiated to become stationary prior to entering into the model. This is
because the differentiation can help stabilize the mean of the process by removing the
time-dependent changes.

2.4.4 AR Modeling in ECG

The AR model is widely-used in ECG signal processing. In this section, two applications
are introduced.

Firstly, the AR model can be used to extract components of ECG signals like f-waves
[17, 25, 31]. In this case, the f-waves are modeled as an AR process and the aim is to
separate the atrial source from the combination of sources of atrial, ventricular, and
extracardiac origin. To connect this problem with the AR model, the linear model is
firstly written as

x(n) = As(n), (2.11)

where A is L × L instantaneous unknown mixing matrix, and s(n) contain the sig-
nals from L different ’sources’. x(n) represents ECG signals from L leads and are
prewhitened. In this case, Eq. 2.11 is formulated in the array processing form. In the
context of extraction of f-waves, s1(n) is assumed to be the atrial source, i.e., the f-wave
source. Hence, the aim becomes to recover s1(n) from x(n):

d(n) = s1(n) = wTx(n), (2.12)

where w is demixing vector and wTw = 1. The demixed signal d(n) is modeled as an
AR process,

d̂(n) =
P∑

p=1

apd(n− p). (2.13)

The prediction error is expressed as

ed(n) = d(n)− d̂(n), (2.14)

and this can be further derived as

ed(n) = wT (x(n)−
P∑

p=1

apx(n− p)) = wTex(n), (2.15)

In this case, w can be obtained by minimizing the mean square error ,

E[e2d(n)] = wTE[ex(n)e
T
x (n)]w, (2.16)
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subject to wTw = 1.

The second application is to exploit AR coefficients for classification [32–34]. In this
application, the AR model is implemented to extract features of ECG signals in SR
and arrhythmia cases. Then, some classification techniques are used, most of which
are machine learning algorithms [33, 34]. This literature achieved high accuracy of
classification by exploiting machine learning algorithms. Nevertheless, the drawback of
machine learning is accompanied. That is, the interpretability is weak. For instance,
[33] uses the generalized linear model which uses the Euclidean distance between AR
parameters, but no interpretations of the parameters were explored. As a result, these
papers did not explore the physiological relationship between AR coefficients and ECG
signals.

2.5 Problem Formulation

Among these works of literature using the AR model described above, the whole ECG
signals are processed. Whereas it is possible to obtain information related to the AF
only based on P-waves and f-waves due to that P-waves reflect the atrium activities
and AF happens due to atrium dysfunction. Hence, in this thesis, we focus on P-waves
and extract them first.

Similar to the idea of how the AR model models the vocal tract, as introduced in
Section.2.4.2, the idea is to use the AR model to model the atrium. This is because of
a similar mechanism from the signal processing perspective: both inputs of the vocal
tract and the atrium can be considered as impulse trains. Fig. 2.7 illustrates this idea,
where schematic diagrams of the pulse train and P-waves are drawn. In this diagram,
the pulse train representing the voiced signal in Fig. 2.6 becomes the pulse train from
the SA node. The output speech signal now turns to P-waves. In other words, the SA
node sends pulse trains in nature, and the atrium is modeled as an AR model.

Figure 2.7: The flowchart of the idea.
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Hence, it can be expected that the AR model can yield the information in a similar
manner as the LPC does in the vocal tract. This kind of information in the SR case
and AF case can be compared and analyzed, such as changes in the atrium in the AF
case. Moreover, the ARMA model is also applied and the comparison is made. The
classification is done based on the extracted information, which will be introduced in
the following Chapters.
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Proposed Atrium AR Model 3
This chapter introduces the first contribution of this thesis: building the atrium model,
including the preprocessing block and the atrium modeling block in Fig. 1.1. The
extraction of P-waves, which corresponds to the preprocessing block, will be discussed
in Section. 3.1.2, including noise reduction and P-waves delineation. After P-waves are
extracted, the following model needs to be built. The pre-requisition of the AR model
and ARMA model is the stationarity of the input process. Therefore, the stationarity
will be assessed quantitatively in Section. 3.2. Afterward, the methods to compute the
AR model and ARMA model are discussed in Section. 3.3 and Section. 3.4. Section.
3.5 will illustrate the order identification and quantify the correlation removal of these
two models, allowing to determine the final model. Last, Section. 3.6 will present the
implementation, some results, and discussions of signals.

3.1 Extraction of P waves

As discussed in Chapter 2, P-waves are the input of the model due to the fact that AF
mainly influences the atrium. In this case, it is necessary to extract P-waves at first.
In this section, the technique of P-waves acquisition will be discussed, including noise
reduction and P-waves delineation.

3.1.1 Noise Reduction

Real ECG signals are always incorporated with many noises and artifacts. There are
three types of noises influencing the modeling performance of ECG signal: the baseline
wander (BLW), powerline interference, noises caused by muscle activities, and electrode
motion artifacts [35]. Besides, there is another common noise that exists in all real ECG
recordings used and is discovered in the experiments.

The BLW, also known as baseline drift, is the effect where the base of the ECG signal
moves up and down instead of being orderly. In this case, the signal is shifted away
from the baseline. The frequency of BLW ranges from 0 − 0.5 Hz which is a very low
frequency band. Hence, a high-pass filter with a cut-off frequency of 0.6 Hz can remove
it. In this thesis, the zero-phase fourth-order Butterworth filter is used as a high-pass
filter. The Butterworth filter is one of the most commonly used frequency domain filters
due to its sharp frequency roll-off feature [36]. The frequency response is expressed as

|H(w)|2 = 1

1 + ( ω
ωc
)2n

(3.1)
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where ω is the frequency, ωc is the cut-off frequency, and n is the filter order. An
example is shown in Fig. 3.1. The signal is a simulated ECG signal only containing
BLW artifacts. Fig. 3.1 shows the filtered signal is lined up well, meaning that BLW
artifacts can be removed by the designed filter effectively. What is noticeable is that
though removing BLW, the base amplitude of the signal is a negative value instead of
zero.

Figure 3.1: Comparison between the signal before removing BLW and after when the input
is a simulated ECG signal. The filter at 0.6 Hz can filter the BLW artifacts well such that
the resulting signal is lined up.

Powerline interference is an instrumental noise, originating from electromagnetic inter-
ference of the alternating supply [37]. It performs as interference at the frequency of 50
Hz or 60 Hz, where a peak appears at the spectrum. This interference makes it difficult
for ECG analysis since it contaminates low-amplitude components like T waves and P
waves. Since its typical frequency is 50 Hz, the low-pass filter with a cut-off frequency of
50 Hz can be used to reduce it. Fig. 3.2 shows an example of noise reduction where the
signal is a real ECG signal. It shows the powerline interference is reduced drastically.

Muscle noise is caused by muscle activities during measuring ECG signals. In contrast
to the previous two types of noises, this kind of noise can not be removed easily, and the
technique to reduce it is still underdeveloped [35]. It is because its frequency spectrum
overlaps the whole ECG spectrum. But normally, this noise only appears several beats
and hence it will not impose a big influence on the results of the thesis. A real ECG
containing this noise is plotted in Fig. 3.3, where the muscle noise is shown in the red
rectangle.

In the experiments, another low-frequency noise is found in real ECG recordings from
the SR dataset which is the MIT-BIH normal sinus rhythm dataset [38], which does
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Figure 3.2: Comparison between the signal before removing powerline interference and after.
The signal is a real ECG signal. It shows the powerline interference depicted in yellow is
removed.

Figure 3.3: A real ECG signal contains the muscle noise that is encircled by the red rectangle.
This kind of noise only happens in a short time duration, normally several beats.
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not belong to any of the types of noises mentioned in [35]. This special noise made
it difficult for the model to model the atrium activities since the P-waves are also
low-frequency and noises and P-waves are mixing. To elaborate on the noises, some
real ECG signals will be considered. But firstly, a series of P-waves extracted from
a simulated ECG signal will be used to describe the true PSD of the P-waves. The
waveform and the PSD are shown in Fig. 3.4. According to (b) in Fig. 3.4, the most
energy of P-waves concentrates at around 5 Hz, which means a peak envelope, i.e., only
one formant, appears there. In addition, no very low-frequency peak emerges here.

(a) Simulated P-waves (b) PSD of simulated P-waves

Figure 3.4: Simulated P waves and the PSD. A formant can be observed in the PSD around
5 Hz.

Then, for real noisy recordings whose P waves are not prominent, the peak of P waves
will become lower than the low-frequency noise peak. Since there are too many record-
ings in the SR dataset and it is not possible to show them all, only the first four
recordings are used as examples to explain this noise, and their PSDs are shown in
Fig. 3.5. Among them, one recording has prominent P-waves and it’s PSD is shown
in (a) in Fig. 3.5. The others have weaker P-waves that are overwhelmed by low-
frequency noises and their PSDs are depicted in (b)-(d). It can be observed that a
common peak at a frequency around 1.2 Hz arises in all PSDs except recording in (a).
Instead, the PSD in (a) shows the most energy at around 10 Hz, whose morphology
matches the normal situation, i.e., the simulated P-waves. The conditions of subjects
of these recordings can not be known in detail at the present time because the public
SR dataset has been constructed since the 1990s and no detailed information about
how recordings were made is given. However, by observing signal waveforms, it is dis-
covered that such kind of noise exists in the recordings which are noisy and have weak
P-waves amplitude. Moreover, both the simulated P-waves and clean P-waves perform
only one formant instead of two. In this noisy case, the peak which represents the
most energy of P-waves is weaker than the noise peak around 1.2 Hz, like the peak at
around 8 Hz in (b). This kind of low-frequency noise will do harms to the information
extraction based on P-waves because the AR model focuses on modeling signals from
the frequency perspective. In order to overcome the low-frequency noise, the cut-off
frequency of 0.6 Hz of the high-pass filter used to remove BLW is extended to 1.3 Hz
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such that this noise at around 1.2 Hz can be filtered.

(a) PSD of the real P-waves from the recording
which has prominent P-waves and little noises.

(b) PSD of the real P-waves from the recording
when P-waves are weak and noises are prominent.

(c) PSD of the real P-waves from another noisy
recording.

(d) PSD of the real P-waves from another record-
ing.

Figure 3.5: PSD of real P-waves. (a) depicts the recording which is pretty clean and has
prominent P-waves. (b)-(d) plots recordings with prominent low-frequency noises and weak
P-waves

It has to be mentioned that the cut-off frequency of 1.3 Hz will also remove some content
of P-waves, but most energy of P-waves remains and it really improves the results that
will be shown in the following chapters. Otherwise, the information of P-waves will be
masked by low-frequency noises.

3.1.2 Wave Extraction

A preliminary step for modeling P-waves is to delineate P-waves from the raw ECG
signal. An open-source detector is used to identify the R peaks in the ECG [38, 39]. It
is developed based on the envelop detecting method to achieve the information related
to R peaks and RR intervals [40–42]. After obtaining the locations of R peaks, the
QRST complexes should be removed afterward such that only P-waves are preserved.
To achieve this goal, a rectangular window is used. Then, the QRST complexes are
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subtracted from the ECG signal and hence P waves remain. The window is built based
on these detected R peaks,

start = Rpeak − 0.1 ∗ T
end = Rpeak + 0.7 ∗ T

(3.2)

where Rpeak denotes the location of an R peak. The length of a window is characterized
by the window length parameter T that depends on the type of window length. There
are two types of window length developed: the minimum window length (MWL) method
and the average window length (AWL) method. For MWL, T is defined as the minimum
RR interval, and T is considered the average RR interval for AWL,

MWL : T = min{RRinterval}
AWL : T = avg{RRinterval}
.

(3.3)

When dealing with SR ECG signals, the different T does not make much difference. It
is because the normal ECG signal is regular, and hence the minimum RR interval and
the average of RR intervals are not different in principle. However, when dealing with
the AF signals, AWL and MWL methods will have large differences in the window due
to the irregular RR intervals. If using the MWL method, some other components, like
T waves, are not subtracted and will remain in the extracted signal. This will influence
the following modeling. An example is shown in Fig. 3.6. This problem happens due
to the irregularity of AF which causes some RR intervals to become pretty small. If
such an RR interval is picked as the window length, it is not representative of the whole
signal.

To address this problem, the AWL is considered and residual T waves can be excluded.
However, although the extra components are eliminated, some f-waves are not extracted
due to irregularity. For very small R-R intervals, the window located at the first QRST
complex will overlap with the window of the second QRST complex. In this case, f-
waves in this R-R interval will be omitted. An example of the extracted AF signal
illustrating this problem is shown in Fig. 3.7, which is extracted from the same signal
as Fig. 3.6. This figure shows that only f-waves are extracted and no other components
remain. The red, green, and pink windows encircle three successive QRST complexes
with two small R-R intervals. In these two intervals, three windows cover the two R-R
intervals exactly; hence, no f-waves are extracted in these two R-R intervals.

These two windows actually hold different tolerances of errors: the MWL tolerates the
disturbances and noises, while the AWL gives tolerance to the missing of data. They
will cause different classification performances which will be discussed in Chapter 5.3.

3.2 Stationarity Assessment

AR requires the input signal to be a stationary process. However, a long-term ECG
recording is not stationary at all. To guarantee the prerequisite, the ECG signal is
usually divided into short windows, which contain 10 − 20 seconds. In this case, the
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Figure 3.6: Signal extracted from a real recording by using MWL. Red rectangular encircle
some residual T waves.

Figure 3.7: Signal extracted from a real recording by using AWL. Three rectangular mark
successive small RR intervals in different colors. In these two intervals, three windows cover
the two R-R intervals exactly; hence, no f-waves are extracted in these two R-R intervals.
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short stationarity assumption can be used, which means the statistical properties of
each window can be assumed relatively constant [43, 44]. In this thesis, the P-wave
series extracted from the complete ECG signal is divided into 10 equal-length windows,
where each window contains around 20 beats. In this case, the length of each window
is 15 − 20 seconds, depending on the heart rate of patients. One problem of direct
windowing and dividing is the first beat and the last beat of the recording may not
contain intact components, i.e., these two beats only have T-wave or half of QRS
complexes. To address this problem, the first and last beats are discarded.

Although windowed signals hold the short stationarity assumption intuitively, it is
good to prove and quantify the stationarity. The augmented Dickey-Fuller (ADF) test
is implemented in order to achieve this. In other words, it tells whether a signal is
stationary or not [45]. This test is done based on the so-called unit root representing
the random walks of the process. The unit root is defined by the one value of a1 in
the equation of the AR model: if there is a parameter |a1| = 1, the unit root exists.
It describes the random walks of the process in the statistical sense. Hence, a process
with a unit root is considered non-stationary. In addition, ADF test is based on the
hypothesis that the unit root is present in the time series. It is conducted with two
assumptions:

• Null hypothesis: The series is non-stationary, and it has a unit root.

• Alternative hypothesis: the series is stationary, and it does not have a unit root.

For the null hypothesis, the formula is written as

xt = xt−1 + β1∆xt−1 + β2∆xt−2 + · · ·+ βp∆xt−p + ϵt (3.4)

where a1 is restricted to 1, and ∆ represents the differencing operator. In this case, the
differences of the series are introduced compared with the original formula of the AR
model. This is done by adding and subtracting ai+1xt−i:

xt = xi−1 + · · ·+ (ai + ai+1)xt−i + ai+1(xt−i − xt−(i+1)) + · · ·+ apxp + ϵt (3.5)

and
xt = xi−1 + · · ·+ (ai + ai+1)xt−i + ai+1∆xt−i + · · ·+ apxp + ϵt (3.6)

where ai+1 = βi. This adding-and-subtracting step is done recursively, and Eq. (3.4)
can be obtained. As for the alternative hypothesis, the model is

xt = a1xt−1 + β1∆xt−1 + β2∆xt−2 + · · ·+ βp∆xt−p + ϵt (3.7)

where a1 < 1. The estimate â1 is solved by linear regression with the help of QR
decomposition. The test statistic used is standard t statistic, i.e.,

t1 =
â1 − 1

SE(â1)
(3.8)

where â1 is the ordinary least squares estimate of a1 and SE(â1) is the standard error
in the alternative model. Finally, the test tells the confidence of the presence of the
unit root by computing the cumulative distribution function of t1.
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3.3 AR Coefficient Computation

Although the coefficients of the AR model can be computed easily by the LSE method
mentioned in Chapter. 2.5, it is more stable to use other methods like the Yule-Walker
method or the Burg method to obtain the coefficients. In this section, these two
methods will be implemented and discussed.

3.3.1 Yule-Walker Method

The Yule-Walker method is common when it comes to computing the coefficients of
the AR model. This method is based on solving Yule-Walker equations [46]. Recall the
formula of the AR model

xt =

p∑
i=1

aixt−i + ϵt (3.9)

If xt−k (the sample at lag k) is multiplied to both sides in Eq. (3.9), the equation
becomes

xt−kxt =

p∑
i=1

aixt−ixt−k + ϵtxt−k (3.10)

and take the expectance,

E(xt−kxt) =

p∑
i=1

E(aixt−ixt−k) + E(ϵtxt−k) (3.11)

If the noise at the present time is uncorrelated with the previous values of the signal,
the zero correlation term can be eliminated,

E(xt−kxt) =

p∑
i=1

E(aixt−ixt−k) (3.12)

where E(xt−kxt) is the covariance between xt and itself at lag k, i,e, autocovariance.
Using ck to represent it and exploiting the evenness of autocovariance that ck = c−k,
the previous equation can be expressed as

ck =

p∑
i=1

aici−k (3.13)

Divide through by c0,

ρk =

p∑
i=1

aiρi−k (3.14)

where ρk is the Pearson correlation coefficient [47]. Eq. (3.14) is general since k can be
any number other than 0. Collecting equations at all lags together and stacking them
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can yield

ρ1 =

p∑
i=1

aiρi−1

ρ2 =

p∑
i=1

aiρi−2

. . .

ρp =

p∑
i=1

aiρi−p

(3.15)


ρ1
ρ2
· · ·
ρp

 =


ρ0 ρ1 · · · ρp−1

ρ1 ρ0 · · · ρp−2
...

...
ρp−1 ρp−2 · · · ρ0



a1
a2
· · ·
ap

 (3.16)


ρ1
ρ2
...
ρp

 =


ρ0 ρ1 · · · ρp−1

ρ1 ρ0
... ρp−2

... · · · · · ·
ρp−1 · · ·

... ρ0



a1
a2
...
ap


r R a

In this case,

r = Ra (3.17)

since ρ0 = 1, R have diagonal elements of 1. It means R is full rank and symmetric.
Hence, it is invertible and the coefficients can be solved

â = R−1r. (3.18)

The Levinson–Durbin algorithm is often used to solve this equation at a faster computer
speed, which is a recursion algorithm [48, 49].

3.3.2 Burg Method

Burg method is another method to estimate coefficients a robustly in a forward-and-
backward prediction manner. Instead of computing coefficients directly, the Burg
method estimates reflection coefficients that measure the correlation between two sam-
ples [50]. To be specific, the reflection coefficient kp measures the correlation between
xt and xt−n by ignoring the influences of samples at all other lags. The −kp is the
partial autocorrelation. The Burg method first computes the forward and backward
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prediction errors, which are defined as

ef,p(t) = x(t) +

p∑
i=1

ap,ix(t− i), t = p+ 1, . . . , N

eb,p(t) = x(t− p) +

p∑
i=1

a∗p,ix(t− p+ i), t = p+ 1, . . . , N,

(3.19)

where p indicates the order. Since there are too many subscripts, the xt is written as
x(t). The AR coefficients are determined by

ap,i =

{
ap−1,i + kpa

∗
p−1,p−i, i = 1, . . . , p− 1

kp, i = p.
(3.20)

The kp in the Burg method is obtained by minimizing the mean of two prediction error
variances,

min
k̂p

1

2
[ρf (p) + ρb(p)], (3.21)

where

ρf (p) =
1

N − p

N∑
t=p+1

|ef,p(t)|2

ρb(p) =
1

N − p

N∑
t=p+1

|eb,p(t)|2.

(3.22)

With these equations, Eq. 3.19 can be further expressed as

ef,p(t) = ef,p−1(t) + kpeb,p−1(t− 1)

eb,p(t) = eb,p−1(t− 1) + k∗
pef,p−1(t).

(3.23)

Since Eq. 3.21 is actually quadratic in kp, according to [48], kp can be obtained by

kp =
−2

∑N
t=p+1 ef,p(t)e

∗
b,p(t− 1)∑N

t=p+1[|ef,p(t)|2 + |eb,p(t− 1)|2]
. (3.24)

In this case, the recursive Burg algorithm is listed in Algorithm. 1

3.4 ARMA Coefficient Computation

As for the computation of ARMA coefficients, it is not as trivial as the AR model due to
the introduced MA coefficients which make the estimation nonlinear. The conditioned
maximum likelihood estimation (MLE) is implemented to solve this problem [51–53].
All coefficients in Eq. (2.10) can be collected to a set of parameters

θT = (a1, . . . , ap, b1, . . . , bq). (3.25)
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Algorithm 1 The Burg algorithm

1: Initialization: ef,0(t) = eb,0(t) = x(t), m = 1
2: repeat
3: ef,m(t) = ef,m−1(t) + kmeb,m−1(t− 1)
4: eb,m(t) = eb,m−1(t− 1) + k∗mef,m−1(t)

5: km =
−2

∑N
t=m+1 ef,m(t)e∗b,m(t−1)∑N

t=m+1[|ef,m(t)|2+|eb,m(t−1)|2]

6: am,i =

{
am−1,i + kma∗m−1,m−i, i = 1, . . . ,m− 1

km, i = m.
7: m← m+ 1
8: until m = p

Output: a, k

Then, the likelihood function of x is written as

L(xt; θ, σ
2
ϵ ) = f(xt|θ, σ2

ϵ ), (3.26)

where
xT
t = [xt, xt−1, . . . , x1]. (3.27)

Since xk, k ∈ {t, t− 1, . . . , 2} only depends on ϵk given xk−1 and ϵk is white noise, the
likelihood function can be further derived as

f(xt|θ, σ2
ϵ ) =

t∏
i=p+1

f(xt|xt−1, θ, σ
2
ϵ )f(xp|θ, σ2

ϵ ). (3.28)

Set ϵp = ϵp−1 = · · · = ϵp−q+1 = 0 to create the conditioned likelihood function [52, 53].
Hence, Eq. (3.28) reduces to

f(xt|θ, σ2
ϵ ) =

t∏
i=p+1

f(xt|xt−1, θ, σ
2
ϵ ) (3.29)

With the reasonable assumption that the process is Gaussian due to the white noise ϵt,
then the likelihood function can be expanded,

L(xt; θ, σ
2
ϵ ) = (σ2

ϵ2π)
− t−p

2 exp(− 1

2σ2
ϵ

t∑
k=p+1

ϵ2k). (3.30)

Take the logarithm of Eq. (3.30),

L(xt; θ, σ
2
ϵ ) = −

t− p

2
log(2π)− t− p

2
log(σ2

ϵ )−
t∑

k=p+1

ϵ2k
2σ2

t

. (3.31)

In this sense, maximizing the log-likelihood becomes minimizing the sum of square

errors, i.e.,
∑t

k=p+1

ϵ2k
2σ2

t
. Denote it as

S(θ) =
t∑

k=p+1

ϵ2k. (3.32)
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It is a function of θ since ϵk is given by

ϵk = xk −
p∑

i=1

aixt−i − b1ϵk−1 − · · · − bqϵk−q. (3.33)

By differentiating Eq. (3.31) with respect to σ2
ϵ , the estimate of σ2

ϵ is obtained,

σ̂2
ϵ =

S(θ)

t− p
. (3.34)

Inserting it back to Eq. (3.31) yields

L(xt; θ, σ
2
ϵ ) = −

t− p

2
log(S(θ)) + c. (3.35)

where c represents all constants. This shows maximizing the log-likelihood function is
actually minimizing S(θ), and Newton’s method is used to reach the appropriate θ.

3.5 Order Identification and Correlation Removal

For a general ARMA model, Eq. (2.10) can be re-expressed as

xt = h(t) ∗ ϵt (3.36)

where

H(Z) = FFT (h(t)) = B(Z)

A(Z)
=

∑q
k=1 bkz

−k

1 +
∑p

k=1 akz
−k

. (3.37)

The ARMA reduces to the AR model when B(Z) = 1. Hence, the AR model is an
all-pole filter, and the ARMA model is a zero-and-pole model.

Considering the assumption made in Chapter. 2.4.4, the pulse train is sent by the SA
node and input to the atrium. Since each pulse is sent independently, the pulse train
has a spectrum consisting of infinite single pulse spectrums. It means the spectrum
of the pulse train is flat, namely, white; hence, it can be considered ϵt. In this sense,
the AR or ARMA model can be used to decorrelate P-waves xt, which means the
model filters a signal with a non-white spectrum into a signal with a white spectrum.
To determine which model is more useful for further experiments, the decorrelating
capability of these models should be evaluated.

3.5.1 Order Identification

The order of the AR or ARMA model is critical since it determines the capability
of fitting the signal. One way to identify which order for the AR model is the most
appropriate is to use the partial correlation function (PACF). It defines the correlation
between the present sample and the sample at lag k but excludes samples at all other

29



lags. A suitable order of an AR model is the first value smaller than the 95% confidence
interval [52]. The formula can be written as Eq. (3.38) by following this idea,

ϕt,t =
ρt −

∑t−1
k=1 ϕt−1,kρn−k

1−
∑t−1

k=1 ϕt−1,kρk
(3.38)

The order of the AR process can be determined by the first value below the 95%
confidence level of PACF. The bound of 95% confidence level is determined by

bound =
z

σ̂
(3.39)

where σ̂ represents the standard error of the PACF, and z = 1.96 when using a 95
percent confidence level [54]. According to [55], when the process is assumed to be
autoregressive of order p, σ̂ satisfies

σ̂ ≃ 1√
t

(3.40)

where t is the length of observations. Fig. 3.8 shows that for simulated P-waves the
first value below the confidence interval is at the lag of 6, and for the real P-waves,
the first value is at the lag of 11. Hence, the appropriate order in different cases is
different. Since the desired model needs a general and determined order for all signals,
only a rough range of orders from 6 to 12 can be made. In this case, a further order
identification procedure is needed, which will be discussed in Section. 3.5.2.

(a) PACF of simulated P-waves within 20 lags. (b) PACF of real P-waves within 20 lags.

Figure 3.8: PACF of simulated and real P-waves.

As for the ARMA model, the Akaike information criterion (AIC) and Bayesian infor-
mation criterion (BIC) are used to give reference orders of AR and MA terms. AIC and
BIC trade off the fitting performance and the model complexity, namely the number
of parameters [56, 57]. The algorithm based on AIC and BIC is given in Algorithm. 2,
where pmax = 16, and qmax = 4. This algorithm of order searching is actually a trial-
and-error method. The maximum of q is set to four to guarantee system invertibility.
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The initial pair of order is pinitial = 2, qinitial = 1 because the model will become an MA
model or AR model if p = 0 or q = 0. The resulting pair of orders based on simulated
P-waves is p = 10, q = 3 given by the algorithm.

However, this pair of p, q is too high since the max appropriate order of p of AR
model is just 12. The ARMA model eliminates two poles but introduces three zeros.
Therefore, AIC and BIC may not give enough useful information in dealing with the P-
waves. Under this circumstance, the prediction error variance is considered to evaluate
models, which will be discussed in the next part.

Algorithm 2 ARMA Order Identification Algorithm

1: Input: pmax, qmax, s
2: Initialization: p = 2, q = 1
3: repeat
4: Estimate ARMA model and obtain L based on p, q, and s
5: q ← q + 1
6: p← p+ 1
7: until p = pmax, q = qmax

8: Compute AIC and BIC for each pair of p and q.
9: [p1, q1] = min{AIC}

10: [p2, q2] = min{BIC}
11: [poutput, qoutput] = min{p21 + q21, p

2
2 + q22}

Output: poutput, qoutput

3.5.2 Correlation Removal

The AR or ARMA model can remove the underlying correlations of the input P-waves.
The decorrelated output signal of the model is also called prediction error. The pre-
diction error variance can be used to quantify the remaining correlation in the signal.
It is computed by

et = xt − x̂t, (3.41)

where x̂t is the predicted value at the present time and is calculated by

x̂t = −
p+1∑
i=2

aixt−i+1. (3.42)

The computation of the prediction error in the AR model is shown in Fig. 3.9. This
figure also elaborates on the reason why the prediction error is actually the decorrelated
output signal.

The AR model based on the Yule-Walker method, AR model based on the Burg method,
and the ARMA models with different numbers of MA terms ranging from 1 to 4 are
implemented on simulated and real signals, respectively. The prediction error variances
in the AR and ARMA models with different orders of AR terms are shown in the below
figures. Fig. 3.10 shows the results based on simulated P-waves, and Fig. 3.11 shows
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Figure 3.9: Computation of the prediction error of the AR model.

the variances based on real P-waves. According to the two figures, it can be observed
that all variances are very tiny at the scale of 10−4 and thus, the changes in variances
are not significant. That is, signals are decorrelated greatly in all cases. For instance,
the prediction error variance of the Burg method decreases about 1 × 10−5 from the
order of 2 to the order of 10, which is really tiny. According to two figures, the variance
in the real signal case is higher than that in the simulation case. It is due to the noises
and artifacts existing in the real signal. The real signal is more complicated, and the
model does not fit it as well as fitting the simulate signal.

For the AR model, when p, the order increases, variances of both methods decrease, but
the Burg method always has a lower variance, which means it performs better in decor-
relating the input signal. It has to be mentioned that the changes are not significant,
either. The variance does not change a lot after p = 8, meaning that increasing the
order of the model can not enhance the decorrelation capability. Although the changes
of variances are not significant among different orders and it can be considered that all
models achieve similar decorrelating performances in two figures, combined with the
results of PACF, an order no lower than 8 is good. In this case, the range of p from 8
to 12 that has been made in the last subsection is suitable. Besides, a very low order
can not reflect the frequency-shaping property of the model, which will be discussed in
Section. 3.6.1. Since differences of variances among different orders are not distinct,
a further comparison will be made and the final order will be determined in Chapter.
5.3.

Although all ARMA models have lower variances compared to AR models, the Burg
method is approximately the same. Since the scale of the variance is really tiny, i.e.,
the changes are not significant, the differences among different models can be omitted.
The ARMA model was expected to behave better correlation removal than the AR
model, i.e., much lower variance than the AR model. However, the experiments imply
these two models actually have similar performance. In this case, there is no need to
use the ARMA model because the AR model is computationally faster. Among the
two methods of AR models, the Burg method still has a lower variance compared to
the Yule-Walker method, though the difference is really small. In this case, the AR
model based on the Burg method with the range of order from 8 to 12 can be used for
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Figure 3.10: Comparison about the prediction error variance among models. The input signal
is a simulated signal.

Figure 3.11: Comparison about the prediction error variance among models. The input signal
is one real signal.

further experiments. It has to be mentioned that the order of the model is still not
decided regarding the tiny difference in residual variances. In this case, three orders
will be used throughout the following chapters. The reason for keeping using them all
is that the order will impose an influence on the frequency responses of models and
the information obtained, which will be discussed in the following chapters. The final
order will be decided in the procedure of classification in the Chapter. 5.3.
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3.6 Model Implementation

After P-wave signal is extracted by the methodology discussed in Chapter. 3.1.2 and
the AR models with orders ranging from 8 to 12 based on the Burg method are decided
as the models to represent the atrium, the signal can be input to models. In this
section, the temporal and frequency results of signals after modeling will be given.
They are related to three types of data, the simulated SR signal, the real signal in the
SR scenario, and the real signal in the AF scenario. In every scenario, the ECG signal
is firstly resampled to 250 Hz and filtered to remove noises. Next, the first 200 beats of
the P-wave/f-wave signal are extracted as the methodology mentioned in Section. 3.1.2.
Then, they are divided into 10 equal-length windows, each containing around 20 beats,
as described in Section. 3.2. Although the AWL and MWL methods have different
results from the quantitative perspective in the AF scenario, they can be considered
the same in the idea of qualitative analysis, i.e., models based on these two methods
perform the same trend on the resulting signals. Hence, considering there are too many
figures to show all results of the two window methods, only the results of the MWL
method will be listed. Before input, the signal is centered by subtracting the mean
value.

3.6.1 Model Implementation on Simulated Signals

The simulated SR signal is produced by a well-known simulator called ECGSYN [58].
It is open-source, whose codes are provided on [38]. This simulator can generate real-
istic ECG waves by solving ordinary differential equations (ODE) [59]. The sampling
frequency is set to 250 Hz. The mean heart rate is 60 bpm. The standard deviation of
heart rate is 1 bpm. The LF/HF ratio is 0.5.

An example of the input signal and the output signal is shown in Fig. 3.12. Since there
are 10 windows, it is not possible to list plots of all windows. In this case, only a few
beats are shown. Besides, for the simulated signal, the AR model does not make any
differences in the waveform when p = 8, p = 10, and p = 12. Thus, only the output
signal in the AR model with the order of 8 is placed here. According to the figure, there
are some discontinuities at the edges of P-waves. This is because the onset and end
of P-waves in the raw ECG signal are negative values. Moreover, these discontinuities
influence the resulting signal which has two impulses at the corresponding edges.

Since the AR model decorrelates the signal, one way to visualize the decorrelation is
to depict the frequency spectrum. Fig. 3.13 shows an example, which is from the same
window of Fig. 3.12. It is the PSD of the output signal. Same as the waveform case, the
change of order does not lead to different PSDs of the output signal, and hence only the
PSD of p = 8 is shown. This figure shows the spectrum is flat and has a value at every
frequency. The autocorrelation function of the input signal and the output signal of all
AR model orders is shown in Fig. 3.14. It can be observed the input signal is highly
correlated and the output signal only has a high value at the lag of 0, which implies the
correlation of the input signal is highly removed. The order of the AR model influences
the autocorrelation of the output signal. When the order increases, the values between
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Figure 3.12: The output signal of the AR model with p = 8 and the input P-waves in the
simulation case.

two positive peaks become lower, as marked by red blocks, meaning that the correlation
is removed further. Moreover, a periodical decay pattern exists in these functions due
to the repeating pulses in the time domain. In addition, autocorrelation functions in
the three cases are similar, which match the similar correlation removal in the three
values of p.

Figure 3.13: An example of the PSD of the output signal when the order of AR model is 8.
It is the same window as Fig. 3.12

According to the PSD and autocorrelation function, it can be concluded that the output
signal is almost decorrelated, which also verifies the low prediction error variance in
Section. 3.5.2. In this case, the output signal can be considered a decorrelated pulse
train, though the pulse train is not perfect. This is reasonable since the atrium is not
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(a) Input signal (b) p=8

(c) p=10 (d) p=12

Figure 3.14: The autocorrelation of the input signal and the output signal after processing
by the AR model with different orders. It can be observed the correlation is highly removed
by comparing (a) and (b-d). For a pulse train, the autocorrelation is periodically decayed in
(b-d).

an AR model in nature. The idea mentioned in Chapter. 2.5 is validated by the results.

The frequency responses of the AR model are depicted in Fig. 3.15 and Fig. 3.16. The
former gives a response of the AR model with different orders on one window of the sig-
nal, which is from the same 3rd window. According to the figure, one peak is observed,
which implies the characterization of the atrium made on the pulse train sent by the SA
node. This kind of peak in the speech signal is called ’formant’, functioning the voiced
pitch that is also an impulse train into a speech signal. In a similar manner of thinking,
it can be considered that the atrium models the pulse train into P waves by shaping
the frequency spectrum and concentrating the signal energy at the formant frequency.
In addition, it can be discovered that the increasing order shapes the frequency peak
sharper. This results from more coefficients being used to model the atrium.

Frequency responses of all windows are shown in Fig. 3.16 by stacking responses to-
gether. Only p = 8 is listed here since the differences are not prominent among orders
ranging from 8 to 12 in the simulation case. Although Fig. 3.10 and Fig. 3.11 show that
the order 2 or 4 is sufficient for the prediction error variance, the frequency responses,
which are shown in Fig. 3.17 and Fig. 3.18, can not perform a formant in these two
cases. In this case, it can be understood that the order should be appropriately high
to model the formant of P-waves. Each line in Fig. 3.16 represents the response of
a window in the figure. Every window has the same response because the signal is
simulated and has no artifacts or disturbances. By using the simulated signal, the
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(a) p=8 (b) p=10

(c) p=12

Figure 3.15: The frequency response of the AR model implemented on the same window as
Fig. 3.12.

Figure 3.16: The frequency responses of the AR model implemented on all windows when
p = 8 when the input of the model is a simulated signal.

AR model can give some reference results which are beneficial when implementing the
model on a real dataset. Results from the real signals will be discussed in the next
section.

3.6.2 Model Implementation on SR Signals

In this section, the real SR signals are used, where the conditions are more complex
compared to the simulation case. The dataset used is MIT-BIH normal sinus rhythm
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Figure 3.17: The frequency responses of the AR model implemented on all windows when
p = 2. Although the prediction error variance is small, the formant is not modeled.

Figure 3.18: The frequency responses of the AR model implemented on all windows when
p = 4. Similar to p = 2, the formant of P-waves is not modeled.

database which is a public dataset [38]. This dataset consists of 18 long-term SR ECG
recordings with two leads. Since the AR model only requires a single signal, recordings
from the first lead are used. Considering that there are too many plots for all recordings,
only results related to one recording are listed as examples in this section. The overall
methodology is the same as the simulated signal.

The input and output signals in several beats are plotted in Fig. 3.19 as an example.
The amplitude of P-waves is multiplied by 2 such that both signals can be observed
obviously and there is no overlapping in the figure. Since the order of the AR model
does not have a large influence on the waveform, only the p = 8 case is listed. In
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addition, the amplitude of P-waves is scaled by 2 in order to show clearly. The figure
shows that if the input signal is contaminated by noises, the model will also model
some noises. The PSD of the output signal when p = 8 is depicted in Fig. 3.20, which
shows the output signal is decorrelated with a white spectrum. Only the p = 8 case is
listed since various orders of the AR model do not cause a large difference in the PSD
of the output signal.

Figure 3.19: The output signal of the AR model with p = 8 and the input P-waves in the
real signal case. To better compare two signals, the amplitude of the P-waves is multiplied
by two. Otherwise, there is an overlapping of waveforms in the figure.

Figure 3.20: An example of the PSD of the output signal when the order of AR model is 8 in
the real SR signal case.

The autocorrelation function of the input signal and the output signal is given in Fig.
3.21. Similar to the situation when the input is a simulated signal, the correlation is
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highly removed. In addition, the residual correlation in the red blocks decreases when
the order increases. Moreover, the smallest negative value between Lag = 0 and the
second peak is not as prominent as the simulation case. It can be concluded from Fig.
3.20 and Fig. 3.21 that the input P-waves are decorrelated by the AR model. Hence,
the idea in Chapter. 2.5 is validated by the real data.

(a) Input signal (b) p=8

(c) p=10 (d) p=12

Figure 3.21: The autocorrelation of the input signal and the output signal after processing by
the AR model with different orders in the real SR case. It can be observed that the correlation
is removed by comparing (a) and (b-d).

The frequency responses of a single window in the AR model with different orders are
shown in Fig. 3.22. Three figures come from the same window. Through (a), (b),
(c), it can be observed that increasing p contributes to concentrating the energy of
the waves, which is similar to the simulation scenario. Besides, as the order increases,
another peak appears gradually at the normalized frequency of around 0.25. This peak
does not reflect the P-waves, instead. The first reason is that the frequency band of
P-waves does not reach such a high frequency which is 31.25 Hz. Fig. 2.5 suggests
the frequency band of the whole ECG signal is lower than 30 Hz. [22] also mentions
P-waves is normally considered below 10 − 15 Hz. The second reason is that PSD of
the simulated case only shows one formant when the order is 12. Hence, the other
emerged peak implies that some coefficients of the model are allocated to the noise
representation, and the spectrum and energy of noises are modeled. Fig. 3.23 shows
the stack of responses of all windows. When p = 12, another peak starts to appear at
around 30 Hz, which is in accordance with Fig. 3.22.
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(a) p=8

(b) p=10

(c) p=12

Figure 3.22: The frequency response of the AR model with different windows implemented
in a single window. The input signal is the SR signal.

These results, based on the simulated signal and the real SR signal, provide an interpre-
tation of the AR model modeling the atrium. It gives information related to the single
formant and implies the way of shaping P-waves. In this case, the AR model can be
considered a pulse-shaping filter, and thus, the atrium is discovered as a pulse-shaping
filter. The input electrophysiological pulse train sent from the SA node is modeled by
the atrium as the series of P-waves in the way that the atrium shapes the frequency
spectrum of the pulse train.
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(a) p=8

(b) p=10

(c) p=12

Figure 3.23: The frequency responses of the AR model with different orders implemented on
all windows. The input signal is the SR signal.
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The reason for the existence of these formants is that P-waves are not simple, single-
frequency signals, although their waveforms look like they are sinusoidal. Many my-
ocardial cells contribute to the formation of a P-wave through depolarization. This is
because the electrical wavefront propagating through the atrium activates these cells in
different regions at slightly different times. Since P-waves are the summation of elec-
trical activities of all atrial myocardial cells, these different temporal activations lead
to the composite frequency of P-waves. Hence, multiple frequency components exist in
P-waves, which have different frequency bands and different energies. Therefore, there
becomes a formant that gathers the most energy of those different frequencies. Be-
sides, only a single formant exists in a signal segment due to the coordinated activation
and conduction of atrial myocardial cells. The wave propagates quickly and uniformly
through these cells and causes coordinated activation, leading the single formant to
emerge.

3.6.3 Model Implementation on AF Signals

Since AF is a common but risky disease and detection of it is one of the goals of this
thesis, the AF signals are used in order to evaluate how the parameters change. In
this section, the real AF signals are used, where the results can be expected to be very
different. The dataset used is the MIT-BIH atrial fibrillation database which is also
a public dataset from the physionet website [38, 60]. Twenty-three recordings from
AF patients are included in the dataset, most of whom are paroxysmal AF patients.
The dataset also contains two leads recordings and the first one is implemented. The
onset and end of AF segments are annotated in the dataset and used to extract pure
AF signals for experiments. Only the recordings which have more than 200 beats AF
are used because the AR model requires the input signal to have 200 beats in total.
In addition, since the overall model in this thesis should be universal for all kinds of
ECG signals, whether AF or SR, the same methodology as the other two scenarios are
implemented. However, one thing has to be mentioned is that the extraction method
mentioned in Chapter. 3.1.2 only extracts the part of AF components that exist between
QRST complexes. Since there are too many recordings and will be too many figures if
the results of all recordings are shown, only the results of one recording are listed as
examples.

Fig. 3.24 shows the waveforms of the output signal and f-waves. In the AF case, it can
be observed the input process becomes chaotic and irregular compared to the SR case,
which causes the chaotic performance on the output signal. The output frequency is
shown in Fig. 3.25, inferring that the output signal has a white spectrum and hence is
decorrelated. Since the PSD is similar for the AR model with different orders, only the
p = 8 case is listed here.

43



Figure 3.24: The output signal of the AR model with p = 8 and the input P-waves in the
AF case. The amplitude of the P-waves is multiplied by two such that the waveforms of two
signals can be observed obviously. Otherwise, there will be an overlapping of two waveforms
in the figure.

Figure 3.25: An example of the PSD of the output signal when the order of AR model is 8 in
the AF case.

Besides, the autocorrelation of the input signal and the output signal is revealed in
Fig. 3.26. Comparing (a) and (b-d), it can be observed that the correlation is removed,
like the simulation and SR cases. Similar to the autocorrelation function in the SR
case, the increasing order leads to lower values of autocorrelation encircled in the red
blocks. The difference is that these functions become more chaotic and complex than
them in the SR case. To be specific, the figure does not show the naive pattern of
the autocorrelation function, which contains a high value of 1 at lag 0 and performs
periodical decay due to the repeating pulses in the time domain.
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(a) Input signal

(b) p=8

(c) p=10

(d) p=12

Figure 3.26: The autocorrelation of the input signal and the output signal after processing
by the AR model with different orders. The input signal is the AF signal. Similar to former
cases, the correlation is removed. The autocorrelation in (b-d) becomes chaotic compared to
the SR case. 45



The responses of the AR model of one window and all windows are plotted in Fig. 3.27
and Fig. 3.28. It can be observed in Fig. 3.27 that AF arises a different pattern of the
filter’s frequency response compared to the SR case or the simulation scenario. The
peak disappears and the energy is distributed when p = 8 and p = 10. A potential
peak arises when the order increases to 12 because too many AR coefficients are used
to model f-waves plus artifacts. In this case, the model can be considered overfitting
instead of fitting well. In addition, not all windows have this kind of peaks, as shown
in Fig. 3.28. This also implies the model is overfitting in the first several windows.
Otherwise, the peak pattern should appear in all windows.

(a) p=8

(b) p=10

(c) p=12

Figure 3.27: The frequency response of the AR model with different windows implemented
in a single window. The input signal is the AF signal.

The disappearance of the formant implies that the myocardial cells are not activated in
the coordinated fashion as in the SR case. In a heart suffering from AF, the pathological
changes make it difficult for electrical waves to propagate uniformly and follow the one-
way direction. The normal electrical pathways may get blocked, and the waves may
propagate through some abnormal pathways. In this case, myocardial cells are not
activated coordinatedly and even initial activities spontaneously, contributing to the
chaotic frequency components resulting in the chaotic frequency response.
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(a) p=8

(b) p=10

(c) p=12

Figure 3.28: The frequency responses of the AR model with different orders implemented on
all windows. The input signal is the AF signal.
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3.7 Chapter Summary

This chapter mainly focuses on proposing the atrial model based on the idea of Chapter.
2.5. The noises are firstly reduced and P-waves are extracted. These two steps compose
the pre-processing of this thesis, as highlighted in Fig. 1.1. Then, the signal station-
arity is assessed to fulfill the pre-requisition of models. The AR models and ARMA
models are evaluated and the AR model based on the Burg method is considered as the
final model, whereas the order is not determined and varies from 8 to 12. According
to the results in this chapter, the single formant of P-waves is modeled. It is a rep-
resentation that the atrium activities generate the P-waves by shaping the frequency
spectrum of the input pulse train. The potential connection between the formant and
the physiological information of the heart is built. The order of the model influences
the frequency response of the model because a higher order means more coefficients are
used to model the signal components regardless of P-waves or noises. In this case, the
order will also influence the information obtained from the parameters, which will be
discussed in the next chapter.
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Interpreting Information from
AR models 4
After obtaining the model parameters and results of signals, the interpretation can be
completed. This chapter will discuss two perspectives of interpreting information from
AR models, corresponding to the interpretation block in Fig. 1.1. The zero-pole plot
will first be used in Section. 4.1, where the locations of poles reflect the modeling
of P-waves. Moreover, formants will be estimated in Section. 4.2. Finally, the ECG
modeling will be done and compared to the P-waves modeling in Section. 4.3, conveying
that the whole ECG signal is not applicable in the model.

4.1 Zero-pole Plot

As discussed in Chapter. 3, the frequency responses of the AR model in the SR case and
the AF case are different due to the extraction of different waves. Although the filter
composed by these AR coefficients reflects the resonance frequency and formant, these
coefficients are only some numbers and need to be interpreted in a more informative
manner. One way to achieve this is to use the zero-pole plot which is a graphical
representation of the system function. An advantage of this representation is that it
maps the one-dimensional model parameters into the 2-dimensional space such that it
is easier for clustering.

By observing Eq. 2.8, it is understood that the AR model is an all-pole model. There-
fore, there are some poles with one zero point at the origin. Locations of these poles
are derived by solving the roots of the polynomial in the denominator of Eq. 2.8,

H(z) =
1

A(z)
=

1∏p
i=1(1− siz−1)

(4.1)

where si is a complex number. Among these poles, there is always a pair of conjugate
complex numbers. Hence, the locations of these poles are symmetric in principle. In
addition, all poles lie within the unit circle since the AR model is invertible.

As described before, since the number of figures of results from all recordings is large,
only two examples of SR and AF results are shown. The recordings are the same as
SR and AF recordings used in Chapter 3.

The zero-pole plots of the AR model based on the SR recording are depicted in Fig. 4.1.
The figure shows that as the order of the AR model increases, the number of poles also
increases. Since these poles are arranged regularly, they can be considered clusters.
For instance, when p = 8, there are eight clusters of poles. Moreover, compared to
the situation of a lower order, most poles in a higher order, like p = 12, become
distributed chaotically, which means the increasing order leads modeling of noises and
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artifacts. Nevertheless, there is a cluster that hardly changes, which is the first cluster
going counterclockwise along the x-axis. It becomes more concentrated as the order
increases. This cluster actually represents the most energy of the frequency of P-waves,
which are the peaks in the frequency response of Fig. 3.23. This cluster is desired since
it represents the resonance information of the atrium. In (a), a red circle is used as an
example to mark the cluster of poles representing the frequency of P-waves.

The zero-pole results based on the AF signal are shown in Fig. 4.2. It can be observed
that all poles spread chaotically and not as concentrated as in the SR case. It implies
the energy dispersion in the spectrum of the F-waves. This is due to the dysfunction
of the atrium, i.e., the atrium does not have the capability of shaping the receiving
impulse as a kind of wave with a particular resonance frequency. Besides, the figure
shows that when p = 8, the poles other than these desired poles can still be considered
to form clusters. These dispersed poles tell that when AF happens, the atrium losses
the capability of generating normal waves.

(a) p=8 (b) p=10

(c) p=12

Figure 4.1: The zero-pole plots of the AR model based on the SR recording. The red circle
in (a) marks the desired cluster of poles.
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(a) p=8 (b) p=10

(c) p=12

Figure 4.2: The zero-pole plots of the AR model based on the AF recording. The poles of
the model are more dispersed than those of the SR case.

4.2 Poles and Formants

4.2.1 Formants Estimation

Zero-pole plots have been achieved in the last section. To better interpret the frequency
of the poles, the formant estimation is implemented. The locations of roots calculated
from the polynomials of the AR model represent the information of formants. The
frequencies of formants in the angular form are estimated by

Ωi = atan2(Im(si), real(si)) (4.2)
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where atan2() measuring the angle between the x-axis and the ray from the origin to
the root si is given by

atan2(x, y) =



arctan
(
y
x

)
, x > 0

arctan
(
y
x

)
+ π, y ≥ 0, x < 0

arctan
(
y
x

)
− π, y < 0, x < 0

+π
2
, y > 0, x = 0

−π
2
, y < 0, x = 0

0, y = 0, x = 0

(4.3)

It has been shown in Chapter. 3.6.1 and Chapter. 3.6.2 that there is only a single
formant in the spectrum of the P-waves. When the order of the AR model increases,
the simulation results show no new formant emerges, and the real SR signal shows the
newly appeared formant is located at around 31.25 Hz and thus corresponds to the
noises. Hence, it can be considered that P-waves only contain one formant.

Since these roots always appear in pairs, only the roots whose imaginary part is positive
are included. Afterward, the angular frequencies can be converted into frequencies in
Hz. Considering the desired pole is the first pole with a non-zero imaginary part and
there is a single formant, the frequency of it is the smallest positive value among all
estimated frequencies. Although only the AR model implemented on SR signals can
perform formants in the frequency response, the same methodology is done on the
AR model based on the AF signals since the overall model should be general. The
estimated frequencies f̂of the example SR recording and AF recording are listed in the
table below.

Window Index f̂ when p = 8 (Hz) f̂ when p = 10 (Hz) f̂ when p = 12 (Hz)

1 8.94 9.01 9.44
2 8.88 8.81 8.96
3 8.37 8.57 9.28
4 9.14 9.01 8.77
5 8.95 9.07 9.58
6 8.56 8.82 9.32
7 8.37 8.58 9.37
8 8.68 8.78 9.29
9 8.73 8.84 9.19
10 8.99 9.05 9.56

Table 4.1: The estimated formant frequencies of the example SR recording with different
orders of the AR model.

According to these two tables, it can be observed that the AR filter based on the
SR signal models a more concentrated set of formant frequencies than the AF signal.
In other words, whilst modeling the AF signal, there is a larger variation in these
frequencies which are represented by the poles standing in similar locations to the SR
case. This is consistent with the zero-pole representation. The estimated zero frequency
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Window Index f̂ when p = 8 (Hz) f̂ when p = 10 (Hz) f̂ when p = 12 (Hz)

1 5.01 5.25 5.28
2 5.17 5.62 5.64
3 4.90 5.05 5.19
4 5.50 5.72 5.66
5 2.33 3.77 4.62
6 4.27 3.39 4.36
7 5.50 5.51 5.56
8 3.91 2.99 2.91
9 4.25 2.79 4.69
10 4.12 9.59 0

Table 4.2: The estimated formant frequencies of the example AF recording with different
orders of the AR model.

means the window lacks a pole in the certain area and has the pole on the x-axis, which
leads to a tremendous variation. Moreover, it can be discovered that these estimated
frequencies increase as the order increases. Hence, the order of the model also influences
estimated frequencies.

4.2.2 Analysis of poles and formants

Although the frequency responses and the zero-pole plots are shown above, it is better
to draw them together such that the relationship between the poles and frequency re-
sponses can be explored. In this case, the 3-d plots containing zero-poles and frequency
responses with different model orders are depicted in Fig. 4.4, Fig. 4.4, and Fig. 4.5.

According to these figures, it can be observed that the shape of frequency responses is
highly connected to the distribution of poles. To be specific, the first cluster of poles
in (a) in Fig. 4.3 locates at the position of the peak of frequency responses, which
means they determine the resonance frequency in the responses. In addition, these
poles are near the unit circle that is plotted by the red dotted line. Since the distance
between a pole and the origin defines the amplitude of the response at this frequency,
the near-unit-circle positions contribute to the peaks of formants. However, a different
situation is discovered by looking at the 3-d plots of the AF case in (b) in Fig. 4.3.
When AF occurs, these desired poles move further inner the unit circle rather than
close to it, generating quite flat frequency responses. Besides, these poles in the AF
case move toward the real axis, meaning that the frequency represented becomes lower
and no peaks appear.

Since the relationship between the coordinated activity of myocardial cells, the uniform
propagation of electrical waves, and the appearance of the formant is analyzed in Chap-
ter. 3.6, it can be inferred that the concentration of poles actually implies the degree
of the coordinated activations of these cells. In the SR scenario, the electrical wave
propagates uniformly and myocardial cells are activated coordinately, resulting in the
concentrated poles. However, in the AF scenario, poles in the desired cluster become
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greatly dispersed. This observation describes the chaotic activation of myocardial cells,
which results from the chaotic wave propagation and spontaneous activations of cells.

(a) The 3d plot in the SR case. (b) The 3d plot in the AF case.

Figure 4.3: The 3d plots when p = 8.

(a) The 3d plot in the SR case. (b) The 3d plot in the AF case.

Figure 4.4: The 3d plots when p = 10.

(a) The 3d plot in the SR case. (b) The 3d plot in the AF case.

Figure 4.5: The 3d plots when p = 12.

4.3 Comparison with the ECG Modeling

It has been introduced in Chapter. 2.4.4 that some literature exploits the combination
of AR parameters and machine learning techniques to achieve the classification of SR
and AF ECG signals. However, machine learning techniques, like the generalized linear
model, the k-nearest neighbor, and the support vector machine [33, 34, 61], do not
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exploit the information related to the physiological structure of the heart. This is why
this thesis turns to model the atrium parametrically based on P-waves. However, what
if the atrium can also be modeled based on the ECG signal? If the total ECG recording
is applicable in the same methodology, it is potentially better to use ECG since the
problem of discontinuity brought about by the P-waves extraction can be overcome.
In this section, the whole ECG recording will also be implemented, and the results
will be compared with those in the P-waves case. Instead of using signals from the
SR recording, the SR signal and AF signal are both from the AF recording in order to
evaluate the frequency change in ECG signals resulting from the atrium dysfunction.

Firstly, like the process in Chapter. 3.5.2, the order of the AR model should be de-
termined by correlation removal. The prediction error variances from AR models with
different orders are shown in Fig. 4.6 when the input signal is the SR signal. The
figure shows the variances among different windows when the order changes. It can be
observed that variances do not decrease after p = 8. Hence, the order can be considered
p = 10. Besides, the variances of ECG signals are much larger than those of P-waves,
which means residual correlations existing in the post-processed signals are larger.

Figure 4.6: Prediction error variance of ECG signals in the SR case.

In addition, the frequency responses of all AR models based on the SR ECG and the
AF ECG are depicted in Fig. 4.7. According to the figure, the responses in the two
cases do not exhibit different patterns: both perform about three peaks. In this case,
the responses can not convey the information related to the P-waves since the existence
of P-waves does not influence the morphology of responses.
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(a) Frequency response when input is the SR signal.

(b) Frequency response when input is the AF signal.

Figure 4.7: The frequency responses of AR models implemented on the SR ECG signal and
the AF ECG signal.

Furthermore, the zero-pole plots in two cases are shown in Fig. 4.8. There are three
clusters lying within the first quadrant in both cases, corresponding to three peaks
in the responses. Other poles mainly contribute to modeling the noises. When AF
happens, the distribution of poles becomes less concentrated, which is similar to the
situation of only P-waves. However, the difference between the SR and AF cases is
not as prominent as the situation of P-waves. By combining the responses and zero-
pole plots of AR models, it can be concluded that ECG signals are not useful in this
methodology. This is because P-waves are not prominent in the whole ECG signal.
Even these weak waves are replaced by f-waves which have much less energy when AF
happens. Under this circumstance, the parameters of the AR models can only reflect
the contribution of QRST complexes, meaning that they mainly convey information
about the ventricle, and it is hard to interpret the atrium information directly.
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(a) Zero-pole plot when input is the SR signal.

(b) Zero-pole plot when input is the AF signal.

Figure 4.8: The zero-pole plots of AR models implemented on the SR ECG signal and the
AF ECG signal.
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4.4 Chapter Summary

In this chapter, the interpretation of the information based on the model parameters is
done. Firstly, the zero-pole plot is used to obtain information from the AR coefficients.
This kind of plot can map these coefficients from 1-dimension to 2-dimensions such
that they become sparse and high-dimension information can be acquired. In this
case, the location of the first cluster of poles characterizes the formant which is a
representation of how the atrium shapes input pulse trains. Besides, frequencies of
formants are estimated. In the AF scenario, it can be observed the distribution of
poles becomes dispersed and chaotic, implying that the atrium loses the capability
of generating normal waves. In this case, the AF is interpreted at the signal level.
Moreover, the signal level interpretation is linked with the physiological information
of the atrium. Last, the complete ECG signal is implemented to explore whether the
methodology is useful in the whole ECG recording. However, the results show that AF
events can not be reflected in the intact recording. The possible reason is that P-waves
and f-waves have weaker energy than QRST complexes and the model mainly focuses
on QRST complexes.
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Classification of SR and AF
Signals 5
In this chapter, the classification process will be elaborated, which corresponds to the
classification block in Fig. 1.1. To be specific, the criteria development will be shown
first in Section. 5.1. Secondly, the identification of the parameters of the classifier will
be discussed in Section. 5.2. Last, the classification results based on different metrics
and the discussion will be illustrated in Section. 5.3.

5.1 Criteria Development

As described in the above section, the poles in the SR and the AF cases show different
types of distributions, especially poles in the desired cluster which is marked by the
red circle in Fig. 4.1. These desired poles in the SR case are more regular and more
concentrated and located in a certain range. From the frequency perspective, the
estimated formant frequencies f̂ among different windows vary little, given the order
of the AR model. In contrast, there is no regular and concentrated pattern for those
desired poles in the AF situation. In this case, a classifier can be developed based on
these obtained observations in order to classify SR recordings and AF recordings. It
means the AF signal can be detected based on the AF mechanism derived from the
model. Two criteria are used to build the classifier.

• The number of poles in the pre-defined region, which is a sector representing a
frequency range from flb to fhb, should not be less than m.

• The standard deviation of the desired clusters should be smaller than a threshold
x.

The first criterion is made to identify the resonance frequency of P-waves. The pre-
defined region actually implies the resonance frequency should lie within a certain
range. A tolerance of 10 − m (The number of windows is 10) is given based on the
observation that the estimated formant frequencies in the AF signal may be 0 Hz, and
the consideration that the presence of noises and disturbances in P-waves will shift the
frequencies represented by poles.

The second criterion is made to measure the degree of the concentration of poles. Since
it is observed that the resonance frequencies across different windows do not change a
lot, given the order of the AR model, it is possible to use the standard deviation to
measure the distribution of the poles that represent the formant frequencies.

Hence, the signal will be classified as an SR signal if both criteria are met; otherwise
an AF signal. The classifier and the decision-making process can be concluded as the
table below.
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Number of poles in defined
region < m

Number of poles in defined
region ≥ m

Standard deviation < x AF SR

Standard deviation ≥ x AF AF

Table 5.1: Two criteria

Under this circumstance, the parameters which need to be determined are m, x, flb,
fhb, p. Recall p is the order of the AR model. The detailed parameters identification
and results will be discussed in the next chapter.

5.2 Parameter Identification

As described above, there are several parameters required to be identified to define the
classifier: the tolerance parameter m, the standard deviation threshold x, the lower
bound and higher bound of the frequency region flb, fhb, the order of the AR model
p, and which window length method to be used. To find the optimized options of
these parameters, the idea of alternating optimization is borrowed, which means some
parameters are fixed whilst updating one parameter. This idea is exploited due to the
fact that the program of classification will be too complex if all parameters are free
and are updated simultaneously. In this case, some initial values should be considered
to start the first update. These values are obtained based on observations of desired
poles and estimated resonance frequencies by doing experiments on a small number of
data (SR recording numbers: 16265, 16273, 16483, 16539, and AF recording numbers:
04908, 04936, 06995, 07879). The reason for choosing these recordings is just that they
are the first several recordings of each dataset. The algorithm to determine parameters
is listed in Algorithm. 3, and the detailed descriptions related to the setting of initial
parameters are given in the following part.

Since the AR model with different orders is implemented in Chapter. 3 and 4, which is
AR(8), AR(10), and AR(12), a deterministic order needs to be decided firstly. Besides,
the choice of the type of window length should also be evaluated. The range of flb and
fhb are set by adding two units Hz on the initial value and subtracting two units Hz
from the initial value. This range is enough to find the best frequency range, which
will be shown in the following results. Besides, the minimum value of m is defined as
five. The m specifies the minimum number of poles located outside the region, i.e.,
the tolerance. Ideally, for an SR recording, the poles representing the formants should
always be located in the defined region, which means ten poles are all located in the
region. However, this is not always the case due to the noises and artifacts. Therefore,
the tolerance is introduced and denoted as m. If the number of poles in the defined
region is larger than m, the recording can be considered as an SR recording. The
minimum value of m is 5 because the total number of windows is 10 for each recording
and 5 is half of the window number. If m is lower than 5, the tolerance is too loose
since it permits more poles located outside the region than poles in the region, like 9
poles outside the region and only one pole in the region. In this case, the recording
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Algorithm 3 Parameter Identification Algorithm

1: Input: p ∈ {8, 10, 12}, x ∈ {0, 0.0001, 0.0002, . . . , 0.2}
2: Initialization: m = 9, flb = 4, fhb = 13
3: for all p do
4: for all x do

Do classification on the dataset.
5: end for
6: end for
7: Determine pbest and the best window length method based on metrics.
8: Input: m ∈ {5, 6, 7, 8, 9, 10}, pbest
9: Initialization: flb = 4, fhb = 13

10: for all m do
11: for all x do

Do classification on the dataset.
12: end for
13: end for
14: Determine mbest based on metrics.
15: Input: flb ∈ {2, 3, 4, 5, 6}, mbest, pbest
16: Initialization: fhb = 13
17: for all flb do
18: for all x do

Do classification on the dataset.
19: end for
20: end for
21: Input: fhb ∈ {11, 12, 13, 14, 15}, mbest, pbest, f

best
lb

22: for all fhb do
23: for all x do

Do classification on the dataset.
24: end for
25: end for
26: Determine f best

hb and xbest based on metrics.

can not be regarded as an SR recording and the tolerance does not function. Finally,
the maximum value of the range of x is set to 0.2 because the maximum value of the
standard deviation in the dataset is 0.1432. The step size of x is 0.0001 since the
magnitude of the standard deviation of poles is very small.

In a word, these numbers and bounds are determined by enumerating all possible
values alternatively. That is, some initial values of the parameters are first determined
by the experiments of a batch of data. Then, the possible bounds of the parameters
are proposed and enumerated based on the references or experiments to make the
parameters more general and suitable for the dataset. For instance, since the frequency
band of P-waves is below 15 Hz [22], the highest fhb does not need to be set higher
than 15 Hz. The range of the model’s order has been proposed in Chapter. 3.5 based
on the experiments.

It can be discovered that some bounds and values are dependent on the MIT-HIB SR
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and AF datasets, i.e., data-dependent, like the m. This is reasonable since different
patients across different datasets will exhibit different numerical values of these param-
eters. Besides, every classifier is driven by datasets. However, the logic of the algorithm
and the idea are general and data-independent.

5.3 Results

In this thesis, the classification is implemented based on all recordings of the SR dataset
and these recordings of the AF dataset which contain more than 200 beats AF signals,
since the model requires 10 windows, each of which has 20 beats. The recordings used
are summarized in the below table.

MIT-HIB SR dataset MIT-HIB AF dataset

16265, 16272, 16273, 16483, 16539, 16773,
16786, 16795, 16420, 17052, 17453, 18177,
18184, 19088, 19090, 19093, 19140, 19830

04043, 04908, 04936, 06995, 07910, 08219,
08378, 08434, 08455

Table 5.2: Recordings used in this thesis.

The signals used for classification are obtained from these recordings. There are 72
signals obtained, with 36 SR signals and 36 AF signals. 54 signals among them are
used to identify those parameters, and 18 signals are considered test set.

To evaluate those parameters, the receiver operating characteristic (ROC) curve and
the area under the curve (AUC) are considered. The ROC curve is a graphical repre-
sentation of the diagnostic ability of a binary classifier [62]. Particularly the AUC of a
ROC curve quantifies the classification capability. The x-axis of the ROC is the false
positive (FP) rate, and the y-axis of the ROC is the true positive (TP) rate. The FP
rate and the TP rate are calculated by Eq. 5.1.

TP rate =
TP

P
=

TP

TP + FN

FP rate =
FP

N
=

FP

FP + TN
,

(5.1)

where FN represents the false negative, and TN means the true negative. In this thesis,
the positive samples are AF signals. Hence,

Real label
Classified label

AF SR

AF TP FN
SR FP TN

Table 5.3: Confusion matrix. AF signals are positive samples, and SR signals are negative
samples.
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First, it is necessary the order of the AR model and the window length method used.
As described in Chapter. 3.1.2 and Chapter. 3.5, AR models with different orders
ranging from 8 to 12 are implemented on the signals extracted by MWL method and
AWL method. The receiver operating characteristic (ROC) curve is used to evaluate
the classification capability of the model with different orders and of different types
of window length methods. Results are shown in Fig. 5.1. In addition, the AUC of
these curves are listed in Table. 5.4, respectively. The AUC are computed by the area
surrounded by the curve and the x-axis. It can be observed that in both types of window
length, AR(10) has the highest AUC area that is computed by the area surrounded by
the curve and the x-axis. In this case, p = 10 has the most powerful classification
capability. Also, it can be discovered that when p = 10, the average window length
method performs a higher AUC than the minimum window length method, which is
about 0.907 for the former and approximately 0.893 for the latter. Thus, the average
window length is preferred, and pbest = 10.

(a) ROC curve of the AR model with different
orders in minimum window case.

(b) ROC curve of the AR model with different
orders in average window case.

Figure 5.1: ROC for two window length method and different AR model orders.

Model Order MWL AWL

p=8 0.731 0.811
p=10 0.893 0.907
p=12 0.500 0.450

Table 5.4: AUC of AR models with different orders and two window methods.

After the appropriate order p = 10 and the average window length method are deter-
mined, there are still four parameters required to be identified. To determine m, the
ROC curve is still used, which is plotted in (a) in Fig. 5.2. Besides, the accuracy is
shown in (b) in the figure. What has to be mentioned is that the accuracy curves of
m = 8 and m = 9 coincide after about threshold x = 0.06. In this case, the m = 8
and m = 9 perform comparative results, i.e., similar ROC curves and the same accu-
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racy. Hence, the AUC of these curves are listed in Table. 5.5 to better determine the
parameter. The table shows that m = 7 has the highest AUC of 0.937, whereas m = 8
has the second highest one of 0.933. Although the AUC of m = 7 is 0.004 higher than
the AUC of m = 8, their values are similar, and the accuracy of m = 8 is much higher
than that of m = 7, where the former is more than 90% and the latter is around 85%.
Hence, m = 8 is a better option than m = 7. As for m = 9 and m = 8, the AUC of
m = 9 is 0.907, which is a bit lower than that of m = 8. As a result, m = 8 is the best
option by combining the ROC curve and the accuracy.

(a) ROC curve of the AR model whilst determin-
ing mbest

(b) Accuracy curve of the AR model whilst deter-
mining mbest

Figure 5.2: ROC and accuracy curves of the model whilst determining mbest, given p = 8 and
using the AWL method.

m AUC

m=5 0.894
m=6 0.902
m=7 0.937
m=8 0.933
m=9 0.907
m=10 0.778

Table 5.5: AUC value whilst determining mbest, given p = 12 and using the AWL method.

Next, it moves to determine f best
lb . In this case, only the accuracy is used to reveal which

flb is the best. The algorithm traverses the range of flb mentioned before. The results
are shown in Fig. 5.3. It shows when flb increases from 2 Hz to 5 Hz, the accuracy
curve increases. In this case, the values of flb lower than 2 Hz do not need to be
considered. But if the lower bound increases from 5 Hz to 6 Hz, the accuracy declines.
Hence, flb = 5 Hz has the highest accuracy. In addition. the accuracy of flb = 6 Hz
is lower than that of flb = 5 Hz, which proves the range of flb is appropriate enough
because if the lower bound continues increasing, more and more frequency artifacts will
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be included. As a result, it can be concluded that f best
lb = 5 Hz. Moreover, this value is

in line with the expectation that in most cases the formant frequency is more than 5
Hz, like the peak of 7 Hz in Fig. 2.5. However, no exact value of this has been proposed
in the literature. Usually, P-waves are considered more than 0 Hz. The concept of the
frequency band is frequently used, instead of the formant.

Figure 5.3: Accuracy of the AR model with different options of flb

Finally, the higher bound of the frequency range, f best
hb , should be identified. Similarly,

the accuracy curves are utilized to determine f best
hb by fixing f best

lb = 5 Hz, shown in
Fig. 5.4. This figure reveals that these curves do not perform a wide difference, which
differs from the lower bound case. These curves differ at some thresholds but coincide
at last. To be specific, fhb = 11 Hz can be considered to have the lowest accuracy.
The fhb = 15 Hz is slightly better than fhb = 11 Hz since it becomes higher when x
lies within the range from about 0.0696 to 0.0927 regardless of the final coincidence.
In a similar manner, the fhb = 12 Hz has a bit worse performance than fhb = 14 Hz
since the latter possesses a higher accuracy when x lies within the range from about
0.0696 to 0.0927. fhb = 13 Hz has the same accuracy as the case of 14 Hz before 0.0927
and then becomes the highest one. In this case, f best

hb is 13 Hz. This value is actually
unexpectedly high because it lies within the possible values of the higher bound of P-
waves’ frequency bound which is 10 to 15 Hz [22], whereas the frequency of the formant
representing the most signal energy is ideally lower than the bound.

In addition, the accuracy reaches its highest value and does not change after the thresh-
old x reaches a particular value. This phenomenon actually implies that all signals
satisfy the second criterion. In other words, for every data, the desired cluster of poles
has a standard deviation smaller than x, which can be understood by eliminating the
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third row of Table.5.1. In this case, the only functioning criterion is the first one, and
the accuracy of almost 95% is really high. Hence, one option of x is to consider the
first value, xbest = 0.1125, where the accuracy becomes the highest of all values. In this
case, choices of all parameters can be summarized in Table. 5.6

Figure 5.4: Accuracy of the AR model with different options of fhb

Parameter Choice

Window method AWL
Model order 10
tolerance parameter m 8
flb 5 Hz
fhb 13 Hz
threshold x 0.1125

Table 5.6: The final parameters determined.

After all parameters are determined, the classifier is implemented on the test set in
order to become a general model. The accuracy curve over all thresholds is shown
in Fig. 5.5. It can be observed that the curve does not exactly match the curve of
determining parameters. For instance, the curve of determining parameters performs
an overall increasing trend, whereas the curve of the test set has a peak at around
0.045. At this moment, there are 8 true negative samples and 9 true positive samples,
which means an SR signal is classified as the AF class. By observing the data, it can
be found that one SR signal has a high standard deviation of 0.0544 due to large noises
and thus is classified incorrectly. If the threshold x is set to 0.1125, the accuracy will be
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88.9% in the test set, which is still a high value. In this case, there are 7 true positive
samples and 9 true negative ones, implying that two AF signals are undetected. It is
because their estimated frequencies meet the tolerance of 8. Meanwhile, the threshold
is a little big though their standard deviation is big even if they can be found as AF
signals from the zero-pole plots.

Figure 5.5: Accuracy of the model implemented on the test set.

5.4 Chapter Summary

In this chapter, a parametric classifier based on the information obtained in the last
chapter is proposed. Since the classifier is parametric and the information is explicit,
the classifier can be considered interpretable. In addition, an alternating algorithm is
proposed to determine parameters in the classifier. The possible values of the parame-
ters are enumerated to identify the best parameters. The ROC, AUC, and accuracy are
used as metrics to evaluate the performance. The final set of the parameters is shown
in Table. 5.6.
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Conclusion and Future Work 6
ECG is a type of non-invasive measurement of the heart and is widely-used in the clinical
scenario due to its easily-implemented characteristic. P-waves are the components
reflecting atrial activities in the ECG signal, meaning that modeling P-waves allows to
interpret information related to the atrium. AF is a common cardiac illness which can
trigger deadly complications. Although tens of millions of people are suffering from
it, its underlying mechanisms are not completely understood. In this case, modeling
P-waves provide a way to interpret AF mechanisms at the signal-processing level.

In Chapter 3, this thesis has modeled P-waves of SR and AF signals by the AR model,
which is also called LPC in the acoustic signal processing domain, and the ARMAmodel
that can theoretically achieve the same modeling performance with lower orders. To
achieve this, the raw ECG signal was filtered and delineated by pre-processing steps.
The choice of the order was initially considered in terms of the AIC value and finally
identified by the correlation removal. Besides, the AR model and ARMA model were
compared based on the evaluation of the correlation removal in order to decide which
model was more preferred. The function of the atrium imposed on the impulse trains,
which is the output of the SA node, was represented by this de-correlation model in
this manner. In other words, the proposed model played a role of the atrium from the
signal perspective. Although the explicit order is not decided, the AR model with the
Burg method was determined as the most appropriate model in this chapter.

Chapter 4 was subsequently concerned with the interpretation of results of the model.
Parameters of the model were characterized by poles in zero-pole plots of the filter.
In addition, the information of the atrium was modeled as the formant which was a
type of representation of speech signals. Resonance frequencies of formants were also
estimated. The relationship between the signal level interpretation and the physiology
nature of the heart is built. Moreover, the intact ECG signal is modeled by the proposed
model, and the results are compared with the P-waves case. The results showed AF
components could not be revealed in the ECG modeling case. It was possibly due to
the fact that AF activities have lower energy than the normal P-waves and were hidden
by the large energy of QRST complexes. In a word, this chapter described how the
atrium activated at the signal level, namely generating P-waves and f-waves.

Afterward, in Chapter 5, an interpretable parametric classifier was derived in terms
of differences in LPC coefficients and formants between SR signals and AF signals.
An alternative decision-making algorithm was proposed to determine the parameters
of the classifier based on the training set. The metrics used are ROC curves, AUC,
and accuracy. With these parameters determined and summarized in Table. 5.6, the
classifier achieves high accuracy based on the dataset, 94.4% in the training set, and
88.9% in the test set.
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This thesis provides a novel understanding of the atrium functioning P-waves and
the pathogenic principle of AF at the signal level. Based on the parameters of the
proposed model, it gives the formant interpretation of the atrium and describes the
generation of P-waves and f-waves, which is beneficial for understanding the underlying
AF mechanisms and early detection. The interpretation made is also connected with
the physiology of the atrium. In this way, the signal level information reflects the
physiological information. Besides, The overall model only requires the single-lead ECG
and thus is easy to implement on the patients. In this case, the parametric classifier can
be deployed easily, unlike the multi-lead ECG recordings which may require patients to
wear several hours. Due to the single-lead feature of the overall model, the work of this
thesis provides potential benefits to self-check of patients, like using wearable devices
in the future.

6.1 Future Work

One future work is to address limitations, mainly of which are brought by the pre-
processing step. The first limitation is its robustness to the noises. Although the
baseline wander at 0.6 Hz and the powerline interference at 50 Hz were removed in the
pre-processing step, noises caused by muscle activities and the electrode motion artifacts
were not tackled specially. Their existence will influence the modeling of the model
and the concentration of poles and thus doing harm to the classification performance.
Secondly, in order to reduce the noise at around 1.2 Hz, the cut-off frequency of the
highpass filter is extended from 0.6 to 1.3 Hz, leading that some energy of P-waves
was also removed. The source of this kind of noise was not explored in detail. If it
is understood completely, a better solution can be derived to filter this kind of noise
and preserve P-waves. Thirdly, the P-waves were delineated by subtracting QRST
complexes from the intact ECG signal. The window of QRST complexes used is a
rectangular window and thus caused discontinuity of post-processing P-waves. Besides,
the window length is manually decided based on the minimum RR interval or the
average RR interval. Therefore, it is not adaptive and may not be suitable for all
QRST complexes, meaning not all desired atrial components are preserved, and not all
QRST complexes are removed. These limitations can be the direction of future work.

In addition, another future work can be collecting more data. The present dataset
is not at a big scale that may not be representative enough for the final parameters
identification. Enlarging the dataset will improve this perspective. Moreover, future
work can consider more ways to interpret formants and resonance frequencies, like line
spectral frequency, mel-frequency cepstral coefficients, and linear-frequency cepstral co-
efficients. Lastly, another methodology can be considered to model the atrium, instead
of the formant. The idea is to use an adaptive filter to minimize the MSE,

min||s−wHx||2, (6.1)

where s represents the pulse train, and x denotes the P-waves. The w specifies the filter
weights. Since the pulse train is hard to obtain, the simulated pulse train generated
by the IPFM model can be considered as an alternative option. The parameters of the
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IPFM model can be determined based on real ECG recordings. The schematic diagram
of the idea is plotted in Fig. 6.1.

Figure 6.1: The schematic diagram of the new idea. The e represents the MSE of the pulse
train and the output of the adaptive filter.
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